WorldWideScience

Sample records for biofuel crop miscanthus

  1. Refuge or reservoir? The potential impacts of the biofuel crop Miscanthus x giganteus on a major pest of maize.

    Directory of Open Access Journals (Sweden)

    Joseph L Spencer

    Full Text Available BACKGROUND: Interest in the cultivation of biomass crops like the C4 grass Miscanthus x giganteus (Miscanthus is increasing as global demand for biofuel grows. In the US, Miscanthus is promoted as a crop well-suited to the Corn Belt where it could be cultivated on marginal land interposed with maize and soybean. Interactions (direct and indirect of Miscanthus, maize, and the major Corn Belt pest of maize, the western corn rootworm, (Diabrotica virgifera virgifera LeConte, WCR are unknown. Adding a perennial grass/biomass crop to this system is concerning since WCR is adapted to the continuous availability of its grass host, maize (Zea mays. METHODOLOGY/PRINCIPAL FINDINGS: In a greenhouse and field study, we investigated WCR development and oviposition on Miscanthus. The suitability of Miscanthus for WCR development varied across different WCR populations. Data trends indicate that WCR populations that express behavioural resistance to crop rotation performed as well on Miscanthus as on maize. Over the entire study, total adult WCR emergence from Miscanthus (212 WCR was 29.6% of that from maize (717 WCR. Adult dry weight was 75-80% that of WCR from maize; female emergence patterns on Miscanthus were similar to females developing on maize. There was no difference in the mean no. of WCR eggs laid at the base of Miscanthus and maize in the field. CONCLUSIONS/SIGNIFICANCE: Field oviposition and significant WCR emergence from Miscanthus raises many questions about the nature of likely interactions between Miscanthus, maize and WCR and the potential for Miscanthus to act as a refuge or reservoir for Corn Belt WCR. Responsible consideration of the benefits and risks associated with Corn Belt Miscanthus are critical to protecting an agroecosystem that we depend on for food, feed, and increasingly, fuel. Implications for European agroecosystems in which Miscanthus is being proposed are also discussed in light of the WCR's recent invasion into Europe.

  2. Benefits versus risks of growing biofuel crops: the case of Miscanthus

    DEFF Research Database (Denmark)

    Jørgensen, Uffe

    2011-01-01

    The giant C4 grasses of the genus Miscanthus holds promise as candidates for the optimal bioenergy crop in the temperate zone with their high yield, cold tolerance, low environmental impact, resistance to pests and diseases, ease of harvesting and handling, and non-invasiveness. The latter is......, further development of the production chain, and stewardship programmes to avoid potential risks are still needed if Miscanthus is to compete with fossil fuel use and be widely produced....

  3. Biofuel, land and water: maize, switchgrass or Miscanthus?

    International Nuclear Information System (INIS)

    Zhuang Qianlai; Qin Zhangcai; Chen Min

    2013-01-01

    The productive cellulosic crops switchgrass and Miscanthus are considered as viable biofuel sources. To meet the 2022 national biofuel target mandate, actions must be taken, e.g., maize cultivation must be intensified and expanded, and other biofuel crops (switchgrass and Miscanthus) must be cultivated. This raises questions on the use efficiencies of land and water; to date, the demand on these resources to meet the national biofuel target has rarely been analyzed. Here, we present a data-model assimilation analysis, assuming that maize, switchgrass and Miscanthus will be grown on currently available croplands in the US. Model simulations suggest that maize can produce 3.0–5.4 kiloliters (kl) of ethanol for every hectare of land, depending on the feedstock to ethanol conversion efficiency; Miscanthus has more than twice the biofuel production capacity relative to maize, and switchgrass is the least productive of the three potential sources of ethanol. To meet the biofuel target, about 26.5 million hectares of land and over 90 km 3 of water (of evapotranspiration) are needed if maize grain alone is used. If Miscanthus was substituted for maize, the process would save half of the land and one third of the water. With more advanced biofuel conversion technology for Miscanthus, only nine million hectares of land and 45 km 3 of water would probably meet the national target. Miscanthus could be a good alternative biofuel crop to maize due to its significantly lower demand for land and water on a per unit of ethanol basis. (letter)

  4. Miscanthus - Practical aspects of biofuel development: Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, A.; Newman, R.

    2002-07-01

    A 4-year project to plant, grow, harvest and deliver a crop of Miscanthus (a tall perennial grass) to a power station and thus evaluate its potential as a biofuel began in April 1999. Progress to March 2002 is summarised. Miscanthus is envisaged as a possible replacement for straw as a fuel, and the combustion studies are to be carried out at a straw-fired power station in Cambridgeshire England. Work carried out to March 2002 focused on: (1) modifications at the power station to accept the miscanthus as a fuel and (2) planting, growing and future harvesting of the crop. Details of the growth of the miscanthus on a two-hectare site close to the power station are given. It is intended to burn the miscanthus in March or April 2002. The study is being carried out by Energy Power Resources Ltd. on behalf of the Department of Trade and Industry.

  5. Impact of drought stress on growth and quality of miscanthus for biofuel production

    NARCIS (Netherlands)

    Weijde, van der Tim; Huxley, Laurie M.; Hawkins, Sarah; Eben Haeser Sembiring, Eben; Farrar, Kerrie; Dolstra, Oene; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Miscanthus has a high potential as a biomass feedstock for biofuel production. Drought tolerance is an important breeding goal in miscanthus as water deficit is a common abiotic stress and crop irrigation is in most cases uneconomical. Drought may not only severely reduce biomass yields, but also

  6. Water Quality Effects of Miscanthus as a Bioenergy Crop

    Science.gov (United States)

    Ng, T.; Eheart, J. W.; Cai, X.

    2009-12-01

    There is increasing interest in perennial grasses as a renewable source of bioenergy and biofuels. Under the right conditions, environmental advantages of cultivating such crops, relative to conventional row crops, include reductions in greenhouse gas emissions and waterborne pollutants, increased biodiversity and improved soil properties. This study focuses on the riverine nitrate load of cultivating miscanthus in lieu of conventional crops. Miscanthus has been identified as a high-yielding, low-input perennial grass suitable as a feedstock for cellulosic ethanol production and power generation by biomass combustion. To achieve the objective of this study, the Soil and Water Assessment Tool (SWAT) is used to model runoff and stream water quality in the Salt Creek watershed in East-Central Illinois. The watershed is agricultural and its nitrogen export, like that of most other agricultural watersheds in the region, is a major contributor to hypoxia in the Gulf of Mexico. SWAT is a hydrologic model with a built-in crop growth component. However, as miscanthus is relatively new as a crop of interest, data for the SWAT crop growth parameters for it are lacking. This study reports an evaluation of those parameters and an application of them to estimate the potential reduction in nitrate load from miscanthus cultivation under various scenarios. The miscanthus growth parameters are divided into three subsets. The first subset contains those parameters describing optimal growth under zero stress conditions, while the second contains those used to estimate nitrogen stress. Those parameters that are remaining (namely, maximum root depth and phosphorus and temperature stress parameters) are included in the third subset. To calibrate for the parameters in the first subset, simulated data from another miscanthus growth model are used. That other model is highly mechanistic and has been validated (no calibration is necessary because of its degree of mechanisticity) using

  7. Miscanthus: practical aspects of biofuel development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Newman, R.

    2003-11-01

    This report summarises the results of a study examining the production and harvesting of the non-straw biofuel miscanthus in the light of the UK government's objective regarding the contribution of renewable energy sources to electricity production. Details are given of the modification to the Elean Power Station to allow use of baled miscanthus as fuel, the mechanical handling system, the capital costs, and the production, harvesting and combustion trials. Plant emission, availability and sustainability of combustion, and the financial implications of miscanthus use are discussed.

  8. Biomass valorisation of Arundo donax L., Miscanthus × giganteus and Sida hermaphrodita for biofuel production

    Science.gov (United States)

    Krička, Tajana; Matin, Ana; Bilandžija, Nikola; Jurišić, Vanja; Antonović, Alan; Voća, Neven; Grubor, Mateja

    2017-10-01

    In the context of the growing demand for biomass, which is being encouraged by the EU directives on the promotion of the use of renewable energy, recent investigations have been increasingly focused on fast-growing energy crops. The aim of this study was to investigate the energy properties of three types of agricultural energy crops: Arundo donax L., Miscanthus × giganteus and Sida hermaphrodita. This investigation looked into the content of non-combustible and combustible matter, higher and lower heating values, lignocellulose content, and biomass macro-elements. The results indicate that the energy values of these crops are comparable, while their lignocellulose content shows significant variations. Thus, Arundo donax L. can best be utilised as solid biofuel due to its highest lignin content, while Miscanthus × giganteus and Sida hermaphrodita L. can be used for both liquid and solid biofuels production. As far as Arundo donax L. is concerned, a higher ash level should be taken into consideration.

  9. Miscanthus plants used as an alternative biofuel material. The basic studies on ecology and molecular evolution

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chang-Hung [Graduate Institute of Ecology and Evolutionary Biology, College of Life Sciences, China Medical University, Taichung 404 (China)

    2009-08-15

    Miscanthus Anderss, widely distributed in Asia and Pacific Islands, possesses 20 species. Of which 8 species and 1 variety were recorded in Chinese Mainland; 6 species and 1 variety found in Japan; 5 species and 3 varieties distributed in Taiwan; 3 species documented in the Philippines; and rest of species have been recorded in Jawa, eastern Himalaya, and Sikkim. The plant is a C{sub 4} perennial grass with high productivity of biomass. In the 19th and early 20th centuries in Taiwan, Miscanthus was a very important crop used for forage grass, clothing, and shelter, etc. The relatively high germination, and high yield of biomass made the plant available for people of Taiwan including aboriginal. The taxonomic study of Miscanthus plants was much done by several scientists, and its ecological study has been only taken by the present author since 1972. Chou and his associates paid a great attention to elucidate the mechanism of dominance of Miscanthus vegetation and found that allelopathy plays an important role. In addition, the population biology of Miscanthus taxa by using polyacrylamide gel electrophoreses technique to examine the patterns of peroxidase and esterase among populations (over 100) of Miscanthus in Taiwan were conducted. They also elucidated the phylogenetic relationship among species and varieties in Taiwan. Chou and Ueng proposed an evolutionary trend of Miscanthus species, indicating that the Miscanthus sinensis was assumed to be the origin of Miscanthus Anderss, which evolved to M. sinensis var. formosana, and M. sinensis var. flavidus, and M. sinensis var. transmorrisonensis, and Miscanthus floridulus was thought to be an out group of M. sinensis complex. Moreover, molecular phylogeny was attempted to clarify the population heterogeneity of M. sinensis complex, resulting in a substantial information. It would be available for making hybridization between Miscanthus species and its related species, such as Saccharum (sugar cane) spp. which is a

  10. Miscanthus: A Review of European Experience with a Novel Energy Crop

    Energy Technology Data Exchange (ETDEWEB)

    Scurlock, J.M.O.

    1999-02-01

    Miscanthus is a tall perennial grass which has been evaluated in Europe over the past 5-10 years as a new bioenergy crop. The sustained European interest in miscanthus suggests that this novel energy crop deserves serious investigation as a possible candidate biofuel crop for the US alongside switchgrass. To date, no agronomic trials or trial results for miscanthus are known from the conterminous US, so its performance under US conditions is virtually unknown. Speculating from European data, under typical agricultural practices over large areas, an average of about 8t/ha (3t/acre dry weight) may be expected at harvest time. As with most of the new bioenergy crops, there seems to be a steep ''learning curve.'' Establishment costs appear to be fairly high at present (a wide range is reported from different European countries), although these may be expected to fall as improved management techniques are developed.

  11. Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop.

    Science.gov (United States)

    Ng, Tze Ling; Eheart, J Wayland; Cai, Ximing; Miguez, Fernando

    2010-09-15

    There is increasing interest in perennial grasses as a renewable source of bioenergy and feedstock for second-generation cellulosic biofuels. The primary objective of this study is to estimate the potential effects on riverine nitrate load of cultivating Miscanthus x giganteus in place of conventional crops. In this study, the Soil and Water Assessment Tool (SWAT) is used to model miscanthus growth and streamwater quality in the Salt Creek watershed in Illinois. SWAT has a built-in crop growth component, but, as miscanthus is relatively new as a potentially commercial crop, data on the SWAT crop growth parameters for the crop are lacking. This leads to the second objective of this study, which is to estimate those parameters to facilitate the modeling of miscanthus in SWAT. Results show a decrease in nitrate load that depends on the percent land use change to miscanthus and the amount of nitrogen fertilizer applied to the miscanthus. Specifically, assuming a nitrogen fertilization rate for miscanthus of 90 kg-N/ha, a 10%, 25%, and 50% land use change to miscanthus will lead to decreases in nitrate load of about 6.4%, 16.5%, and 29.6% at the watershed outlet, respectively. Likewise, nitrate load may be reduced by lowering the fertilizer application rate, but not proportionately. When fertilization drops from 90 to 30 kg-N/ha the difference in nitrate load decrease is less than 1% when 10% of the watershed is miscanthus and less than 6% when 50% of the watershed is miscanthus. It is also found that the nitrate load decrease from converting less than half the watershed to miscanthus from corn and soybean in 1:1 rotation surpasses that from converting the whole watershed to just soybean.

  12. Genetic complexity of miscanthus cell wall composition and biomass quality for biofuels.

    Science.gov (United States)

    van der Weijde, Tim; Kamei, Claire L Alvim; Severing, Edouard I; Torres, Andres F; Gomez, Leonardo D; Dolstra, Oene; Maliepaard, Chris A; McQueen-Mason, Simon J; Visser, Richard G F; Trindade, Luisa M

    2017-05-25

    Miscanthus sinensis is a high yielding perennial grass species with great potential as a bioenergy feedstock. One of the challenges that currently impedes commercial cellulosic biofuel production is the technical difficulty to efficiently convert lignocellulosic biomass into biofuel. The development of feedstocks with better biomass quality will improve conversion efficiency and the sustainability of the value-chain. Progress in the genetic improvement of biomass quality may be substantially expedited by the development of genetic markers associated to quality traits, which can be used in a marker-assisted selection program. To this end, a mapping population was developed by crossing two parents of contrasting cell wall composition. The performance of 182 F1 offspring individuals along with the parents was evaluated in a field trial with a randomized block design with three replicates. Plants were phenotyped for cell wall composition and conversion efficiency characters in the second and third growth season after establishment. A new SNP-based genetic map for M. sinensis was built using a genotyping-by-sequencing (GBS) approach, which resulted in 464 short-sequence uniparental markers that formed 16 linkage groups in the male map and 17 linkage groups in the female map. A total of 86 QTLs for a variety of biomass quality characteristics were identified, 20 of which were detected in both growth seasons. Twenty QTLs were directly associated to different conversion efficiency characters. Marker sequences were aligned to the sorghum reference genome to facilitate cross-species comparisons. Analyses revealed that for some traits previously identified QTLs in sorghum occurred in homologous regions on the same chromosome. In this work we report for the first time the genetic mapping of cell wall composition and bioconversion traits in the bioenergy crop miscanthus. These results are a first step towards the development of marker-assisted selection programs in miscanthus

  13. Is Miscanthus a High Risk Biofuel Feedstock Prospect for the Upper Midwest US?

    Science.gov (United States)

    Kucharik, C. J.; VanLoocke, A. D.

    2011-12-01

    Miscanthus is a highly productive C4 perennial rhizomatous grass that is native to Southeast Asia, but its potential as a feedstock for cellulosic biofuel in the Midwest US is intriguing given extremely high productivity for low amounts of agrochemical inputs. However, Miscanthus x giganteus, a key variety currently studied is not planted from seed, but rather from rhizomes planted at a soil depth of 5 to 10 cm. Therefore, it is costly to establish on the basis of both time and money, making it a potentially risky investment in geographic regions that experience cold wintertime temperatures that can effectively kill the crop. The 50% kill threshold for M. giganteus rhizomes occurs when soil temperatures fall below -3.5C, which may contribute to a high risk of improper establishment during the first few seasons. Our first objective here was to study a historical, simulated reconstruction of daily wintertime soil temperatures at high spatial resolution (5 min) across the Midwest US from 1948-2007, and use this information to quantify the frequency that lethal soil temperature thresholds for Miscanthus were reached. A second objective was to investigate how the use of crop residues could impact wintertime soil temperatures. In this study, a dynamic agroecosystem model (Agro-IBIS) that has been modified to simulate Miscanthus growth and phenology was used in conjunction with high-resolution datasets of soil texture and daily gridded weather data. Model simulations suggest that across the states of North and South Dakota, Nebraska, Minnesota, Wisconsin, Michigan, and the northern half of Iowa, the kill threshold of -3.5C at a 10cm soil depth was reached in 70-95% of the simulation years. A boundary representing a 50% likelihood of reaching -3.5C at 10cm depth in any given year runs approximately from east central Colorado, thought northern Kansas and Missouri, through central Illinois, central Indiana, and central Ohio. An analysis of monthly mean 10cm soil temperatures

  14. Transport biofuel yields from food and lignocellulosic C{sub 4} crops

    Energy Technology Data Exchange (ETDEWEB)

    Reijnders, L. [IBED University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands)

    2010-01-15

    In the near future, the lignocellulosic C{sub 4} crops Miscanthus and switchgrass (Panicum virgatum) are unlikely to outcompete sugarcane (Saccharum officinarum) in net energetic yearly yield of transport biofuel ha{sup -1}. This holds both for the thermochemical conversion into liquid hydrocarbons and the enzymatic conversion into ethanol. Currently, Miscanthus and switchgrass would also not seem able to outcompete corn (Zea mays) in net energetic yearly yield of liquid transport biofuel ha{sup -1}, but further development of these lignocellulosic crops may gradually lead to a different outcome. (author)

  15. Allelopathic effect of new introduced biofuel crops on the soil biota: A comparative study

    Science.gov (United States)

    Heděnec, Petr; Frouz, Jan; Ustak, Sergej; Novotny, David

    2015-04-01

    Biofuel crops as an alternative to fossil fuels are a component of the energy mix in many countries. Many of them are introduced plants, so they pose a serious threat of biological invasions. Production of allelopathic compounds can increase invasion success by limiting co-occurring species in the invaded environment (novel weapons hypothesis). In this study, we focused on plant chemistry and production of allelopathic compounds by biofuel crops (hybrid sorrel Rumex tianschanicus x Rumex patientia and miscanthus Miscanthus sinensis) in comparison with invasive knotweed (Fallopia sachalinensis) and cultural meadow species. First, we tested the impact of leachates isolated from hybrid sorrel, miscanthus, knotweed and cultural meadow species compared to deionized water, used as a control, on seed germination of mustard (Sinapis arvensis) and wheat (Triticum aestivum) cultivated on sand and soil. Secondly, we studied the effect of leachates on the growth of soil fungal pathogens Fusarium culmorum, Rhizoctonia solani, Sclerotinia solani and Cochliobolus sativus. Finally, we tested the effect of litter of hybrid sorrel, miscanthus, knotweed and cultural meadow litter mixed with soil on population growth of Enchytraeus crypticus and Folsomia candida. Miscanthus and knotweed litter had a higher C:N ratio than the control meadow and hybrid sorrel litter. Miscanthus and hybrid sorrel litter had a higher content of phenols than knotweed and cultural meadow litter. Leachates from hybrid sorrel, miscanthus and knotweed biomass significantly decreased seed germination of wheat and mustard in both substrates. Soil fungal pathogens grew less vigorously on agar enriched by leachates from both biofuel crops than on agar enriched by knotweed and leachates. Litter from hybrid sorrel, miscanthus and knotweed significantly altered (both ways) the population growth of the soil mesofauna.

  16. Alternative Crops and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Kenkel, Philip [Oklahoma State Univ., Stillwater, OK (United States); Holcomb, Rodney B. [Oklahoma State Univ., Stillwater, OK (United States)

    2013-03-01

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally available feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.

  17. Seasonal nutrient dynamics and biomass quality of giant reed (Arundo donax L. and miscanthus (Miscanthus x giganteus Greef et Deuter as energy crops

    Directory of Open Access Journals (Sweden)

    Nicoletta Nassi o Di Nasso

    2011-08-01

    Full Text Available The importance of energy crops in displacing fossil fuels within the energy sector in Europe is growing. Among energy crops, the use of perennial rhizomatous grasses (PRGs seems promising owing to their high productivity and their nutrient recycling that occurs during senescence. In particular, nutrient requirements and biomass quality have a fundamental relevance to biomass systems efficiency. The objective of our study was to compare giant reed (Arundo donax L. and miscanthus (Miscanthus × giganteus Greef et Deuter in terms of nutrient requirements and cellulose, hemicelluloses and lignin content. This aim was to identify, in the Mediterranean environment, the optimal harvest time that may combine, beside a high biomass yield, high nutrient use efficiency and a good biomass quality for second generation biofuel production. The research was carried out in 2009, in San Piero a Grado, Pisa (Central Italy; latitude 43°41’ N, longitude 10°21’ E, on seven-year-old crops in a loam soil characterised by good water availability. Maximum above-ground nutrient contents were generally found in summer. Subsequently, a decrease was recorded; this suggested a nutrient remobilisation from above-ground biomass to rhizomes. In addition, miscanthus showed the highest N, P, and K use efficiency, probably related to its higher yield and its C4 pathway. Regarding biomass quality, stable values of cellulose (38%, hemicelluloses (25% and lignin (8% were reported from July onwards in both crops. Hence, these components appear not to be discriminative parameters in the choice of the harvest time in the Mediterranean environment. In conclusion, our results highlighted that, in our environment, a broad harvest period (from late autumn to winter seems suitable for these PRGs. However, further research is required to evaluate the role of rhizomes in nutrient storage and supply during the growing season, as well as ecological and productive performances in marginal

  18. Biofuels barometer: Crops pending

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    The actors and production capacities have changed only little in the biofuel sector from year to another. Nevertheless, it is interesting to take stock of the development of this sector at the end of 2002, so as to update the more complete barometer published in issue 144 of Systemes Solaires. Indeed, European ethanol production grew by 13% and that of bio-diesel by more than 20% in 2001. (authors)

  19. Green Biorefinery of Giant Miscanthus for Growing Microalgae and Biofuel Production

    Directory of Open Access Journals (Sweden)

    Shuangning Xiu

    2017-12-01

    Full Text Available In this study, an innovative green biorefinery system was successfully developed to process the green biomass into multiple biofuels and bioproducts. In particular, fresh giant miscanthus was separated into a solid stream (press cake and a liquid stream (press juice using a screw press. The juice was used to cultivate microalga Chlorella vulgaris, which was further thermochemically converted via thermogravimetry analysis (TGA and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS analysis, resulting in an approximately 80% conversion. In addition, the solid cake of miscanthus was pretreated with dilute sulfuric acid and used as the feedstock for bioethanol production. The results showed that the miscanthus juice could be a highly nutritious source for microalgae that are a promising feedstock for biofuels. The highest cell density was observed in the 15% juice medium. Sugars released from the miscanthus cake were efficiently fermented to ethanol using Saccharomyces cerevisiae through a simultaneous saccharification and fermentation (SSF process, with 88.4% of the theoretical yield.

  20. Miscanthus as energy crop: Environmental assessment of a miscanthus biomass production case study in France

    DEFF Research Database (Denmark)

    Morandi, Fabiana; Perrin, A.; Østergård, Hanne

    2016-01-01

    assessment of different logistic (harvesting) strategies for miscanthus production in the Bourgogne region is presented. Emergy assessment is a particular methodology suited to quantify the resource use of a process and to estimate the percentage of renewability of products or services. The case study...... the environmental cost of the whole process, the percentage of renewability (%R) and the Unit Emergy Values (UEV) that represent the resource use efficiency of the final products for each phase are calculated. Since miscanthus is reproduced by rhizomes, in addition to the system for growing and distributing...... miscanthus biomass, the system for producing miscanthus rhizomes is also analysed and a UEV for miscanthus rhizomes of 1.19E+05 seJ/J was obtained. Moreover, due the absence of other emergy assessments for miscanthus biomass for comparison, a sensitivity analysis has been made by considering different...

  1. Development of 12 genic microsatellite loci for a biofuel grass, Miscanthus sinensis (Poaceae).

    Science.gov (United States)

    Ho, Chuan-Wen; Wu, Tai-Han; Hsu, Tsai-Wen; Huang, Jao-Ching; Huang, Chi-Chun; Chiang, Tzen-Yuh

    2011-08-01

    Miscanthus, a nonfood plant with high potential as a biofuel, has been used in Europe and the United States. The selection of a cultivar with high biomass, photosynthetic efficiency, and stress resistance from wild populations has become an important issue. New genic microsatellite markers will aid the assessment of genetic diversity for different strains. Twelve polymorphic microsatellite markers derived from the transcriptome of Miscanthus sinensis fo. glaber were identified and screened on 80 individuals of M. sinensis. The number of alleles per locus ranged from 6 to 12, and the mean expected heterozygosity was 0.75. Cross-taxa transferability revealed that all loci can be applied to all varieties of M. sinensis, as well as the closely related species M. floridulus. These new genic microsatellite markers are useful for characterizing different traits in breeding programs or to select genes useful for biofuel.

  2. Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions.

    Science.gov (United States)

    Hager, Heather A; Sinasac, Sarah E; Gedalof, Ze'ev; Newman, Jonathan A

    2014-01-01

    In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk.

  3. Sustainable production of grain crops for biofuels

    Science.gov (United States)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  4. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.

    Science.gov (United States)

    da Costa, Ricardo M F; Lee, Scott J; Allison, Gordon G; Hazen, Samuel P; Winters, Ana; Bosch, Maurice

    2014-10-01

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transform mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. It is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample

  5. [Biofuels, food security and transgenic crops].

    Science.gov (United States)

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  6. Developing County-level Water Footprints of Biofuel Produced from Switchgrass and Miscanthus x Giganteus in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wu, May M. [Argonne National Lab. (ANL), Argonne, IL (United States); Chiu, Yi-Wen [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-09-30

    Perennial grass has been proposed as a potential candidate for producing cellulosic biofuel because of its promising productivity and benefits to water quality, and because it is a non-food feedstock. While extensive research focuses on selecting and developing species and conversion technologies, the impact of grass-based biofuel production on water resources remains less clear. As feedstock growth requires water and the type of water consumed may vary considerably from region to region, water use must be characterized with spatial resolution and on a fuel production basis. This report summarizes a study that assesses the impact of biofuel production on water resource use and water quality at county, state, and regional scales by developing a water footprint of biofuel produced from switchgrass and Miscanthus × giganteus via biochemical conversion.

  7. Potential productivity of the Miscanthus energy crop in the Loess Plateau of China under climate change

    International Nuclear Information System (INIS)

    Liu, Wei; Sang, Tao

    2013-01-01

    With a vast area of marginal land, the Loess Plateau of China is a promising region for large-scale production of second-generation energy crops. However, it remains unknown whether such production is sustainable in the long run, especially under climate change. Using a regional climate change model, PRECIS, we analyzed the impact of climate change on Miscanthus production in the Loess Plateau. Under three emission scenarios, A2, B2, and A1B, both the average yield and total area capable of supporting Miscanthus production would increase continuously in the future period (2011–2099). As a result, the total yield potential in the region would increase by about 20% in this future period from the baseline period (1961–1990). This was explained primarily by predicted increases in temperature and precipitation across the Loess Plateau, which improved the yield of the perennial C4 plants relying exclusively on rainfed production. The areas that are currently too dry or too cold to support Miscanthus production could be turned into energy crop fields, especially along the arid–semiarid transition zone. Thus the Loess Plateau would become increasingly desirable for growing second-generation energy crops in this century, which could in turn contribute to soil improvement and ecological restoration of the region. (letter)

  8. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution.

    Science.gov (United States)

    Femeena, P V; Sudheer, K P; Cibin, R; Chaubey, I

    2018-04-15

    Biofuel has emerged as a substantial source of energy in many countries. In order to avoid the 'food versus fuel competition', arising from grain-based ethanol production, the United States has passed regulations that require second generation or cellulosic biofeedstocks to be used for majority of the biofuel production by 2022. Agricultural residue, such as corn stover, is currently the largest source of cellulosic feedstock. However, increased harvesting of crops residue may lead to increased application of fertilizers in order to recover the soil nutrients lost from the residue removal. Alternatively, introduction of less-fertilizer intensive perennial grasses such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus Greef et Deu.) can be a viable source for biofuel production. Even though these grasses are shown to reduce nutrient loads to a great extent, high production cost have constrained their wide adoptability to be used as a viable feedstock. Nonetheless, there is an opportunity to optimize feedstock production to meet bioenergy demand while improving water quality. This study presents a multi-objective simulation optimization framework using Soil and Water Assessment Tool (SWAT) and Multi Algorithm Genetically Adaptive Method (AMALGAM) to develop optimal cropping pattern with minimum nutrient delivery and minimum biomass production cost. Computational time required for optimization was significantly reduced by loose coupling SWAT with an external in-stream solute transport model. Optimization was constrained by food security and biofuel production targets that ensured not more than 10% reduction in grain yield and at least 100 million gallons of ethanol production. A case study was carried out in St. Joseph River Watershed that covers 280,000 ha area in the Midwest U.S. Results of the study indicated that introduction of corn stover removal and perennial grass production reduce nitrate and total phosphorus loads without

  9. Water for Food, Energy, and the Environment: Assessing Streamflow Impacts of Increasing Cellulosic Biofuel Crop Production in the Corn Belt

    Science.gov (United States)

    Yaeger, M. A.; Housh, M.; Ng, T.; Cai, X.; Sivapalan, M.

    2012-12-01

    The recently expanded Renewable Fuel Standard, which now requires 36 billion gallons of renewable fuels by 2022, has increased demand for biofuel refinery feedstocks. Currently, biofuel production consists mainly of corn-based ethanol, but concern over increasing nitrate levels resulting from increased corn crop fertilization has prompted research into alternative biofuel feedstocks. Of these, high-yielding biomass crops such as Miscanthus have been suggested for cellulose-based ethanol production. Because these perennial crops require less fertilization and do not need tilling, increasing land area in the Midwest planted with Miscanthus would result in less nitrate pollution to the Gulf of Mexico. There is a tradeoff, however, as Miscanthus also has higher water requirements than conventional crops in the region. This could pose a serious problem for riparian ecosystems and other streamflow users such as municipalities and biofuel refineries themselves, as the lowest natural flows in this region coincide with the peak of the growing season. Moreover, low flow reduction may eventually cut off the water quality benefit that planting Miscanthus provides. Therefore, for large-scale cellulosic ethanol production to be sustainable, it is important to understand how the watershed will respond to this change in land and water use. To this end a detailed data analysis of current watershed conditions has been combined with hydrologic modeling to gain deeper insights into how catchments in the highly agricultural central IL watershed of the Sangamon River respond to current and future land and water usage, with the focus on the summer low-flow season. In addition, an integrated systems optimization model has been developed that combines hydrologic, agro-biologic, engineering infrastructural, and economic inputs to provide optimal scenarios of crop type and area and corresponding refinery locations and capacities. Through this integrated modeling framework, we address the key

  10. Ultrastructure of the Rust Fungus Puccinia miscanthi in the Teliospore Stage Interacting with the Biofuel Plant Miscanthus sinensis

    Directory of Open Access Journals (Sweden)

    Ki Woo Kim

    2015-09-01

    Full Text Available Interaction of the the rust fungus Puccinia miscanthi with the biofuel plant Miscanthus sinensis during the teliospore phase was investigated by light and electron microscopy. P. miscanthi telia were oval-shaped and present on both the adaxial and abaxial leaf surfaces. Teliospores were brown, one-septate (two-celled, and had pedicels attached to one end. Transmission electron microscopy revealed numerous electron-translucent lipid globules in the cytoplasm of teliospores. Extensive cell wall dissolution around hyphae was not observed in the host tissues beneath the telia. Hyphae were found between mesophyll cells in the leaf tissues as well as in host cells. Intracellular hyphae, possibly haustoria, possessed electron-dense fungal cell walls encased by an electron-transparent fibrillar extrahaustorial sheath that had an electron-dense extrahaustorial membrane. The infected host cells appeared to maintain their membrane-bound structures such as nuclei and chloroplasts. These results suggest that the rust fungus maintains its biotrophic phase with most mesophyll cells of M. sinensis. Such a nutritional mode would permit the rust fungus to obtain food reserves for transient growth in the course of host alteration.

  11. Carbon sequestration by Miscanthus energy crops plantations in a broad range semi-arid marginal land in China.

    Science.gov (United States)

    Mi, Jia; Liu, Wei; Yang, Wenhui; Yan, Juan; Li, Jianqiang; Sang, Tao

    2014-10-15

    Carbon sequestration is an essential ecosystem service that second-generation energy crops can provide. To evaluate the ability of carbon sequestration of Miscanthus energy crops in the Loess Plateau of China, the yield and soil organic carbon (SOC) changes were measured for three Miscanthus species in the experimental field in Qingyang of the Gansu Province (QG). With the highest yield of the three species, Miscanthus lutarioriparius contributed to the largest increase of SOC, 0.57 t ha(-1)yr(-1), comparing to the field left unplanted. Through modeling M. lutarioriparius yield across the Loess Plateau, an average increase of SOC was estimated at 0.46 t ha(-1)yr(-1) for the entire region. Based on the measurements of SOC mineralization under various temperatures and moistures for soil samples taken from QG, a model was developed for estimating SOC mineralization rates across the Loess Plateau and resulted in an average of 1.11 t ha(-1)yr(-1). Combining the estimates from these models, the average of net carbon sequestration was calculated at a rate of 9.13 t ha(-1)yr(-1) in the Loess Plateau. These results suggested that the domestication and production of M. lutarioriparius hold a great potential for carbon sequestration and soil restoration in this heavily eroded region. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Crop residues for advanced biofuels workshop: A synposis

    Science.gov (United States)

    Crop residues are being harvested for a variety of purposes including their use as livestock feed and to produce advanced biofuels. Crop residue harvesting, by definition, reduces the potential annual carbon input to the soil from aboveground biomass but does not affect input from plant roots. The m...

  13. Higher US crop prices trigger little area expansion so marginal land for biofuel crops is limited

    International Nuclear Information System (INIS)

    Swinton, Scott M.; Babcock, Bruce A.; James, Laura K.; Bandaru, Varaprasad

    2011-01-01

    By expanding energy biomass production on marginal lands that are not currently used for crops, food prices increase and indirect climate change effects can be mitigated. Studies of the availability of marginal lands for dedicated bioenergy crops have focused on biophysical land traits, ignoring the human role in decisions to convert marginal land to bioenergy crops. Recent history offers insights about farmer willingness to put non-crop land into crop production. The 2006-09 leap in field crop prices and the attendant 64% gain in typical profitability led to only a 2% increase in crop planted area, mostly in the prairie states. At this rate, a doubling of expected profitability from biomass crops would expand cropland supply by only 3.2%. Yet targets for cellulosic ethanol production in the US Energy Independence and Security Act imply boosting US planted area by 10% or more with perennial biomass crops. Given landowner reluctance to expand crop area with familiar crops in the short run, large scale expansion of the area in dedicated bioenergy crops will likely be difficult and costly to achieve. - Highlights: → Biofuel crops on cropland can displace food crops, reducing food supply and triggering indirect land use. → Growing biofuel crops on non-crop marginal land avoids these problems. → But US farmers expanded cropland by only 2% when crop profitability jumped 64% during 2006-09. → So medium-term availability of marginal lands for biofuel crops is limited and costly.

  14. Differences in the diurnal pattern of soil respiration under adjacent Miscanthus x giganteus and barley crops reveal potential flaws in accepted sampling strategies

    Science.gov (United States)

    Keane, James; Ineson, Phil

    2017-04-01

    Soil respiration (Rs) plays an important role in the global carbon cycle and contributes ca. 30% of global ecosystem respiration.However, for convenience, measurements used to compare Rs from different land uses, crops or management practices are often made between 09:00 and 16:00, with an implicit assumption that Rs is largely controlled by temperature. Three months' continuous data presented here show distinctly different diurnal patterns of Rs between barley (Hordeum vulgare) and Miscanthus x giganteus (Miscanthus) grown on adjacent fields. Maximum Rs in barley occurred during the afternoon and correlated with soil temperature, whereas Rs peaked in Miscanthus during the night and was significantly correlated with earlier levels of solar radiation, probably due to delays in translocation of recent photosynthate. Since daily mean Rs in Miscanthus coincided with levels 40% greater than the mean in barley, it is vital to select appropriate times to measure Rs if only single daily measurements are to be made.

  15. A trial of the suitability of switchgrass and reed canary grass as biofuel crops under UK conditions. 5th interim report March 2005

    Energy Technology Data Exchange (ETDEWEB)

    Richie, A.B.

    2005-07-01

    The Topgrass Project, established in 2002, investigated the potential of miscanthus, switchgrass and reed canary grass as biofuel crops at various sites in the UK. This interim report covers the period from the harvesting in winter 2003/04 to the harvesting in winter 2004/05. The report gives details on (i) pest and weed control and (ii) yields and associated costs per species per unit area. It was concluded that maximum potential yield has not been reached at some sites. The study was funded by the DTI and carried out by IACR Rothamstead with ADAS Consulting, Duchy College Cornwall and SCRI Invergowrie as collaborators. The project has now terminated.

  16. Genetic Variability and Population Structure of the Potential Bioenergy Crop Miscanthus sinensis (Poaceae in Southwest China Based on SRAP Markers

    Directory of Open Access Journals (Sweden)

    Gang Nie

    2014-08-01

    Full Text Available The genus Miscanthus has great potential as a biofuel feedstock because of its high biomass, good burning quality, environmental tolerance, and good adaptability to marginal land. In this study, the genetic diversity and the relationship of 24 different natural Miscanthus sinensis populations collected from Southwestern China were analyzed by using 33 pairs of Sequence Related Amplified Polymorphism (SRAP primers. A total of 688 bands were detected with 646 polymorphic bands, an average of 19.58 polymorphic bands per primer pair. The average percentage of polymorphic loci (P, gene diversity (H, and Shannon’s diversity index (I among the 24 populations are 70.59%, 0.2589, and 0.3836, respectively. The mean value of total gene diversity (HT was 0.3373 ± 0.0221, while the allelic diversity within populations (HS was 0.2589 ± 0.0136 and the allelic diversity among populations (DST was 0.0784. The mean genetic differentiation coefficient (Gst = 0.2326 estimated from the detected 688 loci indicated that there was 76.74% genetic differentiation within the populations, which is consistent with the results from Analysis of Molecular Variance (AMOVA analysis. Based upon population structure and phylogenetic analysis, five groups were formed and a special population with mixed ancestry was inferred indicating that human-mediated dispersal may have had a significant effect on population structure of M. sinensis. Evaluating the genetic structure and genetic diversity at morphological and molecular levels of the wild M. sinensis in Southwest China is critical to further utilize the wild M. sinensis germplasm in the breeding program. The results in this study will facilitate the biofuel feedstock breeding program and germplasm conservation.

  17. A modelling approach to estimate the European biofuel production: from crops to biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Clodic, Melissa [Institute National de la Recherche Agronomique (IFP/INRA), Paris (France). Instituto Frances do Petroleo

    2008-07-01

    Today, in the context of energy competition and climate change, biofuels are promoted as a renewable resource to diversify the energy supply. However, biofuel development remains controversial. Here, we will present a way to make an environmental and economic cost and benefit analysis of European biofuels, from the crops until the marketed products, by using a linear programming optimization modelling approach. To make this European biofuel production model, named AGRAF, possible, we decided to use different independent linear programming optimization models which represent the separate parts of the process: European agricultural production, production of transforming industries and refinery production. To model the agricultural and the refining sections, we have chosen to improve existing and experimented models by adding a biofuel production part. For the transforming industry, we will create a new partial equilibrium model which will represent stake holders such as Sofiproteol, Stereos, etc. Data will then be exchanged between the models to coordinate all the biofuel production steps. Here, we will also focus on spatialization in order to meet certain of our requirements, such as the exchange flux analysis or the determination of transport costs, usually important in an industrial optimization model. (author)

  18. Can biofuel crops alleviate tribal poverty in India's drylands?

    International Nuclear Information System (INIS)

    Agoramoorthy, Govindasamy; Hsu, Minna J.; Chaudhary, Sunita; Shieh, Po-Chuen

    2009-01-01

    The on-going climate change concerns have stimulated heavy interest in biofuels, and supporters of biofuels hail that they are considered naturally carbon-neutral. Critiques on the other hand cry that the large-scale production of biofuels can not only strain agricultural resources, but also threaten future food security. People who live in the drylands of India are often faced with challenges and constraints of poverty. Foremost among the challenges are the marginal environmental conditions for agriculture, often influenced by low and erratic rainfall, frequent droughts, poor soil condition, unreliable irrigation water supply, and rural migration to urban areas in search of work. In this paper, we have analyzed a case study of community lift irrigation practiced in India and its impact in boosting agricultural productivity and enhancing local food security. The lift-irrigation model practiced in the drylands of India to grow food crops can be adopted for the expansion of biofuel crops that has the potential to eradicate poverty among farming communities if appropriate sustainable development measures are carefully implemented. (author)

  19. Water Use and Quality Footprints of Biofuel Crops in Florida

    Science.gov (United States)

    Shukla, S.; Hendricks, G.; Helsel, Z.; Knowles, J.

    2013-12-01

    The use of biofuel crops for future energy needs will require considerable amounts of water inputs. Favorable growing conditions for large scale biofuel production exist in the sub-tropical environment of South Florida. However, large-scale land use change associated with biofuel crops is likely to affect the quantity and quality of water within the region. South Florida's surface and ground water resources are already stressed by current allocations. Limited data exists to allocate water for growing the energy crops as well as evaluate the accompanying hydrologic and water quality impacts of large-scale land use changes. A three-year study was conducted to evaluate the water supply and quality impacts of three energy crops: sugarcane, switchgrass, and sweet sorghum (with a winter crop). Six lysimeters were used to collect the data needed to quantify crop evapotranspiration (ETc), and nitrogen (N) and phosphorus (P) levels in groundwater and discharge (drainage and runoff). Each lysimeter (4.85 x 3.65 x 1.35 m) was equipped to measure water input, output, and storage. The irrigation, runoff, and drainage volumes were measured using flow meters. Groundwater samples were collected bi-weekly and drainage/runoff sampling was event based; samples were analyzed for nitrogen (N) and phosphorous (P) species. Data collected over the three years revealed that the average annual ETc was highest for sugarcane (1464 mm) followed by switchgrass and sweet sorghum. Sweet sorghum had the highest total N (TN) concentration (7.6 mg/L) in groundwater and TN load (36 kg/ha) in discharge. However, sweet sorghum had the lowest total P (TP) concentration (1.2 mg/L) in groundwater and TP load (9 kg/ha) in discharge. Water use footprint for ethanol (liter of water used per liter of ethanol produced) was lowest for sugarcane and highest for switchgrass. Switchgrass had the highest P-load footprint for ethanol. No differences were observed for the TN load footprint for ethanol. This is the

  20. Supporting Energy Transitions and Miscanthus Program Development at the University of Iowa

    Science.gov (United States)

    Lain, Kayley Christina

    Miscanthus is a highly productive, low-input biofuel crop that supports agricultural diversification with improved performance for climate commitment, energy security, and water quality over first generation biofuels. Despite its high performance, no local or regional markets for the feedstock have formed in North America, and current climate-based productivity assessment methods lack the information farmers and decision-makers need to establish commercial scale bioenergy markets, programs, and thermal co-firing plans. This study develops a Miscanthus Suitability Rating and a transferable field-scale siting method, applied at 10 m resolution across the State of Iowa to assess miscanthus production potential and identify individual farms that are highly suitable for large-scale miscanthus cultivation while maintaining a majority of existing row cropping acreage. Results show that highly suitable fields within 50 miles (84 km) of each of Iowa's coal-fired electrical generating units (EGUs) can displace up to 43% of current coal consumption. Every EGU in Iowa has land resource to produce local miscanthus to co-fire with other solid fuels at industry-leading levels without significantly impacting local row crop production. Seven of the state's smaller facilities could even operate exclusively on local miscanthus with advancements in densification technology. The energy evaluation tool developed in this work estimates the energy return on investment (EROI) of Iowa miscanthus for existing thermal generation facilities between 37 and 59, depending on transportation requirements and chemical field applications. This transition would diversify local agribusiness and energy feedstocks, reduce greenhouse gas emissions and provide a sustainable, dispatchable, in-state fuel source to complement wind and solar energy.

  1. Technical note: Differences in the diurnal pattern of soil respiration under adjacent Miscanthus × giganteus and barley crops reveal potential flaws in accepted sampling strategies

    Science.gov (United States)

    Ben Keane, J.; Ineson, Phil

    2017-03-01

    For convenience, measurements used to compare soil respiration (Rs) from different land uses, crops or management practices are often made between 09:00 and 16:00 UTC, convenience which is justified by an implicit assumption that Rs is largely controlled by temperature. Three months of continuous data presented here show distinctly different diurnal patterns of Rs between barley (Hordeum vulgare) and Miscanthus × giganteus (Miscanthus) grown on adjacent fields. Maximum Rs in barley occurred during the afternoon and correlated with soil temperature, whereas in Miscanthus after an initial early evening decline, Rs increased above the daily average during the night and in July maximum daily rates of Rs were seen at 22:00 and was significantly correlated with earlier levels of solar radiation, probably due to delays in translocation of recent photosynthate. Since the time of the daily mean Rs in Miscanthus occurred when Rs in the barley was 40 % greater than the daily mean, it is vital to select appropriate times to measure Rs especially if only single daily measurements are to be made.

  2. Growth and fecundity of fertile Miscanthus × giganteus ("PowerCane") compared to feral and ornamental Miscanthus sinensis in a common garden experiment: Implications for invasion.

    Science.gov (United States)

    Miriti, Maria N; Ibrahim, Tahir; Palik, Destiny; Bonin, Catherine; Heaton, Emily; Mutegi, Evans; Snow, Allison A

    2017-08-01

    Perennial grasses are promising candidates for bioenergy crops, but species that can escape cultivation and establish self-sustaining naturalized populations (feral) may have the potential to become invasive. Fertile Miscanthus  ×  giganteus , known as "PowerCane," is a new potential biofuel crop. Its parent species are ornamental, non-native Miscanthus species that establish feral populations and are sometimes invasive in the USA. As a first step toward assessing the potential for "PowerCane" to become invasive, we documented its growth and fecundity relative to one of its parent species ( Miscanthus sinensis ) in competition with native and invasive grasses in common garden experiments located in Columbus, Ohio and Ames, Iowa, within the targeted range of biofuel cultivation. We conducted a 2-year experiment to compare growth and reproduction among three Miscanthus biotypes-"PowerCane," ornamental M. sinensis , and feral M. sinensis -at two locations. Single Miscanthus plants were subjected to competition with a native grass ( Panicum virgatum ), a weedy grass ( Bromus inermis ), or no competition. Response variables were aboveground biomass, number of shoots, basal area, and seed set. In Iowa, all Miscanthus plants died after the first winter, which was unusually cold, so no further results are reported from the Iowa site. In Ohio, we found significant differences among biotypes in growth and fecundity, as well as significant effects of competition. Interactions between these treatments were not significant. "PowerCane" performed as well or better than ornamental or feral M. sinensis in vegetative traits, but had much lower seed production, perhaps due to pollen limitation. In general, ornamental M. sinensis performed somewhat better than feral M. sinensis . Our findings suggest that feral populations of "PowerCane" could become established adjacent to biofuel production areas. Fertile Miscanthus  ×  giganteus should be studied further to assess its

  3. Sustainable Biofuel Project: Emergy Analysis of South Florida Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Amponsah, Nana Yaw [Intelligentsia International, Inc., LaBelle, FL (United States); Izursa, Jose-Luis [Intelligentsia International, Inc., LaBelle, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States). Soil and Water Sciences Dept.; Capece, John C. [Intelligentsia International, Inc., LaBelle, FL (United States)

    2012-11-15

    This study evaluates the sustainability of various farming systems, namely (1) sugarcane on organic and mineral soils and (2) energycane and sweet sorghum on mineral soils. The primary objective of the study is to compare the relative sustainability matrices of these energy crops and their respective farming systems. These matrices should guide decision and policy makers to determine the overall sustainability of an intended or proposed bioethanol project related to any of these studied crops. Several different methods of energy analysis have been proposed to assess the feasibility or sustainability of projects exploiting natural resources (such as (Life Cycle Analysis, Energy Analysis, Exergy Analysis, Cost Benefit Analysis, Ecological Footprint, etc.). This study primarily focused on the concept of Emergy Analysis, a quantitative analytical technique for determining the values of nonmonied and monied resources, services and commodities in common units of the solar energy it took to make them. With this Emergy Analysis study, the Hendry County Sustainable Biofuels Center intends to provide useful perspective for different stakeholder groups to (1) assess and compare the sustainability levels of above named crops cultivation on mineral soils and organic soils for ethanol production and (2) identify processes within the cultivation that could be targeted for improvements. The results provide as much insight into the assumptions inherent in the investigated approaches as they do into the farming systems in this study.

  4. Experimental approaches for evaluating the invasion risk of biofuel crops

    International Nuclear Information System (INIS)

    Luke Flory, S; Sollenberger, Lynn E; Lorentz, Kimberly A; Gordon, Doria R

    2012-01-01

    There is growing concern that non-native plants cultivated for bioenergy production might escape and result in harmful invasions in natural areas. Literature-derived assessment tools used to evaluate invasion risk are beneficial for screening, but cannot be used to assess novel cultivars or genotypes. Experimental approaches are needed to help quantify invasion risk but protocols for such tools are lacking. We review current methods for evaluating invasion risk and make recommendations for incremental tests from small-scale experiments to widespread, controlled introductions. First, local experiments should be performed to identify conditions that are favorable for germination, survival, and growth of candidate biofuel crops. Subsequently, experimental introductions in semi-natural areas can be used to assess factors important for establishment and performance such as disturbance, founder population size, and timing of introduction across variable habitats. Finally, to fully characterize invasion risk, experimental introductions should be conducted across the expected geographic range of cultivation over multiple years. Any field-based testing should be accompanied by safeguards and monitoring for early detection of spread. Despite the costs of conducting experimental tests of invasion risk, empirical screening will greatly improve our ability to determine if the benefits of a proposed biofuel species outweigh the projected risks of invasions. (letter)

  5. SMALLHOLDER FARMERS’ WILLINGNESS TO INCORPORATE BIOFUEL CROPS INTO CROPPING SYSTEMS IN MALAWI

    Directory of Open Access Journals (Sweden)

    Beston Bille Maonga

    2015-01-01

    Full Text Available Using cross-sectional data, this study analysed the critical and significant socioeconomic factors with high likelihood to determine smallholder farmers’ decision and willingness to adopt jatropha into cropping systems in Malawi. Employing desk study and multi-stage random sampling technique a sample of 592 households was drawn from across the country for analysis. A probit model was used for the analysis of determinants of jatropha adoption by smallholder farmers. Empirical findings show that education, access to loan, bicycle ownership and farmers’ expectation of raising socioeconomic status are major significant factors that would positively determine probability of smallholder farmers’ willingness to adopt jatropha as a biofuel crop on the farm. Furthermore, keeping of ruminant herds of livestock, long distance to market and fears of market unavailability have been revealed to have significant negative influence on farmers’ decision and willingness to adopt jatropha. Policy implications for sustainable crop diversification drive are drawn and discussed.

  6. Biofuel as an Integrated Farm Drainage Management crop: A bioeconomic analysis

    Science.gov (United States)

    Levers, L. R.; Schwabe, K. A.

    2017-04-01

    Irrigated agricultural lands in arid regions often suffer from soil salinization and lack of drainage, which affect environmental quality and productivity. Integrated Farm Drainage Management (IFDM) systems, where drainage water generated from higher-valued crops grown on high quality soils are used to irrigate salt-tolerant crops grown on marginal soils, is one possible strategy for managing salinity and drainage problems. If the IFDM crop were a biofuel crop, both environmental and private benefits may be generated; however, little is known about this possibility. As such, we develop a bioeconomic programming model of irrigated agricultural production to examine the role salt-tolerant biofuel crops might play within an IFDM system. Our results, generated by optimizing profits over land, water, and crop choice decisions subject to resource constraints, suggest that based on the private profits alone, biofuel crops can be a competitive alternative to the common practices of land retirement and nonbiofuel crop production under both low to high drainage water salinity. Yet IFDM biofuel crop production generates 30-35% fewer GHG emissions than the other strategies. The private market competitiveness coupled with the public good benefits may justify policy changes encouraging the growth of IFDM biofuel crops in arid agricultural areas globally.

  7. Effects of elevated temperature on growth and reproduction of biofuels crops

    Science.gov (United States)

    Background/Questions/Methods Cellulosic biofuels crops have considerable potential to reduce our carbon footprint , and to be at least neutral in terms of carbon production. However, their widespread cultivation may result in unintended ecological and health effects. We report...

  8. Switchgrass as a biofuels crop for the upper Southeast

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, D.J.; Wolf, D.D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1993-12-31

    Switchgrass (Panicum virgatum) has been identified in DOE-sponsored studies as a widely adapted, productive herbaceous candidate for biofuels cropping. It is a perennial that has been planted using no-till procedures, and it appears to have positive effects on the soils in which it grows. We have been looking at this species as a potential fuelcrop (as well as a valuable forage) for several years. In this presentation, we note several {open_quotes}lessons learned{close_quotes} about switchgrass establishment and management as an energy crop. Data include results from recent plantings in the upper Southeast USA and from cutting management studies. Six varieties of switchgrass (Alamo, Cave-in-Rock, Kanlow, Shelter, and two breeder`s lines) varied markedly in the success of their no-till establishment at eight locations across the upper Southeast. Better weed control, which was achieved at later planting dates, seemed to be the key. Yields obtained in the establishment stands revealed that two harvests per season are more productive (by 2 to 3 Mg/ha) than one, but the date of first cutting is crucial. First cutting should be from late-June to mid-July. A two-cut system may not be economically advantageous, however. Another cutting-management study detected losses of standing biomass at the end of the growing season. As much as 15% of the above-ground biomass present in early-September was no longer harvestable in early-November. We think this loss results from translocation of dry matter to below-ground parts.

  9. Ecological effects of feral biofuel crops in constructed oak ...

    Science.gov (United States)

    The effects of elevated temperatures and drought on constructed oak savannahs were studied to determine the interactive effects of potentially invasive feral biofuel species and climate change on native grassland communities. A total of 12 sunlit mesocosm were used. Each mesocosm held three tubs. One had six native plant species; one had five native species with the annual crop Sorghum bicolor and one had five native species along with the weedy perennial Sorghum halepense. The experimental treatments were ambient (control), elevated temperature, drought, or a combination of elevated temperature and drought. Total aboveground biomass of the community was greatest in the control and drought treatments, lowest with elevated temperature + drought, and intermediate in high temperature treatments (Pbacterial biomass. Active bacterial biomass was lowest in the drought and elevated temperature and drought treatments (P<0.05). Active soil fungal biomass was highest in the tubs containing S. bicolor. Percent total carbon in the soil increased between 2010 and 2011 (P=0.0054); it was lowest in the elevated temperature and drought mesocosms (P<0.05). Longer term studi

  10. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    Science.gov (United States)

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  11. Livelihood implications of biofuel crop production: Implications for governance

    DEFF Research Database (Denmark)

    Hunsberger, Carol; Bolwig, Simon; Corbera, Esteve

    2014-01-01

    While much attention has focused on the climate change mitigation potential of biofuels, research from the social sciences increasingly highlights the social and livelihood impacts of their expanded production. Policy and governance measures aimed at improving the social effects of biofuels have...... by their cultivation in the global South – income, food security, access to land-based resources, and social assets – revealing that distributional effects are crucial to evaluating the outcomes of biofuel production across these dimensions. Second, we ask how well selected biofuel governance mechanisms address...

  12. Washington biofuel feedstock crop supply under output price and quantity uncertainty

    International Nuclear Information System (INIS)

    Zheng Qiujie; Shumway, C. Richard

    2012-01-01

    Subsidized development of an in-state biofuels industry has received some political support in the state of Washington, USA. Utilizing in-state feedstock supplies could be an efficient way to stimulate biofuel industries and the local economy. In this paper we estimate supply under output price and quantity uncertainty for major biofuel feedstock crops in Washington. Farmers are expected to be risk averse and maximize the utility of profit and uncertainty. We estimate very large Washington price elasticities for corn and sugar beets but a small price elasticity for a third potential feedstock, canola. Even with the large price elasticities for two potential feedstocks, their current and historical production levels in the state are so low that unrealistically large incentives would likely be needed to obtain sufficient feedstock supply for a Washington biofuel industry. Based on our examination of state and regional data, we find low likelihood that a Washington biofuels industry will develop in the near future primarily using within-state biofuel feedstock crops. - Highlights: ► Within-state feedstock crop supplies insufficient for Washington biofuel industry. ► Potential Washington corn and sugar beet supplies very responsive to price changes. ► Feedstock supplies more responsive to higher expected profit than lower risk. ► R and D for conversion of waste cellulosic feedstocks is potentially important policy.

  13. Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel

    International Nuclear Information System (INIS)

    Kim, Seungdo; Dale, Bruce E.

    2005-01-01

    A life cycle assessment of different cropping systems emphasizing corn and soybean production was performed, assuming that biomass from the cropping systems is utilized for producing biofuels (i.e., ethanol and biodiesel). The functional unit is defined as 1 ha of arable land producing biomass for biofuels to compare the environmental performance of the different cropping systems. The external functions are allocated by introducing alternative product systems (the system expansion allocation approach). Nonrenewable energy consumption, global warming impact, acidification and eutrophication are considered as potential environmental impacts and estimated by characterization factors given by the United States Environmental Protection Agency (EPA-TRACI). The benefits of corn stover removal are (1) lower nitrogen related environmental burdens from the soil, (2) higher ethanol production rate per unit arable land, and (3) energy recovery from lignin-rich fermentation residues, while the disadvantages of corn stover removal are a lower accumulation rate of soil organic carbon and higher fuel consumption in harvesting corn stover. Planting winter cover crops can compensate for some disadvantages (i.e., soil organic carbon levels and soil erosion) of removing corn stover. Cover crops also permit more corn stover to be harvested. Thus, utilization of corn stover and winter cover crops can improve the eco-efficiency of the cropping systems. When biomass from the cropping systems is utilized for biofuel production, all the cropping systems studied here offer environmental benefits in terms of nonrenewable energy consumption and global warming impact. Therefore utilizing biomass for biofuels would save nonrenewable energy, and reduce greenhouse gases. However, unless additional measures such as planting cover crops were taken, utilization of biomass for biofuels would also tend to increase acidification and eutrophication, primarily because large nitrogen (and phosphorus

  14. Miscanthus establishment and overwintering in the Midwest USA: a regional modeling study of crop residue management on critical minimum soil temperatures.

    Directory of Open Access Journals (Sweden)

    Christopher J Kucharik

    Full Text Available Miscanthus is an intriguing cellulosic bioenergy feedstock because its aboveground productivity is high for low amounts of agrochemical inputs, but soil temperatures below -3.5 °C could threaten successful cultivation in temperate regions. We used a combination of observed soil temperatures and the Agro-IBIS model to investigate how strategic residue management could reduce the risk of rhizome threatening soil temperatures. This objective was addressed using a historical (1978-2007 reconstruction of extreme minimum 10 cm soil temperatures experienced across the Midwest US and model sensitivity studies that quantified the impact of crop residue on soil temperatures. At observation sites and for simulations that had bare soil, two critical soil temperature thresholds (50% rhizome winterkill at -3.5 °C and -6.0 °C for different Miscanthus genotypes were reached at rhizome planting depth (10 cm over large geographic areas. The coldest average annual extreme 10 cm soil temperatures were between -8 °C to -11 °C across North Dakota, South Dakota, and Minnesota. Large portions of the region experienced 10 cm soil temperatures below -3.5 °C in 75% or greater for all years, and portions of North and South Dakota, Minnesota, and Wisconsin experienced soil temperatures below -6.0 °C in 50-60% of all years. For simulated management options that established varied thicknesses (1-5 cm of miscanthus straw following harvest, extreme minimum soil temperatures increased by 2.5 °C to 6 °C compared to bare soil, with the greatest warming associated with thicker residue layers. While the likelihood of 10 cm soil temperatures reaching -3.5 °C was greatly reduced with 2-5 cm of surface residue, portions of the Dakotas, Nebraska, Minnesota, and Wisconsin still experienced temperatures colder than -3.5 °C in 50-80% of all years. Nonetheless, strategic residue management could help increase the likelihood of overwintering of miscanthus rhizomes in the first few

  15. How the use of nitrogen fertiliser may switch plant suitability for aphids: the case of Miscanthus, a promising biomass crop, and the aphid pest Rhopalosiphum maidis.

    Science.gov (United States)

    Bogaert, Florent; Chesnais, Quentin; Catterou, Manuella; Rambaud, Caroline; Doury, Géraldine; Ameline, Arnaud

    2017-08-01

    The use of nitrogen fertiliser in agrosystems can alter plant nitrogen and consequently improve nutrient availability for herbivores, potentially leading to better performance for herbivores and higher pest pressure in the field. We compared, in laboratory conditions, the effects of nitrogen fertilisation on a promising biomass crop, Miscanthus × giganteus, and its parents M. sinensis and M. sacchariflorus. The plant-mediated effects were compared on the second trophic level, the green corn leaf aphid Rhopalosiphum maidis. Results showed that the biomass and leaf C:N ratio of M. sinensis plants treated with nitrogen fertiliser were significantly greater than those of non-treated plants. As regards M. × giganteus and M. sacchariflorus, the only reported change was a significantly smaller leaf C:N ratio for treated M. sacchariflorus compared with non-treated plants. Surprisingly, nitrogen fertilisation had opposite effects on plant-herbivore interactions. Following nitrogen treatments, M. sinensis was less suitable in terms of intrinsic rate of increase for R. maidis, the feeding behaviour of which was negatively affected, while M. sacchariflorus and M. × giganteus exhibited greater suitability in terms of aphid weight. Nitrogen fertilisation had contrasting effects on the three species of Miscanthus plants. These effects cascaded up to the second trophic level, R. maidis aphid pests, either through a modification of their weight or demographic parameters. The implications of these results were discussed in the context of agricultural sustainability and intensive production practices. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Integrating future scenario‐based crop expansion and crop conditions to map switchgrass biofuel potential in eastern Nebraska, USA

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.

