WorldWideScience

Sample records for biofuel cell implanted

  1. A glucose biofuel cell implanted in rats.

    Directory of Open Access Journals (Sweden)

    Philippe Cinquin

    Full Text Available Powering future generations of implanted medical devices will require cumbersome transcutaneous energy transfer or harvesting energy from the human body. No functional solution that harvests power from the body is currently available, despite attempts to use the Seebeck thermoelectric effect, vibrations or body movements. Glucose fuel cells appear more promising, since they produce electrical energy from glucose and dioxygen, two substrates present in physiological fluids. The most powerful ones, Glucose BioFuel Cells (GBFCs, are based on enzymes electrically wired by redox mediators. However, GBFCs cannot be implanted in animals, mainly because the enzymes they rely on either require low pH or are inhibited by chloride or urate anions, present in the Extra Cellular Fluid (ECF. Here we present the first functional implantable GBFC, working in the retroperitoneal space of freely moving rats. The breakthrough relies on the design of a new family of GBFCs, characterized by an innovative and simple mechanical confinement of various enzymes and redox mediators: enzymes are no longer covalently bound to the surface of the electron collectors, which enables use of a wide variety of enzymes and redox mediators, augments the quantity of active enzymes, and simplifies GBFC construction. Our most efficient GBFC was based on composite graphite discs containing glucose oxidase and ubiquinone at the anode, polyphenol oxidase (PPO and quinone at the cathode. PPO reduces dioxygen into water, at pH 7 and in the presence of chloride ions and urates at physiological concentrations. This GBFC, with electrodes of 0.133 mL, produced a peak specific power of 24.4 microW mL(-1, which is better than pacemakers' requirements and paves the way for the development of a new generation of implantable artificial organs, covering a wide range of medical applications.

  2. A glucose biofuel cell implanted in rats.

    Science.gov (United States)

    Cinquin, Philippe; Gondran, Chantal; Giroud, Fabien; Mazabrard, Simon; Pellissier, Aymeric; Boucher, François; Alcaraz, Jean-Pierre; Gorgy, Karine; Lenouvel, François; Mathé, Stéphane; Porcu, Paolo; Cosnier, Serge

    2010-05-04

    Powering future generations of implanted medical devices will require cumbersome transcutaneous energy transfer or harvesting energy from the human body. No functional solution that harvests power from the body is currently available, despite attempts to use the Seebeck thermoelectric effect, vibrations or body movements. Glucose fuel cells appear more promising, since they produce electrical energy from glucose and dioxygen, two substrates present in physiological fluids. The most powerful ones, Glucose BioFuel Cells (GBFCs), are based on enzymes electrically wired by redox mediators. However, GBFCs cannot be implanted in animals, mainly because the enzymes they rely on either require low pH or are inhibited by chloride or urate anions, present in the Extra Cellular Fluid (ECF). Here we present the first functional implantable GBFC, working in the retroperitoneal space of freely moving rats. The breakthrough relies on the design of a new family of GBFCs, characterized by an innovative and simple mechanical confinement of various enzymes and redox mediators: enzymes are no longer covalently bound to the surface of the electron collectors, which enables use of a wide variety of enzymes and redox mediators, augments the quantity of active enzymes, and simplifies GBFC construction. Our most efficient GBFC was based on composite graphite discs containing glucose oxidase and ubiquinone at the anode, polyphenol oxidase (PPO) and quinone at the cathode. PPO reduces dioxygen into water, at pH 7 and in the presence of chloride ions and urates at physiological concentrations. This GBFC, with electrodes of 0.133 mL, produced a peak specific power of 24.4 microW mL(-1), which is better than pacemakers' requirements and paves the way for the development of a new generation of implantable artificial organs, covering a wide range of medical applications.

  3. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices

    Science.gov (United States)

    Zebda, A.; Cosnier, S.; Alcaraz, J.-P.; Holzinger, M.; Le Goff, A.; Gondran, C.; Boucher, F.; Giroud, F.; Gorgy, K.; Lamraoui, H.; Cinquin, P.

    2013-01-01

    We describe the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal's body fluids to act as the sole power source for electronic devices. This GBFC is based on carbon nanotube/enzyme electrodes, which utilize glucose oxidase for glucose oxidation and laccase for dioxygen reduction. The GBFC, implanted in the abdominal cavity of a rat, produces an average open-circuit voltage of 0.57 V. This implanted GBFC delivered a power output of 38.7 μW, which corresponded to a power density of 193.5 μW cm−2 and a volumetric power of 161 μW mL−1. We demonstrate that one single implanted enzymatic GBFC can power a light-emitting diode (LED), or a digital thermometer. In addition, no signs of rejection or inflammation were observed after 110 days implantation in the rat. PMID:23519113

  4. An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes.

    Science.gov (United States)

    Sales, Fernanda C P F; Iost, Rodrigo M; Martins, Marccus V A; Almeida, Maria C; Crespilho, Frank N

    2013-02-01

    An intravenous implantable glucose/dioxygen hybrid enzyme-Pt micro-biofuel cell (BFC) was investigated. In this miniaturized BFC, a flexible carbon fiber (FCF) microelectrode modified with neutral red redox mediator and glucose oxidase was used as the bioanode, and an FCF modified with platinum nanoparticles stabilized on PAMAM-G4 dendrimer was used as the cathode. In vitro experiments conducted using the BFC in a phosphate buffer solution (50 mmol L(-1), pH = 7.2) and glucose (47 mmol L(-1)) showed high electrocatalytic performance with an open circuit voltage (OCV) of 400 mV, a maximum current density of 2700 μA cm(-2) at 0.0 V and a maximum output power of 200 μW cm(-2) at 250 mV. Under physiological conditions, glucose from rat blood is used as a fuel in anodic reactions and dissolved molecular oxygen is used as the oxidizing agent on the cathode. For in vivo experiments, the BFC was inserted into the jugular vein of a living rat (Rattus novergicus) using a catheter (internal diameter 0.5 mm). The power density of the implantable BFC was evaluated over a period of 24 h, and an OCV of 125 mV with a maximum power density of 95 μW cm(-2) was obtained at 80 mV.

  5. Peroxidase Biocathodes for a Biofuel Cell Development

    DEFF Research Database (Denmark)

    Gomes, Celso; Shipovskov, Stepan; Ferapontova, Elena

    Among such efficient sustainable energy sources, as wind and solar power, photovoltaics, geothermal and water power and other1-3, biofuels are ranked as less efficient. The latest 2009 report of the International Energy Agency4 plans approximately 100% increase of the contribution of the renewable...... as alternative fuel5,6; another example is a steadily expanding field of biofuel cells development7-10, with a number of scientific publications and patent applications increased more than 40 times during the last decade11. In terms of sustainable energy production, enzymatic biofuel cells are attractive...... for a number of special applications, such as disposable implantable power suppliers for medical sensor-transmitters and drug delivery/activator systems and self-powered enzyme-based biosensors; they do offer practical advantages of using abundant organic raw materials as biofuels for clean and sustainable...

  6. A perspective on microfluidic biofuel cells.

    Science.gov (United States)

    Lee, Jin Wook; Kjeang, Erik

    2010-01-01

    This review article presents how microfluidic technologies and biological materials are paired to assist in the development of low cost, green energy fuel cell systems. Miniaturized biological fuel cells, employing enzymes or microorganisms as biocatalysts in an environmentally benign configuration, can become an attractive candidate for small-scale power source applications such as biological sensors, implantable medical devices, and portable electronics. State-of-the-art biofuel cell technologies are reviewed with emphasis on microfabrication compatibility and microfluidic fuel cell designs. Integrated microfluidic biofuel cell prototypes are examined with comparisons of their performance achievements and fabrication methods. The technical challenges for further developments and the potential research opportunities for practical cell designs are discussed.

  7. High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns

    Science.gov (United States)

    Kwon, Cheong Hoon; Lee, Sung-Ho; Choi, Young-Bong; Lee, Jae Ah; Kim, Shi Hyeong; Kim, Hyug-Han; Spinks, Geoffrey M.; Wallace, Gordon G.; Lima, Márcio D.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong

    2014-06-01

    Biofuel cells that generate electricity from glucose in blood are promising for powering implantable biomedical devices. Immobilizing interconnected enzyme and redox mediator in a highly conducting, porous electrode maximizes their interaction with the electrolyte and minimizes diffusion distances for fuel and oxidant, thereby enhancing power density. Here we report that our separator-free carbon nanotube yarn biofuel cells provide an open-circuit voltage of 0.70 V, and a maximum areal power density of 2.18 mW cm-2 that is three times higher than for previous carbon nanotube yarn biofuel cells. Biofuel cell operation in human serum provides high areal power output, as well as markedly increased lifetime (83% remained after 24 h), compared with previous unprotected biofuel cells. Our biscrolled yarn biofuel cells are woven into textiles having the mechanical robustness needed for implantation for glucose energy harvesting.

  8. Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations

    Science.gov (United States)

    Cosnier, Serge; Gross, Andrew J.; Le Goff, Alan; Holzinger, Michael

    2016-09-01

    The possibility of producing electrical power from chemical energy with biological catalysts has induced the development of biofuel cells as viable energy sources for powering portable and implanted electronic devices. These power sources employ biocatalysts, called enzymes, which are highly specific and catalytic towards the oxidation of a biofuel and the reduction of oxygen or hydrogen peroxide. Enzymes, on one hand, are promising candidates to replace expensive noble metal-based catalysts in fuel cell research. On the other hand, they offer the exciting prospect of a new generation of fuel cells which harvest energy from body fluids. Biofuel cells which use glucose as a fuel are particularly interesting for generating electricity to power electronic devices inside a living body. Hydrogen consuming biofuel cells represent an emerging alternative to platinum catalysts due to comparable efficiencies and the capability to operate at lower temperatures. Currently, these technologies are not competitive with existing commercialised fuel cell devices due to limitations including insufficient power outputs and lifetimes. The advantages and challenges facing glucose biofuel cells for implantation and hydrogen biofuel cells will be summarised along with recent promising advances and the future prospects of these exotic energy-harvesting devices.

  9. Power Harvesting from Human Serum in Buckypaper-Based Enzymatic Biofuel Cell

    Directory of Open Access Journals (Sweden)

    Güray eGüven

    2016-02-01

    Full Text Available The requirement for a miniature, high density, long life, rechargeable power source is common to a vast majority of microsystems, including the implantable devices for medical applications. A model biofuel cell system operating in human serum has been studied for future applications of biomedical and implantable medical devices. Anodic and cathodic electrodes were made of carbon nanotube –buckypaper modified with PQQ-dependent glucose dehydrogenase and laccase, respectively. Modified electrodes were characterized electrochemically and assembled in a biofuel cell set-up. Power density of 16.12 μW/cm2 was achieved in human serum for lower than physiological glucose concentrations. Increasing the glucose concentration and biofuel cell temperature caused an increase on power output leading up to 49.16 μW/cm2.

  10. Nanobiocatalysts for biofuel cells and biosensor systems

    Directory of Open Access Journals (Sweden)

    Radivoje M. Prodanović

    2011-10-01

    Full Text Available This overview summarizes the application of enzymes in the manufacture and design of biofuel cells and biosensors. The emphasis will be put on the protein engineering techniques used for improving the properties of enzymes such as nanobiocatalysts, e.g. immobilization orientation, stability, activity and efficiency of electron transfer between immobilized enzymes and electrodes. Some possible applications in the military and some future designs of these electric devices will be discussed as well.

  11. The Use of Yeast Surface Display in Biofuel Cells.

    Science.gov (United States)

    Szczupak, Alon; Alfonta, Lital

    2015-01-01

    Biofuel cells are electrochemical devices which convert chemical energy to electricity using biochemical pathways and redox enzymes. In enzymatic fuel cells purified redox enzymes catalyze the reactions in the anode and cathode compartments whereas in microbial fuel cells (MFCs) the entire metabolism of the microorganisms is exploited. Here, a hybrid biofuel cell concept is presented, which is based on yeast surface display (YSD) of redox enzymes to catalyze the different cell reactions. PMID:26060081

  12. Small-size biofuel cell on paper.

    Science.gov (United States)

    Zhang, Lingling; Zhou, Ming; Wen, Dan; Bai, Lu; Lou, Baohua; Dong, Shaojun

    2012-05-15

    In this work, we demonstrated a novel paper-based mediator-less and compartment-less biofuel cell (BFC) with small size (1.5 cm × 1.5 cm). Ionic liquid functionalized carbon nanotubes (CNTs-IL) nanocomposite was used as support for both stably confining the anodic biocatalyst (i.e., NAD(+)-dependent glucose dehydrogenase, GDH) for glucose electrooxidation and for facilitating direct electrochemistry of the cathodic biocatalyst (i.e., bilirubin oxidase, BOD) for O(2) electroreduction. Such BFC provided a simple approach to fabricate low-cost and portable power devices on small-size paper, which can harvest energy from a wide range of commercial beverages containing glucose (e.g., Nescafe instant coffee, Maidong vitamin water, Watermelon fresh juice, and Minute Maid grape juice). These made the low-cost paper-based biodevice potential for broad energy applications. PMID:22417872

  13. Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells.

    Science.gov (United States)

    Desmet, Cloé; Marquette, Christophe A; Blum, Loïc J; Doumèche, Bastien

    2016-02-15

    Paper-based analytical devices (PAD) emerge in the scientific community since 2007 as low-cost, wearable and disposable devices for point-of-care diagnostic due to the widespread availability, long-time knowledge and easy manufacturing of cellulose. Rapidly, electrodes were introduced in PAD for electrochemical measurements. Together with biological components, a new generation of electrochemical biosensors was born. This review aims to take an inventory of existing electrochemical paper-based biosensors and biofuel cells and to identify, at the light of newly acquired data, suitable methodologies and crucial parameters in this field. Paper selection, electrode material, hydrophobization of cellulose, dedicated electrochemical devices and electrode configuration in biosensors and biofuel cells will be discussed.

  14. Modeling and Simulation of Enzymatic Biofuel Cells with Three-Dimensional Microelectrodes

    Directory of Open Access Journals (Sweden)

    Yin Song

    2014-07-01

    Full Text Available The enzymatic biofuel cells (EBFCs are considered as an attractive candidate for powering future implantable medical devices. In this study, a computational model of EBFCs based on three-dimensional (3-D interdigitated microelectrode arrays was conducted. The main focus of this research is to investigate the effect of different designs and spatial distributions of the microelectrode arrays on mass transport of fuels, enzymatic reaction rate, open circuit output potential and current density. To optimize the performance of the EBFCs, numerical simulations have been performed for cylindrical electrodes with various electrode heights and well widths. Optimized cell performance was obtained when the well width is half of the height of the 3-D electrode. In addition, semi-elliptical shaped electrode is preferred based on the results from current density and resistive heating simulation.

  15. Structural studies of enzyme-based microfluidic biofuel cells

    Science.gov (United States)

    Togo, Makoto; Takamura, Akimasa; Asai, Tatsuya; Kaji, Hirokazu; Nishizawa, Matsuhiko

    An enzyme-based glucose/O 2 biofuel cell was constructed within a microfluidic channel to study the influence of electrode configuration and fluidic channel height on cell performance. The cell was composed of a bilirubin oxidase (BOD)-adsorbed O 2 cathode and a glucose anode prepared by co-immobilization of glucose dehydrogenase (GDH), diaphorase (Dp) and VK 3-pendant poly- L-lysine. The consumption of O 2 at the upstream cathode protected the downstream anode from interfering O 2 molecules, and consequently improved the cell performance (maximum cell current) ca. 10% for the present cell. The cell performance was also affected by the channel height. The output current and power of a 0.1 mm-height cell was significantly less than those of a 1 mm-height cell because of the depletion of O 2, as determined by the shape of the E- I curve at the cathode. On the other hand, the volume density of current and power was several times higher for the narrower cell.

  16. Structural studies of enzyme-based microfluidic biofuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Togo, Makoto; Takamura, Akimasa; Asai, Tatsuya; Kaji, Hirokazu; Nishizawa, Matsuhiko [Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Aoba 6-6-01, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2008-03-15

    An enzyme-based glucose/O{sub 2} biofuel cell was constructed within a microfluidic channel to study the influence of electrode configuration and fluidic channel height on cell performance. The cell was composed of a bilirubin oxidase (BOD)-adsorbed O{sub 2} cathode and a glucose anode prepared by co-immobilization of glucose dehydrogenase (GDH), diaphorase (Dp) and VK{sub 3}-pendant poly-L-lysine. The consumption of O{sub 2} at the upstream cathode protected the downstream anode from interfering O{sub 2} molecules, and consequently improved the cell performance (maximum cell current) ca. 10% for the present cell. The cell performance was also affected by the channel height. The output current and power of a 0.1 mm-height cell was significantly less than those of a 1 mm-height cell because of the depletion of O{sub 2}, as determined by the shape of the E-I curve at the cathode. On the other hand, the volume density of current and power was several times higher for the narrower cell. (author)

  17. Enzyme electrode configurations : for application in biofuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaoju

    2012-07-01

    ; their effects on the electrode performance were then investigated. It is proposed that the {eta}-{eta} interaction between the PSS{sup -} and the hydrophobic substrate-binding pocket in the vicinity of the T1 Cu site results in a favorable location of the conducting polymer chain of PEDOT-PSS close to the T1 Cu site and thus facilitates the DET of ThL within this particular architecture. The flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase from Glomerella cingulata (GcGDH) and cellobiose dehydrogense from Corynascus thermophuilus (CtCDH) have been studied to construct different enzyme electrode configurations as bioanodes towards biofuel cell applications. For GcGDH, six Os-containing polymers, whose redox potentials range across a broad potential window between +15 and +489 mV vs. NHE, were used to 'wire' the GcGDH on the graphite electrodes to catalyze the oxidation of glucose. The ratio of GcGDH:Os-polymer in the overall loading onto the electrode surface significantly affected the catalytic performance of the enzyme electrode on the glucose oxidation. Both the Os-polymer and the GcGDH:Os-polymer ratio were optimized for obtaining the maximum current density; a high current density of 493 {mu}A/cm{sup 2} for 30 mM glucose was produced by a GcGDH/Os c modified electrode. DET type biocatalysis of CtCDH on lactose (and glucose) oxidation was accomplished on Au nanoparticle (AuNP) structured electrode. The haem site in the CtCDH enzyme functions as a 'built-in' mediator for communicating the electron transfer between the FAD site and the AuNP surface. The redox potential of the haem site in CtCDH was determined to be E{sub 1/2} = -122 mV vs. Ag/AgCl/KCl(s) (75 mV vs. NHE). The CtCDH/AuNP/Au bioanode can generate a maximum current response for lactose with I{sub max} = 43.3{+-}1.5 ({mu}A/cm{sup 2}) or for glucose with I{sub max} = 31.2{+-}2.3 ({mu}A/cm{sup 2}). The DET type biocatalysis of CtCDH works most efficiently in a more neutral

  18. Insect biofuel cells using trehalose included in insect hemolymph leading to an insect-mountable biofuel cell.

    Science.gov (United States)

    Shoji, Kan; Akiyama, Yoshitake; Suzuki, Masato; Hoshino, Takayuki; Nakamura, Nobuhumi; Ohno, Hiroyuki; Morishima, Keisuke

    2012-12-01

    In this paper, an insect biofuel cell (BFC) using trehalose included in insect hemolymph was developed. The insect BFC is based on trehalase and glucose oxidase (GOD) reaction systems which oxidize β-glucose obtained by hydrolyzing trehalose. First, we confirmed by LC-MS that a sufficient amount of trehalose was present in the cockroach hemolymph (CHL). The maximum power density obtained using the insect BFC was 6.07 μW/cm(2). The power output was kept more than 10 % for 2.5 h by protecting the electrodes with a dialysis membrane. Furthermore, the maximum power density was increased to 10.5 μW/cm(2) by using an air diffusion cathode. Finally, we succeeded in driving a melody integrated circuit (IC) and a piezo speaker by connecting five insect BFCs in series. The results indicate that the insect BFC is a promising insect-mountable battery to power environmental monitoring micro-tools.

  19. Osteoblastic cell behavior on nanostructured metal implants.

    NARCIS (Netherlands)

    Guehennec, L Le; Martin, F.; Lopez-Heredia, M.A.; Louarn, G.; Amouriq, Y.; Cousty, J.; Layrolle, P.

    2008-01-01

    AIMS: Surface modifications at the nanometric scale may promote protein adsorption, cell adhesion and thus favor the osseointegration of metal implants. The behavior of osteoblastic cells was studied on mirror-polished (Smooth-SS) and nanostructured (Nano-SS) stainless steel surfaces. MATERIALS & ME

  20. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    Science.gov (United States)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2013-02-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  1. Biofuel cell backpacked insect and its application to wireless sensing.

    Science.gov (United States)

    Shoji, Kan; Akiyama, Yoshitake; Suzuki, Masato; Nakamura, Nobuhumi; Ohno, Hiroyuki; Morishima, Keisuke

    2016-04-15

    This study investigated an enzymatic biofuel cell (BFC) which can be backpacked by cockroaches. The BFC generates electric power from trehalose in insect hemolymph by the trehalase and glucose dehydrogenase (GDH) reaction systems which dehydrogenate β-glucose obtained by hydrolyzing trehalose. First, an insect-mountable BFC (imBFC) was designed and fabricated with a 3D printer. The electrochemical reaction of anode-modified poly-L-lysine, vitamin K3, diaphorase, nicotinamide adenine dinucleotide, GDH and poly(sodium 4-styrenesulfonate) in the imBFC was evaluated and an oxidation current of 1.18 mAcm(-2) (at +0.6 V vs. Ag|AgCl) was observed. Then, the performance of the imBFC was evaluated and a maximum power output of 333 μW (285 μW cm(-)(2)) (at 0.5 V) was obtained. Furthermore, driving of both an LED device and a wireless temperature and humidity sensor device were powered by the imBFC. These results indicate that the imBFC has sufficient potential as a battery for novel ubiquitous robots such as insect cyborgs.

  2. An enzymatic glucose/O2 biofuel cell operating in human blood.

    Science.gov (United States)

    Cadet, Marine; Gounel, Sébastien; Stines-Chaumeil, Claire; Brilland, Xavier; Rouhana, Jad; Louerat, Frédéric; Mano, Nicolas

    2016-09-15

    Enzymatic biofuel cells (BFCs) may power implanted medical devices and will rely on the use of glucose and O2 available in human bodily fluids. Other than well-established experiments in aqueous buffer, little work has been performed in whole human blood because it contains numerous inhibiting molecules. Here, we tested our BFCs in 30 anonymized, random and disease-free whole human blood samples. We show that by designing our anodic and cathodic bioelectrocatalysts with osmium based redox polymers and home-made enzymes we could reach a high selectivity and biofunctionnality. After optimization, BFCs generate power densities directly proportional to the glycaemia of human blood and reached a maximum power density of 129µWcm(-2) at 0.38V vs. Ag/AgCl at 8.22mM glucose. This is to our knowledge the highest power density attained so far in human blood and open the way for the powering of integrated medical feedback loops. PMID:27107143

  3. Stretchable glucose biofuel cell with wirings made of multiwall carbon nanotubes

    Science.gov (United States)

    Fujimagari, Yusuke; Nishioka, Yasushiro

    2015-12-01

    In this study, we fabricated a flexible and stretchable glucose-biofuel cell with wirings made of multi wall carbon nanotube (MWCNTs) on a polydimethylsiloxane substrate. The biofuel cell investigated consists of a porous carbon anode (area of 30 mm2) modified by glucose oxidase and ferrocene, and a cathode (area of 30 mm2) modified by bilirubin oxidase. The anode and the cathode were connected with the MWCNT wirings. The maximum power of 0.31 μW at 76.6 mV, which corresponds to a power density of 1.04 μW/cm2, was realized by immersing the biofuel cell in a phosphate buffer solution with a glucose concentration of 100 mM, at room temperature.

  4. Fabrication and characterization of a pd nanowire-based glucose biofuel cell

    Science.gov (United States)

    Amoah, Kweku Obeng

    The use of glucose as a source in biofuel cell technology has received a lot of attention in part due to the potential applications of such systems. In addition to the being a clean energy alternative, it provides a pathway for implantable microelectronic devices, such as pacemakers, to be powered by interstitial fluid and eliminate the need for batteries. Furthermore, using interstitial fluid as fuel sources will drastically reduce necessary invasive surgeries to replace batteries. Additionally, cost to such patients will be reduced while quality of life enhanced. The research presents a unique platform for harvesting energy from glucose. Using semiconductor cleanroom techniques, electrically conductive palladium nanowires are grown on anodized aluminum oxide templates using silicon and glass as supporting substrates. Photolithography is used to create two non-continuous gold windows and contact pads on the substrates. AAO templates are attached to the two gold windows and palladium nanowires are electrochemically grown on the AAO templates. Glucose oxidase and catalase are immobilized on the anode and laccase on the cathode. In the presence of glucose, electrons are released that result in the generation of voltage and current. The current-voltage behavior of the fuel cell, as well as electrochemical properties, is characterized using standard performance metrics. In 5 mM glucose solution with a neutral pH of 7.3, the open circuit voltage obtained was 335 mV and the short circuit current of 6 microA to yield a maximum power output of 1.38 microW.

  5. Electrochemical Performance of Glucose/Oxygen Biofuel Cells Based on Carbon Nanostructures.

    Science.gov (United States)

    Koo, Min-Hye; Das, Gautam; Yoon, Hyon Hee

    2016-03-01

    The electrochemical performance of glucose/oxygen biofuel cells based on carbon nanostructures was investigated in the present study. Different types of carbon nanomaterials, including multi-walled carbon nanotubes (MWCNT), functionalized MWCNT (f-MWCNT), carbon nanofibers (CNF), and functionalized CNF (f-CNF) were examined for electrode fabrications. The anode for glucose/oxygen biofuel cells were prepared by sequential coating of carbon nanomaterials, charge transfer complex (CTC), glucose oxidase (GOx) and nafion membrane. The anode was then integrated with a bilirubin oxidase-immobilized cathode for the biofuel cell test. It was found that the electrochemical performance of the enzyme electrodes was remarkably enhanced by the amalgamation of carbon nanomaterials with the CTC. The biofuel cell with anode comprising of f-CNF and the cathode with MWCNT exhibited the best electrochemical performance with a maximum power density of 210 μW/cm2 at a cell voltage of 0.44 V for 20 mM glucose concentration, which is comparable with the best power density value reported earlier. PMID:27455759

  6. Electrochemical Performance of Glucose/Oxygen Biofuel Cells Based on Carbon Nanostructures.

    Science.gov (United States)

    Koo, Min-Hye; Das, Gautam; Yoon, Hyon Hee

    2016-03-01

    The electrochemical performance of glucose/oxygen biofuel cells based on carbon nanostructures was investigated in the present study. Different types of carbon nanomaterials, including multi-walled carbon nanotubes (MWCNT), functionalized MWCNT (f-MWCNT), carbon nanofibers (CNF), and functionalized CNF (f-CNF) were examined for electrode fabrications. The anode for glucose/oxygen biofuel cells were prepared by sequential coating of carbon nanomaterials, charge transfer complex (CTC), glucose oxidase (GOx) and nafion membrane. The anode was then integrated with a bilirubin oxidase-immobilized cathode for the biofuel cell test. It was found that the electrochemical performance of the enzyme electrodes was remarkably enhanced by the amalgamation of carbon nanomaterials with the CTC. The biofuel cell with anode comprising of f-CNF and the cathode with MWCNT exhibited the best electrochemical performance with a maximum power density of 210 μW/cm2 at a cell voltage of 0.44 V for 20 mM glucose concentration, which is comparable with the best power density value reported earlier.