    2018-01-01

    Switchgrass (Panicum virgatum) has been evaluated as one potential source for cellulosic biofuel feedstocks. Planting switchgrass in marginal croplands and waterway buffers can reduce soil erosion, improve water quality, and improve regional ecosystem services (i.e. it serves as a potential carbon sink). In previous studies, we mapped high risk marginal croplands and highly erodible cropland buffers that are potentially suitable for switchgrass development, which would improve ecosystem services and minimally impact food production. In this study, we advance our previous study results and integrate future crop expansion information to develop a switchgrass biofuel potential ensemble map for current and future croplands in eastern Nebraska. The switchgrass biomass productivity and carbon benefits (i.e. NEP: net ecosystem production) for the identified biofuel potential ensemble areas were quantified. The future scenario‐based (‘A1B’) land use and land cover map for 2050, the US Geological Survey crop type and Compound Topographic Index (CTI) maps, and long‐term (1981–2010) averaged annual precipitation data were used to identify future crop expansion regions that are suitable for switchgrass development. Results show that 2528 km2 of future crop expansion regions (~3.6% of the study area) are potentially suitable for switchgrass development. The total estimated biofuel potential ensemble area (including cropland buffers, marginal croplands, and future crop expansion regions) is 4232 km2 (~6% of the study area), potentially producing 3.52 million metric tons of switchgrass biomass per year. Converting biofuel ensemble regions to switchgrass leads to potential carbon sinks (the total NEP for biofuel potential areas is 0.45 million metric tons C) and is environmentally sustainable. Results from this study improve our understanding of environmental conditions and ecosystem services of current and future cropland systems in eastern Nebraska and provide

  17. Crop diversification can contribute to disease risk control in sustainable biofuels production

    OpenAIRE

    Smith, VH; McBride, RC; Shurin, JB; Bever, JD; Crews, TE; Tilman, GD

    2015-01-01

    © The Ecological Society of America. Global demand for transportation fuels will increase rapidly during the upcoming decades, and concerns about fossil-fuel consumption have stimulated research on renewable biofuels that can be sustainably produced from biological feedstocks. However, if unchecked, pathogens and parasites are likely to infect these cultivated biofuel feedstocks, greatly reducing crop yields and potentially threatening the sustainability of renewable bioenergy production effo...

  18. Smallholder farmers’ awareness of biofuel crops in the Eastern Cape Province, South Africa

    OpenAIRE

    Cheteni, Priviledge

    2016-01-01

    In this study, 157 smallholder farmers from the OR Tambo and Chris Hani district municipality in South Africa were purposively sampled to participate in a survey. The objective was to identify the factors that influence smallholder farmers’ awareness of biofuel crops. Using a binary logistic model it was found that the variables; gender, household income, membership in association; land utilisation and qualification were statistically significant in influencing farmers’ awareness of biofuel c...

  19. Greenhouse gas emissions from cultivation of energy crops may affect the sustainability of biofuels

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Hauggaard-Nielsen, Henrik; Heiske, Stefan

    2011-01-01

    will be lower than indicated by our data. We obtained the greatest net reduction in greenhouse gas emissions by co-production of bioethanol and biogas or by biogas alone produced from either fresh grass-clover or whole crop maize. Here the net reduction corresponded to about 8 tons CO2 per hectare per year...... or incorporation of crop residues. In this study we relate measured field emissions of N2O to the reduction in fossil fuel-derived CO2, which is obtained when energy crops are used for biofuel production. The analysis includes five organically managed crops (viz. maize, rye, rye-vetch, vetch and grass......-clover) and three scenarios for conversion of biomass to biofuel. The scenarios are 1) bioethanol production, 2) biogas production and 3) co-production of bioethanol and biogas, where the energy crops are first used for bioethanol fermentation and subsequently the residues from this process are utilized for biogas...

  20. The effect of native and introduced biofuel crops on the composition of soil biota communities

    Science.gov (United States)

    Frouz, Jan; Hedenec, Petr

    2016-04-01

    Biofuel crops are an accepted alternative to fossil fuels, but little is known about the ecological impact of their production. The aim of this contribution is to study the effect of native (Salix viminalis and Phalaris arundinacea) and introduced (Helianthus tuberosus, Reynoutria sachalinensis and Silphium perfoliatum) biofuel crop plantations on the soil biota in comparison with cultural meadow vegetation used as control. The study was performed as part of a split plot field experiment of the Crop Research Institute in the city of Chomutov (Czech Republic). The composition of the soil meso- and macrofauna community, composition of the cultivable fraction of the soil fungal community, cellulose decomposition (using litter bags), microbial biomass, basal soil respiration and PLFA composition (incl. F/B ratio) were studied in each site. The C:N ratio and content of polyphenols differed among plant species, but these results could not be considered significant between introduced and native plant species. Abundance of the soil meso- and macrofauna was higher in field sites planted with S. viminalis and P. arundinacea than those planted with S. perfoliatum, H. tuberosus and R. sachalinensis. RDA and Monte Carlo Permutation Test showed that the composition of the faunal community differed significantly between various native and introduced plants. Significantly different basal soil respiration was found in sites planted with various energy crops; however, this difference was not significant between native and introduced species. Microbial biomass carbon and cellulose decomposition did not exhibit any statistical differences among the biofuel crops. The largest statistically significant difference we found was in the content of actinobacterial and bacterial (bacteria, G+ bacteria and G- bacteria) PLFA in sites overgrown by P. arundinacea compared to introduced as well as native biofuel crops. In conclusion, certain parameters significantly differ between various native

  1. Genetic and ecological characteristics of Miscanthus in eastern Russia

    Science.gov (United States)

    Miscanthus is a genus of perennial C4 grasses native to East Asia, which includes the emerging ligno-cellulosic biomass crop M. xgiganteus, a hybrid between M. sinensis and M. sacchariflorus. Cold tolerance is of particular interest in Miscanthus, given that this crop is more adapted to temperate c...

  2. The biofuel potential of crop based biomass in Denmark in 2020; Danmarks potentiale for afgroedebaseret biobraendstofproduktion i aar 2020

    Energy Technology Data Exchange (ETDEWEB)

    Bertelsen Blume, S

    2008-02-15

    According to climate change observations and foresights several countries including Denmark have committed to reduce GHGemissions. However, the transport sector is still increasing its GHGemissions. Substitution of fossil fuels with biofuels seems to be the best way to reduce CO{sub 2}-emission from this sector on the shorter term. This project evaluates how Denmark can produce enough biofuels to fulfil the political goal of 10 % substitution of the fossil fuel consumption in the year of 2020. This project also approaches the suitability of different crop species to the biofuel industry. Maize and sugar beet are the most suitable crops for biofuel production when only focusing on maximum biofuel yield. Alfalfa is likewise showings great potential and is the most suitable crop in terms of sustainable biofuel production, because of low energy requirements (diesel, fertilizer, pesticide and irrigation) during cropping. Even though maize has higher needs for energy during cropping, it will still be suitable for sustainable biofuel production because of the high biofuel yield. Present calculations show that it is possible to meet the required amount of biofuels by using domestic biomass, which is currently exported (cereal grain) or not utilized (eg. straw). However, these calculations assume that it will become possible to convert the whole amount of carbohydrates into biofuel before 2020. In terms of assessing the biofuel production potential three storylines are defined for the development until 2020. Changes in land use and crop composition are suggested for each storyline to adjust the biofuel production to Danish agriculture. The biofuel production potential is also assessed for two regions in Denmark. Here the region of Storstroem shows greater potential than the region of Soenderjylland because of low density of domestic animals. (au)

  3. Cellulosic biofuels from crop residue and groundwater extraction in the US Plains: the case of Nebraska.

    Science.gov (United States)

    Sesmero, Juan P

    2014-11-01

    This study develops a model of crop residue (i.e. stover) supply and derived demand for irrigation water accounting for non-linear effects of soil organic matter on soil's water holding capacity. The model is calibrated for typical conditions in central Nebraska, United States, and identifies potential interactions between water and biofuel policies. The price offered for feedstock by a cost-minimizing plant facing that stover supply response is calculated. Results indicate that as biofuel production volumes increase, soil carbon depletion per unit of biofuel produced decreases. Consumption of groundwater per unit of biofuel produced first decreases and then increases (after a threshold of 363 dam(3) of biofuels per year) due to plants' increased reliance on the extensive margin for additional biomass. The analysis reveals a tension between biofuel and water policies. As biofuel production raises the economic benefits of relaxing water conservation policies (measured by the "shadow price" of water) increase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Spatio-temporal availability of field crop residues for biofuel production in Northwest and Southwest China

    NARCIS (Netherlands)

    Han, L.; Wang, X.; Spiertz, J.H.J.; Yang, L.; Zhou, Y.; Liu, J.; Xie, G.

    2015-01-01

    Developing bioenergy from plant feedstocks is considered an opportunity to reduce greenhouse gas emissions and secure biofuel supply. This study is an assessment of the availability of field crop residues for bioenergy feedstocks in northwest China (NWC) and southwest China (SWC). The amount of

  5. Why do smallholders plant biofuel crops? The ‘politics of consent’ in Mexico

    NARCIS (Netherlands)

    Castellanos-Navarrete, Antonio; Jansen, Kees

    2017-01-01

    Recent studies have addressed the social and environmental impacts of biofuel crops but seldom the question as to why rural producers engage in their production. It is particularly unclear how governments worldwide, especially in middle-income countries such as Brazil, Thailand, and Mexico, could

  6. Jatropha: A Promising Crop for Africa's Biofuel Production?

    NARCIS (Netherlands)

    Eijck, J.A.J. van; Smeets, E.M.W.; Faaij, A.P.C.

    2012-01-01

    Jatropha has often been proposed as a miracle crop for the production of oil, because of the high yields and low requirements in terms of land quality, climate and crop management. A large number of companies have started with jatropha production in Africa which is projected to increase rapidly.

  7. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    de Vrije Truus

    2009-06-01

    Full Text Available Abstract Background The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content. Results Batch cultures of Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana produced hydrogen, carbon dioxide and acetic acid as the main products from soluble saccharides in Miscanthus hydrolysate. The presence of fermentation inhibitors, such as furfural and 5-hydroxylmethyl furfural, in this lignocellulosic hydrolysate was avoided by the mild alkaline-pretreatment conditions at a low temperature of 75°C. Both microorganisms simultaneously and completely utilized all pentoses, hexoses and oligomeric saccharides up to a total concentration of 17 g l-1 in pH-controlled batch cultures. T. neapolitana showed a preference for glucose over xylose, which are the main sugars in the hydrolysate. Hydrogen yields of 2.9 to 3.4 mol H2 per mol of hexose, corresponding to 74 to 85% of the theoretical yield, were obtained in these batch fermentations. The yields were higher with cultures of C. saccharolyticus compared to T. neapolitana. In contrast, the rate of substrate consumption and hydrogen production was higher with T. neapolitana. At substrate concentrations exceeding 30 g l-1, sugar consumption was incomplete, and lower hydrogen yields of 2.0 to 2.4 mol per mol of consumed hexose were obtained. Conclusion Efficient hydrogen production in combination with simultaneous and complete utilization of all saccharides has been obtained during the growth of thermophilic bacteria on hydrolysate of the lignocellulosic feedstock Miscanthus. The use of thermophilic bacteria will therefore significantly contribute to the energy efficiency of a bioprocess for hydrogen production from biomass.

  8. Biofuel crops with CAM photosynthesis: Economic potential on moisture-limited lands

    Science.gov (United States)

    Bartlett, Mark; Hartzell, Samantha; Porporato, Amilcare

    2017-04-01

    As the demand for food and renewable energy increases, the intelligent utilization of marginal lands is becoming increasingly critical. In marginal lands classified by limited rainfall or soil salinity, the cultivation of traditional C3 and C4 photosynthesis crops often is economically infeasible. However, in such lands, nontraditional crops with crassulacean acid metabolism (CAM) photosynthesis show great economic potential for cultivation. CAM crops including Opuntia (prickly pear) and Ananas (pineapple) achieve a water use efficiency which is three fold higher than C4 crops such as corn and 6-fold higher than C3 crops such as wheat, leading to a comparable annual productivity with only 20% of the water demand. This feature, combined with a shallow rooting depth and a high water storage capacity, allows CAM plants to take advantage of small, infrequent rainfall amounts in shallow, quickly draining soils. Furthermore, CAM plants typically have properties (e.g., high content of non-structural carbohydrates) that are favorable for biofuel production. Here, for marginal lands characterized by low soil moisture availability and/or high salinity, we assess the potential productivity and economic benefits of CAM plants. CAM productivity is estimated using a recently developed model which simulates CAM photosynthesis under a range of soil and climate conditions. From these results, we compare the energy and water resource inputs required by CAM plants to those required by more traditional C3 and C4 crops (corn, wheat, sorghum), and we evaluate the economic potential of CAM crops as sources of food, fodder, or biofuel in marginal soils. As precipitation events become more intense and infrequent, we show that even though marginal land area may increase, CAM crop cultivation shows great promise for maintaining high productivity with minimal water inputs. Our analysis indicates that on marginal lands, widespread cultivation of CAM crops as biofuel feedstock may help

  9. Biofuels

    International Nuclear Information System (INIS)

    Poitrat, E.

    2009-01-01

    Biofuels are fuels made from non-fossil vegetal or animal materials (biomass). They belong to the renewable energy sources as they do not contribute to worsen some global environmental impacts, like the greenhouse effect, providing that their production is performed in efficient energy conditions with low fossil fuel consumption. This article presents: 1 - the usable raw materials: biomass-derived resources, qualitative and quantitative aspects, biomass uses; 2 - biofuels production from biomass: alcohols and ethers, vegetable oils and their esters, synthetic liquid or gaseous biofuels, biogas; 3 - characteristics of liquid biofuels and comparison with gasoline and diesel fuel; 4 - biofuel uses: alcohols and their esters, biofuels with oxygenated compounds; vegetable oils and their derivatives in diesel engines, biogas, example of global environmental impact: the greenhouse effect. (J.S.)

  10. Spatial analysis of the potential crops for the production of biofuels in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Carballo, Stella; Marco, Noelia Flores; Anschau, Alicia [Centro de Investigaciones de Recursos Naturales (CIRN/INTA), Buenos Aires (Argentina). Inst. de Tecnologia Agropecuaria. Inst. de Clima y Agua], E-mail: scarballo@cnia.inta.gov.ar; Hilbert, Jorge [Instiuto de Ingenieria Rural (CIA/INTA), Buenos Aires (Argentina)], E-mail: hilbert@cnia.inta.gov.ar

    2008-07-01

    The increase in biofuels production has been rising in the last ten years at a high rate. Argentina as one of the main crop producers in the world has a great potential to contribute with high volumes of biofuels. At present time common crops are used for large scale production but new alternatives are under study in different regions of the country. The increase in pressure for expansion also raises concerns on the impact on ecology issues such as soil erosion and biodiversity. Looking at a national level INTA has been working on the construction of a GIS were different crops were placed. The purpose is to identify critical information, to raise a methodology to obtain accurate and up-to date thematic maps using satellite images, to feed a GIS and to integrate the different layers to estimate biomass potentials for energy supply in our country, assessing potential land availability for biofuel crops or plantations to be made with ecological, economic and social sustainability bases. (author)

  11. Analyzing the effect of biofuel expansion on land use in major producing countries: evidence of increased multiple cropping

    NARCIS (Netherlands)

    Langeveld, J.W.A.; Dixon, J.; Keulen, van H.; Quist-Wessel, P.M.F.

    2014-01-01

    Estimates on impacts of biofuel production often use models with limited ability to incorporate changes in land use, notably cropping intensity. This review studies biofuel expansion between 2000 and 2010 in Brazil, the USA, Indonesia, Malaysia, China, Mozambique, South Africa plus 27 EU member

  12. Biofuel Crops Expansion: Evaluating the Impact on the Agricultural Water Scarcity Costs and Hydropower Production with Hydro Economic Modeling

    Science.gov (United States)

    Marques, G.

    2015-12-01

    Biofuels such as ethanol from sugar cane remain an important element to help mitigate the impacts of fossil fuels on the atmosphere. However, meeting fuel demands with biofuels requires technological advancement for water productivity and scale of production. This may translate into increased water demands for biofuel crops and potential for conflicts with incumbent crops and other water uses including domestic, hydropower generation and environmental. It is therefore important to evaluate the effects of increased biofuel production on the verge of water scarcity costs and hydropower production. The present research applies a hydro-economic optimization model to compare different scenarios of irrigated biofuel and hydropower production, and estimates the potential tradeoffs. A case study from the Araguari watershed in Brazil is provided. These results should be useful to (i) identify improved water allocation among competing economic demands, (ii) support water management and operations decisions in watersheds where biofuels are expected to increase, and (iii) identify the impact of bio fuel production in the water availability and economic value. Under optimized conditions, adoption of sugar cane for biofuel production heavily relies on the opportunity costs of other crops and hydropower generation. Areas with a lower value crop groups seem more suitable to adopt sugar cane for biofuel when the price of ethanol is sufficiently high and the opportunity costs of hydropower productions are not conflicting. The approach also highlights the potential for insights in water management from studying regional versus larger scales bundled systems involving water use, food production and power generation.

  13. The potential of C4 grasses for cellulosic biofuel production

    Directory of Open Access Journals (Sweden)

    Tim eWeijde

    2013-05-01

    Full Text Available With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulose feedstock for biofuel production is discussed. These include three important field crops - maize, sugarcane and sorghum - and two undomesticated perennial energy grasses - miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of

  14. What is the future for biofuels and bio-energy crops

    International Nuclear Information System (INIS)

    2005-01-01

    This seminar is part of the Ifri research program on agricultural policies. It aims to evaluate the future prospects for the development of bio-energy crops in light of the new energetic and environmental order. Within one generation the hydrocarbon market will likely be under great pressure. The prospect of a lasting high oil price will lead to the use of renewable resources like biofuels. Moreover growing environmental concern about global warming give one more credibility to the development of biofuels. These fuels emit a limited amount of greenhouse gas compared to standard fuels. We have to therefore examine the development possibility of these fuels taking into account the agronomic features of the crops used, the technology of the transformation process and existing initiative policies with respect to the regions studied. Also, we have to evaluate the impact of the energy crisis on food supply via the substitution effect in land allocation. (author)

  15. Miscanthus productivity and nutrient export on 22 producer fields

    Science.gov (United States)

    On-farm assessments of Miscanthus × giganteus growth and nutrition across a wide range of management and environmental conditions are needed to determine and model how this crop performs and where it should be placed on the landscape. Therefore, Miscanthus growth and nutrition were monitored during ...

  16. Allelopathic effect of new introduced biofuel crops on the soil biota: A comparative study

    Czech Academy of Sciences Publication Activity Database

    Heděnec, Petr; Novotný, D.; Usťak, S.; Honzík, R.; Kovářová, M.; Šimáčková, H.; Frouz, J.

    2014-01-01

    Roč. 63, July (2014), s. 14-20 ISSN 1164-5563 R&D Projects: GA MŠk(CZ) 7E08081 Grant - others:GA ČR(CZ) GAP504/12/1288 Program:GA Institutional support: RVO:60077344 Keywords : allelopathic effect * biofuel crops * invasive plant species * plant biomass chemistry * seedling germination Subject RIV: EH - Ecology, Behaviour Impact factor: 1.719, year: 2014

  17. Life cycle assessment of first-generation biofuels using a nitrogen crop model.

    Science.gov (United States)

    Gallejones, P; Pardo, G; Aizpurua, A; del Prado, A

    2015-02-01

    This paper presents an alternative approach to assess the impacts of biofuel production using a method integrating the simulated values of a new semi-empirical model at the crop production stage within a life cycle assessment (LCA). This new approach enabled us to capture some of the effects that climatic conditions and crop management have on soil nitrous oxide (N₂O) emissions, crop yields and other nitrogen (N) losses. This analysis considered the whole system to produce 1 MJ of biofuel (bioethanol from wheat and biodiesel from rapeseed). Non-renewable energy use, global warming potential (GWP), acidification, eutrophication and land competition are considered as potential environmental impacts. Different co-products were handled by system expansion. The aim of this study was (i) to evaluate the variability due to site-specific conditions of climate and fertiliser management of the LCA of two different products: biodiesel from rapeseed and bioethanol from wheat produced in the Basque Country (Northern Spain), and (ii) to improve the estimations of the LCA impacts due to N losses (N₂O, NO₃, NH₃), normally estimated with unspecific emission factors (EFs), that contribute to the impact categories analysed in the LCA of biofuels at local scale. Using biodiesel and bioethanol derived from rapeseed and wheat instead of conventional diesel and gasoline, respectively, would reduce non-renewable energy dependence (-55%) and GWP (-40%), on average, but would increase eutrophication (42 times more potential). An uncertainty analysis for GWP impact showed that the variability associated with the prediction of the major contributor to global warming potential (soil N₂O) can significantly affect the results from the LCA. Therefore the use of a model to account for local factors will improve the precision of the assessment and reduce the uncertainty associated with the convenience of the use of biofuels. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Topgrass. A trial of the suitability of switchgrass and reed canary grass as biofuel crops under UK conditions. 4th interim report

    Energy Technology Data Exchange (ETDEWEB)

    Riche, A.B.

    2004-04-01

    This report summarises the results of the Topgrass project growing miscanthus, switchgrass and reed canary grass at nine UK sites and covers a one year period between the winter harvesting of the plots in 2002/3 and 2003/4. Details are given of the rainfall, air temperature and solar radiation; crop monitoring for pests, diseases and weeds; crop measurements; and a comparison of all sites. Appendices present individual site diaries and individual site operations and costs.

  19. Soil physical and hydrological properties under three biofuel crops in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Catherine; Lal, Rattan [The Ohio State Univ., School of Environment and Natural Resources, Carbon Management and Sequestration Center, Columbus, OH (United States); Schmitz, Matthias [Rheinische Friedrich/Wilhelms-Universitaet Bonn, Steinmann Institut fuer Geologie, Mineralogie und Palaeontologie, Bonn (Germany); Wullschleger, S. [The Oakridge National Lab., Oakridge, TN (United States)

    2012-10-15

    While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60 % lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended to be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.

  20. Soil physical and hydrological properties under three biofuel crops in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Catherine [Ohio State University; Lal, Dr. Rattan [Ohio State University; Schmitz, Matthias [Rheinsche Friedrich/Wilhelms Universitaet Boon; Wullschleger, Stan D [ORNL

    2012-01-01

    While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60% lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended to be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.

  1. Screening boreal energy crops and crop residues for methane biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaeki, A.; Rintala, J.A. [Department of Biological and Environmental Science, University of Jyvaeskylae, P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Viinikainen, T.A. [Department of Chemistry, University of Jyvaeskylae, P.O. Box 35, FI-40014 Jyvaeskylae (Finland)

    2008-06-15

    The purpose of the study was to screen potential boreal energy crops and crop residues for their suitability in methane production and to investigate the effect of harvest time on the methane production potential of different crops. The specific methane yields of crops, determined in 100-200 d methane potential assays, varied from 0.17 to 0.49 m{sup 3} CH{sub 4} kg{sup -1} VS{sub added} (volatile solids added) and from 25 to 260 m{sup 3} CH{sub 4} t{sub ww}{sup -1} (tonnes of wet weight). Jerusalem artichoke, timothy-clover grass and reed canary grass gave the highest potential methane yields of 2900-5400 m{sup 3} CH{sub 4} ha{sup -1}, corresponding to a gross energy yield of 28-53 MWh ha{sup -1} and ca. 40,000-60,000 km ha{sup -1} in passenger car transport. The effect of harvest time on specific methane yields per VS of crops varied a lot, whereas the specific methane yields per t{sub ww} increased with most crops as the crops matured. (author)

  2. The impact of extreme drought on the biofuel feedstock production

    Science.gov (United States)

    hussain, M.; Zeri, M.; Bernacchi, C.

    2013-12-01

    Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum virgatum) have been identified as the primary targets for second-generation cellulosic biofuel crops. Prairie managed for biomass is also considered as one of the alternative to conventional biofuel and promised to provide ecosystem services, including carbon sequestration. These perennial grasses possess a number of traits that make them desirable biofuel crops and can be cultivated on marginal lands or interspersed with maize and soybean in the Corn Belt region. The U.S. Corn Belt region is the world's most productive and expansive maize-growing region, approximately 20% of the world's harvested corn hectares are found in 12 Corn Belt states. The introduction of a second generation cellulosic biofuels for biomass production in a landscape dominated by a grain crop (maize) has potential implications on the carbon and water cycles of the region. This issue is further intensified by the uncertainty in the response of the vegetation to the climate change induced drought periods, as was seen during the extreme droughts of 2011 and 2012 in the Midwest. The 2011 and 2012 growing seasons were considered driest since the 1932 dust bowl period; temperatures exceeded 3.0 °C above the 50- year mean and precipitation deficit reached 50 %. The major objective of this study was to evaluate the drought responses (2011 and 2012) of corn and perennial species at large scale, and to determine the seasonability of carbon and water fluxes in the response of controlling factors. We measured net CO2 ecosystem exchange (NEE) and water fluxes of maize-maize-soybean, and perennial species such as miscanthus, switchgrass and mixture of prairie grasses, using eddy covariance in the University of Illinois energy farm at Urbana, IL. The data presented here were for 5 years (2008- 2012). In the first two years, higher NEE in maize led to large CO2 sequestration. NEE however, decreased in dry years, particularly in 2012. On the other

  3. New feedstocks for biofuels. Alternative 1st generation of energy crops; Nieuwe Grondstoffen voor Biobrandstoffen. Alternatieve 1e Generatie Energiegewassen

    Energy Technology Data Exchange (ETDEWEB)

    Elbersen, W. [Agrotechnology and Food Sciences Group, WUR-AFSG, Wageningen (Netherlands); Oyen, L. [Plant Resources of Tropical Africa, WUR-PROTA, Wageningen (Netherlands)

    2009-08-15

    A brief overview is provided of a number of alternative crops that can supply feedstocks for 1st generation biofuels and a brief analysis is conducted of the option for renewable biofuel production. [Dutch] Er wordt een kort overzicht gegeven van een aantal alternatieve gewassen die grondstoffen voor 1e generatie biobrandstoffen kunnen leveren en wordt er een korte analyse gegeven van de mogelijkheid voor duurzame biobrandstofproductie.

  4. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    Science.gov (United States)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In

  5. Nitrous Oxide Emissions from Biofuel Crops and Atmospheric Aerosols: Associations with Air Quality and Regional Climate

    Science.gov (United States)

    Pillai, Priya Ramachandran

    Emissions of greenhouse gases (GHG) and primary release and secondary formation of aerosols alter the earth's radiative balance and therefore have important climatic implications. Savings in carbon dioxide (CO2) emissions accomplished by replacing fossil fuels with biofuels may increase the nitrous oxide (N2O) emissions. Among various atmospheric trace gases, N2O, irrespective of its low atmospheric concentration, is the fourth most important gas in causing the global greenhouse effect. Major processes, those affect the concentration of atmospheric N2O, are soil microbial activities leading to nitrification and denitrification. Therefore, anthropogenic activities such as industrial emissions, and agricultural practices including application of nitrogenous fertilizers, land use changes, biomass combustion all contribute to the atmospheric N2O concentration. The emission rates of N2O related to biofuel production depend on the nitrogen (N) fertilizer uptake efficiency of biofuel crops. However, crops with less N demand, such as switchgrass may have more favorable climate impacts when compared to crops with high N demands, such as corn. Despite its wide environmental tolerance, the regional adaptability of the potential biofuel crop switch grass varies considerably. Therefore, it is important to regionally quantify the GHG emissions and crop yield in response to N-fertilization. A major objective of this study is to quantify soil emissions of N2O from switchgrass and corn fields as a function of N-fertilization. The roles of soil moisture and soil temperature on N2O fluxes were analyzed. These N2O observations may be used to parameterize the biogeochemical models to better understand the impact of different N2O emission scenarios. This study allows for improvements in climate models that focus on understanding the environmental impacts of the climate change mitigation strategy of replacing fossil fuels with biofuels. As a second major objective, the top of the

  6. Targets and tools for optimizing lignocellulosic biomass quality of miscanthus

    NARCIS (Netherlands)

    Weijde, van der R.T.

    2016-01-01

    Miscanthus is a perennial energy grass characterized by a high productivity and resource-use efficiency, making it an ideal biomass feedstock for the production of cellulosic biofuels and a wide range of other biobased value-chains. However, the large-scale commercialization of converting biomass

  7. Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement.

    Science.gov (United States)

    Maghuly, Fatemeh; Laimer, Margit

    2013-10-01

    Jatropha curcas is currently attracting much attention as an oilseed crop for biofuel, as Jatropha can grow under climate and soil conditions that are unsuitable for food production. However, little is known about Jatropha, and there are a number of challenges to be overcome. In fact, Jatropha has not really been domesticated; most of the Jatropha accessions are toxic, which renders the seedcake unsuitable for use as animal feed. The seeds of Jatropha contain high levels of polyunsaturated fatty acids, which negatively impact the biofuel quality. Fruiting of Jatropha is fairly continuous, thus increasing costs of harvesting. Therefore, before starting any improvement program using conventional or molecular breeding techniques, understanding gene function and the genome scale of Jatropha are prerequisites. This review presents currently available and relevant information on the latest technologies (genomics, transcriptomics, proteomics and metabolomics) to decipher important metabolic pathways within Jatropha, such as oil and toxin synthesis. Further, it discusses future directions for biotechnological approaches in Jatropha breeding and improvement. © 2013 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Sugar Release and Growth of Biofuel Crops are Improved by Downregulation of Pectin Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Donohoe, Bryon S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sykes, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gjersing, Erica L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ziebell, Angela [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Turner, Geoffrey [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Decker, Steve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Davis, Mark F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Biswal, Ajaya K. [University of Georgia; Oak Ridge National Laboratory; Atmodjo, Melani A. [University of Georgia; Oak Ridge National Laboratory; Li, Mi [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; Baxter, Holly L. [Oak Ridge National Laboratory; University of Tennessee; Yoo, Chang Geun [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; Pu, Yunqiao [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; Lee, Yi-Ching [Oak Ridge National Laboratory; Noble Research Institute; Mazarei, Mitra [Oak Ridge National Laboratory; University of Tennessee; Black, Ian M. [University of Georgia; Zhang, Ji-Yi [Oak Ridge National Laboratory; Noble Research Institute; Ramanna, Hema [Oak Ridge National Laboratory; Noble Research Institute; Bray, Adam L. [Oak Ridge National Laboratory; University of Georgia; King, Zachary R. [Oak Ridge National Laboratory; University of Georgia; LaFayette, Peter R. [Oak Ridge National Laboratory; University of Georgia; Pattathil, Sivakumar [University of Georgia; Oak Ridge National Laboratory; Mohanty, Sushree S. [University of Georgia; Oak Ridge National Laboratory; Ryno, David [University of Georgia; Oak Ridge National Laboratory; Yee, Kelsey [Oak Ridge National Laboratory; Thompson, Olivia A. [Oak Ridge National Laboratory; Rodriguez Jr., Miguel [Oak Ridge National Laboratory; Dumitrache, Alexandru [Oak Ridge National Laboratory; Natzke, Jace [Oak Ridge National Laboratory; Winkeler, Kim [Oak Ridge National Laboratory; ArborGen, Inc.; Collins, Cassandra [Oak Ridge National Laboratory; ArborGen, Inc.; Yang, Xiaohan [Oak Ridge National Laboratory; Tan, Li [University of Georgia; Oak Ridge National Laboratory; Hahn, Michael G. [University of Georgia; Oak Ridge National Laboratory; Davison, Brian H. [Oak Ridge National Laboratory; Udvardi, Michael K. [Oak Ridge National Laboratory; Noble Research Institute; Mielenz, Jonathan R. [Oak Ridge National Laboratory; Nelson, Richard S. [Oak Ridge National Laboratory; Noble Research Institute; Parrott, Wayne A. [Oak Ridge National Laboratory; University of Georgia; Ragauskas, Arthur J. [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; University of Tennessee; Stewart Jr., C. Neal [Oak Ridge National Laboratory; University of Tennessee; Mohnen, Debra [University of Georgia; Oak Ridge National Laboratory

    2018-02-12

    Cell walls in crops and trees have been engineered for production of biofuels and commodity chemicals, but engineered varieties often fail multi-year field trials and are not commercialized. We engineered reduced expression of a pectin biosynthesis gene (Galacturonosyltransferase 4, GAUT4) in switchgrass and poplar, and find that this improves biomass yields and sugar release from biomass processing. Both traits were maintained in a 3-year field trial of GAUT4-knockdown switchgrass, with up to sevenfold increased saccharification and ethanol production and sixfold increased biomass yield compared with control plants. We show that GAUT4 is an a-1,4-galacturonosyltransferase that synthesizes homogalacturonan (HG). Downregulation of GAUT4 reduces HG and rhamnogalacturonan II (RGII), reduces wall calcium and boron, and increases extractability of cell wall sugars. Decreased recalcitrance in biomass processing and increased growth are likely due to reduced HG and RGII cross-linking in the cell wall.

  9. MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum under abiotic stress.

    Directory of Open Access Journals (Sweden)

    Guiling Sun

    Full Text Available Switchgrass has increasingly been recognized as a dedicated biofuel crop for its broad adaptation to marginal lands and high biomass. However, little is known about the basic biology and the regulatory mechanisms of gene expression in switchgrass, particularly under stress conditions. In this study, we investigated the effect of salt and drought stress on switchgrass germination, growth and the expression of small regulatory RNAs. The results indicate that salt stress had a gradual but significant negative effect on switchgrass growth and development. The germination rate was significantly decreased from 82% for control to 36% under 1% NaCl treatment. However, drought stress had little effect on the germination rate but had a significant effect on the growth of switchgrass under the severest salinity stress. Both salt and drought stresses altered the expression pattern of miRNAs in a dose-dependent manner. However, each miRNA responded to drought stress in a different pattern. Salt and drought stress changed the expression level of miRNAs mainly from 0.9-fold up-regulation to 0.7-fold down-regulation. miRNAs were less sensitive to drought treatment than salinity treatment, as evidenced by the narrow fold change in expression levels. Although the range of change in expression level of miRNAs was similar under salt and drought stress, no miRNAs displayed significant change in expression level under all tested salt conditions. Two miRNAs, miR156 and miR162, showed significantly change in expression level under high drought stress. This suggests that miR156 and miR162 may attribute to the adaption of switchgrass to drought stress and are good candidates for improving switchgrass as a biofuel crop by transgenic technology.

  10. Water use implications of biofuel scenarios

    Science.gov (United States)

    Teter, J.; Mishra, G. S.; Yeh, S.

    2012-12-01

    (2) irrigation practices, (3) feedstock water use efficiency, and (4) the longer growing season and a predominance of rainfed cultivation of dedicated biofuel feedstocks. National-level total water use is lowest in the BAU scenario and highest in the RFS2 + LCFS scenario. Figure: Million acres converted to growing miscanthus (top) & switchgrass (bottom) under the RFS + LCFS scenario in 2035. Land use classes are crop pasture (blue), idle cropland (red-purple) & prime cropland (brown).

  11. Long-term Miscanthus Yields Influenced by Location, Genotype, Row Distance, Fertilization and Harvest Season

    DEFF Research Database (Denmark)

    Ugilt Larsen, Søren; Jørgensen, Uffe; Kjeldsen, Jens Bonderup

    2014-01-01

    Long-term yield studies in perennial crops like miscanthus are important to determine mean annual energy yield and the farmer’s economy. In two Danish field trials, annual yield of two miscanthus genotypes was followed over a 20-year period. The trials were established in 1993 on loamy sand...

  12. Variation on biomass yield and morphological traits of energy grasses from the genus Miscanthus during the first years of crop establishment

    Energy Technology Data Exchange (ETDEWEB)

    Jezowski, S.; Glowacka, K.; Kaczmarek, Z. [Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszynska 34, 60-479 Poznan (Poland)

    2011-02-15

    This study presents the results of investigations of variation, genotype x year interactions and genotype x year x location interactions for the yield and morphological traits of several selected clones of energy grasses of the genus Miscanthus. The analyses were performed on the best clones of selected hybrid plants, which were obtained within the species M. sinensis or are the result of interspecific hybridization of M. sinensis and M. sacchariflorus. Analyses were conducted on the basis of three-year field trials at two locations. The young plants produced from in vitro cultures were planted at a density of one plant per m{sup 2}. The early stages of plant development, from planting until peak yield in the third year of cultivation, were analysed. Statistical analyses performed on the yield and morphological traits as well as changes in these characteristics over the successive years of the study showed considerable genotypic variation for traits under study. Moreover, significant genotype x year interactions as well as genotype x year x location interactions were observed in terms of yield and morphological traits. Based on the collective results of the study, we suggest that apart from M. x giganteus particularly hybrids of M. sinensis x M. sacchariflorus, should be taken into consideration in genetic and breeding studies on the improvement of yield from energy grasses of the genus Miscanthus. (author)

  13. Barriers and Incentives to Potential Adoption of Biofuels Crops by Smallholder Farmers in the Eastern Cape Province, South Africa

    OpenAIRE

    Cheteni, Priviledge; Mushunje, Abbyssinia; Taruvinga, Amon

    2014-01-01

    The main objective of this study was to identify barriers and incentives that influence the potential adoption of biofuel crops by smallholder farmers. The study utilized a semi-structured questionnaire to record responses from 129 smallholder farmers that were identified through a snowballing sampling technique. The respondents were from the Oliver Tambo and Chris Hani District Municipalities in the Eastern Cape Province, South Africa. A Heckman two-step model was applied to analyze the dat...

  14. Microwave assisted acid and alkali pretreatment of Miscanthus biomass for biorefineries

    Directory of Open Access Journals (Sweden)

    Zongyuan Zhu

    2015-10-01

    Full Text Available Miscanthus is a major bioenergy crop in Europe and a potential feedstock for second generation biofuels. Thermochemical pretreatment is a significant step in the process of converting lignocellulosic biomass into fermentable sugars. In this work, microwave energy was applied to facilitate NaOH and H2SO4 pretreatments of Miscanthus. This was carried out at 180 ℃ in a monomode microwave cavity at 300 W. Our results show that H2SO4 pretreatment contributes to the breakdown of hemicelluloses and cellulose, leading to a high glucose yield. The maximum sugar yield from available carbohydrates during pretreatment is 75.3% (0.2 M H2SO4 20 Min, and glucose yield is 46.7% under these conditions. NaOH and water pretreatments tend to break down only hemicellulose in preference to cellulose, contributing to high xylose yield. Compared to conventional heating NaOH/H2SO4 pretreatment, 12 times higher sugar yield was obtained by using microwave assisted pretreatment within half the time. NaOH pretreatments lead to a significantly enhanced digestibility of the residue, because the effective removal of lignin and hemicellulose makes cellulose fibres more accessible to cellulases. Morphological study of biomass shows that the tightly packed fibres in the Miscanthus were dismantled and exposed under NaOH condition. We studied sugar degradation under microwave assisted H2SO4 conditions. The results shows that 6-8% biomass was converted into levulinic acid (LA during pretreatment, showing the possibility of using microwave technology to produce LA from biomass. The outcome of this work shows great potential for using microwave in the thermo-chemical pretreatment for biomass and also selective production of LA from biomass.

  15. The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth's climate

    Science.gov (United States)

    Smith, Keith A.; Mosier, Arvin R.; Crutzen, Paul J.; Winiwarter, Wilfried

    2012-01-01

    In earlier work, we compared the amount of newly fixed nitrogen (N, as synthetic fertilizer and biologically fixed N) entering agricultural systems globally to the total emission of nitrous oxide (N2O). We obtained an N2O emission factor (EF) of 3–5%, and applied it to biofuel production. For ‘first-generation’ biofuels, e.g. biodiesel from rapeseed and bioethanol from corn (maize), that require N fertilizer, N2O from biofuel production could cause (depending on N uptake efficiency) as much or more global warming as that avoided by replacement of fossil fuel by the biofuel. Our subsequent calculations in a follow-up paper, using published life cycle analysis (LCA) models, led to broadly similar conclusions. The N2O EF applies to agricultural crops in general, not just to biofuel crops, and has made possible a top-down estimate of global emissions from agriculture. Independent modelling by another group using bottom-up IPCC inventory methodology has shown good agreement at the global scale with our top-down estimate. Work by Davidson showed that the rate of accumulation of N2O in the atmosphere in the late nineteenth and twentieth centuries was greater than that predicted from agricultural inputs limited to fertilizer N and biologically fixed N (Davidson, E. A. 2009 Nat. Geosci. 2, 659–662.). However, by also including soil organic N mineralized following land-use change and NOx deposited from the atmosphere in our estimates of the reactive N entering the agricultural cycle, we have now obtained a good fit between the observed atmospheric N2O concentrations from 1860 to 2000 and those calculated on the basis of a 4 per cent EF for the reactive N. PMID:22451102

  16. Oil crops in biofuel applications: South Africa gearing up for a bio-based economy

    Directory of Open Access Journals (Sweden)

    BB Marvey

    2009-04-01

    Full Text Available Large fluctuations in crude oil prices and the diminishing oil supply have left economies vulnerable to energy shortages thus placing an enormous pressure on nations around the world to seriously consider alternative renewable resources as feedstock in biofuel applications. Apart from energy security reasons, biofuels offer other advantages over their petroleum counterparts in that they contribute to the reduction in green- house gas emissions and to sustainable development. Just a few decades after discontinuing its large scale production of bioethanol for use as en- gine fuel, South Africa (SA is again on its way to resuscitating its biofuel industry. Herein an overview is presented on South Africa’s oilseed and biofuel production, biofuels industrial strategy, industry readiness, chal- lenges in switching to biofuels and the strategies to overcome potential obstacles.

  17. Environmental impact of converting Conservation Reserve Program land to perennial bioenergy crops in Illinois.

    Science.gov (United States)

    Blanc-Betes, E.; Hudiburg, T. W.; Khanna, M.; DeLucia, E. H.

    2017-12-01

    Reducing dependence on fossil fuels by the 20% by 2022 mandated by the Energy Independence and Security Act would require 35 billion Ga of ethanol and the loss of 9 to 12 Mha of food producing land to biofuel production, challenging our ability to develop a sustainable bioenergy source while meeting the food demands of a growing population. There are currently 8.5 Mha of land enrolled in the Conservation Reserve Program (CRP), a US government funded program to incentivize the retirement of environmentally sensitive cropland out of conventional crop production. About 63% of CRP land area could potentially be converted to energy crops, contributing to biofuel targets without displacing food. With high yields and low fertilization and irrigation requirements, perennial cellulosic crops (e.g. switchgrass and Miscanthus) not only would reduce land requirements by up to 15% compared to prairies or corn-based biofuel, but also serve other conservation goals such as C sequestration in soils, and water and air quality improvement. Here, we use the DayCent biogeochemical model to assess the potential of CRP land conversion to switchgrass or Miscanthus to provide a sustainable source of biofuel, reduce GHG emissions and increase soil organic carbon (SOC) storage in the area of Illinois, which at present contributes to 10% of the biofuel production in the US. Model simulations indicate that the replacement of traditional corn-soy rotation with CRP reduces GHG emissions by 3.3 Mg CO2-eq ha-1 y-1 and increases SOC storage at a rate of 0.5 Mg C ha-1 y-1. Conversion of CRP land to cellulosic perennials would further reduce GHG emissions by 1.1 Mg CO2-eq ha-1 y-1 for switchgrass and 6.2 Mg CO2-eq ha-1 y-1 for Miscanthus, and increase C sequestration in soils (1.7 Tg C for switchgrass and 7.7 Tg C for Miscanthus in 30 years). Cellulosic energy crops would increase average annual yields by approximately 5.6 Mg ha-1 for switchgrass and 13.6 Mg ha-1 for Miscanthus, potentially

  18. Will energy crop yields meet expectations?

    International Nuclear Information System (INIS)

    Searle, Stephanie Y.; Malins, Christopher J.

    2014-01-01

    Expectations are high for energy crops. Government policies in the United States and Europe are increasingly supporting biofuel and heat and power from cellulose, and biomass is touted as a partial solution to energy security and greenhouse gas mitigation. Here, we review the literature for yields of 5 major potential energy crops: Miscanthus spp., Panicum virgatum (switchgrass), Populus spp. (poplar), Salix spp. (willow), and Eucalyptus spp. Very high yields have been achieved for each of these types of energy crops, up to 40 t ha −1  y −1 in small, intensively managed trials. But yields are significantly lower in semi-commercial scale trials, due to biomass losses with drying, harvesting inefficiency under real world conditions, and edge effects in small plots. To avoid competition with food, energy crops should be grown on non-agricultural land, which also lowers yields. While there is potential for yield improvement for each of these crops through further research and breeding programs, for several reasons the rate of yield increase is likely to be slower than historically has been achieved for cereals; these include relatively low investment, long breeding periods, low yield response of perennial grasses to fertilizer, and inapplicability of manipulating the harvest index. Miscanthus × giganteus faces particular challenges as it is a sterile hybrid. Moderate and realistic expectations for the current and future performance of energy crops are vital to understanding the likely cost and the potential of large-scale production. - Highlights: • This review covers Miscanthus, switchgrass, poplar, willow, and Eucalyptus. • High yields of energy crops are typically from small experimental plots. • Field scale yields are lower due to real world harvesting losses and edge effects. • The potential for yield improvement of energy crops is relatively limited. • Expectations must be realistic for successful policies and commercial production

  19. Transcriptome-based differentiation of closely-related Miscanthus lines.

    Directory of Open Access Journals (Sweden)

    Philippe Chouvarine

    Full Text Available BACKGROUND: Distinguishing between individuals is critical to those conducting animal/plant breeding, food safety/quality research, diagnostic and clinical testing, and evolutionary biology studies. Classical genetic identification studies are based on marker polymorphisms, but polymorphism-based techniques are time and labor intensive and often cannot distinguish between closely related individuals. Illumina sequencing technologies provide the detailed sequence data required for rapid and efficient differentiation of related species, lines/cultivars, and individuals in a cost-effective manner. Here we describe the use of Illumina high-throughput exome sequencing, coupled with SNP mapping, as a rapid means of distinguishing between related cultivars of the lignocellulosic bioenergy crop giant miscanthus (Miscanthus × giganteus. We provide the first exome sequence database for Miscanthus species complete with Gene Ontology (GO functional annotations. RESULTS: A SNP comparative analysis of rhizome-derived cDNA sequences was successfully utilized to distinguish three Miscanthus × giganteus cultivars from each other and from other Miscanthus species. Moreover, the resulting phylogenetic tree generated from SNP frequency data parallels the known breeding history of the plants examined. Some of the giant miscanthus plants exhibit considerable sequence divergence. CONCLUSIONS: Here we describe an analysis of Miscanthus in which high-throughput exome sequencing was utilized to differentiate between closely related genotypes despite the current lack of a reference genome sequence. We functionally annotated the exome sequences and provide resources to support Miscanthus systems biology. In addition, we demonstrate the use of the commercial high-performance cloud computing to do computational GO annotation.

  20. Photosynthetic energy conversion efficiency: setting a baseline for gauging future improvements in important food and biofuel crops.

    Science.gov (United States)

    Slattery, Rebecca A; Ort, Donald R

    2015-06-01

    The conversion efficiency (ε(c)) of absorbed radiation into biomass (MJ of dry matter per MJ of absorbed photosynthetically active radiation) is a component of yield potential that has been estimated at less than half the theoretical maximum. Various strategies have been proposed to improve ε(c), but a statistical analysis to establish baseline ε(c) levels across different crop functional types is lacking. Data from 164 published ε(c) studies conducted in relatively unstressed growth conditions were used to determine the means, greatest contributors to variation, and genetic trends in ε(c )across important food and biofuel crop species. ε(c) was greatest in biofuel crops (0.049-0.066), followed by C4 food crops (0.046-0.049), C3 nonlegumes (0.036-0.041), and finally C3 legumes (0.028-0.035). Despite confining our analysis to relatively unstressed growth conditions, total incident solar radiation and average growing season temperature most often accounted for the largest portion of ε(c) variability. Genetic improvements in ε(c), when present, were less than 0.7% per year, revealing the unrealized potential of improving ε(c) as a promising contributing strategy to meet projected future agricultural demand. © 2015 American Society of Plant Biologists. All Rights Reserved.

  1. Evaluation of Bioenergy Crop Growth and the Impacts Of Bioenergy Crops on Streamflow, Tile Drain Flow and Nutrient Losses Using SWAT

    Science.gov (United States)

    Guo, T.; Raj, C.; Chaubey, I.; Gitau, M. W.; Arnold, J. G.; Srinivasan, R.; Kiniry, J. R.; Engel, B.

    2016-12-01

    Bioenery crops are expected to produce large quantities of biofuel at a national scale to meet US biofuel goals. It is important to study bioenergy crop growth and the impacts on water quantity and quality to identify environment-friendly and productive biofeedstocks. In this study, SWAT2012 with a new tile drainage routine (DRAINMOD routine) and improved perennial grass and tree growth simulation was used to model long-term annual biomass yields, streamflow, tile flow, sediment load, total nitrogen, nitrate load in flow, nitrate in tile flow, soluble nitrogen, organic nitrogen, total phosphorus, mineral phosphorus and organic phosphorus under various bioenergy scenarios in an extensively agricultural watershed in the Midwestern US. The results showed that simulated annual crop yields matched with observed county level values for corn and soybeans, and were reasonable for Miscanthus, switchgrass and hybrid poplar. Removal of 38% of corn stover (66,439 Mg/yr) with Miscanthus production on highly erodible areas and marginal land (19,039 Mg/yr) provided the highest biofeedstock production. Streamflow, tile flow, erosion and nutrient losses were reduced under bioenergy crop scenarios of Miscanthus, switchgrass, and hybrid poplar on highly erodible areas, marginal land. Corn stover removal did not result in significant water quality changes. The increase in sediment load and nutrient losses under corn stover removal could be offset with production of other bioenergy crops. The study showed that corn stover removal with bioenergy crops both on highly erodible areas and marginal land could provide more biofuel production relative to the baseline, and was beneficial to hydrology and water quality at the watershed scale, providing guidance for further research on evaluation of bioenergy crop scenarios in a typical extensively tile-drained watershed in the Midwestern U.S.

  2. Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, Sander C.; van de Ven, Gerrie W.J.; van Ittersum, Martin K.; Giller, Ken E. [Plant Production Systems Group, Wageningen University, P.O. Box 430, 6700 AK Wageningen (Netherlands)

    2010-05-15

    We compared the production-ecological sustainability of biofuel production from several major crops that are also commonly used for production of food or feed, based on current production practices in major production areas. The set of nine sustainability indicators focused on resource use efficiency, soil quality, net energy production and greenhouse gas emissions, disregarding socio-economic or biodiversity aspects and land use change. Based on these nine production-ecological indicators and attributing equal importance to each indicator, biofuel produced from oil palm (South East Asia), sugarcane (Brazil) and sweet sorghum (China) appeared most sustainable: these crops make the most efficient use of land, water, nitrogen and energy resources, while pesticide applications are relatively low in relation to the net energy produced. Provided there is no land use change, greenhouse gas emissions of these three biofuels are substantially reduced compared with fossil fuels. Oil palm was most sustainable with respect to the maintenance of soil quality. Maize (USA) and wheat (Northwest Europe) as feedstock for ethanol perform poorly for nearly all indicators. Sugar beet (Northwest Europe), cassava (Thailand), rapeseed (Northwest Europe) and soybean (USA) take an intermediate position. (author)

  3. Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin

    Science.gov (United States)

    Wu, Y.; Liu, S.

    2012-01-01

    Corn stover as well as perennial grasses like switchgrass (Panicum virgatum) and miscanthus are being considered as candidates for the second generation biofuel feedstocks. However, the challenges to biofuel development are its effects on the environment, especially water quality. This study evaluates the long-term impacts of biofuel production alternatives (e.g., elevated corn stover removal rates and the potential land cover change) on an ecosystem with a focus on biomass production, soil erosion, water quantity and quality, and soil nitrate nitrogen concentration at the watershed scale. The Soil and Water Assessment Tool (SWAT) was modified for setting land cover change scenarios and applied to the Iowa River Basin (a tributary of the Upper Mississippi River Basin). Results show that biomass production can be sustained with an increased stover removal rate as long as the crop demand for nutrients is met with appropriate fertilization. Although a drastic increase (4.7–70.6%) in sediment yield due to erosion and a slight decrease (1.2–3.2%) in water yield were estimated with the stover removal rate ranging between 40% and 100%, the nitrate nitrogen load declined about 6–10.1%. In comparison to growing corn, growing either switchgrass or miscanthus can reduce sediment erosion greatly. However, land cover changes from native grass to switchgrass or miscanthus would lead to a decrease in water yield and an increase in nitrate nitrogen load. In contrast to growing switchgrass, growing miscanthus is more productive in generating biomass, but its higher water demand may reduce water availability in the study area.

  4. Using The Corngrass1 Gene To Enhance The Biofuel Properties Of Crop Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hake, Sarah [USDA Agricultural Research Service, Washington DC (United States); Chuck, George [USDA Agricultural Research Service, Washington DC (United States)

    2015-10-29

    The development of novel plant germplasm is vital to addressing our increasing bioenergy demands. The major hurdle to digesting plant biomass is the complex structure of the cell walls, the substrate of fermentation. Plant cell walls are inaccessible matrices of macromolecules that are polymerized with lignin, making fermentation difficult. Overcoming this hurdle is a major goal toward developing usable bioenergy crop plants. Our project seeks to enhance the biofuel properties of perennial grass species using the Corngrass1 (Cg1) gene and its targets. Dominant maize Cg1 mutants produce increased biomass by continuously initiating extra axillary meristems and leaves. We cloned Cg1 and showed that its phenotype is caused by over expression of a unique miR156 microRNA gene that negatively regulates SPL transcription factors. We transferred the Cg1 phenotype to other plants by expressing the gene behind constitutive promoters in four different species, including the monocots, Brachypodium and switchgrass, and dicots, Arabidopsis and poplar. All transformants displayed a similar range of phenotypes, including increased biomass from extended leaf production, and increased vegetative branching. Field grown switchgrass transformants showed that overall lignin content was reduced, the ratio of glucans to xylans was increased, and surprisingly, that starch levels were greatly increased. The goals of this project are to control the tissue and temporal expression of Cg1 by using different promoters to drive its expression, elucidate the function of the SPL targets of Cg1 by generating gain and loss of function alleles, and isolate downstream targets of select SPL genes using deep sequencing and chromatin immunoprecipitation. We believe it is possible to control biomass accumulation, cell wall properties, and sugar levels through manipulation of either the Cg1 gene and/or its SPL targets.

  5. Estimating Soil and Root Parameters of Biofuel Crops using a Hydrogeophysical Inversion

    Science.gov (United States)

    Kuhl, A.; Kendall, A. D.; Van Dam, R. L.; Hyndman, D. W.

    2017-12-01

    Transpiration is the dominant pathway for continental water exchange to the atmosphere, and therefore a crucial aspect of modeling water balances at many scales. The root water uptake dynamics that control transpiration are dependent on soil water availability, as well as the root distribution. However, the root distribution is determined by many factors beyond the plant species alone, including climate conditions and soil texture. Despite the significant contribution of transpiration to global water fluxes, modelling the complex critical zone processes that drive root water uptake remains a challenge. Geophysical tools such as electrical resistivity (ER), have been shown to be highly sensitive to water dynamics in the unsaturated zone. ER data can be temporally and spatially robust, covering large areas or long time periods non-invasively, which is an advantage over in-situ methods. Previous studies have shown the value of using hydrogeophysical inversions to estimate soil properties. Others have used hydrological inversions to estimate both soil properties and root distribution parameters. In this study, we combine these two approaches to create a coupled hydrogeophysical inversion that estimates root and retention curve parameters for a HYDRUS model. To test the feasibility of this new approach, we estimated daily water fluxes and root growth for several biofuel crops at a long-term ecological research site in Southwest Michigan, using monthly ER data from 2009 through 2011. Time domain reflectometry data at seven depths was used to validate modeled soil moisture estimates throughout the model period. This hydrogeophysical inversion method shows promise for improving root distribution and transpiration estimates across a wide variety of settings.

  6. Mapping grasslands suitable for cellulosic biofuels in the Greater Platte River Basin, United States

    Science.gov (United States)

    Wylie, Bruce K.; Gu, Yingxin

    2012-01-01

    Biofuels are an important component in the development of alternative energy supplies, which is needed to achieve national energy independence and security in the United States. The most common biofuel product today in the United States is corn-based ethanol; however, its development is limited because of concerns about global food shortages, livestock and food price increases, and water demand increases for irrigation and ethanol production. Corn-based ethanol also potentially contributes to soil erosion, and pesticides and fertilizers affect water quality. Studies indicate that future potential production of cellulosic ethanol is likely to be much greater than grain- or starch-based ethanol. As a result, economics and policy incentives could, in the near future, encourage expansion of cellulosic biofuels production from grasses, forest woody biomass, and agricultural and municipal wastes. If production expands, cultivation of cellulosic feedstock crops, such as switchgrass (Panicum virgatum L.) and miscanthus (Miscanthus species), is expected to increase dramatically. The main objective of this study is to identify grasslands in the Great Plains that are potentially suitable for cellulosic feedstock (such as switchgrass) production. Producing ethanol from noncropland holdings (such as grassland) will minimize the effects of biofuel developments on global food supplies. Our pilot study area is the Greater Platte River Basin, which includes a broad range of plant productivity from semiarid grasslands in the west to the fertile corn belt in the east. The Greater Platte River Basin was the subject of related U.S. Geological Survey (USGS) integrated research projects.

  7. Mitigating secondary aerosol generation potentials from biofuel use in the energy sector.

    Science.gov (United States)

    Tiwary, Abhishek; Colls, Jeremy

    2010-01-01

    This paper demonstrates secondary aerosol generation potential of biofuel use in the energy sector from the photochemical interactions of precursor gases on a life cycle basis. The paper is divided into two parts-first, employing life cycle analysis (LCA) to evaluate the extent of the problem for a typical biofuel based electricity production system using five baseline scenarios; second, proposing adequate mitigation options to minimise the secondary aerosol generation potential on a life cycle basis. The baseline scenarios cover representative technologies for 2010 utilising energy crop (miscanthus), short rotation coppiced chips and residual/waste wood in different proportions. The proposed mitigation options include three approaches-biomass gasification prior to combustion, delaying the harvest of biomass, and increasing the geographical distance between the biomass plant and the harvest site (by importing the biofuels). Preliminary results indicate that the baseline scenarios (assuming all the biomass is sourced locally) bear significant secondary aerosol formation potential on a life cycle basis from photochemical neutralisation of acidic emissions (hydrogen chloride and sulphur dioxide) with ammonia. Our results suggest that gasification of miscanthus biomass would provide the best option by minimising the acidic emissions from the combustion plant whereas the other two options of delaying the harvest or importing biofuels from elsewhere would only lead to marginal reduction in the life cycle aerosol loadings of the systems.

  8. Oil crops in biofuel applications: South Africa gearing up for a bio-based economy

    OpenAIRE

    Marvey, B B

    2009-01-01

    Large fluctuations in crude oil prices and the diminishing oil supply have left economies vulnerable to energy shortages thus placing an enormous pressure on nations around the world to seriously consider alternative renewable resources as feedstock in biofuel applications. Apart from energy security reasons, biofuels offer other advantages over their petroleum counterparts in that they contribute to the reduction in green- house gas emissions and to sustainable development. Just a few decade...

  9. Nitrogen management of switchgrass and miscanthus on marginal soils

    Science.gov (United States)

    Miscanthus × giganteus and switchgrass yield and fertilizer N requirements have been well studied in Europe and parts of the United States, but few reports have investigated their production on eroded claypan soils economically marginal for grain crops. This study was conducted to evaluate yield pot...

  10. Global options for biofuels from plantations according to IMAGE simulations

    International Nuclear Information System (INIS)

    Battjes, J.J.

    1994-07-01

    In this report the contribution of biofuels to the renewable energy supply and the transition towards it are discussed for the energy crops miscanthus, eucalyptus, poplar, wheat and sugar cane. Bio-electricity appears to be the most suitable option regarding energetic and financial aspects and in terms of avoided CO 2 emissions. The IMAGE 2.0 model is a multi-disciplinary, integrated model designed to simulate the dynamics of the global society-biosphere-climate system, and mainly used here for making more realistic estimates. Dynamic calculations are performed to the year 2100. An IMAGE 2.0-based Conventional Wisdom scenario simulates, among other things, future energy demand and supply, future food production, future land cover patterns and future greenhouse gas emissions. Two biofuel scenarios are described in this report. The first consists of growing energy crops on set asides. According to a 'Conventional Wisdom' scenario, Canada, the U.S. and Europe and to a lesser extent Latin America will experience set asides due to a declining demand in agricultural area. The second biofuel scenario consists of growing energy crops on set asides and on 10% of the agricultural area in the developing countries. Growing energy crops on all of the areas listed above leads to an energy production that consists of about 12% of the total non-renewable energy use in 2050, according to the 'Conventional Wisdom' scenario. Furthermore, the energy related CO 2 emissions are reduced with about 15% in 2050, compared to the Conventional Wisdom scenario. Financial aspects will have great influence on the success of growing energy crops. However, energy generated from biomass derived from plantations is currently more expensive than generating it from traditional fuels. Levying taxes on CO 2 emissions and giving subsidies to biofuels will reduce the cost price difference between fossil fuels and biofuels

  11. Unintended consequences of biofuels production?The effects of large-scale crop conversion on water quality and quantity

    Science.gov (United States)

    Welch, Heather L.; Green, Christopher T.; Rebich, Richard A.; Barlow, Jeannie R.B.; Hicks, Matthew B.

    2010-01-01

    In the search for renewable fuel alternatives, biofuels have gained strong political momentum. In the last decade, extensive mandates, policies, and subsidies have been adopted to foster the development of a biofuels industry in the United States. The Biofuels Initiative in the Mississippi Delta resulted in a 47-percent decrease in cotton acreage with a concurrent 288-percent increase in corn acreage in 2007. Because corn uses 80 percent more water for irrigation than cotton, and more nitrogen fertilizer is recommended for corn cultivation than for cotton, this widespread shift in crop type has implications for water quantity and water quality in the Delta. Increased water use for corn is accelerating water-level declines in the Mississippi River Valley alluvial aquifer at a time when conservation is being encouraged because of concerns about sustainability of the groundwater resource. Results from a mathematical model calibrated to existing conditions in the Delta indicate that increased fertilizer application on corn also likely will increase the extent of nitrate-nitrogen movement into the alluvial aquifer. Preliminary estimates based on surface-water modeling results indicate that higher application rates of nitrogen increase the nitrogen exported from the Yazoo River Basin to the Mississippi River by about 7 percent. Thus, the shift from cotton to corn may further contribute to hypoxic (low dissolved oxygen) conditions in the Gulf of Mexico.

  12. GIANT MISCANTHUS AS A SUBSTRATE FOR BIOGAS PRODUCTION

    Directory of Open Access Journals (Sweden)

    Joanna Kazimierowicz

    2015-09-01

    Full Text Available One unconventional source of energy, which may be applied in numerous production and municipal processes, is energy accumulated in plants. As a result of photosynthesis, solar energy is transformed into chemical energy accumulated in a form of carbohydrates in the plant biomass, which becomes the material that is more and more sought by power distribution companies and individual users. Currently, a lot of research on obtaining biogas from energy crops is conducted. Corn silage is used most often, however, there is a demand for alternative plants. The experiment described in this article was conducted with the use of giant Miscanthus (Miscanthus Giganteus.

  13. Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus

    Directory of Open Access Journals (Sweden)

    Xu Ning

    2012-08-01

    Full Text Available Abstract Background Lignocellulose is the most abundant biomass on earth. However, biomass recalcitrance has become a major factor affecting biofuel production. Although cellulose crystallinity significantly influences biomass saccharification, little is known about the impact of three major wall polymers on cellulose crystallization. In this study, we selected six typical pairs of Miscanthus samples that presented different cell wall compositions, and then compared their cellulose crystallinity and biomass digestibility after various chemical pretreatments. Results A Miscanthus sample with a high hemicelluloses level was determined to have a relatively low cellulose crystallinity index (CrI and enhanced biomass digestibility at similar rates after pretreatments of NaOH and H2SO4 with three concentrations. By contrast, a Miscanthus sample with a high cellulose or lignin level showed increased CrI and low biomass saccharification, particularly after H2SO4 pretreatment. Correlation analysis revealed that the cellulose CrI negatively affected biomass digestion. Increased hemicelluloses level by 25% or decreased cellulose and lignin contents by 31% and 37% were also found to result in increased hexose yields by 1.3-times to 2.2-times released from enzymatic hydrolysis after NaOH or H2SO4 pretreatments. The findings indicated that hemicelluloses were the dominant and positive factor, whereas cellulose and lignin had synergistic and negative effects on biomass digestibility. Conclusions Using six pairs of Miscanthus samples with different cell wall compositions, hemicelluloses were revealed to be the dominant factor that positively determined biomass digestibility after pretreatments with NaOH or H2SO4 by negatively affecting cellulose crystallinity. The results suggested potential approaches to the genetic modifications of bioenergy crops.

  14. Soil water infiltration affected by biofuel and grain crop production systems in claypan landscape

    Science.gov (United States)

    The effect of soil management systems on water infiltration is very crucial within claypan landscapes to maximize production as well as minimize environmental risks. The objective of this study was to assess the effect of topsoil thickness on water infiltration in claypan soils for grain and biofuel...

  15. Wonder crop could pave the way for bio-fuel revolution

    CSIR Research Space (South Africa)

    Gush, Mark B

    2005-03-01

    Full Text Available are some of the pressures that are influencing the quest for alternative, cleaner forms of energy. Some would suggest that the bio-fuel revolution has begun. Because of these trends a recent business initiative has proposed the introduction of the so...

  16. Can miscanthus C4 photosynthesis compete with festulolium C3 photosynthesis in a temperate climate?

    DEFF Research Database (Denmark)

    Jiao, Xiurong; Kørup, Kirsten; Andersen, Mathias Neumann

    2017-01-01

    Miscanthus, a perennial grass with C4 photosynthesis, is regarded as a promising energy crop due to its high biomass productivity. Compared with other C4 species, most miscanthus genotypes have high cold tolerances at 14 °C. However, in temperate climates, temperatures below 14 °C are common...... at each temperature level and still maintained photosynthesis after growing for a longer period at 6/4 °C. Only two of five measured miscanthus genotypes increased photosynthesis immediately after the temperature was raised again. The photosynthetic capacity of festulolium was significantly higher at 10...

  17. Nitrate leaching and pesticide use in energy crops

    DEFF Research Database (Denmark)

    Jørgensen, Uffe

    2006-01-01

    Nitrate leaching measured below willow and miscanthus is very low from the established crops. Pesticide use in energy crops is low as well.......Nitrate leaching measured below willow and miscanthus is very low from the established crops. Pesticide use in energy crops is low as well....

  18. White paper report from working groups attending the international conference on research and educational opportunities in bio-fuel crop production

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, K.T. [University of Florida, Soil and Water Science Dep., Southwest Florida Res. and Educ. Center, Immokalee, FL 34142 (United States); Gilbert, R.A. [University of Florida, Agronomy Dep., Everglades Res. and Educ. Center, Belle Glade, FL 33430 (United States); Helsel, Z.A. [Rutgers University, Plant Biology and Pathology Dep., New Brunswick, NJ 08901-8520 (United States); Buacum, L. [University of Florida, Hendry County Extension, LaBelle, FL 33935 (United States); Leon, R.; Perret, J. [EARTH University, Apto. 4442-1000, San Jose (Costa Rica)

    2010-12-15

    A conference on current research and educational programs in production of crops for bio-fuel was sponsored and organized by the EARTH University and the University of Florida in November, 2008. The meeting addressed current research on crops for bio-fuel production with discussions of research alternatives for future crop production systems, land use issues, ethics of food vs. fuel production, and carbon sequestration in environmentally sensitive tropical and sub-tropical regions of the Americas. The need and potential for development of graduate and undergraduate curricula and inter-institutional cooperation among educational institutions in the region were also discussed. Delegations from Belize, Brazil, Columbia, Costa Rica, Cuba, Honduras, Panama, The Dominican Republic, and the United States including ministers of Agriculture and Energy attended this meeting. Over a two-day period, four working groups provided a framework to facilitate networking, motivate task oriented creative thinking, and maintain a timely accomplishment of assigned duties in the context of the conference themes. Participants in the conference were assigned to one of four working groups, each following given topics: Agronomy, Environment, Socio-Economics and Education/Extension. It was the consensus of representatives of industry, academic and regulatory community assembled in Costa Rica that significant research, education and socio-economic information is needed to make production of bio-fuel crops sustainable. Agronomic research should include better crop selection based on local conditions, improved production techniques, pest and disease management, and mechanical cultivation and harvesting. Another conclusion was that tailoring of production systems to local soil characteristics and use of bio-fuel by-products to improve nutrient use efficiency and reduction of environmental impact on water quantity and quality is critical to sustainability of bio-fuel crop production. (author)

  19. Comparison of the growth and biomass production of Miscanthus sinensis, Miscanthus floridulus and Saccharum arundinaceum

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; He, Y.; Fang, J.; Fang, Z.; Jiang, B.; Brancourt-Hulmel, M.; Zheng, B.; Jiang, D.

    2015-07-01

    Miscanthus and Saccharum are considered excellent candidates for bioenergy feedstock production. A field experiment was conducted in Zhejiang province of China to characterize the phenotypic differences in three species, two of Miscanthus (M. sinensis and M. floridulus) and one of Saccharum (S. arundinaceum), each with two accessions collected from China. Agronomical traits, including plant height, culm number, tuft diameter and culm diameter, were monitored monthly for the first 3 years of growth. For each year of trail, flowering time was observed and biomass yield was harvested. M. floridulus produced a superior biomass yield with increasing plant age associated with higher yields (4.18, 24.16 and 29.01 t dry matter/hain November of years one to three, respectively). Higher culm diameter, plant height and tuft diameter values were observed for M. floridulus when compared to the other species. Biomass yield was positively correlated to tuft diameter, culm diameter, culm number and negatively to flowering time, but it showed no correlation with plant height. Tuft diameter and culm diameter could be suitable indicators in the selection of accessions for crop yield at the yield-building phase. Studies of the primary colonizers of Miscanthus and Saccharum in their original location may be of interest from the perspective of bioenergy germplasm resource collection. (Author)

  20. Nitrous Oxide Emissions from Biofuel Crops and Parameterization in the EPIC Biogeochemical Model

    Science.gov (United States)

    This presentation describes year 1 field measurements of N2O fluxes and crop yields which are used to parameterize the EPIC biogeochemical model for the corresponding field site. Initial model simulations are also presented.

  1. The Effects of Land-Use Change from Grassland to Miscanthus x giganteus on Soil N2O Emissions

    Directory of Open Access Journals (Sweden)

    Michael Williams

    2013-09-01

    Full Text Available A one year field trial was carried out on three adjacent unfertilised plots; an 18 year old grassland, a 14 year old established Miscanthus crop, and a 7 month old newly planted Miscanthus crop. Measurements of N2O, soil temperature, water filled pore space (WFPS, and inorganic nitrogen concentrations, were made every one to two weeks. Soil temperature, WFPS and NO3− and NH4+ concentrations were all found to be significantly affected by land use. Temporal crop effects were also observed in soil inorganic nitrogen dynamics, due in part to C4 litter incorporation into the soil under Miscanthus. Nonetheless, soil N2O fluxes were not significantly affected by land use. Cumulative yearly N2O fluxes were relatively low, 216 ± 163, 613 ± 294, and 377 ± 132 g·N·ha−1·yr−1 from the grassland, newly planted Miscanthus, and established Miscanthus plots respectively, and fell within the range commonly observed for unfertilised grasslands dominated by perennial ryegrass (Lolium perenne. Higher mean cumulative fluxes were measured in the newly planted Miscanthus, which may be linked to a possible unobserved increase immediately after establishment. However, these differences were not statistically significant. Based on the results of this experiment, land-use change from grassland to Miscanthus will have a neutral impact on medium to long-term N2O emissions.

  2. Storage of Miscanthus-derived carbon in rhizomes, roots, and soil

    DEFF Research Database (Denmark)

    Christensen, Bent Tolstrup; Lærke, Poul Erik; Jørgensen, Uffe

    2016-01-01

    Compared with annual crops, dedicated perennial bioenergy crops are ascribed additional benefits in terms of reduced greenhouse gas emissions; these benefits include increased carbon (C) storage in soil. We measured Miscanthus-derived C in rhizomes, roots, and 0–100 cm soil beneath three 16-yr-ol...

  3. Impact of climate variability on N and C flux within the life cycle of biofuels produced from crop residues

    Science.gov (United States)

    Pourhashem, G.; Block, P. J.; Adler, P. R.; Spatari, S.

    2013-12-01

    Biofuels from agricultural feedstocks (lignocellulose) are under development to meet national policy objectives for producing domestic renewable fuels. Using crop residues such as corn stover as feedstock for biofuel production can minimize the risks associated with food market disruption; however, it demands managing residue removal to minimize soil carbon loss, erosion, and to ensure nutrient replacement. Emissions of nitrous oxide and changes to soil organic carbon (SOC) are subject to variability in time due to local climate conditions and cultivation practices. Our objective is to investigate the effect of climate inputs (precipitation and temperature) on biogeochemical greenhouse gas (GHG) emissions (N2O and SOC expressed as CO2) within the life cycle of biofuels produced from agricultural residues. Specifically, we investigate the impact of local climate variability on soil carbon and nitrogen fluxes over a 20-year biorefinery lifetime where biomass residue is used for lignocellulosic ethanol production. We investigate two cases studied previously (Pourhashem et al, 2013) where the fermentable sugars in the agricultural residue are converted to ethanol (biofuel) and the lignin byproduct is used in one of two ways: 1) power co-generation; or 2) application to land as a carbon/nutrient-rich amendment to soil. In the second case SOC losses are mitigated through returning the lignin component to land while the need for fertilizer addition is also eliminated, however in both cases N2O and SOC are subject to variability due to variable climate conditions. We used the biogeochemical model DayCent to predict soil carbon and nitrogen fluxes considering soil characteristics, tillage practices and local climate (e.g. temperature and rainfall). We address the impact of climate variability on the soil carbon and nitrogen fluxes by implementing a statistical bootstrap resampling method based on a historic data set (1980 to 2000). The ensuing probabilistic outputs from the

  4. Sustainable Liquid Biofuels from Biomass Biorefining (SUNLIBB). Policy Brief No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-03-01

    The SUNLIBB project is funded under the European Seventh Framework Programme (FP7) within the Energy theme: Second Generation Biofuels -- EU Brazil Coordinated Call. SUNLIBB started on 1 October 2010 for 4 years and collaborates with a parallel project in Brazil, CeProBIO. First generation biofuels -- which are mainly produced from food crops such as grains, sugarcane and vegetable oils -- have triggered one of the most highly contentious debates on the current international sustainability agenda, given their links to energy security, transport, trade, food security, land-use impacts and climate change concerns. Developing second generation biofuels has emerged as a more attractive option, as these are manufactured from inedible sources, such as woody crops, energy grasses, or even agricultural and forestry residues. Residues from sugarcane and biomass from maize, as well as 'whole-crop' miscanthus are all potential raw material (called 'feedstock') for second generation bioethanol production. Because these three plants are all closely related, processing the biomass from these crops raises common technical challenges, which offers the opportunity for breakthroughs in one species to be rapidly exploited in the others. Despite the potential sustainability benefits of second generation bioethanol, the current inefficiency of production makes it economically uncompetitive. Taking up this challenge, the SUNLIBB consortium's multidisciplinary team of scientists -- in cooperation with CeProBIO, the sister project in Brazil -- combines European and Brazilian research strengths so as to open the way for environmentally, socially and economically sustainable second generation bioethanol production.

  5. Simulation of biomass yield of regular and chilling tolerant Miscanthus cultivars and reed canary grass in different climates of Europe

    DEFF Research Database (Denmark)

    Kandel, Tanka Prasad; Hastings, Astley; Jørgensen, Uffe

    2016-01-01

    Miscanthus and reed canary grass (RCG) are C4 and C3 perennial grasses which are popular in Europe as energy crops. Although Miscanthus is relatively chilling tolerant compared to other C4 species, its production in northern Europe is still constrained by cold temperature. A more chilling tolerant...... Miscanthus cultivar which can emerge early in the spring would utilize more solar radiation and produce higher biomass yields. In this study, using MiscanFor model, we estimated potential biomass yield of Miscanthus in current and future climates with the assumption that breeding would provide a chilling...

  6. The effect of native and introduced biofuel crops on the composition of soil biota communities

    Czech Academy of Sciences Publication Activity Database

    Heděnec, Petr; Novotný, D.; Usťak, S.; Cajthaml, Tomáš; Slejška, A.; Šimáčková, H.; Honzík, R.; Kovářová, M.; Frouz, Jan

    2014-01-01

    Roč. 60, January (2014), s. 137-146 ISSN 0961-9534 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : soil fauna * energy crops * composition of soil fungi * microbial biomass * basal soil respiration Subject RIV: EH - Ecology, Behaviour Impact factor: 3.394, year: 2014

  7. Biofuels and sustainability.

    Science.gov (United States)

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria.

  8. Invertebrate populations in miscanthus (Miscanthusxgiganteus) and reed canary-grass (Phalaris arundinacea) fields

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T.; Slater, F.M. [Llysdinam Field Centre, School of Biosciences, Cardiff University, Newbridge-on-Wye, Llandrindod Wells, Powys, LD1 6NB (United Kingdom)

    2007-01-15

    Monitoring of invertebrates at four field sites in Herefordshire, England, growing miscanthus and reed canary-grass was carried out in 2002, 2003 and 2004 to investigate the ecological impact of these crops on ground beetles, butterflies and arboreal invertebrates. Ground beetles were sampled by pitfall trapping; and arboreal invertebrates by sweep netting and stem beating. The Centre for Ecology and Hydrology's Butterflies Monitoring Scheme methodology was used to record butterflies. The effects of the biomass crops on invertebrates were indirect, through the use of weeds as food resources and habitat. The greater diversity of weed flora within miscanthus fields than within reed canary-grass fields had a greater positive effect on invertebrates. Ground beetles, butterflies and arboreal invertebrates were more abundant and diverse in the most floristically diverse miscanthus fields. The difference in crop architecture and development between miscanthus and reed canary-grass was reflected in their differences in crop height and ground cover early on in the season. However, most of the difference in arthropod abundance between the two crops was attributed to the difference in the agronomic practice of growing the crops such as plant density, and the effect of this on weed growth. Since perennial rhizomatous grasses require a single initial planting and related tillage, and also no major chemical inputs; and because the crops are harvested in the spring and the land is not disturbed by cultivation every year, the fields were used as over-wintering sites for invertebrates suggesting immediate benefits to biodiversity. (author)

  9. Modeling state-level soil carbon emission factors under various scenarios for direct land use change associated with United States biofuel feedstock production

    International Nuclear Information System (INIS)

    Kwon, Ho-Young; Mueller, Steffen; Dunn, Jennifer B.; Wander, Michelle M.

    2013-01-01

    Current estimates of life cycle greenhouse gas emissions of biofuels produced in the US can be improved by refining soil C emission factors (EF; C emissions per land area per year) for direct land use change associated with different biofuel feedstock scenarios. We developed a modeling framework to estimate these EFs at the state-level by utilizing remote sensing data, national statistics databases, and a surrogate model for CENTURY's soil organic C dynamics submodel (SCSOC). We estimated the forward change in soil C concentration within the 0–30 cm depth and computed the associated EFs for the 2011 to 2040 period for croplands, grasslands or pasture/hay, croplands/conservation reserve, and forests that were suited to produce any of four possible biofuel feedstock systems [corn (Zea Mays L)-corn, corn–corn with stover harvest, switchgrass (Panicum virgatum L), and miscanthus (Miscanthus × giganteus Greef et Deuter)]. Our results predict smaller losses or even modest gains in sequestration for corn based systems, particularly on existing croplands, than previous efforts and support assertions that production of perennial grasses will lead to negative emissions in most situations and that conversion of forest or established grasslands to biofuel production would likely produce net emissions. The proposed framework and use of the SCSOC provide transparency and relative simplicity that permit users to easily modify model inputs to inform biofuel feedstock production targets set forth by policy. -- Highlights: ► We model regionalized feedstock-specific United States soil C emission factors. ► We simulate soil C changes from direct land use change associated with biofuel feedstock production. ► Corn, corn-stover, and perennial grass biofuel feedstocks grown in croplands maintain soil C levels. ► Converting grasslands to bioenergy crops risks soil C loss. ► This modeling framework yields more refined soil C emissions than national-level emissions

  10. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' Manual and Technical Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States); Mueller, Steffen [Univ. of Illinois at Chicago, Chicago, IL (United States); Kwon, Ho-young [International Food Policy Research Institute (IFPRI), Washington, DC (United States); Wander, Michelle M. [Univ. of Illinois, Urbana-Champaign, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-09-01

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.

  11. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    The term biofuel is referred to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. Biofuels include bioethanol, biomethanol, vegetable oils, biodiesel, biogas, bio-synthetic gas (bio-syngas), bio-oil, bio-char, Fischer-Tropsch liquids, and biohydrogen. Most traditional biofuels, such as ethanol from corn, wheat, or sugar beets, and biodiesel from oil seeds, are produced from classic agricultural food crops that require high-quality agricultural land for growth. Bioethanol is a petrol additive/substitute. Biomethanol can be produced from biomass using bio-syngas obtained from steam reforming process of biomass. Biomethanol is considerably easier to recover than the bioethanol from biomass. Ethanol forms an azeotrope with water so it is expensive to purify the ethanol during recovery. Methanol recycles easier because it does not form an azeotrope. Biodiesel is an environmentally friendly alternative liquid fuel that can be used in any diesel engine without modification. There has been renewed interest in the use of vegetable oils for making biodiesel due to its less polluting and renewable nature as against the conventional petroleum diesel fuel. Due to its environmental merits, the share of biofuel in the automotive fuel market will grow fast in the next decade. There are several reasons for biofuels to be considered as relevant technologies by both developing and industrialized countries. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. The biofuel economy will grow rapidly during the 21st century. Its economy development is based on agricultural production and most people live in the rural areas. In the most biomass-intensive scenario, modernized biomass energy contributes by 2050 about one half of total energy

  12. Energy performance and efficiency of two sugar crops for the biofuel supply chain. Perspectives for sustainable field management in southern Italy

    International Nuclear Information System (INIS)

    Garofalo, Pasquale; D'Andrea, Laura; Vonella, A. Vittorio; Rinaldi, Michele; Palumbo, A. Domenico

    2015-01-01

    Improvement of the energy balance and efficiency for reduced input of cropping systems is one of the main goals for the cultivation of energy crops. In this field study, two sugar crops for bioethanol production were cultivated under different soil tillage management (conventional; no tillage) and mineral nitrogen application (0, 75, 150 kg N ha"−"1): sweet sorghum and sugar beet. The energy performance and efficiency along the bioethanol supply chain were analysed and compared. Both of these crops showed good growth adaptation to the different soil and nitrogen management, and thus the energy return, resource and energy efficiencies were significantly improved in the low-input system. Sweet sorghum provided better responses in terms of water and nitrogen use efficiency for biomass accumulation, as well as its energy yield and net gain, compared to sugar beet, whereas sugar beet showed higher energy efficiency than sorghum. According to these data, both of these crops can be cultivated in a Mediterranean environment with low energy input, which guarantees good crop and energy performances for biofuel strategy planning. - Highlights: • Two sugar crops for the bioethanol supply chain were evaluated. • Energy performances and efficiencies were assessed under different energy input. • Sugar yield resulted not compromised by the different crop management. • The energy gain was improved with low energy input at field level. • Sweet sorghum gave the highest energy yield, sugar beet the energy efficiency.

  13. Sustainable Liquid Biofuels from Biomass Biorefining (SUNLIBB). Policy Brief No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-15

    The SUNLIBB project is funded under the European Seventh Framework Programme (FP7) within the Energy theme: Second Generation Biofuels -- EU Brazil Coordinated Call. SUNLIBB started on 1 October 2010 for 4 years and collaborates with a parallel project in Brazil, CeProBIO. This is the second in a series of policy briefs providing an update on the project. The first brief was issued in March 2012. The project focus is on looking at developing second generation biofuels that hope to improve on issues seen with the first generation options. Second generation biofuels are manufactured from inedible sources, such as woody crops, energy grasses, or even agricultural and forestry residues. Residues from sugarcane and biomass from maize, as well as 'whole-crop' miscanthus are all potential raw material (called 'feedstock') for second generation bioethanol production. Because these three plants are all closely related, processing the biomass from these crops raises common technical challenges, which offers the opportunity for breakthroughs in one species to be rapidly exploited in the others. Despite the potential sustainability benefits of second generation bioethanol, the current inefficiency of production makes it economically uncompetitive. Taking up this challenge, the SUNLIBB consortium's multidisciplinary team of scientists -- in cooperation with CeProBIO, the sister project in Brazil -- combines European and Brazilian research strengths so as to open the way for environmentally, socially and economically sustainable second generation bioethanol production.

  14. ENVIRONMENTAL AND SOCIO-ECONOMIC ASPECT OF GROWING MISCANTHUS GENOTYPES

    Directory of Open Access Journals (Sweden)

    Marián KOTRLA

    2013-01-01

    Full Text Available Deliberate cultivation of plants for energy biomass is becoming increasingly important. Biomass should significantly contribute to increase the share of renewable energy in the European Union. On the research locality of Slovak University of Agriculture in Nitra localized in the village Kolíňany (Slovak Republic is implemented basic research focused on the growth and production of the two genotypes energy grass Miscanthus. Research is carried out since 2010. In the third year after planting (the year 2012 were confirmed biomass production depending on the genotype of 35.45 and 36.67 t ha-1. Based on the analysis of growth and production performance of Miscanthus genotypes can be evaluated the high environmental and socio-economic aspects of growing energy crops, depending on the specific agro-ecological conditions.

  15. Stream Health Sensitivity to Landscape Changes due to Bioenergy Crops Expansion

    Science.gov (United States)

    Nejadhashemi, A.; Einheuser, M. D.; Woznicki, S. A.

    2012-12-01

    Global demand for bioenergy has increased due to uncertainty in oil markets, environmental concerns, and expected increases in energy consumption worldwide. To develop a sustainable biofuel production strategy, the adverse environmental impacts of bioenergy crops expansion should be understood. To study the impact of bioenergy crops expansion on stream health, the adaptive neural-fuzzy inference system (ANFIS) was used to predict macroinvertebrate and fish stream health measures. The Hilsenhoff Biotic Index (HBI), Family Index of Biological Integrity (Family IBI), and Number of Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT taxa) were used as macroinvertebrate measures, while the Index of Biological Integrity (IBI) was used for fish. A high-resolution biophysical model built using the Soil and Water Assessment Tool was used to obtain water quantity and quality variables for input into the ANFIS stream health predictive models. Twenty unique crop rotations were developed to examine impacts of bioenergy crops expansion on stream health in the Saginaw Bay basin. Traditional intensive row crops generated more pollution than current landuse conditions, while second-generation biofuel crops associated with less intensive agricultural activities resulted in water quality improvement. All three macroinvertebrate measures were negatively impacted during intensive row crop productions but improvement was predicted when producing perennial crops. However, the expansion of native grass, switchgrass, and miscanthus production resulted in reduced IBI relative to first generation row crops. This study demonstrates that ecosystem complexity requires examination of multiple stream health measures to avoid potential adverse impacts of landuse change on stream health.

  16. An integrated modeling framework for exploring flow regime and water quality changes with increasing biofuel crop production in the U.S. Corn Belt

    Science.gov (United States)

    Yaeger, Mary A.; Housh, Mashor; Cai, Ximing; Sivapalan, Murugesu

    2014-12-01

    To better address the dynamic interactions between human and hydrologic systems, we develop an integrated modeling framework that employs a System of Systems optimization model to emulate human development decisions which are then incorporated into a watershed model to estimate the resulting hydrologic impacts. The two models are run interactively to simulate the coevolution of coupled human-nature systems, such that reciprocal feedbacks between hydrologic processes and human decisions (i.e., human impacts on critical low flows and hydrologic impacts on human decisions on land and water use) can be assessed. The framework is applied to a Midwestern U.S. agricultural watershed, in the context of proposed biofuels development. This operation is illustrated by projecting three possible future coevolution trajectories, two of which use dedicated biofuel crops to reduce annual watershed nitrate export while meeting ethanol production targets. Imposition of a primary external driver (biofuel mandate) combined with different secondary drivers (water quality targets) results in highly nonlinear and multiscale responses of both the human and hydrologic systems, including multiple tradeoffs, impacting the future coevolution of the system in complex, heterogeneous ways. The strength of the hydrologic response is sensitive to the magnitude of the secondary driver; 45% nitrate reduction target leads to noticeable impacts at the outlet, while a 30% reduction leads to noticeable impacts that are mainly local. The local responses are conditioned by previous human-hydrologic modifications and their spatial relationship to the new biofuel development, highlighting the importance of past coevolutionary history in predicting future trajectories of change.

  17. Towards a default soil carbon sequestration rate after cropland to Miscanthus conversion in Europe

    Science.gov (United States)

    Poeplau, Christopher; Don, Axel

    2013-04-01

    In Europe, an estimated 17-21 million hectares (Mha) of land will need to be converted to bioenergy crop production to meet the EU bioenergy targets for 2020. Conventional bioenergy crops, such as maize and oilseed rape, are known for high greenhouse gas emissions. Perennial grases, such as Miscanthus, are seen as sustainable alternative, due to low fertilizer demand, relatively high yields and the potential to sequester soil organic carbon (SOC). However, the variability of currently published SOC stock changes is huge, ranging from -6.8 to +7.7 Mg ha-1 yr-1, which we attribute to different organic manure applications and differences in the baseline SOC stocks between the sampled plots in the paired plot approach. The conversion from cropland to Miscanthus involves a C3-C4 vegetation change, which allows following the incorporation of C4 Miscanthus-derived carbon into the soil by measuring the abundance of the stable isotope 13C. This was done for six different Miscanthus plantations across Europe, which were older than ten years. C3 carbon decomposition was estimated using the carbon turnover model RothC. Both, C4 and C3 carbon dynamics were summed to obtain the vegetation change-induced SOC stock change. We subsequently applied this approach to all European sites, where C4 carbon dynamic after cropland to Miscanthus conversion has been investigated (n=14) and derived a temperature dependant SOC sequestration rate. We found a mean annual accumulation of 0.40±0.20 Mg C ha-1. Furthermore, we conducted a SOC fractionation to assess the incorporation of C4 carbon into different SOC fractions. After a mean time of 16 years, the particulate organic matter (POM) fraction consisted of 68% Miscanthus-derived carbon in 0-10 cm soil depth. The NaOCl resistant fraction, which is considered "inert", consisted of 12% Miscanthus-derived carbon in 0-10 cm soil depth.

  18. Limits to biofuels

    Directory of Open Access Journals (Sweden)

    Johansson S.

    2013-06-01

    Full Text Available Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays’ use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years’ agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2–6000TWh (biogas from residues and waste and ethanol from woody biomass in the more optimistic cases.

  19. Limits to biofuels

    Science.gov (United States)

    Johansson, S.

    2013-06-01

    Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays' use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years' agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2-6000TWh (biogas from residues and waste and ethanol from woody biomass) in the more optimistic cases.

  20. Potential miscanthus' adoption in Illinois: Information needs and preferred information channels

    Energy Technology Data Exchange (ETDEWEB)

    Villamil, Maria B. [Department of Human and Community Development, Laboratory for Community and Economic Development, 222 Bevier Hall, 905 South Goodwin Ave., Urbana, IL 61801 (United States); Department of Crop Sciences, University of Illinois, AW-101 Turner Hall, 1102 South Goodwin Ave., Urbana, IL 61801 (United States); Silvis, Anne Heinze [Department of Human and Community Development, Laboratory for Community and Economic Development, 222 Bevier Hall, 905 South Goodwin Ave., Urbana, IL 61801 (United States); Bollero, German A. [Department of Crop Sciences, University of Illinois, AW-101 Turner Hall, 1102 South Goodwin Ave., Urbana, IL 61801 (United States)

    2008-12-15

    This study examined farmers' information needs and concerns and preferred information channels regarding the introduction of miscanthus in their current production systems in the state of Illinois, USA. Surveys and focus groups targeted farming populations from Northern, Central, and Southern regions of the state to evidence regional differences. A secondary objective was to identify potential adopters of miscanthus and to asses the level of awareness regarding miscanthus and the associated possibility of receiving carbon credits. Factor analysis, multivariate ANOVA, and categorical data analysis were the selected statistical tools. Only two out of 313 respondents knew about the existence of the crop before completing the survey. Thirty percent of the respondents were identified as potential adopters of miscanthus with the highest proportion of potential adopters found among farmers in the Northern Illinois region. There are clear differences among the information needs of farmers in each region in Illinois as well as in the preferred channels. Information campaigns aimed to increase awareness and education regarding the use of miscanthus as an energy crop in Illinois, should specifically address these regional information needs and channel them through preferred media. (author)

  1. Integrating social and value dimensions into sustainability assessment of lignocellulosic biofuels.

    Science.gov (United States)

    Raman, Sujatha; Mohr, Alison; Helliwell, Richard; Ribeiro, Barbara; Shortall, Orla; Smith, Robert; Millar, Kate

    2015-11-01

    The paper clarifies the social and value dimensions for integrated sustainability assessments of lignocellulosic biofuels. We develop a responsible innovation approach, looking at technology impacts and implementation challenges, assumptions and value conflicts influencing how impacts are identified and assessed, and different visions for future development. We identify three distinct value-based visions. From a techno-economic perspective, lignocellulosic biofuels can contribute to energy security with improved GHG implications and fewer sustainability problems than fossil fuels and first-generation biofuels, especially when biomass is domestically sourced. From socio-economic and cultural-economic perspectives, there are concerns about the capacity to support UK-sourced feedstocks in a global agri-economy, difficulties monitoring large-scale supply chains and their potential for distributing impacts unfairly, and tensions between domestic sourcing and established legacies of farming. To respond to these concerns, we identify the potential for moving away from a one-size-fits-all biofuel/biorefinery model to regionally-tailored bioenergy configurations that might lower large-scale uses of land for meat, reduce monocultures and fossil-energy needs of farming and diversify business models. These configurations could explore ways of reconciling some conflicts between food, fuel and feed (by mixing feed crops with lignocellulosic material for fuel, combining livestock grazing with energy crops, or using crops such as miscanthus to manage land that is no longer arable); different bioenergy applications (with on-farm use of feedstocks for heat and power and for commercial biofuel production); and climate change objectives and pressures on farming. Findings are based on stakeholder interviews, literature synthesis and discussions with an expert advisory group.

  2. Alternative U.S. biofuel mandates and global GHG emissions: The role of land use change, crop management and yield growth

    International Nuclear Information System (INIS)

    Mosnier, A.; Havlík, P.; Valin, H.; Baker, J.; Murray, B.; Feng, S.; Obersteiner, M.; McCarl, B.A.; Rose, S.K.; Schneider, U.A.

    2013-01-01

    We investigate the impacts of the U.S. renewable fuel standard (RFS2) and several alternative biofuel policy designs on global GHG emissions from land use change and agriculture over the 2010–2030 horizon. Analysis of the scenarios relies on GLOBIOM, a global, multi-sectoral economic model based on a detailed representation of land use. Our results reveal that RFS2 would substantially increase the portion of agricultural land needed for biofuel feedstock production. U.S. exports of most agricultural products would decrease as long as the biofuel target would increase leading to higher land conversion and nitrogen use globally. In fact, higher levels of the mandate mean lower net emissions within the U.S. but when the emissions from the rest of the world are considered, the US biofuel policy results in almost no change on GHG emissions for the RFS2 level and higher global GHG emissions for higher levels of the mandate or higher share of conventional corn-ethanol in the mandate. Finally, we show that if the projected crop productivity would be lower globally, the imbalance between domestic U.S. GHG savings and additional GHG emissions in the rest of the world would increase, thus deteriorating the net global impact of U.S. biofuel policies. - Highlights: ► We model the impact of the U.S. renewable fuel standard (RFS2). ► RFS2 would require more agricultural land and nitrogen globally. ► Increasing the mandates reduce GHG emissions within the U.S. ► Increasing the mandates increase GHG emissions in the rest of the world. ► Total GHG emissions increase with higher levels of mandate; higher share of corn-ethanol; lower productivity growth

  3. Stability of cell wall composition and saccharification efficiency in Miscanthus across diverse environments

    NARCIS (Netherlands)

    Weijde, van der Tim; Dolstra, Oene; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    To investigate the potential effects of differences between growth locations on the cell wall composition and saccharification efficiency of the bioenergy crop miscanthus, a diverse set of 15 accessions were evaluated in six locations across Europe for the first 3 years following establishment.

  4. Global Warming Potential and Eutrophication Potential of Biofuel Feedstock Crops Produced in Florida, Measured Under Different Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana; Capece, John

    2013-02-15

    The agriculture sector is in a growing need to develop greenhouse gas (GHG) mitigation techniques to reduce the enhanced greenhouse effect. The challenge to the sector is not only to reduce net emissions but also increase production to meet growing demands for food, fiber, and biofuel. This study focuses on the changes in the GHG balance of three biofuel feedstock (biofuel sugarcane, energy-cane and sweet sorghum) considering changes caused by the adoption of conservationist practices such as reduced tillage, use of controlled-release fertilizers or when cultivation areas are converted from burned harvest to green harvest. Based on the Intergovernmental Panel on Climate Change (IPCC) (2006) balance and the Tools for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) characterization factors published by the EPA, the annual emission balance includes use energy (diesel and electricity), equipment, and ancillary materials, according to the mean annual consumption of supplies per hectare. The total amounts of GWP were 2740, 1791, and 1910 kg CO2e ha-1 y-1 for biofuel sugarcane, energy-cane and sweet sorghum, respectively, when produced with conventional tillage and sugarcane was burned prior to harvesting. Applying reduced tillage practices, the GHG emissions reduced to 13% for biofuel sugarcane, 23% for energy-cane and 8% for sweet sorghum. A similar decrease occurs when a controlled-release fertilizer practice is adopted, which helps reduce the total emission balance in 5%, 12% and 19% for biofuel sugarcane, energy-cane and sweet sorghum, respectively and a 31% average reduction in eutrophication potential. Moreover, the GHG emissions for biofuel sugarcane, with the adoption of green harvest, would result in a smaller GHG balance of 1924 kg CO2e ha-1 y-1, providing an effect strategy for GHG mitigation while still providing a profitable yield in Florida.

  5. The potential distribution of bioenergy crops in Europe under present and future climate

    International Nuclear Information System (INIS)

    Tuck, Gill; Glendining, Margaret J.; Smith, Pete; Wattenbach, Martin; House, Jo I.

    2006-01-01

    We have derived maps of the potential distribution of 26 promising bioenergy crops in Europe, based on simple rules for suitable climatic conditions and elevation. Crops suitable for temperate and Mediterranean climates were selected from four groups: oilseeds (e.g. oilseed rape, sunflower), starch crops (e.g. potatoes), cereals (e.g. barley) and solid biofuel crops (e.g. sorghum, Miscanthus). The impact of climate change under different scenarios and GCMs on the potential future distribution of these crops was determined, based on predicted future climatic conditions. Climate scenarios based on four IPCC SRES emission scenarios, A1FI, A2, B1 and B2, implemented by four global climate models, HadCM3, CSIRO2, PCM and CGCM2, were used. The potential distribution of temperate oilseeds, cereals, starch crops and solid biofuels is predicted to increase in northern Europe by the 2080s, due to increasing temperatures, and decrease in southern Europe (e.g. Spain, Portugal, southern France, Italy, and Greece) due to increased drought. Mediterranean oil and solid biofuel crops, currently restricted to southern Europe, are predicted to extend further north due to higher summer temperatures. Effects become more pronounced with time and are greatest under the A1FI scenario and for models predicting the greatest climate forcing. Different climate models produce different regional patterns. All models predict that bioenergy crop production in Spain is especially vulnerable to climate change, with many temperate crops predicted to decline dramatically by the 2080s. The choice of bioenergy crops in southern Europe will be severely reduced in future unless measures are taken to adapt to climate change. (author)

  6. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Salvatore L. Cosentino

    2008-06-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  7. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Giuseppina M. D’Agosta

    2011-02-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  8. Trade-offs between Biofuels Energy Production, Land Use and Water Use in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Michal [Intelligentsia International Inc., LaBelle, FL (United States); Capece, John [Intelligentsia International Inc., LaBelle, FL (United States); Hanlon, Edward [Univ. of Florida, Immokalee, FL (United States); Alsharif, Kamal [Univ. of South Florida, Tampa, FL (United States)

    2014-02-11

    Objective of the presentation is to document land use and water use implications of biomass production to demonstrate the overall resources implications associated with bioethanol production for Florida’s transportation sector needs. Rationale for using biofuels (BF) is explained, so are advantages & challenges of BF production and use. Land use changes (LUC) in Florida are presented and consequences outlined. It is documented that Florida’s agricultural land is a very limited resource, with only 0.43 ac/person comparing to the global average of 1.71 ac/person. The direct relation of increased biofuels production causing increased water use is explained. Favorable climate, water resources, advanced research, traditional leading agricultural role, minor oil reserves, no refineries and increasing energy demands are the main reasons why Florida considers pursuing BF production in large scale. Eight various bioethanol crops produced in Florida were considered in this study (Miscanthus, Switchgrass, Sweet Sorghum, Corn, Elephantgrass, Sugarcane, Energycane, Eucalyptus). Biomass yield and bioethanol yield of these crops are documented. Bioethanol needs of Florida are estimated and related land requirements for the needed bioethanol production calculated. Projections for various bioethanol blends (E15 to E85) are then presented. Finally, water demand for biofuels production is quantified. It is concluded that land use requirement for production of all ethanol in E85 fuel blend in Florida is roughly the same as the total available ag land in Florida for the best yielding biofuels crops (energycane, eucalyptus). Water demand for production of all ethanol needed for E100 would increase current overall water consumption in Florida between 65% and 100% for the most common biofuels crops. Vehicular energy is only 33% of Floridians energy consumption, so even all Florida’s agricultural land was given up for biofuels, it would still produce only 33% of Florida’s total

  9. The adoption of switchgrass and miscanthus by farmers: Impact of liquidity constraints and risk preferences

    International Nuclear Information System (INIS)

    Bocqueho, G.; Jacquet, F.

    2010-01-01

    Lignocellulosic biomass is expected to become a key feedstock for renewable energy production. However, the potential supply strongly depends on farmers' willingness to grow the new perennial energy crops. Many economic assessments have been led at the farm level, all based on the standard net present value approach. This paper looks into the effect of farmers' liquidity constraints and risk preferences on switchgrass and miscanthus adoption by farmers. We study the problem of the land allocation between a traditional cropping system and an innovative one in a static framework, using four intertemporal choice models. We find that, in central France agronomic and economic conditions, switchgrass and miscanthus result to be less profitable in terms of annualised net margin than the usual rape/wheat/barley rotation. Nevertheless, they can be highly competitive as diversification crops when appropriate contracts are offered to farmers, despite the additional liquidity they require.

  10. Comparing predicted yield and yield stability of willow and Miscanthus across Denmark

    DEFF Research Database (Denmark)

    Larsen, Søren; Jaiswal, Deepak; Bentsen, Niclas Scott

    2016-01-01

    was 12.1 Mg DM ha−1 yr−1 for willow and 10.2 Mg DM ha−1 yr−1 for Miscanthus. Coefficent of variation as a measure for yield stability was poorest on the sandy soils of northern and western Jutland and the year-to-year variation in yield was greatest on these soils. Willow was predicted to outyield...... Miscanthus on poor, sandy soils whereas Miscanthus was higher yielding on clay-rich soils. The major driver of yield in both crops was variation in soil moisture, with radiation and precipitation exerting less influence. This is the first time these two major feedstocks for northern Europe have been compared....... The semi-mechanistic crop model BioCro was used to simulate the production of both short rotation coppice (SRC) willow and Miscanthus across Denmark. Predictions were made from high spatial resolution soil data and weather records across this area for 1990-2010. The potential average, rain-fed mean yield...

  11. An overview of biofuels

    International Nuclear Information System (INIS)

    Qureshi, I.H.; Ahmad, S.

    2007-01-01

    Biofuels for transport have received considerable attention due to rising oil prices and growing concern about greenhouse gas emissions. Biofuels namely ethanol and esters of fatty acids have the potential to displace a substantial amount of petroleum fuel in the next few decades which will help to conserve fossil fuel resources. Life cycle analyses show that biofuels release lesser amount of greenhouse gases and other air pollutants. Thus biofuels are seen as a pragmatic step towards reducing carbon dioxide emission from transport sector. Biofuels are compatible with petroleum and combustion engines can easily operate with 10% ethanol and 20% biodiesel blended fuel with no modification. However higher concentrations require 'flex-fuel' engines which automatically adjust fuel injection depending upon fuel mix. Biofuels are derived from renewable biomass and can be produced from a variety of feedstocks. The only limiting factors are the availability of cropland, growth of plants and the climate. Countries with warmer climate can get about five times more biofuel crops from each acre of land than cold climate countries. Genetically modified crops and fast growing trees are being developed increase the production of energy crops. (author)

  12. Economics of switchgrass and miscanthus relative to coal as feedstock for generating electricity

    International Nuclear Information System (INIS)

    Aravindhakshan, Sijesh C.; Epplin, Francis M.; Taliaferro, Charles M.

    2010-01-01

    Switchgrass (Panicum virgatum) serves as a model dedicated energy crop in the U.S.A. Miscanthus (Miscanthus x giganteus) has served a similar role in Europe. This study was conducted to determine the most economical species, harvest frequency, and carbon tax required for either of the two candidate feedstocks to be an economically viable alternative for cofiring with coal for electricity generation. Biomass yield and energy content data were obtained from a field experiment conducted near Stillwater, Oklahoma, U.S.A., in which both grasses were established in 2002. Plots were split to enable two harvest treatments (once and twice yr -1 ). The switchgrass variety 'Alamo', with a single annual post-senescence harvest, produced more biomass (15.87 Mg ha -1 yr -1 ) than miscanthus (12.39 Mg ha -1 yr -1 ) and more energy (249.6 million kJ ha -1 yr -1 versus 199.7 million kJ ha -1 yr -1 for miscanthus). For the average yields obtained, the estimated cost to produce and deliver biomass an average distance of 50 km was $43.9 Mg -1 for switchgrass and $51.7 Mg -1 for miscanthus. Given a delivered coal price of $39.76 Mg -1 and average energy content, a carbon tax of $7 Mg -1 CO 2 would be required for switchgrass to be economically competitive. For the location and the environmental conditions that prevailed during the experiment, switchgrass with one harvest per year produced greater yields at a lower cost than miscanthus. In the absence of government intervention such as requiring biomass use or instituting a carbon tax, biomass is not an economically competitive feedstock for electricity generation in the region studied. (author)

  13. VOC emissions and carbon balance of two bioenergy plantations in response to nitrogen fertilization: A comparison of Miscanthus and Salix.

    Science.gov (United States)

    Hu, Bin; Jarosch, Ann-Mareike; Gauder, Martin; Graeff-Hönninger, Simone; Schnitzler, Jörg-Peter; Grote, Rüdiger; Rennenberg, Heinz; Kreuzwieser, Jürgen

    2018-06-01

    Energy crops are an important renewable source for energy production in future. To ensure high yields of crops, N fertilization is a common practice. However, knowledge on environmental impacts of bioenergy plantations, particularly in systems involving trees, and the effects of N fertilization is scarce. We studied the emission of volatile organic compounds (VOC), which negatively affect the environment by contributing to tropospheric ozone and aerosols formation, from Miscanthus and willow plantations. Particularly, we aimed at quantifying the effect of N fertilization on VOC emission. For this purpose, we determined plant traits, photosynthetic gas exchange and VOC emission rates of the two systems as affected by N fertilization (0 and 80 kg ha -1 yr -1 ). Additionally, we used a modelling approach to simulate (i) the annual VOC emission rates as well as (ii) the OH . reactivity resulting from individual VOC emitted. Total VOC emissions from Salix was 1.5- and 2.5-fold higher compared to Miscanthus in non-fertilized and fertilized plantations, respectively. Isoprene was the dominating VOC in Salix (80-130 μg g -1 DW h -1 ), whereas it was negligible in Miscanthus. We identified twenty-eight VOC compounds, which were released by Miscanthus with the green leaf volatile hexanal as well as dimethyl benzene, dihydrofuranone, phenol, and decanal as the dominant volatiles. The pattern of VOC released from this species clearly differed to the pattern emitted by Salix. OH . reactivity from VOC released by Salix was ca. 8-times higher than that of Miscanthus. N fertilization enhanced stand level VOC emissions, mainly by promoting the leaf area index and only marginally by enhancing the basal emission capacity of leaves. Considering the higher productivity of fertilized Miscanthus compared to Salix together with the considerably lower OH . reactivity per weight unit of biomass produced, qualified the C 4 -perennial grass Miscanthus as a superior source of future

  14. A spatial modeling framework to evaluate domestic biofuel-induced potential land use changed and emissions

    Science.gov (United States)

    Elliot, Joshua; Sharma, Bhavna; Best, Neil; Glotter, Michael; Dunn, Jennifer B.; Foster, Ian; Miguez, Fernando; Mueller, Steffen; Wang, Michael

    2014-01-01

    We present a novel bottom-up approach to estimate biofuel-induced land-use change (LUC) and resulting CO2 emissions in the U.S. from 2010 to 2022, based on a consistent methodology across four essential components: land availability, land suitability, LUC decision-making, and induced CO2 emissions. Using highresolution geospatial data and modeling, we construct probabilistic assessments of county-, state-, and national-level LUC and emissions for macroeconomic scenarios. We use the Cropland Data Layer and the Protected Areas Database to characterize availability of land for biofuel crop cultivation, and the CERES-Maize and BioCro biophysical crop growth models to estimate the suitability (yield potential) of available lands for biofuel crops. For LUC decisionmaking, we use a county-level stochastic partial-equilibrium modeling framework and consider five scenarios involving annual ethanol production scaling to 15, 22, and 29 BG, respectively, in 2022, with corn providing feedstock for the first 15 BG and the remainder coming from one of two dedicated energy crops. Finally, we derive high-resolution above-ground carbon factors from the National Biomass and Carbon Data set to estimate emissions from each LUC pathway. Based on these inputs, we obtain estimates for average total LUC emissions of 6.1, 2.2, 1.0, 2.2, and 2.4 gCO2e/MJ for Corn-15 Billion gallons (BG), Miscanthus × giganteus (MxG)-7 BG, Switchgrass (SG)-7 BG, MxG-14 BG, and SG-14 BG scenarios, respectively.

  15. Fuelling biofuel

    International Nuclear Information System (INIS)

    Collison, M.

    2006-01-01

    The Canadian government has recently committed to legislation ensuring that all transportation fuels will be supplemented with biofuels by 2010. This article provided details of a position paper written by the Canadian Renewable Fuels Association in response to the legislation. Details of new research to optimize the future biodiesel industry were also presented. Guiding principles of the paper included the creation of open markets across provincial boundaries; the manipulation of tax structures to make products competitive in the United States; and establishing quality standards via the Canadian General Standards Board. It is expected that the principles will reassure petroleum producers and retailers, as ethanol behaves differently than gasoline in storage tanks. As ethanol is water-absorbing, retailers must flush and vacuum their tanks to remove water, then install 10 micron filters to protect fuel lines and dispenser filters from accumulated gasoline residue loosened by the ethanol. Refineries are concerned that the average content of ethanol remains consistent across the country, as refiners will be reluctant to make different blends for different provinces. Critics of biodiesel claim that it is not energy-intensive enough to meet demand, and biodiesel crops are not an efficient use of soils that could otherwise be used to grow food crops. However, researchers in Saskatchewan are committed to using a variety of methods such as reduced tillage systems to make biodiesel production more efficient. Laboratory research has resulted in improved refining processes and genetic manipulation of potential biodiesel crops. Membrane technology is now being used to select water from ethanol. A process developed by the Ottawa company Iogen Corporation uses enzymatic hydrolysis to break down the tough fibres found in corn stalks, leaves, wood and other biomass into sugars. Scientists are also continuing to improve oil content yields in canola and soybean crops. It was

  16. Modeling of the equilibrium moisture content (EMC) of Miscanthus (Miscanthus x giganteus)

    NARCIS (Netherlands)

    ArabHosseini, A.; Huisman, W.; Muller, J.

    2010-01-01

    The desorption isotherms of miscanthus, Miscanthus x giganteus (stems and leaves) were determined separately by using the saturated salt solutions method at three temperatures (25, 50 and 70 degrees C) within a range from 5 to 90% relative humidity. Experimental curves of desorption isotherms were

  17. Global Simulation of Bioenergy Crop Productivity: Analytical framework and Case Study for Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Nichols, Jeff A. {Cyber Sciences} [ORNL; Post, Wilfred M [ORNL; Wang, Dali [ORNL; Wullschleger, Stan D [ORNL; Kline, Keith L [ORNL; Wei, Yaxing [ORNL; Singh, Nagendra [ORNL; Kang, Shujiang [ORNL

    2014-01-01

    Contemporary global assessments of the deployment potential and sustainability aspects of biofuel crops lack quantitative details. This paper describes an analytical framework capable of meeting the challenges associated with global scale agro-ecosystem modeling. We designed a modeling platform for bioenergy crops, consisting of five major components: (i) standardized global natural resources and management data sets, (ii) global simulation unit and management scenarios, (iii) model calibration and validation, (iv) high-performance computing (HPC) modeling, and (v) simulation output processing and analysis. A case study with the HPC- Environmental Policy Integrated Climate model (HPC-EPIC) to simulate a perennial bioenergy crop, switchgrass (Panicum virgatum L.) and global biomass feedstock analysis on grassland demonstrates the application of this platform. The results illustrate biomass feedstock variability of switchgrass and provide insights on how the modeling platform can be expanded to better assess sustainable production criteria and other biomass crops. Feedstock potentials on global grasslands and within different countries are also shown. Future efforts involve developing databases of productivity, implementing global simulations for other bioenergy crops (e.g. miscanthus, energycane and agave), and assessing environmental impacts under various management regimes. We anticipated this platform will provide an exemplary tool and assessment data for international communities to conduct global analysis of biofuel biomass feedstocks and sustainability.

  18. The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge.

    Science.gov (United States)

    Antonkiewicz, Jacek; Kołodziej, Barbara; Bielińska, Elżbieta Jolanta

    2016-05-01

    The application of municipal sewage sludge on energy crops is an alternative form of recycling nutrients, food materials, and organic matter from waste. Municipal sewage sludge constitutes a potential source of heavy metals in soil, which can be partially removed by the cultivation of energy crops. The aim of the research was to assess the effect of municipal sewage sludge on the uptake of heavy metals by monocotyledonous energy crops. Sewage sludge was applied at doses of 0, 10, 20, 40, and 60 Mg DM · ha(-1) once, before the sowing of plants. In a 6-year field experiment, the effect of four levels of fertilisation with sewage sludge on the uptake of heavy metals by two species of energy crops, reed canary grass (Phalaris arundinacea L.) of 'Bamse' cultivar and giant miscanthus (Miscanthus × giganteus GREEF et DEU), was analysed. It was established that the increasing doses of sewage sludge had a considerable effect on the increase in biomass yield from the tested plants. Due to the increasing doses of sewage sludge, a significant increase in heavy metals content in the energy crops was recorded. The heavy metal uptake with the miscanthus yield was the highest at a dose of 20 Mg DM · ha(-1), and at a dose of 40 Mg DM · ha(-1) in the case of reed canary grass. Research results indicate that on account of higher yields, higher bioaccumulation, and higher heavy metal uptake, miscanthus can be selected for the remediation of sewage sludge.

  19. Cultivation studies of Taiwanese native Miscanthus floridulus lines

    International Nuclear Information System (INIS)

    Huang, C.L.; Liao, W.C.; Lai, Y.C.

    2011-01-01

    Four Taiwanese native Miscanthus floridulus lines, collected at altitudes of 260, 500, 1000, and 1500 m were cultivated in 2009 and 2010. The plant height and tiller numbers of four M. floridulus lines increased gradually along with the growing time. These M. floridulus lines had the tallest plant height and most tiller number after these species were planted 210 days. Line 3, which was collected at the altitude of 1000 m, had the ability to grow at low temperature. Line 3 M. floridulus had the highest plant height, tiller number, fresh and dry yields than other three lines. Fresh and dry yields of Line 3 were positively correlated to the plant height, tiller number, and leaf width, but showed no correlation with the leaf length. The correlation between agronomic traits and climatic data was also studied. Results can be used as a model for developing a non-food crop-based energy production system in the future. -- Highlights: → Miscanthus floridulus collected at 1000 m altitude had the highest plant height, tiller number, fresh and dry yields. → Fresh and dry yields of were positively correlated to the plant height, tiller number, and leaf width. → Fresh and dry yields showed no correlation with the leaf length. → The accumulative rainfall, temperature, radiation, and exposure time to radiation were positively correlated to the plant height, leaf length and leaf width.

  20. Does Miscanthus cultivation on organic soils compensate for carbon loss from peat oxidation? A dual label study

    Science.gov (United States)

    Bader, Cédric; Leifeld, Jens; Müller, Moritz; Schulin, Rainer

    2016-04-01

    Agricultural use of organic soils requires drainage and thereby changes conditions in these soils from anoxic to oxic. As a consequence, organic carbon that had been accumulated over millennia is rapidly mineralized, so that these soils are converted from a CO2 sink to a source. The peat mineralization rate depends mainly on drainage depth, but also on crop type. Various studies show that Miscanthus, a C4 bioenergy plant, shows potential for carbon sequestration in mineral soils because of its high productivity, its dense root system, absence of tillage and high preharvest litterfall. If Miscanthus cropping would have a similar effect in organic soils, peat consumption and thus CO2 emissions might be reduced. For our study we compared two adjacent fields, on which organic soil is cultivated with Miscanthus (since 20 years) and perennial grass (since 6 years). Both sites are located in the Bernese Seeland, the largest former peatland area of Switzerland. To determine wether Miscanthus-derived carbon accumulated in the organic soil, we compared the stable carbon isotopic signatures of the experimental soil with those of an organic soil without any C4-plant cultivation history. To analyze the effect of C4-C accumulation on peat degradability we compared the CO2 emissions by incubating 90 soil samples of the two fields for more than one year. Additionally, we analysed the isotopic CO2 composition (13C, 14C) during the first 25 days of incubation after trapping the emitted CO2 in NaOH and precipitating it as BaCO3. The ∂13C values of the soil imply, that the highest share of C4-C of around 30% is situated at a depth of 10-20 cm. Corn that used to be cultivated on the grassland field before 2009 still accounts for 8% of SOC. O/C and H/C ratios of the peat samples indicate a stronger microbial imprint of organic matter under Miscanthus cultivation. The amount of CO2 emitted was not affected by the cultivation type. On average 57% of the CO2 was C4 derived in the

  1. Sustainability development: Biofuels in agriculture

    OpenAIRE

    Cheteni, Priviledge

    2017-01-01

    Biofuels are socially and politically accepted as a form of sustainable energy in numerous countries. However, cases of environmental degradation and land grabs have highlighted the negative effects to their adoption. Smallholder farmers are vital in the development of a biofuel industry. The study sort to assess the implications in the adoption of biofuel crops by smallholder farmers. A semi-structured questionnaire was administered to 129 smallholder farmers who were sampled from the Easter...

  2. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept.

    Science.gov (United States)

    Hughes, Stephen R; López-Núñez, Juan Carlos; Jones, Marjorie A; Moser, Bryan R; Cox, Elby J; Lindquist, Mitch; Galindo-Leva, Luz Angela; Riaño-Herrera, Néstor M; Rodriguez-Valencia, Nelson; Gast, Fernando; Cedeño, David L; Tasaki, Ken; Brown, Robert C; Darzins, Al; Brunner, Lane

    2014-10-01

    The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to

  3. Strategic system development toward biofuel, desertification, and crop production monitoring in continental scales using satellite-based photosynthesis models

    Science.gov (United States)

    Kaneko, Daijiro

    2013-10-01

    The author regards fundamental root functions as underpinning photosynthesis activities by vegetation and as affecting environmental issues, grain production, and desertification. This paper describes the present development of monitoring and near real-time forecasting of environmental projects and crop production by approaching established operational monitoring step-by-step. The author has been developing a thematic monitoring structure (named RSEM system) which stands on satellite-based photosynthesis models over several continents for operational supports in environmental fields mentioned above. Validation methods stand not on FLUXNET but on carbon partitioning validation (CPV). The models demand continuing parameterization. The entire frame system has been built using Reanalysis meteorological data, but model accuracy remains insufficient except for that of paddy rice. The author shall accomplish the system that incorporates global environmental forces. Regarding crop production applications, industrialization in developing countries achieved through direct investment by economically developed nations raises their income, resulting in increased food demand. Last year, China began to import rice as it had in the past with grains of maize, wheat, and soybeans. Important agro-potential countries make efforts to cultivate new crop lands in South America, Africa, and Eastern Europe. Trends toward less food sustainability and stability are continuing, with exacerbation by rapid social and climate changes. Operational monitoring of carbon sequestration by herbaceous and bore plants converges with efforts at bio-energy, crop production monitoring, and socio-environmental projects such as CDM A/R, combating desertification, and bio-diversity.

  4. Identification, Characterization and Expression Analysis of Cell Wall Related Genes in Sorghum bicolor (L. Moench, a Food, Fodder and Biofuel Crop

    Directory of Open Access Journals (Sweden)

    KRISHAN MOHAN RAI

    2016-08-01

    Full Text Available Biomass based alternative fuels offer a solution to the world’s ever-increasing energy demand. With the ability to produce high biomass in marginal lands with low inputs, sorghum has a great potential to meet second-generation biofuel needs. Despite the sorghum crop importance in biofuel and fodder industry, there is no comprehensive information available on the cell wall related genes and gene families (biosynthetic and modification. It is important to identify the cell wall related genes to understand the cell wall biosynthetic process as well as to facilitate biomass manipulation. Genome-wide analysis using gene family specific Hidden Markov Model of conserved domains identified 520 genes distributed among 20 gene families related to biosynthesis/modification of various cell wall polymers such as cellulose, hemicellulose, pectin and lignin. Chromosomal localization analysis of these genes revealed that about 65% of cell wall related genes were confined to four chromosomes (Chr. 1-4. Further, 53 tandem duplication events involving 146 genes were identified in these gene families which could be associated with expansion of genes within families in sorghum. Additionally, we also identified 137 Simple Sequence Repeats related to 112 genes and target sites for 10 miRNAs in some important families such as cellulose synthase, cellulose synthase-like and laccases, etc. To gain further insight into potential functional roles, expression analysis of these gene families was performed using publicly available data sets in various tissues and under abiotic stress conditions. Expression analysis showed tissue specificity as well as differential expression under abiotic stress conditions. Overall, our study provides a comprehensive information on cell wall related genes families in sorghum which offers a valuable resource to develop strategies for altering biomass composition by plant breeding and genetic engineering approaches.