  7. Assessment of bio-fuel options for solid oxide fuel cell applications

    Science.gov (United States)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  8. Carbon nanotube-based glucose oxidase nanocomposite anode materials for bio-fuel cells

    Science.gov (United States)

    Dudzik, Jonathan

    The field of nanotechnology has benefited medicine, science, and engineering. The advent of Carbon Nanotubes (CNTs) and protein-inorganic interfacing have received much attention due to their unique nanostructures which can be modified to act as a scaffold to house proteins or create nanowires. The current trend incorporates the robustness and specificity characteristics of proteins to the mechanical strength, enlarged surface area, and conductive capabilities emblematic of their inorganic counterparts. Bio-Fuel Cells (BFCs) and Biosensors remain at the forefront and devices such as implantable glucose monitors are closer to realization than ever before. This research strives to exploit potential energy from the eukaryotic enzyme Glucose Oxidase (GOx) during oxidation of its substrate, glucose. During this process, a two-electron transfer occurs at its two FAD redox centres which can be harnessed via an electrochemical setup involving a Multi-Walled Carbon Nanotube (MWCNTs) modified electrode. The objective is to develop a MWCNT-GOx bionanocomposite capable of producing and sustaining a competitive power output. To help with this aim, investigation into a crosslinked enzyme cluster (CEC) immobilization technique is envisioned to amplify power output due to its highly concentrated, reusable, and thermally stable characteristics. Numerous CEC-GOx-MWCNT composites were fabricated with the highest initial output reaching 170 muW/cm 2. It was hypothesized that the carbohydrate moiety increased tunnelling distance and therefore hindered electron transfer. Efforts to produce a recombinant GOx without the encumbrance were unsuccessful. Two sub-clone constructs were explored and although a recombinant protein was identified, it was not confirmed to be GOx. BFC testing on bionanocomposites integrating non-glycosylated GOx could not be performed although there remains a strong contention that the recombinant would demonstrate superior power densities in comparison to its

  9. A quinhydrone biofuel cell based on an enzyme-induced pH gradient

    Energy Technology Data Exchange (ETDEWEB)

    Giroud, Fabien; Gondran, Chantal; Gorgy, Karine; Cosnier, Serge [Departement de Chimie Moleculaire, UMR CNRS 5250 ICMG-FR-2607, Universite Joseph Fourier, BP-53, 38041 Grenoble Cedex 9 (France); Pellissier, Aymeric [Departement de Chimie Moleculaire, UMR CNRS 5250 ICMG-FR-2607, Universite Joseph Fourier, BP-53, 38041 Grenoble Cedex 9 (France); Techniques de l' Ingenierie Medicale et de la Complexite - Informatique, Mathematiques Appliquees Grenoble, UMR CNRS 5525, IFRT-IpV 130, IN3S INstitut de l' INgenierie et de l' INformation de Sante, Faculte de Medecine, Universite Joseph Fourier, 38706 La Tronche cedex (France); Lenouvel, Francois; Cinquin, Philippe [Techniques de l' Ingenierie Medicale et de la Complexite - Informatique, Mathematiques Appliquees Grenoble, UMR CNRS 5525, IFRT-IpV 130, IN3S INstitut de l' INgenierie et de l' INformation de Sante, Faculte de Medecine, Universite Joseph Fourier, 38706 La Tronche cedex (France)

    2011-02-01

    We report on an alternative concept of biofuel cell functioning based on the unconventional use of enzymes to create a pH difference generating a potential difference between electrodes soaked in quinhydrone solutions. The electrode and quinhydrone solution were confined in a dialysis bag placed into a compartment containing either glucose oxidase and catalase for the biocathode or urease for the bioanode. In presence of 0.4 mol L{sup -1} glucose and urea, the enzyme reactions generate a pH difference of 3.55, both compartments being separated by an agar-agar wall. The resulting biofuel cell exhibits an open-circuit voltage and maximum power of 208 mV and 30.6 {mu}W, respectively, without immobilization and electrical connection of the involved enzymes. In addition, this biofuel cell was able to provide continuously10 {mu}A during 23 h, producing 0.133 J and 0.828 C. A similar biofuel cell configuration based only on dialysis bags was also developed. A graphite disk electrode elaborated by mechanical compression of graphite particles and quinhydrone, was placed in a dialysis bag itself confined into another dialysis bag containing enzyme solution. The resulting power and open-circuit voltage at saturating substrate conditions are 7.6 {mu}W and 157 mV, respectively. (author)

  10. Biofuel technologies. Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vijai Kumar [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry; MITS Univ., Rajasthan (India). Dept. of Science; Tuohy, Maria G. (eds.) [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry

    2013-02-01

    Written by experts. Richly illustrated. Of interest to both experienced researchers and beginners in the field. Biofuels are considered to be the main potential replacement for fossil fuels in the near future. In this book international experts present recent advances in biofuel research and related technologies. Topics include biomethane and biobutanol production, microbial fuel cells, feedstock production, biomass pre-treatment, enzyme hydrolysis, genetic manipulation of microbial cells and their application in the biofuels industry, bioreactor systems, and economical processing technologies for biofuel residues. The chapters provide concise information to help understand the technology-related implications of biofuels development. Moreover, recent updates on biofuel feedstocks, biofuel types, associated co- and byproducts and their applications are highlighted. The book addresses the needs of postgraduate researchers and scientists across diverse disciplines and industrial sectors in which biofuel technologies and related research and experimentation are pursued.

  11. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels.

    Science.gov (United States)

    Healey, Adam L; Lee, David J; Furtado, Agnelo; Simmons, Blake A; Henry, Robert J

    2015-01-01

    In order to meet the world's growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall. PMID:26636077

  12. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels.

    Science.gov (United States)

    Healey, Adam L; Lee, David J; Furtado, Agnelo; Simmons, Blake A; Henry, Robert J

    2015-01-01

    In order to meet the world's growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.

  13. Ion implantation inhibits cell attachment to glassy polymeric carbon

    International Nuclear Information System (INIS)

    Implantation of MeV gold, oxygen, carbon ions into GPC alters the surface topography of GPC and enhances the already strong tendency for cells to attach to GPC. We have shown that implantation of silver ions near the surface strongly inhibits cell growth on GPC. Both enhanced adhesion of and inhibition of cell growth are desirable improvements on cardiac implants that have long been successfully fabricated from biocompatible glassy polymeric carbon (GPC). In vitro biocompatibility tests have been carried out with model cell lines to demonstrate that ion beam assisted deposition (IBAD) of silver, as well as silver ion bombardment, can favorably influence the surface of GPC for biomedical applications

  14. A repeatedly refuelable mediated biofuel cell based on a hierarchical porous carbon electrode

    Science.gov (United States)

    Fujita, Shuji; Yamanoi, Shun; Murata, Kenichi; Mita, Hiroki; Samukawa, Tsunetoshi; Nakagawa, Takaaki; Sakai, Hideki; Tokita, Yuichi

    2014-05-01

    Biofuel cells that generate electricity from renewable fuels, such as carbohydrates, must be reusable through repeated refuelling, should these devices be used in consumer electronics. We demonstrate the stable generation of electricity from a glucose-powered mediated biofuel cell through multiple refuelling cycles. This refuelability is achieved by immobilizing nicotinamide adenine dinucleotide (NAD), an electron-transfer mediator, and redox enzymes in high concentrations on porous carbon particles constituting an anode while maintaining their electrochemical and enzymatic activities after the immobilization. This bioanode can be refuelled continuously for more than 60 cycles at 1.5 mA cm-2 without significant potential drop. Cells assembled with these bioanodes and bilirubin-oxidase-based biocathodes can be repeatedly used to power a portable music player at 1 mW cm-3 through 10 refuelling cycles. This study suggests that the refuelability within consumer electronics should facilitate the development of long and repeated use of the mediated biofuel cells as well as of NAD-based biosensors, bioreactors, and clinical applications.

  15. Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels.

    Science.gov (United States)

    Li, Xin; Yu, Vivian Yaci; Lin, Yuping; Chomvong, Kulika; Estrela, Raíssa; Park, Annsea; Liang, Julie M; Znameroski, Elizabeth A; Feehan, Joanna; Kim, Soo Rin; Jin, Yong-Su; Glass, N Louise; Cate, Jamie H D

    2015-01-01

    Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production. PMID:25647728

  16. Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells.

    Science.gov (United States)

    Efremenko, E N; Nikolskaya, A B; Lyagin, I V; Senko, O V; Makhlis, T A; Stepanov, N A; Maslova, O V; Mamedova, F; Varfolomeev, S D

    2012-06-01

    The purpose of this work was to study the possible use of pretreated biomass of various microalgae and cyanobacteria as substrates for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum cells immobilized into poly(vinyl alcohol) cryogel. To this end, the biochemical composition of photosynthetic microorganisms cultivated under various conditions was studied. The most efficient technique for pretreating microalgal biomass for its subsequent conversion into biofuels appeared to be thermal decomposition at 108 °C. For the first time the maximum productivity of the ABE fermentation in terms of hydrogen (8.5 mmol/L medium/day) was obtained using pretreated biomass of Nannochloropsis sp. Maximum yields of butanol and ethanol were observed with Arthrospira platensis biomass used as the substrate. Immobilized Clostridium cells were demonstrated to be suitable for multiple reuses (for a minimum of five cycles) in ABE fermentation for producing biofuels from pretreated microalgal biomass.

  17. Performance of non-compartmentalized enzymatic biofuel cell based on buckypaper cathode and ferrocene-containing redox polymer anode

    Science.gov (United States)

    Bunte, Christine; Hussein, Laith; Urban, Gerald A.

    2014-02-01

    Novel single compartment Glucose/O2 biofuel cells (BFCs) were developed using immobilized enzymes and the mediated electron transfer (MET) approach. The bioanode was prepared through a ferrocene-containing redox polymer crosslinked in the presence of a biocatalyst on a glassy carbon support. Here, the redox polymer can physically entrap the enzyme and prevent it from leaching. Additionally it provides a biocompatible microenvironment and thus could extend the life time of enzyme. On the other side, the mediated biocathode was prepared based on bilirubin oxidase and 2,2‧-azinobis(3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS2-) system which has been physically entrapped in Nafion matrix and then adsorbed directly on a highly porous, conductive and functionalized buckypaper (fBP). Both electrodes were characterized physically and electrochemically. Employing these electrodes, the resulting BFC generates an open circuit voltage (Voc) of approximately 0.550 V and a peak power density of 26 μW cm-2 at 0.2 V at 37 °C in quiescent O2-saturated physiological buffer containing 5 mM glucose. The cell sustains a load up to 225 μA cm-2. Moreover, a high short circuit current (Isc) of 300 μA cm-2 is approached. This BFC can operate in mild conditions without using any toxic materials which makes it attractive for implantable devices.

  18. Implant Surface Design Regulates Mesenchymal Stem Cell Differentiation and Maturation.

    Science.gov (United States)

    Boyan, B D; Cheng, A; Olivares-Navarrete, R; Schwartz, Z

    2016-03-01

    Changes in dental implant materials, structural design, and surface properties can all affect biological response. While bulk properties are important for mechanical stability of the implant, surface design ultimately contributes to osseointegration. This article reviews the surface parameters of dental implant materials that contribute to improved cell response and osseointegration. In particular, we focus on how surface design affects mesenchymal cell response and differentiation into the osteoblast lineage. Surface roughness has been largely studied at the microscale, but recent studies have highlighted the importance of hierarchical micron/submicron/nanosurface roughness, as well as surface roughness in combination with surface wettability. Integrins are transmembrane receptors that recognize changes in the surface and mediate downstream signaling pathways. Specifically, the noncanonical Wnt5a pathway has been implicated in osteoblastic differentiation of cells on titanium implant surfaces. However, much remains to be elucidated. Only recently have studies been conducted on the differences in biological response to implants based on sex, age, and clinical factors; these all point toward differences that advocate for patient-specific implant design. Finally, challenges in implant surface characterization must be addressed to optimize and compare data across studies. An understanding of both the science and the biology of the materials is crucial for developing novel dental implant materials and surface modifications for improved osseointegration.

  19. Thermodynamic analysis of solid oxide fuel cell gas turbine systems operating with various biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Patel, H.C.; Woudstra, T.; Aravind, P.V. [Process and Energy Laboratory, Delft University of Technology, Section Energy Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands)

    2012-12-15

    Solid oxide fuel cell-gas turbine (SOFC-GT) systems provide a thermodynamically high efficiency alternative for power generation from biofuels. In this study biofuels namely methane, ethanol, methanol, hydrogen, and ammonia are evaluated exergetically with respect to their performance at system level and in system components like heat exchangers, fuel cell, gas turbine, combustor, compressor, and the stack. Further, the fuel cell losses are investigated in detail with respect to their dependence on operating parameters such as fuel utilization, Nernst voltage, etc. as well as fuel specific parameters like heat effects. It is found that the heat effects play a major role in setting up the flows in the system and hence, power levels attained in individual components. The per pass fuel utilization dictates the efficiency of the fuel cell itself, but the system efficiency is not entirely dependent on fuel cell efficiency alone, but depends on the split between the fuel cell and gas turbine powers which in turn depends highly on the nature of the fuel and its chemistry. Counter intuitively it is found that with recycle, the fuel cell efficiency of methane is less than that of hydrogen but the system efficiency of methane is higher. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Application of an enzyme-based biofuel cell containing a bioelectrode modified with deoxyribonucleic acid-wrapped single-walled carbon nanotubes to serum.

    Science.gov (United States)

    Lee, Jin Young; Shin, Hyun Yong; Kang, Seong Woo; Park, Chulhwan; Kim, Seung Wook

    2011-01-01

    Enzyme-based biofuel cells (EFCs) are a form of biofuel cells (BFCs) that can utilize redox enzymes as biocatalysts. Applications of an EFC to an implantable system are evaluated under mild conditions, such as ambient temperature or neutral pH. In the present study, an EFC containing a bioelectrode modified with deoxyribonucleic acid (DNA)-wrapped single-walled carbon nanotubes (SWNTs) was applied to a serum system. The protection of immobilized glucose oxidase (GOD) using DNA-wrapped SWNTs was investigated in a trypsin environment, which can exist in a serum. GOD is immobilized by masking the active site onto the anode electrode. The anode/cathode system in the cell was composed of GOD/laccase as the biocatalysts and glucose/oxygen as the substrates in serum. The electrical properties of the anode in serum according to cyclic voltammetry (CV cycle) were improved using the DNA-wrapped SWNTs. Overall, an EFC that employed DNA-wrapped SWNTs and GOD immobilization in conjunction with protection of the active site increased the stability of GOD in serum, which enabled a high level of power production (ca. 190 μW/cm(2)) for up to 1 week.

  1. A low-cost biofuel cell with pH-dependent power output based on porous carbon as matrix.

    Science.gov (United States)

    Liu, Ying; Wang, Mingkui; Zhao, Feng; Liu, Baifeng; Dong, Shaojun

    2005-08-19

    A glucose/O2 biofuel cell (BFC) possessing a pH-dependent power output was fabricated by taking porous carbon (PC) as the matrix to load glucose oxidase or fungi laccase as the catalysts. The electrolytes in the anode and cathode compartments contain ferrocene monocarboxylic acid and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt as the mediators, respectively. The power of the BFC was enhanced significantly by using PC as the matrix, rather than glassy carbon electrode. Additionally, the power output of the BFC decreases as the pH of the solution increases from 4.0 to 7.0, which provides a simple and efficient method to achieve the required power output. More importantly, the BFC can operate at pH 6.0, and even at pH 7.0, which overcomes the requirement for cathode solutions of pHBFC at neutral pH may provide a means to power medical devices implanted in physiological systems. The facile and low-cost fabrication of this BFC may enable its development for other applications.

  2. Biointerface: protein enhanced stem cells binding to implant surface.

    Science.gov (United States)

    Chrzanowski, W; Kondyurin, A; Lee, Jae Ho; Lord, Megan S; Bilek, M M M; Kim, Hae-Won

    2012-09-01

    The number of metallic implantable devices placed every year is estimated at 3.7 million. This number has been steadily increasing over last decades at a rate of around 8 %. In spite of the many successes of the devices the implantation of biomaterial into tissues almost universally leads to the development of an avascular sac, which consists of fibrous tissue around the device and walls off the implant from the body. This reaction can be detrimental to the function of implant, reduces its lifetime, and necessitates repeated surgery. Clearly, to reduce the number of revision surgeries and improve long-term implant function it is necessary to enhance device integration by modulating cell adhesion and function. In this paper we have demonstrated that it is possible to enhance stem cell attachment using engineered biointerfaces. To create this functional interface, samples were coated with polymer (as a precursor) and then ion implanted to create a reactive interface that aids the binding of biomolecules--fibronectin. Both AFM and XPS analyses confirmed the presence of protein layers on the samples. The amount of protein was significant greater for the ion implanted surfaces and was not disrupted upon washing with detergent, hence the formation of strong bonds with the interface was confirmed. While, for non ion implanted surfaces, a decrease of protein was observed after washing with detergent. Finally, the number of stem cells attached to the surface was enhanced for ion implanted surfaces. The studies presented confirm that the developed bionterface with immobilised fibronectin is an effective means to modulate stem cell attachment. PMID:22714559

  3. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.

    Science.gov (United States)

    Wang, Yanting; Fan, Chunfen; Hu, Huizhen; Li, Ying; Sun, Dan; Wang, Youmei; Peng, Liangcai

    2016-01-01

    Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology. PMID:27269671

  4. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.

    Science.gov (United States)

    Wang, Yanting; Fan, Chunfen; Hu, Huizhen; Li, Ying; Sun, Dan; Wang, Youmei; Peng, Liangcai

    2016-01-01

    Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology.

  5. Ion implantation induced nanotopography on titanium and bone cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Vera, Carolina; Ayerdi-Izquierdo, Ana [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Muñoz, Roberto [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Lorenzo, Jaione; Alvarez, Noelia [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Maeztu, Miguel Ángel de [Private Practice, P° San Francisco, 43 A-1°, 20400 Tolosa (Spain)

    2014-08-15

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm{sup 2}) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  6. Therapeutic Lymphangiogenesis With Implantation of Adipose‐Derived Regenerative Cells

    OpenAIRE

    Shimizu, Yuuki; Shibata, Rei; Shintani, Satoshi; Ishii, Masakazu; Murohara, Toyoaki

    2012-01-01

    Background Lymphedema is one of the serious clinical problems that can occur after surgical resection of malignant tumors such as breast cancer or intra‐pelvic cancers. However, no effective treatment options exist at present. Here, we report that implantation of adipose‐derived regenerative cells (ADRCs) can induce lymphangiogenesis in a mouse model of reparative lymphedema. Methods and Results ADRCs were isolated from C57BL/6J mice. To examine the therapeutic efficacy of ADRC implantation i...

  7. Sugar for the fuel cell. Micro fuel cells for implants; Gib der Brennstoffzelle Zucker. Mikro-Brennstoffzellen fuer Implantate

    Energy Technology Data Exchange (ETDEWEB)

    Geitmann, Sven

    2012-04-15

    Scientists are working on micro fuel cells that will be capable of generating electric power from blood glucose. This may be an option for providing energy to cardiac pacemakers, hearing aids and other medical implants on a long-term basis. Surgery for battery exchange would be unnecessary, and patients would enjoy a better quality of life. In Germany, more than 70,000 cardiac pacemakers are implanted every year; batteries must be exchanged after about eight years. (orig.)

  8. Mechanisms of electron transfer between a styrylquinolinium dye and yeast in biofuel cell.

    Science.gov (United States)

    Hubenova, Yolina; Bakalska, Rumyana; Hubenova, Eleonora; Mitov, Mario

    2016-12-01

    In the present study, the influence of the recently synthesized styrylquinolinium dye 4-{(E)-2-[4-(dimethylamino)naphthalen-1-yl]ethenyl}-1-methylquinolinium iodide (DANSQI) on the intracellular processes as well as the electrical outputs of Candida melibiosica 2491 yeast-based biofuel cell was investigated. The addition of nanomolar quantities of DANSQI to the yeast suspension results in an increase of the current outputs right after the startup of the biofuel cells, associated with an electrooxidation of the dye on the anode. After that, the formed cation radical of the dye penetrates the yeast cells, provoking a set of intracellular changes. Studies of the subcellular anolyte fractions show that 1μM dye increased the peroxisomal catalase activity 30-times (1.15±0.06Unit/mg protein) and over twice the mitochondrial cytochrome c oxidase activity (92±5Unit/mg protein). The results obtained by electrochemical and spectrophotometric analyses let to the supposition that the dye acts as subcellular shuttle, on account of its specific intramolecular charge transfer properties. The transition between its benzoid, quinolyl radical and ion forms and their putative role for the extracellular and intracellular charge transfer mechanisms are discussed. PMID:26924617

  9. A Metabolic Biofuel Cell: Conversion of Human Leukocyte Metabolic Activity to Electrical Currents

    Directory of Open Access Journals (Sweden)

    Cui X Tracy

    2011-05-01

    Full Text Available Abstract An investigation of the electrochemical activity of human white blood cells (WBC for biofuel cell (BFC applications is described. WBCs isolated from whole human blood were suspended in PBS and introduced into the anode compartment of a proton exchange membrane (PEM fuel cell. The cathode compartment contained a 50 mM potassium ferricyanide solution. Average current densities between 0.9 and 1.6 μA cm-2 and open circuit potentials (Voc between 83 and 102 mV were obtained, which were both higher than control values. Cyclic voltammetry was used to investigate the electrochemical activity of the activated WBCs in an attempt to elucidate the mechanism of electron transfer between the cells and electrode. Voltammograms were obtained for the WBCs, including peripheral blood mononuclear cells (PBMCs - a lymphocyte-monocyte mixture isolated on a Ficoll gradient, a B lymphoblastoid cell line (BLCL, and two leukemia cell lines, namely K562 and Jurkat. An oxidation peak at about 363 mV vs. SCE for the PMA (phorbol ester activated primary cells, with a notable absence of a reduction peak was observed. Oxidation peaks were not observed for the BLCL, K562 or Jurkat cell lines. HPLC confirmed the release of serotonin (5-HT from the PMA activated primary cells. It is believed that serotonin, among other biochemical species released by the activated cells, contributes to the observed BFC currents.

  10. Cell manipulation in autologous chondrocyte implantation: from research to cleanroom.

    Science.gov (United States)

    Roseti, Livia; Serra, Marta; Tigani, Domenico; Brognara, Irene; Lopriore, Annamaria; Bassi, Alessandra; Fornasari, Pier Maria

    2008-04-01

    In the field of orthopaedics, autologous chondrocyte implantation is a technique currently used for the regeneration of damaged articular cartilage. There is evidence of the neo-formation of tissue displaying characteristics similar to hyaline cartilage. In vitro chondrocyte manipulation is a crucial phase of this therapeutic treatment consisting of different steps: cell isolation from a cartilage biopsy, expansion in monolayer culture and growth onto a three-dimensional biomaterial to implant in the damaged area. To minimise the risk of in vitro cell contamination, the manipulation must be performed in a controlled environment such as a cleanroom. Moreover, the choice of reagents and raw material suitable for clinical use in humans and the translation of research protocols into standardised production processes are important. In this study we describe the preliminary results obtained by the development of chondrocyte manipulation protocols (isolation and monolayer expansion) in cleanrooms for the application of autologous implantation.

  11. A direct electron transfer-based glucose/oxygen biofuel cell operating in human serum

    Energy Technology Data Exchange (ETDEWEB)

    Coman, V.; Gorton, L. [Department of Analytical Chemistry/Biochemistry, Lund University, 22100 Lund (Sweden); Ludwig, R. [Research Centre Applied Biocatalysis, 8010 Graz (Austria); Department of Food Sciences and Technology, BOKU-University of Natural Resources and Applied Life Sciences, 1190 Wien (Austria); Harreither, W.; Haltrich, D. [Department of Food Sciences and Technology, BOKU-University of Natural Resources and Applied Life Sciences, 1190 Wien (Austria); Ruzgas, T. [Biomedical Laboratory Science, Health and Society, Malmoe University, 20506 Malmoe (Sweden); Laboratory of Chemical Enzymology, A.N. Bach Institute of Biochemistry, 119071 Moscow (Russian Federation); Shleev, S.

    2010-02-15

    We report on the fabrication and characterisation of the very first direct electron transfer-based glucose/oxygen biofuel cell (BFC) operating in neutral glucose-containing buffer and human serum. Corynascus thermophilus cellobiose dehydrogenase and Myrothecium verrucaria bilirubin oxidase were used as anodic and cathodic bioelements, respectively. The following characteristics of the mediator-, separator- and membrane-less, a priori, non-toxic and simple miniature BFC, was obtained: an open-circuit voltage of 0.62 and 0.58 V, a maximum power density of ca. 3 and 4 {mu}W cm{sup -2} at 0.37 and 0.19 V of cell voltage, in phosphate buffer and human serum, respectively. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Ion Implanted Passivated Contacts for Interdigitated Back Contacted Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; Reedy, Robert; Bateman, Nicholas; Stradins, Pauls

    2015-06-14

    We describe work towards an interdigitated back contacted (IBC) solar cell utilizing ion implanted, passivated contacts. Formation of electron and hole passivated contacts to n-type CZ wafers using tunneling SiO2 and ion implanted amorphous silicon (a-Si) are described. P and B were ion implanted into intrinsic amorphous Si films at several doses and energies. A series of post-implant anneals showed that the passivation quality improved with increasing annealing temperatures up to 900 degrees C. The recombination parameter, Jo, as measured by a Sinton lifetime tester, was Jo ~ 14 fA/cm2 for Si:P, and Jo ~ 56 fA/cm2 for Si:B contacts. The contact resistivity for the passivated contacts, as measured by TLM patterns, was 14 milliohm-cm2 for the n-type contact and 0.6 milliohm-cm2 for the p-type contact. These Jo and pcontact values are encouraging for forming IBC cells using ion implantation to spatially define dopants.

  13. Polymer-based protein engineering grown ferrocene-containing redox polymers improve current generation in an enzymatic biofuel cell.

    Science.gov (United States)

    Campbell, Alan S; Murata, Hironobu; Carmali, Sheiliza; Matyjaszewski, Krzysztof; Islam, Mohammad F; Russell, Alan J

    2016-12-15

    Enzymatic biofuel cells (EBFCs) are capable of generating electricity from physiologically present fuels making them promising power sources for the future of implantable devices. The potential application of such systems is limited, however, by inefficient current generation. Polymer-based protein engineering (PBPE) offers a unique method to tailor enzyme function through tunable modification of the enzyme surface with functional polymers. In this study, we report on the modification of glucose oxidase (GOX) with ferrocene-containing redox polymers to increase current generation efficiency in an enzyme-modified anode. Poly(N-(3-dimethyl(ferrocenyl)methylammonium bromide)propyl acrylamide) (pFcAc) was grown from covalently attached, water-soluble initiator molecules on the surface of GOX in a "grafting-from" approach using atom transfer radical polymerization (ATRP). The covalently-coupled ferrocene-containing polymers on the enzyme surface promoted the effective "wiring" of the GOX active site to an external electrode. The resulting GOX-pFcAc conjugates generated over an order of magnitude increase in current generation efficiency and a 4-fold increase in maximum EBFC power density (≈1.7µWcm(-2)) with similar open circuit voltage (0.27V) compared to native GOX when physically adsorbed onto paddle-shaped electrodes made up of electrospun polyacrylonitrile fibers coated with gold nanoparticles and multi-wall carbon nanotubes. The formation of electroactive enzyme-redox polymer conjugates using PBPE represents a powerful new tool for the improvement of mediated enzyme-based bioelectronics without the need for free redox mediators or anode/cathode compartmentalization. PMID:27424262

  14. Polymer-based protein engineering grown ferrocene-containing redox polymers improve current generation in an enzymatic biofuel cell.

    Science.gov (United States)

    Campbell, Alan S; Murata, Hironobu; Carmali, Sheiliza; Matyjaszewski, Krzysztof; Islam, Mohammad F; Russell, Alan J

    2016-12-15

    Enzymatic biofuel cells (EBFCs) are capable of generating electricity from physiologically present fuels making them promising power sources for the future of implantable devices. The potential application of such systems is limited, however, by inefficient current generation. Polymer-based protein engineering (PBPE) offers a unique method to tailor enzyme function through tunable modification of the enzyme surface with functional polymers. In this study, we report on the modification of glucose oxidase (GOX) with ferrocene-containing redox polymers to increase current generation efficiency in an enzyme-modified anode. Poly(N-(3-dimethyl(ferrocenyl)methylammonium bromide)propyl acrylamide) (pFcAc) was grown from covalently attached, water-soluble initiator molecules on the surface of GOX in a "grafting-from" approach using atom transfer radical polymerization (ATRP). The covalently-coupled ferrocene-containing polymers on the enzyme surface promoted the effective "wiring" of the GOX active site to an external electrode. The resulting GOX-pFcAc conjugates generated over an order of magnitude increase in current generation efficiency and a 4-fold increase in maximum EBFC power density (≈1.7µWcm(-2)) with similar open circuit voltage (0.27V) compared to native GOX when physically adsorbed onto paddle-shaped electrodes made up of electrospun polyacrylonitrile fibers coated with gold nanoparticles and multi-wall carbon nanotubes. The formation of electroactive enzyme-redox polymer conjugates using PBPE represents a powerful new tool for the improvement of mediated enzyme-based bioelectronics without the need for free redox mediators or anode/cathode compartmentalization.