  5. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment

    DEFF Research Database (Denmark)

    Sørensen, Annette; Teller, Philip Johan; Hilstrøm, Troels

    2008-01-01

    xylose prior to wet explosion. The acid presoaking extracted 63.2% xylose and 5.2% glucose. Direct enzymatic hydrolysis of the presoaked biomass was found to give only low sugar yields of 24-26% glucose. Wet explosion is a pre-treatment method that combines wet-oxidation and steam explosion. The effect...... of wet explosion on non-presoaked and presoaked Miscanthus was investigated using both atmospheric air and hydrogen peroxide as the oxidizing agent. All wet explosion pre-treatments showed to have a disrupting effect on the lignocellulosic biomass, making the sugars accessible for enzymatic hydrolysis......Miscanthus is a high yielding bioenergy crop. In this study we used acid presoaking, wet explosion, and enzymatic hydrolysis to evaluate the combination of the different pre-treatment methods for bioethanol production with Miscanthus. Acid presoaking is primarily carried out in order to remove...

  6. Changes in composition, cellulose degradability and biochemical methane potential of Miscanthus species during the growing season.

    Science.gov (United States)

    Peng, Xiaowei; Li, Chao; Liu, Jing; Yi, Zili; Han, Yejun

    2017-07-01

    The composition, cellulose degradability and biochemical methane potential (BMP) of M. sinensis, M. floridulus, Miscanthus×giganteus and M. lutarioriparius were investigated concomitantly at different growth/harvest times during their growing season. For all the four species, there was only a slight change in the compositional content. Meanwhile there was a huge change in the BMP values. At the growth time of 60days the BMPs ranged from 247.1 to 266.5mlg -1 VS. As growth time was prolonged, the BMPs decreased by 11-35%. For each species, the BMP was positively correlated to the cellulose degradability with the correlation coefficients (R 2 ) ranging from 0.8055 to 0.9925. This suggests that besides the biomass yield, it is justifiable to consider cellulose degradability when selecting the suitable harvest time for biofuels production from Miscanthus, especially in tropical and subtropical regions where Miscanthus can be harvested twice or more within a year. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Longevity of contributions to SOC stocks from roots and aboveground plant litter below a Miscanthus plantation

    Science.gov (United States)

    Robertson, Andrew; Smith, Pete; Davies, Christian; Bottoms, Emily; McNamara, Niall

    2013-04-01

    Miscanthus is a lignocellulosic crop that uses the Hatch-Slack (C4) photosynthetic pathway as opposed to most C3 vegetation native to the UK. Miscanthus can be grown for a number of practical end-uses but recently interest has increased in its viability as a bioenergy crop; both providing a renewable source of energy and helping to limit climate change by improving the carbon (C) budgets associated with energy generation. Recent studies have shown that Miscanthus plantations may increase stocks of soil organic carbon (SOC), however the longevity and origin of this 'new' SOC must be assessed. Consequently, we combined an input manipulation experiment with physio-chemical soil fractionation to quantify new SOC and CO2 emissions from Miscanthus roots, decomposing plant litter and soil individually. Further, fractionation of SOC from the top 30 cm gave insight into the longevity of that SOC. In January 2009 twenty-five 2 m2 plots were set up in a three-year old 11 hectare Miscanthus plantation in Lincolnshire, UK; with five replicates of five treatments. These treatments varied plant input to the soil by way of controlled exclusion techniques. Treatments excluded roots only ("No Roots"), surface litter only ("No Litter"), both roots and surface litter ("No Roots or Litter") or had double the litter amount added to the soil surface ("Double Litter"). A fifth treatment was a control with undisturbed roots and an average amount of litter added. Monthly measurements of CO2 emissions were taken at the soil surface from each treatment between March 2009 and March 2013, and soil C from the top 30 cm was monitored in all plots over the same period. Miscanthus-derived SOC was determined using the isotopic discrimination between C4 plant matter and C3 soil, and soil fractionation was then used to establish the longevity of that Miscanthus-derived SOC. Ongoing results for CO2 emissions indicate a strong seasonal variation; litter decomposition forms a large portion of the CO2

  8. Energy crops as a strategy for reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Olesen, J.E.

    2002-01-01

    The current Danish energy plan stipulates a production of 5 PI from energy crops in 2010. This may be attained through growing of either annual (e.g., cereal) or perennial energy crops (e.g., willow or Miscanthus). Existing Danish data and the IPCC methodology was used to calculate nitrous oxide emissions from and carbon sequestration in soils cropped with an annual energy crop (triticale) or a perennial energy crop (Miscanthus). The calculations for Miscanthus were performed separately for harvest in November or April, since the harvest time affects both yields and emissions. The estimates for Miscanthus were based on a 20-year duration of the cultivation period. The energy use for growing the crops was included in the energy budgets, as was the reduction in CO 2 emission that will result from substitution of fossil fuel (natural gas). The calculations were performed for both a coarse sandy soil and a loamy sand. The results were compared with current (reference) practice for growing cereals. There were only minor differences in production data and emissions between the two soil types. The area required to produce 5 PI was smallest for Miscanthus harvested in November (c. 25,000 ha), and about equal for triticale and Miscanthus harvested in April (c. 32,000 ha). The reduction in nitrous oxide emissions compared with cereal production was smallest for triticale (20 kt CO 2 equivalents /eq] yr -1 ) and about equal for Miscanthus at the two harvest times (30-36 kt CO 2 eq yr -1 ). Growing Miscanthus resulted in a carbon sequestration, with the highest rates (100 kt CO 2 eq yr -1 ) for Miscanthus harvested in April. The energy use for production of triticale was slightly lower than for normal cereal growing, whereas growing Miscanthus for harvest in April resulted in a smaller energy use which corresponded to an emission reduction of 20 kt CO 2 yr -1 . The substitution of fossil fuel corresponded to 285 kt CO 2 yr -1 . Summing all items, growing 5 PI worth of

  9. Assessing the environmental sustainability of biofuels.

    Science.gov (United States)

    Kazamia, Elena; Smith, Alison G

    2014-10-01

    Biofuels vary in their potential to reduce greenhouse gas emissions when displacing fossil fuels. Savings depend primarily on the crop used for biofuel production, and on the effect that expanding its cultivation has on land use. Evidence-based policies should be used to ensure that maximal sustainability benefits result from the development of biofuels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Overview on Biofuels from a European Perspective

    Science.gov (United States)

    Ponti, Luigi; Gutierrez, Andrew Paul

    2009-01-01

    In light of the recently developed European Union (EU) Biofuels Strategy, the literature is reviewed to examine (a) the coherency of biofuel production with the EU nonindustrial vision of agriculture, and (b) given its insufficient land base, the implications of a proposed bioenergy pact to grow biofuel crops in the developing world to meet EU…

  11. Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC

    Science.gov (United States)

    Lewandowski, Iris; Clifton-Brown, John; Trindade, Luisa M.; van der Linden, Gerard C.; Schwarz, Kai-Uwe; Müller-Sämann, Karl; Anisimov, Alexander; Chen, C.-L.; Dolstra, Oene; Donnison, Iain S.; Farrar, Kerrie; Fonteyne, Simon; Harding, Graham; Hastings, Astley; Huxley, Laurie M.; Iqbal, Yasir; Khokhlov, Nikolay; Kiesel, Andreas; Lootens, Peter; Meyer, Heike; Mos, Michal; Muylle, Hilde; Nunn, Chris; Özgüven, Mensure; Roldán-Ruiz, Isabel; Schüle, Heinrich; Tarakanov, Ivan; van der Weijde, Tim; Wagner, Moritz; Xi, Qingguo; Kalinina, Olena

    2016-01-01

    material production, revealed GHG-emission- and fossil-energy-saving potentials of up to 30.6 t CO2eq C ha−1y−1 and 429 GJ ha−1y−1, respectively. Transport distance was identified as an important cost factor. Negative carbon mitigation costs of –78€ t−1 CO2eq C were recorded for local biomass use. The OPTIMISC results demonstrate the potential of miscanthus as a crop for marginal sites and provide information and technologies for the commercial implementation of miscanthus-based value chains. PMID:27917177

  12. Progress on optimizing miscanthus biomass production for the European bioeconomy: Results of the EU FP7 project OPTIMISC

    Directory of Open Access Journals (Sweden)

    Iris Lewandowski

    2016-11-01

    insulation material production, revealed GHG-emission- and fossil-energy-saving potentials of up to 30.6 t CO2eq C ha-1y-1 and 429 GJ ha-1y-1 , respectively. Transport distance was identified as an important cost factor. Negative carbon mitigation costs of -78 € t-1 CO2eq C were recorded for local biomass use. The OPTIMISC results demonstrate the potential of miscanthus as a crop for marginal sites and provide information and technologies for the commercial implementation of miscanthus-based value chains.

  13. Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC.

    Science.gov (United States)

    Lewandowski, Iris; Clifton-Brown, John; Trindade, Luisa M; van der Linden, Gerard C; Schwarz, Kai-Uwe; Müller-Sämann, Karl; Anisimov, Alexander; Chen, C-L; Dolstra, Oene; Donnison, Iain S; Farrar, Kerrie; Fonteyne, Simon; Harding, Graham; Hastings, Astley; Huxley, Laurie M; Iqbal, Yasir; Khokhlov, Nikolay; Kiesel, Andreas; Lootens, Peter; Meyer, Heike; Mos, Michal; Muylle, Hilde; Nunn, Chris; Özgüven, Mensure; Roldán-Ruiz, Isabel; Schüle, Heinrich; Tarakanov, Ivan; van der Weijde, Tim; Wagner, Moritz; Xi, Qingguo; Kalinina, Olena

    2016-01-01

    material production, revealed GHG-emission- and fossil-energy-saving potentials of up to 30.6 t CO 2eq C ha -1 y -1 and 429 GJ ha -1 y -1 , respectively. Transport distance was identified as an important cost factor. Negative carbon mitigation costs of -78€ t -1 CO 2eq C were recorded for local biomass use. The OPTIMISC results demonstrate the potential of miscanthus as a crop for marginal sites and provide information and technologies for the commercial implementation of miscanthus-based value chains.

  14. Anticipating potential biodiversity conflicts for future biofuel crops in South Africa: Incorporating land cover information with Species Distribution Models

    CSIR Research Space (South Africa)

    Blanchard, R

    2012-10-01

    Full Text Available stream_source_info Blanchard_2012.pdf.txt stream_content_type text/plain stream_size 8098 Content-Encoding ISO-8859-1 stream_name Blanchard_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 K-10032 [www..., conservation areas have often been proclaimed in areas with poor agricultural potential, thereby avoiding likely trade-offs with agriculture or other potential land uses. However, energy crop cultivation threatens to bring a wider range of land types...

  15. Anticipating potential biodiversity conflicts for future biofuel crops in South Africa: incorporating spatial filters with species distribution models

    CSIR Research Space (South Africa)

    Blanchard, R

    2014-04-01

    Full Text Available @csir.co.za; 14 15 Keywords: Bioenergy crops, Land suitability, Biodiversity, Spatial analysis, MaxEnt, 16 Conflict, Agricultural land, Spatial filters 17 18 Primary research article 19 Page 1 of 48 GCB Bioenergy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17... habitat transformation and provides 21 an objective means of mitigating potential conflict with existing land use and biodiversity. 22 23 Page 2 of 48GCB Bioenergy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32...

  16. Biofuel seeks endorsement

    NARCIS (Netherlands)

    Jongeneel, C.; Rentmeester, S.

    2015-01-01

    Biofuels such as ethanol from sugar cane and cellulose ‘waste’ are theoretically sustainable, as their combustion releases no more CO2 than is absorbed during production. Even so, they are also controversial, because they are believed to be grown at the expense of food crops, or because areas of

  17. Environmental Performance of Miscanthus, Switchgrass and Maize: Can C4 Perennials Increase the Sustainability of Biogas Production?

    Directory of Open Access Journals (Sweden)

    Andreas Kiesel

    2016-12-01

    Full Text Available Biogas is considered a promising option for complementing the fluctuating energy supply from other renewable sources. Maize is currently the dominant biogas crop, but its environmental performance is questionable. Through its replacement with high-yielding and nutrient-efficient perennial C4 grasses, the environmental impact of biogas could be considerably improved. The objective of this paper is to assess and compare the environmental performance of the biogas production and utilization of perennial miscanthus and switchgrass and annual maize. An LCA was performed using data from field trials, assessing the impact in the five categories: climate change (CC, fossil fuel depletion (FFD, terrestrial acidification (TA, freshwater eutrophication (FE and marine eutrophication (ME. A system expansion approach was adopted to include a fossil reference. All three crops showed significantly lower CC and FFD potentials than the fossil reference, but higher TA and FE potentials, with nitrogen fertilizer production and fertilizer-induced emissions identified as hot spots. Miscanthus performed best and changing the input substrate from maize to miscanthus led to average reductions of −66% CC; −74% FFD; −63% FE; −60% ME and −21% TA. These results show that perennial C4 grasses and miscanthus in particular have the potential to improve the sustainability of the biogas sector.

  18. Positive and negative impacts of agricultural production of liquid biofuels

    NARCIS (Netherlands)

    Reijnders, L.; Hester, R.E.; Harrison, R.M.

    2012-01-01

    Agricultural production of liquid biofuels can have positive effects. It can decrease dependence on fossil fuels and increase farmers’ incomes. Agricultural production of mixed perennial biofuel crops may increase pollinator and avian richness. Most types of agricultural crop-based liquid biofuel

  19. Genetic diversity and population structure of Miscanthus sinensis germplasm in China.

    Directory of Open Access Journals (Sweden)

    Hua Zhao

    Full Text Available Miscanthus is a perennial rhizomatous C4 grass native to East Asia. Endowed with great biomass yield, high ligno-cellulose composition, efficient use of radiation, nutrient and water, as well as tolerance to stress, Miscanthus has great potential as an excellent bioenergy crop. Despite of the high potential for biomass production of the allotriploid hybrid M. ×giganteus, derived from M. sacchariflorus and M. sinensis, other options need to be explored to improve the narrow genetic base of M. ×giganteus, and also to exploit other Miscanthus species, including M. sinensis (2n = 2x = 38, as bioenergy crops. In the present study, a large number of 459 M. sinensis accessions, collected from the wide geographical distribution regions in China, were genotyped using 23 SSR markers transferable from Brachypodium distachyon. Genetic diversity and population structure were assessed. High genetic diversity and differentiation of the germplasm were observed, with 115 alleles in total, a polymorphic rate of 0.77, Nei's genetic diversity index (He of 0.32 and polymorphism information content (PIC of 0.26. Clustering of germplasm accessions was primarily in agreement with the natural geographic distribution. AMOVA and genetic distance analyses confirmed the genetic differentiation in the M. sinensis germplasm and it was grouped into five clusters or subpopulations. Significant genetic variation among subpopulations indicated obvious genetic differentiation in the collections, but within-subpopulation variation (83% was substantially greater than the between-subpopulation variation (17%. Considerable phenotypic variation was observed for multiple traits among 300 M. sinensis accessions. Nine SSR markers were found to be associated with heading date and biomass yield. The diverse Chinese M. sinensis germplasm and newly identified SSR markers were proved to be valuable for breeding Miscanthus varieties with desired bioenergy traits.

  20. Nutrient requirements of Miscanthus x giganteus: Conclusions from a review of published studies

    International Nuclear Information System (INIS)

    Cadoux, Stéphane; Riche, Andrew B.; Yates, Nicola E.; Machet, Jean-Marie

    2012-01-01

    Miscanthus x giganteus is a perennial biomass crop particularly suited to substituting fossil fuel resources in bioenergy production, in order to reduce greenhouse gas (GHG) emissions. The area of miscanthus grown in the EU is likely to increase in the future. However, the exact nutrient and fertiliser requirements of the crop are still under debate, which leads to uncertainties when making global assessments of GHG reductions and economics. The aim of our study was to review and analyse published data, in order to determine a consensus view on the nutrient requirements of the crop, and to identify where further research is needed. The findings of this study highlight the nutrient requirements of miscanthus are low compared to other crops. This is due to: i) high nutrient absorption efficiency through extensive rooting, ii) high absorbed nutrient use efficiency, iii) significant nutrient cycling between the rhizome and aerial biomass, iv) nutrient recycling before harvest through leaf fall, and v) possible contribution of N fixation by bacteria. Due to the low yield in the establishment phase of the crop, it is not recommended to apply any fertiliser during the two first years after planting, unless planted on poor soils. From the third year, typically 4.9, 0.45 and 7.0, grams per kilogram of dry matter, of N, P and K respectively are removed at harvest, and this should be a maximum to be replaced by fertilisers. Uncertainties in the exact requirements are due i) to a lack of data, in the different studies, on the nitrogen provided by soils, ii) to a lack of knowledge on the actual contribution of the rhizome to the plant nutrition, and iii) to the inexistence of tools for the diagnosis of the plant N status.

  1. The minor wall-networks between monolignols and interlinked-phenolics predominantly affect biomass enzymatic digestibility in Miscanthus.

    Science.gov (United States)

    Li, Zhengru; Zhao, Chunqiao; Zha, Yi; Wan, Can; Si, Shengli; Liu, Fei; Zhang, Rui; Li, Fengcheng; Yu, Bin; Yi, Zili; Xu, Ning; Peng, Liangcai; Li, Qing

    2014-01-01

    Plant lignin is one of the major wall components that greatly contribute to biomass recalcitrance for biofuel production. In this study, total 79 representative Miscanthus germplasms were determined with wide biomass digestibility and diverse monolignol composition. Integrative analyses indicated that three major monolignols (S, G, H) and S/G ratio could account for lignin negative influence on biomass digestibility upon NaOH and H2SO4 pretreatments. Notably, the biomass enzymatic digestions were predominately affected by the non-KOH-extractable lignin and interlinked-phenolics, other than the KOH-extractable ones that cover 80% of total lignin. Furthermore, a positive correlation was found between the monolignols and phenolics at pnetworks against cellulases accessibility. The results indicated that the non-KOH-extractable lignin-complex should be the target either for cost-effective biomass pretreatments or for relatively simply genetic modification of plant cell walls in Miscanthus.

  2. Biofuel Database

    Science.gov (United States)

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  3. Development of SSR Markers Based on Transcriptome Sequencing and Association Analysis with Drought Tolerance in Perennial Grass Miscanthus from China

    Directory of Open Access Journals (Sweden)

    Gang Nie

    2017-05-01

    Full Text Available Drought has become a critical environmental stress affecting on plant in temperate area. As one of the promising bio-energy crops to sustainable biomass production, the genus Miscanthus has been widely studied around the world. However, the most widely used hybrid cultivar among this genus, Miscanthus × giganteus is proved poor drought tolerance compared to some parental species. Here we mainly focused on Miscanthus sinensis, which is one of the progenitors of M. × giganteus providing a comparable yield and well abiotic stress tolerance in some places. The main objectives were to characterize the physiological and photosynthetic respond to drought stress and to develop simple sequence repeats (SSRs markers associated with drought tolerance by transcriptome sequencing within an originally collection of 44 Miscanthus genotypes from southwest China. Significant phenotypic differences were observed among genotypes, and the average of leaf relative water content (RWC were severely affected by drought stress decreasing from 88.27 to 43.21%, which could well contribute to separating the drought resistant and drought sensitive genotype of Miscanthus. Furthermore, a total of 16,566 gene-associated SSRs markers were identified based on Illumina RNA sequencing under drought conditions, and 93 of them were randomly selected to validate. In total, 70 (75.3% SSRs were successfully amplified and the generated loci from 30 polymorphic SSRs were used to estimate the genetic differentiation and population structure. Finally, two optimum subgroups of the population were determined by structure analysis and based on association analysis, seven significant associations were identified including two markers with leaf RWC and five markers with photosynthetic traits. With the rich sequencing resources annotation, such associations would serve an efficient tool for Miscanthus drought response mechanism study and facilitate genetic improvement of drought resistant for

  4. Biorefineries for chemical and biofuel production

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene

    crops for biofuel production is research in biorefineries using a whole-crop approach with the aim of having an optimal use of all the components of the specific crop. Looking at rape as a model crop, the components can be used for i.e. bioethanol, biodiesel, biogas, biohydrogen, feed, food and plant...

  5. Biofuels, poverty, and growth

    DEFF Research Database (Denmark)

    Arndt, Channing; Benfica, Rui; Tarp, Finn

    2010-01-01

    and accrual of land rents to smallholders, compared with the more capital-intensive plantation approach. Moreover, the benefits of outgrower schemes are enhanced if they result in technology spillovers to other crops. These results should not be taken as a green light for unrestrained biofuels development...... Mozambique's annual economic growth by 0.6 percentage points and reduces the incidence of poverty by about 6 percentage points over a 12-year phase-in period. Benefits depend on production technology. An outgrower approach to producing biofuels is more pro-poor, due to the greater use of unskilled labor...

  6. Bio-fuel barometer

    International Nuclear Information System (INIS)

    2015-01-01

    After a year of doubt and decline the consumption of bio-fuel resumed a growth in 2014 in Europe: +6.1% compared to 2013, to reach 14 millions tep (Mtep) that is just below the 2012 peak. This increase was mainly due to bio-diesel. By taking into account the energy content and not the volume, the consumption of bio-diesel represented 79.7% of bio-fuel consumption in 2014, that of bio-ethanol only 19.1% and that of biogas 1%. The incorporating rate of bio-fuels in fuels used for transport were 4.6% in 2013 and 4.9% in 2014. The trend is good and the future of bio-fuel seems clearer as the European Union has set a not-so-bad limit of 7% for first generation bio-fuels in order to take into account the CASI effect. The CASI effect shows that an increase of the consumption of first generation bio-fuels (it means bio-fuels produced from food crops like rape, soy, cereals, sugar beet,...) implies in fact a global increase in greenhouse gas release that is due to a compensation phenomenon. More uncultivated lands (like forests, grasslands, bogs are turned into cultivated lands in order to compensate lands used for bio-fuel production. In most European countries the consumption of bio-diesel increased in 2014 while it was a bad year for the European industry of ethanol because ethanol prices dropped by 16 %. Oil companies are now among the most important producers of bio-diesel in Europe.

  7. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  8. A comparison of cellulosic fuel yields and separated soil-surface CO2 fluxes in maize and prairie biofuel cropping systems

    Science.gov (United States)

    Nichols, Virginia A.

    It has been suggested that strategic incorporation of perennial vegetation into agricultural landscapes could provide ecosystem services while maintaining agricultural productivity. To evaluate potential use of prairie as a Midwestern cellulosic feedstock, we investigated theoretical cellulosic fuel yields, as well as soil-surface carbon dioxide emissions of prairie-based biofuel systems as compared to maize-based systems on fertile soils in Boone County, IA, USA. Investigated systems were: a maize-soybean rotation grown for grain only, continuous maize grown for grain and stover both with and without a winter rye cover crop, and a 31-species reconstructed prairie grown with and without spring nitrogen fertilization for fall-harvested biomass. From 2009-2013, the highest producing system was N-fertilized prairie, averaging 10.4 Mg ha -1 yr-1 above-ground biomass with average harvest removals of 7.8 Mg ha-1 yr-1. The unfertilized prairie produced 7.4 Mg ha-1 yr-1, averaging harvests of 5.3 Mg ha-1 yr-1. Lowest cellulosic biomass harvests were realized from continuous maize systems, averaging 3.5 Mg ha -1 yr-1 when grown with, and 3.7 Mg ha-1 yr-1 when grown without a winter rye cover crop, respectively. Un-fertilized prairie biomass and maize stover had equivalent dietary conversion ratios at 330 g ethanol kg-1 dry biomass, but N-fertilized prairie was lower at 315. Over four years prairie systems averaged 1287 L cellulosic ethanol ha-1 yr-1 more than maize systems, with fertilization increasing prairie ethanol production by 865 L ha-1 yr-1. Harvested biomass accounted for >90% of ethanol yield variation. A major hurdle in carbon cycling studies is the separation of the soil-surface CO2 flux into its respective components. From 2012-2013 we used a shading method to separate soil-surface CO2 resulting from oxidation of soil organic matter and CO2 derived from live-root activity in three systems: unfertilized prairie, N-fertilized prairie, and continuous maize

  9. Establishment, Growth, and Yield Potential of the Perennial Grass Miscanthus × Giganteus on Degraded Coal Mine Soils

    Directory of Open Access Journals (Sweden)

    Stanisław Jeżowski

    2017-06-01

    Full Text Available Miscanthus × giganteus is a giant C4 grass native to Asia. Unlike most C4 species, it is relatively cold tolerant due to adaptations across a wide range of altitudes. These grasses are characterized by high productivity and low input requirements, making them excellent candidates for bioenergy feedstock production. The aim of this study was to investigate the potential for growing Miscanthus on extremely marginal soils, degraded by open lignite (brown coal mining. Field experiments were established within three blocks situated on waste heaps originating from the lignite mine. Analyses were conducted over the first 3 years following Miscanthus cultivation, focusing on the effect of organic and mineral fertilization on crop growth, development and yield in this extreme environment. The following levels of fertilization were implemented between the blocks: the control plot with no fertilization (D0, a plot with sewage sludge (D1, a plot with an identical amount of sewage sludge plus one dose of mineral fertilizer (D2 and a plot with an identical amount of sewage sludge plus a double dose of mineral fertilizer (D3. Crop development and characteristics (plant height, tillering, and biomass yield [dry matter] were measured throughout the study period and analyzed using Analysis of Variance (ANOVA. Significant differences were apparent between plant development and 3rd year biomass production over the course of the study (0.964 kg plant-1 for DO compared to 1.503 kg plant-1 for D1. Soil analyses conducted over the course of the experiment showed that organic carbon levels within the soil increased significantly following the cultivation of Miscanthus, and overall, pH decreased. With the exception of iron, macronutrient concentrations remained stable throughout. The promising yields and positive effects of Miscanthus on the degraded soil suggests that long term plantations on land otherwise unsuitable for agriculture may prove to be of great

  10. Modelling supply and demand of bioenergy from short rotation coppice and Miscanthus in the UK.

    Science.gov (United States)

    Bauen, A W; Dunnett, A J; Richter, G M; Dailey, A G; Aylott, M; Casella, E; Taylor, G

    2010-11-01

    Biomass from lignocellulosic energy crops can contribute to primary energy supply in the short term in heat and electricity applications and in the longer term in transport fuel applications. This paper estimates the optimal feedstock allocation of herbaceous and woody lignocellulosic energy crops for England and Wales based on empirical productivity models. Yield maps for Miscanthus, willow and poplar, constrained by climatic, soil and land use factors, are used to estimate the potential resource. An energy crop supply-cost curve is estimated based on the resource distribution and associated production costs. The spatial resource model is then used to inform the supply of biomass to geographically distributed demand centres, with co-firing plants used as an illustration. Finally, the potential contribution of energy crops to UK primary energy and renewable energy targets is discussed. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Using an input manipulation experiment to partition greenhouse gas fluxes from a commercial Miscanthus plantation in the UK

    Science.gov (United States)

    Robertson, Andy; Davies, Christian; Smith, Pete; McNamara, Niall

    2014-05-01

    Miscanthus is a lignocellulosic C4 crop that can be grown for a number of practical end-uses but recently interest has increased in its viability as a bioenergy crop; both providing a renewable source of energy and helping to limit climate change by reducing carbon (C) emissions associated with energy generation. Recent studies have shown that Miscanthus plantations may increase stocks of soil organic carbon (SOC) however there is still considerable uncertainty surrounding estimates of net C exchange and the best management practices to achieve the best greenhouse gas (GHG) mitigation potential. Using an input manipulation experiment, we monitored emissions of N2O, CH4 and CO2 from living Miscanthus roots, aboveground plant litter and soil individually to quantify and partition these emissions and better understand the influence of abiotic factors on SOC and GHG dynamics under Miscanthus. In January 2009 twenty-five 2 m2 plots were set up in a three-year old 11 hectare commercial Miscanthus plantation in Lincolnshire, UK; with five replicates of five treatments. These treatments varied plant input (roots or senesced aboveground plant litter) to the soil by way of controlled exclusion techniques. The delta 13C value of soil C and CO2 emitted from each treatment was measured monthly between March 2009 and March 2013. Measurements of CH4 and N2O emissions were also taken at the soil surface from each treatment. Miscanthus-derived emissions were determined using the isotopic discrimination between C4 plant matter and C3 soil, and the treatments were compared to assess their effects on C inputs and outputs to the soil. Both CH4 and N2O emissions were below detection limits, mainly due to a lack of fertiliser additions and limited disturbance of the agricultural site. However, results for CO2 emissions indicate a strong seasonal variation; litter decomposition forms a large portion of the CO2 emissions in winter and spring whereas root respiration dominates the summer

  12. Microalgae biofuel potentials (review).

    Science.gov (United States)

    Ghasemi, Y; Rasoul-Amini, S; Naseri, A T; Montazeri-Najafabady, N; Mobasher, M A; Dabbagh, F

    2012-01-01

    With the decrease of fossil based fuels and the environmental impact of them over the planet, it seems necessary to seek the sustainable sources of clean energy. Biofuels, is becoming a worldwide leader in the development of renewable energy resources. It is worthwhile to say that algal biofuel production is thought to help stabilize the concentration of carbon dioxide in the atmosphere and decrease global warming impacts. Also, among algal fuels' attractive characteristics, algal biodiesel is non toxic, with no sulfur, highly biodegradable and relatively harmless to the environment if spilled. Algae are capable of producing in excess of 30 times more oil per acre than corn and soybean crops. Currently, algal biofuel production has not been commercialized due to high costs associated with production, harvesting and oil extraction but the technology is progressing. Extensive research was conducted to determine the utilization of microalgae as an energy source and make algae oil production commercially viable.

  13. BIOETHANOL PRODUCTION BY MISCANTHUS AS A LIGNOCELLULOSIC BIOMASS: FOCUS ON HIGH EFFICIENCY CONVERSION TO GLUCOSE AND ETHANOL

    Directory of Open Access Journals (Sweden)

    Minhee Han Mail

    2011-04-01

    Full Text Available Current ethanol production processes using crops such as corn and sugar cane have been well established. However, the utilization of cheaper lignocellulosic biomass could make bioethanol more competitive with fossil fuels while avoiding the ethical concerns associated with using potential food resources. In this study, Miscanthus, a lignocellulosic biomass, was pretreated using NaOH to produce bioethanol. The pretreatment and enzymatic hydrolysis conditions were evaluated by response surface methodology (RSM. The optimal conditions were found to be 145.29 °C, 28.97 min, and 1.49 M for temperature, reaction time, and NaOH concentration, respectively. Enzymatic digestibility of pretreated Miscanthus was examined at various enzyme loadings (10 to 70 FPU/g cellulose of cellulase and 30 CbU/g of β-glucosidase. Regarding enzymatic digestibility, 50 FPU/g cellulose of cellulase and 30 CbU/g of β-glucosidase were selected as the test concentrations, resulting in a total glucose conversion rate of 83.92%. Fermentation of hydrolyzed Miscanthus using Saccharomyces cerevisiae resulted in an ethanol concentration of 59.20 g/L at 20% pretreated biomass loading. The results presented here constitute a significant contribution to the production of bioethanol from Miscanthus.

  14. Aquatic plant Azolla as the universal feedstock for biofuel production.

    Science.gov (United States)

    Miranda, Ana F; Biswas, Bijoy; Ramkumar, Narasimhan; Singh, Rawel; Kumar, Jitendra; James, Anton; Roddick, Felicity; Lal, Banwari; Subudhi, Sanjukta; Bhaskar, Thallada; Mouradov, Aidyn

    2016-01-01

    The quest for sustainable production of renewable and cheap biofuels has triggered an intensive search for domestication of the next generation of bioenergy crops. Aquatic plants which can rapidly colonize wetlands are attracting attention because of their ability to grow in wastewaters and produce large amounts of biomass. Representatives of Azolla species are some of the fastest growing plants, producing substantial biomass when growing in contaminated water and natural ecosystems. Together with their evolutional symbiont, the cyanobacterium Anabaena azollae, Azolla biomass has a unique chemical composition accumulating in each leaf including three major types of bioenergy molecules: cellulose/hemicellulose, starch and lipids, resembling combinations of terrestrial bioenergy crops and microalgae. The growth of Azolla filiculoides in synthetic wastewater led up to 25, 69, 24 and 40 % reduction of NH 4 -N, NO 3 -N, PO 4 -P and selenium, respectively, after 5 days of treatment. This led to a 2.6-fold reduction in toxicity of the treated wastewater to shrimps, common inhabitants of wetlands. Two Azolla species, Azolla filiculoides and Azolla pinnata, were used as feedstock for the production of a range of functional hydrocarbons through hydrothermal liquefaction, bio-hydrogen and bio-ethanol. Given the high annual productivity of Azolla, hydrothermal liquefaction can lead to the theoretical production of 20.2 t/ha-year of bio-oil and 48 t/ha-year of bio-char. The ethanol production from Azolla filiculoides, 11.7 × 10 3  L/ha-year, is close to that from corn stover (13.3 × 10 3  L/ha-year), but higher than from miscanthus (2.3 × 10 3  L/ha-year) and woody plants, such as willow (0.3 × 10 3  L/ha-year) and poplar (1.3 × 10 3  L/ha-year). With a high C/N ratio, fermentation of Azolla biomass generates 2.2 mol/mol glucose/xylose of hydrogen, making this species a competitive feedstock for hydrogen production compared with other bioenergy crops

  15. An agent-based model of farmer decision-making and water quality impacts at the watershed scale under markets for carbon allowances and a second-generation biofuel crop

    Science.gov (United States)

    Ng, Tze Ling; Eheart, J. Wayland; Cai, Ximing; Braden, John B.

    2011-09-01

    An agent-based model of farmers' crop and best management practice (BMP) decisions is developed and linked to a hydrologic-agronomic model of a watershed, to examine farmer behavior, and the attendant effects on stream nitrate load, under the influence of markets for conventional crops, carbon allowances, and a second-generation biofuel crop. The agent-based approach introduces interactions among farmers about new technologies and market opportunities, and includes the updating of forecast expectations and uncertainties using Bayesian inference. The model is applied to a semi-hypothetical example case of farmers in the Salt Creek Watershed in Central Illinois, and a sensitivity analysis is performed to effect a first-order assessment of the plausibility of the results. The results show that the most influential factors affecting farmers' decisions are crop prices, production costs, and yields. The results also show that different farmer behavioral profiles can lead to different predictions of farmer decisions. The farmers who are predicted to be more likely to adopt new practices are those who interact more with other farmers, are less risk averse, quick to adjust their expectations, and slow to reduce their forecast confidence. The decisions of farmers have direct water quality consequences, especially those pertaining to the adoption of the second-generation biofuel crop, which are estimated to lead to reductions in stream nitrate load. The results, though empirically untested, appear plausible and consistent with general farmer behavior. The results demonstrate the usefulness of the coupled agent-based and hydrologic-agronomic models for normative research on watershed management on the water-energy nexus.

  16. Biofuels worldwide

    International Nuclear Information System (INIS)

    His, St.

    2004-01-01

    After over 20 years of industrial development, the outlook for biofuels now looks bright. Recent developments indicate that the use of biofuels, previously confined to a handful of countries including Brazil and the United States, is 'going global' and a world market may emerge. However, these prospects could eventually be limited by constraints relative to resources and costs. The future of biofuels probably depends on the development of new technologies to valorize lignocellulosic substances such as wood and straw. (author)

  17. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Biofuels represent 2,6% of the energy content of all the fuels used in road transport in Europe today. Nearly half of the target of 5,75% for 2010 set by the directive on biofuels has thus been reached in four years time. To achieve 5,75%, the european union is going to have to increase its production and doubtless call even more on imports, at a moment when biofuels are found at the core of complex ecological and economic issues. This analysis provided data and reflexions on the biofuels situation in the european union: consumption, bio-diesel, bio-ethanol, producers, environmental problems, directives. (A.L.B.)

  18. Ecological characteristics and in situ genetic associations for yield-component traits of wild Miscanthus from eastern Russia

    DEFF Research Database (Denmark)

    Clark, Lindsay V; Dzyubenko, Elena; Dzyubenko, Nikolay

    2016-01-01

    , a strategy is proposed to facilitate the rapid utilization of new germplasm collections: by implementing low-cost SNP genotyping to conduct GWA studies of phenotypic data obtained at collection sites, plant breeders can be provided with actionable information on which accessions have desirable traits...... that this crop is more temperate adapted than its C4 relatives maize, sorghum and sugarcane. Methods A plant exploration was conducted in eastern Russia, at the northern extreme of the native range for Miscanthus, with collections including 174 clonal germplasm accessions (160 M. sacchariflorus and 14 M....... sinensis) from 47 sites. Accessions were genotyped by restriction site-associated DNA sequencing (RAD-seq) and plastid microsatellites. Key Results Miscanthus sinensis was found in maritime climates near Vladivostok (43·6°N) and on southern Sakhalin Island (46·6°N). Miscanthus sacchariflorus was found...

  19. Structural characterization of copia-type retrotransposons leads to insights into the marker development in a biofuel crop, Jatropha curcas L.

    Science.gov (United States)

    2013-01-01

    Background Recently, Jatropha curcas L. has attracted worldwide attention for its potential as a source of biodiesel. However, most DNA markers have demonstrated high levels of genetic similarity among and within jatropha populations around the globe. Despite promising features of copia-type retrotransposons as ideal genetic tools for gene tagging, mutagenesis, and marker-assisted selection, they have not been characterized in the jatropha genome yet. Here, we examined the diversity, evolution, and genome-wide organization of copia-type retrotransposons in the Asian, African, and Mesoamerican accessions of jatropha, then introduced a retrotransposon-based marker for this biofuel crop. Results In total, 157 PCR fragments that were amplified using the degenerate primers for the reverse transcriptase (RT) domain of copia-type retroelements were sequenced and aligned to construct the neighbor-joining tree. Phylogenetic analysis demonstrated that isolated copia RT sequences were classified into ten families, which were then grouped into three lineages. An in-depth study of the jatropha genome for the RT sequences of each family led to the characterization of full consensus sequences of the jatropha copia-type families. Estimated copy numbers of target sequences were largely different among families, as was presence of genes within 5 kb flanking regions for each family. Five copia-type families were as appealing candidates for the development of DNA marker systems. A candidate marker from family Jc7 was particularly capable of detecting genetic variation among different jatropha accessions. Fluorescence in situ hybridization (FISH) to metaphase chromosomes reveals that copia-type retrotransposons are scattered across chromosomes mainly located in the distal part regions. Conclusion This is the first report on genome-wide analysis and the cytogenetic mapping of copia-type retrotransposons of jatropha, leading to the discovery of families bearing high potential as DNA

  20. Prospects for arable farm uptake of Short Rotation Coppice willow and miscanthus in England.

    Science.gov (United States)

    Glithero, Neryssa J; Wilson, Paul; Ramsden, Stephen J

    2013-07-01

    Biomass will play a role in the UK meeting EU targets on renewable energy use. Short Rotation Coppice (SRC) and miscanthus are potential biomass feedstocks; however, supply will rely on farmer willingness to grow these crops. Despite attractive crop establishment grants for dedicated energy crops (DECs) in the UK, uptake remains low. Drawing on results from an on-farm survey with 244 English arable farmers, 81.6% (87.7%) of farmers would not consider growing miscanthus (SRC), while respectively, 17.2% (11.9%) would consider growing and 1.2% (0.4%) were currently growing these crops. Farmer age, location, land ownership, farm type, farm size and farmer education level were not significant factors in determining acceptance of DECs. The main reasons cited for not growing DECs were impacts on land quality, lack of appropriate machinery, commitment of land for a long period of time, time to financial return and profitability. Reasons cited for willingness to grow DECs included land quality, ease of crop management, commitment of land for a long period of time, and profitability. Farmers cited a range of 'moral' (e.g. should not be using land for energy crops when there is a shortage of food), land quality, knowledge, profit and current farming practice comments as reasons for not growing DECs, while those willing to grow DECs cited interest in renewable energy, willingness to consider new crops, and low labour needs as rationale for their interest. Farm business objectives indicated that maximising profit and quality of life were most frequently cited as very important objectives. Previous research in the UK indicates that farmers in arable areas are unlikely to convert large areas of land to DECs, even where these farmers have an interest and willingness to grow them. Assuming that those farmers interested in growing DECs converted 9.29% (average percentage of arable land set-aside between 1996 and 2005) of their utilised agricultural area to these crops, 50,700

  1. Biofuels versus food production: Does biofuels production increase food prices?

    International Nuclear Information System (INIS)

    Ajanovic, Amela

    2011-01-01

    Rapidly growing fossil energy consumption in the transport sector in the last two centuries caused problems such as increasing greenhouse gas emissions, growing energy dependency and supply insecurity. One approach to solve these problems could be to increase the use of biofuels. Preferred feedstocks for current 1st generation biofuels production are corn, wheat, sugarcane, soybean, rapeseed and sunflowers. The major problem is that these feedstocks are also used for food and feed production. The core objective of this paper is to investigate whether the recent increase of biofuels production had a significant impact on the development of agricultural commodity (feedstock) prices. The most important impact factors like biofuels production, land use, yields, feedstock and crude oil prices are analysed. The major conclusions of this analysis are: In recent years the share of bioenergy-based fuels has increased moderately, but continuously, and so did feedstock production, as well as yields. So far, no significant impact of biofuels production on feedstock prices can be observed. Hence, a co-existence of biofuel and food production seems possible especially for 2nd generation biofuels. However, sustainability criteria should be seriously considered. But even if all crops, forests and grasslands currently not used were used for biofuels production it would be impossible to substitute all fossil fuels used today in transport.

  2. Biofuels and WTO Disciplines

    OpenAIRE

    Brühwiler, Claudia Franziska; Hauser, Heinz

    2008-01-01

    Given the sharp rise in crude oil prices and growing awareness of climate change, the potential of biofuels, particularly of bioethanol, has become an ubiquitous topic of public debate and has induced ambitious policy initiatives. The latter are mostly paired with protectionist measures as the examples of the European Union and the United States show, where domestic producers of energy crops are put at an advantage thanks to subsidisation, direct payments and/or favourable tax schemes.Moreove...

  3. Environmental hazards related to Miscanthus x giganteus cultivation on heavy metal contaminated soil

    Directory of Open Access Journals (Sweden)

    Pogrzeba M.

    2013-04-01

    Full Text Available According to recent estimates reaching the target of a 20% share of renewable energy sources (RES in the final energy balance in Poland by 2020 will result in the demand for more than 8 million tons of biomass, which, in turn, will entail the necessity of creating large-scale energy crop plantations. According to EU assumptions the most effective way to produce biomass for energy purposes is cultivation of energy crops in agricultural areas. It is particularly vital for Poland, because these areas constitute a relatively large part of the country (59%, 76% of them being used as farmlands. In Silesia, the most industrialized region of the country, 5-10% of agricultural soils are contaminated with cadmium, lead and zinc. The main objective of the presented study was to estimate the accumulation of heavy metals in the tissues of Miscanthus x giganteus grown on contaminated soils and calculate concentrations of Pb, Cd and Zn in crops. It was shown that the large intake of heavy metals by that species could cause high emissions of pollutants into the atmosphere during its improper combustion. As a side effect, winter harvesting led to the loss of even 30% of biomass. Plant residues (leaves can be the source of pollution after decomposing and releasing metals back into the soil. Moreover, miscanthus leaves can be transferred by wind to the surrounding areas. It is very likely that ash coming from the combustion of contaminated biomass cannot be used as a fertilizer.

  4. Environmental Influences on the Growing Season Duration and Ripening of Diverse Miscanthus Germplasm Grown in Six Countries

    Directory of Open Access Journals (Sweden)

    Christopher Nunn

    2017-05-01

    Full Text Available The development of models to predict yield potential and quality of a Miscanthus crop must consider climatic limitations and the duration of growing season. As a biomass crop, yield and quality are impacted by the timing of plant developmental transitions such as flowering and senescence. Growth models are available for the commercially grown clone Miscanthus x giganteus (Mxg, but breeding programs have been working to expand the germplasm available, including development of interspecies hybrids. The aim of this study was to assess the performance of diverse germplasm beyond the range of environments considered suitable for a Miscanthus crop to be grown. To achieve this, six field sites were planted as part of the EU OPTIMISC project in 2012 in a longitudinal gradient from West to East: Wales—Aberystwyth, Netherlands—Wageningen, Stuttgart—Germany, Ukraine—Potash, Turkey—Adana, and Russia—Moscow. Each field trial contained three replicated plots of the same 15 Miscanthus germplasm types. Through the 2014 growing season, phenotypic traits were measured to determine the timing of developmental stages key to ripening; the tradeoff between growth (yield and quality (biomass ash and moisture content. The hottest site (Adana showed an accelerated growing season, with emergence, flowering and senescence occurring before the other sites. However, the highest yields were produced at Potash, where emergence was delayed by frost and the growing season was shortest. Flowering triggers varied with species and only in Mxg was strongly linked to accumulated thermal time. Our results show that a prolonged growing season is not essential to achieve high yields if climatic conditions are favorable and in regions where the growing season is bordered by frost, delaying harvest can improve quality of the harvested biomass.

  5. Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristics and energy balance

    International Nuclear Information System (INIS)

    Angelini, Luciana G.; Ceccarini, Lucia; Nassi o Di Nasso, Nicoletta; Bonari, Enrico

    2009-01-01

    Miscanthus x giganteus (miscanthus) and Arundo donax L. (giant reed) are two perennial crops which have been received particular attention during the last decade as bioenergy crops. The main aim of the present study was to compare the above-ground biomass production and the energy balance of these perennial rhizomatous grasses in a long-term field experiment. The crops were cultivated from 1992 to 2003 in the temperate climate of Central Italy with 20,000 plants ha -1 , 100-100-100 kg N, P 2 O 5 , K 2 O per hectare, and without irrigation supply. For each year of trial, biomass was harvested in autumn to estimate biometric characteristics and productive parameters. Besides, energy analysis of biomass production was carried out determining energy output, energy input, energy efficiency (output/input) and net energy yield (output-input). Results showed high above-ground biomass yields over a period of 10 years for both species, with better productive performances in giant reed than in miscanthus (37.7 t DM ha -1 year -1 vs 28.7 t DM ha -1 year -1 averaged from 2 to 12 years of growth). Such high yields resulted positively correlated to number of stalks (miscanthus), plant height and stalk diameter (giant reed). Moreover, these perennial species are characterised by a favourable energy balance with a net energy yield of 467 and 637 GJ ha -1 (1-12 year mean) for miscanthus and giant reed respectively. With such characteristics, both grasses could be proposed as biomass energy crops in Southern Europe with a significant and environmentally compatible contribution to energy needs

  6. Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristics and energy balance

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, Luciana G.; Ceccarini, Lucia; Nassi o Di Nasso, Nicoletta [University of Pisa, Dipartimento di Agronomia e Gestione dell' Agroecosistema, Via S. Michele degli Scalzi 2, 56100 Pisa (Italy); Bonari, Enrico [Scuola Superiore Sant' Anna, Piazza Martiri della Liberta, 33, 56100 Pisa (Italy)

    2009-04-15

    Miscanthus x giganteus (miscanthus) and Arundo donax L. (giant reed) are two perennial crops which have been received particular attention during the last decade as bioenergy crops. The main aim of the present study was to compare the above-ground biomass production and the energy balance of these perennial rhizomatous grasses in a long-term field experiment. The crops were cultivated from 1992 to 2003 in the temperate climate of Central Italy with 20,000 plants ha{sup -1}, 100-100-100 kg N, P{sub 2}O{sub 5}, K{sub 2}O per hectare, and without irrigation supply. For each year of trial, biomass was harvested in autumn to estimate biometric characteristics and productive parameters. Besides, energy analysis of biomass production was carried out determining energy output, energy input, energy efficiency (output/input) and net energy yield (output-input). Results showed high above-ground biomass yields over a period of 10 years for both species, with better productive performances in giant reed than in miscanthus (37.7 t DM ha{sup -1} year{sup -1}vs 28.7 t DM ha{sup -1} year{sup -1} averaged from 2 to 12 years of growth). Such high yields resulted positively correlated to number of stalks (miscanthus), plant height and stalk diameter (giant reed). Moreover, these perennial species are characterised by a favourable energy balance with a net energy yield of 467 and 637 GJ ha{sup -1} (1-12 year mean) for miscanthus and giant reed respectively. With such characteristics, both grasses could be proposed as biomass energy crops in Southern Europe with a significant and environmentally compatible contribution to energy needs. (author)

  7. Next generation of liquid biofuel production

    NARCIS (Netherlands)

    Batidzirai, B.

    2012-01-01

    More than 99% of all currently produced biofuels are classified as “first generation” (i.e. fuels produced primarily from cereals, grains, sugar crops and oil seeds) (IEA, 2008b). “Second generation” or “next generation” biofuels, on the other hand, are produced from lignocellulosic feedstocks such

  8. World Biofuels Study

    Energy Technology Data Exchange (ETDEWEB)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very

  9. The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn.

    Science.gov (United States)

    Kocoń, Anna; Jurga, Beata

    2017-02-01

    One of the cheapest, environmentally friendly methods for cleaning an environment polluted by heavy metals is phytoextraction. It builds on the uptake of pollutants from the soil by the plants, which are able to grow under conditions of high concentrations of toxic metals. The aim of this work was to assess the possibility of growing and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita cultivated on two different soils contaminated with five heavy metals simultaneously: Cd, Cu, Ni, Pb, and Zn. A 3-year microplot experiment with two perennial energy crops, M. x giganteus and S. hermaphrodita, was conducted in the experimental station of IUNG-PIB in Poland (5° 25' N, 21° 58 'E), in the years of 2008-2010. Miscanthus was found more tolerant to concomitant soil contamination with heavy metals and produced almost double biomass than Sida in all three tested years, independent of soil type. Miscanthus collected greater amount of heavy metals (except for cadmium) in the biomass than Sida. Both energy crops absorb high levels of zinc, lower levels of lead, copper, and nickel, and absorbed cadmium at least, generally more metals were taken from the sandy soil, where plants also yielded better. Photosynthesis net rate of Miscanthus was on average 40% higher compared to Sida. Obtained results indicate that M. x giganteus and S. hermaphrodita can successfully be grown on moderately contaminated soil with heavy metals.

  10. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    In 2010 bio-fuel continued to gnaw away at petrol and diesel consumption in the European Union (EU). However its pace backs the assertion that bio-fuel consumption growth in EU slackened off in 2010. In the transport sector, it increased by only 1.7 Mtoe compared to 2.7 Mtoe in 2009. The final total bio-fuel consumption figure for 2010 should hover at around 13.9 Mtoe that can be broken down into 10.7 Mtoe for bio-diesel, 2.9 Mtoe for bio-ethanol and 0.3 Mtoe for others. Germany leads the pack for the consumption of bio-fuels and for the production of bio-diesel followed by France and Spain

  11. Obtaining plant Miscanthus sacchariflorus (Maxim. Hack and Miscanthus sinensis Andersson in vitro culture by indirect morphogenesis

    Directory of Open Access Journals (Sweden)

    С. М. Гонтаренко

    2017-03-01

    Full Text Available Purpose. To obtain Miscanthus sacchariflorus (Maxim. Hack and Miscanthus sinensis Andersson in vitro culture by indirect morphogenesis. Methods. Biotechnological procedures, mathematical and statistical analyses. Results. Composition of nutrient medium was developed intended for induction of callusogenesis from Miscanthus seeds with a poor germination and viability of seedlings – Murashige and Skoog (MS medium was modified for the amount of macroelements (half-dose that was supplemented with amino acids (300 mg/l of glutamic acid, 50 mg/l of aspartic acid, 5 mg/l of tyrosine, 3 mg/l of arginine, 2 mg/l of hydroxyproline and plant growth regulators [2,5 mg/l of 2.4D (2.4-Dichlorophenoxyacetic acid, 0,6 mg/l of BAP (6-Benzyl-aminopurine and 0,3 mg/l of ABA (Abscisic acid]. Composition of nutrient medium was developed for regeneration of microplants from callus – agar MS medium was modified for the amount of macroelements (half-dose supplemented with vitamins: 10 mg/l of thiaminum, 1,0 mg/l of pyridoxine, 1,0 mg/l of nicotinic acid (by White, 1,0 mg/l of ascorbic acid, 250 mg/l of glutamic acid, 2,0 mg/l of BAP, 0,3 mg/l of NAA (Naphthaleneacetic acid. On this medium, 100% regeneration of M. sacchariflorus (Maxim. Hack and 50% regeneration of M. sinensis Andersson was obtained. Due to media modification aimed at initiating callusogenesis and microplants regeneration, reproduction factor of M. sinensis was increased 20 times at the average, M. sacchariflorus – 35–40 times. Conclusions. Plants of M. sacchariflorus (Maxim. Hack and M. sinensis Andersson were obtained in vitro culture by initiation of callusogenes and microplants regeneration from the Miscanthus seeds with poor germination and viability on nutrient media of certain composition.

  12. Algal biofuels.

    Science.gov (United States)

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  13. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The European Union governments no longer view the rapid increase in biofuel consumption as a priority. Between 2010 and 2011 biofuel consumption increased by only 3%, which translates into 13.6 million tonnes of oil equivalent (toe) used in 2011 compared to 13.2 million toe in 2010. In 2011 6 European countries had a biofuel consumption in transport that went further 1 million toe: Germany (2,956,746 toe), France (2,050,873 toe), Spain (1,672,710 toe), Italy (1,432,455 toe), United Kingdom (1,056,105 toe) and Poland (1,017,793 toe). The breakdown of the biofuel consumption for transport in the European Union in 2011 into types of biofuels is: bio-diesel (78%), bio-ethanol (21%), biogas (0.5%) and vegetable oil (0.5%). In 2011, 4 bio-diesel producers had a production capacity in Europe that passed beyond 900,000 tonnes: Diester Industrie International (France) with 3,000,000 tonnes, Neste Oil (Finland) with 1,180,000 tonnes, ADM bio-diesel (Germany) with 975,000 tonnes, and Infinita (Spain) with 900,000 tonnes. It seems that the European Union's attention has shifted to setting up sustainability systems to verify that the biofuel used in the various countries complies with the Renewable Energy Directive's sustainability criteria

  14. Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii

    NARCIS (Netherlands)

    Vrije, de T.; Haas, de G.G.; Tan, G.B.; Keijsers, E.R.P.; Claassen, P.A.M.

    2002-01-01

    Pretreatment methods for the production of fermentable substrates from Miscanthus, a lignocellulosic biomass, were investigated. Results demonstrated an inverse relationship between lignin content and the efficiency of enzymatic hydrolysis of polysaccharides. High delignification values were

  15. Economic and Environmental Assessment of Seed and Rhizome Propagated Miscanthus in the UK

    Directory of Open Access Journals (Sweden)

    Astley Hastings

    2017-06-01

    Full Text Available Growth in planted areas of Miscanthus for biomass in Europe has stagnated since 2010 due to technical challenges, economic barriers and environmental concerns. These limitations need to be overcome before biomass production from Miscanthus can expand to several million hectares. In this paper, we consider the economic and environmental effects of introducing seed based hybrids as an alternative to clonal M. x giganteus (Mxg. The impact of seed based propagation and novel agronomy was compared with current Mxg cultivation and used in 10 commercially relevant, field scale experiments planted between 2012 and 2014 in the United Kingdom, Germany, and Ukraine. Economic and greenhouse gas (GHG emissions costs were quantified for the following production chain: propagation, establishment, harvest, transportation, storage, and fuel preparation (excluding soil carbon changes. The production and utilization efficiency of seed and rhizome propagation were compared. Results show that new hybrid seed propagation significantly reduces establishment cost to below £900 ha-1. Calculated GHG emission costs for the seeds established via plugs, though relatively small, was higher than rhizomes because fossil fuels were assumed to heat glasshouses for raising seedling plugs (5.3 and 1.5 kg CO2 eq. C Mg [dry matter (DM]-1, respectively. Plastic mulch film reduced establishment time, improving crop economics. The breakeven yield was calculated to be 6 Mg DM ha-1 y-1, which is about half average United Kingdom yield for Mxg; with newer seeded hybrids reaching 16 Mg DM ha-1 in second year United Kingdom trials. These combined improvements will significantly increase crop profitability. The trade-offs between costs of production for the preparation of different feedstock formats show that bales are the best option for direct firing with the lowest transport costs (£0.04 Mg-1 km-1 and easy on-farm storage. However, if pelleted fuel is required then chip harvesting is

  16. Towards Sustainable Production of Biofuels from Microalgae

    Directory of Open Access Journals (Sweden)

    Hans Ragnar Giselrød

    2008-07-01

    Full Text Available Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal biofuel production to meet the energy and environmental needs of the society. The emphasis is on hydrothermal liquefaction technology for direct conversion of algal biomass to liquid fuel.

  17. Life-cycle environmental and economic impacts of energy-crop fuel-chains: an integrated assessment of potential GHG avoidance in Ireland

    International Nuclear Information System (INIS)

    Styles, David; Jones, Michael B.

    2008-01-01

    This paper combines life-cycle analyses and economic analyses for Miscanthus and willow heat and electricity fuel-chains in Ireland. Displaced agricultural land-uses and conventional fuels were considered in fuel-chain permutations. Avoided greenhouse gas (GHG) emissions ranged from 7.7 to 35.2 t CO 2 eq. ha -1 a -1 . Most fuel-chain permutations exhibited positive discounted financial returns, despite losses for particular entities at a farm-gate processed-biomass price of Euro 100 t -1 dry-matter. Attributing a value of Euro 10 t -1 CO 2 eq. to avoided GHG emissions, but subtracting financial returns associated with displaced fuel supplies, resulted in discounted annual national economic benefits (DANEBs) ranging from -457 to 1887 Euro ha -1 a -1 . Extrapolating a plausible combination of fuel-chains up to a national indicative scenario resulted in GHG emission avoidance of 3.56 Mt CO 2 eq. a -1 (5.2% of national emissions), a DANEB of 167 M Euro , and required 4.6% of national agricultural land area. As cost-effective national GHG avoidance options, Miscanthus and willow fuel-chains are robust to variation in yields and CO 2 price, and appear to represent an efficient land-use option (e.g. compared with liquid biofuel production). Policies promoting utilisation of these energy-crops could avoid unnecessary, and environmentally questionable, future purchase of carbon credits, as currently required for national Kyoto compliance

  18. An Outlook on Microalgal Biofuels

    NARCIS (Netherlands)

    Wijffels, R.H.; Barbosa, M.J.

    2010-01-01

    Microalgae are considered one of the most promising feedstocks for biofuels. The productivity of these photosynthetic microorganisms in converting carbon dioxide into carbon-rich lipids, only a step or two away from biodiesel, greatly exceeds that of agricultural oleaginous crops, without competing

  19. Employment effects of biofuels development

    International Nuclear Information System (INIS)

    Danielsson, B.O.; Hektor, B.

    1992-01-01

    Effects on employment - national and regional - from an expanding market for biofuels in Sweden are estimated in this article. The fuels considered are: Peat, straw, energy crops, silviculture, forestry waste, wood waste, by-products from paper/wood industry and processed fuels from these sources. (22 refs., tabs.)

  20. Current status: biomass valorisation and biofuels in Singapore

    International Nuclear Information System (INIS)

    Guermont, C.; Barbi, A.P.

    2010-05-01

    After having briefly presented the main types of biofuels (bio-ethanol, bio-diesel) and their first, second and third generation technologies to produce them (from food crops, from non food crops, and from algae), this report presents Singapore public R and D centres working in the field of biofuels development, and their activities. It also presents actors belonging to the private sector, and various realized and announced projects on biofuels

  1. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using combined biochemical and thermochemical processes in a multi-stage biorefinery concept

    Science.gov (United States)

    The environmental impact of agricultural waste from processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the...

  2. Land Clearing and the Biofuel Carbon Debt

    Science.gov (United States)

    Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter

    2008-02-01

    Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.

  3. Genetic variation in Miscanthus x giganteus and the importance of estimating genetic distance tresholds for differentiating clones

    DEFF Research Database (Denmark)

    Glowacka, K; Clark, L; Adhikari, S

    2015-01-01

    Miscanthus × giganteus (Mxg) is an important bioenergy feedstock crop, however, genetic diversity among legacy cultivars may be severely constrained. Only one introduction from Japan to Denmark of this sterile, triploid, vegetatively propagated crop was recorded in the 1930s. We sought to determi...... new triploid Mxg progeny ranged from 0.46 to 0.56. Though genetic diversity among the Mxg legacy cultivars is critically low, new crosses can provide much-needed variation to growers......Miscanthus × giganteus (Mxg) is an important bioenergy feedstock crop, however, genetic diversity among legacy cultivars may be severely constrained. Only one introduction from Japan to Denmark of this sterile, triploid, vegetatively propagated crop was recorded in the 1930s. We sought to determine...... if the Mxg cultivars in North America were all synonyms, and if they were derived from the European introduction. We used 64 nuclear and five chloroplast simple sequence repeat (SSR) markers to estimate genetic similarity for 27 Mxg accessions from North America, and compared them with six accessions from...

  4. Prospects for dedicated energy crop production and attitudes towards agricultural straw use: The case of livestock farmers

    International Nuclear Information System (INIS)

    Wilson, P.; Glithero, N.J.; Ramsden, S.J.

    2014-01-01

    Second generation biofuels utilising agricultural by-products (e.g. straw), or dedicated energy crops (DECs) produced on ‘marginal’ land, have been called for. A structured telephone survey of 263 livestock farmers, predominantly located in the west or ‘marginal’ upland areas of England captured data on attitudes towards straw use and DECs. Combined with farm physical and business data, the survey results show that 7.2% and 6.3% of farmers would respectively consider growing SRC and miscanthus, producing respective maximum potential English crop areas of 54,603 ha and 43,859 ha. If higher market prices for straw occurred, most livestock farmers would continue to buy straw. Reasons for not being willing to consider growing DECs include concerns over land quality, committing land for a long time period, lack of appropriate machinery, profitability, and time to financial return; a range of moral, land quality, production conflict and lack of crop knowledge factors were also cited. Results demonstrate limited potential for the production of DECs on livestock farms in England. Changes in policy support to address farmer concerns with respect to DECs will be required to incentivise farmers to increase energy crop production. Policy support for DEC production must be cognisant of farm-level economic, tenancy and personal objectives. - Highlights: • Survey of English livestock farms determining attitudes to dedicated energy crops. • 6.3% to 7.2% of surveyed farmers would consider growing energy crops. • Limited potential for dedicated energy crops on livestock farms in England. • Livestock farmers would continue to buy straw, even at higher market prices. • Wide range of reasons given for farmers’ decisions related to energy crops

  5. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) Users’ Manual and Technical Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States); Mueller, Steffen [Univ. of Illinois, Chicago, IL (United States); Kwon, Ho-young [International Food Policy Research Inst., Washington, DC (United States); Wander, Michelle M. [Univ. of Illinois, Urbana-Champaign, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-12-01

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass, and a soy biodiesel pathway. This document discusses the version of CCLUB released September 30, 2017 which includes five ethanol LUC scenarios and four soy biodiesel LUC scenarios.

  6. Acoustic performance and microstructural analysis of bio-based lightweight concrete containing miscanthus

    NARCIS (Netherlands)

    Chen, Yuxuan; Yu, Q. L.; Brouwers, H. J.H.

    2017-01-01

    Miscanthus Giganteus (i.e. Elephant Grass) is a cost-effective and extensively available ecological resource in many agricultural regions. This article aims at a fundamental research on a bio-based lightweight concrete using miscanthus as aggregate, i.e. miscanthus lightweight concrete (MLC), with

  7. Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus

    International Nuclear Information System (INIS)

    Hartley, William; Dickinson, Nicholas M.; Riby, Philip; Lepp, Nicholas W.

    2009-01-01

    Degraded land that is historically contaminated from different sources of industrial waste provides an opportunity for conversion to bioenergy fuel production and also to increase sequestration of carbon in soil through organic amendments. In pot experiments, As mobility was investigated in three different brownfield soils amended with green waste compost (GWC, 30% v/v) or biochar (BC, 20% v/v), planted with Miscanthus. Using GWC improved crop yield but had little effect on foliar As uptake, although the proportion of As transferred from roots to foliage differed considerably between the three soils. It also increased dissolved carbon concentrations in soil pore water that influenced Fe and As mobility. Effects of BC were less pronounced, but the impacts of both amendments on SOC, Fe, P and pH are likely to be critical in the context of As leaching to ground water. Growing Miscanthus had no measurable effect on As mobility. - Green waste compost enhances water-soluble iron, phosphorus and carbon, increasing arsenic mobility in soil pore water.

  8. Biofuels feedstock development program

    International Nuclear Information System (INIS)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy's (DOE's) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires

  9. Drought mitigation in perennial crops by fertilization and adjustments of regional yield models for future climate variability

    Science.gov (United States)

    Kantola, I. B.; Blanc-Betes, E.; Gomez-Casanovas, N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.

    2017-12-01

    Increased variability and intensity of precipitation in the Midwest agricultural belt due to climate change is a major concern. The success of perennial bioenergy crops in replacing maize for bioethanol production is dependent on sustained yields that exceed maize, and the marketing of perennial crops often emphasizes the resilience of perennial agriculture to climate stressors. Land conversion from maize for bioethanol to Miscanthus x giganteus (miscanthus) increases yields and annual evapotranspiration rates (ET). However, establishment of miscanthus also increases biome water use efficiency (the ratio between net ecosystem productivity after harvest and ET), due to greater belowground biomass in miscanthus than in maize or soybean. In 2012, a widespread drought reduced the yield of 5-year-old miscanthus plots in central Illinois by 36% compared to the previous two years. Eddy covariance data indicated continued soil water deficit during the hydrologically-normal growing season in 2013 and miscanthus yield failed to rebound as expected, lagging behind pre-drought yields by an average of 53% over the next three years. In early 2014, nitrogen fertilizer was applied to half of mature (7-year-old) miscanthus plots in an effort to improve yields. In plots with annual post-emergence application of 60 kg ha-1 of urea, peak biomass was 29% greater than unfertilized miscanthus in 2014, and 113% greater in 2015, achieving statistically similar yields to the pre-drought average. Regional-scale models of perennial crop productivity use 30-year climate averages that are inadequate for predicting long-term effects of short-term extremes on perennial crops. Modeled predictions of perennial crop productivity incorporating repeated extreme weather events, observed crop response, and the use of management practices to mitigate water deficit demonstrate divergent effects on predicted yields.

  10. Modifying plants for biofuel and biomaterial production.

    Science.gov (United States)

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Sustainability of biofuels in Latin America: Risks and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Rainer, E-mail: rainer.janssen@wip-munich.de [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany); Rutz, Dominik Damian [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany)

    2011-10-15

    Several Latin American countries are setting up biofuel programmes to establish alternative markets for agricultural commodities. This is mainly triggered by the current success of Brazilian bioethanol production for the domestic market and for export. Furthermore, the global biofuel market is expected to increase due to ambitious biofuel programmes in the EU and in the USA. Colombia, Venezuela, Costa Rica and Guatemala are focusing on bioethanol production from sugarcane whereas biofuel production in Argentina is based on soy biodiesel. Recent developments of the biofuel sector take place extremely rapid especially in Argentina, which became one of the five largest biodiesel producers in the world in 2008. Till date no specific biofuel sustainability certification systems have been implemented in Latin American, as well as on global level. This fact and the predominant use of food crops for biofuel production raise concerns about the sustainability of biofuel production related to environmental and social aspects. This paper provides an overview of the hotspots of conflicts in biofuel production in Latin America. It investigates presently available sustainability tools and initiatives to ensure sustainable biofuel production in Latin America. Finally, it provides an outlook on how to integrate sustainability in the Latin American biofuel sector. - Research Highlights: > This study investigates risks and opportunities of biofuels in Latin America. > Latin American countries are setting up programmes to promote biofuel development. > Strong biofuel sectors provide opportunities for economic development. > Potential negative impact includes deforestation and effects on food security. > Sustainability initiatives exist to minimise negative impact.

  12. Sustainability of biofuels in Latin America: Risks and opportunities

    International Nuclear Information System (INIS)

    Janssen, Rainer; Rutz, Dominik Damian

    2011-01-01

    Several Latin American countries are setting up biofuel programmes to establish alternative markets for agricultural commodities. This is mainly triggered by the current success of Brazilian bioethanol production for the domestic market and for export. Furthermore, the global biofuel market is expected to increase due to ambitious biofuel programmes in the EU and in the USA. Colombia, Venezuela, Costa Rica and Guatemala are focusing on bioethanol production from sugarcane whereas biofuel production in Argentina is based on soy biodiesel. Recent developments of the biofuel sector take place extremely rapid especially in Argentina, which became one of the five largest biodiesel producers in the world in 2008. Till date no specific biofuel sustainability certification systems have been implemented in Latin American, as well as on global level. This fact and the predominant use of food crops for biofuel production raise concerns about the sustainability of biofuel production related to environmental and social aspects. This paper provides an overview of the hotspots of conflicts in biofuel production in Latin America. It investigates presently available sustainability tools and initiatives to ensure sustainable biofuel production in Latin America. Finally, it provides an outlook on how to integrate sustainability in the Latin American biofuel sector. - Research Highlights: → This study investigates risks and opportunities of biofuels in Latin America. → Latin American countries are setting up programmes to promote biofuel development. → Strong biofuel sectors provide opportunities for economic development. → Potential negative impact includes deforestation and effects on food security. → Sustainability initiatives exist to minimise negative impact.

  13. Making biofuels sustainable

    International Nuclear Information System (INIS)

    Gallagher, Ed

    2008-01-01

    . Previous land use is also recorded. The indirect effects of biofuel production - such as land displacement - have recently been examined by a review commissioned by the U.K. Government and carried out by the Renewable Fuels Agency. It confirmed the concerns, and work is now under way to measure the indirect effects and incorporate them in reporting and analysis. It concluded that we need to be more cautious and discriminating in our use of biofuels and called for a slowing of targets until, in particular, the indirect efforts could be monitored and evaluated properly. But it also saw a way forward for a sustainable biofuels industry. If this is to happen, biofuels should use the right feedstocks, be grown on the right land and use the least energy intensive production processes. Thus, ethanol derived from sugar cane, grown on land not needed for food production, farmed with an efficient use of fertilisers and produced using bagasse (sugar cane waste) as a source of energy, would be a sustainable biofuel. However, ethanol derived from maize using highly intensive farming processes, grown on land needed for food, and using energy from coal-fired power stations, would be an unsustainable one. The Review recommended that biofuel production should be concentrated on idle agricultural land - areas that have been previously farmed but which would remain uncultivated if not used in this way - and on marginal areas which are unproductive when used for food crops or livestock. It also recommended increasing the use of wastes and residues for feedstocks and creating incentives for second generation biofuels using new technologies, such as cellulosic ethanol from woody plants or biodiesel from algae. The Review also concluded that, left to itself, the market was unlikely to develop in a sustainable way, and so recommended more research into both indirect and direct effects and introducing internationally agreed mandatory sustainability standards. These should be accompanied by full

  14. Biofuels: 1995 project summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  15. Microplate-Based Evaluation of the Sugar Yield from Giant Reed, Giant Miscanthus and Switchgrass after Mild Chemical Pre-Treatments and Hydrolysis with Tailored Trichoderma Enzymatic Blends.

    Science.gov (United States)

    Cianchetta, Stefano; Bregoli, Luca; Galletti, Stefania

    2017-11-01

    Giant reed, miscanthus, and switchgrass are considered prominent lignocellulosic feedstocks to obtain fermentable sugars for biofuel production. The bioconversion into sugars requires a delignifying pre-treatment step followed by hydrolysis with cellulase and other accessory enzymes like xylanase, especially in the case of alkali pre-treatments, which retain the hemicellulose fraction. Blends richer in accessory enzymes than commercial mix can be obtained growing fungi on feedstock-based substrates, thus ten selected Trichoderma isolates, including the hypercellulolytic strain Trichoderma reesei Rut-C30, were grown on giant reed, miscanthus, or switchgrass-based substrates. The produced enzymes were used to saccharify the corresponding feedstocks, compared to a commercial enzymatic mix (6 FPU/g). Feedstocks were acid (H 2 SO 4 0.2-2%, w/v) or alkali (NaOH 0.02-0.2%, w/v) pre-treated. A microplate-based approach was chosen for most of the experimental steps due to the large number of samples. The highest bioconversion was generally obtained with Trichoderma harzianum Or4/99 enzymes (78, 89, and 94% final sugar yields at 48 h for giant reed, miscanthus, and switchgrass, respectively), with significant increases compared to the commercial mix, especially with alkaline pre-treatments. The differences in bioconversion yields were only partially caused by xylanases (maximum R 2  = 0.5), indicating a role for other accessory enzymes.

  16. Adaptation of C4 Bioenergy Crop Species to Various Environments within the Southern Great Plains of USA

    Directory of Open Access Journals (Sweden)

    Sumin Kim

    2017-01-01

    Full Text Available As highly productive perennial grasses are evaluated as bioenergy feedstocks, a major consideration is biomass yield stability. Two experiments were conducted to examine some aspects of yield stability for two biofuel species: switchgrass (Panicum vigratum L. and Miscanthus x giganteus (Mxg. Biomass yields of these species were evaluated under various environmental conditions across the Southern Great Plains (SGP, including some sites with low soil fertility. In the first experiment, measured yields of four switchgrass ecotypes and Mxg varied among locations. Overall, plants showed optimal growth performance in study sites close to their geographical origins. Lowland switchgrass ecotypes and Mxg yields simulated by the ALMANAC model showed reasonable agreement with the measured yields across all study locations, while the simulated yields of upland switchgrass ecotypes were overestimated in northern locations. In the second experiment, examination of different N fertilizer rates revealed switchgrass yield increases over the range of 0, 80, or 160 kg N ha−1 year−1, while Mxg only showed yield increases between the low and medium N rates. This provides useful insights to crop management of two biofuel species and to enhance the predictive accuracy of process-based models, which are critical for developing bioenergy market systems in the SGP.

  17. The minor wall-networks between monolignols and interlinked-phenolics predominantly affect biomass enzymatic digestibility in Miscanthus.

    Directory of Open Access Journals (Sweden)

    Zhengru Li

    Full Text Available Plant lignin is one of the major wall components that greatly contribute to biomass recalcitrance for biofuel production. In this study, total 79 representative Miscanthus germplasms were determined with wide biomass digestibility and diverse monolignol composition. Integrative analyses indicated that three major monolignols (S, G, H and S/G ratio could account for lignin negative influence on biomass digestibility upon NaOH and H2SO4 pretreatments. Notably, the biomass enzymatic digestions were predominately affected by the non-KOH-extractable lignin and interlinked-phenolics, other than the KOH-extractable ones that cover 80% of total lignin. Furthermore, a positive correlation was found between the monolignols and phenolics at p<0.05 level in the non-KOH-extractable only, suggesting their tight association to form the minor wall-networks against cellulases accessibility. The results indicated that the non-KOH-extractable lignin-complex should be the target either for cost-effective biomass pretreatments or for relatively simply genetic modification of plant cell walls in Miscanthus.

  18. Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp. Goedae-Uksae 1.

    Science.gov (United States)

    Bang, Jihye; Kamala-Kannan, Seralathan; Lee, Kui-Jae; Cho, Min; Kim, Chang-Hwan; Kim, Young-Jin; Bae, Jong-Hyang; Kim, Kyong-Ho; Myung, Hyun; Oh, Byung-Taek

    2015-01-01

    The aim of this study is to characterize the heavy metal phytoremediation potential of Miscanthus sp. Goedae-Uksae 1, a hybrid, perennial, bio-energy crop developed in South Korea. Six different metals (As, Cu, Pb, Ni, Cd, and Zn) were used for the study. The hybrid grass effectively absorbed all the metals from contaminated soil. The maximum removal was observed for As (97.7%), and minimum removal was observed for Zn (42.9%). Similarly, Goedae-Uksae 1 absorbed all the metals from contaminated water except As. Cd, Pb, and Zn were completely (100%) removed from contaminated water samples. Generally, the concentration of metals in roots was several folds higher than in shoots. Initial concentration of metals highly influenced the phytoremediation rate. The results of the bioconcentration factor, translocation factor, and enrichment coefficient tests indicate that Goedae-Uksae 1 could be used for phytoremediation in a marginally contaminated ecosystem.

  19. Panorama 2011: Water and bio-fuels

    International Nuclear Information System (INIS)

    Lorne, D.

    2011-01-01

    Nowadays, water is seen as a major sustainability criterion for bio-energies. Although the biofuels being produced by food crops are subject to the same risks as the farming sector as far as water resources are concerned, future sectors have a significant potential to reduce these risks, and this potential needs to be better understood in order for biofuels as a resource and their related technologies to develop properly. (authors)

  20. Description and Codification of Miscanthus × giganteus Growth Stages for Phenological Assessment

    Directory of Open Access Journals (Sweden)

    Mauricio D. Tejera

    2017-10-01

    Full Text Available Triploid Miscanthus × giganteus (Greef et Deu. ex Hodkinson et Renvoize is a sterile, perennial grass used for biomass production in temperate environments. While M. × giganteus has been intensively researched, a scale standardizing description of M. × giganteus morphological stages has not been developed. Here we provide such a scale by adapting the widely-used Biologische Bundesanstalt, Bundessortenamt, CHemische Industrie (BBCH scale and its corresponding numerical code to describe stages of morphological development in M. × giganteus using observations of the “Freedom” and “Illinois” clone in Iowa, USA. Descriptive keys with images are also presented. Because M. × giganteus plants overlap in the field, the scale was first applied to individual stems and then scaled up to assess plants or communities. Of the 10 principal growth stages in the BBCH system, eight were observed in M. × giganteus. Each principal stage was subdivided into secondary stages to enable a detailed description of developmental progression. While M. × giganteus does not have seed development stages, descriptions of those stages are provided to extend the scale to other Miscanthus genotypes. We present methods to use morphological development data to assess phenology by calculating the onset, duration, and abundance of each developmental stage. This scale has potential to harmonize previously described study-specific scales and standardize results across studies. Use of the precise staging presented here should more tightly constrain estimates of developmental parameters in crop models and increase the efficacy of timing-sensitive crop management practices like pest control and harvest.

  1. Second generation biofuels: Economics and policies

    International Nuclear Information System (INIS)

    Carriquiry, Miguel A.; Du Xiaodong; Timilsina, Govinda R.

    2011-01-01

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: → Second generation biofuels could significantly contribute to the future energy supply mix. → Cost is a major barrier to its the commercial production in the near to medium term. → The policy regime should be revised to account for the relative merits of different biofuels.

  2. Second generation biofuels: Economics and policies

    Energy Technology Data Exchange (ETDEWEB)

    Carriquiry, Miguel A., E-mail: miguelc@iastate.edu [Center for Agricultural and Rural Development, Iowa State University (United States); Du Xiaodong, E-mail: xdu23@wisc.edu [Department of Agricultural and Applied Economics, University of Wisconsin-Madison (United States); Timilsina, Govinda R., E-mail: gtimilsina@worldbank.org [Development Research Group, The World Bank (United States)

    2011-07-15

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: > Second generation biofuels could significantly contribute to the future energy supply mix. > Cost is a major barrier to its the commercial production in the near to medium term. > The policy regime should be revised to account for the relative merits of different biofuels.

  3. Health effects of biofuel exhaust

    OpenAIRE

    Vugt, M.A.T.M. van; Mulderij, M.; Usta, M.; Kadijk, G.; Kooter, I.M.; Krul, C.A.M.

    2009-01-01

    Alternatives to fossil fuels receive a lot of attention. In particular, oil derived of specific crops forms a promising fuel. In order to warrant global expectance of such novel fuels, safety issues associated with combustion of these fuels needs to be assessed. Although only a few public reports exist, recently potential toxic effects associated with biofuels has been published. Here, we report the analysis of a comprehensive study, comparing the toxic effects of conventional diesel, biodies...

  4. Land availability for biofuel production.

    Science.gov (United States)

    Cai, Ximing; Zhang, Xiao; Wang, Dingbao

    2011-01-01

    Marginal agricultural land is estimated for biofuel production in Africa, China, Europe, India, South America, and the continental United States, which have major agricultural production capacities. These countries/regions can have 320-702 million hectares of land available if only abandoned and degraded cropland and mixed crop and vegetation land, which are usually of low quality, are accounted. If grassland, savanna, and shrubland with marginal productivity are considered for planting low-input high-diversity (LIHD) mixtures of native perennials as energy crops, the total land availability can increase from 1107-1411 million hectares, depending on if the pasture land is discounted. Planting the second generation of biofuel feedstocks on abandoned and degraded cropland and LIHD perennials on grassland with marginal productivity may fulfill 26-55% of the current world liquid fuel consumption, without affecting the use of land with regular productivity for conventional crops and without affecting the current pasture land. Under the various land use scenarios, Africa may have more than one-third, and Africa and Brazil, together, may have more than half of the total land available for biofuel production. These estimations are based on physical conditions such as soil productivity, land slope, and climate.

  5. Biomass productivity and radiation utilisation of innovative cropping systems for biorefinery

    DEFF Research Database (Denmark)

    Manevski, Kiril; Lærke, Poul Erik; Jiao, Xiurong

    2017-01-01

    rotation of annual crops (maize, beet, hemp/oat, triticale, winter rye and winter rapeseed), ii) perennial crops intensively fertilised (festulolium, reed canary, cocksfoot and tall fescue), low-fertilised (miscanthus) or unfertilised (grass-legume mixtures) and iii) traditional systems (continuous...

  6. Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers

    NARCIS (Netherlands)

    Atienza, S.G.; Satovic, Z.; Petersen, K.K.; Dolstra, O.; Martin, A.

    2002-01-01

    We have used an "offspring cross" mapping strategy in combination with the random amplified polymorphic DNA (RAPD) assay to construct the first genetic map of the species Miscanthus sinensis (2n = 2x = 38). This map is based on an outbred population of 89 individuals resulting from the cross between

  7. Biofuels as an opportunity of development for the rural area. Regional-economic analysis with the example of Northrhine-Westphalia; Biokraftstoffe als Entwicklungschance fuer den laendlchen Raum. Regionaloekonomische Analyse am Beispiel Nordrhein-Westfalens

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, Thomas

    2008-07-01

    The energetic use of biomass experiences new attention in politics and public particularly due to high prices for fossil energy and climate protection. The German bioenergy boom is determined by political decisions. In this sense, the bioenergy markets can be characterized as 'political' markets. This is often ignored given the current euphoria over bioenergy. In the policy debate bioenergy is supported by several arguments including aspects of resources, environment, labour market, economy, technology develop, agriculture, regional and structural policy. While studies of energetic and ecological Life Cycle Assessment (LCA) of the biofuels are already present, the other political aspects are quite little investigated. Particularly against the background of an introduction of the European Agricultural Fund for Rural Development (EAFRD) and an examination of the efficiency of the promotion of biofuels, still, substantial research is needed. The goal of the work is to estimate whether biofuels allow new income possibilities and which rural areas in North Rhine-Westphalia could profit from these new prospects. A possible promotion policy for rural area is outlined which increases the income chances, and at the same time reduced negative environmental effects for the future. The work starts analysing the relevant policy framework of biofuel production in North-Rhine-Westphalia. Key question is which energy crop allows a positive income effect in which regions of North-Rhine-Westphalia. For this the procedure ''energy maize for biogas'' (rape seeds and wheat were already implemented) was integrated into the regionalised agricultural sector model RAUMIS. By the assumption of a completely elastic demand for biomass thereby the ''economic supply potential'' of the energy crops of the North-Rhine/Westphalian agriculture is illustrated under given agricultural and energy-political framework. Beside the quantitative analysis of

  8. Genetic structure of Miscanthus sinensis and Miscanthus sacchariflorus in Japan indicates a gradient of bidirectional but asymmetric introgression

    Science.gov (United States)

    Clark, Lindsay V.; Stewart, J. Ryan; Nishiwaki, Aya; Toma, Yo; Kjeldsen, Jens Bonderup; Jørgensen, Uffe; Zhao, Hua; Peng, Junhua; Yoo, Ji Hye; Heo, Kweon; Yu, Chang Yeon; Yamada, Toshihiko

    2015-01-01

    Unilateral introgression from diploids to tetraploids has been hypothesized to be an important evolutionary mechanism in plants. However, few examples have been definitively identified, perhaps because data of sufficient depth and breadth were difficult to obtain before the advent of affordable high-density genotyping. Throughout Japan, tetraploid Miscanthus sacchariflorus and diploid Miscanthus sinensis are common, and occasionally hybridize. In this study, 667 M. sinensis and 78 M. sacchariflorus genotypes from Japan were characterized using 20 704 SNPs and ten plastid microsatellites. Similarity of SNP genotypes between diploid and tetraploid M. sacchariflorus indicated that the tetraploids originated through autopolyploidy. Structure analysis indicated a gradient of introgression from diploid M. sinensis into tetraploid M. sacchariflorus throughout Japan; most tetraploids had some M. sinensis DNA. Among phenotypically M. sacchariflorus tetraploids, M. sinensis ancestry averaged 7% and ranged from 1–39%, with introgression greatest in southern Japan. Unexpectedly, rare (~1%) diploid M. sinensis individuals from northern Japan were found with 6–27% M. sacchariflorus ancestry. Population structure of M. sinensis in Japan included three groups, and was driven primarily by distance, and secondarily by geographic barriers such as mountains and straits. Miscanthus speciation is a complex and dynamic process. In contrast to limited introgression between diploid M. sacchariflorus and M. sinensis in northern China, selection for adaptation to a moderate maritime climate probably favoured cross-ploidy introgressants in southern Japan. These results will help guide the selection of Miscanthus accessions for the breeding of biomass cultivars. PMID:25618143

  9. From biomass to sustainable biofuels in southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Van Zyl, W.H.; Den Haan, R.; Rose, S.H.; La Grange, D.C.; Bloom, M. [Stellenbosch Univ., Matieland (South Africa). Dept. of Microbiology; Gorgens, J.F.; Knoetze, J.H. [Stellenbosch Univ., Matieland (South Africa). Dept. of Process Engineering; Von Blottnitz, H. [Cape Town Univ., Rondebosch (South Africa). Dept. of Chemical Engineering

    2009-07-01

    This presentation reported on a global sustainable bioenergy project with particular reference to South Africa's strategy to develop biofuels. The current biofuel production in South Africa was presented along with the potential for biofuels production and other clean alternative fuels. The South African industrial biofuel strategy (IBS) was developed in 2007 with a mandate to create jobs in the energy-crop and biofuels value chain; attract investment into rural areas; promote agricultural development; and reduce the import of foreign oil. The proposed crops for bioethanol include sugar cane and sugar beet, while the proposed crops for biodiesel include sunflower, canola and soya beans. The exclusion of maize was based on food security concerns. Jatropha curcas was also excluded because it is considered to be an invasive species. In addition to environmental benefits, the production of biofuels from biomass in Africa offers improved energy security, economic development and social upliftment. All biofuel projects are evaluated to ensure that these benefits are realized. Although first generation technologies do not score well due to marginal energy balance, negative life cycle impacts or detriment to biodiversity, the conversion of lignocellulosic biomass scores well in terms of enabling the commercialization of second generation biofuels. This paper discussed both the biochemical and thermochemical technological interventions needed to develop commercially-viable second generation lignocellulose conversion technologies to biofuels. tabs., figs.

  10. Transgenic perennial biofuel feedstocks and strategies for bioconfinement

    Science.gov (United States)

    The use of transgenic tools for the improvement of plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels, particularly from perennial plants. Traits that are targets for improvement of biofuels crops include he...

  11. Impacts of Past Land Use Changes on Water Resources: An Analog for Assessing Effects of Proposed Bioenergy Crops

    Science.gov (United States)

    Scanlon, B. R.; Schilling, K.; Young, M.; Duncan, I. J.; Gerbens-Leenes, P.

    2011-12-01

    Interest is increasing in renewable energy sources, including bioenergy. However, potential impacts of bioenergy crops on water resources need to be better understood before large scale expansion occurs. This study evaluates the potential for using past land use change impacts on water resources as an analog for assessing future bioenergy crop effects. Impacts were assessed for two cases and methods: (1) changes from perennial to annual crops in the Midwest U.S. using stream hydrograph separation; and (2) changes from perennial grasses and shrubs to annual crops in the Southwest U.S. using unsaturated zone and groundwater data. Results from the Midwest show that expanding the soybean production area by 80,000 km2 increased stream flow by 32%, based on data from Keokuk station in the Upper Mississippi River Basin. Using these relationships, further expansion of annual corn production for biofuels by 10 - 50% would increase streamflow by up to 40%, with related increases in nitrate, phosphate, and sediment pollutant transport to the Gulf of Mexico. The changes in water partitioning are attributed to reducing evapotranspiration, increasing recharge and baseflow discharge to streams. Similar results were found in the southwestern US, where changes from native perennial grasses and shrubs to annual crops increased recharge from ~0.0 to 24 mm/yr, raising water tables by up to 7 m in some regions and flushing accumulated salts into underlying aquifers in the southern High Plains. The changes in water partitioning are related to changes in rooting depth from deep rooted native vegetation to shallow rooted crops and growing season length. Further expansion of annual bioenergy crops, such as changes from Conservation Reserve Program to corn in the Midwest, will continue the trajectory of reducing ET, thereby increasing recharge and baseflow to streams and nutrient export. We hypothesize that changing bioenergy crops from annual crops to perennial grasses, such as switchgrass

  12. Land and agronomic potential for biofuel production in Southern Africa

    OpenAIRE

    von Maltitz, Graham; van der Merwe, Marna

    2017-01-01

    The Southern African region, from a purely biophysical perspective, has huge potential for biofuel production, especially in Mozambique and Zambia. Although many of the soils are sandy and acidic, with careful management and correct fertilization, they should be highly productive. We suggest that sugarcane is the crop most easily mobilized for biofuel. A number of other crops, such as sweet sorghum, cassava, and tropical sugar beet, have good potential but will need further agronomic and proc...

  13. Biofuels securing the planet's future energy needs

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    The biofuels include bioethanol, biobutanol, biodiesel, vegetable oils, biomethanol, pyrolysis oils, biogas, and biohydrogen. There are two global biomass based liquid transportation fuels that might replace gasoline and diesel fuel. These are bioethanol and biodiesel. World production of biofuel was about 68 billion L in 2007. The primary feedstocks of bioethanol are sugarcane and corn. Bioethanol is a gasoline additive/substitute. Bioethanol is by far the most widely used biofuel for transportation worldwide. About 60% of global bioethanol production comes from sugarcane and 40% from other crops. Biodiesel refers to a diesel-equivalent mono alkyl ester based oxygenated fuel. Biodiesel production using inedible vegetable oil, waste oil and grease has become more attractive recently. The economic performance of a biodiesel plant can be determined once certain factors are identified, such as plant capacity, process technology, raw material cost and chemical costs. The central policy of biofuel concerns job creation, greater efficiency in the general business environment, and protection of the environment.

  14. Opportunity for profitable investments in cellulosic biofuels

    International Nuclear Information System (INIS)

    Babcock, Bruce A.; Marette, Stephan; Treguer, David

    2011-01-01

    Research efforts to allow large-scale conversion of cellulose into biofuels are being undertaken in the US and EU. These efforts are designed to increase logistic and conversion efficiencies, enhancing the economic competitiveness of cellulosic biofuels. However, not enough attention has been paid to the future market conditions for cellulosic biofuels, which will determine whether the necessary private investment will be available to allow a cellulosic biofuels industry to emerge. We examine the future market for cellulosic biofuels, differentiating between cellulosic ethanol and 'drop-in' cellulosic biofuels that can be transported with petroleum fuels and have equivalent energy values. We show that emergence of a cellulosic ethanol industry is unlikely without costly government subsidies, in part because of strong competition from conventional ethanol and limits on ethanol blending. If production costs of drop-in cellulosic biofuels fall enough to become competitive, then their expansion will not necessarily cause feedstock prices to rise. As long as local supplies of feedstocks that have no or low-valued alternative uses exist, then expansion will not cause prices to rise significantly. If cellulosic feedstocks come from dedicated biomass crops, then the supply curves will have a steeper slope because of competition for land. (author)

  15. Will biofuel projects in Southeast Asia become white elephants?

    International Nuclear Information System (INIS)

    Goh, Chun Sheng; Lee, Keat Teong

    2010-01-01

    Southeast Asia's attempt to join the global biofuel development has not been very successful, despite the large amount of subsidies and incentives allotted for biofuel projects. The outcome of these projects has failed to meet expectation due to overrated assumptions and shortsighted policies. Utilization of edible feedstock such as palm oil and sugar cane for biofuel has disrupted the fragile industry due to the fluctuations of feedstock prices. The appropriate research on jatropha to prove its economic and environmental feasibility as energy crop has not been performed. Biofuel development in Southeast Asia remains at an early stage of development and requires highly intensive monitoring and strict legal enforcement to ensure future success.

  16. Implications of the Biofuels Boom for the Global Livestock Industry: A Computable General Equilibrium Analysis

    OpenAIRE

    Taheripour, Farzad; Hertel, Thomas W.; Tyner, Wallace E.

    2009-01-01

    In this paper, we offer a general equilibrium analysis of the impacts of US and EU biofuel mandates for the global livestock sector. Our simulation boosts biofuel production in the US and EU from 2006 levels to mandated 2015 levels. We show that mandates will encourage crop production in both biofuel and non biofuel producing regions, while reducing livestock and livestock production in most regions of the world. The non-ruminant industry curtails its production more than other livestock indu...

  17. biofuel development in California

    Directory of Open Access Journals (Sweden)

    Varaprasad Bandaru

    2015-07-01

    Full Text Available Biofuels are expected to play a major role in meeting California's long-term energy needs, but many factors influence the commercial viability of the various feedstock and production technology options. We developed a spatially explicit analytic framework that integrates models of plant growth, crop adoption, feedstock location, transportation logistics, economic impact, biorefinery costs and biorefinery energy use and emissions. We used this framework to assess the economic potential of hybrid poplar as a feedstock for jet fuel production in Northern California. Results suggest that the region has sufficient suitable croplands (2.3 million acres and nonarable lands (1.5 million acres for poplar cultivation to produce as much as 2.26 billion gallons of jet fuel annually. However, there are major obstacles to such large-scale production, including, on nonarable lands, low poplar yields and broad spatial distribution and, on croplands, competition with existing crops. We estimated the production cost of jet fuel to be $4.40 to $5.40 per gallon for poplar biomass grown on nonarable lands and $3.60 to $4.50 per gallon for biomass grown on irrigated cropland; the current market price is $2.12 per gallon. Improved poplar yields, use of supplementary feedstocks at the biorefinery and economic supports such as carbon credits could help to overcome these barriers.

  18. Will EU Biofuel Policies affect Global Agricultural Markets?

    International Nuclear Information System (INIS)

    Banse, M.; Vvan Meijl, H.; Tabeau, A.; Woltjer, G.

    2008-04-01

    This paper assesses the global and sectoral implications of the European Union Biofuels Directive (BFD) in a multi-region computable general equilibrium framework with endogenous determination of land supply. The results show that, without mandatory blending policies or subsidies to stimulate the use of biofuel crops in the petroleum sector, the targets of the BFD will not be met in 2010 and 2020. With a mandatory blending policy, the enhanced demand for biofuel crops has a strong impact on agriculture at the global and European levels. The additional demand from the energy sector leads to an increase in global land use and, ultimately, a decrease in biodiversity. The development, on the other hand, might slow or reverse the long-term process of declining real agricultural prices. Moreover, assuming a further liberalization of the European agricultural market imports of biofuels are expected to increase to more than 50% of the total biofuel demand in Europe

  19. Comparative proteomic analysis in Miscanthus sinensis exposed to antimony stress

    International Nuclear Information System (INIS)

    Xue, Liang; Ren, Huadong; Li, Sheng; Gao, Ming; Shi, Shengqing; Chang, Ermei; Wei, Yuan; Yao, Xiaohua; Jiang, Zeping; Liu, Jianfeng

    2015-01-01

    To explore the molecular basis of Sb tolerance mechanism in plant, a comparative proteomic analysis of both roots and leaves in Miscanthus sinensis has been conducted in combination with physiological and biochemical analyses. M. sinensis seedlings were exposed to different doses of Sb, and both roots and leaves were collected after 3 days of treatment. Two-dimensional gel electrophoresis (2-DE) and image analyses found that 29 protein spots showed 1.5-fold change in abundance in leaves and 19 spots in roots, of which 31 were identified by MALDI-TOF-MS and MALDI-TOF-TOF-MS. Proteins involved in antioxidant defense and stress response generally increased their expression all over the Sb treatments. In addition, proteins relative to transcription, signal transduction, energy metabolism and cell division and cell structure showed a variable expression pattern over Sb concentrations. Overall these findings provide new insights into the probable survival mechanisms by which M. sinensis could be adapting to Sb phytotoxicity. - Highlights: • Proteomics in Miscanthus sinensis leaves and roots exposed to Sb stress were studied. • There were 31 spots that were identified by mass spectrometry. • Most of these proteins were involved in antioxidant defense and stress response. • Our findings provide new insights into the tolerant mechanisms to Sb stress. - Miscanthus sinensis proteomic analysis under Sb stress reveals probable molecular mechanisms on Sb detoxification

  20. Alternative spatial allocation of suitable land for biofuel production in China

    DEFF Research Database (Denmark)

    Zhang, Jianjun; Chen, Yang; Rao, Yongheng

    2017-01-01

    How to select locations for biofuel production is still a critical consideration for balance of crop and biofuel productions as well as of energy consumption and environmental conservation. Biofuels are widely produced all over the world, but this practice in China is still at the initial stage....... Based on China's current stage on food security and changing biofuel demands, this paper selected agro-environmental and socio-economic factors of biofuel production, and simulated and spatially allocated areas suited for biofuel production under the two scenarios of planning-oriented scenario (Po......S) and biofuel-oriented scenario (BoS) by the target year 2020. It also estimated biofuel production potentials and zones across China's provinces. The results show that land suited for biofuel production is primarily located in Northwestern, Northern, Northeastern, Central and Southwestern China...

  1. Liquid biofuels - can they meet our expectations?

    Science.gov (United States)

    Glatzel, G.

    2012-04-01

    Liquid biofuels are one of the options for reducing the emission of greenhouse gases and the dependence on fossil fuels. This is reflected in the DIRECTIVE 2003/30/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the promotion of the use of biofuels or other renewable fuels for transport. The promotion of E10, an automotive fuel containing 10 percent bioethanol, is based on this directive. At present almost all bioethanol is produced from agricultural crops such as maize, corn or sugar beet and sugar cane in suitable climates. In view of shortages and rising prices of food, in particular in developing countries, the use of food and feed crops for biofuel production is increasingly criticized. Alternative sources of biomass are perennial grasses and wood, whose cellulose fraction can be converted to alcohol by the so called "second generation" processes, which seem to be close to commercial deployment. The use of the total plant biomass increases the biofuel yield per hectare as compared to conventional crops. Of special interest for biofuel production is woody biomass from forests as this avoids competition with food production on arable land. Historically woody biomass was for millennia the predominant source of thermal energy. Before fossil fuels came into use, up to 80 percent of a forest was used for fuel wood, charcoal and raw materials such as potash for trade and industry. Now forests are managed to yield up to 80 percent of high grade timber for the wood industry. Replacing sophisticatedly managed forests by fast growing biofuel plantations could make economic sense for land owners when a protected market is guaranteed by politics, because biofuel plantations would be highly mechanized and cheap to operate, even if costs for certified planting material and fertilizer are added. For forest owners the decision to clear existing long rotation forests for biofuel plantations would still be weighty because of the extended time of decades required to rebuild a

  2. Perspectives of microalgal biofuels as a renewable source of energy

    International Nuclear Information System (INIS)

    Kiran, Bala; Kumar, Ritunesh; Deshmukh, Devendra

    2014-01-01

    Highlights: • Microalgae offer solution of wastewater treatment, CO 2 sequestration, and energy crises. • Microalgal biofuel is renewable, nontoxic and environmentally friendly option. • Integration of wastewater treatment with biofuels production has made them more cost effective. • This article details out the potential production process and benefits of microalgal biofuels. - Abstract: Excessive use of fossil fuels to satisfy our rapidly increasing energy demand has created severe environmental problems, such as air pollution, acid rain and global warming. Biofuels are a potential alternative to fossil fuels. First- and second-generation biofuels face criticism due to food security and biodiversity issues. Third-generation biofuels, based on microalgae, seem to be a plausible solution to the current energy crisis, as their oil-producing capability is many times higher than that of various oil crops. Microalgae are the fastest-growing plants and can serve as a sustainable energy source for the production of biodiesel and several other biofuels by conversion of sunlight into chemical energy. Biofuels produced from microalgae are renewable, non-toxic, biodegradable and environment friendly. Microalgae can be grown in open pond systems or closed photobioreactors. Microalgal biofuels are a potential means to keep the development of human activities in synchronization with the environment. The integration of wastewater treatment with biofuel production using microalgae has made microalgal biofuels more attractive and cost effective. A biorefinery approach can also be used to improve the economics of biofuel production, in which all components of microalgal biomass (i.e., proteins, lipids and carbohydrates) are used to produce useful products. The integration of various processes for maximum economic and environmental benefits minimizes the amount of waste produced and the pollution level. This paper presents an overview of various aspects associated with

  3. Biofuel from "humified" biomass

    Science.gov (United States)

    Kpogbemabou, D.; Lemée, L.; Amblès, A.

    2009-04-01

    In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do

  4. Biofuel technologies. Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vijai Kumar [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry; MITS Univ., Rajasthan (India). Dept. of Science; Tuohy, Maria G. (eds.) [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry

    2013-02-01

    Written by experts. Richly illustrated. Of interest to both experienced researchers and beginners in the field. Biofuels are considered to be the main potential replacement for fossil fuels in the near future. In this book international experts present recent advances in biofuel research and related technologies. Topics include biomethane and biobutanol production, microbial fuel cells, feedstock production, biomass pre-treatment, enzyme hydrolysis, genetic manipulation of microbial cells and their application in the biofuels industry, bioreactor systems, and economical processing technologies for biofuel residues. The chapters provide concise information to help understand the technology-related implications of biofuels development. Moreover, recent updates on biofuel feedstocks, biofuel types, associated co- and byproducts and their applications are highlighted. The book addresses the needs of postgraduate researchers and scientists across diverse disciplines and industrial sectors in which biofuel technologies and related research and experimentation are pursued.

  5. Controversies, development and trends of biofuel industry in the world

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2012-09-01

    Full Text Available Controversies, development and trends of biofuel industry in the world were discussed in present article. First-generation biofuels, i.e., grain and land based biofuels, occupied large areas of arable lands and severely constrained food supplies, are widely disputed. They have been replaced by second-generation biofuels. The raw materials of the second-generation biofuels include plants, straw, grass and other crops and forest residues. However, the cost for production of the second-generation biofuels is higher. Therefore the development of the third-generation biofuels is undergoing. The third-generation technologies use, mainly algae, as raw material to produce bioethanol, biobutanol, biodiesel and hydrogen, and use discarded fruits to produce dimethylfuran, etc. Different countries and regions are experiencing different stages of biofuel industry. In the future the raw materials for biofuel production will be focused on various by-products, wastes, and organisms that have not direct economic benefit for human. Production technologies should be improved or invented to reduce carbon emission and environmental pollution during biofuel production and to reduce production cost.

  6. Streamflow impacts of biofuel policy-driven landscape change.

    Directory of Open Access Journals (Sweden)

    Sami Khanal

    Full Text Available Likely changes in precipitation (P and potential evapotranspiration (PET resulting from policy-driven expansion of bioenergy crops in the United States are shown to create significant changes in streamflow volumes and increase water stress in the High Plains. Regional climate simulations for current and biofuel cropping system scenarios are evaluated using the same atmospheric forcing data over the period 1979-2004 using the Weather Research Forecast (WRF model coupled to the NOAH land surface model. PET is projected to increase under the biofuel crop production scenario. The magnitude of the mean annual increase in PET is larger than the inter-annual variability of change in PET, indicating that PET increase is a forced response to the biofuel cropping system land use. Across the conterminous U.S., the change in mean streamflow volume under the biofuel scenario is estimated to range from negative 56% to positive 20% relative to a business-as-usual baseline scenario. In Kansas and Oklahoma, annual streamflow volume is reduced by an average of 20%, and this reduction in streamflow volume is due primarily to increased PET. Predicted increase in mean annual P under the biofuel crop production scenario is lower than its inter-annual variability, indicating that additional simulations would be necessary to determine conclusively whether predicted change in P is a response to biofuel crop production. Although estimated changes in streamflow volume include the influence of P change, sensitivity results show that PET change is the significantly dominant factor causing streamflow change. Higher PET and lower streamflow due to biofuel feedstock production are likely to increase water stress in the High Plains. When pursuing sustainable biofuels policy, decision-makers should consider the impacts of feedstock production on water scarcity.

  7. Panorama 2007: Biofuels Worldwide

    International Nuclear Information System (INIS)

    Prieur-Vernat, A.; His, St.

    2007-01-01

    The biofuels market is booming: after more than 20 years of industrial development, global bio-fuel production is growing fast. Willingness to reduce their oil dependence and necessity to promote low-carbon energies are the two main drivers for states to support biofuels development. (author)

  8. Modelling farmer uptake of perennial energy crops in the UK

    International Nuclear Information System (INIS)

    Sherrington, Chris; Moran, Dominic

    2010-01-01

    The UK Biomass Strategy suggests that to reach the technical potential of perennial energy crops such as short rotation coppice (SRC) willow and miscanthus by 2020 requires 350,000 hectares of land. This represents a more than 20-fold increase on the current 15,546 hectares. Previous research has identified several barriers to adoption, including concerns over security of income from contracts. In addition, farmers perceive returns from these crops to be lower than for conventional crops. This paper uses a farm-level linear programming model to investigate theoretical uptake of energy crops at different gross margins under the assumption of a profit-maximising decision maker, and in the absence of known barriers to adoption. The findings suggest that while SRC willow, at current prices, remains less competitive, returns to miscanthus should have encouraged adoption on a wider scale than at present. This highlights the importance of the barriers to adoption. Recently announced contracts for miscanthus appear to offer a significant premium to farmers in order to encourage them to grow the crops. This raises the question of whether a more cost-effective approach would be for government to provide guarantees addressing farmers concerns including security of income from the contracts. Such an approach should encourage adoption at lower gross margins. (author)

  9. Comment on “Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to Simulate Its Water Quality Effects As a Bioenergy Crop”

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuesong; Izaurralde, Roberto C.; Arnold, J. G.; Sammons, N. B.; Manowitz, David H.; Thomson, Allison M.; Williams, J.R.

    2011-07-01

    In this paper, the authors comment on several mistakes made in a journal paper "Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to Simulate Its Water Quality Effects As a Bioenergy Crop" published on Environmental Scienece & Technology, based on field measurements from Great Lakes Bioenergy Research Center, Carbon Sequestration in Terrestrial Ecosystems, and published literature. Our comment has led to the development of another version of SWAT to include better process based description of radiation use efficiency and root-shoot growth.

  10. Estimating the energy requirements and CO{sub 2} emissions from production of the perennial grasses miscanthus, switchgrass and reed canary grass

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M.; Metcalfe, P.

    2001-07-01

    The perennial grasses miscanthus, reed canary and swithchgrass have attractions as energy crops in the United Kingdom: all have low demand for fertilizer and pesticide, and are harvested annually. Research on energy ratios and carbon ratios of the grasses is reported. A Microsoft Excel-based model was developed (from an ADAS database) and the input calculations and assumptions are explained. The study demonstrated the attractions of theses grasses as a source of fuel. The results agreed with those from a model developed for the SRC.

  11. Environmental and energy aspects of liquid biofuels

    International Nuclear Information System (INIS)

    De Boo, W.

    1993-02-01

    When spending public money to reduce CO 2 emissions, it is necessary to establish which alternative energy source results in the largest reduction of CO 2 emission per unit cost. Comparison of different biofuels with other energy resources is therefore important. Bioethanol is compared with leadfree gasoline, and rapeseed oil methylester (RME) is compared with diesel. Subsequently, biofuel production as a method to reduce CO 2 emission will be compared with other sustainable energy resources. This comparison is based on the energy balance in chapter two and the final costs of biofuels in chapter six. The comparison of biofuels and current fossil fuels is based on emissions to the atmosphere of greenhouse gases and acidifying pollutants in chapter three. Pollution to soil and water by arable cropping is a specific characteristic of biofuel production and is difficult to compare with fossil fuels. On this subject biofuels are compared with other land uses in chapter four. This also applies to other adverse environmental aspects of agricultural production such as competition for land use with natural areas and recreation purposes. To explore future technological developments, a comparison is made in energy balances with estimated results after the year 2000. The overall conclusion is that there are far better options to achieve CO 2 reduction. 2 figs., 9 tabs., 14 appendices, 28 refs

  12. Integrated strategic and tactical biomass-biofuel supply chain optimization.

    Science.gov (United States)

    Lin, Tao; Rodríguez, Luis F; Shastri, Yogendra N; Hansen, Alan C; Ting, K C

    2014-03-01

    To ensure effective biomass feedstock provision for large-scale biofuel production, an integrated biomass supply chain optimization model was developed to minimize annual biomass-ethanol production costs by optimizing both strategic and tactical planning decisions simultaneously. The mixed integer linear programming model optimizes the activities range from biomass harvesting, packing, in-field transportation, stacking, transportation, preprocessing, and storage, to ethanol production and distribution. The numbers, locations, and capacities of facilities as well as biomass and ethanol distribution patterns are key strategic decisions; while biomass production, delivery, and operating schedules and inventory monitoring are key tactical decisions. The model was implemented to study Miscanthus-ethanol supply chain in Illinois. The base case results showed unit Miscanthus-ethanol production costs were $0.72L(-1) of ethanol. Biorefinery related costs accounts for 62% of the total costs, followed by biomass procurement costs. Sensitivity analysis showed that a 50% reduction in biomass yield would increase unit production costs by 11%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Agave: a biofuel feedstock for arid and semi-arid environments

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

    2011-05-31

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

  14. Energy balance of solid biofuels

    International Nuclear Information System (INIS)

    Scholz, V.; Berg, W.; Kaulfuss, P.

    1998-01-01

    The input and output of energy are two important factors used to determine the energetic and ecological usefulness of a fuel or its production technology. In this paper, a number of different methods for the production of five biofuels which can be produced in agriculture and forestry are analysed and energetic balances are presented. The results show that the energetic input is relatively low compared to the output, especially for by-products and residual substances such as cereal straw and forest pruning timber (thinning). Whenever fuel crops are cultivated, the energetic efficiency is critically determined by the quantity of nitrogen applied. Depending on the crop and technology, each gigajoule of energy input can provide 7-30 GJ or with by-products up to 50 GJ of thermally utilizable energy without any additional CO 2 pollution. (author)

  15. Sustainable Biofuel Crops Project, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Juhn, Daniel [Conservation International, Arlington, VA (United States). Moore Center for Science and Oceans. Integrated Assessment and Planning; Grantham, Hedley [Conservation International, Arlington, VA (United States). Moore Center for Science and Oceans. Integrated Assessment and Planning

    2014-05-28

    Over the last six years, the Food and Agriculture Organization of the United Nations (FAO) has developed the Bioenergy and Food Security (BEFS) Approach to help countries design and implement sustainable bioenergy policies and strategies. The BEFS Approach consists of two sets of multidisciplinary and integrated tools and guidance (the BEFS Rapid Appraisal and the BEFS Detailed Analysis) to facilitate better decision on bioenergy development which should foster both food and energy security, and contribute to agricultural and rural development. The development of the BEFS Approach was for the most part funded by the German Federal Ministry of Food and Agriculture. Recognizing the need to provide support to countries that wanted an initial assessment of their sustainable bioenergy potential, and of the associated opportunities, risks and trade offs, FAO began developing the BEFS-RA (Rapid Appraisal). The BEFS RA is a spreadsheet–based assessment and analysis tool designed to outline the country's basic energy, agriculture and food security context, the natural resources potential, the bioenergy end use options, including initial financial and economic implications, and the identification of issues that might require fuller investigation with the BEFS Detailed Analysis.

  16. Carbon and energy balances for a range of biofuels options

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, M.A.; Matthews, R.; Mortimer, N.D.

    2003-03-01

    This is the final report of a project to produce a set of baseline energy and carbon balances for a range of electricity, heat and transport fuel production systems based on biomass feedstocks. A list of 18 important biofuel technologies in the UK was selected for study of their energy and carbon balances in a consistent approach. Existing studies on these biofuel options were reviewed and their main features identified in terms of energy input, greenhouse gas emissions (carbon dioxide, methane, nitrous oxide and total), transparency and relevance. Flow charts were produced to represent the key stages of the production of biomass and its conversion to biofuels. Outputs from the study included primary energy input per delivered energy output, carbon dioxide outputs per delivered energy output, methane output per delivered energy output, nitrous oxide output per delivered energy output and total greenhouse gas requirements. The net calorific value of the biofuel is given where relevant. Biofuels studied included: biodiesel from oilseed rape and recycled vegetable oil; combined heat and power (CHP) by combustion of wood chip from forestry residues; CHP by gasification of wood chip from short rotation coppice; electricity from the combustion of miscanthus, straw, wood chip from forestry residues and wood chip from short rotation coppice; electricity from gasification of wood chip from forestry residues and wood chip from short rotation coppice; electricity by pyrolysis of wood chip from forestry residues and wood chip from short rotation coppice; ethanol from lignocellulosics, sugar beet and wheat; heat (small scale) from combustion of wood chip from forestry residues and wood chip from short rotation coppice; and rapeseed oil from oilseed rape.

  17. Sustainable Biofuels Development Center

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, Kenneth F. [Colorado State Univ., Fort Collins, CO (United States)

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  18. Toward Complete Utilization of Miscanthus in a Hot-Water Extraction-Based Biorefinery

    Directory of Open Access Journals (Sweden)

    Kuo-Ting Wang

    2017-12-01

    Full Text Available Miscanthus (Miscanthus sp. Family: Poaceae was hot-water extracted (two h, at 160 °C at three scales: laboratory (Parr reactor, 300 cm3, intermediate (M/K digester, 4000 cm3, and pilot (65 ft3-digester, 1.841 × 106 cm3. Hot-water extracted miscanthus, hydrolyzate, and lignin recovered from hydrolyzate were characterized and evaluated for potential uses aiming at complete utilization of miscanthus. Effects of scale-up on digester yield, removal of hemicelluloses, deashing, delignification degree, lignin recovery and purity, and cellulose retention were studied. The scale-dependent results demonstrated that before implementation, hot-water extraction (HWE should be evaluated on a scale larger than a laboratory scale. The production of energy-enriched fuel pellets from hot-water extracted miscanthus, especially in combination with recovered lignin is recommended, as energy of combustion increased gradually from native to hot-water extracted miscanthus to recovered lignin. The native and pilot-scale hot-water extracted miscanthus samples were also subjected to enzymatic hydrolysis using a cellulase-hemicellulase cocktail, to produce fermentable sugars. Hot-water extracted biomass released higher amount of glucose and xylose verifying benefits of HWE as an effective pretreatment for xylan-rich lignocellulosics. The recovered lignin was used to prepare a formaldehyde-free alternative to phenol-formaldehyde resins and as an antioxidant. Promising results were obtained for these lignin valorization pathways.

  19. Biofuels Baseline 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; Koper, M.; Berndes, G.; Englund, O.; Diaz-Chavez, R.; Kunen, E.; Walden, D.

    2011-10-15

    The European Union is promoting the use of biofuels and other renewable energy in transport. In April 2009, the Renewable Energy Directive (2009/28/EC) was adopted that set a 10% target for renewable energy in transport in 2020. The directive sets several requirements to the sustainability of biofuels marketed in the frame of the Directive. The Commission is required to report to the European Parliament on a regular basis on a range of sustainability impacts resulting from the use of biofuels in the EU. This report serves as a baseline of information for regular monitoring on the impacts of the Directive. Chapter 2 discusses the EU biofuels market, the production and consumption of biofuels and international trade. It is derived where the feedstock for EU consumed biofuels originally come from. Chapter 3 discusses the biofuel policy framework in the EU and major third countries of supply. It looks at various policy aspects that are relevant to comply with the EU sustainability requirements. Chapter 4 discusses the environmental and social sustainability aspects associated with EU biofuels and their feedstock. Chapter 5 discusses the macro-economic effects that indirectly result from increased EU biofuels consumption, on commodity prices and land use. Chapter 6 presents country factsheets for main third countries that supplied biofuels to the EU market in 2008.

  20. A multi-adaptive framework for the crop choice in paludicultural cropping systems

    Directory of Open Access Journals (Sweden)

    Nicola Silvestri

    2017-03-01

    Full Text Available The conventional cultivation of drained peatland causes peat oxidation, soil subsidence, nutrient loss, increasing greenhouse gas emissions and biodiversity reduction. Paludiculture has been identified as an alternative management strategy consisting in the cultivation of biomass on wet and rewetted peatlands. This strategy can save these habitats and restore the ecosystem services provided by the peatlands both on the local and global scale. This paper illustrates the most important features to optimise the crop choice phase which is the crucial point for the success of paludiculture systems. A multi-adaptive framework was proposed. It was based on four points that should be checked to identify suitable crops for paludicultural cropping system: biological traits, biomass production, attitude to cultivation and biomass quality. The main agronomic implications were explored with the help of some results from a plurennial open-field experimentation carried out in a paludicultural system set up in the Massaciuccoli Lake Basin (Tuscany, Italy and a complete example of the method application was provided. The tested crops were Arundo donax L., Miscanthus×giganteus Greef et Deuter, Phragmites australis L., Populus×canadensis Moench. and Salix alba L. The results showed a different level of suitability ascribable to the different plant species proving that the proposed framework can discriminate the behaviour of tested crops. Phragmites australis L. was the most suitable crop whereas Populus×canadensis Moench and Miscanthus×giganteus Greef et Deuter (in the case of biogas conversion occupied the last positions in the ranking.

  1. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Emerson; Amber Hoover; Allison Ray; Jeffrey Lacey; Marnie Cortez; Courtney Payne; Doug Karlen; Stuart Birrell; David Laird; Robert Kallenbach; Josh Egenolf; Matthew Sousek; Thomas Voigt

    2014-11-01

    Drought conditions in 2012 were some of the most severe reported in the United States. It is necessary to explore the effects of drought on the quality attributes of current and potential bioenergy feedstocks. Compositional analysis data for corn stover, Miscanthus, and CRP grasses from one or more locations for years 2010 (normal precipitation levels) and 2012 (a known severe drought year nationally) was collected. Results & discussion: The general trend for samples that experienced drought was an increase in extractives and a decrease in structural sugars and lignin. The TEY yields were calculated to determine the drought effects on ethanol production. All three feedstocks had a decrease of 12-14% in TEY when only decreases of carbohydrate content was analyzed. When looking at the compounded effect of both carbohydrate content and the decreases in dry matter loss for each feedstock there was a TEY decrease of 25%-59%. Conclusion: Drought had a significant impact on the quality of all three bioenergy crops. In all cases where drought was experienced both the quality of the feedstock and the yield decreased. These drought induced effects could have significant economic impacts on biorefineries.

  2. Effect of wheat and Miscanthus straw biochars on soil enzymatic activity, ecotoxicity, and plant yield

    Science.gov (United States)

    Mierzwa-Hersztek, Monika; Gondek, Krzysztof; Klimkowicz-Pawlas, Agnieszka; Baran, Agnieszka

    2017-07-01

    The variety of technological conditions and raw materials from which biochar is produced is the reason why its soil application may have different effects on soil properties and plant growth. The aim of this study was to evaluate the effect of the addition of wheat straw and Miscanthus giganteus straw (5 t DM ha-1) and biochar obtained from this materials in doses of 2.25 and 5 t DM ha-1 on soil enzymatic activity, soil ecotoxicity, and plant yield (perennial grass mixture with red clover). The research was carried out under field conditions on soil with the granulometric composition of loamy sand. No significant effect of biochar amendment on soil enzymatic activity was observed. The biochar-amended soil was toxic to Vibrio fischeri and exhibited low toxicity to Heterocypris incongruens. Application of wheat straw biochar and M. giganteus straw biochar in a dose of 5 t DM ha-1 contributed to an increase in plant biomass production by 2 and 14%, respectively, compared to the soil with mineral fertilisation. Biochars had a more adverse effect on soil enzymatic activity and soil ecotoxicity to H. incongruens and V. fischeri than non-converted wheat straw and M. giganteus straw, but significantly increased the grass crop yield.

  3. Next generation biofuel engineering in prokaryotes

    Science.gov (United States)

    Gronenberg, Luisa S.; Marcheschi, Ryan J.; Liao, James C.

    2014-01-01

    Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production. PMID:23623045

  4. Life Cycle Assessment for Biofuels

    Science.gov (United States)

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  5. Time for commercializing non-food biofuel in China

    International Nuclear Information System (INIS)

    Wang, Qiang

    2011-01-01

    The booming automobile in China has added additional pressure on the country that needs to import almost 50% of its oil. Non-food-based biofuel is a viable fuel alternative for cars. China already has the required-foundation to commercialize non-food-based biofuel. Chinese crop straw and stock, energy crop, and woody biomass that could potentially be converted into energy are projected to be 700 million toe (ton of oil equivalent) in the near future. Meanwhile, Chinese food-based ethanol fuel industry ranks as the world's third after United States and Brazil. Several non-food-based ethanol plants are constructed or under constructed, one of which has been licensed. However, more efforts should be directed to commercializing non-food-based biofuel, including industrialized feedstock, strengthening key technology research, supporting private enterprise, and E10 upgrading to E20. The enormous increase in private ownership of car must compel China to commercialize biofuel. (author)

  6. Life Cycle Assessment of Miscanthus as a Fuel Alternative in District Heat Production

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Dalgaard, Tommy; Nguyen, Thu Lan Thi

    2013-01-01

    better than in the boilerfrom the stand point of GWP and savings in fossil fuels, but leads to a higher LU.A comparison between Miscanthus and NG shows that the former in spite of possessing advantage in reducing GWP and NRE use,additional land required for it could be seen as a disadvantage. Key words......This study assesses the environmental performance of district heat production based on Miscanthus as a fuel input and compares it with Natural Gas (NG). As a baseline scenario, we assume that the process of energy conversion from Miscanthus to heat takes place in a Combined Heat and Power (CHP...

  7. Combined production of free-range pigs and energy crops – animal behaviour and crop damages

    DEFF Research Database (Denmark)

    Horsted, Klaus; Kongsted, Anne Grete; Jørgensen, Uffe

    2012-01-01

    Intensive free-range pig production on open grasslands has disadvantages in that it creates nutrient hotspots and little opportunity for pigs to seek shelter from the sun. Combining a perennial energy crop and pig production might benefit the environment and animal welfare because perennial energy...... crops like willow (Salix sp.) and Miscanthus offer the pigs protection from the sun while reducing nutrient leaching from pig excrements due to their deep rooting system. The objectives of this study were to evaluate how season and stocking density of pigs in a free-range system with zones of willow...

  8. Biomass, biogas and biofuels

    International Nuclear Information System (INIS)

    Colonna, P.

    2011-01-01

    This article reviews the different ways to produce biofuels. It appears that there are 3 generations of biofuels. The first generation was based on the use of the energetic reserves of the plants for instance sugar from beetroot or starch from cereals or oil from oleaginous plants. The second generation is based on a more complete use of the plant, the main constituents of the plant: cellulose and lignin are turned into energy. The third generation of biofuels relies on the use of energy plants and algae. The second generation of biofuels reduces drastically the competition between an alimentary use and a non-alimentary use of plants. In 2008 the production of biofuels reached 43 Mtep which represents only 2% of all the energy used in the transport sector. The international agency for energy expects that the production of biofuels would be multiplied by a factor 6 (even 10 if inciting measures are taken) by 2030. (A.C.)