  15. Enhanced periodontal tissue regeneration by periodontal cell implantation

    NARCIS (Netherlands)

    N. Yu; D.A.W. Oortgiesen; A.L.J.J. Bronckers; F. Yang; X.F. Walboomers; J.A. Jansen

    2013-01-01

    Aim Due to a lack of regenerative potential, current treatments for periodontal defects do not always provide satisfactory clinical results. Previously, the implantation of a biomaterial scaffold-cell construct has been suggested as a clinically achievable approach. In this study, it was aimed to in

  16. Enhanced periodontal tissue regeneration by periodontal cell implantation

    NARCIS (Netherlands)

    Yu, N.; Oortgiesen, D.A.W.; Bronckers, A.L.; Yang, F.; Walboomers, X.F.; Jansen, J.A.

    2013-01-01

    AIM: Due to a lack of regenerative potential, current treatments for periodontal defects do not always provide satisfactory clinical results. Previously, the implantation of a biomaterial scaffold-cell construct has been suggested as a clinically achievable approach. In this study, it was aimed to i

  17. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    Science.gov (United States)

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options.

  18. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    Science.gov (United States)

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. PMID:23201905

  19. A laccase-glucose oxidase biofuel cell prototype operating in a physiological buffer

    International Nuclear Information System (INIS)

    Here we report on the design and study of a biofuel cell consisting of a glucose oxidase-based anode (Aspergillus niger) and a laccase-based cathode (Trametes versicolor) using osmium-based redox polymers as mediators of the biocatalysts' electron transfer at graphite electrode surfaces. The graphite electrodes of the device are modified with the deposition and immobilization of the appropriate enzyme and the osmium redox polymer mediator. A redox polymer [Os(4,4'-diamino-2,2'bipyridine)2(poly{N-vinylimidazole})-(poly{ N-vinylimidazole})9Cl]Cl (E ' = -0.110 V versus Ag/AgCl) of moderately low redox potential is used for the glucose oxidizing anode and a redox polymer [Os(phenanthroline)2(poly{N-vinylimidazole})2-(poly{N-vinylimidazole})8]Cl2 (E ' = 0.49 V versus Ag/AgCl) of moderately high redox potential is used at the dioxygen reducing cathode. The enzyme and redox polymer are cross-linked with polyoxyethylene bis(glycidyl ether). The working biofuel cell was studied under air at 37 deg. C in a 0.1 M phosphate buffer solution of pH range 4.4-7.4, containing 0.1 M sodium chloride and 10 mM glucose. Under physiological conditions (pH 7.4) maximum power density, evaluated from the geometric area of the electrode, reached 16 μW/cm2 at a cell voltage of 0.25 V. At lower pH values maximum power density was 40 μW/cm2 at 0.4 V (pH 5.5) and 10 μW/cm2 at 0.3 V (pH 4.4)

  20. Biofuel Database

    Science.gov (United States)

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  1. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Durand, Fabien [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Stines-Chaumeil, Claire [Universite de Bordeaux, CNRS, Institut de Biochimie et de Genetique Cellulaires, 1 rue Camille Saint Saens, 33077 Bordeaux Cedex (France); Flexer, Victoria [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Andre, Isabelle [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); CNRS, UMR5504, F-31400 Toulouse (France); INRA, UMR 792 Ingenierie des Systemes Biologiques et des Procedes, F-31400 Toulouse (France); Mano, Nicolas, E-mail: mano@crpp-bordeaux.cnrs.fr [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France)

    2010-11-26

    Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  2. Systems Level Engineering of Plant Cell Wall Biosynthesis to Improve Biofuel Feedstock Quality

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Samuel

    2013-09-27

    Our new regulatory model of cell wall biosynthesis proposes original network architecture with several newly incorporated components. The mapped set of protein-DNA interactions will serve as a foundation for 1) understanding the regulation of a complex and integral plant component and 2) the manipulation of crop species for biofuel and biotechnology purposes. This study revealed interesting and novel aspects of grass growth and development and further enforce the importance of a grass model system. By functionally characterizing a suite of genes, we have begun to improve the sparse model for transcription regulation of biomass accumulation in grasses. In the process, we have advanced methodology and brachy molecular genetic tools that will serve as valuable community resource.

  3. A glucose/O{sub 2} biofuel cell base on nanographene platelet-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, W.; Zhao, H.Y.; Zhang, J.X.; Zhou, H.M.; Xu, X.X. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Zheng, Y.F.; Wang, Y.B.; Cheng, Y. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Jang, B.Z. [College of Engineering and Computer Science, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435 (United States)

    2010-07-15

    This study demonstrated a novel nanographene platelets (NGPs)-based glucose/O{sub 2} biofuel cell (BFC) with the glucose oxidase (GOD) as the anodic biocatalysts and the laccase as the cathodic biocatalysts. The GOD/NGPs-modified electrode exhibited good catalytic activity towards glucose oxidation and the laccase/NGPs-modified electrode exhibited good catalytic activity towards O{sub 2} electroreduction. The maximum power density was ca. 57.8 {mu}W cm{sup -} {sup 2} for the assembled glucose/O{sub 2} NGPs-based BFC. These results indicated that the NGPs were very useful for the future development of novel carbon-based nanomaterials BFC device. (author)

  4. Automatic illumination compensation device based on a photoelectrochemical biofuel cell driven by visible light

    Science.gov (United States)

    Yu, You; Han, Yanchao; Xu, Miao; Zhang, Lingling; Dong, Shaojun

    2016-04-01

    Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications.Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00759g

  5. Carbon nanofiber mesoporous films: efficient platforms for bio-hydrogen oxidation in biofuel cells.

    Science.gov (United States)

    de Poulpiquet, Anne; Marques-Knopf, Helena; Wernert, Véronique; Giudici-Orticoni, Marie Thérèse; Gadiou, Roger; Lojou, Elisabeth

    2014-01-28

    The discovery of oxygen and carbon monoxide tolerant [NiFe] hydrogenases was the first necessary step toward the definition of a novel generation of hydrogen fed biofuel cells. The next important milestone is now to identify and overcome bottlenecks limiting the current densities, hence the power densities. In the present work we report for the first time a comprehensive study of herringbone carbon nanofiber mesoporous films as platforms for enhanced biooxidation of hydrogen. The 3D network allows mediatorless hydrogen oxidation by the membrane-bound hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus. We investigate the key physico-chemical parameters that enhance the catalytic efficiency, including surface chemistry and hierarchical porosity of the biohybrid film. We also emphasize that the catalytic current is limited by mass transport inside the mesoporous carbon nanofiber film. Provided hydrogen is supplied inside the carbon film, the combination of the hierarchical porosity of the carbon nanofiber film with the hydrophobicity of the treated carbon material results in very high efficiency of the bioelectrode. By optimization of the whole procedure, current densities as high as 4.5 mA cm(-2) are reached with a turnover frequency of 48 s(-1). This current density is almost 100 times higher than when hydrogenase is simply adsorbed at a bare graphite electrode, and more than 5 times higher than the average of the previous reported current densities at carbon nanotube modified electrodes, suggesting that carbon nanofibers can be efficiently used in future sustainable H2/O2 biofuel cells. PMID:24296569

  6. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  7. Novel Architectures for Achieving Direct Electron Transfer in Enzymatic Biofuel Cells

    Science.gov (United States)

    Blaik, Rita A.

    Enzymatic biofuel cells are a promising source of alternative energy for small device applications, but still face the challenge of achieving direct electron transfer with high enzyme concentrations in a simple system. In this dissertation, methods of constructing electrodes consisting of enzymes attached to nanoparticle-enhanced substrates that serve as high surface area templates are evaluated. In the first method described, glucose oxidase is covalently attached to gold nanoparticles that are assembled onto genetically engineered M13 bacteriophage. The resulting anodes achieve a high peak current per area and a significant improvement in enzyme surface coverage. In the second system, fructose dehydrogenase, a membrane-bound enzyme that has the natural ability to achieve direct electron transfer, is immobilized into a matrix consisting of binders and carbon nanotubes to extend the lifetime of the anode. For the cathode, bilirubin oxidase is immobilized in a carbon nanotube and sol-gel matrix to achieve direct electron transfer. Finally, a full fuel cell consisting of both an anode and cathode is constructed and evaluated with each system described.

  8. Carbon nanotube-hydroxyapatite nanocomposite: a novel platform for glucose/O2 biofuel cell.

    Science.gov (United States)

    Zhao, H Y; Zhou, H M; Zhang, J X; Zheng, W; Zheng, Y F

    2009-10-15

    This study demonstrates a novel carbon nanotubes-hydroxyapatite (CNTs-HA) nanocomposite-based compartment-less glucose/O(2) biofuel cell (BFC) with the glucose oxidase (GOD) as the anodic biocatalysts and the laccase as the cathodic biocatalysts. CNTs-HA nanocomposite prepared by the self-assembly method via an aqueous solution reaction has been used as the co-immobilization matrix to incorporate biocatalysts, i.e. GOD and laccase successfully. Moreover, the three-dimensional configuration of the CNTs-HA films electrode would be advantageous to the glucose oxidation on the bioanode and O(2) electroreduction on the biocathode of BFC. The maximum power density delivered by the assembled glucose/O(2) BFC could reach 15.8 muWcm(-2) at a cell voltage of 0.28 V with 10 mM glucose. The results indicate that the CNTs-HA nanocomposite is believed to be very useful for the development of novel BFC device.

  9. Heterologous Expression of Plant Cell Wall Degrading Enzymes for Effective Production of Cellulosic Biofuels

    Directory of Open Access Journals (Sweden)

    Sang-Kyu Jung

    2012-01-01

    Full Text Available A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE, which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated bioprocessing (CBP in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies.

  10. Carbon nanotube-hydroxyapatite nanocomposite: a novel platform for glucose/O2 biofuel cell.

    Science.gov (United States)

    Zhao, H Y; Zhou, H M; Zhang, J X; Zheng, W; Zheng, Y F

    2009-10-15

    This study demonstrates a novel carbon nanotubes-hydroxyapatite (CNTs-HA) nanocomposite-based compartment-less glucose/O(2) biofuel cell (BFC) with the glucose oxidase (GOD) as the anodic biocatalysts and the laccase as the cathodic biocatalysts. CNTs-HA nanocomposite prepared by the self-assembly method via an aqueous solution reaction has been used as the co-immobilization matrix to incorporate biocatalysts, i.e. GOD and laccase successfully. Moreover, the three-dimensional configuration of the CNTs-HA films electrode would be advantageous to the glucose oxidation on the bioanode and O(2) electroreduction on the biocathode of BFC. The maximum power density delivered by the assembled glucose/O(2) BFC could reach 15.8 muWcm(-2) at a cell voltage of 0.28 V with 10 mM glucose. The results indicate that the CNTs-HA nanocomposite is believed to be very useful for the development of novel BFC device. PMID:19713096

  11. Biosynthesis of Bacterial Cellulose/Carboxylic Multi-Walled Carbon Nanotubes for Enzymatic Biofuel Cell Application

    Directory of Open Access Journals (Sweden)

    Pengfei Lv

    2016-03-01

    Full Text Available Novel nanocomposites comprised of bacterial cellulose (BC with carboxylic multi-walled carbon nanotubes (c-MWCNTs incorporated into the BC matrix were prepared through a simple method of biosynthesis. The biocathode and bioanode for the enzyme biological fuel cell (EBFC were prepared using BC/c-MWCNTs composite injected by laccase (Lac and glucose oxidase (GOD with the aid of glutaraldehyde (GA crosslinking. Biosynthesis of BC/c-MWCNTs composite was characterized by digital photos, scanning electron microscope (SEM, and Fourier Transform Infrared (FTIR. The experimental results indicated the successful incorporation of c-MWCNTs into the BC. The electrochemical and biofuel performance were evaluated by cyclic voltammetry (CV and linear sweep voltammetry (LSV. The power density and current density of EBFCs were recorded at 32.98 µW/cm3 and 0.29 mA/cm3, respectively. Additionally, the EBFCs also showed acceptable stability. Preliminary tests on double cells indicated that renewable BC have great potential in the application field of EBFCs.

  12. Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells

    Science.gov (United States)

    Faggion Junior, D.; Haddad, R.; Giroud, F.; Holzinger, M.; Maduro de Campos, C. E.; Acuña, J. J. S.; Domingos, J. B.; Cosnier, S.

    2016-05-01

    Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 +/- 21 μW cm-2 at 0.19 V and pH 7.0.Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone

  13. A glucose fuel cell for implantable brain-machine interfaces.

    Directory of Open Access Journals (Sweden)

    Benjamin I Rapoport

    Full Text Available We have developed an implantable fuel cell that generates power through glucose oxidation, producing 3.4 μW cm(-2 steady-state power and up to 180 μW cm(-2 peak power. The fuel cell is manufactured using a novel approach, employing semiconductor fabrication techniques, and is therefore well suited for manufacture together with integrated circuits on a single silicon wafer. Thus, it can help enable implantable microelectronic systems with long-lifetime power sources that harvest energy from their surrounds. The fuel reactions are mediated by robust, solid state catalysts. Glucose is oxidized at the nanostructured surface of an activated platinum anode. Oxygen is reduced to water at the surface of a self-assembled network of single-walled carbon nanotubes, embedded in a Nafion film that forms the cathode and is exposed to the biological environment. The catalytic electrodes are separated by a Nafion membrane. The availability of fuel cell reactants, oxygen and glucose, only as a mixture in the physiologic environment, has traditionally posed a design challenge: Net current production requires oxidation and reduction to occur separately and selectively at the anode and cathode, respectively, to prevent electrochemical short circuits. Our fuel cell is configured in a half-open geometry that shields the anode while exposing the cathode, resulting in an oxygen gradient that strongly favors oxygen reduction at the cathode. Glucose reaches the shielded anode by diffusing through the nanotube mesh, which does not catalyze glucose oxidation, and the Nafion layers, which are permeable to small neutral and cationic species. We demonstrate computationally that the natural recirculation of cerebrospinal fluid around the human brain theoretically permits glucose energy harvesting at a rate on the order of at least 1 mW with no adverse physiologic effects. Low-power brain-machine interfaces can thus potentially benefit from having their implanted units

  14. Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability.

    Science.gov (United States)

    Bandodkar, Amay J; Jeerapan, Itthipon; You, Jung-Min; Nuñez-Flores, Rogelio; Wang, Joseph

    2016-01-13

    We present the first example of an all-printed, inexpensive, highly stretchable CNT-based electrochemical sensor and biofuel cell array. The synergistic effect of utilizing specially tailored screen printable stretchable inks that combine the attractive electrical and mechanical properties of CNTs with the elastomeric properties of polyurethane as a binder along with a judiciously designed free-standing serpentine pattern enables the printed device to possess two degrees of stretchability. Owing to these synergistic design and nanomaterial-based ink effects, the device withstands extremely large levels of strains (up to 500% strain) with negligible effect on its structural integrity and performance. This represents the highest stretchability offered by a printed device reported to date. Extensive electrochemical characterization of the printed device reveal that repeated stretching, torsional twisting, and indenting stress has negligible impact on its electrochemical properties. The wide-range applicability of this platform to realize highly stretchable CNT-based electrochemical sensors and biofuel cells has been demonstrated by fabricating and characterizing potentiometric ammonium sensor, amperometric enzyme-based glucose sensor, enzymatic glucose biofuel cell, and self-powered biosensor. Highly stretchable printable multianalyte sensor, multifuel biofuel cell, or any combination thereof can thus be realized using the printed CNT array. Such combination of intrinsically stretchable printed nanomaterial-based electrodes and strain-enduring design patterns holds considerable promise for creating an attractive class of inexpensive multifunctional, highly stretchable printed devices that satisfy the requirements of diverse healthcare and energy fields wherein resilience toward extreme mechanical deformations is mandatory. PMID:26694819

  15. Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer

    Science.gov (United States)

    Rabaey, Korneel; Boon, Nico; Siciliano, Steven D.; Verhaege, Marc; Verstraete, Willy

    2004-01-01

    Microbial fuel cells hold great promise as a sustainable biotechnological solution to future energy needs. Current efforts to improve the efficiency of such fuel cells are limited by the lack of knowledge about the microbial ecology of these systems. The purposes of this study were (i) to elucidate whether a bacterial community, either suspended or attached to an electrode, can evolve in a microbial fuel cell to bring about higher power output, and (ii) to identify species responsible for the electricity generation. Enrichment by repeated transfer of a bacterial consortium harvested from the anode compartment of a biofuel cell in which glucose was used increased the output from an initial level of 0.6 W m−2 of electrode surface to a maximal level of 4.31 W m−2 (664 mV, 30.9 mA) when plain graphite electrodes were used. This result was obtained with an average loading rate of 1 g of glucose liter−1 day−1 and corresponded to 81% efficiency for electron transfer from glucose to electricity. Cyclic voltammetry indicated that the enhanced microbial consortium had either membrane-bound or excreted redox components that were not initially detected in the community. Dominant species of the enhanced culture were identified by denaturing gradient gel electrophoresis and culturing. The community consisted mainly of facultative anaerobic bacteria, such as Alcaligenes faecalis and Enterococcus gallinarum, which are capable of hydrogen production. Pseudomonas aeruginosa and other Pseudomonas species were also isolated. For several isolates, electrochemical activity was mainly due to excreted redox mediators, and one of these mediators, pyocyanin produced by P. aeruginosa, could be characterized. Overall, the enrichment procedure, irrespective of whether only attached or suspended bacteria were examined, selected for organisms capable of mediating the electron transfer either by direct bacterial transfer or by excretion of redox components. PMID:15345423

  16. Co-immobilization of glucoamylase and glucose oxidase for electrochemical sequential enzyme electrode for starch biosensor and biofuel cell.

    Science.gov (United States)

    Lang, Qiaolin; Yin, Long; Shi, Jianguo; Li, Liang; Xia, Lin; Liu, Aihua

    2014-01-15

    A novel electrochemical sequential biosensor was constructed by co-immobilizing glucoamylase (GA) and glucose oxidase (GOD) on the multi-walled carbon nanotubes (MWNTs)-modified glassy carbon electrode (GCE) by chemical crosslinking method, where glutaraldehyde and bovine serum albumin was used as crosslinking and blocking agent, respectively. The proposed biosensor (GA/GOD/MWNTs/GCE) is capable of determining starch without using extra sensors such as Clark-type oxygen sensor or H2O2 sensor. The current linearly decreased with the increasing concentration of starch ranging from 0.005% to 0.7% (w/w) with the limit of detection of 0.003% (w/w) starch. The as-fabricated sequential biosensor can be applicable to the detection of the content of starch in real samples, which are in good accordance with traditional Fehling's titration. Finally, a stable starch/O2 biofuel cell was assembled using the GA/GOD/MWNTs/GCE as bioanode and laccase/MWNTs/GCE as biocathode, which exhibited open circuit voltage of ca. 0.53 V and the maximum power density of 8.15 μW cm(-2) at 0.31 V, comparable with the other glucose/O2 based biofuel cells reported recently. Therefore, the proposed biosensor exhibited attractive features such as good stability in weak acidic buffer, good operational stability, wide linear range and capable of determination of starch in real samples as well as optimal bioanode for the biofuel cell. PMID:23954673

  17. Three-dimensional PtxNi1-x nanoclusters supported on multiwalled carbon nanotubes in enzyme-free glucose biofuel cells

    Science.gov (United States)

    Zhao, Yue; Fan, Louzhen; Zhang, Yang; Que, Qiming; Hong, Bo

    2015-11-01

    Enzyme-free glucose biofuel cells (GBFCs) have been a renewed interest because of excellent long-term stability and adequate power density. However, slow reaction kinetics and catalyst poisoning are critical obstacles to the realization of noble metal based GBFCs. In order to avoid these problems, three-dimensional (3D) flowerlike platinum (Pt)-nickel (Ni) alloy nanoparticle clusters are electrodeposited onto multiwalled carbon nanotubes (MWCNTs) by using a full-electrochemical protocol, which involves a key, second step of a potential pulse sequence. Polarization parameters, cell tests and degradation measurements prove that the 3D PtNi/MWCNTs catalysts have higher performance and stability for implantable GBFCs in comparison to the 3D Pt/MWCNTs and the uniform dispersive morphology PtNi/MWCNTs, and the highest catalytic activity was found for a Pt/Ni ratio of 3/7, which exhibits a high power density 3.12 ± 0.04 mW cm-2 and an open circuit potential 0.786 ± 0.005 V in physiological environment. This new procedure renders this kind of 3D PtNi/MWCNTs the possible candidate catalysts for construction of a new generation of GBFCs operating at mild conditions.

  18. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    OpenAIRE

    Elia Judith Martínez; Vijaya Raghavan; Fernando González-Andrés; Xiomar Gómez

    2015-01-01

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture co...

  19. Synthesis and modification of reduced graphene oxide aerogels for biofuel cell applications

    Directory of Open Access Journals (Sweden)

    Kondratowicz Izabela

    2015-06-01

    Full Text Available We have carried out the preparation of reduced graphene oxide aerogels using eco-friendly method that is based on the Hummers method of graphite oxidation without the use of NaNO3 that produces toxic gases. To obtain a porous 3D structure of reduced graphene oxide, we performed the hydrothermal reduction at elevated temperature. We also prepared the rGO aerogel/CNT composite using multiwalled carbon nanotubes as linkers. The rGO aerogels are promising materials as they possess good electrical conductivity (up to 100 S/m and high surface area and porous structure (~500 m2/g. The main goal was to obtain the material for electrodes in enzymatic biofuel cells. Thus, the proper modification was performed using free radical functionalization. It was shown that in order to synthesize rGO aerogels modified with anthracene, the proper order of reactions needs to be provided. The morphology of anthracene modified electrodes was analyzed using scanning electron microscopy, which confirmed their porous structure with non-uniform pore size distribution that ranged between few nanometers to microns. Data obtained by Raman spectroscopy confirmed the successful oxidation and reduction of analyzed materials. UV-Vis spectra revealed the presence of anthracene moieties in examined materials. We also recorded preliminary cyclic voltammograms that confirm an electric conductivity of the obtained structures.

  20. Paper-Based Analytical Devices Relying on Visible-Light-Enhanced Glucose/Air Biofuel Cells.

    Science.gov (United States)

    Wu, Kaiqing; Zhang, Yan; Wang, Yanhu; Ge, Shenguang; Yan, Mei; Yu, Jinghua; Song, Xianrang

    2015-11-01

    A strategy that combines visible-light-enhanced biofuel cells (BFCs) and electrochemical immunosensor into paper-based analytical devices was proposed for sensitive detection of the carbohydrate antigen 15-3 (CA15-3). The gold nanoparticle modified paper electrode with large surface area and good conductibility was applied as an effective matrix for primary antibodies. The glucose dehydrogenase (GDH) modified gold-silver bimetallic nanoparticles were used as bioanodic biocatalyst and signal magnification label. Poly(terthiophene) (pTTh), a photoresponsive conducting polymer, served as catalyst in cathode for the reduction of oxygen upon illumination by visible light. In the bioanode, electrons were generated through the oxidation of glucose catalyzed by GDH. The amount of electrons is determined by the amount of GDH, which finally depended on the amount of CA15-3. In the cathode, electrons from the bioanode could combine with the generated holes in the HOMO energy level of cathode catalysts pTTh. Meanwhile, the high energy level photoexcited electrons were generated in the LUMO energy level and involved in the oxygen reduction reaction, finally resulting in an increasing current and a decreasing overpotential. According to the current signal, simple and efficient detection of CA15-3 was achieved.

  1. Visible-light-enhanced electrocatalysis and bioelectrocatalysis coupled in a miniature glucose/air biofuel cell.

    Science.gov (United States)

    Zhang, Lingling; Xu, Zhikun; Lou, Baohua; Han, Lei; Zhang, Xiaowei; Dong, Shaojun

    2014-09-01

    A glucose/air biofuel cell (BFC) that can convert both chemical and light energy into electricity is described. Polyterthiophene (pTTh), a photoresponsive conducting polymer, serves as cathode and catalyzes the reduction of oxygen. Taking advantage of the good environmental stability and exceptional optical properties of pTTh, the assembled BFC exhibits excellent stability and a fast photoresponse with an open-circuit voltage (V(oc)) of 0.50 V and a maximum power output density (P(max)) of 23.65 μW cm(-2) upon illumination by visible light of 10 mW cm(-2) , which is an enhancement of ca. 22 times as compared to P(max) in the dark. Additionally, we propose a possible mechanism for this enhancement. Fabricating a BFC in this manner provides an energy conversion model that offers high efficiency at low cost, paving an avenue for practical solar energy conversion on a large scale.

  2. Enzyme precipitate coatings of glucose oxidase onto carbon paper for biofuel cell applications.

    Science.gov (United States)

    Fischback, Mike; Kwon, Ki Young; Lee, Inseon; Shin, Su Jeong; Park, Hyun Gyu; Kim, Byoung Chan; Kwon, Yongchai; Jung, Hee-Tae; Kim, Jungbae; Ha, Su

    2012-02-01

    Enzymatic biofuel cells (BFC) have a great potential as a small power source, but their practical applications are being hampered by short lifetime and low power density. This study describes the direct immobilization of glucose oxidase (GOx) onto the carbon paper in the form of highly stable and active enzyme precipitation coatings (EPCs), which can improve the lifetime and power density of BFCs. EPCs were fabricated directly onto the carbon paper via a three-step process: covalent attachment (CA), enzyme precipitation, and chemical crosslinking. GOx-immobilized carbon papers via the CA and EPC approaches were used as an enzyme anode and their electrochemical activities were tested under the BFC-operating mode. The BFCs with CA and EPC enzyme anodes produced the maximum power densities of 50 and 250 µW/cm(2) , respectively. The BFC with the EPC enzyme anode showed a stable current density output of >700 µA/cm(2) at 0.18 V under continuous operation for over 45 h. When a maple syrup was used as a fuel under ambient conditions, it also produced a stable current density of >10 µA/cm(2) at 0.18 V for over 25 h. It is anticipated that the direct immobilization of EPC on hierarchical-structured electrodes with a large surface area would further improve the power density of BFCs that can make their applications more feasible.

  3. A biofuel cell harvesting energy from glucose-air and fruit juice-air.

    Science.gov (United States)

    Liu, Ying; Dong, Shaojun

    2007-11-30

    The membraneless biofuel cell (BFC) is facile prepared based on glucose oxidase and laccase as anodic and cathodic catalyst, respectively, by using 1,1'-dicarboxyferrocene as the mediators of both anode and cathode. The BFC can work by taking glucose as fuel in air-saturated solution, in which air serves as the oxidizer of the cathode. More interestingly, the fruit juice containing glucose, e.g. grape, banana or orange juice as the fuels substituting for glucose can make the BFC work. The BFC shows several advantages which have not been reported to our knowledge: (1) it is membraneless BFC which can work with same mediator on both anode and cathode; (2) fruit juice can act as fuels of BFCs substituting for usually used glucose; (3) especially, the orange juice can greatly enhance the power output rather than that of glucose, grape or banana juice. Besides, the facile and simple preparation procedure and easy accessibility of fruit juice as well as air being whenever and everywhere imply that our system has promising potential for the development and practical application of BFCs.

  4. A novel biofuel cell based on electrospun collagen-carbon nanotube nanofibres.

    Science.gov (United States)

    Zheng, W; Ma, J Y; Guo, F; Li, J; Zhou, H M; Xu, X X; Li, L; Zheng, Y F

    2014-01-01

    The paper demonstrates a novel glucose/O2 biofuel cell (BFC) based on the electrospun collagen-SWNTs nanofibres with the glucose oxidase (GOD) as the anodic biocatalysts and the laccase as the cathodic biocatalysts. With an average diameter of about (260±95) nm, the electrospun collagen-SWNTs nanofibres exhibited smooth surfaces. The collagen-SWNTs nanofibres modified electrode showed good electron transfer behavior, because of the properties of SWNTs and the three-dimensional reticular structure of the electrospun nanofibers. The GOD and laccase, immobilized in the collagen-SWNTs nanofibres, exhibited good catalytic activity towards glucose oxidation and oxygen reduction through mediators of ferrocene monocarboxylic acid (FMCA) and 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), respectively. The maximum power density of the assembled glucose/O2 BFC based on the electrospun collagen-SWNTs nanofibres was ca. 14.3 μW/cm2. Moreover, more than 50% of the initial value remained after continuous operation of 100 h. The results indicated the potential to apply the electrospun collagen-SWNTs nanofibres for novel BFC device.

  5. Carbon nanotubes coated with platinum nanoparticles as anode of biofuel cell

    Institute of Scientific and Technical Information of China (English)

    Jianmei Zhang; Yihua Zhu; Cheng Chen; Xiaoling Yang; Chunzhong Li

    2012-01-01

    A hybrid system of carbon nanotubes (CNTs) coated with poly (amidoamine) (PAMAM) dendrimerencapsulated platinum nanoparticles (Pt-DENs) and glucose oxidase (GOx) was prepared through the layer-by-layer (LbL) self-assembly approach and then used as anode in enzyme-based biofuel cells (BFCs).The assembly process was monitored by ζ-potential measurement,and the as-resulted Pt-DENs/CNTs nanocomposites were characterized by transmission electron microscopy (TEM).The performance of electrodes modified by Pt-DENs/CNTs was also investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV).We found that the Pt-DENs/CNTs could enhance the electron transfer between the redox centers in enzyme and the electrode surfaces.Furthermore,by employing the Pt-DENs/CNTs modified electrodes as anode,the enzyme-based BFCs operated in a solution containing glucose generated an open-circuit voltage of approximately 640.0 mV and a maximum current density of about 90.0 μA/cm2,suggesting that Pt-DENs/CNTs may serve as an alternative anode to previously used noble metals in BFC applications.

  6. Positive aspects issued from bio-corrosion studies: from hydrogen production to biofuel cells

    International Nuclear Information System (INIS)

    Microbially influenced corrosion or bio-corrosion is a problem that generates heavy global economic losses (several billion euros per year). In spite of the progress made on the understanding of the underlying mechanisms, the complexity of the phenomenon has prevented finding definitive solutions to the problem and continues to inspire many research works. The participation in bio-corrosion of catalytic mechanisms induced by weak acids was studied in this work. Another objective of the thesis has been to take advantage from catalytic phenomena found in bio corrosion research to apply them in other areas: energy production with biofuel cells or electrochemical hydrogen production in mild conditions. This work has shown that the presence of weak acids and amino acids inside bio films could play a major role in steel bio-corrosion accelerating the phenomenon through the catalysis of the water reduction reaction. The reversibility of this mechanism, discerned and proved here, could explain the corrosion increase when hydrogen is removed (bacterial consumption, agitation...). In addition, phosphates allow the production of hydrogen by electrolysis in mild ph conditions (pH 4.0 - 8.0) with an equal or better performance than those found in alkaline electrolysis. Finally, industrial materials like stainless steel and titanium could be used in the fabrication of enzymatic electrodes for biosensors or microsystems. The use of the glucose oxidase / glucose system in an aqueous fuel cell with a stainless steel cathode, allows the improvement of the cell performance thanks to the production of hydrogen peroxide that is easily reduced. Moreover, the use of materials with micro-structured surfaces like sandblasted steels deserve to be studied in detail to exploit the remarkable reactivity they present compared to smooth electrodes. (author)

  7. Positive aspects issued from bio corrosion studies: from hydrogen production to biofuel cells

    International Nuclear Information System (INIS)

    Microbially influenced corrosion or bio corrosion is a problem that generates heavy global economic losses (several billion euros per year). In spite of the progress made on the understanding of the underlying mechanisms, the complexity of the phenomenon has prevented finding definitive solutions to the problem and continues to inspire many research works. The participation in bio corrosion of catalytic mechanisms induced by weak acids was studied in this work. Another objective of the thesis has been to take advantage from catalytic phenomena found in bio corrosion research to apply them in other areas: energy production with biofuel cells or electrochemical hydrogen production in mild conditions. This work has shown that the presence of weak acids and amino acids inside bio-films could play a major role in steel bio corrosion accelerating the phenomenon through the catalysis of the water reduction reaction. The reversibility of this mechanism, discerned and proved here, could explain the corrosion increase when hydrogen is removed (bacterial consumption, agitation...). In addition, phosphates allow the production of hydrogen by electrolysis in mild pH conditions (pH 4.0 - 8.0) with an equal or better performance than those found in alkaline electrolysis. Finally, industrial materials like stainless steel and titanium could be used in the fabrication of enzymatic electrodes for biosensors or microsystems. The use of the glucose oxidase/glucose system in an aqueous fuel cell with a stainless steel cathode, allows the improvement of the cell performance thanks to the production of hydrogen peroxide that is easily reduced. Moreover, the use of materials with micro-structured surfaces like sandblasted steels deserve to be studied in detail to exploit the remarkable reactivity they present compared to smooth electrodes. (author)

  8. Seminal fluid and the generation of regulatory T cells for embryo implantation

    NARCIS (Netherlands)

    Robertson, Sarah A; Prins, Jelmer R; Sharkey, David J; Moldenhauer, Lachlan M

    2013-01-01

    T regulatory (Treg) cells are essential mediators of the maternal immune adaptation necessary for embryo implantation. In mice, insufficient Treg cell activity results in implantation failure, or constrains placental function and fetal growth. In women, Treg cell deficiency is linked with unexplaine

  9. Biofuel cell based self-powered sensing platform for L-cysteine detection.

    Science.gov (United States)

    Hou, Chuantao; Fan, Shuqin; Lang, Qiaolin; Liu, Aihua

    2015-03-17

    L-cysteine (L-Cys) detection is of great importance because of its crucial roles in physiological and clinical diagnoses. In this study, a glucose/O2 biofuel cell (BFC) was assembled by using flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH)-based bioanode and laccase-based biocathode. Interestingly, the open circuit potential (OCP) of the BFC could be inhibited by Cu(2+) and subsequently activated by L-Cys, by which a BFC-based self-powered sensing platform for the detection of L-Cys was proposed. The FAD-GDH activity can be inhibited by Cu(2+) and, in turn, subsequent reversible activation by L-Cys because of the binding preference of L-Cys toward Cu(2+) by forming the Cu-S bond. The preferential interaction between L-Cys and Cu(2+) facilitated Cu(2+) to remove from the surface of the bioanode, and thus, the OCP of the system could be turned on. Under optimized conditions, the OCP of the BFC was systematically increased upon the addition of the L-Cys. The OCP increment (ΔOCP) was linear with the concentration of L-Cys within 20 nM to 3 μM. The proposed sensor exhibited lower detection limit of 10 nM L-Cys (S/N = 3), which is significantly lower than those values for other methods reported so far. Other amino acids and glutathione did not affect L-Cys detection. Therefore, this developed approach is sensitive, facile, cost-effective, and environmental-friendly, and could be very promising for the reliable clinically detecting of L-Cys. This work would trigger the interest of developing BFCs based self-powered sensors for practical applications.

  10. Glucose oxidase as a biocatalytic enzyme-based bio-fuel cell using Nafion membrane limiting crossover

    Science.gov (United States)

    Naidoo, S.; Naidoo, Q.; Blottnitz, H.; Vaivars, G.

    2013-12-01

    A novel combination for an Enzyme-based Biofuel cell included a Nafion membrane as an ion transporter that maintained a working cell charge and inhibited membrane degradation. The prototype cell chamber used oxygen (O2) in the cathode cell and glucose in the anode. The Nafion membrane stability studied here was evidently in the region of 0% loss of conductivity as the charge was constant and increased after the addition of glucose. The prototype cell chamber used NaCl in the cathode cell and glucose oxidase (GOx) in the anodic chamber was successfully studied for membrane stability showed in this study no evidence of poisoning from membrane leakage in a controlled pH environment. There was no crossover at the anaerobic operating ambient temperatures and under physiological pH 5 - 7 conditions. In this research we have successfully used a Nafion membrane together with GOx and under controlled conditions produced respectable power densities.

  11. Glucose oxidase as a biocatalytic enzyme-based bio-fuel cell using Nafion membrane limiting crossover

    International Nuclear Information System (INIS)

    A novel combination for an Enzyme-based Biofuel cell included a Nafion membrane as an ion transporter that maintained a working cell charge and inhibited membrane degradation. The prototype cell chamber used oxygen (O2) in the cathode cell and glucose in the anode. The Nafion membrane stability studied here was evidently in the region of 0% loss of conductivity as the charge was constant and increased after the addition of glucose. The prototype cell chamber used NaCl in the cathode cell and glucose oxidase (GOx) in the anodic chamber was successfully studied for membrane stability showed in this study no evidence of poisoning from membrane leakage in a controlled pH environment. There was no crossover at the anaerobic operating ambient temperatures and under physiological pH 5 – 7 conditions. In this research we have successfully used a Nafion membrane together with GOx and under controlled conditions produced respectable power densities

  12. THE IMPROVEMENT OF INFARCTED MYOCARDIAL CONTRACTILE FORCE AFTER AUTOLOGOUS SKELETAL MUSCLE SATELLITE CELL IMPLANTATION

    Institute of Scientific and Technical Information of China (English)

    钟竑; 朱洪生; 张臻

    2002-01-01

    Objective To study the improvement of infarcted myocardial contractile force after autologous skeletal muscle satellite cell implantation via intracoronary arterial perfusion. Methods Skeletal muscle cells were harvested from gluteus max of adult mongrel dogs and the cells were cultured and expanded before being labeled with DAPI (4, 6-diamidino-2-phenylindone). The labeled cells were then implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) coronary artery. Specimens were taken at 2nd, 4th, 8th week after myoblast implantation for histologic and contractile force evaluation, respectively. Results The satellite cells with fluorescence had been observed in the infarct site and also in papi-llary muscle with consistent oriented direction of host myocardium. A portion of the implanted cells had differen-tiated into muscle fibers. Two weeks after implantation, the myocardial contractile force showed no significant difference between the cell implant group and control group. At 4 and 8 week, the contractile force in the cell implant group was better than that in control group. Conclusion The skeletal muscle satellite cells, implanted into infarct myocardium by intracoronary arterial perfusion, could disseminate through the entire infarcted zone with myocardial regeneration and improve the contractile function of the infarcted myocardium.

  13. In vitro evaluation of osteoblastic cell adhesion on machined osseointegrated implants

    Directory of Open Access Journals (Sweden)

    Sandra Fabiano Alves

    2009-06-01

    Full Text Available At present the major consideration in planning an implant design is to seek biocompatible surfaces that promote a favorable response from both cells and host tissues. Different treatments of implant surfaces may modulate the adhesion, proliferation and phenotypic expression of osteoblastic cells. For this reason, the aim of the present study was to evaluate the biocompatibility of an implant surface, observing adhesion, cell morphology and proliferation of osteoblast-like cells cultivated on a commercially available titanium dental implant (Titamax Liso®, Neodent, Curitiba, PR, Brazil. The implant samples were immersed into an osteoblast-like cell (Osteo-1 suspension for a period of 24, 48 and 72 hours. After seeding the cells, the samples were prepared for analyses through scanning electron microscopy. Based on the surface analysis, the osteoblastic cells adhered to the machined surface after 24 hours in culture. In 48 hours, the cells spread over the implant surface, and after 72 hours a proliferation of cells with large and flat bodies was observed over the machined implant surface. These results demonstrate that the machined titanium surface studied is biocompatible since it allowed adhesion and proliferation of the osteoblast-like cells, in addition to preserving cell integrity and the morphologic characteristics of cells during the studied period.

  14. Coupling of an enzymatic biofuel cell to an electrochemical cell for self-powered glucose sensing with optical readout.

    Science.gov (United States)

    Pinyou, Piyanut; Conzuelo, Felipe; Sliozberg, Kirill; Vivekananthan, Jeevanthi; Contin, Andrea; Pöller, Sascha; Plumeré, Nicolas; Schuhmann, Wolfgang

    2015-12-01

    A miniaturized biofuel cell (BFC) is powering an electrolyser invoking a glucose concentration dependent formation of a dye which can be determined spectrophotometrically. This strategy enables instrument free analyte detection using the analyte-dependent BFC current for triggering an optical read-out system. A screen-printed electrode (SPE) was used for the immobilization of the enzymes glucose dehydrogenase (GDH) and bilirubin oxidase (BOD) for the biocatalytic oxidation of glucose and reduction of molecular oxygen, respectively. The miniaturized BFC was switched-on using small sample volumes (ca. 60 μL) leading to an open-circuit voltage of 567 mV and a maximal power density of (6.8±0.6) μW cm(-2). The BFC power was proportional to the glucose concentration in a range from 0.1 to 1.0 mM (R(2)=0.991). In order to verify the potential instrument-free analyte detection the BFC was directly connected to an electrochemical cell comprised of an optically-transparent SPE modified with methylene green (MG). The reduction of the electrochromic reporter compound invoked by the voltage and current flow applied by the BFC let to MG discoloration, thus allowing the detection of glucose.

  15. Algal biofuels.

    Science.gov (United States)

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  16. PINCH1 regulates cell-matrix and cell-cell adhesions, cell polarity and cell survival during the peri-implantation stage

    DEFF Research Database (Denmark)

    Li, Shaohua; Bordoy, Randi; Stanchi, Fabio;

    2005-01-01

    integrin or Ilk, loss of PINCH1 arrested development at the peri-implantation stage. In contrast to beta1 integrin or Ilk mutants, however, disruption of the PINCH1 gene produced implantation chambers with visible cell clumps even at embryonic day 9.5. In order to define the phenotype leading to the peri...

  17. A miniature glucose/O{sub 2} biofuel cell with a high tolerance against ascorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Zhang, L. [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing (China); Graduate School of CAS, Beijing (China); Su, L. [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing (China); Ohsaka, T. [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Midori-ku, Yokohama (Japan); Mao, L.

    2009-02-15

    This study demonstrates a miniature glucose/O{sub 2} biofuel cell (BFC) with a high tolerance against physiological level of ascorbic acid (AA) by immobilising ascorbate oxidase (AAox) on both the bioanode and the biocathode. Single-walled carbon nanotube (SWNT)-modified carbon fiber microelectrodes (CFMEs) are employed as the substrate electrode for the bioanode and biocathode. Glucose dehydrogenase (GDH) and bilirubin oxidase (BOD) are used as the biocatalysts for the electro-oxidation of glucose and for the electro-reduction of oxygen, respectively. SWNTs are used as the support for the both, stably confining the electrocatalyst (i.e. polymerised methylene blue, polyMB) for the oxidation of NADH co-factor for GDH and efficiently facilitating direct electrochemistry of the cathodic biocatalyst (i.e. BOD) for O{sub 2} reduction. The prepared micro-sized GDH-based bioanode and BOD-based biocathode employed for the bioelectrocatalytic oxidation of glucose and reduction of oxygen, respectively, are further over-coated with AAox to give a miniature glucose/O{sub 2} BFC with a high tolerance against AA. The maximum power density and the open circuit voltage (OCV) of the assembled glucose/O{sub 2} BFC are 52 {mu}W cm{sup -2} and 0.60 V, respectively. These values remain unchanged with the presence of AA in solution. In the human serum containing 10 mM NAD{sup +} and under ambient air, the maximum power density and the OCV of the assembled glucose/O{sub 2} BFC with AAox immobilisation on both the bioanode and the biocathode are 35 {mu}W cm{sup -2} and 0.39 V, respectively. These values are remarkably larger than those of the glucose/O{sub 2} BFC without AAox immobilisation on both the bioanode and the biocathode. This study could offer a new route to the development of enzymatic BFCs with promising application in real biological systems. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  18. Cell attachment of polypropylene surface-modified by COOH+ ion implantation

    International Nuclear Information System (INIS)

    Carboxy ion (COOH+) implantation was performed at the energy of 50 keV with fluences ranging from 1x1014 to 1x1015 ions/cm2 at room temperature for polypropylene (PP). The effects of ion implantation on cells (immune macrophages, 3T3 mouse fibroblasts and human endothelial cells) were studied in vitro. Tests of cell attachment gave interesting results that the 3T3 mouse fibroblasts and human endothelial cells cultured on the surface of the implanted PP showed much better attachment and proliferation than that on pristine PP. At the same time, the COOH+ ion implantation also induced low macrophage attachment with normal cellular morphology. Results of X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) analysis showed that COOH+ ion implantation caused the rearrangement of chemical bonds and the formation of some new O-containing groups, which was responsible for the enhancement of the biocompatibility of PP

  19. Hybrid adipogenic implants from adipose stem cells for soft tissue reconstruction in vivo.

    Science.gov (United States)

    Moioli, Eduardo K; Chen, Mo; Yang, Rujing; Shah, Bhranti; Wu, June; Mao, Jeremy J

    2010-11-01

    A critical barrier in tissue regeneration is scale-up. Bioengineered adipose tissue implants have been limited to ∼10  mm in diameter. Here, we devised a 40-mm hybrid implant with a cellular layer encapsulating an acellular core. Human adipose-derived stem cells (ASCs) were seeded in alginate. Poly(ethylene)glycol-diacrylate (PEGDA) was photopolymerized into 40-mm-diameter dome-shaped gel. Alginate-ASC suspension was painted onto PEGDA surface. Cultivation of hybrid constructs ex vivo in adipogenic medium for 28 days showed no delamination. Upon 4-week in vivo implantation in athymic rats, hybrid implants well integrated with host subcutaneous tissue and could only be surgically separated. Vascularized adipose tissue regenerated in the thin, painted alginate layer only if ASC-derived adipogenic cells were delivered. Contrastingly, abundant fibrous tissue filled ASC-free alginate layer encapsulating the acellular PEGDA core in control implants. Human-specific peroxisome proliferator-activated receptor-γ (PPAR-γ) was detected in human ASC-seeded implants. Interestingly, rat-specific PPAR-γ was absent in either human ASC-seeded or ASC-free implants. Glycerol content in ASC-delivered implants was significantly greater than that in ASC-free implants. Remarkably, rat-specific platelet/endothelial cell adhesion molecule (PECAM) was detected in both ASC-seeded and ASC-free implants, suggesting anastomosis of vasculature in bioengineered tissue with host blood vessels. Human nuclear staining revealed that a substantial number of adipocytes were of human origin, whereas endothelial cells of vascular wall were of chemaric human and nonhuman (rat host) origins. Together, hybrid implant appears to be a viable scale-up approach with volumetric retention attributable primarily to the acellular biomaterial core, and yet has a biologically viable cellular interface with the host. The present 40-mm soft tissue implant may serve as a biomaterial tissue expander for

  20. Electrochemical characterization of methanol/O2 biofuel cell: Use of laccase biocathode immobilized with polypyrrole film and PAMAM dendrimers

    International Nuclear Information System (INIS)

    This paper describes the performance of a mediated electron transfer (MET) biocathode for a methanol/O2 biofuel cell. To this end, we employed PAMAM (polyamidoamine) dendrimers for the immobilization of laccase using 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) in solution or entrapped into polypyrrole films. We used the enzyme immobilized onto the carbon platform obtained either in the presence or in the absence of the electropolymerized film to determine kinetic parameters. The results point to a very similar kinetic rate conversion in both situations; however, substrate affinity seems to increase in the bioelectrode containing the entrapped substrate molecules. The electrochemical characterization tests confirmed that the electropolymerized polypyrrole film was able to retain entrapped ABTS molecules. Additionally, laccase provides enhanced catalytic oxidation current for the mediator compared with the control sample containing PAMAM dendrimer only. Compared to the control sample, which gave power density values around 0.7 μW cm−2, tests employing ABTS as mediator furnished 6 μW cm−2 when the mediator was added in solution and around 25 μW cm−2 when it was entrapped into the biocathode layers. Overall, the developed biocathode is environmentally friendly for immobilization of the enzyme laccase, being satisfactorily stable in the kinetic tests and affording good power data in the biofuel cell tests

  1. Long-term activity of covalent grafted biocatalysts during intermittent use of a glucose/O{sub 2} biofuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Merle, G. [Institut Europeen des Membranes, UMR 5635, Place Eugene Bataillon, CC 047, 34095 Montpellier (France); Habrioux, A.; Servat, K. [LACCO ' Equipe Electrocatalyse' , UMR 6503, CNRS-Universite de Poitiers, 40 av. du Recteur Pineau, 86022 Poitiers (France); Rolland, M.; Innocent, C. [Institut Europeen des Membranes, UMR 5635, Place Eugene Bataillon, CC 047, 34095 Montpellier (France); Kokoh, K.B. [LACCO ' Equipe Electrocatalyse' , UMR 6503, CNRS-Universite de Poitiers, 40 av. du Recteur Pineau, 86022 Poitiers (France); Tingry, S. [Institut Europeen des Membranes, UMR 5635, Place Eugene Bataillon, CC 047, 34095 Montpellier (France)], E-mail: sophie.tingry@iemm.univ-montp2.fr

    2009-04-15

    The operational stability of enzymes in a concentric glucose/O{sub 2} biofuel cell has been significantly improved with the synthesis of grafted enzyme electrodes compared to entrapped enzyme electrodes. The concentric device combined glucose electro-oxidation by glucose oxidase at the anode and oxygen electro-reduction by bilirubin oxidase at the cathode. The entrapped enzyme electrodes were prepared from physical immobilization of the enzymes by a polypyrrole polymer onto the electrode surface. The grafted enzyme electrodes were synthesized by grafting the enzymes via alkyl spacer arms to a poly(aminopropylpyrrole) film onto the electrode surface. From spectrophotometric and electrochemical analyses, it was demonstrated that the spacer arms increased the operational stability and enzyme mobility that favoured electron transfer from their active sites to the electrode. The maximum power output of the assembled biofuel cell was 20 {mu}W cm{sup -2}, at 0.20 V with 10 mM glucose in phosphate buffer pH 7.4. The grafted enzyme electrodes presented an unprecedented operational stability as the maximum of power density of the BFC remains constant after intermittent use over a 45-day period. This was a remarkable improvement compared to electrodes with entrapped enzymes, which lost 74% of their initial power density after intermittent use over a 17-day period.

  2. Functional and morphological maturation of implanted neonatal cardiomyocytes as a comparator for cell therapy.

    Science.gov (United States)

    Sato, Motoki; Carr, Carolyn A; Stuckey, Daniel J; Ishii, Hikaru; Kanda, Gaelle Kikonda; Terracciano, Cesare M N; Siedlecka, Urszula; Tatton, Louise; Watt, Suzanne M; Martin-Rendon, Enca; Clarke, Kieran; Harding, Sian E

    2010-07-01

    Knowledge of the rate of development of immature cardiomyocytes after implantation into a host heart is important for studies using cell therapy. To assess this functionally, we have implanted rat neonatal cardiomyocytes (NCMs) in normal and infarcted rat heart and re-isolated them for functional assessment. Maturation of implanted bone marrow stromal cells (BMSCs) was compared under similar conditions. NCMs from green fluorescent protein (GFP) transgenic rats were implanted into adult normal or infarcted rat hearts and re-isolated after 1, 2, or 4 weeks by standard enzymatic digestion. BMSCs labeled with DiI and iron oxide were implanted into rats with myocardial infarction and cells re-isolated 1, 2, 5, 6, and 16 weeks later. GFP-labeled myocytes approaching the adult morphology were detected 2 weeks after implantation of NCMs, but were significantly shorter than adult host myocytes and had reduced contractility. By 4 weeks after implantation, re-isolated GFP-labeled myocytes were close to the adult phenotype in contractile characteristics, although still significantly shorter. Infarction of the host did not alter the rate of maturation of implanted cells. After implantation of BMSCs, small numbers of functional DiI-labeled myocytes were re-isolated from 4/11 animals but were more mature than expected from the NCM studies. This adds evidence that BMSC-derived cardiomyocytes were not a result of transdifferentiation. The maturation rate of implanted NCMs represents a benchmark against which to evaluate the likely rate of formation of fully functional cardiomyocytes from implanted cells. PMID:20053126

  3. Influence of skeletal muscle satellite cells implanted into infarcted myocardium on remnant myocyte volumes

    Institute of Scientific and Technical Information of China (English)

    钟竑; 朱洪生; 卫洪超; 张臻

    2003-01-01

    Objective To study the effects of skeletal muscle satellite cells implanted into infarcted myocardium on the volume of remnant myocytes.Methods Thirty-six adult mongrel canines were divided randomly into implantation group and control group. In the implantation group, skeletal muscle satellite cells taken from the gluteus maximus muscles of the dogs were cultured, proliferated and labeled with 4', 6-diamidino-2-phenylindone (DAPI) in vitro. In both groups, a model of acute myocardial infarction was established in every dog. In the implantation group, each dog was injected with M199 solution containing autologous skeletal muscle satellite cells. The dogs in the control group received M199 solution without skeletal muscle satellite cells. The dogs of both groups were killed 2, 4 and 8 weeks after implantation (six dogs in a separate group each time). Both infarcted myocardium and normal myocytes distal from the infracted regions isolated were observed under optical and fluorescent microscope. Their volumes were determined using a confocal microscopy image analysis system and analyzed using SAS. A P<0.05 was considered significant.Results A portion of the implanted cells differentiated into muscle fiber with striations and were connected with intercalated discs. Cross-sectional area and cell volume were increased in normal myocardium. Hypertrophy of remnant myocytes in the infarcted site after skeletal muscle cell implantation was much more evident than in the control group. Cross-sectional area, cell area and cell volume differed significantly from those of the control group (P< 0.05). Hypertrophy of the cells occurred predominantly in terms of width and thickness, whereas cell length remained unchanged. Conclusion Skeletal muscle satellite cells implanted into infarct myocardium, could induce the hypertrophy of remnant myocyte cells in the infarcted site and could also aid in the recovery of the contractile force of the infarcted myocardium.

  4. Transferring gfp gene with ion implantation and transient expression of gfp in liliaceous pollen cells

    Institute of Scientific and Technical Information of China (English)

    YUAN Shibin; CHEN Qizhong; WANG Yugang; ZHAO Weijiang; XU An; YANG Gen; WANG Wenxian; WU Lijun

    2004-01-01

    Liliaceous pollen cells were implanted by 4.0 MeV C2+ ion beam or by 25.0 keV N+ ion beam. Laser confocal scanning microscopy (LCSM) of the implanted intact samples showed that parts of the implanted pollen cells could be stained by propidium iodide (PI). This indicated that energetic ion beam could directly act on cells beneath the pollen coats and made channels for entry of the molecules from outside of the cells. LCSM analysis of green fluorescent protein (GFP) showed that energetic ion beam could mediate transient expression of gfp in treated pollen cells. Compared with 25.0 keV N+ ion beam, implantation of 4.0 MeV C2+ ion beam greatly improved gene transfer efficiency in pollen cells.

  5. Transporter-mediated biofuel secretion.

    Science.gov (United States)

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-01

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance.

  6. Voltage effects on cells cultured on metallic biomedical implants

    Science.gov (United States)

    Haerihosseini, Seyed Morteza

    Electrochemical voltage shifts in metallic biomedical implants occur in-vivo due to a number of processes including mechanically assisted corrosion. Surface potential of biomedical implants and excursions from resting open circuit potential (OCP), which is the voltage they attain while in contact with an electrolyte, can significantly change the interfacial properties of the metallic surfaces and alter the behavior of the surrounding cells, compromising the biocompatibility of metallic implants. Voltages can also be controlled to modulate cell function and fate. To date, the details of the physico-chemical phenomena and the role of different biomaterial parameters involved in the interaction between cells and metallic surfaces under cathodic bias have not been fully elucidated. In this work, changes in the interfacial properties of a CoCrMo biomedical alloy (ASTM F-1537) in phosphate-buffered saline (PBS) (pH 7.4) at different voltages was studied. Step polarization impedance spectroscopy technique was used to apply 50 mV voltage steps to samples, and the time-based current transients were recorded. A new equation was derived based on capacitive discharge through a Tafel element and generalized to deal with non-ideal impedance behavior. The new function compared to the KWW-Randles function, better matched the time-transient response. The results also showed a voltage dependent oxide resistance and capacitance behavior. Additionally, the in-vitro effect of static voltages on the behavior of MC3T3-E1 pre-osteoblasts cultured on CoCrMo alloy (ASTM-1537) was studied to determine the range of cell viability and mode of cell death beyond the viable range. Cell viability and morphology, changes in actin cytoskeleton, adhesion complexes and nucleus, and mode of cell death (necrosis, or intrinsic or extrinsic apoptosis) were characterized at different voltages ranging from -1000 to +500 mV (Ag/AgCl). Moreover, electrochemical currents and metal ion concentrations at each

  7. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    Science.gov (United States)

    Reichel, Christian; Feldmann, Frank; Müller, Ralph; Reedy, Robert C.; Lee, Benjamin G.; Young, David L.; Stradins, Paul; Hermle, Martin; Glunz, Stefan W.