  9. Experimental Study on Dry Torrefaction of Beech Wood and Miscanthus

    Directory of Open Access Journals (Sweden)

    Eyerusalem M. Gucho

    2015-05-01

    Full Text Available Torrefaction is a thermochemical pre-treatment process for upgrading the properties of biomass to resemble those of fossil fuels such as coal. Biomass properties of particular interest are chemical composition, physical property and combustion characteristics. In this work, torrefaction of beech wood and miscanthus (sinensis was carried out to study the influence of torrefaction temperature (240–300 °C and residence time (15–150 min on the aforementioned properties of the biomass. Results of the study revealed that torrefaction temperature has a significant influence on mass and energy yields, whereas the influence of the residence time becomes more apparent for the higher torrefaction temperatures (>280 °C. Torrefied miscanthus resulted in higher energy densification compared to beech wood for a residence time of 30 min. A significant improvement in grindability of the torrefied beech wood was obtained even for lightly torrefied beech wood (at 280 °C and 15 min of residence time. Observation from the combustion study showed that the ignition temperature is slightly affected by the torrefaction temperature. As a whole, the torrefaction temperature determines the characteristics of the torrefied fuel compared to other process parameters like residence time. Furthermore, with optimal process conditions, torrefaction produces a solid fuel with combustion reactivity and porosity comparable to raw biomass, whereas grindability and heating value are comparable to low quality coal.

  10. Allies in Biofuels. Opportunities in the Dutch - Argentinean biofuels trade relation

    International Nuclear Information System (INIS)

    Verhagen, M.

    2007-01-01

    focuses on first generation biofuels and has only little experience with rapeseed, and second generation fuels. It is in both these areas that Dutch and European experience can play a role to develop Argentina's biofuels sector. Argentina, on the other hand can produce the amounts of biofuels that Europe and the Netherlands are demanding for in the short run. The outcome of research shows several recommendations to change biofuels policies for both countries. Furthermore, areas for cooperation were defined. In short: Dutch biofuels policy regarding international research and cooperation projects is too narrow. Argentina is an excellent partner but until now completely unnoticed. Teaming up with Brazil and making use of the same financial structures would be a possibility for the incorporation of Argentina in Dutch foreign biofuels activities; The Dutch initiative on criteria for sustainable production of biofuels appears overachieving, and hardly workable for producing countries. The dialogue with those countries - such as Argentina - should be intensified, in order to develop at least voluntary agreements, and to guarantee that both producer and consumer country are on the same team. The process is a two-way street; Argentina needs to stabilize policy development in order to bring stability to the biofuels sector and promote investments. Also, Argentina needs to develop a long-term strategy on biofuels and more actively pursue its national interests in the international arena specifically in terms of trade issues (WTO, normalization); Argentina's policy needs diversification. Brainstorming with experienced Dutch and European counterparts can distill instruments that are suitable for Argentina. Combined projects between Dutch and Argentinean institutes (SenterNovem, ECN, WUR, INTA) would be profitable in this area, as well as on more practical research regarding crop's life cycles, energy balances, technologies, etc. Modifications to policy and cooperation as described

  11. The Danish Biofuel Debate

    DEFF Research Database (Denmark)

    Hansen, Janus

    2014-01-01

    of biofuels enrol scientific authority to support their positions? The sociological theory of functional differentiation combined with the concept of advocacy coalition can help in exploring this relationship between scientific claims-making and the policy stance of different actors in public debates about...... biofuels. In Denmark two distinct scientific perspectives about biofuels map onto the policy debates through articulation by two competing advocacy coalitions. One is a reductionist biorefinery perspective originating in biochemistry and neighbouring disciplines. This perspective works upwards from...

  12. Biofuels in China.

    Science.gov (United States)

    Tan, Tianwei; Yu, Jianliang; Lu, Jike; Zhang, Tao

    2010-01-01

    The Chinese government is stimulating the biofuels development to replace partially fossil fuels in the transport sector, which can enhance energy security, reduce greenhouse gas emissions, and stimulate rural development. Bioethanol, biodiesel, biobutanol, biogas, and biohydrogen are the main biofuels developed in China. In this chapter, we mainly present the current status of biofuel development in China, and illustrate the issues of feedstocks, food security and conversion processes.

  13. Biofuels development in Sub-Saharan Africa: Are the policies conducive?

    International Nuclear Information System (INIS)

    Jumbe, Charles B.L.; Msiska, Frederick B.M.; Madjera, Michael

    2009-01-01

    This paper analyses national, regional and international biofuels policies and strategies to assess whether these policies promote or undermine the development of biofuels sector in Africa. Despite having a huge comparative advantage in land, labour and good climatic conditions favourable for the growing of energy crops, few countries in Sub-Saharan Africa have included biofuels strategies in their energy or national development policies. Further results show that while developed countries commit huge financial resources for research, technology development and the provision of tax-incentives to both producers and consumers, there is little government support for promoting biofuels in Africa. Although the consequences of biofuels on food supply remain uncertain, the mandatory blending of biofuels with fossil fuels by industrialized countries will create demand for land in Africa for the growing of energy crops for biofuels. This paper urgently calls upon national governments in Sub-Saharan Africa to develop appropriate strategies and regulatory frameworks to harness the potential economic opportunities from biofuels sector development, while protecting the environment and rural communities from the adverse effects of land alienation from the mainstream agriculture towards the growing of energy crops for biofuels at the expense of traditional food crops.

  14. Biofuels development in Sub-Saharan Africa: Are the policies conducive?

    Energy Technology Data Exchange (ETDEWEB)

    Jumbe, Charles B.L., E-mail: charlesjumbe@bunda.unima.m [University of Malawi, Centre for Agricultural Research and Development, Bunda College, P.O. Box 219, Lilongwe (Malawi); Msiska, Frederick B.M., E-mail: frederickmsiska@yahoo.co [Ministry of Agriculture and Food Security, P.O. Box 30134, Lilongwe 3 (Malawi); Madjera, Michael, E-mail: michael.madjera@onlinehome.d [Evangelical Church in Middle Germany, P.O. Box 1424, 39004 Magdeburg (Germany)

    2009-11-15

    This paper analyses national, regional and international biofuels policies and strategies to assess whether these policies promote or undermine the development of biofuels sector in Africa. Despite having a huge comparative advantage in land, labour and good climatic conditions favourable for the growing of energy crops, few countries in Sub-Saharan Africa have included biofuels strategies in their energy or national development policies. Further results show that while developed countries commit huge financial resources for research, technology development and the provision of tax-incentives to both producers and consumers, there is little government support for promoting biofuels in Africa. Although the consequences of biofuels on food supply remain uncertain, the mandatory blending of biofuels with fossil fuels by industrialized countries will create demand for land in Africa for the growing of energy crops for biofuels. This paper urgently calls upon national governments in Sub-Saharan Africa to develop appropriate strategies and regulatory frameworks to harness the potential economic opportunities from biofuels sector development, while protecting the environment and rural communities from the adverse effects of land alienation from the mainstream agriculture towards the growing of energy crops for biofuels at the expense of traditional food crops.

  15. Biofuels development in Sub-Saharan Africa. Are the policies conducive?

    Energy Technology Data Exchange (ETDEWEB)

    Jumbe, Charles B.L. [University of Malawi, Centre for Agricultural Research and Development, Bunda College, P.O. Box 219, Lilongwe (Malawi); Msiska, Frederick B.M. [Ministry of Agriculture and Food Security, P.O. Box 30134, Lilongwe 3 (Malawi); Madjera, Michael [Evangelical Church in Middle Germany, P.O. Box 1424, 39004 Magdeburg (Germany)

    2009-11-15

    This paper analyses national, regional and international biofuels policies and strategies to assess whether these policies promote or undermine the development of biofuels sector in Africa. Despite having a huge comparative advantage in land, labour and good climatic conditions favourable for the growing of energy crops, few countries in Sub-Saharan Africa have included biofuels strategies in their energy or national development policies. Further results show that while developed countries commit huge financial resources for research, technology development and the provision of tax-incentives to both producers and consumers, there is little government support for promoting biofuels in Africa. Although the consequences of biofuels on food supply remain uncertain, the mandatory blending of biofuels with fossil fuels by industrialized countries will create demand for land in Africa for the growing of energy crops for biofuels. This paper urgently calls upon national governments in Sub-Saharan Africa to develop appropriate strategies and regulatory frameworks to harness the potential economic opportunities from biofuels sector development, while protecting the environment and rural communities from the adverse effects of land alienation from the mainstream agriculture towards the growing of energy crops for biofuels at the expense of traditional food crops. (author)

  16. Energy production on farms. Sustainability of energy crops

    International Nuclear Information System (INIS)

    Van Zeijts, H.

    1995-01-01

    In this article the results of a study on sustainability of energy crops are discussed. Contribution to the reduction of the greenhouse effect and other environmental effects were investigated for the Netherlands. The study assumed that energy crops are grown on set-aside land or grain land. Generating electricity and/or heat from hemp, reed, miscanthus, poplar and willow show the best prospects. These crops are sustainable and may in the future be economically feasible. Ethanol from winter wheat shows the most favourable environmental effects, but is not economically efficient. Liquid fuels from oil seed rape and sugar beet are not very sustainable. 2 tabs., 4 refs

  17. NREL biofuels program overview

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    The NREL Biofuels Program has been developing technology for conversion of biomass to transportation fuels with support from DOE Office of Transportation Technologies Biofuels System Program. This support has gone to both the National Renewable Energy Laboratory, and over 100 subcontractors in universities and industry. This overview will outline the value of the Biofuels development program to the Nation, the current status of the technology development, and what research areas still need further support and progress for the development of a biofuels industry in the US.

  18. Bio-fuel production potential in Romania

    International Nuclear Information System (INIS)

    Laurentiu, F.; Silvian, F.; Dumitru, F.

    2006-01-01

    The paper is based on the ESTO Study: Techno- Economic Feasibility of Large-Scale Production of Bio-Fuels in EU-Candidate Countries. Bio-fuel production has not been taken into account significantly until now in Romania, being limited to small- scale productions of ethanol, used mostly for various industrial purposes. However the climatic conditions and the quality of the soil are very suitable in the country for development of the main crops (wheat, sugar-beet, sunflower and rape-seed) used in bio-ethanol and bio-diesel production. The paper intended to consider a pertinent discussion of the present situation in Romania's agriculture stressing on the following essential items in the estimation of bio-fuels production potential: availability of feed-stock for bio-fuel production; actual productions of bio-fuels; fuel consumption; cost assessment; SWOT approach; expected trends. Our analysis was based on specific agricultural data for the period 1996-2000. An important ethanol potential (due to wheat, sugar-beet and maize cultures), as well as bio-diesel one (due to sun-flower and rape-seed) were predicted for the period 2005-2010 which could be exploited with the support of an important financial and technological effort, mainly from EU countries

  19. Forecast for biofuel trade in Europe

    International Nuclear Information System (INIS)

    Hektor, B.; Vinterbaeck, J.; Toro, A.de; Nilsson, Daniel

    1993-01-01

    One principal general conclusion is that the European biofuel market for the period up to the year 2000 will be competitive, dynamic and affected by technical development and innovations. That leads to the conclusion that prices will go down, which will increase the ability of biofuels to compete in the market. Still, biofuels will generally not be able to compete at the price level of fossil fuels in the world market, but will need support or protection to reach a competitive position. There are several reasons for support, e.g. offsetting the green-house effect and acid rain, conservation of the limited fossil fuel deposits, utilisation of local and domestic energy resources, etc. As energy crops in Europe are at an introductory stage, no large international trade can be expected within the next ten years. In this study it is assumed that some limited protective measures are imposed, which is a possible result of the energy and environmental policy currently discussed for the European Community, EC. The study implies that in the year 2000 it is possible to transport large quantities of biofuels to large energy consumers if taxes and other incentives now under discussion in the EC and national governments are introduced. The study also implies that in the year 2000 it is possible to utilise biofuels primarily in local and national markets. In the latter case, international trade will be reduced to minor spot quantities

  20. Soil denitrifier community size changes with land use change to perennial bioenergy cropping systems

    Science.gov (United States)

    Thompson, Karen A.; Deen, Bill; Dunfield, Kari E.

    2016-10-01

    Dedicated biomass crops are required for future bioenergy production. However, the effects of large-scale land use change (LUC) from traditional annual crops, such as corn-soybean rotations to the perennial grasses (PGs) switchgrass and miscanthus, on soil microbial community functioning is largely unknown. Specifically, ecologically significant denitrifying communities, which regulate N2O production and consumption in soils, may respond differently to LUC due to differences in carbon (C) and nitrogen (N) inputs between crop types and management systems. Our objective was to quantify bacterial denitrifying gene abundances as influenced by corn-soybean crop production compared to PG biomass production. A field trial was established in 2008 at the Elora Research Station in Ontario, Canada (n  =  30), with miscanthus and switchgrass grown alongside corn-soybean rotations at different N rates (0 and 160 kg N ha-1) and biomass harvest dates within PG plots. Soil was collected on four dates from 2011 to 2012 and quantitative PCR was used to enumerate the total bacterial community (16S rRNA) and communities of bacterial denitrifiers by targeting nitrite reductase (nirS) and N2O reductase (nosZ) genes. Miscanthus produced significantly larger yields and supported larger nosZ denitrifying communities than corn-soybean rotations regardless of management, indicating large-scale LUC from corn-soybean to miscanthus may be suitable in variable Ontario climatic conditions and under varied management, while potentially mitigating soil N2O emissions. Harvesting switchgrass in the spring decreased yields in N-fertilized plots, but did not affect gene abundances. Standing miscanthus overwinter resulted in higher 16S rRNA and nirS gene copies than in fall-harvested crops. However, the size of the total (16S rRNA) and denitrifying bacterial communities changed differently over time and in response to LUC, indicating varying controls on these communities.

  1. European energy crops overview. Country report for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Statens Planteavlsforsoeg, Tjele Denmark; Statens Jordbrugstekniske Forsoeg, Horsens Denmark

    1996-06-01

    Biomass constitutes a significant contribution to the Danish energy production and is a major tool in increasing the contribution from renewables. So far the focus has been on utilizing existing biomass residues like straw and forest residues and not energy crops. The government has agreed to carry out a demonstration and development programme on energy crops in order to analyse aspects of economy, energy, environment, nature conservancy and comerciality. Several plant species have been investigated for their potential as energy crops and overview information in presented on buchina, sunflower, knotweed, Jerusalem artichoke, false flax, reed Canary grass and corn cockle. More detailed descriptions are given on willow, Miscanthus, energy grain (grain whole crop) and rape which have been most intensively investigated. Rape has been the energy crop grown on the largest scale (40-50,000 ha) but the oil has not been used for energy purposes in Denmark. A research programme on the development of a low input production system for non-food rape is currently conducted. The perennial crops willow and Miscanthus are grown with low input of fertilizer and pesticides and are considered environmentally friendly. Willow-SRC is used as fuel at district heating plants, both commercially and for feasibility studies. Full-scale tests have been carried out on Miscanthus combustion in farm heating plant constructed for straw firing, and on co-combustion with coal at power stations. Grain whole crop (energy grain) has been combusted at a district heating plant, a CHP-plant and a power station. Co-combustion with coal was carried out at a CFB-boiler. Concerning ethanol based on energy crops, only a few activities are in progress. (EG) 89 refs.

  2. Environmental performance of Miscanthus as a fuel alternative for district heat production

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Sperling, K.; Dalgaard, Tommy

    2015-01-01

    scenarios: (i) in Combined Heat and Power (CHP) plant and (ii) in a Boiler (producing heat only). Biomass conversion to heat is also compared with the conversion of natural gas (NG). The environmental impact categories considered for the assessment are: Global Warming Potential (GWP), Non-Renewable Energy......This study discusses about the environmental performance of Miscanthus conversion to district heat. Life Cycle Impact Assessment (LCIA) is used as a tool to assess the environmental impacts related to the biomass conversion to heat. Energy conversion of Miscanthus is compared in two combustion...... (NRE) use and Land use (LU). The current study revealed that for 1 MJ of heat production, Miscanthus fired in the CHP plant would lead to a GWP at −0.071 kg CO2-eq, an NRE use −0.767-MJ primary, and LU 0.09 m2-a (square metre-annual). For the same heat output, Miscanthus fired in the boiler would lead...

  3. On the future prospects and limits of biofuels in Brazil, the US and EU

    International Nuclear Information System (INIS)

    Ajanovic, Amela; Haas, Reinhard

    2014-01-01

    Highlights: • Market prospects of biofuels are investigated up to 2030 for Brazil, the US and EU. • 1st generation biofuels are cost-effective under current tax policies. • Their potentials are restricted especially due to limited crops areas. • R and D especially for second generation biofuels has to be intensified. - Abstract: In the early 2000s high expectations existed regarding the potential contribution of biofuels to the reduction of greenhouse gas emissions and substitution of fossil fuels in transport. In recent years sobering judgments prevailed. The major barriers for a further expansion of biofuels are their high costs (compared to fossil fuels), moderate ecological performances, limited feedstocks for biofuel production and their competition with food production. The objective of this paper is to investigate the market prospects of biofuels up to the year 2030. It focuses on the three currently most important regions for biofuels production and use: the US, EU and Brazil which in 2010 accounted together for almost three-quarters of global biofuel supply. Our method of approach is based on a dynamic economic framework considering the major cost components of biofuels and corresponding technological learning with respect to capital costs. Moreover, for the analysis of the competitiveness of biofuels with fossil fuels also taxes are considered. The most important result is that under existing tax policies biofuels are cost-effective today and also for the next decades in the regions investigated. However, their potentials are restricted especially due to limited crops areas, and their environmental performance is currently rather modest. The major final conclusions are: (i) To reveal the real future market value of biofuels, a CO 2 based tax system should be implemented for all types of fuels providing a neutral environmental incentive for competition between all types of fossil and renewable fuels; (ii) Moreover, the research and development for

  4. Biofuels and Biotechnology: Cassava (Manihot esculenta) as a Research Model

    International Nuclear Information System (INIS)

    Cortes S, Simon; Chavarriaga, Paul; Lopez, Camilo

    2010-01-01

    Fuels such as ethanol and biodiesel, obtained from plants and their constituents, have recently received the world's attention as a true alternative to the global energy supply, mainly because they are cheaper and less contaminant of the environment than the currently used, non-renewable fossil fuels. Due to the pushing biofuel market, the world is currently experiencing an increase of agricultural land devoted to grow crops used to obtain them, like maize and sugar cane, as well as crops that have the potential to become new sources of biofuels. Similarly, this emerging market is boosting the basic research oriented towards obtaining better quality and yield in these crops. Plants that store high quantities of starch, simple sugars or oils, are the target of the biofuel industry, although the newest technologies use also cellulose as raw material to produce fuels. Cassava (Manihot esculenta) is widely grown in the tropics and constitutes a staple food for approximately 10% of the world population. The high starch content of its storage roots, together with the use of conventional and non-conventional breeding turn this crop into an option to obtain better adapted varieties for ethanol production. This manuscript reviews the current state of biofuels worldwide and at the national level,and discusses the benefits and challenges faced in terms of effect on the environment and the human food chain. Finally, it discusses the potential of cassava as a source of raw material for obtaining biofuels in Colombia.

  5. Enriching Genomic Resources and Transcriptional Profile Analysis of Miscanthus sinensis under Drought Stress Based on RNA Sequencing

    Directory of Open Access Journals (Sweden)

    Gang Nie

    2017-01-01

    Full Text Available Miscanthus × giganteus is wildly cultivated as a potential biofuel feedstock around the world; however, the narrow genetic basis and sterile characteristics have become a limitation for its utilization. As a progenitor of M. × giganteus, M. sinensis is widely distributed around East Asia providing well abiotic stress tolerance. To enrich the M. sinensis genomic databases and resources, we sequenced and annotated the transcriptome of M. sinensis by using an Illumina HiSeq 2000 platform. Approximately 316 million high-quality trimmed reads were generated from 349 million raw reads, and a total of 114,747 unigenes were obtained after de novo assembly. Furthermore, 95,897 (83.57% unigenes were annotated to at least one database including NR, Swiss-Prot, KEGG, COG, GO, and NT, supporting that the sequences obtained were annotated properly. Differentially expressed gene analysis indicates that drought stress 15 days could be a critical period for M. sinensis response to drought stress. The high-throughput transcriptome sequencing of M. sinensis under drought stress has greatly enriched the current genomic available resources. The comparison of DEGs under different periods of drought stress identified a wealth of candidate genes involved in drought tolerance regulatory networks, which will facilitate further genetic improvement and molecular studies of the M. sinensis.

  6. A roadmap for biofuels...

    NARCIS (Netherlands)

    Faaij, A.P.C.; Londo, H.M.

    2009-01-01

    Biofuels have been in the eye of the storm, in particular since 2008, when the food crisis was considered by many to be caused by the increased production of biofuels. Heavy criticism in public media made various governments, including the European Commission, reconsider their targets and ambitions

  7. Biofuels for sustainable transportation

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, S.

    2000-05-23

    Biomass is an attractive energy source, and transportation fuels made from biomass offer a number of benefits. Developing the technology to produce and use biofuels will create transportation fuel options that can positively impact the national energy security, the economy, and the environment. Biofuels include ethanol, methanol, biodiesel, biocrude, and methane.

  8. Algal Biofuels | Bioenergy | NREL

    Science.gov (United States)

    biofuels and bioproducts, Algal Research (2016) Process Design and Economics for the Production of Algal cyanobacteria, Nature Plants (2015) Acid-catalyzed algal biomass pretreatment for integrated lipid and nitrogen, we can indefinitely maintain the genetic state of the sample for future research in biofuels

  9. Recent Inventions and Trends in Algal Biofuels Research.

    Science.gov (United States)

    Karemore, Ankush; Nayak, Manoranjan; Sen, Ramkrishna

    2016-01-01

    In recent times, when energy crisis compounded by global warming and climate change is receiving worldwide attention, the emergence of algae, as a better feedstock for third-generation biofuels than energy crops or plants, holds great promise. As compared to conventional biofuels feedstocks, algae offer several advantages and can alone produce a significant amount of biofuels sustainably in a shorter period to fulfill the rising demand for energy. Towards commercialisation, there have been numerous efforts put for- ward for the development of algae-derived biofuel. This article reviews and summarizes the recent inventions and the current trends that are reported and captured in relevant patents pertaining to the novel methods of algae biomass cultivation and processing for biofuels and value-added products. In addition, the recent advancement in techniques and technologies for microalgal biofuel production has been highlighted. Various steps involved in the production of algal biofuels have been considered in this article. Moreover, the work that advances to improve the efficiency and cost-effectiveness of the processes for the manufacture of biofuels has been presented. Our survey was conducted in the patent databases: WIPO, Spacenet and USPTO. There are still some technological bottlenecks that could be overcome by designing advanced photobioreactor and raceway ponds, developing new and low cost technologies for biomass cultivation, harvesting, drying and extraction. Recent advancement in algae biofuels methods is directed toward developing efficient and integrated systems to produce biofuels by overcoming the current challenges. However, further research effort is required to scale-up and improve the efficiency of these methods in the upstream and downstream technologies to make the cost of biofuels competitive with petroleum fuels.

  10. Assessment of pelletized biofuels

    International Nuclear Information System (INIS)

    Samson, R.; Duxbury, P.; Drisdelle, M.; Lapointe, C.

    2000-04-01

    There has been an increased interest in the development of economical and convenient renewable energy fuels, resulting from concerns about climate change and rising oil prices. An opportunity to use agricultural land as a means of producing renewable fuels in large quantities, relying on wood and agricultural residues only has come up with recent advances in biomass feedstock development and conversion technologies. Increasing carbon storage in the landscape and displacing fossil fuels in combustion applications can be accomplished by using switchgrass and short rotation willow which abate greenhouse gas emissions. The potential of switchgrass and short rotation willow, as well as other biomass residues as new feedstocks for the pellet industry is studied in this document. Higher throughput rates are facilitated by using switchgrass, which shows potential as a pelleting feedstock. In addition, crop drying requires less energy than wood. By taking into consideration energy for switchgrass production, transportation to the conversion facility, preprocessing, pelleting, and marketing, the overall energy balance of switchgrass is 14.5:1. Research on alfalfa pelleting can be applied to switchgrass, as both exhibit a similar behaviour. The length of chop, the application of high temperature steam and the use of a die with a suitable length/diameter ratio are all factors that contribute to the successful pelleting of switchgrass. Switchgrass has a similar combustion efficiency (82 to 84 per cent) to wood (84 to 86 per cent), as determined by combustion trials conducted by the Canada Centre for Mineral and Energy Technology (CANMET) in the Dell-Point close coupled gasifier. The energy content is 96 per cent of the energy of wood pellets on a per tonne basis. Clinker formation was observed, which necessitated some adjustments of the cleaner grate settings. While stimulating rural development and export market opportunities, the high yielding closed loop biofuels show

  11. Life Cycle Assessment of Miscanthus as a Fuel Alternative in District Heat Production

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Dalgaard, Tommy; Nguyen, T Lan T

    2013-01-01

    ) plant. Alternatively, we have simulated the combustion process of Miscanthus in a boiler, where only heat is produced. For NG similar scenarios are examined. Life Cycle Assessment (LCA) in relation to 1 MJ of heat production with Miscanthus fired in a CHP would lead to a Global Warming Potential (GWP......This study assesses the environmental performance of district heat production based on Miscanthus as a fuel input and compares it with Natural Gas (NG). As a baseline scenario, we assume that the process of energy conversion from Miscanthus to heat takes place in a Combined Heat and Power (CHP......) of -0.071 kg CO2-eq, a Non-Renewable Energy (NRE) use of -0.767 MJ primary, and 0.09 m2 Land Use (LU). In contrast, production of 1 MJ of heat with Miscanthus fired in a boiler would lead to a GWP of 0.005 kg CO2-eq, NRE use 0.172 MJ primary, and land use 0.063 m2-a. Miscanthus fired in a CHP performs...

  12. Variation in chilling tolerance for photosynthesis and leaf extension growth among genotypes related to the C-4 grass Miscanthus xgiganteus

    Energy Technology Data Exchange (ETDEWEB)

    Glowacka, K; Adhikari, S; Peng, JH; Gifford, J; Juvik, JA; Long, SP; Sacks, EJ

    2014-09-08

    The goal of this study was to identify cold-tolerant genotypes within two species of Miscanthus related to the exceptionally chilling-tolerant C-4 biomass crop accession: M. xgiganteus 'Illinois' (Mxg) as well as in other Mxg genotypes. The ratio of leaf elongation at 10 degrees C/5 degrees C to that at 25 degrees C/25 degrees C was used to identify initially the 13 most promising Miscanthus genotypes out of 51 studied. Net leaf CO2 uptake (A(sat)) and the maximum operating efficiency of photosystem II (Phi(PSII)) were measured in warm conditions (25 degrees C/20 degrees C), and then during and following a chilling treatment of 10 degrees C/5 degrees C for 11 d. Accessions of M. sacchariflorus (Msa) showed the smallest decline in leaf elongation on transfer to chilling conditions and did not differ significantly from Mxg, indicating greater chilling tolerance than diploid M. sinensis (Msi). Msa also showed the smallest reductions in A(sat) and Phi(PSII), and greater chilling-tolerant photosynthesis than Msi, and three other forms of Mxg, including new triploid accessions and a hexaploid Mxg 'Illinois'. Tetraploid Msa 'PF30153' collected in Gifu Prefecture in Honshu, Japan did not differ significantly from Mxg 'Illinois' in leaf elongation and photosynthesis at low temperature, but was significantly superior to all other forms of Mxg tested. The results suggested that the exceptional chilling tolerance of Mxg 'Illinois' cannot be explained simply by the hybrid vigour of this intraspecific allotriploid. Selection of chilling-tolerant accessions from both of Mxg's parental species, Msi and Msa, would be advisable for breeding new highly chilling-tolerant Mxg genotypes.

  13. The role of biochemical engineering in the production of biofuels from microalgae.

    Science.gov (United States)

    Costa, Jorge Alberto Vieira; de Morais, Michele Greque

    2011-01-01

    Environmental changes that have occurred due to the use of fossil fuels have driven the search for alternative sources that have a lower environmental impact. First-generation biofuels were derived from crops such as sugar cane, corn and soybean, which contribute to water scarcity and deforestation. Second-generation biofuels originated from lignocellulose agriculture and forest residues, however these needed large areas of land that could be used for food production. Based on technology projections, the third generation of biofuels will be derived from microalgae. Microalgae are considered to be an alternative energy source without the drawbacks of the first- and second-generation biofuels. Depending upon the growing conditions, microalgae can produce biocompounds that are easily converted into biofuels. The biofuels from microalgae are an alternative that can keep the development of human activity in harmony with the environment. This study aimed to present the main biofuels that can be derived from microalgae. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. A stochastic analysis of the decision to produce biomass crops in Ireland

    International Nuclear Information System (INIS)

    Clancy, Daragh; Breen, James P.; Thorne, Fiona; Wallace, Michael

    2012-01-01

    There is increasing interest in biomass crops as an alternative farm activity. However farmer concerns about the production and financial risks associated with growing these crops may be impeding the actual rates of adoption. The uncertainty surrounding risky variables such as the costs of production, yield level, price per tonne and opportunity cost of land make it difficult to accurately calculate the returns to biomass crops. Their lengthy production lifespan may only serve to heighten the level of risk that affects key variables. A stochastic budgeting model is used to estimate distributions of returns from willow and miscanthus in Ireland. The opportunity cost of land is accounted for through the inclusion of the foregone returns from selected conventional agricultural activities. The impact on biomass returns of bioremediation is also examined. The Net Present Values (NPVs) of various biomass investment options are simulated to ascertain the full distribution of possible returns. The results of these simulations are then compared using their respective Cumulative Distribution Functions (CDFs) and the investments are ranked using Stochastic Efficiency with Respect to a Function (SERF). While the distributions of investment returns for miscanthus are wider than those of willow, implying greater risk, the distribution of willow returns is predominantly to the left of zero indicating that such an investment has an extremely high probability of generating a negative return. The results from the SERF analysis show that miscanthus generally has higher certainty equivalents (CEs), and therefore farmers would be more likely to invest in miscanthus rather than willow. -- Highlights: ► We develop a stochastic budgeting model to capture uncertainty in key variables. ► Farmers with higher levels of risk aversion would be unwilling to invest in biomass crops. ► Miscanthus has a greater probability of making a profit than willow. ► Bioremediation can help to offset

  15. Growth parameters influencing uptake of chlordecone by Miscanthus species.

    Science.gov (United States)

    Liber, Yohan; Létondor, Clarisse; Pascal-Lorber, Sophie; Laurent, François

    2018-05-15

    Because of its high persistence in soils, t 1/2 =30years, chlordecone (CLD) was classified as a persistent organic pollutant (POP) by the Stockholm Convention in 2009.The distribution of CLD over time has been heterogeneous, ranging from banana plantations to watersheds, and contaminating all environmental compartments. The aims of this study were to (i) evaluate the potential of Miscanthus species to extract chlordecone from contaminated soils, (ii) identify the growth parameters that influence the transfer of CLD from the soil to aboveground plant parts. CLD uptake was investigated in two species of Miscanthus, C4 plants adapted to tropical climates. M. sinensis and M.×giganteus were transplanted in a soil spiked with [ 14 C]CLD at environmental concentrations (1mgkg -1 ) under controlled conditions. Root-shoot transfer of CLD was compared in the two species after two growing periods (2 then 6months) after transplantation. CLD was found in all plant organs, roots, rhizomes, stems, leaves, and even flower spikes. The highest concentration of CLD was in the roots, 5398±1636 (M.×giganteus) and 14842±3210ngg -1 DW (M. sinensis), whereas the concentration in shoots was lower, 152±28 (M.×giganteus) and 266±70ngg -1 DW (M. sinensis) in soil contaminated at 1mgkg -1 . CLD translocation led to an acropetal gradient from the bottom to the top of the plants. CLD concentrations were also monitored over two complete growing periods (10months) in M. sinensis grown in 8.05mgkg -1 CLD contaminated soils. Concentrations decreased in M. sinensis shoots after the second growth period due to the increase in organic matters in the vicinity of the roots. Results showed that, owing to their respective biomass production, the two species were equally efficient at phytoextraction of CLD. Copyright © 2017. Published by Elsevier B.V.

  16. Center for Advanced Biofuel Systems (CABS) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kutchan, Toni M. [Donald Danforth Plant Science Center, St. Louis, MO (United States)

    2015-12-02

    One of the great challenges facing current and future generations is how to meet growing energy demands in an environmentally sustainable manner. Renewable energy sources, including wind, geothermal, solar, hydroelectric, and biofuel energy systems, are rapidly being developed as sustainable alternatives to fossil fuels. Biofuels are particularly attractive to the U.S., given its vast agricultural resources. The first generation of biofuel systems was based on fermentation of sugars to produce ethanol, typically from food crops. Subsequent generations of biofuel systems, including those included in the CABS project, will build upon the experiences learned from those early research results and will have improved production efficiencies, reduced environmental impacts and decreased reliance on food crops. Thermodynamic models predict that the next generations of biofuel systems will yield three- to five-fold more recoverable energy products. To address the technological challenges necessary to develop enhanced biofuel systems, greater understanding of the non-equilibrium processes involved in solar energy conversion and the channeling of reduced carbon into biofuel products must be developed. The objective of the proposed Center for Advanced Biofuel Systems (CABS) was to increase the thermodynamic and kinetic efficiency of select plant- and algal-based fuel production systems using rational metabolic engineering approaches grounded in modern systems biology. The overall strategy was to increase the efficiency of solar energy conversion into oils and other specialty biofuel components by channeling metabolic flux toward products using advanced catalysts and sensible design:1) employing novel protein catalysts that increase the thermodynamic and kinetic efficiencies of photosynthesis and oil biosynthesis; 2) engineering metabolic networks to enhance acetyl-CoA production and its channeling towards lipid synthesis; and 3) engineering new metabolic networks for the

  17. Potential emissions reduction in road transport sector using biofuel in developing countries

    Science.gov (United States)

    Liaquat, A. M.; Kalam, M. A.; Masjuki, H. H.; Jayed, M. H.

    2010-10-01

    Use of biofuels as transport fuel has high prospect in developing countries as most of them are facing severe energy insecurity and have strong agricultural sector to support production of biofuels from energy crops. Rapid urbanization and economic growth of developing countries have spurred air pollution especially in road transport sector. The increasing demand of petroleum based fuels and their combustion in internal combustion (IC) engines have adverse effect on air quality, human health and global warming. Air pollution causes respiratory problems, adverse effects on pulmonary function, leading to increased sickness absenteeism and induces high health care service costs, premature birth and even mortality. Production of biofuels promises substantial improvement in air quality through reducing emission from biofuel operated automotives. Some of the developing countries have started biofuel production and utilization as transport fuel in local market. This paper critically reviews the facts and prospects of biofuel production and utilization in developing countries to reduce environmental pollution and petro dependency. Expansion of biofuel industries in developing countries can create more jobs and increase productivity by non-crop marginal lands and wastelands for energy crops plantation. Contribution of India and China in biofuel industry in production and utilization can dramatically change worldwide biofuel market and leap forward in carbon cut as their automotive market is rapidly increasing with a souring proportional rise of GHG emissions.

  18. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Wang, Guangtao; Møller, H.B.

    2008-01-01

    . The conversion into biogas in anaerobic digestion plants shows however much lower specific methane yields for the raw perennial crops like miscanthus and willow due to their lignocellulosic structure. Without pretreatment the net energy gain is therefore lower for the perennials than for corn. When applying wet...

  19. Corn stover for advanced biofuels perspectives of a soil “Lorax”

    Science.gov (United States)

    Crop residues like corn (Zea Mays L) stover are potential feedstock for production of advanced biofuels (e.g., cellulosic ethanol). Utilization of residue like stover for biofuel feedstock may provide economic and greenhouse gas mitigation benefits; however, harvesting these materials must be done i...

  20. Bio-fuel co-products in France: perspectives and consequences for cattle food

    International Nuclear Information System (INIS)

    2010-01-01

    The development of bio-fuels goes along with that of co-products which can be used to feed animals. After having recalled the political context which promotes the development of renewable energies, this document aims at giving an overview of the impact of bio-fuel co-products on agriculture economy. It discusses the production and price evolution for different crops

  1. The life cycle emission of greenhouse gases associated with plant oils used as biofuel

    NARCIS (Netherlands)

    Reijnders, L.

    2011-01-01

    Life cycle assessment of greenhouse gas emissions associated with biofuels should not only consider fossil fuel inputs, but also N2O emissions and changes in carbon stocks of (agro) ecosystems linked to the cultivation of biofuel crops. When this is done, current plant oils such as European rapeseed

  2. Reconciling biofuels, sustainability and commodities demand. Pitfalls and policy options

    International Nuclear Information System (INIS)

    Uslu, A.; Bole, T.; Londo, M.; Pelkmans, L.; Berndes, G.; Prieler, S.; Fischer, G.; Cueste Cabal, H.

    2010-06-01

    Increasing fossil fuel prices, energy security considerations and environmental concerns, particularly concerning climate change, have motivated countries to explore alternative energy sources including biofuels. Global demand for biofuels has been rising rapidly due to biofuel support policies established in many countries. However, proposed strong links between biofuels demand and recent years' high food commodity prices, and notions that increasing biofuels production might bring about serious negative environmental impacts, in particularly associated with the land use change to biofuel crops, have shifted public enthusiasm about biofuels. In this context, the ELOBIO project aims at shedding further light to these aspects of biofuel expansion by collecting and reviewing the available data, and also developing strategies to decrease negative effects of biofuels while enabling their positive contribution to climate change, security of supply and rural development. ELOBIO considers aspects associated with both 1st and 2nd generation biofuels, hence analyses effects on both agricultural commodity markets and lignocellulosic markets. This project, funded by the Intelligent Energy Europe programme, consists of a review of current experiences with biofuels and other renewable energy policies and their impacts on other markets, iterative stakeholder-supported development of low-disturbing biofuels policies, model supported assessment of these policies' impacts on food, feed and lignocellulosic markets, and finally an assessment of the effects of selected optimal policies on biofuels costs and potentials. Results of the ELOBIO study show that rapid biofuel deployment without careful monitoring of consequences and implementation of mitigating measures risks leading to negative consequences. Implementing ambitious global biofuel targets for 2020, based on current 1st generation technologies, can push international agricultural commodity prices upwards and increase crop

  3. Biofuel Feedstock Assessment for Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  4. Prospects of using algae in biofuel production

    Directory of Open Access Journals (Sweden)

    Y. I. Maltsev

    2017-08-01

    Full Text Available The development of industry, agriculture and the transport sector is associated with the use of various energy sources. Renewable energy sources, including biofuels, are highly promising in this respect. As shown by a number of scientific studies, a promising source for biofuel production that would meet modern requirements may be algal biomass. After activation of the third generation biodiesel production it was assumed that the algae would become the most advantageous source, because it is not only able to accumulate significant amounts of lipids, but could reduce the of agricultural land involved in biofuel production and improve air quality by sequestering CO2. However, a major problem is presented by the cost of algae biomass cultivation and its processing compared to the production of biodiesel from agricultural crops. In this regard, there are several directions of increasing the efficiency of biodiesel production from algae biomass. The first direction is to increase lipid content in algae cells by means of genetic engineering. The second direction is connected with the stimulation of increased accumulation of lipids by stressing algae. The third direction involves the search for new, promising strains of algae that will be characterized by faster biomass accumulation rate, higher content of TAG and the optimal proportions of accumulated saturated and unsaturated fatty acids compared to the already known strains. Recently, a new approach in the search for biotechnologically valuable strains of algae has been formed on the basis of predictions of capacity for sufficient accumulation of lipids by clarifying the evolutionary relationships within the major taxonomic groups of algae. The outcome of these studies is the rapid cost reduction of biofuel production based on algae biomass. All this emphasizes the priority of any research aimed at both improving the process of production of biofuels from algae, and the search for new sources for

  5. Biofuels for transport

    International Nuclear Information System (INIS)

    2004-01-01

    In the absence of strong government policies, the IEA projects that the worldwide use of oil in transport will nearly double between 2000 and 2030, leading to a similar increase in greenhouse gas emissions. Biofuels, such as ethanol, bio-diesel, and other liquid and gaseous fuels, could offer an important alternative to petroleum over this time frame and help reduce atmospheric pollution. This book looks at recent trends in biofuel production and considers what the future might hold if such alternatives were to displace petroleum in transport. The report takes a global perspective on the nascent biofuels industry, assessing regional similarities and differences as well as the cost and benefits of the various initiatives being undertaken around the world. In the short term, conventional biofuel production processes in IEA countries could help reduce oil use and thence greenhouse gas emissions, although the costs may be high. In the longer term, possibly within the next decade, advances in biofuel production and the use of new feedstocks could lead to greater, more cost-effective reductions. Countries such as Brazil are already producing relatively low-cost biofuels with substantial reductions in fossil energy use and greenhouse gas emissions. This book explores the range of options on offer and asks whether a global trade in biofuels should be more rigorously pursued

  6. Biogas Production from Energy Crops and Agriculture Residues

    DEFF Research Database (Denmark)

    Wang, Guangtao

    and wet explosion pretreated energy crops and agriculture residues with swine manure at various volatile solids (VS) ratio between crop and manure was carried out by batch tests and continuous experiments. The efficiency of the co-digestion experiment was evaluated based on (a) the methane potential......In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according...... of perennial crops was tested as a storage method and pretreatment method for enhancement of the biodegradability of the crops. The efficiency of the silage process was evaluated based on (a) the amount of biomass loss during storage and (b) the effect of the silage on methane potential. Co-digestion of raw...

  7. The biofuels in France

    International Nuclear Information System (INIS)

    2006-04-01

    The biofuels are liquid renewable energies sources resulting from vegetal matters. Today are two channels of biofuels: the ethanol channel for gasoline and the vegetal oils channel for the diesel. In the first part, the document presents the different channels and the energy efficiency of the products. It shows in the second part the advantages for the environment (CO 2 accounting) and for the energy independence. It discusses then the future developments and the projects. The fourth part is devoted to the legislation, regulations, taxes and financial incentives. The last part presents the french petroleum industry actions and attitudes in the framework of the biofuels development. (A.L.B.)

  8. Biofuels Feedstock Development Program annual progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy`s Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  9. Biofuels Feedstock Development Program annual progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy's Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  10. Biofuels: which interest, which perspectives?

    International Nuclear Information System (INIS)

    2006-01-01

    This paper is a synthesis of several studies concerning the production and utilization of bio-fuels: energy balance and greenhouse effect of the various bio-fuel systems; economical analysis and profitability of bio-fuel production; is the valorization of bio-fuel residues and by-products in animal feeding a realistic hypothesis?; assessment of the cost for the community due to tax exemption for bio-fuels

  11. Relative Greenhouse Gas Abatement Cost Competitiveness of Biofuels in Germany

    Directory of Open Access Journals (Sweden)

    Markus Millinger

    2018-03-01

    Full Text Available Transport biofuels derived from biogenic material are used for substituting fossil fuels, thereby abating greenhouse gas (GHG emissions. Numerous competing conversion options exist to produce biofuels, with differing GHG emissions and costs. In this paper, the analysis and modeling of the long-term development of GHG abatement and relative GHG abatement cost competitiveness between crop-based biofuels in Germany are carried out. Presently dominant conventional biofuels and advanced liquid biofuels were found not to be competitive compared to the substantially higher yielding options available: sugar beet-based ethanol for the short- to medium-term least-cost option and substitute natural gas (SNG for the medium to long term. The competitiveness of SNG was found to depend highly on the emissions development of the power mix. Silage maize-based biomethane was found competitive on a land area basis, but not on an energetic basis. Due to land limitations, as well as cost and GHG uncertainty, a stronger focus on the land use of crop-based biofuels should be laid out in policy.

  12. Biofuels - 5 disturbing questions

    International Nuclear Information System (INIS)

    Legalland, J.P.; Lemarchand, J.L.

    2008-01-01

    Initially considered as the supreme weapon against greenhouse gas emissions, biofuels are today hold responsible to all harms of the Earth: leap of agriculture products price, deforestation, food crisis. Considered some time ago as the perfect clean substitute to petroleum, biofuels are now suspected to have harmful effects on the environment. Should it be just an enormous technical, environmental and human swindle? Should we abandon immediately biofuels to protect the earth and fight the threatening again starvation? Should we wait for the second generation of efficient biofuels, made from non food-derived products and cultivation wastes? This book analyses this delicate debate through 5 main questions: do they starve the world? Are they a clean energy source? Do they contribute to deforestation? Are they economically practicable? Is the second generation ready? (J.S.)

  13. Market possibilities for biofuels

    International Nuclear Information System (INIS)

    Hektor, B.

    1992-01-01

    The market for biofuels in Sweden after introduction of a proposed CO 2 -tax on fossil fuels is forecast. The competition between biofuels, fossil fuels and electricity is described for important market segments such as: Paper industry, Sawmills, Other energy-intensive industry, Power and heat producers, small Heat producers, and for Space heating of one-family houses. A market increase of the use of biofuels is probable for the segment small (district) heating centrals, 10 TWh in the next ten year period and even more during a longer period. Other market segments will not be much affected. An increased use of biofuels in paper and pulp industry will not influence the fuel market, since the increase will happen in the industry's normal lumber purchase. (2 figs., 18 tabs.)

  14. The biofuels, situation, perspectives

    International Nuclear Information System (INIS)

    Acket, C.

    2007-03-01

    The climatic change with the fight against the greenhouse effect gases, sees the development of ''clean'' energy sources. Meanwhile the biofuels remain penalized by their high production cost, the interest is increasing. Facing their development ecologists highlight the environmental and social negative impacts of the development of the biofuels. The author aims to take stock on the techniques and the utilizations. (A.L.B.)

  15. An Assessment of Thailand’s Biofuel Development

    Directory of Open Access Journals (Sweden)

    Pujan Shrestha

    2013-04-01

    Full Text Available The paper provides an assessment of first generation biofuel (ethanol and biodiesel development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues—environmental, socio-economic and food security aspects. The policies, measures and incentives for the development of biofuel include targets, blending mandates and favorable tax schemes to encourage production and consumption of biofuels. Biofuel development improves energy security, rural income and reduces greenhouse gas (GHG emissions, but issues related to land and water use and food security are important considerations to be addressed for its large scale application. Second generation biofuels derived from agricultural residues perform favorably on environmental and social sustainability issues in comparison to first generation biofuel sources. The authors estimate that sustainably-derived agricultural crop residues alone could amount to 10.4 × 106 bone dry tonnes per year. This has the technical potential of producing 1.14–3.12 billion liters per year of ethanol to possibly displace between 25%–69% of Thailand’s 2011 gasoline consumption as transportation fuel. Alternatively, the same amount of residue could provide 0.8–2.1 billion liters per year of diesel (biomass to Fischer-Tropsch diesel to potentially offset 6%–15% of national diesel consumption in the transportation sector.

  16. The changing dynamics between biofuels and commodity markets

    International Nuclear Information System (INIS)

    Bole, T.; Londo, H.M.

    2008-06-01

    The recent development of the biofuel industries coincides with significant increases in prices of basic commodities such as food and feed. Against popular perception, it appears that there is not a straightforward causal relationship between the two; there are a number of factors that determine the level and strength of the impact of the biofuels sector on other commodities. For the case of markets of agricultural raw material these factors include the amount of feedstock claimed by the biofuels industry, its relative purchasing power, the responsiveness of the agricultural sector to price incentives and availability of substitutes. For consumer food markets we must additionally consider the relative share of agricultural input costs in the retail food price and the demand elasticity. Based on the analysis of these factors and estimates of other studies that attempted to quantify the price impacts of biofuels on crop prices, we conclude that the impact of biofuels is relatively small, especially when compared with other causes that triggered the recent price increases. We end the paper with a recommendation for future efforts in curbing food price inflations while keeping ambitious biofuel targets and suggest a shift in focus of the debate around the social costs of biofuels

  17. Assessment of biofuels supporting policies using the BioTrans model

    International Nuclear Information System (INIS)

    Lensink, Sander; Londo, Marc

    2010-01-01

    The introduction of advanced, 2nd generation biofuels is a difficult to forecast process. Policies may impact the timing of their introduction and the future biofuels mix. The least-cost optimization model BioTrans supports policy analyses on these issues. It includes costs for all parts of the supply chain, and endogenous learning for all biofuels technologies, including cost reductions through scale. BioTrans shows that there are significant lock-in effects favouring traditional biofuels, and that the optimal biofuels mix by 2030 is path dependent. The model captures important barriers for the introduction of emerging technologies, thereby providing valuable quantitative information that can be used in analyses of biofuels supporting policies. It is shown that biodiesel from oil crops will remain a cost effective way of producing biofuels in the medium term at moderate target levels. Aiming solely at least-cost biofuel production is in conflict with a longer term portfolio approach on biofuels, and the desire to come to biofuels with the lowest greenhouse gas emissions. Lowering the targets because of environmental constraints delays the development of 2nd generation biofuels, unless additional policy measures (such as specific sub targets for these fuels) are implemented.

  18. REFUEL. Potential and realizable cost reduction of 2nd generation biofuels

    International Nuclear Information System (INIS)

    Londo, H.M.; Deurwaarder, E.P.; Lensink, S.M.; Junginer, H.M.; De Wit, M.

    2007-05-01

    In the REFUEL project steering possibilities for and impacts of a greater market penetration of biofuels are assessed. Several benefits are attributed to second generation biofuels, fuels made from lignocellulosic feedstock, such as higher productivity, less impacts on land use and food markets and improved greenhouse gas emission reductions. The chances of second generation biofuels entering the market autonomously are assessed and several policy measures enhancing those changes are evaluated. It shows that most second generation biofuels might become competitive in the biofuel market, if the production of biodiesel from oil crops becomes limited by land availability. Setting high biofuel targets, setting greenhouse gas emissions caps on biofuel and setting subtargets for second generation biofuels, all have a similar impact of stimulating second generation's entrance into the biofuel market. Contrary, low biofuel targets and high imports can have a discouraging impact on second generation biofuel development, and thereby on overall greenhouse gas performance. Since this paper shows preliminary results from the REFUEL study, one is advised to contact the authors before quantitatively referring to this paper

  19. Multi-farm economic analysis of perennial energy crops in Central Greece, taking into account the CAP reform

    International Nuclear Information System (INIS)

    Lychnaras, Vassilis; Schneider, Uwe A.

    2011-01-01

    This study analyses farm level economic impacts of biomass production from perennial crops including Arundo donax L. (arundo), Miscanthus x giganteus (miscanthus), Panicum virgatum L. (switchgrass) and Cynara cardunculus L. (cardoon). Regional biomass supply curves are estimated with a dynamic, multi-farm, mathematical programming model. Micro-economic data for the model are generated from farm surveys covering 52 farms containing a total of 400 parcels, in Central Greece. The study also examines the potential effects of the Common Agricultural Policy reform in 2003 on regional biomass supply. Simulations show that the policy reform toward decoupled subsidies lowers the cost of biomass between 15 and 25 euro per tonne. Switchgrass appears to be the most attractive option, followed by cardoon and miscanthus. Due to high specific machinery cost, arundo is never preferred. Relative to the agricultural policy setting of Agenda 2000, the biomass potential increases more for farms of small economic size and farms with a higher share of cotton. (author)

  20. Multi-farm economic analysis of perennial energy crops in Central Greece, taking into account the CAP reform

    Energy Technology Data Exchange (ETDEWEB)

    Lychnaras, Vassilis [Centre for Planning and Economic Research, 11, Amerikis str., 106 72 Athens (Greece); Schneider, Uwe A. [Research Unit Sustainability and Global Change, University of Hamburg, KlimaCampus Hamburg, Bundesstrasse 55, D-20146 Hamburg (Germany)

    2011-01-15

    This study analyses farm level economic impacts of biomass production from perennial crops including Arundo donax L. (arundo), Miscanthus x giganteus (miscanthus), Panicum virgatum L. (switchgrass) and Cynara cardunculus L. (cardoon). Regional biomass supply curves are estimated with a dynamic, multi-farm, mathematical programming model. Micro-economic data for the model are generated from farm surveys covering 52 farms containing a total of 400 parcels, in Central Greece. The study also examines the potential effects of the Common Agricultural Policy reform in 2003 on regional biomass supply. Simulations show that the policy reform toward decoupled subsidies lowers the cost of biomass between 15 and 25 euro per tonne. Switchgrass appears to be the most attractive option, followed by cardoon and miscanthus. Due to high specific machinery cost, arundo is never preferred. Relative to the agricultural policy setting of Agenda 2000, the biomass potential increases more for farms of small economic size and farms with a higher share of cotton. (author)

  1. A Watershed-Scale Agent-Based Model Incorporating Agent Learning and Interaction of Farmers' Decisions Subject to Carbon and Miscanthus Prices

    Science.gov (United States)

    Ng, T.; Eheart, J.; Cai, X.; Braden, J. B.

    2010-12-01

    Agricultural watersheds are coupled human-natural systems where the land use decisions of human agents (farmers) affect surface water quality, and in turn, are affected by the weather and yields. The reliable modeling of such systems requires an approach that considers both the human and natural aspects. Agent-based modeling (ABM), representing the human aspect, coupled with hydrologic modeling, representing the natural aspect, is one such approach. ABM is a relatively new modeling paradigm that formulates the system from the perspectives of the individual agents, i.e., each agent is modeled as a discrete autonomous entity with distinct goals and actions. The primary objective of this study is to demonstrate the applicability of this approach to agricultural watershed management. This is done using a semi-hypothetical case study of farmers in the Salt Creek watershed in East-Central Illinois under the influence markets for carbon and second-generation bioenergy crop (specifically, miscanthus). An agent-based model of the system is developed and linked to a hydrologic model of the watershed. The former is based on fundamental economic and mathematical programming principles, while the latter is based on the Soil and Water Assessment Tool (SWAT). Carbon and second-generation bioenergy crop markets are of interest here due to climate change and energy independence concerns. The agent-based model is applied to fifty hypothetical heterogeneous farmers. The farmers' decisions depend on their perceptions of future conditions. Those perceptions are updated, according to a pre-defined algorithm, as the farmers make new observations of prices, costs, yields and the weather with time. The perceptions are also updated as the farmers interact with each other as they share new information on initially unfamiliar activities (e.g., carbon trading, miscanthus cultivation). The updating algorithm is set differently for different farmers such that each is unique in his processing of

  2. Remediation of an acidic mine spoil: Miscanthus biochar and lime amendment affects metal availability, plant growth and soil enzymatic activity

    Science.gov (United States)

    Biochar is proposed as an amendment for mine spoil remediation; however, its effectiveness at achieving this goal remains unclear. Miscanthus (Miscanthus giganteus) biochar was tested for potentially improving acidic mine spoil (pH < 3; Formosa mine near Riddle, Oregon) health conditions by sequeste...

  3. Biotechnology Towards Energy Crops.

    Science.gov (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  4. Sustainable Process Design of Lignocellulose based Biofuel

    DEFF Research Database (Denmark)

    Mangnimit, Saranya; Malakul, Pomthong; Gani, Rafiqul

    the production and use of alternative and sustainable energy sources as rapidly as possible. Biofuel is a type of alternative energy that can be produced from many sources including sugar substances (such as sugarcane juice and molasses), starchy materials (such as corn and cassava), and lignocellulosic...... materials such as agricultural residual, straw and wood chips, the residual from wood industry. However, those sugar and starchy materials can be used not only to make biofuels but they are also food sources. Thus, lignocellulosic materials are interesting feed-stocls as they are inexpensive, abundantly...... available, and are also non-food crops. In this respect, Cassava rhizome has several characteristics that make it a potential feedstock for fuel ethanol production. It has high content of cellulose and hemicelluloses . The objective of this paper is to present a study focused on the sustainable process...

  5. Biofuels, land use change and smallholder livelihoods

    DEFF Research Database (Denmark)

    Hought, Joy Marie; Birch-Thomsen, Torben; Petersen, Jacob

    2012-01-01

    of biofuel feedstock adoption by smallholders in the northwestern Cambodian province of Banteay Meanchey, a region undergoing rapid land use change following the formal end of the Khmer Rouge era in 1989 and subsequent rural resettlement. Remote sensing data combined with field interviews pointed to three...... discrete phases of land use change in this period: first, as a result of the establishment of new settlements (mainly subsistence rice production); second, via the expansion of cash crop cultivation into forested areas (mainly grown on upland fields); and third, due to the response of smallholders...... market had severe consequences for livelihoods and food security. The paper concludes with a discussion of the probable impacts of the emerging cassava market on trajectories in land use, land ownership, and land access in rural Cambodia. The case looks at biofuel adoption in the context of other land...

  6. Microbial bio-fuels: a solution to carbon emissions and energy crisis.

    Science.gov (United States)

    Kumar, Arun; Kaushal, Sumit; Saraf, Shubhini A; Singh, Jay Shankar

    2018-06-01

    Increasing energy demand, limited fossil fuel resources and climate change have prompted development of alternative sustainable and economical fuel resources such as crop-based bio-ethanol and bio-diesel. However, there is concern over use of arable land that is used for food agriculture for creation of biofuel. Thus, there is a renewed interest in the use of microbes particularly microalgae for bio-fuel production. Microbes such as micro-algae and cyanobacteria that are used for biofuel production also produce other bioactive compounds under stressed conditions. Microbial agents used for biofuel production also produce bioactive compounds with antimicrobial, antiviral, anticoagulant, antioxidant, antifungal, anti-inflammatory and anticancer activity. Because of importance of such high-value compounds in aquaculture and bioremediation, and the potential to reduce carbon emissions and energy security, the biofuels produced by microbial biotechnology might substitute the crop-based bio-ethanol and bio-diesel production.

  7. PHYSICO-CHEMICAL PROPERTIES OF THE SOLID AND LIQUID WASTE PRODUCTS FROM THE HEAVY METAL CONTAMINATED ENERGY CROPS GASIFICATION PROCESS

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2017-02-01

    Full Text Available The paper presents the results of basic physico-chemical properties of solid (ash and liquid (tar waste products of the gasification process of the heavy metal contaminated energy crops. The gasification process has carried out in a laboratory fixed bed reactor. Three types of energy crops: Miscanthus x giganteus, Sida hermaphrodita and Spartina Pectinata were used. The experimental plots were established on heavy metal contaminated arable land located in Bytom (southern part of Poland, Silesian Voivodship.

  8. Contribution of N2O to the greenhouse gas balance of first-generation biofuels : climate change and biofuels

    NARCIS (Netherlands)

    Smeets, E.M.W.; Bouwman, A.F.; Stehfest, E.; van Vuuren, D.P.; Posthuma, A.

    2009-01-01

    In this study, we analyze the impact of fertilizer- and manure-induced N2O emissions due to energy crop production on the reduction of greenhouse gas (GHG) emissions when conventional transportation fuels are replaced by first-generation biofuels (also taking account of other GHG emissions during

  9. Threshold Level of Harvested Litter Input for Carbon Sequestration by Bioenergy Crops

    Science.gov (United States)

    Woo, D.; Quijano, J.; Kumar, P.; Chaoka, S.

    2013-12-01

    Due to the increase in the demands for bioenergy, considerable areas in the Midwestern United States could be converted into croplands for second generation bioenergy, such as the cultivation of miscanthus and switchgrass. Study on the effect of the expansion of these crops on soil carbon and nitrogen dynamics is integral to understanding their long-term environmental impacts. In this study, we focus on a comparative study between miscanthus, swichgrass, and corn-corn-soybean rotation on the below-ground dynamics of carbon and nitrogen. Fate of soil carbon and nitrogen is sensitive to harvest litter treatments and residue quality. Therefore, we attempt to address how different amounts of harvested biomass inputs into the soil impact the evolution of organic carbon and inorganic nitrogen in the subsurface. We use Precision Agricultural Landscape Modeling System, version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained from 10 years of atmospheric data recorded at both the study site and Willard Airport. Comparisons of model results against observations of drainage, ammonium and nitrate loads in tile drainage, nitrogen mineralization, nitrification, and litterfall in 2011 reveal the ability of the model to accurately capture the ecohydrology, as well as the carbon and nitrogen dynamics at the study site. The results obtained here highlight that there is a critical return of biomass to the soil when harvested for miscanthus (15% of aboveground biomass), and switchgrass (25%) after which the accumulation of carbon in the soil is significantly enhanced and nitrogen leaching is reduced, unlike corn-corn-soybean rotation. The main factor

  10. Biofuels and Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, Jonathan R [ORNL

    2009-01-01

    The world obtains 86% of its energy from fossil fuels, 40% from petroleum, a majority of which goes to the transportation sector (www.IEA.gov). Well-recognized alternatives are fuels derived from renewable sources known as biofuels. There are a number of biofuels useful for transportation fuels, which include ethanol, biobutanol, mixed alcohols, biodiesel, and hydrogen. These biofuels are produced from biologically derived feedstock, almost exclusively being plant materials, either food or feed sources or inedible plant material called biomass. This chapter will discuss technologies for production of liquid transportation biofuels from renewable feedstocks, but hydrogen will not be included, as the production technology and infrastructure are not near term. In addition, a specific emphasis will be placed upon the research opportunities and potential for application of system biology tools to dissect and understand the biological processes central to production of these biofuels from biomass and biological materials. There are a number of technologies for production of each of these biofuels that range from fully mature processes such as grain-derived ethanol, emerging technology of ethanol form cellulose derived ethanol and immature processes such thermochemical conversion technologies and production of hydrogen all produced from renewable biological feedstocks. Conversion of biomass by various thermochemical and combustion technologies to produce thermochemical biodiesel or steam and electricity provide growing sources of bioenergy. However, these technologies are outside of the scope of this chapter, as is the use of biological processing for upgrading and conversion of fossil fuels. Therefore, this chapter will focus on the current status of production of biofuels produced from biological-derived feedstocks using biological processes. Regardless of the status of development of the biological process for production of the biofuels, each process can benefit from

  11. Gene Flow in Genetically Engineered Perennial Grasses: Lessons for Modification of Dedicated Bioenergy Crops

    Science.gov (United States)

    Genetic modification of dedicated bioenergy crops, such as switchgrass, will play a major role in crop improvement for a wide range of beneficial traits specific to biofuels. One obstacle that arises regarding transgenic improvement of perennials used for biofuels is the propensity of these plants t...