    2015-11-01

    Passivated contacts (poly-Si/SiOx/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF2), the ion implantation dose (5 × 1014 cm-2 to 1 × 1016 cm-2), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iVoc) of 725 and 720 mV, respectively. For p-type passivated contacts, BF2 implantations into intrinsic a-Si yield well passivated contacts and allow for iVoc of 690 mV, whereas implanted B gives poor passivation with iVoc of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved Voc of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF2 implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with Voc of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts.

  8. Elongation of lifetime of photosynthetic biofuel-cells containing immobilized algae; Koteika aiso wo mochiita kogosei biseibutsu denchi no chojumyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yagishita, T.; Sawayama, S.; Inoue, S.; Ogi, T. [National Institute for Resources and Environment, Tsukuba (Japan)

    1994-12-08

    An experimental study is performed for elongation of lifetime of photosynthetic biofuel-cells using the living blue-green algae and a mediator. In the experiment, correlation between a current generated from cultured Anabaena and the life of the cells is investigated. Anabaena is recovered from the cells after the cells are operated for 10 hours in the dark and is cultured for 10 hours under irradiation with a Xe lamp and ventilation of 3 % CO2. Thereafter, immobilized Anabaena is returned into the cells and the cells are again actuated in repetition. Three load resistances 1 K ohm, 700 ohm, 400 ohm are employed and operation time of the current is lengthened under any conditions compared with the case where the cells are continuously operated. Further, provided a generated current is limited to 0.6 mA or lower, the current is not lowered even if the cells are operated for 90 hours. It is concluded that provided Anabaena is cultured after the electricity of 6.4 mA/h per the amount of chlorophyl in Anabaena is taken out, an output of the cells is kept unchanged for a long time. 7 refs., 4 figs., 1 tab.

  9. Implanted neural progenitor cells regulate glial reaction to brain injury and establish gap junctions with host glial cells.

    Science.gov (United States)

    Talaverón, Rocío; Matarredona, Esperanza R; de la Cruz, Rosa R; Macías, David; Gálvez, Victoria; Pastor, Angel M

    2014-04-01

    Transplantation of neural stem/progenitor cells (NPCs) in the lesioned brain is able to restore morphological and physiological alterations induced by different injuries. The local microenvironment created at the site of grafting and the communication between grafted and host cells are crucial in the beneficial effects attributed to the NPC implants. We have previously described that NPC transplantation in an animal model of central axotomy restores firing properties and synaptic coverage of lesioned neurons and modulates their trophic factor content. In this study, we aim to explore anatomical relationships between implanted NPCs and host glia that might account for the implant-induced neuroprotective effects. Postnatal rat subventricular zone NPCs were isolated and grafted in adult rats after transection of the medial longitudinal fascicle. Brains were removed and analyzed eight weeks later. Immunohistochemistry for different glial markers revealed that NPC-grafted animals displayed significantly greater microglial activation than animals that received only vehicle injections. Implanted NPCs were located in close apposition to activated microglia and reactive astrocytes. The gap junction protein connexin43 was present in NPCs and glial cells at the lesion site and was often found interposed within adjacent implanted and glial cells. Gap junctions were identified between implanted NPCs and host astrocytes and less frequently between NPCs and microglia. Our results show that implanted NPCs modulate the glial reaction to lesion and establish the possibility of communication through gap junctions between grafted and host glial cells which might be involved in the restorative effects of NPC implants.

  10. A ternary hybrid of carbon nanotubes/graphitic carbon nitride nanosheets/gold nanoparticles used as robust substrate electrodes in enzyme biofuel cells.

    Science.gov (United States)

    Gai, Panpan; Song, Rongbin; Zhu, Cheng; Ji, Yusheng; Chen, Yun; Zhang, Jian-Rong; Zhu, Jun-Jie

    2015-10-11

    A novel ternary hybrid of carbon nanotubes/graphitic carbon nitride nanosheets/gold nanoparticles was prepared and used as robust substrate electrodes for fabricating membrane-less glucose/O2 enzyme biofuel cells (EBFCs), and a remarkably improved power output was observed for the prepared EBFC.

  11. Effects of nitrogen ion implantation on Ca2+ concentration and membrane potential of pollen cell

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of low energy nitrogen ion implantation on Ca2+ concentration and membrane potential of lily (lilium davidii Duch) pollen cell have been studied. The results showed that the Ca2+ concentration was increased when pollen grain was implanted by nitrogen ion with energy 100keV and dose 1013 ions/cra2. However, the increase of Ca2+ concentration was partly inhibited by the addition of Ca2+channel inhibitor depending on dose. And nitrogen ion implantation caused depolarization of pollen cell membrane potential. In other words, membrane potential was increased,but the effect decreased by adding Ca2+ channel inhibitor.However, it was still significantly higher than the membrane potential of control cells. It was indicated that the depolarization of cell membrane potential opened the calcium channel on the membrane that caused the increasing of intraceilular calcium concentration. This might be an earlier step of the effect of low energy nitrogen ion implantation on pollen germination.

  12. Cell adhesion of F{sup +} ion implantation of intraocular lens

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.J. E-mail: dejunli@hotmail.com; Cui, F.Z.; Gu, H.Q

    1999-04-01

    The cell adhesion of ion implanted polymethylmethacrylate (PMMA) intraocular lens was studied using cultured cells in vitro. F{sup +} ion implantation was performed at the energies of 40, 60, 80, 100 keV with the fluences ranging from 5x10{sup 13} to 1x10{sup 15} ions/cm{sup 2} at room temperature. The cell adhesion tests gave interesting results that the number of the neutral granulocytes and the macrophages adhering on surface were reduced significantly after ion implantation. The optimal fluence was about 4x10{sup 14} ions/cm{sup 2}. The hydrophobicity imparted to the lens surface was also enhanced. The results of X-ray photoelectron spectroscopy analysis indicated that ion implantation resulted in the cleavage of some pendant groups, the oxidation of the surface, and the formation of some new chemical bonds, which was probably the main reason for the cell adhesion change.

  13. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    Directory of Open Access Journals (Sweden)

    Elia Judith Martínez

    2015-04-01

    Full Text Available Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2 and lipid production are also explored in an attempt for improving the economic feasibility of the process.

  14. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration.

    Science.gov (United States)

    Eap, Sandy; Keller, Laetitia; Schiavi, Jessica; Huck, Olivier; Jacomine, Leandro; Fioretti, Florence; Gauthier, Christian; Sebastian, Victor; Schwinté, Pascale; Benkirane-Jessel, Nadia

    2015-01-01

    New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone) nanofibrous implant (from 700 μm to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days' implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days' implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration. PMID:25709432

  15. Morphology and Differentiation of MG63 Osteoblast Cells on Saliva Contaminated Implant Surfaces

    Directory of Open Access Journals (Sweden)

    Neda Shams

    2015-11-01

    Full Text Available Objectives: Osteoblasts are the most important cells in the osseointegration process. Despite years of study on dental Implants, limited studies have discussed the effect of saliva on the adhesion process of osteoblasts to implant surfaces. The aim of this in vitro study was to evaluate the effect of saliva on morphology and differentiation of osteoblasts attached to implant surfaces.Materials and Methods: Twelve Axiom dental implants were divided into two groups. Implants of the case group were placed in containers, containing saliva, for 40 minutes. Then, all the implants were separately stored in a medium containing MG63 human osteoblasts for a week. Cell morphology and differentiation were assessed using a scanning electron microscope and their alkaline phosphatase (ALP activity was determined. The t-test was used to compare the two groups.Results: Scanning electron microscopic observation of osteoblasts revealed round or square cells with fewer and shorter cellular processes in saliva contaminated samples, whereas elongated, fusiform and well-defined cell processes were seen in the control group. ALP level was significantly lower in case compared to control group (P<0.05.Conclusion: Saliva contamination alters osteoblast morphology and differentiation and may subsequently interfere with successful osseointegration. Thus, saliva contamination of bone and implant must be prevented or minimized.

  16. Cell Adhesion and in Vivo Osseointegration of Sandblasted/Acid Etched/Anodized Dental Implants

    Directory of Open Access Journals (Sweden)

    Mu-Hyon Kim

    2015-05-01

    Full Text Available The authors describe a new type of titanium (Ti implant as a Modi-anodized (ANO Ti implant, the surface of which was treated by sandblasting, acid etching (SLA, and anodized techniques. The aim of the present study was to evaluate the adhesion of MG-63 cells to Modi-ANO surface treated Ti in vitro and to investigate its osseointegration characteristics in vivo. Four different types of Ti implants were examined, that is, machined Ti (control, SLA, anodized, and Modi-ANO Ti. In the cell adhesion study, Modi-ANO Ti showed higher initial MG-63 cell adhesion and induced greater filopodia growth than other groups. In vivo study in a beagle model revealed the bone-to-implant contact (BIC of Modi-ANO Ti (74.20% ± 10.89% was much greater than those of machined (33.58% ± 8.63%, SLA (58.47% ± 12.89, or ANO Ti (59.62% ± 18.30%. In conclusion, this study demonstrates that Modi-ANO Ti implants produced by sandblasting, acid etching, and anodizing improve cell adhesion and bone ongrowth as compared with machined, SLA, or ANO Ti implants. These findings suggest that the application of Modi-ANO surface treatment could improve the osseointegration of dental implant.

  17. Influences of Low Energy Ion Implantation on Properties of Polyaniline/Si Heterojunction Solar Cells

    Institute of Scientific and Technical Information of China (English)

    WU Chang-jiang; ZHENG Jian-bang; LI En-pu

    2005-01-01

    Ion implantation may favorably modify the properties ofpolyaniline/Si heterojunction solar cells fabricated by the electrochemical method. Influences of the implantation on the absorption spectrum and the thermal stability were discussed and output properties were measured. The results show that the absorption spectrum of the polyaniline films modified by ion implantation is much wider; its pyrolytic temperature increases by 40℃, and the polyaniline/Si cell efficiency increases 18 and 3 times under the illumination of 10.92 and 37.2 W/m2, respectively.

  18. Optimization of Cell Adhesion on Mg Based Implant Materials by Pre-Incubation under Cell Culture Conditions

    Directory of Open Access Journals (Sweden)

    Regine Willumeit

    2014-05-01

    Full Text Available Magnesium based implants could revolutionize applications where orthopedic implants such as nails, screws or bone plates are used because they are load bearing and degrade over time. This prevents a second surgery to remove conventional implants. To improve the biocompatibility we studied here if and for how long a pre-incubation of the material under cell culture conditions is favorable for cell attachment and proliferation. For two materials, Mg and Mg10Gd1Nd, we could show that 6 h pre-incubation are already enough to form a natural protective layer suitable for cell culture.

  19. Implantation of bFGF-treated islet progenitor cells ameliorates streptozotocin-induced diabetes in rats

    OpenAIRE

    Li, Ge; Huang, Li-song; Jiang, Ming-hong; Wu, Hui-Ling; Chen, Jing; Huang, Yin; Shen, Yan; He-Xi-Ge, SaiYin; Fan, Wei-wei; Lu, Zhi-qiang; Da-ru LU

    2010-01-01

    Aim: To examine whether implantation of islet preparation-derived proliferating islet cells (PIC) could ameliorate diabetes in rats. Methods: PIC were expanded from rat islet preparation by supplementation of basic fibroblast growth factor (bFGF) and implanted into rats with streptozotocin (STZ)-induced diabetes through the portal vein. Body weight and blood glucose levels were measured. Serum insulin levels were measured by radioimmunoassay. The presence of insulin-positive cells was determi...

  20. Simultaneous implant placement and bone regeneration around dental implants using tissue-engineered bone with fibrin glue, mesenchymal stem cells and platelet-rich plasma.

    Science.gov (United States)

    Ito, Kenji; Yamada, Yoichi; Naiki, Takahito; Ueda, Minoru

    2006-10-01

    This study was undertaken to evaluate the use of tissue-engineered bone as grafting material for alveolar augmentation with simultaneous implant placement. Twelve adult hybrid dogs were used in this study. One month after the extraction of teeth in the mandible region, bone defects on both sides of the mandible were induced using a trephine bar with a diameter of 10 mm. Dog mesenchymal stem cells (dMSCs) were obtained via iliac bone biopsy and cultured for 4 weeks before implantation. After installing the dental implants, the defects were simultaneously implanted with the following graft materials: (i) fibrin, (ii) dMSCs and fibrin (dMSCs/fibrin), (iii) dMSCs, platelet-rich plasma (PRP) and fibrin (dMSCs/PRP/fibrin) and (iv) control (defect only). The implants were assessed by histological and histomorphometric analysis, 2, 4 and 8 weeks after implantation. The implants exhibited varying degrees of bone-implant contact (BIC). The BIC was 17%, 19% and 29% (control), 20%, 22% and 25% (fibrin), 22%, 32% and 42% (dMSCs/fibrin) and 25%, 49% and 53% (dMSCs/PRP/fibrin) after 2, 4 and 8 weeks, respectively. This study suggests that tissue-engineered bone may be of sufficient quality for predictable enhancement of bone regeneration around dental implants when used simultaneous by with implant placement.

  1. Plasma protein adsorption onto cell attachment controlled ion implanted collagen

    International Nuclear Information System (INIS)

    Ion implantation into collagen (Type I) coated inner surfaces of test tubes with a length of 50 mm and inner diameter of 2 and 3 mm were performed to develop hybrid type small-diameter artificial vascular grafts. He+ ion implanted collagen coated grafts with a fluence of 1x1014 ions/cm2 replacing femoral arteries exhibited excellent graft patency. To obtain information about the relationship between plasma protein adsorption and antithrombogenicity of ion implanted collagen surfaces, protein adsorption measurements, platelet adhesion test, and animal study were performed. The amount of fibrinogen, fibronectin and albumin showed minimum value at a fluence of 1x1014 ions/cm2. The adsorption of fibrinogen and fibronectin to surfaces is known to promote the adhesion of platelets. The results indicated that antithrombogenicity of He+ ion-implanted collagen with a fluence of 1x1014 ions/cm2 was caused by the reduction of the amount of adsorbed proteins

  2. Production Process for Stem Cell Based Therapeutic Implants: Expansion of the Production Cell Line and Cultivation of Encapsulated Cells

    Science.gov (United States)

    Weber, C.; Pohl, S.; Poertner, R.; Pino-Grace, Pablo; Freimark, D.; Wallrapp, C.; Geigle, P.; Czermak, P.

    Cell based therapy promises the treatment of many diseases like diabetes mellitus, Parkinson disease or stroke. Microencapsulation of the cells protects them against host-vs-graft reactions and thus enables the usage of allogenic cell lines for the manufacturing of cell therapeutic implants. The production process of such implants consists mainly of the three steps expansion of the cells, encapsulation of the cells, and cultivation of the encapsulated cells in order to increase their vitality and thus quality. This chapter deals with the development of fixed-bed bioreactor-based cultivation procedures used in the first and third step of production. The bioreactor system for the expansion of the stem cell line (hMSC-TERT) is based on non-porous glass spheres, which support cell growth and harvesting with high yield and vitality. The cultivation process for the spherical cell based implants leads to an increase of vitality and additionally enables the application of a medium-based differentiation protocol.

  3. Immobilization of Enzymes by Electrochemical and Chemical Oxidative Polymerization of L-DOPA to Fabricate Amperometric Biosensors and Biofuel Cells.

    Science.gov (United States)

    Dai, Mengzhen; Sun, Lingen; Chao, Long; Tan, Yueming; Fu, Yingchun; Chen, Chao; Xie, Qingji

    2015-05-27

    Electrochemical/chemical oxidative synthesis and biosensing/biofuel cell applications of poly(L-DOPA) (PD) are studied versus polydopamine (PDA) as a recent hotspot biomaterial. The enzyme electrode developed by coelectrodeposition of PD and glucose oxidase (GOx), uricase, or tyrosinase shows biosensing performance superior to that of the corresponding PDA-based enzyme electrode. The chemical oxidative polymerization of L-DOPA (PDC) by NaAuCl4 in GOx-containing neutral aqueous solution is used to immobilize GOx and gold nanoparticles (AuNPs). The thus-prepared chitosan (CS)/GOx-PDC-AuNPs/Au(plate)/Au electrode working in the first-generation biosensing mode responds linearly to glucose concentration with a sensitivity of 152 μA mM(-1) cm(-2), which is larger than those of the CS/GOx-PDAC-AuNPs/Au(plate)/Au electrode, the CS/GOx-poly(3-anilineboronic acid) (PABA)-AuNPs/Au(plate)/Au electrode, and the most reported GOx-based enzyme electrodes. This PDC-based enzyme electrode also works well in the second-generation biosensing mode and as an excellent bioanode in biofuel cell construction, probably because PD as an amino acid polymer has the higher biocompatibility and the more favorable affinity to the enzyme than PDA. The PD material of great convenience in synthesis, outstanding biocompatibility for preparing high-performance bionanocomposites, and strong capability of multifunctional coatings on many surfaces may find wide applications in diversified fields including biotechnology and surface-coating. PMID:25938891

  4. Extrathyroidal Implantation of Thyroid Hyperplastic/neoplastic Cells after Endoscopic Thyroid Surgery

    Institute of Scientific and Technical Information of China (English)

    Cao Xi; Xie-qun Xu; Tao Hong; Bing-lu Li; Wei Liu

    2014-01-01

    Objective To report a case of the implantation of thyroid hyperplastic or neoplastic tissue after endoscopic thyroidectomy and discuss this complication in aspects of prevalence, pathogenesis, protection, and therapies. Methods A systematic search of literature from the PubMed database was conducted for identifying eligible studies on implantation of thyroid hyperplastic or neoplastic cells after endoscopic thyroid surgery. Results Overall, 5 reported cases on patients suffering from endoscopic thyroid surgery with implantation of thyroid hyperplastic or neoplastic cells were included in the systematic review. Conclusions Unskilled surgeons, rough intraoperative surgical treatment, scarification or rupture of tumor, contamination of instruments, chimney effect, aerosolization of tumor cells may be associated with the implantation after endoscopic thyroidectomy. To minimize the risk of such complication, we should be more meticulous and strict the endoscopic surgery indications.

  5. Modeling Stem/Progenitor Cell-Induced Neovascularization and Oxygenation Around Solid Implants

    KAUST Repository

    Jain, Harsh Vardhan

    2012-07-01

    Tissue engineering constructs and other solid implants with biomedical applications, such as drug delivery devices or bioartificial organs, need oxygen (O(2)) to function properly. To understand better the vascular integration of such devices, we recently developed a novel model sensor containing O(2)-sensitive crystals, consisting of a polymeric capsule limited by a nanoporous filter. The sensor was implanted in mice with hydrogel alone (control) or hydrogel embedded with mouse CD117/c-kit+ bone marrow progenitor cells in order to stimulate peri-implant neovascularization. The sensor provided local partial O(2) pressure (pO(2)) using noninvasive electron paramagnetic resonance signal measurements. A consistently higher level of peri-implant oxygenation was observed in the cell-treatment case than in the control over a 10-week period. To provide a mechanistic explanation of these experimental observations, we present in this article a mathematical model, formulated as a system of coupled partial differential equations, that simulates peri-implant vascularization. In the control case, vascularization is considered to be the result of a foreign body reaction, while in the cell-treatment case, adipogenesis in response to paracrine stimuli produced by the stem cells is assumed to induce neovascularization. The model is validated by fitting numerical predictions of local pO(2) to measurements from the implanted sensor. The model is then used to investigate further the potential for using stem cell treatment to enhance the vascular integration of biomedical implants. We thus demonstrate how mathematical modeling combined with experimentation can be used to infer how vasculature develops around biomedical implants in control and stem cell-treated cases.

  6. Biocompatibility of magnesium implants in primary human reaming debris-derived cells stem cells in vitro

    OpenAIRE

    Charyeva, Olga; Dakischew, Olga; Sommer, Ursula; Heiss, Christian; Schnettler, Reinhard; Lips, Katrin Susanne

    2015-01-01

    Background Use of magnesium for resorbable metal implants is a new concept in orthopaedic and dental medicine. The majority of studies on magnesium’s biocompatibility in vitro have assessed the short-term effect of magnesium extract on cells. The aim of this study was to evaluate the influence of direct exposure to magnesium alloys on the bioactivity of primary human reaming debris-derived (HRD) cells. Materials and methods Pure Mg, Mg2Ag, WE43 and Mg10Gd were tested for biocompatibility. The...

  7. Removal of an oral squamous cell carcinoma including parts of osseointegrated implants in the marginal mandibulectomy. A case report.

    NARCIS (Netherlands)

    Meijer, G.J.; Dieleman, F.J.; Berge, S.J.; Merkx, M.A.W.

    2010-01-01

    PURPOSE: The incidence of oral squamous cell carcinomas (OSCC) arising around dental implants will increase because of the rising popularity of dental implants. In this case, a novel surgical treatment of an OSCC in the vicinity of endosseous implants is reported. MATERIALS AND METHODS: In a 69-year

  8. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials

    Directory of Open Access Journals (Sweden)

    Zeeshan Sheikh

    2015-08-01

    Full Text Available All biomaterials, when implanted in vivo, elicit cellular and tissue responses. These responses include the inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the implanted materials. Macrophages are myeloid immune cells that are tactically situated throughout the tissues, where they ingest and degrade dead cells and foreign materials in addition to orchestrating inflammatory processes. Macrophages and their fused morphologic variants, the multinucleated giant cells, which include the foreign body giant cells (FBGCs are the dominant early responders to biomaterial implantation and remain at biomaterial-tissue interfaces for the lifetime of the device. An essential aspect of macrophage function in the body is to mediate degradation of bio-resorbable materials including bone through extracellular degradation and phagocytosis. Biomaterial surface properties play a crucial role in modulating the foreign body reaction in the first couple of weeks following implantation. The foreign body reaction may impact biocompatibility of implantation devices and may considerably impact short- and long-term success in tissue engineering and regenerative medicine, necessitating a clear understanding of the foreign body reaction to different implantation materials. The focus of this review article is on the interactions of macrophages and foreign body giant cells with biomaterial surfaces, and the physical, chemical and morphological characteristics of biomaterial surfaces that play a role in regulating the foreign body response. Events in the foreign body response include protein adsorption, adhesion of monocytes/macrophages, fusion to form FBGCs, and the consequent modification of the biomaterial surface. The effect of physico-chemical cues on macrophages is not well known and there is a complex interplay between biomaterial properties and those that result from interactions with the local environment. By having a

  9. Breeding grasses for capacity to biofuel production or silage feeding value: an updated list of genes involved in maize secondary cell wall biosynthesis and assembly

    OpenAIRE

    Courtial, Audrey; Soler, Marçal; Chateigner-Boutin, Anne Laure; Reymond, Matthieu; Mechin, Valerie; WANG Hua; Grima-Pettenati, Jacqueline

    2013-01-01

    In the near future, maize, sorghum, or switchgrass stovers and cereal straws will be a significant source of carbohydratesfor sustainable biofuel production, in addition to the current use of grass silage in cattle feeding. However, cell wall properties, including the enzymatic degradability of structural polysaccharides in industrial fermenters or animal rumen, is greatly influenced by the embedding of cell wall carbohydrates in lignin matrix, and the linkages between lignins, p-hydroxycinna...

  10. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beom-Su; Kim, Jin Seong [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-ro, Seo-gu, Daejeon 302-830 (Korea, Republic of); Park, Young Min [DIO Corporation, 66, Centum seo-ro, Haeundae-gu, Busan (Korea, Republic of); Choi, Bo-Young [Department of Oral and maxillofacial Surgery, Wonkwang University Daejeon Dental Hospital, Daejeon 302-830 (Korea, Republic of); Lee, Jun, E-mail: omslee@wku.ac.kr [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-ro, Seo-gu, Daejeon 302-830 (Korea, Republic of)

    2013-04-01

    Magnesium (Mg) is one of the most important ions associated with bone osseointegration. The aim of this study was to evaluate the cellular effects of Mg implantation in titanium (Ti) surfaces treated with sand blast using large grit and acid etching (SLA). Mg ions were implanted into the surface via vacuum arc source ion implantation. The surface morphology, chemical properties, and the amount of Mg ion release were evaluated by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and inductively coupled plasma-optical emission spectrometer (ICP-OES). Human mesenchymal stem cells (hMSCs) were used to evaluate cellular parameters such as proliferation, cytotoxicity, and adhesion morphology by MTS assay, live/dead assay, and SEM. Furthermore, osteoblast differentiation was determined on the basis of alkaline phosphatase (ALP) activity and the degree of calcium accumulation. In the Mg ion-implanted disk, 2.3 × 10{sup 16} ions/cm{sup 2} was retained. However, after Mg ion implantation, the surface morphology did not change. Implanted Mg ions were rapidly released during the first 7 days in vitro. The MTS assay, live/dead assay, and SEM demonstrated increased cell attachment and growth on the Mg ion-implanted surface. In particular, Mg ion implantation increased the initial cell adhesion, and in an osteoblast differentiation assay, ALP activity and calcium accumulation. These findings suggest that Mg ion implantation using the plasma source ion implantation (PSII) technique may be useful for SLA-treated Ti dental implants to improve their osseointegration capacity. - Highlights: ► Mg ion was coated onto surface of SLA treated titanium via vacuum arc source ion implantation method. ► The morphological characteristics did not change after Mg ion implantation. ► Mg ion implanted SLA Ti is highly cytocompatible. ► Initial cell adhesion of MSCs is improved by Mg ion implantation. ► Mg ion implantation

  11. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell

    International Nuclear Information System (INIS)

    Magnesium (Mg) is one of the most important ions associated with bone osseointegration. The aim of this study was to evaluate the cellular effects of Mg implantation in titanium (Ti) surfaces treated with sand blast using large grit and acid etching (SLA). Mg ions were implanted into the surface via vacuum arc source ion implantation. The surface morphology, chemical properties, and the amount of Mg ion release were evaluated by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and inductively coupled plasma-optical emission spectrometer (ICP-OES). Human mesenchymal stem cells (hMSCs) were used to evaluate cellular parameters such as proliferation, cytotoxicity, and adhesion morphology by MTS assay, live/dead assay, and SEM. Furthermore, osteoblast differentiation was determined on the basis of alkaline phosphatase (ALP) activity and the degree of calcium accumulation. In the Mg ion-implanted disk, 2.3 × 1016 ions/cm2 was retained. However, after Mg ion implantation, the surface morphology did not change. Implanted Mg ions were rapidly released during the first 7 days in vitro. The MTS assay, live/dead assay, and SEM demonstrated increased cell attachment and growth on the Mg ion-implanted surface. In particular, Mg ion implantation increased the initial cell adhesion, and in an osteoblast differentiation assay, ALP activity and calcium accumulation. These findings suggest that Mg ion implantation using the plasma source ion implantation (PSII) technique may be useful for SLA-treated Ti dental implants to improve their osseointegration capacity. - Highlights: ► Mg ion was coated onto surface of SLA treated titanium via vacuum arc source ion implantation method. ► The morphological characteristics did not change after Mg ion implantation. ► Mg ion implanted SLA Ti is highly cytocompatible. ► Initial cell adhesion of MSCs is improved by Mg ion implantation. ► Mg ion implantation improved

  12. Strategies for the production of cell wall-deconstructing enzymes in lignocellulosic biomass and their utilization for biofuel production.

    Science.gov (United States)

    Park, Sang-Hyuck; Ong, Rebecca Garlock; Sticklen, Mariam

    2016-06-01

    Microbial cell wall-deconstructing enzymes are widely used in the food, wine, pulp and paper, textile, and detergent industries and will be heavily utilized by cellulosic biorefineries in the production of fuels and chemicals. Due to their ability to use freely available solar energy, genetically engineered bioenergy crops provide an attractive alternative to microbial bioreactors for the production of cell wall-deconstructing enzymes. This review article summarizes the efforts made within the last decade on the production of cell wall-deconstructing enzymes in planta for use in the deconstruction of lignocellulosic biomass. A number of strategies have been employed to increase enzyme yields and limit negative impacts on plant growth and development including targeting heterologous enzymes into specific subcellular compartments using signal peptides, using tissue-specific or inducible promoters to limit the expression of enzymes to certain portions of the plant or certain times, and fusion of amplification sequences upstream of the coding region to enhance expression. We also summarize methods that have been used to access and maintain activity of plant-generated enzymes when used in conjunction with thermochemical pretreatments for the production of lignocellulosic biofuels. PMID:26627868

  13. Anaplastic large cell lymphoma (ALCL) and breast implants: breaking down the evidence.

    Science.gov (United States)

    Ye, Xuan; Shokrollahi, Kayvan; Rozen, Warren M; Conyers, Rachel; Wright, Penny; Kenner, Lukas; Turner, Suzanne D; Whitaker, Iain S

    2014-01-01

    Systemic anaplastic large cell lymphoma (ALCL) is a distinct disease classification provisionally sub-divided into ALCL, Anaplastic Lymphoma Kinase (ALK)(+) and ALCL, ALK(-) entities. More recently, another category of ALCL has been increasingly reported in the literature and is associated with the presence of breast implants. A comprehensive review of the 71 reported cases of breast implant associated ALCL (iALCL) is presented indicating the apparent risk factors and main characteristics of this rare cancer. The average patient is 50 years of age and most cases present in the capsule surrounding the implant as part of the periprosthetic fluid or the capsule itself on average at 10 years post-surgery suggesting that iALCL is a late complication. The absolute risk is low ranging from 1:500,000 to 1:3,000,000 patients with breast implants per year. The majority of cases are ALK-negative, yet are associated with silicone-coated implants suggestive of the mechanism of tumorigenesis which is discussed in relation to chronic inflammation, immunogenicity of the implants and sub-clinical infection. In particular, capsulotomy alone seems to be sufficient for the treatment of many cases suggesting the implants provide the biological stimulus whereas others require further treatment including chemo- and radiotherapy although reported cases remain too low to recommend a therapeutic approach. However, CD30-based therapeutics might be a future option.

  14. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, Christian, E-mail: christian.reichel@ise.fraunhofer.de [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg (Germany); National Renewable Energy Laboratory (NREL), 15013 Denver West Parkway, Golden, Colorado 80401 (United States); Feldmann, Frank; Müller, Ralph; Hermle, Martin; Glunz, Stefan W. [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg (Germany); Reedy, Robert C.; Lee, Benjamin G.; Young, David L.; Stradins, Paul [National Renewable Energy Laboratory (NREL), 15013 Denver West Parkway, Golden, Colorado 80401 (United States)

    2015-11-28

    Passivated contacts (poly-Si/SiO{sub x}/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF{sub 2}), the ion implantation dose (5 × 10{sup 14 }cm{sup −2} to 1 × 10{sup 16 }cm{sup −2}), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iV{sub oc}) of 725 and 720 mV, respectively. For p-type passivated contacts, BF{sub 2} implantations into intrinsic a-Si yield well passivated contacts and allow for iV{sub oc} of 690 mV, whereas implanted B gives poor passivation with iV{sub oc} of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved V{sub oc} of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF{sub 2} implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with V{sub oc} of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts.

  15. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    International Nuclear Information System (INIS)

    Passivated contacts (poly-Si/SiOx/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF2), the ion implantation dose (5 × 1014 cm−2 to 1 × 1016 cm−2), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iVoc) of 725 and 720 mV, respectively. For p-type passivated contacts, BF2 implantations into intrinsic a-Si yield well passivated contacts and allow for iVoc of 690 mV, whereas implanted B gives poor passivation with iVoc of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved Voc of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF2 implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with Voc of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts

  16. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration

    Directory of Open Access Journals (Sweden)

    Eap S

    2015-02-01

    Full Text Available Sandy Eap,1,2,* Laetitia Keller,1–3,* Jessica Schiavi,1,2 Olivier Huck,1,2 Leandro Jacomine,4 Florence Fioretti,1,2 Christian Gauthier,4 Victor Sebastian,1,3,5 Pascale Schwinté,1,2 Nadia Benkirane-Jessel1,21INSERM, UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, FMTS, Faculté de Médecine, Strasbourg, France; 2Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France; 3Department of Chemical Engineering, Aragon Nanoscience Institute, University of Zaragoza, Zaragoza, Spain; 4CNRS (National Center for Scientific Research, ICS (Charles Sadron Institute, Strasbourg, France; 5Networking Research Center of Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain*These authors contributed equally to this workAbstract: New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone nanofibrous implant (from 700 µm to 1 cm thick was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII, 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days’ implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7

  17. Selective natural induction of laccases in Pleurotus sajor-caju, suitable for application at a biofuel cell cathode at neutral pH.

    Science.gov (United States)

    Fokina, Oleksandra; Eipper, Jens; Kerzenmacher, Sven; Fischer, Reinhard

    2016-10-01

    Laccases are multicopper oxidoreductases with broad substrate specificity and are applied in biofuel cells at the cathode to improve its oxygen reduction performance. However, the production of laccases by e.g. fungi is often accompanied by the need of synthetic growth supplements for increased enzyme production. In this study we present a strategy for the white-rot fungus Pleurotus sajor-caju for natural laccase activity induction using lignocellulose substrates and culture supernatant of Aspergillus nidulans. P. sajor-caju laccases were secreted into the supernatant, which was directly used at a carbon-nanotube buckypaper cathode in a biofuel cell. Maximal current densities of -148±3μAcm(-2) and -102±9μAcm(-2) at 400mV were achieved at pH 5 and 7, respectively. Variations in cathode performance were observed with culture supernatants produced under different conditions due to the induction of specific laccases. PMID:27393835

  18. Development of a glucose oxidase-based biocatalyst adopting both physical entrapment and crosslinking, and its use in biofuel cells

    Science.gov (United States)

    Chung, Yongjin; Ahn, Yeonjoo; Christwardana, Marcelinus; Kim, Hansung; Kwon, Yongchai

    2016-04-01

    New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance.New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high

  19. Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors.

    Science.gov (United States)

    Zhou, Ming; Dong, Shaojun

    2011-11-15

    Over the past decade, researchers have devoted considerable attention to the integration of living organisms with electronic elements to yield bioelectronic devices. Not only is the integration of DNA, enzymes, or whole cells with electronics of scientific interest, but it has many versatile potential applications. Researchers are using these ideas to fabricate biosensors for analytical applications and to assemble biofuel cells (BFCs) and biomolecule-based devices. Other research efforts include the development of biocomputing systems for information processing. In this Account, we focus on our recent progress in engineering at the bioelectrochemical interface (BECI) for the rational design and construction of important bioelectronic devices, ranging from electrochemical (EC-) biosensors to BFCs, and self-powered logic biosensors. Hydrogels and sol-gels provide attractive materials for the immobilization of enzymes because they make EC-enzyme biosensors stable and even functional in extreme environments. We use a layer-by-layer (LBL) self-assembly technique to fabricate multicomponent thin films on the BECI at the nanometer scale. Additionally, we demonstrate how carbon nanomaterials have paved the way for new and improved EC-enzyme biosensors. In addition to the widely reported BECI-based electrochemical impedance spectroscopy (EIS)-type aptasensors, we integrate the LBL technique with our previously developed "solid-state probe" technique for redox probes immobilization on electrode surfaces to design and fabricate BECI-based differential pulse voltammetry (DPV)-type aptasensors. BFCs can directly harvest energy from ambient biofuels as green energy sources, which could lead to their application as simple, flexible, and portable power sources. Porous materials provide favorable microenvironments for enzyme immobilization, which can enhance BFC power output. Furthermore, by introducing aptamer-based logic systems to BFCs, such systems could be applied as self

  20. Evaluation of Biofuel Cells with Hemoglobin as Cathodic Electrocatalysts for Hydrogen Peroxide Reduction on Bare Indium-Tin-Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Yusuke Ayato

    2013-12-01

    Full Text Available A biofuel cell (BFC cathode has been developed based on direct electron transfer (DET of hemoglobin (Hb molecules with an indium-tin-oxide (ITO electrode and their electrocatalysis for reduction of hydrogen peroxide (H2O2. In this study, the ITO-coated glass plates or porous glasses were prepared by using a chemical vapor deposition (CVD method and examined the electrochemical characteristics of the formed ITO in pH 7.4 of phosphate buffered saline (PBS solutions containing and not containing Hb. In half-cell measurements, the reduction current of H2O2 due to the electrocatalytic activity of Hb increased with decreasing electrode potential from around 0.1 V versus Ag|AgCl|KCl(satd. in the PBS solution. The practical open-circuit voltage (OCV on BFCs utilizing H2O2 reduction at the Hb-ITO cathode with a hydrogen (H2 oxidation anode at a platinum (Pt electrode was expected to be at least 0.74 V from the theoretical H2 oxidation potential of −0.64 V versus Ag|AgCl|KCl(satd. in pH 7.4. The assembled single cell using the ITO-coated glass plate showed the OCV of 0.72 V and the maximum power density of 3.1 µW cm−2. The maximum power per single cell was recorded at 21.5 µW by using the ITO-coated porous glass.

  1. Removal of an oral squamous cell carcinoma including parts of osseointegrated implants in the marginal mandibulectomy. A case report

    OpenAIRE

    Meijer, Gert J; Dieleman, Francois J.; Stefaan J Bergé; Merkx, Matthias A.W.

    2010-01-01

    Purpose The incidence of oral squamous cell carcinomas (OSCC) arising around dental implants will increase because of the rising popularity of dental implants. In this case, a novel surgical treatment of an OSCC in the vicinity of endosseous implants is reported. Materials and methods In a 69-year-old woman, a recurrent OSCC (cT2N0M0) developed in the floor of the mouth extending to the attached keratinized peri-implant mucosa of both interforaminal-placed dental implants. Radiographically, n...

  2. Enhanced Reduced Nicotinamide Adenine Dinucleotide electrocatalysis onto multi-walled carbon nanotubes-decorated gold nanoparticles and their use in hybrid biofuel cell

    Science.gov (United States)

    Aquino Neto, S.; Almeida, T. S.; Belnap, D. M.; Minteer, S. D.; De Andrade, A. R.

    2015-01-01

    We report the preparation of Au nanoparticles synthetized by different protocols and supported on the surface of multi-walled carbon nanotubes containing different functional groups, focusing on their electrochemical performance towards NADH oxidation, ethanol bioelectrocatalysis, and ethanol/O2 biofuel cell. We describe four different synthesis protocols: microwave-assisted heating, water-in-oil, and dendrimer-encapsulated nanoparticles using acid or thiol species in the extraction step. The physical characterization of the metallic nanoparticles indicated that both the synthetic protocol as well as the type of functional groups on the carbon nanotubes affect the final particle size (varying from 13.4 to 2.4 nm) and their distribution onto the carbon surface. Moreover, the electrochemical data indicated that these two factors also influence their performance toward the electrooxidation of NADH. We observed that the samples containing Au nanoparticles with smaller size leads to higher catalytic currents and also shifts the oxidation potential of the targeted reaction, which varied from 0.13 to -0.06 V vs Ag/AgCl. Ethanol/O2 biofuel cell tests indicated that the hybrid bioelectrodes containing smaller and better distributed Au nanoparticles on the surface of carbon nanotubes generates higher power output, confirming that the electrochemical regeneration of NAD+ plays an important role in the overall biofuel cell performance.

  3. Characterization of cell cultures in contact with different orthopedic implants biomaterials

    Science.gov (United States)

    Ouenzerfi, G.; Hannoun, A.; Hassler, M.; Brizuela, L.; Youjil, S.; Bougault, C.; Trunfio-Sfarghiu, A.-M.

    2016-08-01

    The aim of this study is to identify the role of biological and mechanical constraints (at the cellular level) surrounding living tissues (cartilage and bone) in the presence of different joint implant biomaterials. In this fact, cells cultures in the presence of different types of biomaterials (pyrolytic carbon, cobalt-Chromium, titanium) has been performed. These cell cultures were subjected to biological characterization tests and mechanical characterization. The obtained results correlate with the in vivo observations (a promotion of the creation of a neocartilagical tissue in contact with the Pyrolytic Carbon implants).

  4. RTV silicone rubber surface modification for cell biocompatibility by negative-ion implantation

    Science.gov (United States)

    Zheng, Chenlong; Wang, Guangfu; Chu, Yingjie; Xu, Ya; Qiu, Menglin; Xu, Mi

    2016-03-01

    A negative cluster ion implantation system was built on the injector of a GIC4117 tandem accelerator. Next, the system was used to study the surface modification of room temperature vulcanization silicone rubber (RTV SR) for cell biocompatibility. The water contact angle was observed to decrease from 117.6° to 99.3° as the C1- implantation dose was increased to 1 × 1016 ions/cm2, and the effects of C1-, C2- and O1- implantation result in only small differences in the water contact angle at 3 × 1015 ions/cm2. These findings indicate that the hydrophilicity of RTV SR improves as the dose is increased and that the radiation effect has a greater influence than the doping effect on the hydrophilicity. There are two factors influence hydrophilicity of RTV: (1) based on the XPS and ATR-FTIR results, it can be inferred that ion implantation breaks the hydrophobic functional groups (Sisbnd CH3, Sisbnd Osbnd Si, Csbnd H) of RTV SR and generates hydrophilic functional groups (sbnd COOH, sbnd OH, Sisbnd (O)x (x = 3,4)). (2) SEM reveals that the implanted surface of RTV SR appears the micro roughness such as cracks and wrinkles. The hydrophilicity should be reduced due to the lotus effect (Zhou Rui et al., 2009). These two factors cancel each other out and make the C-implantation sample becomes more hydrophilic in general terms. Finally, cell culture demonstrates that negative ion-implantation is an effective method to improve the cell biocompatibility of RTV SR.

  5. Peripheral white blood cells profile of biodegradable metal implant in mice animal model

    Energy Technology Data Exchange (ETDEWEB)

    Paramitha, Devi; Noviana, Deni, E-mail: deni@ipb.ac.id; Estuningsih, Sri [Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor (Indonesia); Ulum, Mokhamad Fakhrul [Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor (Indonesia); Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru (Malaysia); Nasution, Ahmad Kafrawi [Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru (Malaysia); Faculty of Engineering, Muhammadiyah University of Riau (UMRI), Pekanbaru (Indonesia); Hermawan, Hendra [Department of Mining, Metallurgical and Materials Engineering & CHU de Québec Research Center, Laval University (ULaval) (Canada)

    2015-09-30

    Biocompatibility or safety of the medical device is considered important. It can be determined by blood profile examination. The aim of this study was to assess the biocompatibility of biodegradable metal implant through peripheral white blood cells (WBCs) profile approach. Forty eight male ddy mice were divided into four groups according to the materials implanted: iron wire (Fe), magnesium rod (Mg), stainless steel surgical wire (SS316L) and control with sham (K). Implants were inserted and attached onto the right femoral bone on latero-medial region. In this study, peripheral white blood cells and leukocyte differentiation were the parameters examined. The result showed that the WBCs value of all groups were decreased at the first day after implantation, increased at the 10th day and continued increasing at the 30th day of observation, except Mg group which has decreased. Neutrophil, as an inflammatory cells, was increased at the early weeks and decreased at the day-30 after surgery in all groups. Despite, these values during the observation were still within the normal range. As a conclus ion, biodegradable metal implants lead to an inflammatory reaction, with no adverse effect on WBC value found.

  6. Peripheral white blood cells profile of biodegradable metal implant in mice animal model

    International Nuclear Information System (INIS)

    Biocompatibility or safety of the medical device is considered important. It can be determined by blood profile examination. The aim of this study was to assess the biocompatibility of biodegradable metal implant through peripheral white blood cells (WBCs) profile approach. Forty eight male ddy mice were divided into four groups according to the materials implanted: iron wire (Fe), magnesium rod (Mg), stainless steel surgical wire (SS316L) and control with sham (K). Implants were inserted and attached onto the right femoral bone on latero-medial region. In this study, peripheral white blood cells and leukocyte differentiation were the parameters examined. The result showed that the WBCs value of all groups were decreased at the first day after implantation, increased at the 10th day and continued increasing at the 30th day of observation, except Mg group which has decreased. Neutrophil, as an inflammatory cells, was increased at the early weeks and decreased at the day-30 after surgery in all groups. Despite, these values during the observation were still within the normal range. As a conclus ion, biodegradable metal implants lead to an inflammatory reaction, with no adverse effect on WBC value found

  7. Evaluation of the ion implantation process for production of solar cells from silicon sheet materials

    Science.gov (United States)

    Spitzer, M. B.

    1983-01-01

    The objective of this program is the investigation and evaluation of the capabilities of the ion implantation process for the production of photovoltaic cells from a variety of present-day, state-of-the-art, low-cost silicon sheet materials. Task 1 of the program concerns application of ion implantation and furnace annealing to fabrication of cells made from dendritic web silicon. Task 2 comprises the application of ion implantation and pulsed electron beam annealing (PEBA) to cells made from SEMIX, SILSO, heat-exchanger-method (HEM), edge-defined film-fed growth (EFG) and Czochralski (CZ) silicon. The goals of Task 1 comprise an investigation of implantation and anneal processes applied to dendritic web. A further goal is the evaluation of surface passivation and back surface reflector formation. In this way, processes yielding the very highest efficiency can be evaluated. Task 2 seeks to evaluate the use of PEBA for various sheet materials. A comparison of PEBA to thermal annealing will be made for a variety of ion implantation processes.

  8. Fabrication of Mediatorless/Membraneless Glucose/Oxygen Based Biofuel Cell using Biocatalysts Including Glucose Oxidase and Laccase Enzymes

    Science.gov (United States)

    Christwardana, Marcelinus; Kim, Ki Jae; Kwon, Yongchai

    2016-01-01

    Mediatorless and membraneless enzymatic biofuel cells (EBCs) employing new catalytic structure are fabricated. Regarding anodic catalyst, structure consisting of glucose oxidase (GOx), poly(ethylenimine) (PEI) and carbon nanotube (CNT) is considered, while three cathodic catalysts consist of glutaraldehyde (GA), laccase (Lac), PEI and CNT that are stacked together in different ways. Catalytic activities of the catalysts for glucose oxidation and oxygen reduction reactions (GOR and ORR) are evaluated. As a result, it is confirmed that the catalysts work well for promotion of GOR and ORR. In EBC tests, performances of EBCs including 150 μm-thick membrane are measured as references, while those of membraneless EBCs are measured depending on parameters like glucose flow rate, glucose concentration, distance between two electrodes and electrolyte pH. With the measurements, how the parameters affect EBC performance and their optimal conditions are determined. Based on that, best maximum power density (MPD) of membraneless EBC is 102 ± 5.1 μW · cm−2 with values of 0.5 cc · min−1 (glucose flow rate), 40 mM (glucose concentration), 1 mm (distance between electrodes) and pH 3. When membrane and membraneless EBCs are compared, MPD of the membraneless EBC that is run at the similar operating condition to EBC including membrane is speculated as about 134 μW · cm−2. PMID:27426264

  9. Fabrication of Mediatorless/Membraneless Glucose/Oxygen Based Biofuel Cell using Biocatalysts Including Glucose Oxidase and Laccase Enzymes

    Science.gov (United States)

    Christwardana, Marcelinus; Kim, Ki Jae; Kwon, Yongchai

    2016-07-01

    Mediatorless and membraneless enzymatic biofuel cells (EBCs) employing new catalytic structure are fabricated. Regarding anodic catalyst, structure consisting of glucose oxidase (GOx), poly(ethylenimine) (PEI) and carbon nanotube (CNT) is considered, while three cathodic catalysts consist of glutaraldehyde (GA), laccase (Lac), PEI and CNT that are stacked together in different ways. Catalytic activities of the catalysts for glucose oxidation and oxygen reduction reactions (GOR and ORR) are evaluated. As a result, it is confirmed that the catalysts work well for promotion of GOR and ORR. In EBC tests, performances of EBCs including 150 μm-thick membrane are measured as references, while those of membraneless EBCs are measured depending on parameters like glucose flow rate, glucose concentration, distance between two electrodes and electrolyte pH. With the measurements, how the parameters affect EBC performance and their optimal conditions are determined. Based on that, best maximum power density (MPD) of membraneless EBC is 102 ± 5.1 μW · cm‑2 with values of 0.5 cc · min‑1 (glucose flow rate), 40 mM (glucose concentration), 1 mm (distance between electrodes) and pH 3. When membrane and membraneless EBCs are compared, MPD of the membraneless EBC that is run at the similar operating condition to EBC including membrane is speculated as about 134 μW · cm‑2.

  10. Effects of multiple polyaniline layers immobilized on carbon nanotube and glutaraldehyde on performance and stability of biofuel cell

    Science.gov (United States)

    Christwardana, Marcelinus; Kwon, Yongchai

    2015-12-01

    Enzymatic biofuel cell (EBC) employing new catalyst for anode electrode is fabricated. The new catalyst consists of glucose oxidase (GOx), polyaniline (PANI) and carbon nanotube (CNT) that are multiply stacked together and finally the stack layer is surrounded by glutaraldehyde (GA) (GA/[GOx/PANI/CNT]n). To evaluate how the GA/[GOx/PANI/CNT]n layer affects EBC performance and stability, electrochemical characterizations are implemented. Regarding optimization, GA/[GOx/PANI/CNT]3 is determined. For elucidating reaction mechanism between glucose and flavin adenine dinucleotide (FAD) of GA/[GOx/PANI/CNT]3, associated investigations are performed. In the evaluations, drop in reduction current peak of FAD is observed with provisions of glucose and O2, while glucose does not influence FAD reaction without O2, confirming O2 makes mediator role. When the GA/[GOx/PANI/CNT]3 layer is adopted, superior catalytic activity and EBC performance are gained (electron transfer rate constant of 5.1 s-1, glucose sensitivity of 150 ìA mM-1 cm-2, and EBC maximum power density (MPD) of 0.29 mW cm-2). Regarding EBC stability, MPD of EBC adopting GA/[GOx/PANI/CNT]3 maintains up to 93% of their initial value even after four weeks. Although GA is little effective for improving EBC performance, EBC stability is helped by GA due to its adhesion promotion capability with [GOx/PANI/CNT]n layer.

  11. Fabrication of Mediatorless/Membraneless Glucose/Oxygen Based Biofuel Cell using Biocatalysts Including Glucose Oxidase and Laccase Enzymes.

    Science.gov (United States)

    Christwardana, Marcelinus; Kim, Ki Jae; Kwon, Yongchai

    2016-01-01

    Mediatorless and membraneless enzymatic biofuel cells (EBCs) employing new catalytic structure are fabricated. Regarding anodic catalyst, structure consisting of glucose oxidase (GOx), poly(ethylenimine) (PEI) and carbon nanotube (CNT) is considered, while three cathodic catalysts consist of glutaraldehyde (GA), laccase (Lac), PEI and CNT that are stacked together in different ways. Catalytic activities of the catalysts for glucose oxidation and oxygen reduction reactions (GOR and ORR) are evaluated. As a result, it is confirmed that the catalysts work well for promotion of GOR and ORR. In EBC tests, performances of EBCs including 150 μm-thick membrane are measured as references, while those of membraneless EBCs are measured depending on parameters like glucose flow rate, glucose concentration, distance between two electrodes and electrolyte pH. With the measurements, how the parameters affect EBC performance and their optimal conditions are determined. Based on that, best maximum power density (MPD) of membraneless EBC is 102 ± 5.1 μW · cm(-2) with values of 0.5 cc · min(-1) (glucose flow rate), 40 mM (glucose concentration), 1 mm (distance between electrodes) and pH 3. When membrane and membraneless EBCs are compared, MPD of the membraneless EBC that is run at the similar operating condition to EBC including membrane is speculated as about 134 μW · cm(-2). PMID:27426264

  12. Overcoming bottlenecks of enzymatic biofuel cell cathodes: crude fungal culture supernatant can help to extend lifetime and reduce cost.

    Science.gov (United States)

    Sané, Sabine; Jolivalt, Claude; Mittler, Gerhard; Nielsen, Peter J; Rubenwolf, Stefanie; Zengerle, Roland; Kerzenmacher, Sven

    2013-07-01

    Enzymatic biofuel cells (BFCs) show great potential for the direct conversion of biochemically stored energy from renewable biomass resources into electricity. However, enzyme purification is time-consuming and expensive. Furthermore, the long-term use of enzymatic BFCs is hindered by enzyme degradation, which limits their lifetime to only a few weeks. We show, for the first time, that crude culture supernatant from enzyme-secreting microorganisms (Trametes versicolor) can be used without further treatment to supply the enzyme laccase to the cathode of a mediatorless BFC. Polarization curves show that there is no significant difference in the cathode performance when using crude supernatant that contains laccase compared to purified laccase in culture medium or buffer solution. Furthermore, we demonstrate that the oxygen reduction activity of this enzymatic cathode can be sustained over a period of at least 120 days by periodic resupply of crude culture supernatant. This is more than five times longer than control cathodes without the resupply of culture supernatant. During the operation period of 120 days, no progressive loss of potential is observed, which suggests that significantly longer lifetimes than shown in this work may be possible. Our results demonstrate the possibility to establish simple, cost efficient, and mediatorless enzymatic BFC cathodes that do not require expensive enzyme purification procedures. Furthermore, they show the feasibility of an enzymatic BFC with an extended lifetime, in which self-replicating microorganisms provide the electrode with catalytically active enzymes in a continuous or periodic manner.

  13. Membrane-less and mediator-free enzymatic biofuel cell using carbon nanotube/porous silicon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shiunchin C.; Yang, Fan; Silva, Manuel; Zarow, Anna; Wang, Yubing; Iqbal, Zafar [Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2009-01-15

    Membrane-less and mediator-free direct electron transfer enzymatic biofuel cells (BFCs) with bioelectrodes comprised of single wall carbon nanotubes (SWNTs) deposited by two methods on porous silicon (pSi) substrates, are reported. In one method the SWNTs were grown by chemical vapor deposition (CVD) and then functionalized with carboxylic groups, and in the second method, pre-synthesized carboxylated SWNTs (c-SWNTs) were electrophoretically deposited on gold-coated pSi. Anodic glucose oxidase (GOx) and cathodic laccase (Lac) were immobilized on the pSi/SWNT substrates to form BFCs in pH 7 phosphate buffer solution. A peak power density of 1.38 {mu}W/cm{sup 2} (with a lifetime of 24 h) down to 0.3 {mu}W/cm{sup 2} was obtained for a BFC comprised of c-SWNT/enzyme electrodes in 4 mM glucose solution as fuel, corresponding to normal blood sugar concentration, and air as oxidant. BFCs of this relatively simple architecture have the potential for further optimization of power output and lifetime. (author)

  14. Self-powered competitive immunosensor driven by biofuel cell based on hollow-channel paper analytical devices.

    Science.gov (United States)

    Li, Shuai; Wang, Yanhu; Ge, Shenguang; Yu, Jinghua; Yan, Mei

    2015-09-15

    A mediator-less and compartment-less glucose/O2 enzymatic biofuel cell (BFC) was introduced into microfluidic paper-based analytical devices (μ-PADs) that relies on flow in hollow channels with silver nanoparticles/graphene modified paper electrode as the anodic and cathodic substrate, to implement self-powered sensitive carcinoembryonic antigen (CEA) detection. Glucose dehydrogenase (GDH)-gold nanoparticles bioconjugate modified with CEA acted as a biocatalyst for enhancing glucose oxidation in the bioanode, as well as the transducing enzyme for signaling magnification. Similarly, nanoporous PtNi/bilirubin oxidase (BOD) acted as a biocatalyst for enhancing O2 reduction in the biocathode. With an increase in the concentration of CEA, the amount of CEA-Au-GDH bioconjugate on bioanode decreases, thus leading to the lower output of the as-prepared BFC. This proposed BFC-based self-powered immunosensor for CEA possessed largely increased linear detection range from 1 pg mL(-1) to 0.5 μg mL(-)(1) with a detection limit of 0.7 pg mL(-)(1). The proposed BFC-based self-powered immunosensor shows high sensitivity, stability, and reproducibility and can become a promising platform for other protein detection.

  15. Optimized electrode arrangement and activation of bioelectrodes activity by carbon nanoparticles for efficient ethanol microfluidic biofuel cells

    Science.gov (United States)

    Selloum, D.; Tingry, S.; Techer, V.; Renaud, L.; Innocent, C.; Zouaoui, A.