  12. Life Cycle Energy and CO2 Emission Optimization for Biofuel Supply Chain Planning under Uncertainties

    DEFF Research Database (Denmark)

    Ren, Jingzheng; An, Da; Liang, Hanwei

    2016-01-01

    The purpose of this paper is to develop a model for the decision-makers/stakeholders to design biofuel supply chain under uncertainties. Life cycle energy and CO2 emission of biofuel supply chain are employed as the objective functions, multiple feedstocks, multiple transportation modes, multiple...... sites for building biofuel plants, multiple technologies for biofuel production, and multiple markets for biofuel distribution are considered, and the amount of feedstocks in agricultural system, transportation capacities, yields of crops, and market demands are considered as uncertainty variables...... in this study. A bi-objective interval mix integer programming model has been developed for biofuel supply chain design under uncertainties, and the bio-objective interval programming method has been developed to solve this model. An illustrative case of a multiple-feedstock-bioethanol system has been studied...

  13. Meeting the Demand for Biofuels: Impact on Land Use and Carbon Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, Madhu; Jain, Atul; Onal, Hayri; Scheffran, Jurgen; Chen, Xiaoguang; Erickson, Matt; Huang, Haixiao; Kang, Seungmo.

    2011-08-14

    The purpose of this research was to develop an integrated, interdisciplinary framework to investigate the implications of large scale production of biofuels for land use, crop production, farm income and greenhouse gases. In particular, we examine the mix of feedstocks that would be viable for biofuel production and the spatial allocation of land required for producing these feedstocks at various gasoline and carbon emission prices as well as biofuel subsidy levels. The implication of interactions between energy policy that seeks energy independence from foreign oil and climate policy that seeks to mitigate greenhouse gas emissions for the optimal mix of biofuels and land use will also be investigated. This project contributes to the ELSI research goals of sustainable biofuel production while balancing competing demands for land and developing policy approaches needed to support biofuel production in a cost-effective and environmentally friendly manner.

  14. Bio-fuels

    International Nuclear Information System (INIS)

    2008-01-01

    This report presents an overview of the technologies which are currently used or presently developed for the production of bio-fuels in Europe and more particularly in France. After a brief history of this production since the beginning of the 20. century, the authors describe the support to agriculture and the influence of the Common Agricultural Policy, outline the influence of the present context of struggle against the greenhouse effect, and present the European legislative context. Data on the bio-fuels consumption in the European Union in 2006 are discussed. An overview of the evolution of the activity related to bio-fuels in France, indicating the locations of ethanol and bio-diesel production facilities, and the evolution of bio-fuel consumption, is given. The German situation is briefly presented. Production of ethanol by fermentation, the manufacturing of ETBE, the bio-diesel production from vegetable oils are discussed. Second generation bio-fuels are then presented (cellulose enzymatic processing), together with studies on thermochemical processes and available biomass resources

  15. Panorama 2018 - 2017 biofuels scoreboard

    International Nuclear Information System (INIS)

    Boute, Anne; Lorne, Daphne

    2018-01-01

    This note presents some 2017 statistical data about biofuels: consumption, fuel substitution rate, world ethanol and bio-diesel markets, diesel substitutes, French market, R and D investments, political measures for biofuels development

  16. Biofuels: making tough choices

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, Sonja; Dufey, Annie; Vorley, Bill

    2008-02-15

    The jury is still out on biofuels. But one thing at least is certain: serious trade-offs are involved in the production and use of these biomass-derived alternatives to fossil fuels. This has not been lost on the European Union. The year kicked off with an announcement from the EU environment commissioner that it may be better for the EU to miss its target of reaching 10 per cent biofuel content in road fuels by 2020 than to compromise the environment and human wellbeing. The 'decision tree' outlined here can guide the interdependent processes of deliberation and analysis needed for making tough choices in national biofuels development.

  17. Integrated biofuels process synthesis

    DEFF Research Database (Denmark)

    Torres-Ortega, Carlo Edgar; Rong, Ben-Guang

    2017-01-01

    Second and third generation bioethanol and biodiesel are more environmentally friendly fuels than gasoline and petrodiesel, andmore sustainable than first generation biofuels. However, their production processes are more complex and more expensive. In this chapter, we describe a two-stage synthesis......% used for bioethanol process), and steam and electricity from combustion (54%used as electricity) in the bioethanol and biodiesel processes. In the second stage, we saved about 5% in equipment costs and 12% in utility costs for bioethanol separation. This dual synthesis methodology, consisting of a top......-level screening task followed by a down-level intensification task, proved to be an efficient methodology for integrated biofuel process synthesis. The case study illustrates and provides important insights into the optimal synthesis and intensification of biofuel production processes with the proposed synthesis...

  18. Biofuels and food security: Micro-evidence from Ethiopia

    International Nuclear Information System (INIS)

    Negash, Martha; Swinnen, Johan F.M.

    2013-01-01

    There is considerable controversy about the impact of biofuels on food security in developing countries. A major concern is that biofuels reduce food security by increasing food prices. In this paper we use survey evidence to assess the impact of castor production on poor and food insecure rural households in Ethiopia. About 1/3 of poor farmers have allocated on average 15% of their land to the production of castor beans under contract in biofuel supply chains. Castor production significantly improves their food security: they have fewer months without food and the amount of food they consume increases. Castor cultivation is beneficial for participating households’ food security in several ways: by generating cash income from castor contracts, they can store food for the lean season; castor beans preserve well on the field which allows sales when farmers are in need of cash (or food); spillover effects of castor contracts increases the productivity of food crops. Increased food crop productivity offsets the amount of land used for castor so that the total local food supply is not affected. - Highlights: • We evaluate the impact of biofuel production contracts on farmers’ food security. • We apply endogenous switching regression method on survey data from Ethiopia. • Impact is heterogeneous across groups. • Food security significantly improved for contract participants by 25%. • Spillover effects improve food productivity that offsets the amount of land diverted to biofuel

  19. Modeling biofuel expansion effects on land use change dynamics

    International Nuclear Information System (INIS)

    Warner, Ethan; Inman, Daniel; Kunstman, Benjamin; Bush, Brian; Vimmerstedt, Laura; Macknick, Jordan; Zhang Yimin; Peterson, Steve

    2013-01-01

    Increasing demand for crop-based biofuels, in addition to other human drivers of land use, induces direct and indirect land use changes (LUC). Our system dynamics tool is intended to complement existing LUC modeling approaches and to improve the understanding of global LUC drivers and dynamics by allowing examination of global LUC under diverse scenarios and varying model assumptions. We report on a small subset of such analyses. This model provides insights into the drivers and dynamic interactions of LUC (e.g., dietary choices and biofuel policy) and is not intended to assert improvement in numerical results relative to other works. Demand for food commodities are mostly met in high food and high crop-based biofuel demand scenarios, but cropland must expand substantially. Meeting roughly 25% of global transportation fuel demand by 2050 with biofuels requires >2 times the land used to meet food demands under a presumed 40% increase in per capita food demand. In comparison, the high food demand scenario requires greater pastureland for meat production, leading to larger overall expansion into forest and grassland. Our results indicate that, in all scenarios, there is a potential for supply shortfalls, and associated upward pressure on prices, of food commodities requiring higher land use intensity (e.g., beef) which biofuels could exacerbate. (letter)

  20. The Brazilian biofuels industry

    Directory of Open Access Journals (Sweden)

    Goldemberg José

    2008-05-01

    Full Text Available Abstract Ethanol is a biofuel that is used as a replacement for approximately 3% of the fossil-based gasoline consumed in the world today. Most of this biofuel is produced from sugarcane in Brazil and corn in the United States. We present here the rationale for the ethanol program in Brazil, its present 'status' and its perspectives. The environmental benefits of the program, particularly the contribution of ethanol to reducing the emission of greenhouse gases, are discussed, as well as the limitations to its expansion.

  1. Outlook for advanced biofuels

    International Nuclear Information System (INIS)

    Hamelinck, Carlo N; Faaij, Andre P.C.

    2006-01-01

    To assess which biofuels have the better potential for the short-term or the longer term (2030), and what developments are necessary to improve the performance of biofuels, the production of four promising biofuels-methanol, ethanol, hydrogen, and synthetic diesel-is systematically analysed. This present paper summarises, normalises and compares earlier reported work. First, the key technologies for the production of these fuels, such as gasification, gas processing, synthesis, hydrolysis, and fermentation, and their improvement options are studied and modelled. Then, the production facility's technological and economic performance is analysed, applying variations in technology and scale. Finally, likely biofuels chains (including distribution to cars, and end-use) are compared on an equal economic basis, such as costs per kilometre driven. Production costs of these fuels range 16-22 Euro /GJ HHV now, down to 9-13 Euro /GJ HHV in future (2030). This performance assumes both certain technological developments as well as the availability of biomass at 3 Euro /GJ HHV . The feedstock costs strongly influence the resulting biofuel costs by 2-3 Euro /GJ fuel for each Euro /GJ HHV feedstock difference. In biomass producing regions such as Latin America or the former USSR, the four fuels could be produced at 7-11 Euro /GJ HHV compared to diesel and gasoline costs of 7 and 8 Euro /GJ (excluding distribution, excise and VAT; at crude oil prices of ∼35 Euro /bbl or 5.7 Euro /GJ). The uncertainties in the biofuels production costs of the four selected biofuels are 15-30%. When applied in cars, biofuels have driving costs in ICEVs of about 0.18-0.24 Euro /km now (fuel excise duty and VAT excluded) and may be about 0.18 in future. The cars' contribution to these costs is much larger than the fuels' contribution. Large-scale gasification, thorough gas cleaning, and micro-biological processes for hydrolysis and fermentation are key major fields for RD and D efforts, next to

  2. Improving EU biofuels policy?

    DEFF Research Database (Denmark)

    Swinbank, Alan; Daugbjerg, Carsten

    2013-01-01

    to be 'like' a compliant biofuel. A more economically rational way to reduce GHG emissions, and one that might attract greater public support, would be for the RED to reward emission reductions along the lines of the FQD. Moreover, this modification would probably make the provisions more acceptable...... in the WTO, as there would be a clearer link between policy measures and the objective of reductions in GHG emissions; and the combination of the revised RED and the FQD would lessen the commercial incentive to import biofuels with modest GHG emission savings, and thus reduce the risk of trade tension....

  3. Washington State Biofuels Industry Development

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Richard [Univ. of Washington, Seattle, WA (United States)

    2017-04-09

    The funding from this research grant enabled us to design, renovate, and equip laboratories to support University of Washington biofuels research program. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  4. Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation.

    Science.gov (United States)

    Pogrzeba, Marta; Rusinowski, Szymon; Sitko, Krzysztof; Krzyżak, Jacek; Skalska, Aleksandra; Małkowski, Eugeniusz; Ciszek, Dorota; Werle, Sebastian; McCalmont, Jon Paul; Mos, Michal; Kalaji, Hazem M

    2017-06-01

    Crop growth and development can be influenced by a range of parameters, soil health, cultivation and nutrient status all play a major role. Nutrient status of plants can be enhanced both through chemical fertiliser additions (e.g. N, P, K supplementation) or microbial fixation and mobilisation of naturally occurring nutrients. With current EU priorities discouraging the production of biomass on high quality soils there is a need to investigate the potential of more marginal soils to produce these feedstocks and the impacts of soil amendments on crop yields within them. This study investigated the potential for Miscanthus x giganteus to be grown in trace element (TE)-contaminated soils, ideally offering a mechanism to (phyto)manage these contaminated lands. Comprehensive surveys are needed to understand plant-soil interactions under these conditions. Here we studied the impacts of two fertiliser treatments on soil physico-chemical properties under Miscanthus x giganteus cultivated on Pb, Cd and Zn contaminated arable land. Results covered a range of parameters, including soil rhizosphere activity, arbuscular mycorrhization (AM), as well as plant physiological parameters associated with photosynthesis, TE leaf concentrations and growth performance. Fertilization increased growth and gas exchange capacity, enhanced rhizosphere microbial activity and increased Zn, Mg and N leaf concentration. Fertilization reduced root colonisation by AMF and caused higher chlorophyll concentration in plant leaves. Microbial inoculation seems to be a promising alternative for chemical fertilizers, especially due to an insignificant influence on the mobility of toxic trace elements (particularly Cd and Zn). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. New methodology for estimating biofuel consumption for cooking: Atmospheric emissions of black carbon and sulfur dioxide from India

    Science.gov (United States)

    Habib, Gazala; Venkataraman, Chandra; Shrivastava, Manish; Banerjee, Rangan; Stehr, J. W.; Dickerson, Russell R.

    2004-09-01

    The dominance of biofuel combustion emissions in the Indian region, and the inherently large uncertainty in biofuel use estimates based on cooking energy surveys, prompted the current work, which develops a new methodology for estimating biofuel consumption for cooking. This is based on food consumption statistics, and the specific energy for food cooking. Estimated biofuel consumption in India was 379 (247-584) Tg yr-1. New information on the user population of different biofuels was compiled at a state level, to derive the biofuel mix, which varied regionally and was 74:16:10%, respectively, of fuelwood, dung cake and crop waste, at a national level. Importantly, the uncertainty in biofuel use from quantitative error assessment using the new methodology is around 50%, giving a narrower bound than in previous works. From this new activity data and currently used black carbon emission factors, the black carbon (BC) emissions from biofuel combustion were estimated as 220 (65-760) Gg yr-1. The largest BC emissions were from fuelwood (75%), with lower contributions from dung cake (16%) and crop waste (9%). The uncertainty of 245% in the BC emissions estimate is now governed by the large spread in BC emission factors from biofuel combustion (122%), implying the need for reducing this uncertainty through measurements. Emission factors of SO2 from combustion of biofuels widely used in India were measured, and ranged 0.03-0.08 g kg-1 from combustion of two wood species, 0.05-0.20 g kg-1 from 10 crop waste types, and 0.88 g kg-1 from dung cake, significantly lower than currently used emission factors for wood and crop waste. Estimated SO2 emissions from biofuels of 75 (36-160) Gg yr-1 were about a factor of 3 lower than that in recent studies, with a large contribution from dung cake (73%), followed by fuelwood (21%) and crop waste (6%).

  6. Impact of Different Lignin Fractions on Saccharification Efficiency in Diverse Species of the Bioenergy Crop Miscanthus

    NARCIS (Netherlands)

    Weijde, van der Tim; Torres Salvador, Andres Francisco; Dolstra, Oene; Dechesne, Annemarie; Visser, Richard G.F.; Trindade, Luisa M.

    2016-01-01

    Lignin is a key factor limiting saccharification of lignocellulosic feedstocks. In this comparative study, various lignin methods—including acetyl bromide lignin (ABL), acid detergent lignin (ADL), Klason lignin (KL), and modified ADL and KL determination methods—were evaluated for their

  7. Challenge of biofuel: filling the tank without emptying the stomach?

    International Nuclear Information System (INIS)

    Rajagopal, D; Sexton, S E; Roland-Holst, D; Zilberman, D

    2007-01-01

    Biofuels have become a leading alternative to fossil fuel because they can be produced domestically by many countries, require only minimal changes to retail distribution and end-use technologies, are a partial response to global climate change, and because they have the potential to spur rural development. Production of biofuel has increased most rapidly for corn ethanol, in part because of government subsidies; yet, corn ethanol offers at most a modest contribution to society's climate change goals and only a marginally positive net energy balance. Current biofuels pose long-run consequences for the provision of food and environmental amenities. In the short run, however, when gasoline supply and demand are inelastic, they serve as a buffer supply of energy, helping to reduce prices. Employing a conceptual model and with back-of-the-envelope estimates of wealth transfers resulting from biofuel production, we find that ethanol subsidies pay for themselves. Adoption of second-generation technologies may make biofuels more beneficial to society. The large-scale production of new types of crops dedicated to energy is likely to induce structural change in agriculture and change the sources, levels, and variability of farm incomes. The socio-economic impact of biofuel production will largely depend on how well the process of technology adoption by farmers and processors is understood and managed. The confluence of agricultural policy with environmental and energy policies is expected

  8. Bioenergy crop models: Descriptions, data requirements and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Kang, Shujiang [ORNL; Zhang, Xuesong [Pacific Northwest National Laboratory (PNNL); Miguez, Fernando [Iowa State University; Izaurralde, Dr. R. Cesar [Pacific Northwest National Laboratory (PNNL); Post, Wilfred M [ORNL; Dietze, Michael [University of Illinois, Urbana-Champaign; Lynd, L. [Dartmouth College; Wullschleger, Stan D [ORNL

    2012-01-01

    Field studies that address the production of lignocellulosic biomass as a source of renewable energy provide critical data for the development of bioenergy crop models. A literature survey revealed that 14 models have been used for simulating bioenergy crops including herbaceous and woody bioenergy crops, and for crassulacean acid metabolism (CAM) crops. These models simulate field-scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane at regional scales (Agro-IBIS and LPJmL). Although it lacks the complexity of other bioenergy crop models, the environmental productivity index (EPI) is the only model used to estimate biomass production of CAM (Agave and Opuntia) plants. Except for the EPI model, all models include representations of leaf area dynamics, phenology, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few models simulate soil water, nutrient, and carbon cycle dynamics, making them especially useful for assessing the environmental consequences (e.g., erosion and nutrient losses) associated with the large-scale deployment of bioenergy crops. The rapid increase in use of models for energy crop simulation is encouraging; however, detailed information on the influence of climate, soils, and crop management practices on biomass production is scarce. Thus considerable work remains regarding the parameterization and validation of process-based models for bioenergy crops; generation and distribution of high-quality field data for model development and validation; and implementation of an integrated framework for efficient, high-resolution simulations of biomass production for use in planning sustainable bioenergy systems.

  9. Biofuelled heating plants

    International Nuclear Information System (INIS)

    Gulliksson, Hans; Wennerstaal, L.; Zethraeus, B.; Johansson, Bert-Aake

    2001-11-01

    The purpose of this report is to serve as a basis to enable establishment and operation of small and medium-sized bio-fuel plants, district heating plants and local district heating plants. Furthermore, the purpose of this report is to serve as a guideline and basis when realizing projects, from the first concept to established plant. Taking into account all the phases, from selection of heating system, fuel type, selection of technical solutions, authorization request or application to operate a plant, planning, construction and buying, inspection, performance test, take-over and control system of the plant. Another purpose of the report is to make sure that best available technology is used and to contribute to continuous development of the technology. The report deals mainly with bio-fuelled plants in the effect range 0.3 to10 MW. The term 'plant' refers to combined power and heating plants as well as 'simpler' district heating plants. The last-mentioned is also often referred to as 'local heating plant'. In this context, the term bio fuel refers to a wide range of fuel types. The term bio fuel includes processed fractions like powders, pellets, and briquettes along with unprocessed fractions, such as by-products from the forest industry; chips and bark. Bio fuels also include straw, energy crops and cereal waste products, but these have not been expressly studied in this report. The report is structured with appendixes regarding the various phases of the projects, with the purpose of serving as a helping handbook, or manual for new establishment, helping out with technical and administrative advice and environmental requirements. Plants of this size are already expanding considerably, and the need for guiding principles for design/technology and environmental requirements is great. These guiding principles should comply with the environmental legislation requirements, and must contain advice and recommendations for bio fuel plants in this effect range, also in

  10. Technology Roadmaps: Biofuels for Transport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Biofuels could provide up to 27% of total transport fuel worldwide by 2050. The use of transport fuels from biomass, when produced sustainably, can help cut petroleum use and reduce CO2 emissions in the transport sector, especially in heavy transport. Sustainable biofuel technologies, in particular advanced biofuels, will play an important role in achieving this roadmap vision. The roadmap describes the steps necessary to realise this ambitious biofuels target; identifies key actions by different stakeholders, and the role for government policy to adopt measures needed to ensure the sustainable expansion of both conventional and advanced biofuel production.

  11. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential

    DEFF Research Database (Denmark)

    Zhang, Gengyun; Liu, Xin; Quan, Zhiwu

    2012-01-01

    Foxtail millet (Setaria italica), a member of the Poaceae grass family, is an important food and fodder crop in arid regions and has potential for use as a C(4) biofuel. It is a model system for other biofuel grasses, including switchgrass and pearl millet. We produced a draft genome (∼423 Mb) an...

  12. The biofuels in debate

    International Nuclear Information System (INIS)

    Rigaud, Ch.

    2007-01-01

    As the development of the biofuels is increasing in the world, many voices are beginning to rise to denounce the environmental risks and the competition of the green fuels with the alimentary farming. The debate points out the problems to solve to develop a sustainable channel. (A.L.B.)

  13. Biofuel impacts on water.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  14. The rationality of biofuels

    International Nuclear Information System (INIS)

    Horta Nogueira, Luiz Augusto; Moreira, Jose Roberto; Schuchardt, Ulf; Goldemberg, Jose

    2013-01-01

    In an editorial of a recent issue of a known academic journal, Prof. Hartmut Michel affirmed that “…the production of biofuels constitutes an extremely inefficient land use… We should not grow plants for biofuel production.”, after comparing the area occupied with plants for bioenergy production with the one required for photovoltaic cells to supply the same amount of energy for transportation. This assertion is not correct for all situations and this comparison deserves a more careful analysis, evaluating the actual and prospective technological scenarios and other relevant aspects, such as capacity requirements, energy consumed during the life cycle of energy systems and the associated impacts. In this communication this comparison is revaluated, presenting a different perspective, more favorable for the bioenergy routes. - Highlights: • Energy systems and life cycle impacts are compared under equal conditions. • The comparison is done between biofuels and photovoltaic/battery in mobility uses. • Biofuels are a valuable option when produced sustainably by efficient routes

  15. Bio-fuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    European Union bio-fuel use for transport reached 12 million tonnes of oil equivalent (mtoe) threshold during 2009. The slowdown in the growth of European consumption deepened again. Bio-fuel used in transport only grew by 18.7% between 2008 and 2009, as against 30.3% between 2007 and 2008 and 41.8% between 2006 and 2007. The bio-fuel incorporation rate in all fuels used by transport in the E.U. is unlikely to pass 4% in 2009. We can note that: -) the proportion of bio-fuel in the German fuels market has plummeted since 2007: from 7.3% in 2007 to 5.5% in 2009; -) France stays on course with an incorporation rate of 6.25% in 2009; -) In Spain the incorporation rate reached 3.4% in 2009 while it was 1.9% in 2008. The European bio-diesel industry has had another tough year. European production only rose by 16.6% in 2009 or by about 9 million tonnes which is well below the previous year-on-year growth rate recorded (35.7%). France is leading the production of bio-ethanol fuels in Europe with an output of 1250 million liters in 2009 while the total European production reached 3700 million litters and the world production 74000 million liters. (A.C.)

  16. Outlook for advanced biofuels

    NARCIS (Netherlands)

    Hamelinck, Carlo Noël

    2004-01-01

    Modern use of biomass can play an important role in a sustainable energy supply. Biomass abounds in most parts of the world and substantial amounts could be produced at low costs. Motor biofuels seem a sensible application of biomass: they are among the few sustainable alternatives to the

  17. The EU's Biofuel Strategy

    International Nuclear Information System (INIS)

    2006-01-01

    The EU is supporting biofuels, with the aim of reducing greenhouse-gas emission, encouraging the decarbonisation of fuels used in transportation, diversifying energy procurement, offering new earning opportunities in rural areas, and developing long-term replacements for oil. We publish lengthy excerpts from the recent Communication, COM(2006) 34def. which describes the strategy adopted by the Commission [it

  18. Smart choices for biofuels

    Science.gov (United States)

    2009-01-01

    Much of the strong support for biofuels in the United States is premised on the national security advantages of reducing dependence on imported oil. In late 2007, these expected payoffs played a major role in driving an extension and expansion of the...

  19. Land substitution effects of biofuel side products and implications on the land area requirement for EU 2020 biofuel targets

    International Nuclear Information System (INIS)

    Ozdemir, Enver Doruk; Haerdtlein, Marlies; Eltrop, Ludger

    2009-01-01

    The provision of biofuels today is based on energy crops rather than residual biomass, which results in the requirement of agricultural land area. The side products may serve as animal feed and thus prevent cultivation of other feedstock and the use of corresponding land area. These effects of biofuel provision have to be taken into account for a comprising assessment of land area requirement for biofuel provision. Between 18.5 and 21.1 Mio. hectares (ha) of land area is needed to meet the EU 2020 biofuel target depending on the biofuel portfolio when substitution effects are neglected. The utilization of the bioethanol side products distiller's dried grain and solubles (DDGS) and pressed beet slices may save up to 0.7 Mio. ha of maize cultivation area in the EU. The substitution effect due to the utilization of biodiesel side products (oil cakes of rape, palm and soy) as animal feed may account for up to 7.1 Mio. ha of soy cultivation area in Brazil. The results show that the substitution of land area due to use of side products might ease the pressures on land area requirement considerably and should therefore not be neglected in assessing the impacts of biofuel provision worldwide.

  20. Environmental effect of constructed wetland as biofuel production system

    Science.gov (United States)

    Liu, Dong

    2017-04-01

    Being as a renewable energy, biofuel has attracted worldwide attention. Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Biofuel may offer a promising alternative to fossil fuels, but serious concerns arise about the adverse greenhouse gas consequences from using nitrogen fertilizers. Waste-nitrogen recycling is an attractive idea. Here we advocate a win-win approach to biofuel production which takes advantage of excessive nitrogen in domestic wastewater treated via constructed wetland (CW) in China. This study will carry on environmental effect analysis of CW as a biomass generation system through field surveys and controllable simulated experiments. This study intends to evaluate net energy balance, net greenhouse effect potential and ecosystem service of CW as biomass generation system, and make comparation with traditional wastewater treatment plant and other biofuel production systems. This study can provide a innovation mode in order to solve the dilemma between energy crops competed crops on production land and excessive nitrogen fertilizer of our traditional energy plant production. Data both from our experimental CWs in China and other researches on comparable CWs worldwide showed that the biomass energy yield of CWs can reach 182.3 GJ ha-1 yr-1, which was two to eight times higher than current biofuel-production systems. Energy output from CW was ˜137% greater than energy input for biofuel production. If CWs are designed with specific goal of biofuel production, biofuel production can be greatly enhanced through the optimization of N supply, hydraulic structures, and species selection in CWs. Assuming that 2.0 Tg (1 Tg = 1012 g) waste nitrogen contained in domestic wastewater is treated by CWs, biofuel production can account for 1.2% of national gasoline consumption in China. The proportion would increase to 6.7% if extra nitrogen (9.5 Tg) from industrial wastewater and agricultural runoff was included

  1. Estimating Nitrogen Load Resulting from Biofuel Mandates

    Science.gov (United States)

    Alshawaf, Mohammad; Douglas, Ellen; Ricciardi, Karen

    2016-01-01

    The Energy Policy Act of 2005 and the Energy Independence and Security Act (EISA) of 2007 were enacted to reduce the U.S. dependency on foreign oil by increasing the use of biofuels. The increased demand for biofuels from corn and soybeans could result in an increase of nitrogen flux if not managed properly. The objectives of this study are to estimate nitrogen flux from energy crop production and to identify the catchment areas with high nitrogen flux. The results show that biofuel production can result in an increase of nitrogen flux to the northern Gulf of Mexico from 270 to 1742 thousand metric tons. Using all cellulosic (hay) ethanol or biodiesel to meet the 2022 mandate is expected to reduce nitrogen flux; however, it requires approximately 25% more land when compared to other scenarios. Producing ethanol from switchgrass rather than hay results in three-times more nitrogen flux, but requires 43% less land. Using corn ethanol for 2022 mandates is expected to have double the nitrogen flux when compared to the EISA-specified 2022 scenario; however, it will require less land area. Shifting the U.S. energy supply from foreign oil to the Midwest cannot occur without economic and environmental impacts, which could potentially lead to more eutrophication and hypoxia. PMID:27171101

  2. Site-specific management of miscanthus genotypes for combustion and anaerobic digestion

    NARCIS (Netherlands)

    Kiesel, Andreas; Nunn, Christopher; Iqbal, Yasir; Weijde, Van der Tim; Wagner, Moritz; Özgüven, Mensure; Tarakanov, Ivan; Kalinina, Olena; Trindade, Luisa M.; Clifton-Brown, John; Lewandowski, Iris

    2017-01-01

    In Europe, the perennial C4 grass miscanthus is currently mainly cultivated for energy generation via combustion. In recent years, anaerobic digestion has been identified as a promising alternative utilization pathway. Anaerobic digestion produces a higher-value intermediate (biogas), which can be

  3. Life cycle environmental performance of miscanthus gasification versus other technologies for electricity production

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik

    2015-01-01

    In this paper, the life cycle environmental performance of miscanthus gasification for electricity production in Denmark is evaluated and compared with that of direct combustion and anaerobic digestion. Furthermore, the results obtained are compared to those of natural gas to assess the potential...

  4. The water-land-food nexus of first-generation biofuels

    Science.gov (United States)

    Rulli, Maria Cristina; Bellomi, Davide; Cazzoli, Andrea; de Carolis, Giulia; D'Odorico, Paolo

    2016-03-01

    Recent energy security strategies, investment opportunities and energy policies have led to an escalation in biofuel consumption at the expenses of food crops and pastureland. To evaluate the important impacts of biofuels on food security, the food-energy nexus needs to be investigated in the context of its linkages with the overall human appropriation of land and water resources. Here we provide a global assessment of biofuel crop production, reconstruct global patterns of biofuel crop/oil trade and determine the associated displacement of water and land use. We find that bioethanol is mostly produced with domestic crops while 36% of biodiesel consumption relies on international trade, mainly from Southeast Asia. Altogether, biofuels rely on about 2-3% of the global water and land used for agriculture, which could feed about 30% of the malnourished population. We evaluate the food-energy tradeoff and the impact an increased reliance on biofuel would have on the number of people the planet can feed.

  5. Competitive liquid biofuels from biomass

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    The cost of biodiesels varies depending on the feedstock, geographic area, methanol prices, and seasonal variability in crop production. Most of the biodiesel is currently made from soybean, rapeseed, and palm oils. However, there are large amounts of low-cost oils and fats (e.g., restaurant waste, beef tallow, pork lard, and yellow grease) that could be converted to biodiesel. The crop types, agricultural practices, land and labor costs, plant sizes, processing technologies and government policies in different regions considerably vary ethanol production costs and prices by region. The cost of producing bioethanol in a dry mill plant currently totals US$1.65/galon. The largest ethanol cost component is the plant feedstock. It has been showed that plant size has a major effect on cost. The plant size can reduce operating costs by 15-20%, saving another $0.02-$0.03 per liter. Thus, a large plant with production costs of $0.29 per liter may be saving $0.05-$0.06 per liter over a smaller plant. Viscosity of biofuel and biocrude varies greatly with the liquefaction conditions. The high and increasing viscosity indicates a poor flow characteristic and stability. The increase in the viscosity can be attributed to the continuing polymerization and oxidative coupling reactions in the biocrude upon storage. Although stability of biocrude is typically better than that of bio-oil, the viscosity of biocrude is much higher. The bio-oil produced by flash pyrolysis is a highly oxygenated mixture of carbonyls, carboxyls, phenolics and water. It is acidic and potentially corrosive. Bio-oil can also be potentially upgraded by hydrodeoxygenation. The liquid, termed biocrude, contains 60% carbon, 10-20 wt.% oxygen and 30-36 MJ/kg heating value as opposed to <1 wt.% and 42-46 MJ/kg for petroleum. (author)

  6. Competitive liquid biofuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, Ayhan [Sirnak University, Dean of Engineering Faculty, Department of Mechanical Engineering, Sirnak (Turkey)

    2011-01-15

    The cost of biodiesels varies depending on the feedstock, geographic area, methanol prices, and seasonal variability in crop production. Most of the biodiesel is currently made from soybean, rapeseed, and palm oils. However, there are large amounts of low-cost oils and fats (e.g., restaurant waste, beef tallow, pork lard, and yellow grease) that could be converted to biodiesel. The crop types, agricultural practices, land and labor costs, plant sizes, processing technologies and government policies in different regions considerably vary ethanol production costs and prices by region. The cost of producing bioethanol in a dry mill plant currently totals US$1.65/galon. The largest ethanol cost component is the plant feedstock. It has been showed that plant size has a major effect on cost. The plant size can reduce operating costs by 15-20%, saving another $0.02-$0.03 per liter. Thus, a large plant with production costs of $0.29 per liter may be saving $0.05-$0.06 per liter over a smaller plant. Viscosity of biofuel and biocrude varies greatly with the liquefaction conditions. The high and increasing viscosity indicates a poor flow characteristic and stability. The increase in the viscosity can be attributed to the continuing polymerization and oxidative coupling reactions in the biocrude upon storage. Although stability of biocrude is typically better than that of bio-oil, the viscosity of biocrude is much higher. The bio-oil produced by flash pyrolysis is a highly oxygenated mixture of carbonyls, carboxyls, phenolics and water. It is acidic and potentially corrosive. Bio-oil can also be potentially upgraded by hydrodeoxygenation. The liquid, termed biocrude, contains 60% carbon, 10-20 wt.% oxygen and 30-36 MJ/kg heating value as opposed to <1 wt.% and 42-46 MJ/kg for petroleum. (author)

  7. Biofuel Feedstock Assessment For Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  8. Biofuels and the biorefinery concept

    International Nuclear Information System (INIS)

    Taylor, Gail

    2008-01-01

    Liquid fuels can be made by refining a range of biomass materials, including oil-rich and sugar-rich crops such as oil-seed rape and sugar beet, biomass that consists mainly of plant cell walls (second generation lignocellulosics), macro- and micro-alga, or material that would now be discarded as waste. This can include animal bi-products as well as waste wood and other resources. In the medium-term, plant cell (lignocellulosic) material is likely to be favoured as the feedstock for biorefineries because of its availability. The UK may make use of a number of these options because of its complex agricultural landscape. There are now a range of targets for biofuel use in the UK, although their environmental effects are disputed. The technology of refining these materials is well known. Possible outputs include biodiesel and bioethanol, both of which can be used as transport fuel. Other potential products include hydrogen, polymers and a wide range of value-added chemicals, making this technology important in a post-petrochemical world. Biorefineries could use cogeneration to produce electricity. The paper identifies a range of research and development priorities which must be met if this opportunity is to be exploited fully

  9. Microalgae: biofuel production

    Directory of Open Access Journals (Sweden)

    Babita Kumari

    2013-04-01

    Full Text Available In the present day, microalgae feedstocks are gaining interest in energy scenario due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrients contents. All of these properties render them an excellent source for biofuels such as biodiesel, bioethanol and biomethane; as well as a number of other valuable pharmaceutical and nutraceutical products. The present review is a critical appraisal of the commercialization potential of microalgae biofuels. The available literature on various aspects of microalgae for e.g. its cultivation, life cycle assessment, and conceptualization of an algal biorefinery, has been done. The evaluation of available information suggests the operational and maintenance cost along with maximization of oil-rich microalgae production is the key factor for successful commercialization of microalgae-based fuels.

  10. The bio-fuels

    International Nuclear Information System (INIS)

    Levy, R.H.

    1993-02-01

    In France, using fallow soils for energy production may be a solution to agriculture problems. Technical and economical studies of biofuels (ethanol, methanol, ethyl tributyl ether, methyl tributyl ether and methyl ester) are presented with costs of production from the raw material to the end product, characteristics of the end product, engine consumption for pure or mixed fuels, and environmental impacts. For the author, the mixed ethanol process shows no advantages in term of energy dependency (ETBE, MTBE and colza ester give better results), ethanol production uses 90% and colza ester production 53% of the calorific power of the produced biofuels. Commercial balance: damaged, fiscal receipts: reduced, new jobs creation: inferior to 10.000 and the majority outside of the agriculture sphere, environmental impacts: slight diminution of greenhouse gases, but growth of soil and water pollution, all these points are developed by the author. Observations of some contradictors are also given. (A.B.). refs. figs., tabs

  11. Biofuels made easy

    International Nuclear Information System (INIS)

    Hamilton, C.

    2004-01-01

    Much has been said and written in Australia since the Federal Government introduced its Clean Fuels Policy in September 2001. Various biofuel projects are now being considered in different states of Australia for the manufacture of bioethanol and biodiesel from renewable resources. However, the economic viability required to establish an Australian liquid biofuels industry is predicated on supportive government legislation and an encouraging fuel excise regime. On the other hand, the benefits of such an industry are also in debate. In an attempt to clarify some of the concerns being raised, this paper endeavours to provide an overview of the current use of bioethanol and biodiesel around the world, to summarise the process technologies involved, to review the benefits and non-benefits of renewable fuels to the transport industry and to address the issues for such an industry here in Australia

  12. Biofuel market and carbon modeling to analyse French biofuel policy

    International Nuclear Information System (INIS)

    Bernard, F.; Prieur, A.

    2007-01-01

    In order to comply with European Union objectives, France has set up an ambitious biofuel plan. This plan is evaluated on the basis of two criteria: tax exemption on fossil fuels and greenhouse gases (GHG) emission savings. An economic marginal analysis and a life cycle assessment (LCA) are provided using a coupling procedure between a partial agro-industrial equilibrium model and an oil refining optimization model. Thus, we determine the minimum tax exemption needed to place on the market a targeted quantity of biofuel by deducting the biofuel long-run marginal revenue of refiners from the agro-industrial marginal cost of biofuel production. With a clear view of the refiner's economic choices, total pollutant emissions along the biofuel production chains are quantified and used to feed an LCA. The French biofuel plan is evaluated for 2008, 2010 and 2012 using prospective scenarios. Results suggest that biofuel competitiveness depends on crude oil prices and demand for petroleum products and consequently these parameters should be taken into account by authorities to modulate biofuel tax exemption. LCA results show that biofuel production and use, from 'seed to wheel', would facilitate the French Government's compliance with its 'Plan Climat' objectives by reducing up to 5% GHG emissions in the French road transport sector by 2010

  13. Biofuel market and carbon modeling to evaluate French biofuel policy

    International Nuclear Information System (INIS)

    Bernard, F.; Prieur, A.

    2006-10-01

    In order to comply with European objectives, France has set up an ambitious biofuel plan. This plan is evaluated considering two criteria: tax exemption need and GHG emission savings. An economic marginal analysis and a life cycle assessment (LCA) are provided using a coupling procedure between a partial agro-industrial equilibrium model and a refining optimization model. Thus, we are able to determine the minimum tax exemption needed to place on the market a targeted quantity of biofuel by deducing the agro-industrial marginal cost of biofuel production to the biofuel refining long-run marginal revenue. In parallel, a biofuels LCA is carried out using model outputs. Such a method avoid common allocation problems between joint products. The French biofuel plan is evaluated for 2008, 2010 and 2012 using prospective scenarios. Results suggest that biofuel competitiveness depends on crude oil prices and petroleum products demands. Consequently, biofuel tax exemption does not always appear to be necessary. LCA results show that biofuels production and use, from 'seed to wheel', would facilitate the French Government's to compliance with its 'Plan Climat' objectives by reducing up to 5% GHG emissions in the French road transport sector by 2010. (authors)

  14. Bio-fuels - biohazard

    International Nuclear Information System (INIS)

    Slovak, K.

    2008-01-01

    Politicians have a clear explanation for growing commodity prices. It is all the fault of speculators. It is easy to point the finger at an imaginary enemy. It is more difficult and from the point of view of a political career suicidal to admit one's mistakes. And there are reasons for remorse. According to studies prepared by the OECD and the World Bank bio-fuels are to be blame for high food prices. The bio-fuel boom that increases the demand for agro-commodities has been created by politicians offering generous subsidies. And so farming products do not end up on the table, but in the fuel tanks of cars in the form of additives. And their only efficiency is that they make food more expensive. The first relevant indication that environmentalist tendencies in global politics have resulted in shortages and food price increases can be found in a confidential report prepared by the World Bank. Parts of the report were leaked to the media last month. According to this information growing bio-fuel production has resulted in a food price increase by 75%. The theory that this development was caused by speculators and Chinese and Indian demand received a serious blow. And the OECD report definitely contradicted the excuse used by the politicians. According to the report one of the main reasons for growing food prices are generously subsidized bio-fuels. Their share of the increase of demand for agro-commodities in 2005 -2007 was 60% according to the study. (author)

  15. Biofuels - the UFIP position

    International Nuclear Information System (INIS)

    2004-01-01

    Since 2003 a directive promote the biofuels use. The industry is then using them in ETBE (Ethyl Tertio Butyl Ether) fuels and in diesel oil of vegetal oils esters EMHV. Meanwhile some of them present technical difficulties and must free themselves from fiscal incentives which make them competitive. For these reasons, the UFIP (french union of petroleum industries) do not agree their obligatory incorporation. (A.L.B.)

  16. Hawaii Algal Biofuel

    Science.gov (United States)

    2013-03-01

    Spirulina Algea, Swine Manure , and Digested Anaerobic Sludge." Bioresource Technology 102: 8295- 8303. Viets, John W., Narasimhan Sundaram, Bal K. Kaul, and...biofuel source. Dr. Zimmerman noted that since algae decompose easily in landfills, the nutrients produced by anaerobic digestion of biomass can be...resource requirements would be pivotal to the offices of the U.S. Navy Resource entities such as OPNAV. In order for decision makers to digest the

  17. Biobutanol as a Potential Sustainable Biofuel - Assessment of Lignocellulosic and Waste-based Feedstocks

    Directory of Open Access Journals (Sweden)

    Johanna Niemisto

    2013-06-01

    Full Text Available This paper introduces the production process of an alternative transportation biofuel, biobutanol. European legislation concerning biofuels and their sustainability criteria are also briefly described. The need to develop methods to ensure more sustainable and efficient biofuel production processes is recommended. In addition, the assessment method to evaluate the sustainability of biofuels is considered and sustainability assessment of selected feedstocks for biobutanol production is performed. The benefits and potential of using lignocellulosic and waste materials as feedstocks in the biobutanol production process are also discussed. Sustainability assessment in this paper includes cultivation, harvest/collection and upstream processing (pretreatment of feedstocks, comparing four main biomass sources: food crops, non-food crops, food industry by-product and wood-based biomass. It can be concluded that the highest sustainable potential in Finland is when biobutanol production is integrated into pulp & paper mills.

  18. Biofuel and Bioenergy implementation scenarios. Final report of VIEWLS WP5, modelling studies

    International Nuclear Information System (INIS)

    Wakker, A.; Egging, R.; Van Thuijl, E.; Van Tilburg, X.; Deurwaarder, E.P.; De Lange, T.J.; Berndes, G.; Hansson, J.

    2005-11-01

    This report is published within the framework of the European Commission-supported project 'Clear Views on Clean Fuels' or VIEWLS. The overall objectives of this project are to provide structured and clear data on the availability and performance of biofuel and to identify the possibilities and strategies towards large-scale sustainable production, use and trading of biofuels for the transport sector in Europe, including Central and Eastern European Countries (CEEC). This reports constitutes the outcome of the Work Package 5 (WP5) of the VIEWLS project. In WP5 the EU biofuels and bioenergy markets are modelled with the aim to conduct quantitative analyses on the production and costs of biofuels and on the resulting market structure and supply chains. In a bigger context, where possible, WP5 aims also to provide insight into larger socio-economic impacts of bioenergy trade within Europe. The objective of this research is to develop a cost efficient biofuel strategy for Europe in terms of biofuel production, cost and trade, and to assess its larger impact on bioenergy markets and trade up to 2030. Based on the biomass availability and associated costs within EU25, under different conditions, scenarios for biofuels production and cost can be constructed using quantitative modelling tools. Combining this with (cost) data on biofuel conversion technologies and transport of biomass and biofuels, the lowest cost biofuel supply chain given a certain demand predetermined by the biofuels Directive can be designed. In a broader context, this is supplemented by a design of a sustainable bioenergy supply chain in view of the fact that biomass-heat, biomass-electricity and biofuels are competing for the same biomass resources. In other words, the scarcity of bioenergy crops, as manifested through overall bioenergy demand, is an essential variable in bioenergy scenarios

  19. Potentials of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Munack, A.; Schroder, O. [Johann Heinrich von Thunen Inst., Braunschweig (Germany); Krahl, J. [Coburg Univ. of Applied Sciences, Coburg (Germany); Bunger, J. [Inst. for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-Univ. Inst., Bochum (Germany)

    2010-07-01

    This paper discussed the potential of biofuels with particular reference to the situation in Germany and Europe. Emphasis was on technical potential, such as biofuel production, utilization and environmental aspects. The Institute of Agricultural Technology and Biosystems Engineering ran vTI emission tests on diesel engines to evaluate the environmental impacts of biofuels. This testing facility is able to drive heavy-duty diesel engines in both stationary and dynamic test cycles, such as the European ESC and ETC. Additional analyses were conducted to determine the fine and ultra-fine particles, polycyclic aromatic hydrocarbons (PAH), aldehydes, ketones, and the usual regulated exhaust gas compounds. Ames tests were conducted to assess the mutagenic potential of tailpipe emissions. Previous study results showed that neat vegetable oils can render the exhaust high in mutagenic potency. Some of the non-regulated exhaust gas compounds were found to vary nonlinearly with the blend composition. B20 was found to have high mutagenic potential and was subject to sedimentation.

  20. Biofuels from microbes

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, D. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Inst. of Resource and Energy Technology; Zverlov, V.V.; Schwarz, W.H. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Dept. of Microbiology

    2007-11-15

    Today, biomass covers about 10% of the world's primary energy demand. Against a backdrop of rising crude oil prices, depletion of resources, political instability in producing countries and environmental challenges, besides efficiency and intelligent use, only biomass has the potential to replace the supply of an energy hungry civilisation. Plant biomass is an abundant and renewable source of energy-rich carbohydrates which can be efficiently converted by microbes into biofuels, of which, only bioethanol is produced on an industrial scale today. Biomethane is produced on a large scale, but is not yet utilised for transportation. Biobutanol is on the agenda of several companies and may be used in the near future as a supplement for gasoline, diesel and kerosene, as well as contributing to the partially biological production of butyl-t-butylether, BTBE as does bioethanol today with ETBE. Biohydrogen, biomethanol and microbially made biodiesel still require further development. This paper reviews microbially made biofuels which have potential to replace our present day fuels, either alone, by blending, or by chemical conversion. It also summarises the history of biofuels and provides insight into the actual production in various countries, reviewing their policies and adaptivity to the energy challenges of foreseeable future. (orig.)

  1. Benchmarking biofuels; Biobrandstoffen benchmarken

    Energy Technology Data Exchange (ETDEWEB)

    Croezen, H.; Kampman, B.; Bergsma, G.

    2012-03-15

    A sustainability benchmark for transport biofuels has been developed and used to evaluate the various biofuels currently on the market. For comparison, electric vehicles, hydrogen vehicles and petrol/diesel vehicles were also included. A range of studies as well as growing insight are making it ever clearer that biomass-based transport fuels may have just as big a carbon footprint as fossil fuels like petrol or diesel, or even bigger. At the request of Greenpeace Netherlands, CE Delft has brought together current understanding on the sustainability of fossil fuels, biofuels and electric vehicles, with particular focus on the performance of the respective energy carriers on three sustainability criteria, with the first weighing the heaviest: (1) Greenhouse gas emissions; (2) Land use; and (3) Nutrient consumption [Dutch] Greenpeace Nederland heeft CE Delft gevraagd een duurzaamheidsmeetlat voor biobrandstoffen voor transport te ontwerpen en hierop de verschillende biobrandstoffen te scoren. Voor een vergelijk zijn ook elektrisch rijden, rijden op waterstof en rijden op benzine of diesel opgenomen. Door onderzoek en voortschrijdend inzicht blijkt steeds vaker dat transportbrandstoffen op basis van biomassa soms net zoveel of zelfs meer broeikasgassen veroorzaken dan fossiele brandstoffen als benzine en diesel. CE Delft heeft voor Greenpeace Nederland op een rijtje gezet wat de huidige inzichten zijn over de duurzaamheid van fossiele brandstoffen, biobrandstoffen en elektrisch rijden. Daarbij is gekeken naar de effecten van de brandstoffen op drie duurzaamheidscriteria, waarbij broeikasgasemissies het zwaarst wegen: (1) Broeikasgasemissies; (2) Landgebruik; en (3) Nutriëntengebruik.

  2. European biofuel policies in retrospect

    International Nuclear Information System (INIS)

    Van Thuijl, E.; Deurwaarder, E.P.

    2006-05-01

    Despite the benefits of the production and use of biofuels in the fields of agriculture, security of energy supply and the environment, in India and surrounding countries, the barriers to the use of biofuels are still substantial. The project ProBios (Promotion of Biofuels for Sustainable Development in South and South East Asia) aims at promoting biofuels in the view of sustainable development in the Southern and South eastern Asian countries. The first stage of this project concerns a study, which will provide a thorough review of the complicated and sector-overarching issue of biofuels in India and surrounding countries. This report describes past experiences with the policy context for a selection of EU countries, with the purpose of identifying conclusions from the European experience that may be valuable for Indian and South East Asian policy makers and other biofuels stakeholders

  3. Water quality and quantity in the context of large-scale cellulosic biofuel production in the Mississippi-Atchafalaya River Basin

    Science.gov (United States)

    VanLoocke, A.; Bernacchi, C. J.; Twine, T. E.; Kucharik, C. J.

    2012-12-01

    Numerous socio-economic and environmental pressures have driven the need to increase domestic renewable energy production in the Midwest. The primary attempt at addressing this need has been to use maize; however, the leaching of residual nitrate from maize fertilizer into runoff drives the formation of the Gulf of Mexico hypoxic or "Dead" zone which can have significant environmental impacts on the marine ecosystems. As a result of the threat to benthic organisms and fisheries in this region, The Mississippi Basin/Gulf of Mexico Task Force has set in place goals to reduce the size of the hypoxic zone from the current size of ~ 20,000 km2 to nitrate (DIN) export would have to decrease by 30 to 55% to meet this goal. An alternative option to meet the renewable energy needs while reducing the environmental impacts associated with DIN export is to produce high-yielding, low fertilizer input perennial grasses such as switchgrass and miscanthus. Miscanthus and switchgrass have been shown to greatly reduce nitrate leaching at the plot scale, even during the establishment phase. This reduction in leaching is attributed to the perennial nature and the efficient recycling of nutrients via nutrient translocation. While these feedstocks are able to achieve higher productivity than maize grain with fewer inputs, they require more water, presenting the potential for environmental impacts on regional hydrologic cycle, including reductions in streamflow. The goal of this research is to determine the change in streamflow in the Mississippi-Atchafalaya River Basin (MARB) and the export of nitrogen from fertilizer to the Gulf of Mexico. To address this goal, we adapted a vegetation model capable of simulating the biogeochemistry of current crops as well as miscanthus and switchgrass, the Integrated Biosphere Simulator - agricultural version (Agro-IBIS) and coupled it with a hydrology model capable of simulating streamflow and nitrogen export, the Terrestrial Hydrology Model with

  4. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Wang, Guangtao; Møller, Henrik B.

    2008-01-01

    Perennial crops need far less energy to plant, require less fertilizer and pesticides, and show a lower negative environmental impact compared with annual crops like for example corn. This makes the cultivation of perennial crops as energy crops more sustainable than the use of annual crops....... The conversion into biogas in anaerobic digestion plants shows however much lower specific methane yields for the raw perennial crops like miscanthus and willow due to their lignocellulosic structure. Without pretreatment the net energy gain is therefore lower for the perennials than for corn. When applying wet...... oxidation to the perennial crops, however, the specific methane yield increases significantly and the ratio of energy output to input and of costs to benefit for the whole chain of biomass supply and conversion into biogas becomes higher than for corn. This will make the use of perennial crops as energy...

  5. Spatio-Temporal Impacts of Biofuel Production and Climate Variability on Water Quantity and Quality in Upper Mississippi River Basin

    Directory of Open Access Journals (Sweden)

    Debjani Deb

    2015-06-01

    Full Text Available Impact of climate change on the water resources of the United States exposes the vulnerability of feedstock-specific mandated fuel targets to extreme weather conditions that could become more frequent and intensify in the future. Consequently, a sustainable biofuel policy should consider: (a how climate change would alter both water supply and demand; and (b in turn, how related changes in water availability will impact the production of biofuel crops; and (c the environmental implications of large scale biofuel productions. Understanding the role of biofuels in the water cycle is the key to understanding many of the environmental impacts of biofuels. Therefore, the focus of this study is to model the rarely explored interactions between land use, climate change, water resources and the environment in future biofuel production systems. Results from this study will help explore the impacts of the US biofuel policy and climate change on water and agricultural resources. We used the Soil and Water Assessment Tool (SWAT to analyze the water quantity and quality consequences of land use and land management related changes in cropping conditions (e.g., more use of marginal lands, greater residue harvest, increased yields, plus management practices due to biofuel crops to meet the Renewable Fuel Standard target on water quality and quantity.

  6. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    Science.gov (United States)

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  7. Biofuels: from microbes to molecules

    National Research Council Canada - National Science Library

    Lu, Xuefeng

    2014-01-01

    .... The production of different biofuel molecules including hydrogen, methane, ethanol, butanol, higher chain alcohols, isoprenoids and fatty acid derivatives, from genetically engineered microbes...

  8. Biofuel technology handbook. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Rutz, Dominik; Janssen, Rainer

    2008-01-15

    This comprehensive handbook was created in order to promote the production and use of biofuels and to inform politicians, decision makers, biofuel traders and all other relevant stakeholders about the state-of-the-art of biofuels and relevant technologies. The large variety of feedstock types and different conversion technologies are described. Explanations about the most promising bio fuels provide a basis to discuss about the manifold issues of biofuels. The impartial information in this handbook further contributes to diminish existing barriers for the broad use of biofuels. Emphasis of this handbook is on first generation biofuels: bio ethanol, Biodiesel, pure plant oil, and bio methane. It also includes second generation biofuels such as BTL-fuels and bio ethanol from lingo-cellulose as well as bio hydrogen. The whole life cycle of bio fuels is assessed under technical, economical, ecological, and social aspect. Characteristics and applications of bio fuels for transport purposes are demonstrated and evaluated. This is completed by an assessment about the most recent studies on biofuel energy balances. This handbook describes the current discussion about green house gas (GHG) balances and sustainability aspects. GHG calculation methods are presented and potential impacts of biofuel production characterized: deforestation of rainforests and wetlands, loss of biodiversity, water pollution, human health, child labour, and labour conditions.

  9. Forests, food, and fuel in the tropics: the uneven social and ecological consequences of the emerging political economy of biofuels.

    Science.gov (United States)

    Dauvergne, Peter; Neville, Kate J

    2010-01-01

    The global political economy of biofuels emerging since 2007 appears set to intensify inequalities among the countries and rural peoples of the global South. Looking through a global political economy lens, this paper analyses the consequences of proliferating biofuel alliances among multinational corporations, governments, and domestic producers. Since many major biofuel feedstocks - such as sugar, oil palm, and soy - are already entrenched in industrial agricultural and forestry production systems, the authors extrapolate from patterns of production for these crops to bolster their argument that state capacities, the timing of market entry, existing institutions, and historical state-society land tenure relations will particularly affect the potential consequences of further biofuel development. Although the impacts of biofuels vary by region and feedstock, and although some agrarian communities in some countries of the global South are poised to benefit, the analysis suggests that already-vulnerable people and communities will bear a disproportionate share of the costs of biofuel development, particularly for biofuels from crops already embedded in industrial production systems. A core reason, this paper argues, is that the emerging biofuel alliances are reinforcing processes and structures that increase pressures on the ecological integrity of tropical forests and further wrest control of resources from subsistence farmers, indigenous peoples, and people with insecure land rights. Even the development of so-called 'sustainable' biofuels looks set to displace livelihoods and reinforce and extend previous waves of hardship for such marginalised peoples.

  10. Thermochemical conversion of microalgal biomass into biofuels: a review.

    Science.gov (United States)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Microalgae as sustainable renewable energy feedstock for biofuel production.

    Science.gov (United States)

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  12. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Srikanth Reddy Medipally

    2015-01-01

    Full Text Available The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  13. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Science.gov (United States)

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  14. Novel Miscanthus Germplasm-Based Value Chains: A Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Moritz Wagner

    2017-06-01

    Full Text Available In recent years, considerable progress has been made in miscanthus research: improvement of management practices, breeding of new genotypes, especially for marginal conditions, and development of novel utilization options. The purpose of the current study was a holistic analysis of the environmental performance of such novel miscanthus-based value chains. In addition, the relevance of the analyzed environmental impact categories was assessed. A Life Cycle Assessment was conducted to analyse the environmental performance of the miscanthus-based value chains in 18 impact categories. In order to include the substitution of a reference product, a system expansion approach was used. In addition, a normalization step was applied. This allowed the relevance of these impact categories to be evaluated for each utilization pathway. The miscanthus was cultivated on six sites in Europe (Aberystwyth, Adana, Moscow, Potash, Stuttgart and Wageningen and the biomass was utilized in the following six pathways: (1 small-scale combustion (heat—chips; (2 small-scale combustion (heat—pellets; (3 large-scale combustion (CHP—biomass baled for transport and storage; (4 large-scale combustion (CHP—pellets; (5 medium-scale biogas plant—ensiled miscanthus biomass; and (6 large-scale production of insulation material. Thus, in total, the environmental performance of 36 site × pathway combinations was assessed. The comparatively high normalized results of human toxicity, marine, and freshwater ecotoxicity, and freshwater eutrophication indicate the relevance of these impact categories in the assessment of miscanthus-based value chains. Differences between the six sites can almost entirely be attributed to variations in biomass yield. However, the environmental performance of the utilization pathways analyzed varied widely. The largest differences were shown for freshwater and marine ecotoxicity, and freshwater eutrophication. The production of insulation material

  15. Final Report DE-SC0006634. Quantifying phenotypic and genetic diversity of Miscanthus sinensis as a resource for knowledge-based improvement of M. ×giganteus (M. sinensis × M. sacchariflorus)

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, Erik [Univ. of Illinois, Urbana, IL (United States)

    2016-02-08

    Miscanthus is especially attractive as a bioenergy crop for temperate environments because it produces high yields, needs few inputs, and grows well during the cool weather of early spring and late fall when few warm-season grasses can. However, Miscanthus feedstock production for the emerging U.S. bioenergy industry and for existing demand in Europe is based on a single sterile, vegetatively propagated variety of M. ×giganteus. M. ×giganteus is an interspecific hybrid of the parental species M. sinensis and M. sacchariflorus. Prior to the current study, little information existed about the genetic diversity and breeding potential of either M. ×giganteus parental species. In the current project, we studied more than 600 accessions of M. sinensis from throughout its native range in China, Japan, and Korea, in addition to ornamental cultivars and U.S. naturalized populations. Using thousands of DNA markers, we identified seven geographically distinct genetic groups of M. sinensis. Notably, we found that the ornamental cultivars and U.S. naturalized populations were derived from only a subset of the Southern Japan group, indicating that our study greatly increased the genetic diversity available for breeding new biomass cultivars. Additionally, this new understanding of M. sinensis population structure could be used to predict which crosses may produce progeny with the greatest hybrid vigor. Replicated field trials were also established at multiple locations in North America and Asia. Data on traits of importance for biomass productivity, such as flowering time, yield and height, were taken. Analyses of the phenotypic data from the field trials along with the DNA markers allowed us to identify many marker-trait associations. These results will enable marker-assisted breeding, which will allow selection at the seedling stage rather than waiting two to three years to obtain phenotypic data. Thus, this study is expected to greatly increase the efficiency of breeding

  16. Heuristic Methodology for Estimating the Liquid Biofuel Potential of a Region

    Directory of Open Access Journals (Sweden)

    Dorel Dusmanescu

    2016-08-01

    Full Text Available This paper presents a heuristic methodology for estimating the possible variation of the liquid biofuel potential of a region, an appraisal made for a future period of time. The determination of the liquid biofuel potential has been made up either on the account of an average (constant yield of the energetic crops that were used, or on the account of a yield that varies depending on a known trend, which can be estimated through a certain method. The proposed methodology uses the variation of the yield of energetic crops over time in order to simulate a variation of the biofuel potential for a future ten year time period. This new approach to the problem of determining the liquid biofuel potential of a certain land area can be useful for investors, as it allows making a more realistic analysis of the investment risk and of the possibilities of recovering the investment. On the other hand, the presented methodology can be useful to the governmental administration in order to elaborate strategies and policies to ensure the necessity of fuels and liquid biofuels for transportation, in a certain area. Unlike current methods, which approach the problem of determining the liquid biofuel potential in a deterministic way, by using econometric methods, the proposed methodology uses heuristic reasoning schemes in order to reduce the great number of factors that actually influence the biofuel potential and which usually have unknown values.

  17. Crop residue inventory estimates for Texas High Plains cotton

    Science.gov (United States)

    Interest in the use of cotton crop by-products for the production of bio-fuels and value-added products is increasing. Research documenting the availability of cotton crop by-products after machine harvest is needed. The objectives of this work were to document the total biomass production for moder...

  18. Options for suitable biofuel farming: Experience from Southern Africa

    CSIR Research Space (South Africa)

    Von Maltitz, Graham P

    2017-04-01

    Full Text Available sugarcane-based ethanol project that has been operational since 1982. Furthermore, sugarcane for sugar production is a well established crop in the region, with projects operational in South Africa, Swaziland, Mozambique, Zambia, and Zimbabwe. Biofuel... in the sugar industry where sugarcane is grown was also investigated. Data were obtained from detailed case studies undertaken previously by the author. Further data were gathered from a wide selection of Southern African sugar projects using key informant...

  19. Molecular Breeding of Advanced Microorganisms for Biofuel Production

    OpenAIRE

    Sakuragi, Hiroshi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain bio...

  20. The price for biofuels sustainability

    International Nuclear Information System (INIS)

    Pacini, Henrique; Assunção, Lucas; Dam, Jinke van; Toneto, Rudinei

    2013-01-01

    The production and usage of biofuels has increased worldwide, seeking goals of energy security, low-carbon energy and rural development. As biofuels trade increased, the European Union introduced sustainability regulations in an attempt to reduce the risks associated with biofuels. Producers were then confronted with costs of sustainability certification, in order to access the EU market. Hopes were that sustainably-produced biofuels would be rewarded with higher prices in the EU. Based on a review of recent literature, interviews with traders and price data from Platts, this paper explores whether sustainability premiums emerged and if so, did they represent an attracting feature in the market for sustainable biofuels. This article finds that premiums for ethanol and biodiesel evolved differently between 2011 and 2012, but have been in general very small or inexistent, with certified fuels becoming the new norm in the market. For different reasons, there has been an apparent convergence between biofuel policies in the EU and the US. As market operators perceive a long-term trend for full certification in the biofuels market, producers in developing countries are likely to face additional challenges in terms of finance and capacity to cope with the sustainability requirements. - Highlights: • EU biofuel sustainability rules were once thought to reward compliant producers with price-premiums. • Premiums for certified biofuels, however, have been small for biodiesel and almost non-existent for ethanol. • As sustainable biofuels became the new norm, premiums disappeared almost completely in 2012. • Early stages of supply chains concentrate the highest compliance costs, affecting specially developing country producers. • Producers are now in a market where sustainable biofuels have become the new norm

  1. Analysis of Selected Environmental Indicators in the Cultivation System of Energy Crops

    Directory of Open Access Journals (Sweden)

    Šoltysová Božena Š

    2017-11-01

    Full Text Available The changes of selected chemical parameters were observed in Gleyic Fluvisols. The field experiment was established as a twofactor experiment with four energy crops (Arundo donax L., Miscanthus × giganteus, Elymus elongatus Gaertner, Sida hermafrodita and two variants of fertilization (nitrogen fertilization in rate 60 kg ha-1, without nitrogen fertilization. Soil samples were taken from the depth of 0 to 0.3 m at the beginning of the experiment in the autumn 2012 and at the end of reference period in the autumn 2015. Land management conversion from market crops to perennial energy crops cultivation has influenced changes of selected soil chemical parameters. The contents of soil organic carbon were affected by cultivated energy crops differently. It was found out that Arundo increased the organic carbon content and Miscanthus, Elymus and Sida decreased its content. At the same time, the same impact of the crops on content of available phosphorus and potassium and soil reaction was found. It was recorded that each cultivated crop decreased the soil reaction and available phosphorus content and increased the content of available potassium.

  2. WET TORREFACTION OF MISCANTHUS – CHARACTERIZATION OF HYDROCHARS IN VIEW OF HANDLING, STORAGE AND COMBUSTION PROPERTIES

    Directory of Open Access Journals (Sweden)

    Mateusz Wnukowski

    2015-06-01

    Full Text Available Properties of miscanthus hydrochars obtained through wet torrefaction were studied. The process was carried out in three different temperatures – 180, 200 and 220 °C and with four different ratios of water to biomass – 3:1, 6:1, 12:1 and 16:1. The obtained solid products were characterized with respect to their fuel properties. The best results were obtained for the temperature of 220 °C and showed a noticeable improvement in fuel properties – especially grindability and lowered ash content. The influence of water to biomass ratio was not so explicit and while high ratio showed an improvement in all mentioned properties, low ratio allowed to achieve the highest energy yield. The results obtained for miscanthus wet torrefaction and the literature data for dry torrefaction were compared.

  3. Biofuels in Central America

    International Nuclear Information System (INIS)

    Sanders, E.

    2007-08-01

    This report presents the results of an analysis of the biofuel markets in El Salvador, Panama, Costa Rica and Honduras. The aim of this report is to provide insight in the current situation and the expected developments in these markets and thus to provide investors with an image of the opportunities that could be present in this sector. An attempt has been made to provide a clear overview of this sector in the countries concerned. Due to a lack of data this has not been fully accomplished in some cases. [mk] [nl

  4. Biofuels: Project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  5. Byproducts for biofuels

    International Nuclear Information System (INIS)

    Bondt, N.; Meeusen, M.J.G.

    2008-02-01

    This report examines the market for residues from the Dutch food and beverage industry, and the appeal of these residues for the production of bio-ethanol and biodiesel. The firstgeneration technology is readily suited to the conversion of no more than 29% of the 7.5 million tonnes of residues into biofuels. Moreover, when non-technological criteria are also taken into account virtually none of the residues are of interest for conversion into bioethanol, although vegetable and animal fats can be used to produce biodiesel. The economic consequences for sectors such as the animal-feed sector are limited [nl

  6. Investigating biofuels through network analysis

    International Nuclear Information System (INIS)

    Curci, Ylenia; Mongeau Ospina, Christian A.

    2016-01-01

    Biofuel policies are motivated by a plethora of political concerns related to energy security, environmental damages, and support of the agricultural sector. In response to this, much scientific work has chiefly focussed on analysing the biofuel domain and on giving policy advice and recommendations. Although innovation has been acknowledged as one of the key factors in sustainable and cost-effective biofuel development, there is an urgent need to investigate technological trajectories in the biofuel sector by starting from consistent data and appropriate methodological tools. To do so, this work proposes a procedure to select patent data unequivocally related to the investigated sector, it uses co-occurrence of technological terms to compute patent similarity and highlights content and interdependencies of biofuels technological trajectories by revealing hidden topics from unstructured patent text fields. The analysis suggests that there is a breaking trend towards modern generation biofuels and that innovators seem to focus increasingly on the ability of alternative energy sources to adapt to the transport/industrial sector. - Highlights: • Innovative effort is devoted to biofuels additives and modern biofuels technologies. • A breaking trend can be observed from the second half of the last decade. • A patent network is identified via text mining techniques that extract latent topics.

  7. Transporter-mediated biofuel secretion.

    Science.gov (United States)

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-07

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance.

  8. Recent developments of biofuels/bioenergy sustainability certification: A global overview

    International Nuclear Information System (INIS)

    Scarlat, Nicolae; Dallemand, Jean-Francois

    2011-01-01

    The objective of this paper is to provide a review on the latest developments on the main initiatives and approaches for the sustainability certification for biofuels and/or bioenergy. A large number of national and international initiatives lately experienced rapid development in the view of the biofuels and bioenergy targets announced in the European Union, United States and other countries worldwide. The main certification initiatives are analysed in detail, including certification schemes for crops used as feedstock for biofuels, the various initiatives in the European Union, United States and globally, to cover biofuels and/or biofuels production and use. Finally, the possible way forward for biofuel certification is discussed. Certification has the potential to influence positively direct environmental and social impact of bioenergy production. Key recommendations to ensure sustainability of biofuels/bioenergy through certification include the need of an international approach and further harmonisation, combined with additional measures for global monitoring and control. The effects of biofuels/bioenergy production on indirect land use change (ILUC) is still very uncertain; addressing the unwanted ILUC requires sustainable land use planning and adequate monitoring tools such as remote sensing, regardless of the end-use of the product. - Research highlights: → There is little harmonisation between certification initiatives. → Certification alone is probably not able to avoid certain indirect effects. → Sustainability standards should be applied globally to all agricultural commodities. → A critical issue to certification is implementation and verification. → Monitoring and control of land use changes through remote sensing are needed.

  9. Biofuels and Their Co-Products as Livestock Feed: Global Economic and Environmental Implications.

    Science.gov (United States)

    Popp, József; Harangi-Rákos, Mónika; Gabnai, Zoltán; Balogh, Péter; Antal, Gabriella; Bai, Attila

    2016-02-29

    This review studies biofuel expansion in terms of competition between conventional and advanced biofuels based on bioenergy potential. Production of advanced biofuels is generally more expensive than current biofuels because products are not yet cost competitive. What is overlooked in the discussion about biofuel is the contribution the industry makes to the global animal feed supply and land use for cultivation of feedstocks. The global ethanol industry produces 44 million metric tonnes of high-quality feed, however, the co-products of biodiesel production have a moderate impact on the feed market contributing to just 8-9 million tonnes of protein meal output a year. By economically displacing traditional feed ingredients co-products from biofuel production are an important and valuable component of the biofuels sector and the global feed market. The return of co-products to the feed market has agricultural land use (and GHG emissions) implications as well. The use of co-products generated from grains and oilseeds can reduce net land use by 11% to 40%. The proportion of global cropland used for biofuels is currently some 2% (30-35 million hectares). By adding co-products substituted for grains and oilseeds the land required for cultivation of feedstocks declines to 1.5% of the global crop area.

  10. Biofuels in the long-run global energy supply mix for transportation.

    Science.gov (United States)

    Timilsina, Govinda R

    2014-01-13

    Various policy instruments along with increasing oil prices have contributed to a sixfold increase in global biofuels production over the last decade (2000-2010). This rapid growth has proved controversial, however, and has raised concerns over potential conflicts with global food security and climate change mitigation. To address these concerns, policy support is now focused on advanced or second-generation biofuels instead of crop-based first-generation biofuels. This policy shift, together with the global financial crisis, has slowed the growth of biofuels production, which has remained stagnant since 2010. Based upon a review of the literature, this paper examines the potential long-run contribution of biofuels to the global energy mix, particularly for transportation. We find that the contribution of biofuels to global transportation fuel demand is likely to be limited to around 5% over the next 10-15 years. However, a number of studies suggest that biofuels could contribute up to a quarter of global transportation fuel demand by 2050, provided technological breakthroughs reduce the costs of sustainably produced advanced biofuels to a level where they can compete with petroleum fuels.

  11. Potential impacts of biofuel development on food security in Botswana: A contribution to energy policy

    International Nuclear Information System (INIS)

    Kgathi, Donald L.; Mfundisi, K.B.; Mmopelwa, G.; Mosepele, K.

    2012-01-01

    Biofuel development continues to be a critical development strategy in Africa because it promises to be an important part of the emerging bio-economy. However, there is a growing concern that the pattern of biofuel development is not always consistent with the principles of sustainable development. This paper assesses the potential of the impacts of biofuel development on food security in Botswana. Drawing on informal and semi-structured interviews, the paper concludes that there is potential for the development of biofuels in Botswana without adverse effects on food security due mainly to availability of idle land which accounted for 72% of agricultural land in the eastern part of the country in 2008. It is suggested that farmers could be incentivized to produce energy crops and more food from such land. Although it is hypothesized that the implementation of biofuel development programmes in other countries had an impact on local commodity prices during the period 2005–2008 in Botswana, it is argued that local biofuel production may not necessarily lead to a substantial increase in commodity food prices because land availability is not a major issue. The paper makes policy recommendations for sustainable biofuel development in Botswana. - Highlights: ► Biofuel development in Botswana can be pursued without harming food security. ► There is plenty idle land which could be used for biofuel and food production. ► Biofuel production will not lead to significant increases in food prices. ► There is need to define land for biofuels to avoid future scarcity of land for food production.

  12. Some Chemical Compositional Changes in Miscanthus and White Oak Sawdust Samples during Torrefaction

    Directory of Open Access Journals (Sweden)

    J. Richard Hess

    2012-10-01

    Full Text Available Torrefaction tests on miscanthus and white oak sawdust were conducted in a bubbling sand bed reactor to see the effect of temperature and residence time on the chemical composition. Process conditions for miscanthus and white oak sawdust were 250–350 °C for 30–120 min and 220–270 °C for 30 min, respectively. Torrefaction of miscanthus at 250 °C and a residence time of 30 min resulted in a significant decrease in moisture—about 82.68%—but the other components—hydrogen, nitrogen, sulfur, and volatiles—changed only marginally. Increasing torrefaction temperatures to 350 °C with a residence time of 120 min further reduced the moisture content to 0.54%, with a significant decrease in the hydrogen, nitrogen, and volatiles by 58.29%, 14.28%, and 70.45%, respectively. Regression equations developed for the moisture, hydrogen, nitrogen, and volatile content of the samples with respect to torrefaction temperature and time have adequately described the changes in chemical composition based on R2 values of >0.82. Surface plots based on the regression equation indicate that torrefaction temperatures of 280–350 °C with residence times of 30–120 min can help reduce moisture, nitrogen, and volatile content from 1.13% to 0.6%, 0.27% to 0.23%, and 79% to 23%, with respect to initial values. Trends of chemical compositional changes in white oak sawdust are similar to miscanthus. Torrefaction temperatures of 270 °C and a 30 min residence time reduced the moisture, volatiles, hydrogen, and nitrogen content by about 79%, 17.88%, 20%, and 5.88%, respectively, whereas the carbon content increased by about 3.5%.

  13. Laccase enzyme detoxifies hydrolysates and improves biogas production from hemp straw and miscanthus.

    Science.gov (United States)

    Schroyen, Michel; Van Hulle, Stijn W H; Holemans, Sander; Vervaeren, Han; Raes, Katleen

    2017-11-01

    The impact of various phenolic compounds, vanillic acid, ferulic acid, p-coumaric acid and 4-hydroxybenzoic acid on anaerobic digestion of lignocellulosic biomass (hemp straw and miscanthus) was studied. Such phenolic compounds have been known to inhibit biogas production during anaerobic digestion. The different phenolic compounds were added in various concentrations: 0, 100, 500, 1000 and 2000mg/L. A difference in inhibition of biomethane production between the phenolic compounds was noted. Hydrolysis rate, during anaerobic digestion of miscanthus was inhibited up to 50% by vanillic acid, while vanillic acid had no influence on the initial rate of biogas production during the anaerobic digestion of hemp straw. Miscanthus has a higher lignin concentration (12-30g/100gDM) making it less accessible for degradation, and in combination with phenolic compounds released after harsh pretreatments, it can cause severe inhibition levels during the anaerobic digestion, lowering biogas production. To counter the inhibition, lignin degrading enzymes can be used to remove or degrade the inhibitory phenolic compounds. The interaction of laccase and versatile peroxidase individually with the different phenolic compounds was studied to have insight in the polymerization of inhibitory compounds or breakdown of lignocellulose. Hemp straw and miscanthus were incubated with 0, 100 and 500mg/L of the different phenolic compounds for 0, 6 and 24h and pretreated with the lignin degrading enzymes. A laccase pretreatment successfully detoxified the substrate, while versatile peroxidase however was inhibited by 100mg/L of each of the individual phenolic compounds. Finally a combination of enzymatic detoxification and subsequent biogas production showed that a decrease in phenolic compounds by laccase treatment can considerably lower the inhibition levels of the biogas production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Biofuels. An overview. Final Report

    International Nuclear Information System (INIS)

    De Castro, J.F.M.

    2007-05-01

    The overall objective of this desk study is to get an overview of the most relevant liquid biofuels especially in the African context, and more specifically in the Netherlands' relevant partner countries. The study will focus on biofuels for transport, but will also consider biofuels for cooking and power generation. Biogas as the result of anaerobic fermentation which can be used for cooking, lighting and electricity generation will not be considered in this study. Liquid biofuels are usually divided into alcohols that are used to substitute for gasoline and oils that are used to substitute for diesel and are often called Biodiesel, and this division will be followed in this study. In chapter 2 we will analyse several aspects of the use of alcohols particularly ethanol, in chapter 3 the same analysis will be done for oils, using as example the very promising Jatropha oil. In chapter we will analyse socio-economic issues of the use of these biofuels

  15. National Algal Biofuels Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Dept. of Energy (DOE), Washington DC (United States); Sarisky-Reed, Valerie [Dept. of Energy (DOE), Washington DC (United States)

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  16. Adaptive divergence with gene flow in incipient speciation of Miscanthus floridulus / sinensis complex (Poaceae)

    KAUST Repository

    Huang, Chao-Li; Ho, Chuan-Wen; Chiang, Yu-Chung; Shigemoto, Yasumasa; Hsu, Tsai-Wen; Hwang, Chi-Chuan; Ge, Xue-Jun; Chen, Charles; Wu, Tai-Han; Chou, Chang-Hung; Huang, Hao-Jen; Gojobori, Takashi; Osada, Naoki; Chiang, Tzen-Yuh

    2014-01-01

    Young incipient species provide ideal materials for untangling the process of ecological speciation in the presence of gene flow. The Miscanthus floridulus/sinensis complex exhibits diverse phenotypic and ecological differences despite recent divergence (approximately 1.59million years ago). To elucidate the process of genetic differentiation during early stages of ecological speciation, we analyzed genomic divergence in the Miscanthus complex using 72 randomly selected genes from a newly assembled transcriptome. In this study, rampant gene flow was detected between species, estimated as M=3.36x10(-9) to 1.20x10(-6), resulting in contradicting phylogenies across loci. Nevertheless, beast analyses revealed the species identity and the effects of extrinsic cohesive forces that counteracted the non-stop introgression. As expected, early in speciation with gene flow, only 3-13 loci were highly diverged; two to five outliers (approximately 2.78-6.94% of the genome) were characterized by strong linkage disequilibrium, and asymmetrically distributed among ecotypes, indicating footprints of diversifying selection. In conclusion, ecological speciation of incipient species of Miscanthus probably followed the parapatric model, whereas allopatric speciation cannot be completely ruled out, especially between the geographically isolated northern and southern M.sinensis, for which no significant gene flow across oceanic barriers was detected. Divergence between local ecotypes in early-stage speciation began at a few genomic regions under the influence of natural selection and divergence hitchhiking that overcame gene flow.

  17. Adaptive divergence with gene flow in incipient speciation of Miscanthus floridulus / sinensis complex (Poaceae)

    KAUST Repository

    Huang, Chao-Li

    2014-11-11

    Young incipient species provide ideal materials for untangling the process of ecological speciation in the presence of gene flow. The Miscanthus floridulus/sinensis complex exhibits diverse phenotypic and ecological differences despite recent divergence (approximately 1.59million years ago). To elucidate the process of genetic differentiation during early stages of ecological speciation, we analyzed genomic divergence in the Miscanthus complex using 72 randomly selected genes from a newly assembled transcriptome. In this study, rampant gene flow was detected between species, estimated as M=3.36x10(-9) to 1.20x10(-6), resulting in contradicting phylogenies across loci. Nevertheless, beast analyses revealed the species identity and the effects of extrinsic cohesive forces that counteracted the non-stop introgression. As expected, early in speciation with gene flow, only 3-13 loci were highly diverged; two to five outliers (approximately 2.78-6.94% of the genome) were characterized by strong linkage disequilibrium, and asymmetrically distributed among ecotypes, indicating footprints of diversifying selection. In conclusion, ecological speciation of incipient species of Miscanthus probably followed the parapatric model, whereas allopatric speciation cannot be completely ruled out, especially between the geographically isolated northern and southern M.sinensis, for which no significant gene flow across oceanic barriers was detected. Divergence between local ecotypes in early-stage speciation began at a few genomic regions under the influence of natural selection and divergence hitchhiking that overcame gene flow.

  18. GIANT MISCANTHUS AS A SUBSTRATE FOR BIOGAS PRODUCTION

    OpenAIRE

    Joanna Kazimierowicz; Lech Dzienis

    2015-01-01

    One unconventional source of energy, which may be applied in numerous production and municipal processes, is energy accumulated in plants. As a result of photosynthesis, solar energy is transformed into chemical energy accumulated in a form of carbohydrates in the plant biomass, which becomes the material that is more and more sought by power distribution companies and individual users. Currently, a lot of research on obtaining biogas from energy crops is conducted. Corn silage is used most o...

  19. Biofuels and environment

    International Nuclear Information System (INIS)

    Wihersaari, M.

    1996-01-01

    The purpose of this work was to produce more information on the environmental impacts of biomass production and use. Energy consumption and environmental impacts of different biomass and fossil fuel production techniques combined with transportation and end use figures are needed for comparing different fuel alternatives to reach a maximum environmental benefits from the total energy system. The energy demand of different biomass production chains was calculated and compared. Special attention was paid to new production techniques, developed in the ongoing Finnish BIOENERGY research programme. The energy consumption and the emissions from biomass production were compared with the corresponding parametres for fossil fuels used in Finland. The use of biomass for energy purposes provides environmental benefits compared to fossile fuels. The most notable ones are very small or none net emissions of greenhouse gases and SO 2 when burning biomass. NO x emissions from the production and transportation chain form a notable part of the total NO x emissons of the bioenergy production and utilization chain, especially for large biomass plants, and therefore attention should be paid to the possibilities to lower these emissions. Biomass fuel production is not free from fossil fuels. About 2-6 per cent of the produced energy is used in the production chain. The amount of used energy rises much higher, if the biofuel is processed to be an alternative for e.g. fossil diesel fuels. The energy demand in the fossil fuel production chain is though greater than in the production chain of basic biofuels. (52 refs.)

  20. Biofuels and algae

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Bio-fuels based on micro-algae are promising, their licensing for being used in plane fuels in a mix containing 50% of fossil kerosene is expected in the coming months. In United-States research on bio-fuels has been made more important since 2006 when 2 policies were launched: 'Advanced energy initiative' and 'Twenty-in-ten', the latter aiming to develop alternative fuels. In Europe less investment has been made concerning micro-algae fuels but research programs were launched in Spain, United-Kingdom and France. In France 3 important projects were launched: SHAMASH (2006-2010) whose aim is to produce lipidic fuels from micro-algae, ALGOHUB (2008-2013) whose aim is to use micro-algae as a raw material for humane and animal food, medicine and cosmetics, SYMBIOSE (2009-2011) whose aim is the optimization of the production of methane through the anaerobic digestion of micro-algae, SALINALGUE (2010-2016) whose aim is to grow micro-algae for the production of bio-energies and bio-products. (A.C.)

  1. Biofuel impacts on world food supply: use of fossil fuel, land and water resources

    International Nuclear Information System (INIS)

    Pimentel, D.; Marklein, A.; Toth, M. A.; Karpoff, M.; Paul, G. S.; McCormack, R.; Kyriazis, J.; Krueger, T.

    2008-01-01

    The rapidly growing world population and rising consumption of biofuels are increasing demand for both food and biofuels. This exaggerates both food and fuel shortages. Using food crops such as corn grain to produce ethanol raises major nutritional and ethical concerns. Nearly 60% of humans in the world are currently malnourished, so the need for grains and other basic foods is critical. Growing crops for fuel squanders land, water and energy resources vital for the production of food for human consumption. Using corn for ethanol increases the price of U.S. beef, chicken, pork, eggs, breads, cereals, and milk more than 10% to 30%. (author)

  2. Regional greenhouse gas emissions from cultivation of winter wheat and winter rapeseed for biofuels in Denmark

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Olesen, Jørgen E; Hermansen, John Erik

    2013-01-01

    Biofuels from bioenergy crops may substitute a significant part of fossil fuels in the transport sector where, e.g., the European Union has set a target of using 10% renewable energy by 2020. Savings of greenhouse gas emissions by biofuels vary according to cropping systems and are influenced...... by such regional factors as soil conditions, climate and input of agrochemicals. Here we analysed at a regional scale the greenhouse gas (GHG) emissions associated with cultivation of winter wheat for bioethanol and winter rapeseed for rapeseed methyl ester (RME) under Danish conditions. Emitted CO2 equivalents...

  3. Life Cycle Assessment of Bioenergy from Lignocellulosic Crops Cultivated on Marginal Land in Europe

    Science.gov (United States)

    Rettenmaier, Nils; Schmidt, Tobias; Gärtner, Sven; Reinhardt, Guido

    2017-04-01

    Population growth and changing diets due to economic development lead to an additional demand for land for food and feed production. Slowly but surely turning into a mass market, also the cultivation of non-food biomass crops for fibre (bio-based products) and fuel (biofuels and bioenergy) is increasingly contributing to the pressure on global agricultural land. As a consequence, the already prevailing competition for land might even intensify over the next decades. Against this background, the possibilities of shifting the cultivation of non-food biomass crops to so-called 'marginal lands' are investigated. The EC-funded project 'Sustainable exploitation of biomass for bioenergy from marginal lands in Europe' (SEEMLA) aims at the establishment of suitable innovative land-use strategies for a sustainable production of bioenergy from lignocellulosic crops on marginal lands while improving general ecosystem services. For a complete understanding of the environmental benefits and drawbacks of the envisioned cultivation of bioenergy crops on marginal land, life cycle assessments (LCA) have proven to be a suitable and valuable tool. Thus, embedded into a comprehensive sustainability assessment, a screening LCA is carried out for the entire life cycles of the bioenergy carriers researched in SEEMLA. Investigated systems, on the one hand, include the specific field trials carried out by the SEEMLA partners in Ukraine, Greece and Germany. On the other hand, generic scenarios are investigated in order to derive reliable general statements on the environmental impacts of bioenergy from marginal lands in Europe. Investigated crops include woody and herbaceous species such as black locust, poplar, pine, willow and Miscanthus. Conversion technologies cover the use in a domestic or a district heating plant, power plant, CHP as well as the production of Fischer-Tropsch diesel (FT diesel) and lignocellulosic ethanol. Environmental impacts are compared to conventional reference

  4. Microalgae as a raw material for biofuels production.

    Science.gov (United States)

    Gouveia, Luisa; Oliveira, Ana Cristina

    2009-02-01

    Biofuels demand is unquestionable in order to reduce gaseous emissions (fossil CO(2), nitrogen and sulfur oxides) and their purported greenhouse, climatic changes and global warming effects, to face the frequent oil supply crises, as a way to help non-fossil fuel producer countries to reduce energy dependence, contributing to security of supply, promoting environmental sustainability and meeting the EU target of at least of 10% biofuels in the transport sector by 2020. Biodiesel is usually produced from oleaginous crops, such as rapeseed, soybean, sunflower and palm. However, the use of microalgae can be a suitable alternative feedstock for next generation biofuels because certain species contain high amounts of oil, which could be extracted, processed and refined into transportation fuels, using currently available technology; they have fast growth rate, permit the use of non-arable land and non-potable water, use far less water and do not displace food crops cultures; their production is not seasonal and they can be harvested daily. The screening of microalgae (Chlorella vulgaris, Spirulina maxima, Nannochloropsis sp., Neochloris oleabundans, Scenedesmus obliquus and Dunaliella tertiolecta) was done in order to choose the best one(s), in terms of quantity and quality as oil source for biofuel production. Neochloris oleabundans (fresh water microalga) and Nannochloropsis sp. (marine microalga) proved to be suitable as raw materials for biofuel production, due to their high oil content (29.0 and 28.7%, respectively). Both microalgae, when grown under nitrogen shortage, show a great increase (approximately 50%) in oil quantity. If the purpose is to produce biodiesel only from one species, Scenedesmus obliquus presents the most adequate fatty acid profile, namely in terms of linolenic and other polyunsaturated fatty acids. However, the microalgae Neochloris oleabundans, Nannochloropsis sp. and Dunaliella tertiolecta can also be used if associated with other

  5. Bio-fuel co-products in France: perspectives and consequences for cattle food; Coproduits des biocarburants en France: perspectives et consequences en alimentation animale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The development of bio-fuels goes along with that of co-products which can be used to feed animals. After having recalled the political context which promotes the development of renewable energies, this document aims at giving an overview of the impact of bio-fuel co-products on agriculture economy. It discusses the production and price evolution for different crops

  6. Agricultural Residues and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  7. Role of arthropod communities in bioenergy crop litter decomposition†.

    Science.gov (United States)

    Zangerl, Arthur R; Miresmailli, Saber; Nabity, Paul; Lawrance, Allen; Yanahan, Alan; Mitchell, Corey A; Anderson-Teixeira, Kristina J; David, Mark B; Berenbaum, May R; DeLucia, Evan H

    2013-10-01

    The extensive land use conversion expected to occur to meet demands for bioenergy feedstock production will likely have widespread impacts on agroecosystem biodiversity and ecosystem services, including carbon sequestration. Although arthropod detritivores are known to contribute to litter decomposition and thus energy flow and nutrient cycling in many plant communities, their importance in bioenergy feedstock communities has not yet been assessed. We undertook an experimental study quantifying rates of litter mass loss and nutrient cycling in the presence and absence of these organisms in three bioenergy feedstock crops-miscanthus (Miscanthus x giganteus), switchgrass (Panicum virgatum), and a planted prairie community. Overall arthropod abundance and litter decomposition rates were similar in all three communities. Despite effective reduction of arthropods in experimental plots via insecticide application, litter decomposition rates, inorganic nitrogen leaching, and carbon-nitrogen ratios did not differ significantly between control (with arthropods) and treatment (without arthropods) plots in any of the three community types. Our findings suggest that changes in arthropod faunal composition associated with widespread adoption of bioenergy feedstock crops may not be associated with profoundly altered arthropod-mediated litter decomposition and nutrient release. © 2012 Institute of Zoology, Chinese Academy of Sciences.

  8. International Trade of Biofuels (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2013-05-01

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  9. Climate change and health costs of air emissions from biofuels and gasoline

    Science.gov (United States)

    Hill, Jason; Polasky, Stephen; Nelson, Erik; Tilman, David; Huo, Hong; Ludwig, Lindsay; Neumann, James; Zheng, Haochi; Bonta, Diego

    2009-01-01

    Environmental impacts of energy use can impose large costs on society. We quantify and monetize the life-cycle climate-change and health effects of greenhouse gas (GHG) and fine particulate matter (PM2.5) emissions from gasoline, corn ethanol, and cellulosic ethanol. For each billion ethanol-equivalent gallons of fuel produced and combusted in the US, the combined climate-change and health costs are $469 million for gasoline, $472–952 million for corn ethanol depending on biorefinery heat source (natural gas, corn stover, or coal) and technology, but only $123–208 million for cellulosic ethanol depending on feedstock (prairie biomass, Miscanthus, corn stover, or switchgrass). Moreover, a geographically explicit life-cycle analysis that tracks PM2.5 emissions and exposure relative to U.S. population shows regional shifts in health costs dependent on fuel production systems. Because cellulosic ethanol can offer health benefits from PM2.5 reduction that are of comparable importance to its climate-change benefits from GHG reduction, a shift from gasoline to cellulosic ethanol has greater advantages than previously recognized. These advantages are critically dependent on the source of land used to produce biomass for biofuels, on the magnitude of any indirect land use that may result, and on other as yet unmeasured environmental impacts of biofuels. PMID:19188587

  10. Biofuel production and implications for land use, food production and environment in India

    International Nuclear Information System (INIS)

    Ravindranath, N.H.; Sita Lakshmi, C.; Manuvie, Ritumbra; Balachandra, P.

    2011-01-01

    There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed.

  11. Biofuel production and implications for land use, food production and environment in India

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranath, N.H.; Sita Lakshmi, C.; Manuvie, Ritumbra [Center for Sustainable Technologies, Indian Institute of Science, Bangalore 560012 (India); Balachandra, P., E-mail: patilb@mgmt.iisc.ernet.in [Center for Sustainable Technologies, Indian Institute of Science, Bangalore 560012 (India)

    2011-10-15

    There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed.

  12. Greenhouse gas emission curves for advanced biofuel supply chains

    Science.gov (United States)

    Daioglou, Vassilis; Doelman, Jonathan C.; Stehfest, Elke; Müller, Christoph; Wicke, Birka; Faaij, Andre; van Vuuren, Detlef P.

    2017-12-01

    Most climate change mitigation scenarios that are consistent with the 1.5-2 °C target rely on a large-scale contribution from biomass, including advanced (second-generation) biofuels. However, land-based biofuel production has been associated with substantial land-use change emissions. Previous studies show a wide range of emission factors, often hiding the influence of spatial heterogeneity. Here we introduce a spatially explicit method for assessing the supply of advanced biofuels at different emission factors and present the results as emission curves. Dedicated crops grown on grasslands, savannahs and abandoned agricultural lands could provide 30 EJBiofuel yr-1 with emission factors less than 40 kg of CO2-equivalent (CO2e) emissions per GJBiofuel (for an 85-year time horizon). This increases to 100 EJBiofuel yr-1 for emission factors less than 60 kgCO2e GJBiofuel-1. While these results are uncertain and depend on model assumptions (including time horizon, spatial resolution, technology assumptions and so on), emission curves improve our understanding of the relationship between biofuel supply and its potential contribution to climate change mitigation while accounting for spatial heterogeneity.

  13. Biofuels securing the planet's future energy needs

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, Ayhan [Sila Science, Univ. Mah, Mekan Sok No: 24, Trabzon (Turkey)

    2009-09-15

    The biofuels include bioethanol, biobutanol, biodiesel, vegetable oils, biomethanol, pyrolysis oils, biogas, and biohydrogen. There are two global biomass based liquid transportation fuels that might replace gasoline and diesel fuel. These are bioethanol and biodiesel. World production of biofuel was about 68 billion L in 2007. The primary feedstocks of bioethanol are sugarcane and corn. Bioethanol is a gasoline additive/substitute. Bioethanol is by far the most widely used biofuel for transportation worldwide. About 60% of global bioethanol production comes from sugarcane and 40% from other crops. Biodiesel refers to a diesel-equivalent mono alkyl ester based oxygenated fuel. Biodiesel production using inedible vegetable oil, waste oil and grease has become more attractive recently. The economic performance of a biodiesel plant can be determined once certain factors are identified, such as plant capacity, process technology, raw material cost and chemical costs. The central policy of biofuel concerns job creation, greater efficiency in the general business environment, and protection of the environment. (author)

  14. Sustainability aspects of biofuel production

    Science.gov (United States)

    Pawłowski, L.; Cel, W.; Wójcik Oliveira, K.

    2018-05-01

    Nowadays, world development depends on the energy supply. The use of fossil fuels leads to two threats: depletion of resources within a single century and climate changes caused by the emission of CO2 from fossil fuels combustion. Widespread application of renewable energy sources, in which biofuels play a major role, is proposed as a counter-measure. The paper made an attempt to evaluate to what extent biofuels meet the criteria of sustainable development. It was shown that excessive development of biofuels may threaten the sustainable development paradigms both in the aspect of: intergenerational equity, leading to an increase of food prices, as well as intergenerational equity, resulting in degradation of the environment. The paper presents the possibility of sustainable biofuels production increase.

  15. Biofuels: policies, standards and technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Skyrocketing prices of crude oil in the middle of the first decade of the 21st century accompanied by rising prices for food focused political and public attention on the role of biofuels. On the one hand, biofuels were considered as a potential automotive fuel with a bright future, on the other hand, biofuels were accused of competing with food production for land. The truth must lie somewhere in-between and is strongly dependent on the individual circumstance in different countries and regions. As food and energy are closely interconnected and often compete with each other for other resources, such as water, the World Energy Council - following numerous requests of its Member Committees - decided to undertake an independent assessment of biofuels policies, technologies and standards.

  16. Steam-exploded biomass saccharification is predominately affected by lignocellulose porosity and largely enhanced by Tween-80 in Miscanthus.

    Science.gov (United States)

    Sun, Dan; Alam, Aftab; Tu, Yuanyuan; Zhou, Shiguang; Wang, Yanting; Xia, Tao; Huang, Jiangfeng; Li, Ying; Zahoor; Wei, Xiaoyang; Hao, Bo; Peng, Liangcai

    2017-09-01

    In this study, total ten Miscanthus accessions exhibited diverse cell wall compositions, leading to largely varied hexoses yields at 17%-40% (% cellulose) released from direct enzymatic hydrolysis of steam-exploded (SE) residues. Further supplied with 2% Tween-80 into the enzymatic digestion, the Mis7 accession showed the higher hexose yield by 14.8-fold than that of raw material, whereas the Mis10 had the highest hexoses yield at 77% among ten Miscanthus accessions. Significantly, this study identified four wall polymer features that negatively affect biomass saccharification as pbiomass enzymatic digestion. Hence, this study provides the potential strategy to enhance biomass saccharification using optimal biomass process technology and related genetic breeding in Miscanthus and beyond. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Conventional and advanced liquid biofuels

    Directory of Open Access Journals (Sweden)

    Đurišić-Mladenović Nataša L.

    2016-01-01

    Full Text Available Energy security and independence, increase and fluctuation of the oil price, fossil fuel resources depletion and global climate change are some of the greatest challanges facing societies today and in incoming decades. Sustainable economic and industrial growth of every country and the world in general requires safe and renewable resources of energy. It has been expected that re-arrangement of economies towards biofuels would mitigate at least partially problems arised from fossil fuel consumption and create more sustainable development. Of the renewable energy sources, bioenergy draws major and particular development endeavors, primarily due to the extensive availability of biomass, already-existence of biomass production technologies and infrastructure, and biomass being the sole feedstock for liquid fuels. The evolution of biofuels is classified into four generations (from 1st to 4th in accordance to the feedstock origin; if the technologies of feedstock processing are taken into account, than there are two classes of biofuels - conventional and advanced. The conventional biofuels, also known as the 1st generation biofuels, are those produced currently in large quantities using well known, commercially-practiced technologies. The major feedstocks for these biofuels are cereals or oleaginous plants, used also in the food or feed production. Thus, viability of the 1st generation biofuels is questionable due to the conflict with food supply and high feedstocks’ cost. This limitation favoured the search for non-edible biomass for the production of the advanced biofuels. In a general and comparative way, this paper discusses about various definitions of biomass, classification of biofuels, and brief overview of the biomass conversion routes to liquid biofuels depending on the main constituents of the biomass. Liquid biofuels covered by this paper are those compatible with existing infrastructure for gasoline and diesel and ready to be used in

  18. Biofuels production for smallholder producers in the Greater Mekong Sub-region

    International Nuclear Information System (INIS)

    Malik, Urooj S.; Ahmed, Mahfuz; Sombilla, Mercedita A.; Cueno, Sarah L.

    2009-01-01

    Looming concerns on rising food prices and food security has slowed down the impetus in biofuel production. The development of the sub-sector, however, remains an important agenda among developing countries like those of the Greater Mekong Sub-region (GMS) that have abundant labour and natural resources but have limited supply of fossil fuels which continues to serve as a constraint to economic growth. Five crops have been selected to be further developed and use for biofuel production in the GMS, namely sugarcane, cassava, oil palm, sweet sorghum and Jathropa curcas. The expanded use of sugarcane, cassava, and oil palm for biofuel production can cause problems in the food sector. The other two crops, sweet sorghum and J. curcas, are non-food crops but could still compete with the food crops in terms of resource use for production. In all cases, the GMS needs to formulate a sustainable strategy for the biofuel development that will not compete with the food sector but will rather help achieve energy security, promote rural development and protect the environment. Except for People's Republic of China (PRC) and Thailand that already have fairly developed biofuel sub-sector, the other GMS countries are either poised to start (Lao PDR and Cambodia) or ready to enhance existing initiatives on biofuel production (Myanmar and Vietnam), with support from their respective governments. Biofuel development in these countries has to be strongly integrated with smallholder producers in order to have an impact on improving livelihood. At this initial stage, the sub-sector does not need to compete on a price basis but should rather aim to put up small-scale biofuel processing plants in remote rural areas that can offer an alternative to high-priced diesel and kerosene for local electricity grids serving homes and small enterprises. The social and economic multiplier effects are expected to be high when farmers that produce the energy crops also produce the biofuels to generate

  19. Biofuels production for smallholder producers in the Greater Mekong Sub-region

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Urooj S.; Ahmed, Mahfuz [Southeast Asia Department, Asian Development Bank, 6 ADB Avenue, Mandaluyong City 1550 (Philippines); Sombilla, Mercedita A. [Southeast Asian Center for Graduate Studies and Research in Agriculture (SEARCA), Consulting Services Department, 4031 College, Laguna (Philippines); Cueno, Sarah L. [Agricultural Economist and Regional Program Coordinator Greater Mekong Subregion Economic Cooperation Program Working Group on Agriculture, Southeast Asia Department, Asian Development Bank, 6 ADB Avenue, Mandaluyong City 1550 (Philippines)

    2009-11-15

    Looming concerns on rising food prices and food security has slowed down the impetus in biofuel production. The development of the sub-sector, however, remains an important agenda among developing countries like those of the Greater Mekong Sub-region (GMS) that have abundant labour and natural resources but have limited supply of fossil fuels which continues to serve as a constraint to economic growth. Five crops have been selected to be further developed and use for biofuel production in the GMS, namely sugarcane, cassava, oil palm, sweet sorghum and Jathropa curcas. The expanded use of sugarcane, cassava, and oil palm for biofuel production can cause problems in the food sector. The other two crops, sweet sorghum and J. curcas, are non-food crops but could still compete with the food crops in terms of resource use for production. In all cases, the GMS needs to formulate a sustainable strategy for the biofuel development that will not compete with the food sector but will rather help achieve energy security, promote rural development and protect the environment. Except for People's Republic of China (PRC) and Thailand that already have fairly developed biofuel sub-sector, the other GMS countries are either poised to start (Lao PDR and Cambodia) or ready to enhance existing initiatives on biofuel production (Myanmar and Vietnam), with support from their respective governments. Biofuel development in these countries has to be strongly integrated with smallholder producers in order to have an impact on improving livelihood. At this initial stage, the sub-sector does not need to compete on a price basis but should rather aim to put up small-scale biofuel processing plants in remote rural areas that can offer an alternative to high-priced diesel and kerosene for local electricity grids serving homes and small enterprises. The social and economic multiplier effects are expected to be high when farmers that produce the energy crops also produce the biofuels to

  20. Competition between biofuels. Modeling technological learning and cost reductions over time

    International Nuclear Information System (INIS)

    De Wit, M.; Junginger, M.; Faaij, A.; Lensink, S.M.; Londo, H.M.

    2009-10-01

    A key aspect in modeling the (future) competition between biofuels is the way in which production cost developments are computed. The objective of this study was threefold: (1) to construct a (endogenous) relation between cost development and cumulative production (2) to implement technological learning based on both engineering study insights and an experience curve approach, and (3) to investigate the impact of different technological learning assumptions on the market diffusion patterns of different biofuels. The analysis was executed with the European biofuel model BioTrans, which computes the least cost biofuel route. The model meets an increasing demand, reaching a 25% share of biofuels of the overall European transport fuel demand by 2030. Results show that 1st generation biodiesel is the most cost competitive fuel, dominating the early market. With increasing demand, modestly productive oilseed crops become more expensive rapidly, providing opportunities for advanced biofuels to enter the market. While biodiesel supply typically remains steady until 2030, almost all additional yearly demands are delivered by advanced biofuels, supplying up to 60% of the market by 2030. Sensitivity analysis shows that (a) overall increasing investment costs favour biodiesel production, (b) separate gasoline and diesel subtargets may diversify feedstock production and technology implementation, thus limiting the risk of failure and preventing lock-in and (c) the moment of an advanced technology's commercial market introduction determines, to a large degree, its future chances for increasing market share.

  1. Effect of biofuel on environment

    International Nuclear Information System (INIS)

    Kalam, M.A; Masjuki, H.H.; Maleque, M.A.

    2001-01-01

    Biofuels are alcohols, esters, and other chemical made from cellulosic biomass such as herbaceous and woody plants, agricultural and forestry residues, and a large portion of municipal solid and industrial waste. Biofuels are renewable and mostly suitable for diesel engines due to their similar physiochemical properties as traditional diesel oil. Demand of biofuel is increasing and some European countries have started using biofuel in diesel engine. This interest has been grown in many countries mainly due to fluctuating oil prices because of diminishing availability of conventional sources and polluted environment. However, the use of biofuel for diesel engine would be more beneficial to oil importing countries by saving foreign exchange, because biofuel is domestic renewable fuels. This paper presents the evaluation results of a multi-cylinder diesel engine operated on blends of ten, twenty, thirty, forty and fifty percent of ordinary coconut oil (COCO) with ordinary diesel (OD). The test results from all the COCO blends were compared with OD. The fuels were compared based on the emissions results including, exhaust temperature, NO x , smoke, CO, HC, benzene and polycyclic aromatic hydrocarbon (PAH). Carbon deposit on injector nozzles was also monitored. Exhaust emissions results showed that increasing coconut oil in blend decreases all the exhaust emissions. Carbon deposited on injector nozzles was observed where no hard carbon was found on injector tip when the engine was running on COCO blends. (Author)

  2. Implementing the Bio-fuel Plan while considering water resource protection

    International Nuclear Information System (INIS)

    2006-01-01

    This report recalls the objectives of the 'Bio-fuel Plan', and analyses firstly their implications in terms of cultivated surfaces either by using land fallows, or by substitution to other crops, or by intensification, and secondly, the consequences of these different options for water resources. The authors finally discusses the agronomic issue related to the protection of colza, the content of the environmental charter for the cultivation of winter colza, and some financial and practical conditions for the development of energetic crops

  3. Phylogeny in Defining Model Plants for Lignocellulosic Ethanol Production: A Comparative Study of Brachypodium distachyon, Wheat, Maize, and Miscanthus x giganteus Leaf and Stem Biomass

    Science.gov (United States)

    Meineke, Till; Manisseri, Chithra; Voigt, Christian A.

    2014-01-01

    The production of ethanol from pretreated plant biomass during fermentation is a strategy to mitigate climate change by substituting fossil fuels. However, biomass conversion is mainly limited by the recalcitrant nature of the plant cell wall. To overcome recalcitrance, the optimization of the plant cell wall for subsequent processing is a promising approach. Based on their phylogenetic proximity to existing and emerging energy crops, model plants have been proposed to study bioenergy-related cell wall biochemistry. One example is Brachypodium distachyon, which has been considered as a general model plant for cell wall analysis in grasses. To test whether relative phylogenetic proximity would be sufficient to qualify as a model plant not only for cell wall composition but also for the complete process leading to bioethanol production, we compared the processing of leaf and stem biomass from the C3 grasses B. distachyon and Triticum aestivum (wheat) with the C4 grasses Zea mays (maize) and Miscanthus x giganteus, a perennial energy crop. Lambda scanning with a confocal laser-scanning microscope allowed a rapid qualitative analysis of biomass saccharification. A maximum of 108–117 mg ethanol·g−1 dry biomass was yielded from thermo-chemically and enzymatically pretreated stem biomass of the tested plant species. Principal component analysis revealed that a relatively strong correlation between similarities in lignocellulosic ethanol production and phylogenetic relation was only given for stem and leaf biomass of the two tested C4 grasses. Our results suggest that suitability of B. distachyon as a model plant for biomass conversion of energy crops has to be specifically tested based on applied processing parameters and biomass tissue type. PMID:25133818

  4. Hemp: A more sustainable annual energy crop for climate and energy policy

    International Nuclear Information System (INIS)

    Finnan, John; Styles, David

    2013-01-01

    The objective of this study was to compare the fuel-chain greenhouse gas balance and farm economics of hemp grown for bioenergy with two perennial bioenergy crops, Miscanthus and willow, and two more traditional annual bioenergy crops, sugar beet and oil seed rape (OSR). The GHG burden of hemp cultivation is intermediate between perennial and traditional annual energy crops, but net fuel chain GHG abatement potential of 11 t/CO 2 eq./ha/year in the mid yield estimate is comparable to perennial crops, and 140% and 540% greater than for OSR and sugar beet fuel chains, respectively. Gross margins from hemp were considerably lower than for OSR and sugar beet, but exceeded those from Miscanthus when organic fertilizers were used and in the absence of establishment grants for the latter crop. Extrapolated up to the EU scale, replacing 25% of OSR and sugar beet production with hemp production could increase net GHG abatement by up to 21 Mt CO 2 eq./year. Hemp is a considerably more efficient bioenergy feedstock than the dominant annual energy crops. Integrated into food crop rotations, hemp need not compete with food supplies, and could provide an appealing option to develop more sustainable non-transport bioenergy supply chains. - Highlights: ► The GHG burden of hemp is intermediate between perennial and annual energy crops. ► Replacing 25% of OSR/beet with hemp could increase GHG abatement by 21 Mt/CO 2 eq./year. ► Hemp is a more efficient bioenergy feedstock than the dominant annual energy crops

  5. Development of a biorefinery optimized biofuel supply curve for the western United States

    Science.gov (United States)

    Nathan Parker; Peter Tittmann; Quinn Hart; Richard Nelson; Ken Skog; Anneliese Schmidt; Edward Gray; Bryan Jenkins

    2010-01-01

    A resource assessment and biorefinery siting optimization model was developed and implemented to assess potential biofuel supply across the Western United States from agricultural, forest, urban, and energy crop biomass. Spatial information including feedstock resources, existing and potential refinery locations and a transportation network model is provided to a mixed...

  6. Butanol biorefineries: Use of novel technologies to produce biofuel butanol from sweet sorghum bagasse (SSB)

    Science.gov (United States)

    In order to produce butanol biofuel at a competitive price, agricultural residues such as SSB should be used. This feedstock was studied as a substitute to corn to lower feedstock costs and broaden beyond a food crop. In addition, cutting edge science & technology was applied. In these studies we us...

  7. Emergence of a biofuel economy in Tanzania : local developments and global connections from an institutional perspective

    NARCIS (Netherlands)

    Arora, S.; Caniëls, M.C.J.; Romijn, H.A.

    2010-01-01

    Jatropha is emerging as an important biofuel crop throughout developing countries in the tropics. Initially lauded as an environmentally-benign ‘wonder crop’ suitable for arid wasteland cultivation that would avoid competition with scarce livelihood resources, it has recently begun to attract

  8. Contribution of N2O to the greenhouse gas balance of first-generation biofuels

    NARCIS (Netherlands)

    Smeets, E.W.M.; Bouwman, A.F.; Stehfest, E.; Vuuren, van P.; Posthuma, A.

    2009-01-01

    n this study, we analyze the impact of fertilizer- and manure-induced N2O emissions due to energy crop production on the reduction of greenhouse gas (GHG) emissions when conventional transportation fuels are replaced by first-generation biofuels (also taking account of other GHG emissions during the

  9. Algal biodiesel economy and competition among bio-fuels.

    Science.gov (United States)

    Lee, D H

    2011-01-01

    This investigation examines the possible results of policy support in developed and developing economies for developing algal biodiesel through to 2040. This investigation adopts the Taiwan General Equilibrium Model-Energy for Bio-fuels (TAIGEM-EB) to predict competition among the development of algal biodiesel, bioethanol and conventional crop-based biodiesel. Analytical results show that algal biodiesel will not be the major energy source in 2040 without strong support in developed economies. In contrast, bioethanol enjoys a development advantage relative to both forms of biodiesel. Finally, algal biodiesel will almost completely replace conventional biodiesel. CO(2) reduction benefits the development of the bio-fuels industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P. [Univ. of California, San Diego, CA (United States)

    2015-12-04

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between six academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.

  11. Molecular Breeding of Advanced Microorganisms for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakuragi

    2011-01-01

    Full Text Available Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society.

  12. Second-generation pilot biofuel units worldwide - Panorama 2008

    International Nuclear Information System (INIS)

    2008-01-01

    The production of biofuels from agricultural raw material is attracting great interest for many reasons, among them global warming, oil price hikes, the depletion of oil reserves and the development of new agricultural markets. However, the technologies currently under development are hindered by the fact that available land is limited and by a risk of competition with food crops. In the last few years, research and development efforts have sought to alleviate these limitations by exploring new pathways to convert little-used plant feedstocks to biofuels with better efficiencies. Large-scale research programs concentrating on these new technologies are underway in the U.S. and Europe, with industrial development expected between 2012 and 2020

  13. BIOFUEL FROM CORN STOVER

    Directory of Open Access Journals (Sweden)

    Ljiljanka Tomerlin

    2003-12-01

    Full Text Available This paper deals with production of ethyl alcohol (biofuel from corn stover acid hydrolysate by yeasts, respectively at Pichia stipitis y-7124 and Pachysolen tannophilus y-2460 and Candida shehatae y-12856. Since moist corn stover (Hybryds 619 is proving to decomposition by phyllospheric microflora. It was (conserved spattered individually by microbicids: Busan-90, Izosan-G and formalin. In form of prismatic bales, it was left in the open air during 6 months (Octobar - March. At the beginning and after 6 months the microbiological control was carried out. The only one unspattered (control and three stover corn bals being individually spattered by microbicids were fragmented and cooked with sulfur acid. The obtained four acid hydrolysates are complex substratums, containing, apart from the sugars (about 11 g dm-3 pentosa and about 5.4 g dm-3 hexose, decomposite components as lignin, caramel sugars and uronic acids. By controlling the activity of the mentioned yeasts it was confirmed that yeasts Pichia stipitis y-7124 obtained best capability of ethyl alcohol production from corn stover acid hydrolysate at 0.23 vol. % to 0.49 vol. %.

  14. Biofuels and food security

    Directory of Open Access Journals (Sweden)

    Dmitry S. STREBKOV

    2015-03-01

    Full Text Available The major source of energy comes from fossil fuels. The current situation in the field of fuel and energy is becoming more problematic as world population continues to grow because of the limitation of fossil fuels reserve and its pressure on environment. This review aims to find economic, reliable, renewable and non-polluting energy sources to reduce high energy tariffs in Russian Federation. Biofuel is fuel derived directly from plants, or indirectly from agricultural, commercial, domestic, and/or industrial wastes. Other alternative energy sources including solar energy and electric power generation are also discussed. Over 100 Mt of biomass available for energy purposes is produced every year in Russian. One of the downsides of biomass energy is its potential threatens to food security and forage industries. An innovative approach proved that multicomponent fuel (80% diesel oil content for motor and 64% for in stove fuel can remarkably reduce the costs. This paper proposed that the most promising energy model for future is based on direct solar energy conversion and transcontinental terawatt power transmission with the use of resonant wave-guide technology.

  15. Growth characteristics and nutrient depletion of Miscanthus x ogiformis Honda 'Giganteus' suspension cultures

    DEFF Research Database (Denmark)

    Holme, Inger Bæksted

    1998-01-01

    The growth characteristics and nutrient depletion in suspension cultures of Miscanthus ogiformis Honda ‘Giganteus' grown in media containing either Murashige and Skoog or N6 basal nutrient salts were studied during a culture period of 15 days. Proline was added to both media in concentrations from...... to the MS suspension cultures. Sucrose was hydrolysed into its monosaccharide components in the culture medium. Glucose was depleted faster than fructose indicating a preference for glucose as a carbohydrate source of the M. ogiformis cultures. The high water uptake by the suspension aggregates 12 to 15...

  16. Biofuels from algae for sustainable development

    International Nuclear Information System (INIS)

    Demirbas, M. Fatih

    2011-01-01

    Microalgae are photosynthetic microorganisms that can produce lipids, proteins and carbohydrates in large amounts over short periods of time. These products can be processed into both biofuels and useful chemicals. Two algae samples (Cladophora fracta and Chlorella protothecoid) were studied for biofuel production. Microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels. Microalgae can be converted to biodiesel, bioethanol, bio-oil, biohydrogen and biomethane via thermochemical and biochemical methods. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 liters per acre, per year; this is 7-31 times greater than the next best crop, palm oil. Algal oil can be used to make biodiesel for cars, trucks, and airplanes. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. The effect of temperature on the yield of hydrogen from two algae (C. fracta and C. protothecoid) by pyrolysis and steam gasification were investigated in this study. In each run, the main components of the gas phase were CO 2 , CO, H 2 , and CH 4 .The yields of hydrogen by pyrolysis and steam gasification processes of the samples increased with temperature. The yields of gaseous products from the samples of C. fracta and C. protothecoides increased from 8.2% to 39.2% and 9.5% to 40.6% by volume, respectively, while the final pyrolysis temperature was increased from 575 to 925 K. The percent of hydrogen in gaseous products from the samples of C. fracta and C. protothecoides increased from 25.8% to 44.4% and 27.6% to 48.7% by volume

  17. Strategies for 2nd generation biofuels in EU - Co-firing to stimulate feedstock supply development and process integration to improve energy efficiency and economic competitiveness

    International Nuclear Information System (INIS)

    Berndes, Goeran; Hansson, Julia; Egeskog, Andrea; Johnsson, Filip

    2010-01-01

    The present biofuel policies in the European Union primarily stimulate 1st generation biofuels that are produced based on conventional food crops. They may be a distraction from lignocellulose based 2nd generation biofuels - and also from biomass use for heat and electricity - by keeping farmers' attention and significant investments focusing on first generation biofuels and the cultivation of conventional food crops as feedstocks. This article presents two strategies that can contribute to the development of 2nd generation biofuels based on lignocellulosic feedstocks. The integration of gasification-based biofuel plants in district heating systems is one option for increasing the energy efficiency and improving the economic competitiveness of such biofuels. Another option, biomass co-firing with coal, generates high-efficiency biomass electricity and reduces CO 2 emissions by replacing coal. It also offers a near-term market for lignocellulosic biomass, which can stimulate development of supply systems for biomass also suitable as feedstock for 2nd generation biofuels. Regardless of the long-term priorities of biomass use for energy, the stimulation of lignocellulosic biomass production by development of near term and cost-effective markets is judged to be a no-regrets strategy for Europe. Strategies that induce a relevant development and exploit existing energy infrastructures in order to reduce risk and reach lower costs, are proposed an attractive complement the present and prospective biofuel policies. (author)

  18. Biofuels and sustainability in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Amigun, Bamikole; Stafford, William [Sustainable Energy Futures, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), 7599 Stellenbosch (South Africa); Musango, Josephine Kaviti [Resource Based Sustainable Development, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), 7599 Stellenbosch (South Africa)

    2011-02-15

    The combined effects of climate change, the continued volatility of fuel prices, the recent food crisis and global economic turbulence have triggered a sense of urgency among policymakers, industries and development practitioners to find sustainable and viable solutions in the area of biofuels. This sense of urgency is reflected in the rapid expansion of global biofuels production and markets over the past few years. Biofuels development offers developing countries some prospect of self-reliant energy supplies at national and local levels, with potential economic, ecological, social, and security benefits. Forty-two African countries are net oil importers. This makes them particularly vulnerable to volatility in global fuel prices and dependent on foreign exchange to cover their domestic energy needs. The goal therefore is to reduce the high dependence on imported petroleum by developing domestic, renewable energy. But can this objective be achieved while leaving a minimal social and environmental footprint? A fundamental question is if biofuels can be produced with consideration of social, economic and environmental factors without setting unrealistic expectation for an evolving renewable energy industry that holds such great promise. The overall performance of different biofuels in reducing non-renewable energy use and greenhouse gas emissions varies when considering the entire lifecycle from production through to use. The net performance depends on the type of feedstock, the production process and the amount of non-renewable energy needed. This paper presents an overview of the development of biofuels in Africa, and highlights country-specific economic, environmental and social issues. It proposes a combination framework of policy incentives as a function of technology maturity, discusses practices, processes and technologies that can improve efficiency, lower energy and water demand, and further reduce the social and environmental footprint of biofuels

  19. Biofuels and sustainability in Africa

    International Nuclear Information System (INIS)

    Amigun, Bamikole; Stafford, William; Musango, Josephine Kaviti

    2011-01-01

    The combined effects of climate change, the continued volatility of fuel prices, the recent food crisis and global economic turbulence have triggered a sense of urgency among policymakers, industries and development practitioners to find sustainable and viable solutions in the area of biofuels. This sense of urgency is reflected in the rapid expansion of global biofuels production and markets over the past few years. Biofuels development offers developing countries some prospect of self-reliant energy supplies at national and local levels, with potential economic, ecological, social, and security benefits. Forty-two African countries are net oil importers. This makes them particularly vulnerable to volatility in global fuel prices and dependent on foreign exchange to cover their domestic energy needs. The goal therefore is to reduce the high dependence on imported petroleum by developing domestic, renewable energy. But can this objective be achieved while leaving a minimal social and environmental footprint? A fundamental question is if biofuels can be produced with consideration of social, economic and environmental factors without setting unrealistic expectation for an evolving renewable energy industry that holds such great promise. The overall performance of different biofuels in reducing non-renewable energy use and greenhouse gas emissions varies when considering the entire lifecycle from production through to use. The net performance depends on the type of feedstock, the production process and the amount of non-renewable energy needed. This paper presents an overview of the development of biofuels in Africa, and highlights country-specific economic, environmental and social issues. It proposes a combination framework of policy incentives as a function of technology maturity, discusses practices, processes and technologies that can improve efficiency, lower energy and water demand, and further reduce the social and environmental footprint of biofuels

  20. The Implications of Growing Bioenergy Crops on Water Resources, Carbon and Nitrogen Dynamics

    Science.gov (United States)

    Jain, A. K.; Song, Y.; Kheshgi, H. S.

    2016-12-01

    What is the potential for the crops Corn, Miscanthus and switchgrass to meet future energy demands in the U.S.A., and would they mitigate climate change by offsetting fossil fuel greenhouse gas (GHG) emissions? The large-scale cultivation of these bioenergy crops itself could also drive climate change through changes in albedo, evapotranspiration (ET), and GHG emissions. Whether these climate effects will mitigate or exacerbate climate change in the short- and long-term is uncertain. This uncertainty stems from our incomplete understanding of the effects of expanded bioenergy crop production on terrestrial water and energy balance, carbon and nitrogen dynamics, and their interactions. This study aims to understand the implications of growing large-scale bioenergy crops on water resources, carbon and nitrogen dynamics in the United States using a data-modeling framework (ISAM) that we developed. Our study indicates that both Miscanthus and Cave-in-Rock switchgrass can attain high and stable yield over parts of the Midwest, however, this high production is attained at the cost of increased soil water loss as compared to current natural vegetation. Alamo switchgrass can attain high and stable yield in the southern US without significant influence on soil water quantity.

  1. Alternative crops

    International Nuclear Information System (INIS)

    Andreasen, L.M.; Boon, A.D.

    1992-01-01

    Surplus cereal production in the EEC and decreasing product prices, mainly for cereals, has prompted considerable interest for new earnings in arable farming. The objective was to examine whether suggested new crops (fibre, oil, medicinal and alternative grains crops) could be considered as real alternatives. Whether a specific crop can compete economically with cereals and whether there is a market demand for the crop is analyzed. The described possibilities will result in ca. 50,000 hectares of new crops. It is expected that they would not immediately provide increased earnings, but in the long run expected price developments are more positive than for cereals. The area for new crops will not solve the current surplus cereal problem as the area used for new crops is only 3% of that used for cereals. Preconditions for many new crops is further research activities and development work as well as the establishment of processing units and organizational initiatives. Presumably, it is stated, there will then be a basis for a profitable production of new crops for some farmers. (AB) (47 refs.)

  2. Biogas production from energy crops and agriculture residues

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.

    2010-12-15

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling of perennial crops was tested as a storage method and pretreatment method for enhancement of the biodegradability of the crops. The efficiency of the silage process was evaluated based on (a) the amount of biomass loss during storage and (b) the effect of the silage on methane potential. Co-digestion of raw and wet explosion pretreated energy crops and agriculture residues with swine manure at various volatile solids (VS) ratio between crop and manure was carried out by batch tests and continuous experiments. The efficiency of the co-digestion experiment was evaluated based on (a) the methane potential in term of ml CH4 produced per g of VS-added and (b) the amount of methane produced per m3 of reactor volume. (Author)

  3. Integrated systems optimization model for biofuel development: The influence of environmental constraints

    Science.gov (United States)

    Housh, M.; Ng, T.; Cai, X.

    2012-12-01

    The environmental impact is one of the major concerns of biofuel development. While many other studies have examined the impact of biofuel expansion on stream flow and water quality, this study examines the problem from the other side - will and how