    2014-12-01

    This work presents the construction of an ethanol microfluidic biofuel cell based on a biocathode and a bioanode, and operating in a Y-shaped microfluidic channel. At the anode, ethanol was oxidized by alcohol dehydrogenase, whereas at the cathode, the oxygen was reduced by laccase. Fuel and oxidant streams moved in parallel laminar flow without turbulent mixing into a microchannel fabricated using soft lithography methods. The enzymes were immobilized in the presence of reactive species at gold electrode surfaces. Bioelectrocatalytic processes were enhanced by combination of enzymes and carbon nanoparticles, attributed to appropriate electron transport and high amount enzyme loading. The benefit of the nanoparticles with higher surface porosity was explained by the high porous structure that offered a closer proximity to the reactive species and improved diffusion of the substrates within the enzyme films. The microfluidic BFC was optimized as function of electrode patterns, showing that higher current and power densities were achieved for shorter and wider electrodes that allow for thinner boundary layer depletion at the electrodes surface resulting in efficient catalytic consumption of fuel and oxidant. This miniaturized device generated maximum power density of 90 μW cm-2 at 0.6 V for a flow rate 16 μL min-1.

  16. Visible-light driven biofuel cell based on hierarchically branched titanium dioxide nanorods photoanode for tumor marker detection.

    Science.gov (United States)

    Gao, Chaomin; Zhang, Lina; Wang, Yanhu; Yu, Jinghua; Song, Xianrang

    2016-09-15

    In this work, a novel sensing platform based on visible light driven biofuel cell (BFC) has been facilely designed for sensitive detection of prostate-specific antigen (PSA) with the photo-response bioanode, realizing the dual route energy conversion of light energy and chemical energy to electricity. The hierarchical branched TiO2 nanorods (B-TiO2 NRs) decorated with CdS quantum dots (QDs) act as the substrate to confine glucose dehydrogenase (GDH) for the visible light driven glucose oxidation at the bioanode. Three dimensional flowers like hierarchical carbon/gold nanoparticles/bilirubin oxidase (3D FCM/AuNPs/BOD) bioconjugate served as biocatalyst for O2 reduction at the biocathode. With an increase in the concentration of PSA, the amount of BOD labels on biocathode increases, thus leading to the higher current output of the as-proposed visible light driven BFC. Based on this, this sensing platform provide great performance in sensitivity and specificity, increasing linear detection range from 0.3pgmL(-1) to 7μgmL(-1) with a detection limit of 0.1pgmL(-1). Most importantly, our new sensing strategy provided a simple and inexpensive sensing platform for tumor markers detection, suggesting its wide potential applications for clinical diagnostics. PMID:27135937

  17. Design of an Os Complex-Modified Hydrogel with Optimized Redox Potential for Biosensors and Biofuel Cells.

    Science.gov (United States)

    Pinyou, Piyanut; Ruff, Adrian; Pöller, Sascha; Ma, Su; Ludwig, Roland; Schuhmann, Wolfgang

    2016-04-01

    Multistep synthesis and electrochemical characterization of an Os complex-modified redox hydrogel exhibiting a redox potential ≈+30 mV (vs. Ag/AgCl 3 M KCl) is demonstrated. The careful selection of bipyridine-based ligands bearing N,N-dimethylamino moieties and an amino-linker for the covalent attachment to the polymer backbone ensures the formation of a stable redox polymer with an envisaged redox potential close to 0 V. Most importantly, the formation of an octahedral N6-coordination sphere around the Os central atoms provides improved stability concomitantly with the low formal potential, a low reorganization energy during the Os(3+/2+) redox conversion and a negligible impact on oxygen reduction. By wiring a variety of enzymes such as pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase, flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase and the FAD-dependent dehydrogenase domain of cellobiose dehydrogenase, low-potential glucose biosensors could be obtained with negligible co-oxidation of common interfering compounds such as uric acid or ascorbic acid. In combination with a bilirubin oxidase-based biocathode, enzymatic biofuel cells with open-circuit voltages of up to 0.54 V were obtained.

  18. Nanotechnology and Dental Implants

    OpenAIRE

    Sandrine Lavenus; Guy Louarn; Pierre Layrolle

    2010-01-01

    The long-term clinical success of dental implants is related to their early osseointegration. This paper reviews the different steps of the interactions between biological fluids, cells, tissues, and surfaces of implants. Immediately following implantation, implants are in contact with proteins and platelets from blood. The differentiation of mesenchymal stem cells will then condition the peri-implant tissue healing. Direct bone-to-implant contact is desired for a biomechanical anchoring of i...

  19. Al and Cu Implantation into Silicon Substrate for Ohmic Contact in Solar Cell Fabrication

    International Nuclear Information System (INIS)

    Research on the implantation of Al and Cu ions into silicon substrate for ohmic contact in solar cell fabrication has been carried using ion accelerator machine. Al and Cu ions are from 98% Al and 99.9% Cu powder ionized in ion source system. provided in ion implantor machine. Before implantation process, (0.5 x 1) cm2 N type and P type silicon were washed in water and then etched in Cp-4A solution. After that, P type silicon were implanted with Al ions and N type silicon were implanted with Cu ions with the ions dose from 1013 ion/cm2 - 1016 ion/cm2 and energy 20 keV - 80 keV. Implanted samples were then annealed at temperature 400 oC - 850 oC. Implanted and annealed samples were characterized their resistivities using four point probe FPP-5000. It was found that at full electrically active conditions the ρs for N type was 1.30 x 108 Ω/sq, this was achieved at ion dose 1013 ion/cm2 and annealing temperature 500 oC. While for P type, the ρs was 1.13 x 102 Ω/sq, this was achieved at ion dose 1013 ion/cm2 and energy 40 keV, and annealing temperature 500 oC. (author)

  20. Effects of Vascular Endothelial Cell Growth Factor on Fibrovascular Ingrowth into Rabbit's Hydroxyapatite Orbital Implant

    Institute of Scientific and Technical Information of China (English)

    张虹; 李贵刚; 纪彩霓; 何花; 王军明; 胡维琨; 吴华; 陈憬

    2004-01-01

    Summary: The effects of different concentrations of vascular endothelial cell growth factor (VEGF)on the fibrovascular ingrowth into rabbits hydroxyapatite orbital implant were investigated. Twelve New Zealand white rabbits were divided into 3 groups and received hydroxyapatite orbital implant surgery in their right eyes. Before and after the operation, the implants were treated with 10 ng/ml VEGF, 100 ng/ml VEGF, or normal saline as control group. The animals received technetium bones scan at 2, 4, and 6 weeks postoperatively. The mean radioactivity counts within region of interest (ROI) of the surgery eye (R) and the non-surgery eye (L) in the same animal were tested,and the R/L ratios were calculated. The implants were harvested at 6th weeks and examined histopathologically. The results showed that at second week, there was no significant difference in mean R/L ratios between VEGF group and control group (F=2.83, P=0. 111);At 4th week (F=7. 728, P=0.011) and 6th week (F=7.831, P=0.011) postoperatively, the mean ratios in VEGF groups were significantly higher than that in control group. At 6th week postoperatively,the fibrovascularization rates in VEGF groups were higher than in control group significantly (F=8. 711, P = 0. 008), It was suggested that VEGF could promote the fibrovascular ingrowth into hydroxyapatite orbital implant, thus might shorten the time required for complete vascularization of the HA orbital implant.

  1. The convergence of cochlear implantation with induced pluripotent stem cell therapy.

    Science.gov (United States)

    Gunewardene, Niliksha; Dottori, Mirella; Nayagam, Bryony A

    2012-09-01

    According to 2010 estimates from The National Institute on Deafness and other Communication Disorders, approximately 17% (36 million) American adults have reported some degree of hearing loss. Currently, the only clinical treatment available for those with severe-to-profound hearing loss is a cochlear implant, which is designed to electrically stimulate the auditory nerve in the absence of hair cells. Whilst the cochlear implant has been revolutionary in terms of providing hearing to the severe-to-profoundly deaf, there are variations in cochlear implant performance which may be related to the degree of degeneration of auditory neurons following hearing loss. Hence, numerous experimental studies have focused on enhancing the efficacy of cochlear implants by using neurotrophins to preserve the auditory neurons, and more recently, attempting to replace these dying cells with new neurons derived from stem cells. As a result, several groups are now investigating the potential for both embryonic and adult stem cells to replace the degenerating sensory elements in the deaf cochlea. Recent advances in our knowledge of stem cells and the development of induced pluripotency by Takahashi and Yamanaka in 2006, have opened a new realm of science focused on the use of induced pluripotent stem (iPS) cells for therapeutic purposes. This review will provide a broad overview of the potential benefits and challenges of using iPS cells in combination with a cochlear implant for the treatment of hearing loss, including differentiation of iPS cells into an auditory neural lineage and clinically relevant transplantation approaches. PMID:21956409

  2. Squamous cell carcinoma and dental implants: A systematic review of case reports.

    Science.gov (United States)

    Jeelani, S; Rajkumar, E; Mary, G Geena; Khan, Parvez Ahmad; Gopal, Harish; Roy, Soumya; Maheswaran, T; Anand, B

    2015-08-01

    Cancer is one of the leading causes of death world-wide. Apart from the most common etiopathological factors related to cancer, at times very rare causes such as irritant or foreign body induced carcinogenesis is not to be overlooked. To systematically review case reports concerned with the association between dental implants and oral squamous cell carcinoma. A Medline (PubMed), Cochrane database, and Google Scholar search was conducted of dental article published in English related to case reports concerned with oral squamous cell carcinoma occurring around dental implants from 2000 to 2014. Twenty articles were retrieved, which included 20 rare case reports which were systematically reviewed and the results were obtained pertaining to age, clinical symptoms, habits, previous history of cancer, potentially malignant disorders, systemic illness, and local factors. It is imperative to identify promptly persisting inflammation associated with implants. Since malignancy may disguise as periimplantitis, especially in patients who are at risk with contributing prominent predisposing factors.

  3. Squamous cell carcinoma and dental implants: A systematic review of case reports.

    Science.gov (United States)

    Jeelani, S; Rajkumar, E; Mary, G Geena; Khan, Parvez Ahmad; Gopal, Harish; Roy, Soumya; Maheswaran, T; Anand, B

    2015-08-01

    Cancer is one of the leading causes of death world-wide. Apart from the most common etiopathological factors related to cancer, at times very rare causes such as irritant or foreign body induced carcinogenesis is not to be overlooked. To systematically review case reports concerned with the association between dental implants and oral squamous cell carcinoma. A Medline (PubMed), Cochrane database, and Google Scholar search was conducted of dental article published in English related to case reports concerned with oral squamous cell carcinoma occurring around dental implants from 2000 to 2014. Twenty articles were retrieved, which included 20 rare case reports which were systematically reviewed and the results were obtained pertaining to age, clinical symptoms, habits, previous history of cancer, potentially malignant disorders, systemic illness, and local factors. It is imperative to identify promptly persisting inflammation associated with implants. Since malignancy may disguise as periimplantitis, especially in patients who are at risk with contributing prominent predisposing factors. PMID:26538881

  4. Co-delivery of siRNA and doxorubicin to cancer cells from additively manufactured implants

    DEFF Research Database (Denmark)

    Chen, Muwan; Andersen, Morten Østergaard; Dillschneider, Philipp;

    2015-01-01

    Tumors in load bearing bone tissue are a major clinical problem, in part because surgical resection invokes a dilemma whether to resect aggressively, risking mechanical failure, or to resect conservatively, risking cancer recurrence due to residual malignant cells. A chemo-functionalized implant,...

  5. Treatment of radiation syndrome with emphasis on stem cell implantation

    International Nuclear Information System (INIS)

    Within few years, the possibility that the human body contains cells that can repair and regenerate damaged and diseased tissue has gone from an unlikely proposition to a virtual certainty. Patients who have received doses of radiation in the potentially low to mid-lethal range (2-6 Gy) will have depression in bone-marrow function with cessation of blood-cell production leading to pancytopenia. Selection of cases for stem cell transplantation is based upon clinical signs and symptoms. Hematopoietic stem cell which produces blood cell progeny provides support for hematopoietic and other cells within the marrow, and has also been a focus for possible tissue repair. Another cell type termed mesenchymal or stromal also exists in the marrow. This cell provides support for hematopoietic and other cells within the marrow, and has also been a focus for possible tissue repair. Stem cells are obtained from bone marrow, peripheral blood, placental and umbilical cord blood, embryonic stem cells and embryonic germ cells. These cells have great potential for clinical research due to their potential to regenerate tissue. As well known, the cryo preservation process can store any cell type, particularly blood cells, for an indeterminate time. (author)

  6. Hybrid Adipogenic Implants from Adipose Stem Cells for Soft Tissue Reconstruction In Vivo

    OpenAIRE

    MOIOLI, EDUARDO K.; Chen, Mo; Yang, Rujing; Shah, Bhranti; Wu, June; Mao, Jeremy J

    2010-01-01

    A critical barrier in tissue regeneration is scale-up. Bioengineered adipose tissue implants have been limited to ∼10 mm in diameter. Here, we devised a 40-mm hybrid implant with a cellular layer encapsulating an acellular core. Human adipose-derived stem cells (ASCs) were seeded in alginate. Poly(ethylene)glycol-diacrylate (PEGDA) was photopolymerized into 40-mm-diameter dome-shaped gel. Alginate-ASC suspension was painted onto PEGDA surface. Cultivation of hybrid constructs ex vivo in adipo...

  7. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories

    DEFF Research Database (Denmark)

    Zhou, Yongjin J.; Buijs, Nicolaas A; Zhu, Zhiwei;

    2016-01-01

    -level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l−1 of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous...... alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l−1) and fatty alcohols (1.5 g l−1), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories...

  8. Indirect measurements of Brachiaria brizantha cv. Marandu fermentable cell wall sugars for second generation biofuels production.

    Science.gov (United States)

    Results of a study conducted to evaluate the possibility of using IVDMD values of B. brizantha cv. Marandu to predict cell wall sugars that would be available in a biorefinery for ethanol production are reported. The study was conducted based on the similarity between rumen enzymes and those used i...

  9. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories.

    Science.gov (United States)

    Zhou, Yongjin J; Buijs, Nicolaas A; Zhu, Zhiwei; Qin, Jiufu; Siewers, Verena; Nielsen, Jens

    2016-01-01

    Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l(-1) of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l(-1)) and fatty alcohols (1.5 g l(-1)), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for production of fatty acids derived products and even aldehyde-derived chemicals of high value. PMID:27222209

  10. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories.

    Science.gov (United States)

    Zhou, Yongjin J; Buijs, Nicolaas A; Zhu, Zhiwei; Qin, Jiufu; Siewers, Verena; Nielsen, Jens

    2016-01-01

    Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l(-1) of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l(-1)) and fatty alcohols (1.5 g l(-1)), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for production of fatty acids derived products and even aldehyde-derived chemicals of high value.

  11. Spatial Control of Cell-Nanosurface Interactions by Tantalum Oxide Nanodots for Improved Implant Geometry.

    Science.gov (United States)

    Dhawan, Udesh; Pan, Hsu An; Lee, Chia Hui; Chu, Ying Hao; Huang, Guewha Steven; Lin, Yan Ren; Chen, Wen Liang

    2016-01-01

    Nanotopological cues can be exploited to understand the nature of interactions between cells and their microenvironment to generate superior implant geometries. Nanosurface parameters which modulate the cell behavior and characteristics such as focal adhesions, cell morphology are not clearly understood. Here, we studied the role of different nanotopographic dimensions in modulating the cell behavior, characteristics and ultimately the cell fate and accordingly, a methodology to improve implant surface geometry is proposed. Tantalum oxide nanodots of 50, 100nm dot diameter with an inter-dot spacing of 20, 70nm and heights 40, 100nm respectively, were engineered on Silicon substrates. MG63 cells were cultured for 72 hours and the modulation in morphology, focal adhesions, cell extensible area, cell viability, transcription factors and genes responsible for bone protein secretion as a function of the nanodot diameter, inter-dot distance and nanodot height were evaluated. Nanodots of 50nm diameter with a 20nm inter-dot spacing and 40nm height enhanced cell spreading area by 40%, promoted cell viability by 70% and upregulated transcription factors and genes twice as much, as compared to the 100nm nanodots with 70nm inter-dot spacing and 100nm height. Favorable interactions between cells and all dimensions of 50nm nanodot diameter were observed, determined with Scanning electron microscopy and Immunofluorescence staining. Nanodot height played a vital role in controlling the cell fate. Dimensions of nanodot features which triggered a transition in cell characteristics or behavior was also defined through statistical analysis. The findings of this study provide insights in the parameters of nanotopographic features which can vitally control the cell fate and should therefore be taken into account when designing implant geometries. PMID:27362432

  12. Membrane-less biofuel cell based on cellobiose dehydrogenase (anode)/laccase (cathode) wired via specific os-redox polymers

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, L.; Dimcheva, N.; Ackermann, Y.; Guschin, D.A. [Analytische Chemie-Elektoanalytik und Sensorik, Ruhr-Universitaet Bochum (Germany); Karnicka, K.; Kulesza, P.J. [Department of Chemistry, University of Warsaw (Poland); Rogalski, J. [Department of Biochemistry, Maria Curie Sklodowska University, Lublin (Poland); Haltrich, D.; Ludwig, R. [Department of Food Sciences and Technology, Division of Food Biotechnology, BOKU-University of Natural Resources and Applied Life Sciences, Vienna Vienna (Austria); Gorton, L. [Department of Analytical Chemistry, Lund University (Sweden); Schuhmann, W.

    2009-02-15

    A membrane-free biofuel cell (BFC) is reported based on enzymes wired to graphite electrodes by means of Os-complex modified redox polymers. For the anode cellobiose dehydrogenase (CDH) is used as a biocatalyst whereas for the cathode a laccase was applied. This laccase is a high-potential laccase and hence able to reduce O{sub 2} to H{sub 2}O at a formal potential higher than +500 mV versus Ag/AgCl. In order to establish efficient electrochemical contact between the enzymes and graphite electrodes electrodeposition polymers containing Os-complex with specifically designed monomer compositions and formal potentials of the coordinatively bound Os-complex were synthesised and used to wire the enzymes to the electrodes. The newly designed CDH/Os-redox polymer anode was characterised at different pH values and optimised with respect to the nature of the polymer and the enzyme-to-polymer ratio. The resulting BFC was evaluated running on {beta}-lactose as a fuel and air/O{sub 2} as an oxidising agent. The power output, the maximum current density and the electromotor force (E{sub emf}) were found to be affected by the pH value, resulting in a maximum power output of 1.9 {mu}W cm{sup -2} reached at pH 4.3, a maximum current density of about 13 {mu}A cm{sup -2} at pH 3.5, and the highest E{sub emf} approaching 600 mV at pH 4.0. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  13. Squamous cell carcinoma in association with dental implants: an assessment of previously hypothesized carcinogenic mechanisms and a case report.

    Science.gov (United States)

    Bhatavadekar, Neel B

    2012-12-01

    Although dental implants have seen tremendous clinical success over the past few decades, there are some worrying reports in literature describing squamous cell carcinoma (SCC) in close association with dental implants. This article also provides a critical assessment of the published literature relating to the presence of carcinoma in association with dental implants, analyzing the previously published and hypothesized carcinogenic responses to an implant, to try and come to a conclusion regarding the plausibility and clinical risk for cancer formation in association with dental implants. An unusual case of an SCC noted in close proximity to a dental implant is also presented. A systematic search was conducted using Medline (PubMed), Cochrane Database, and Google Scholar with the search terms "cancer," "squamous cell carcinoma," "dental implant," "SCC," "peri-implantitis," "oral cancer," and "implantology" and using multiple combinations using Boolean operators "or" and "and." The search was not limited to dental literature; orthopedic and biomedical literature was also included. The results were then hand screened to pick out the relevant articles. In total, 14 previous published reports were found, where 24 dental implants were reported to be associated with SCC. Not all the reported patients had a history of cancer, but contributory factors such as smoking were found. An analysis of the biological plausibility of previously proposed carcinogenic mechanisms, such as corrosion, metallic ion release, and particulate debris, did not support the etiologic role for dental implants in cancer development, and the standardized incidence ratio was found to be extremely low (0.00017). Peri-implantitis should be assessed cautiously in patients receiving implants who have a previous history of cancer. Dental implants are a safe treatment modality based on the published data, and any change in surgical protocol is not mandated. PMID:21574824

  14. Biosynthesis of silver nanoparticle and its application in cell wall disruption to release carbohydrate and lipid from C. vulgaris for biofuel production

    Directory of Open Access Journals (Sweden)

    Sirajunnisa Abdul Razack

    2016-09-01

    Full Text Available Microalgae are the fledging feedstocks yielding raw materials for the production of third generation biofuel. Assorted and conventional cell wall disruption techniques were helpful in extracting lipids and carbohydrates, nevertheless the disadvantages have led the biotechnologists to explore new process to lyse cell wall in a faster and an economical manner. Silver nanoparticles have the ability to break the cell wall of microalgae and release biomolecules effectively. Green synthesis of silver nanoparticles was performed using a novel bacterial isolate of Bacillus subtilis. Characterisation of nanosilver and its effect on cell wall lysis of microalgae were extensively analysed. Cell wall damage was confirmed by lactate dehydrogenase assay and visually by SEM analysis. This first piece of research work on direct use of nanoparticles for cell wall lysis would potentially be advantageous over its conventional approaches and a greener, cost effective and non laborious method for the production of biodiesel.

  15. Biofuels of the Future

    OpenAIRE

    Oxburgh, Ron

    2007-01-01

    There are good biofuels and bad biofuels. The good ones offer the prospect of transport fuels that have much lower environmental impact than fossil fuels and could before long be less expensive as well. Bad or irresponsibly produced biofuels may at best bring little environmental advantage; at worst they may also cause serious environmental damage, habitat destruction and food shortages. The biofuel industry of the future will make a significant contribution to the greening of the world’s veh...

  16. Nitrogen fertilization affects silicon concentration, cell wall composition and biofuel potential of wheat straw

    DEFF Research Database (Denmark)

    Murozuka, Emiko; Laursen, Kristian Holst; Lindedam, Jane;

    2014-01-01

    Nitrogen is an essential input factor required for plant growth and biomass production. However, very limited information is available on how nitrogen fertilization affects the quality of crop residues to be used as lignocellulosic feedstock. In the present study, straw of winter wheat plants grown...... at six different levels of nitrogen supply ranging from 48 to 288kg nitrogen ha-1 was analyzed for major cell wall components and mineral elements. Enzymatic digestion of the straw was carried out to evaluate the saccharification efficiency. The nitrogen concentration in the straw dry matter increased...... saccharification efficiency was negatively correlated with the rate of nitrogen supply. We conclude that the level of nitrogen supply to wheat plants alters the composition of cell wall components in the straw and that this may result in reduced saccharification efficiency. © 2014 Elsevier Ltd....

  17. Perspective of harnessing energy from landfill leachate via microbial fuel cells: novel biofuels and electrogenic physiologies.

    Science.gov (United States)

    Wu, Dong; Wang, Ting; Huang, Xinghua; Dolfing, Jan; Xie, Bing

    2015-10-01

    Organic carbon, nitrogen, and sulfur are highly concentrated in municipal solid waste (MSW) landfill leachate, which usually frustrates conventional leachate treatment technologies from the perspective of energy costs. Therefore, the possibility of converting leachate to a new energy source via microbial fuel cell (MFC) technology has been examined recently. This paper summarizes the power output and energy recovery efficiency of the leachate-fed MFCs according to different feeding patterns, cell structures, and loading rates. Also, we assess potential energy-generating chemicals in leachate like nitrogen and sulfur compounds and propose alternative pathways, which may lift strict ratios between organic carbon and nitrogen content in conventional denitrification of leachate and are expected to achieve a higher voltage than traditional organic-oxygen based cells. Although currently power output of leachate-fed MFCs is limited, it seems well possible that dynamic characteristics of MSW leachates and microbial physiologies underlying some bio-electrochemically efficient activities (e.g., direct interspecies electron transfer) could be stimulated in MFC systems to improve the present status. PMID:26239072

  18. Scope of algae as third generation biofuels

    Directory of Open Access Journals (Sweden)

    Shuvashish eBehera

    2015-02-01

    Full Text Available An initiative has been taken to develop different solid, liquid and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass have been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security.

  19. Panorama 2007: Biofuels Worldwide

    International Nuclear Information System (INIS)

    The biofuels market is booming: after more than 20 years of industrial development, global bio-fuel production is growing fast. Willingness to reduce their oil dependence and necessity to promote low-carbon energies are the two main drivers for states to support biofuels development. (author)

  20. Biofuel production in Vietnam

    NARCIS (Netherlands)

    Thanh, le L.

    2016-01-01

    Biofuel production has continued to develop and is driven by government support around the world. A comprehensive analysis of biofuel production and the policy implementation is crucial for the biofuel sustainability development. The objective of this thesis is to study the energy efficiency, GHG em

  1. Action of Schwann Cells Implanted in Cerebral Hemorrhage Lesion

    Institute of Scientific and Technical Information of China (English)

    HONG WAN; SHAO-DONG ZHANG; JUN-HUA LI

    2007-01-01

    Objective To investigate whether there is neogenesis of myelin sheath and neuron after transplantation of Schwann cells into cerebral hemorrhage lesion. Methods Schwann cells were expanded, labeled with BrdU in vitro and transplanted into rat cerebral hemorrhage with blood extracted from femoral artery and then injected into the basal nuclei. Double immunohistochemistry staining and electron microscopy were used to detect the expression of BrdU/MBP and BrdU/GAP-43 and remyelination. Results BrdU/MBP double positive cells could be seen at 1 week up to 16 weeks after transplantation of Schwann cells. Thin remyelination was observed under electron microscope. GAP-43 positive cells appeared after 12 weeks and were found more in Hippocamp. Conclusions Grafted Schwann cells participate in remyelination and promoter nerve restore in rat cerebral hemorrhage.

  2. Mga is essential for the survival of pluripotent cells during peri-implantation development

    OpenAIRE

    Washkowitz, Andrew J.; Schall, Caroline; Zhang, Kun; Wurst, Wolfgang; FLOSS, Thomas; Mager, Jesse; Papaioannou, Virginia E

    2015-01-01

    The maintenance and control of pluripotency is of great interest in stem cell biology. The dual specificity T-box/basic-helix-loop-helix-zipper transcription factor Mga is expressed in the pluripotent cells of the inner cell mass (ICM) and epiblast of the peri-implantation mouse embryo, but its function has not been investigated previously. Here, we use a loss-of-function allele and RNA knockdown to demonstrate that Mga depletion leads to the death of proliferating pluripotent ICM cells in vi...

  3. BioMEMS for medicine: On-chip cell characterization and implantable microelectrodes

    Science.gov (United States)

    Cheung, Karen C.; Renaud, Philippe

    2006-04-01

    This paper surveys a few of the emerging bioMEMS technologies at EPFL for improved, inexpensive health care. The lab-on-a-chip systems use dielectrophoretic forces to direct cell movement within microfluidic networks and impedance spectroscopy for label-free in-flow characterization of living cells. The implantable microelectrodes for neural applications are based on thin-film polymer foils with embedded microelectrodes for both recording and stimulation. Applications for these biomedical microdevices will include stem cell research, cancer cell characterization, drug discovery, treatments for neurological disorders, and neuroprosthetic devices.

  4. Decoding the chemokine network that links leukocytes with decidual cells and the trophoblast during early implantation.

    Science.gov (United States)

    Ramhorst, Rosanna; Grasso, Esteban; Paparini, Daniel; Hauk, Vanesa; Gallino, Lucila; Calo, Guillermina; Vota, Daiana; Pérez Leirós, Claudia

    2016-03-01

    Chemokine network is central to the innate and adaptive immunity and entails a variety of proteins and membrane receptors that control physiological processes such as wound healing, angiogenesis, embryo growth and development. During early pregnancy, the chemokine network coordinates not only the recruitment of different leukocyte populations to generate the maternal-placental interface, but also constitutes an additional checkpoint for tissue homeostasis maintenance. The normal switch from a pro-inflammatory to an anti-inflammatory predominant microenvironment characteristic of the post-implantation stage requires redundant immune tolerance circuits triggered by key master regulators. In this review we will focus on the recruitment and conditioning of maternal immune cells to the uterus at the early implantation period with special interest on high plasticity macrophages and dendritic cells and their ability to induce regulatory T cells. We will also point to putative immunomodulatory polypeptides involved in immune homeostasis maintenance at the maternal-placental interface. PMID:26891097

  5. Hierarchical micro/nanostructured titanium with balanced actions to bacterial and mammalian cells for dental implants

    Directory of Open Access Journals (Sweden)

    Zhu Y

    2015-10-01

    Full Text Available Yu Zhu,1,* Huiliang Cao,2,* Shichong Qiao,1,* Manle Wang,2,3 Yingxin Gu,1 Huiwen Luo,1 Fanhao Meng,2 Xuanyong Liu,2 Hongchang Lai1 1Department of Oral and Maxillofacial Implantology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 3School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: A versatile strategy to endow dental implants with long-term antibacterial ability without compromising the cytocompatibility is highly desirable to combat implant-related infection. Silver nanoparticles (Ag NPs have been utilized as a highly effective and broad-spectrum antibacterial agent for surface modification of biomedical devices. However, the high mobility and subsequent hazardous effects of the particles on mammalian cells may limit its practical applications. Thus, Ag NPs were immobilized on the surface of sand-blasted, large grit, and acid-etched (SLA titanium by manipulating the atomic-scale heating effect of silver plasma immersion ion implantation. The silver plasma immersion ion implantation-treated SLA surface gave rise to both good antibacterial activity and excellent compatibility with mammalian cells. The antibacterial activity rendered by the immobilized Ag NPs was assessed using Fusobacterium nucleatum and Staphylococcus aureus, commonly suspected pathogens for peri-implant disease. The immobilized Ag NPs offered a good defense against multiple cycles of bacteria attack in both F. nucleatum and S. aureus, and the mechanism was independent of silver release. F. nucleatum showed a higher susceptibility to Ag NPs than S. aureus, which might be explained by the presence of different wall structures. Moreover, the

  6. Comparison of biological characteristics of mesenchymal stem cells grown on two different titanium implant surfaces

    International Nuclear Information System (INIS)

    This study examined the biological characteristics of mesenchymal stem cells (MSCs) grown on sand-blasted, large-grit, acid-etched (SLA) surface and hydroxyapatite (HA) coating on the SLA (HA/SLA) surface of titanium dental implants. The HA/SLA surfaces of titanium dental implants were formed by the ion beam assisted deposition (IBAD) method. Rabbit bone marrow derived mesenchymal stem cells cultured in vitro were seeded onto the surface of SLA and HA/SLA; the growth states of MSCs on the two samples were observed by a scanning electron microscope; the proliferation index, alkaline phosphatase (ALP) activity, osteocalcin (OCN) content of MSCs and mRNA relative expression level of osteopontin (opn) were compared between two groups. MSCs were found to be easier to adhere to the HA/SLA surface compared to the SLA surface. At the same time, the ALP activity and the OCN content of MSCs grown on the HA/SLA surface were obviously higher, and the relative expression level of opn mRNA was 4.78 times higher than that on the SLA surface. The HA coating formed by the IBAD method on the SLA surface of titanium dental implants significantly improves proliferation and well-differentiated osteoblastic phenotype of MSCs, which indicates a promising method for the surface modification of titanium dental implants

  7. ICAM1 and fibrinogen-γ are increased in uterine epithelial cells at the time of implantation in rats.

    Science.gov (United States)

    Lecce, Laura; Kaneko, Yui; Madawala, Romanthi J; Murphy, Christopher R

    2011-05-01

    Uterine epithelial cells transform into a receptive state to adhere to an implanting blastocyst. Part of this transformation includes the apical concentration of cell adhesion molecules at the time of implantation. This study, for the first time, investigates the expression of ICAM1 and fibrinogen-γ (FGG) in uterine epithelial cells during normal pregnancy, pseudopregnancy and in hormone-treated rats. An increase (P FGG dimerization increased (P FGG in the uterine epithelium at the time of implantation in the rat is similar to that seen in lymphocyte-endothelium adhesion, and we suggest a similar mechanism in embryo-uterine epithelium adhesion is utilized.

  8. Evaluation of steroidogenic capacity after follicle stimulating hormone stimulation in bovine granulosa cells of Revalor 200® implanted heifers

    Institute of Scientific and Technical Information of China (English)

    Andrea DStapp; Craig AGifford; Dennis MHallford; Jennifer AHernandez Gifford

    2014-01-01

    Background:Heifers not used as breeding stock are often implanted with steroids to increase growth efficiency thereby altering hormone profiles and potentially changing the environment in which ovarian follicles develop. Because bovine granulosa cell culture is a commonly used technique and often bovine ovaries are collected from abattoirs with no record of implant status, the objective of this study was to determine if the presence of an implant during bovine granulosa cell development impacts follicle stimulating hormone-regulated steroidogenic enzyme expression. Paired ovaries were collected from 16 feedlot heifers subjected to 1 of 3 treatments:non-implanted (n=5), Revalor 200 for 28 d (n=5), or Revalor 200 for 84 d (n=6). Small follicle (1 to 5 mm) granulosa cells were isolated from each pair and incubated with phosphate buffered saline (n=16) or 100 ng/mL follicle stimulating hormone (n=16) for 24 h. Results:Granulosa cells of implanted heifers treated with follicle stimulating hormone produced medium concentrations of progesterone similar (P=0.22) to non-implanted heifers, while medium estradiol concentrations were increased (P<0.10) at 28 and 84 d compared to non-implanted heifers indicating efficacy of treatment. Additionally, real-time PCR analysis in response to follicle stimulating hormone treatment demonstrated a decrease in steroidogenic acute regulatory protein (P=0.05) mRNA expression in heifers implanted for 84 d and an increase in P450 side chain cleavage mRNA in granulosa cells of heifers implanted for 28 (P<0.10) or 84 d (P<0.05) compared to non-implanted females. However, no difference in expression of 3-beta-hydroxysteroid dehydrogenase (P=0.57) and aromatase (P=0.23) were demonstrated in implanted or non-implanted heifers. Conclusions:These results indicate follicles which develop in the presence of high concentrations of androgenic and estrogenic steroids via an implant tend to demonstrate an altered capacity to respond to follicle

  9. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell.

    Science.gov (United States)

    Kim, Beom-Su; Kim, Jin Seong; Park, Young Min; Choi, Bo-Young; Lee, Jun

    2013-04-01

    Magnesium (Mg) is one of the most important ions associated with bone osseointegration. The aim of this study was to evaluate the cellular effects of Mg implantation in titanium (Ti) surfaces treated with sand blast using large grit and acid etching (SLA). Mg ions were implanted into the surface via vacuum arc source ion implantation. The surface morphology, chemical properties, and the amount of Mg ion release were evaluated by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and inductively coupled plasma-optical emission spectrometer (ICP-OES). Human mesenchymal stem cells (hMSCs) were used to evaluate cellular parameters such as proliferation, cytotoxicity, and adhesion morphology by MTS assay, live/dead assay, and SEM. Furthermore, osteoblast differentiation was determined on the basis of alkaline phosphatase (ALP) activity and the degree of calcium accumulation. In the Mg ion-implanted disk, 2.3×10(16) ions/cm(2) was retained. However, after Mg ion implantation, the surface morphology did not change. Implanted Mg ions were rapidly released during the first 7 days in vitro. The MTS assay, live/dead assay, and SEM demonstrated increased cell attachment and growth on the Mg ion-implanted surface. In particular, Mg ion implantation increased the initial cell adhesion, and in an osteoblast differentiation assay, ALP activity and calcium accumulation. These findings suggest that Mg ion implantation using the plasma source ion implantation (PSII) technique may be useful for SLA-treated Ti dental implants to improve their osseointegration capacity.

  10. Engineering microbes for tolerance to next-generation biofuels

    Directory of Open Access Journals (Sweden)

    Dunlop Mary J

    2011-09-01

    Full Text Available Abstract A major challenge when using microorganisms to produce bulk chemicals such as biofuels is that the production targets are often toxic to cells. Many biofuels are known to reduce cell viability through damage to the cell membrane and interference with essential physiological processes. Therefore, cells must trade off biofuel production and survival, reducing potential yields. Recently, there have been several efforts towards engineering strains for biofuel tolerance. Promising methods include engineering biofuel export systems, heat shock proteins, membrane modifications, more general stress responses, and approaches that integrate multiple tolerance strategies. In addition, in situ recovery methods and media supplements can help to ease the burden of end-product toxicity and may be used in combination with genetic approaches. Recent advances in systems and synthetic biology provide a framework for tolerance engineering. This review highlights recent targeted approaches towards improving microbial tolerance to next-generation biofuels with a particular emphasis on strategies that will improve production.

  11. Antigen presenting cells costimulatory signaling during pre-implantation pregnancy 

    Directory of Open Access Journals (Sweden)

    Anna Sławek

    2012-09-01

    Full Text Available  Success of pregnancy depends on many factors. Three phenomena inducing immune tolerance against semi-allogeneic conceptus may play a crucial role in the pre-implantation period of pregnancy: influence of sex hormones in sex cycle, presence of oocyte or embryo and the presence of semen in the female reproductive tract. On the other hand dendritic cells are the most effective antigen-presenting cells in regulation of immune phenomena and also are considered as potent participants in inducing immune tolerance in the pregnancy. They communicate with T cells in cell contact-dependent manner or via cytokines. During cell-cell contacts, costimulatory molecules play a key role and their expression is often dependent on cytokines milieu. Both costimulatory molecules and cytokines influence generation of T regulatory cells. Interactions of these molecules are closely related. In this paper we would like to pay attention to the importance of antigen presenting cells costimulatory potency in immune regulation during a pre-implantation period of pregnancy.

  12. Low-Cost Plasma Immersion Ion Implantation Doping for Interdigitated Back Passivated Contact (IBPC) Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; Page, Matthew R.; Theingi, San; Aguiar, Jeffery; Lee, Benjamin G.; Stradins, Paul

    2016-12-01

    We present progress to develop low-cost interdigitated back contact solar cells with pc-Si/SiO2/c-Si passivated contacts formed by plasma immersion ion implantation (PIII). PIII is a lower-cost implantation technique than traditional beam line implantation due to its simpler design, lower operating costs, and ability to run high doses (1E14-1E18 cm-2) at low ion energies (20 eV-10 keV). These benefits make PIII ideal for high throughput production of patterned passivated contacts, where high-dose, low-energy implantations are made into thin (20-200 nm) a-Si layers instead of into the wafer itself. For this work symmetric passivated contact test structures (~100 nm thick) grown on n-Cz wafers with pH3 PIII doping gave implied open circuit voltage (iVoc) values of 730 mV with Jo values of 2 fA/cm2. Samples doped with B2H6 gave iVoc values of 690 mV and Jo values of 24 fA/cm2, outperforming BF3 doping, which gave iVoc values in the 660-680 mV range. Samples were further characterized by SIMS, photoluminescence, TEM, EELS, and post-metallization TLM to reveal micro- and macro-scopic structural, chemical and electrical information.

  13. Pyogenic Granuloma/Peripheral Giant-Cell Granuloma Associated with Implants

    Science.gov (United States)

    Jané-Salas, Enric; Albuquerque, Rui; Font-Muñoz, Aura; González-Navarro, Beatríz; Estrugo Devesa, Albert; López-López, Jose

    2015-01-01

    Introduction. Pyogenic granuloma (PG) and peripheral giant-cell granuloma (PGCG) are two of the most common inflammatory lesions associated with implants; however, there is no established pathway for treatment of these conditions. This paper aims to illustrate the successful treatment of PG and PGCG and also report a systematic review of the literature regarding the various treatments proposed. Methods. To collect relevant information about previous treatments for PG and PGCG involving implants we carried out electronic searches of publications with the key words “granuloma”, “oral”, and “implants” from the last 15 years on the databases Pubmed, National Library of Medicine's Medline, Scielo, Scopus, and Cochrane Library. Results. From the electronic search 16 case reports were found showing excision and curettage as the main successful treatment. As no clinical trials or observational studies were identified the authors agreed to present results from a review perspective. Conclusion. This is the largest analysis of PG and PGCG associated with implants published to date. Our review would suggest that PGCG associated with implants appears to have a more aggressive nature; however the level of evidence is very limited. Further cohort studies with representative sample sizes and standard outcome measures are necessary for better understanding of these conditions. PMID:26697068

  14. Squamous cell carcinoma and dental implants: A systematic review of case reports

    OpenAIRE

    Jeelani, S.; Rajkumar, E.; Mary, G. Geena; Khan, Parvez Ahmad; Gopal, Harish; Roy, Soumya; Maheswaran, T.; Anand, B.

    2015-01-01

    Cancer is one of the leading causes of death world-wide. Apart from the most common etiopathological factors related to cancer, at times very rare causes such as irritant or foreign body induced carcinogenesis is not to be overlooked. To systematically review case reports concerned with the association between dental implants and oral squamous cell carcinoma. A Medline (PubMed), Cochrane database, and Google Scholar search was conducted of dental article published in English related to case r...

  15. Changes of the intestinal endocrine cells in the C57BL/6 mouse after implantation of murine lung carcinoma (3LL): An immunohistochemical quantitative study

    Institute of Scientific and Technical Information of China (English)

    Sae-Kwang Ku; Seung-Kyoo Seong; Dae-Young Kim; Hyeung-Sik Lee; Jong-Dae Kim; Hae-Yun Choi; Bu-Il Seo; Jae-Hyun Lee

    2005-01-01

    AIM: To study the distributions and frequencies of intestinal endocrine cells in the C57BL/6 mouse with immunohistochemical method using seven types of specific antisera against chromogranin A (CGA), serotonin,somatostatin, glucagons, gastrin, cholecystokinin (CCK)-8 and human pancreatic polypeptide (hPP) after abdominal subcutaneous implantation of murine lung carcinoma (3LL).METHODS: The experimental animals were divided into two groups, one is non-implanted Sham and the other is 3LL-implanted group. Samples were collected from six regions of intestinal tract at 28th d after implantation of 3LL cells (1×105 cell/mouse).RESULTS: In this study, five types of immunoreactive (IR) cells were identified except for gastrin and hPP. The regional distributions of the intestinal endocrine cells in the 3LL-implanted group were similar to those of the non-implanted Sham. However, significant decreases of IR cells were detected in 3LL-implanted group compared to those of non-implanted Sham. CGA- and serotonin-IR cells significantly decreased in 3LL-implanted groups compared to that of non-implanted Sham. Somatostatin-IR cells in the jejunum and ileum and CCK-8-IR cells in the jejunum of 3LL-implanted groups significantly decreased compared to that of non-implanted Sham. In addition,glucagon-IR cells were restricted to the ileum and colon of non-implanted Sham.CONCLUSION: Implantation of tumor cell mass (3LL)induced severe quantifiable changes of intestinal endocrine cell density and the abnormality in density of intestinal endocrine cells may contribute to the development of gastrointestinal symptoms such as anorexia and indigestion, frequently encountered in patients with cancer.

  16. Biofuels Baseline 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; Koper, M.; Berndes, G.; Englund, O.; Diaz-Chavez, R.; Kunen, E.; Walden, D.

    2011-10-15

    The European Union is promoting the use of biofuels and other renewable energy in transport. In April 2009, the Renewable Energy Directive (2009/28/EC) was adopted that set a 10% target for renewable energy in transport in 2020. The directive sets several requirements to the sustainability of biofuels marketed in the frame of the Directive. The Commission is required to report to the European Parliament on a regular basis on a range of sustainability impacts resulting from the use of biofuels in the EU. This report serves as a baseline of information for regular monitoring on the impacts of the Directive. Chapter 2 discusses the EU biofuels market, the production and consumption of biofuels and international trade. It is derived where the feedstock for EU consumed biofuels originally come from. Chapter 3 discusses the biofuel policy framework in the EU and major third countries of supply. It looks at various policy aspects that are relevant to comply with the EU sustainability requirements. Chapter 4 discusses the environmental and social sustainability aspects associated with EU biofuels and their feedstock. Chapter 5 discusses the macro-economic effects that indirectly result from increased EU biofuels consumption, on commodity prices and land use. Chapter 6 presents country factsheets for main third countries that supplied biofuels to the EU market in 2008.

  17. Limits to biofuels

    Directory of Open Access Journals (Sweden)

    Johansson S.

    2013-06-01

    Full Text Available Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays’ use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years’ agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2–6000TWh (biogas from residues and waste and ethanol from woody biomass in the more optimistic cases.

  18. p-Type Quasi-Mono Silicon Solar Cell Fabricated by Ion Implantation

    Directory of Open Access Journals (Sweden)

    Chien-Ming Lee

    2013-01-01

    Full Text Available The p-type quasi-mono wafer is a novel type of silicon material that is processed using a seed directional solidification technique. This material is a promising alternative to traditional high-cost Czochralski (CZ and float-zone (FZ material. Here, we evaluate the application of an advanced solar cell process featuring a novel method of ion implantation on p-type quasi-mono silicon wafer. The ion implantation process has simplified the normal industrial process flow by eliminating two process steps: the removal of phosphosilicate glass (PSG and the junction isolation process that is required after the conventional thermal POCl3 diffusion process. Moreover, the good passivation performance of the ion implantation process improves Voc. Our results show that, after metallization and cofiring, an average cell efficiency of 18.55% can be achieved using 156 × 156 mm p-type quasi-mono silicon wafer. Furthermore, the absolute cell efficiency obtained using this method is 0.47% higher than that for the traditional POCl3 diffusion process.

  19. Hydrogel limits stem cell dispersal in the deaf cochlea: implications for cochlear implants

    Science.gov (United States)

    Nayagam, Bryony A.; Backhouse, Steven S.; Cimenkaya, Cengiz; Shepherd, Robert K.

    2012-12-01

    Auditory neurons provide the critical link between a cochlear implant and the brain in deaf individuals, therefore their preservation and/or regeneration is important for optimal performance of this neural prosthesis. In cases where auditory neurons are significantly depleted, stem cells (SCs) may be used to replace the lost population of neurons, thereby re-establishing the critical link between the periphery (implant) and the brain. For such a therapy to be therapeutically viable, SCs must be differentiated into neurons, retained at their delivery site and damage caused to the residual auditory neurons minimized. Here we describe the transplantation of SC-derived neurons into the deaf cochlea, using a peptide hydrogel to limit their dispersal. The described approach illustrates that SCs can be delivered to and are retained within the basal turn of the cochlea, without a significant loss of endogenous auditory neurons. In addition, the tissue response elicited from this surgical approach was restricted to the surgical site and did not extend beyond the cochlear basal turn. Overall, this approach illustrates the feasibility of targeted cell delivery into the mammalian cochlea using hydrogel, which may be useful for future cell-based transplantation strategies, for combined treatment with a cochlear implant to restore function.

  20. Combining 3-dimensional degradable electrostatic spinning scaffold and dental follicle cells to build peri-implant periodontium

    Directory of Open Access Journals (Sweden)

    Ximu Zhang

    2013-01-01

    Full Text Available Introduction: Some inevitable problems, such as concentrated bite force and lacked ability of self-renewal, are proved to be the major challenge in the management of implants failures. Thus, it is meaningful to find an ideal dental implant harboring its own peri-implant periodontium, just as the natural teeth. Various studies attempted to reconstruct the periodontium around implants, but unfortunately, it was previously revealed that the artificial periodotium around implants was just a wilderness of fibers, while without the physiological function of natural periodontium, like sensory and homeostatic. The Hypothesis: In this paper, we propose a hypothesis that a modified three-dimensional scaffold with reconstructed peri-implant tissues can be a network for stem cells differentiation. After seeded on the scaffold, stem cells produce various growth factors and differentiate to different orientations in places necessary. This hypothesis, if proven to be valid, will offer a novel and effective therapy for the restoration of missing teeth by implant. Evaluation of the Hypothesis: The scaffold involves three different tissues. Though degradation rate of electrospinning scaffold is under control, its degradation rate should be in consistent with the generation of three tissues. Therefore, the relative experiments are necessary to define the best rate of degradation. Further verification is necessary to check whether the rebuilt cementum, bone and periodontium are strong enough to keep the implant stable and maintain its function.

  1. Search for Chemically Defined Culture Medium to Assist Initial Regeneration of Diseased Renal Parenchyma After Stem/Progenitor Cell Implantation

    OpenAIRE

    Minuth WW; Denk L; Gruber M

    2013-01-01

    Before an intended implantation stem/progenitor cells are usually kept in the beneficial atmosphere of a selected culture medium. However, after implantation the situation is drastically changing for them. Yet stem/progenitor cells must stand the harmful fluid environment within a diseased organ. In this coherence it is unknown, to which degree alterations in molecular composition of interstitial fluid can influence the initial regeneration of parenchyma. To obtain first ins...

  2. Enhanced Survival with Implantable Scaffolds That Capture Metastatic Breast Cancer Cells In Vivo.

    Science.gov (United States)

    Rao, Shreyas S; Bushnell, Grace G; Azarin, Samira M; Spicer, Graham; Aguado, Brian A; Stoehr, Jenna R; Jiang, Eric J; Backman, Vadim; Shea, Lonnie D; Jeruss, Jacqueline S

    2016-09-15

    The onset of distant organ metastasis from primary breast cancer marks the transition to a stage IV diagnosis. Standard imaging modalities often detect distant metastasis when the burden of disease is high, underscoring the need for improved methods of detection to allow for interventions that would impede disease progression. Here, microporous poly(ε-caprolactone) scaffolds were developed that capture early metastatic cells and thus serve as a sentinel for early detection. These scaffolds were used to characterize the dynamic immune response to the implant spanning the acute and chronic foreign body response. The immune cell composition had stabilized at the scaffold after approximately 1 month and changed dramatically within days to weeks after tumor inoculation, with CD11b(+)Gr1(hi)Ly6C(-) cells having the greatest increase in abundance. Implanted scaffolds recruited metastatic cancer cells that were inoculated into the mammary fat pad in vivo, which also significantly reduced tumor burden in the liver and brain. Additionally, cancer cells could be detected using a label-free imaging modality termed inverse spectroscopic optical coherence tomography, and we tested the hypothesis that subsequent removal of the primary tumor after early detection would enhance survival. Surgical removal of the primary tumor following cancer cell detection in the scaffold significantly improved disease-specific survival. The enhanced disease-specific survival was associated with a systemic reduction in the CD11b(+)Gr1(hi)Ly6C(-) cells as a consequence of the implant, which was further supported by Gr-1 depletion studies. Implementation of the scaffold may provide diagnostic and therapeutic options for cancer patients in both the high-risk and adjuvant treatment settings. Cancer Res; 76(18); 5209-18. ©2016 AACR. PMID:27635043

  3. Antitumor effects of interleukin-18 gene-modified hepatocyte cell line on implanted liver carcinoma

    Institute of Scientific and Technical Information of China (English)

    冷建杭; 张立煌; 姚航平; 曹雪涛

    2003-01-01

    Objective To investigate the antitumor effects of intrasplenically transplanted interleukin-18 (IL-18) gene-modified hepatocytes on murine implanted liver carcinoma.Methods Embryonic murine hepatocyte cell line (BNL-CL2) was transfected with a recombinant adenovirus encoding IL-18 and used as delivery cells for IL-18 gene transfer. Two cell lines, BNL-LacZ and BNL-CL2, were used as controls. One week after intrasplenic injection of C26 cells (colon carcinoma line), tumor-bearing syngeneic mice underwent the intrasplenic transplantation of IL-18 gene-modified hepatocyte cell line and were divided into treatment group (BNL IL-18) and control groups (BNL-LacZ and BNL-CL2 ). Two weeks later, the serum levels of IL-18, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and nitric oxide (NO) in the implanted liver carcinoma-bearing mice were assayed, the cytotoxicity of murine splenic cytotoxic T-lymphocytes (CTLs) was measured, and the morphology of the hepatic tumors was studied to evaluate the antitumor effects of the approach. Results In the treatment group, the serum levels of IL-18, IFN-γ, TNF-α and NO increased significantly. The splenic CTL activity increased markedly (P<0.01) , accompanied by a substantial decrease in tumor volume and the percentage of tumor area and prolonged survival of liver carcinomo-being mice.Conclusions In vivo IL-18 expression by ex vivo manipulated cells with IL-18 recombinant adenovirus is able to exert potent antitumor effects by inducing a predominantly T-cell-helper type 1 (Th1) immune response. Intrasplenic transplantation of adenovirus-mediated IL-18 gene-modified hepatocytes could be used as a targeting treatment for implanted liver carcinoma.

  4. Surface-induced modulation of human mesenchymal progenitor cells. An in vitro model for early implant integration.

    Science.gov (United States)

    Baschong, Werner; Jaquiery, Claude; Martin, Ivan; Lambrecht, Thomas J

    2007-01-01

    Clinical experience indicates that the surface architecture of dental implants has an important impact on their integration. This has been related to the finding that differentially treated substrates can modulate the expression of osteogenic markers in various bone-related cell lines and primary cells. Here, we investigated the influence of surface architecture on the differentiation of human mesenchymal progenitor cells (HMPC) from adult bone marrow, i. e. the cells likely involved in initial bone synthesis at the bone-implant interface. Cells were seeded on machine surfaced (MS) or sandblasted/acid etched (SE) titanium discs in agarose-coated dishes, and on polystyrene (PS) controls. On all substrates cell densities did not change between days 7 and 14. Cell numbers were higher on SE, likely due to increased attachment to the rougher material. Alkaline phosphatase activity (ALP) was similar on all substrates, whereas mRNA expression of bone sialoprotein (BSP) at day 14 was about tenfold higher on SE (p < 0.05%). The SE-related increase of BSP in progenitor cells indicates an earlier differentiation of immigrated cells and could thus explain earlier implant integration and shorter time to functional loading observed in the clinic. The in vitro model and BSP quantification could be used to screen for changes in osteogenic cell differentiation induced by specific implant surfaces, with potential relevance on the prediction of bone-implant integration. PMID:17966928

  5. Layer-by-layer self-assembled osmium polymer-mediated laccase oxygen cathodes for biofuel cells: the role of hydrogen peroxide.

    Science.gov (United States)

    Scodeller, Pablo; Carballo, Romina; Szamocki, Rafael; Levin, Laura; Forchiassin, Flavia; Calvo, Ernesto J

    2010-08-18

    High potential purified Trametes trogii laccase has been studied as a biocatalyst for oxygen cathodes composed of layer-by-layer self-assembled thin films by sequential immersion of mercaptopropane sulfonate-modified Au electrode surfaces in solutions containing laccase and osmium-complex bound to poly(allylamine), (PAH-Os). The polycation backbone carries the Os redox relay, and the polyanion is the enzyme adsorbed from a solution of a suitable pH so that the protein carries a net negative charge. Enzyme thin films were characterized by quartz crystal microbalance, ellipsometry, cyclic voltammetry, and oxygen reduction electrocatalysis under variable oxygen partial pressures with a rotating disk electrode. New kinetic evidence relevant to biofuel cells is presented on the detection of traces of H(2)O(2), intermediate in the O(2) reduction, with scanning electrochemical microscopy (SECM). Furthermore the inhibitory effect of peroxide on the biocatalytic current resulted in abnormal current dependence on the O(2) partial pressure and peak shape with hysteresis in the polarization curves under stagnant conditions, which is offset upon stirring with the RDE. The new kinetic evidence reported in the present work is very relevant for the operation of biofuel cells under stagnant conditions of O(2) mass transport. PMID:20698679

  6. Identification, Characterization, and Expression Analysis of Cell Wall Related Genes in Sorghum bicolor (L.) Moench, a Food, Fodder, and Biofuel Crop

    Science.gov (United States)

    Rai, Krishan M.; Thu, Sandi W.; Balasubramanian, Vimal K.; Cobos, Christopher J.; Disasa, Tesfaye; Mendu, Venugopal

    2016-01-01

    Biomass based alternative fuels offer a solution to the world's ever-increasing energy demand. With the ability to produce high biomass in marginal lands with low inputs, sorghum has a great potential to meet second-generation biofuel needs. Despite the sorghum crop importance in biofuel and fodder industry, there is no comprehensive information available on the cell wall related genes and gene families (biosynthetic and modification). It is important to identify the cell wall related genes to understand the cell wall biosynthetic process as well as to facilitate biomass manipulation. Genome-wide analysis using gene family specific Hidden Markov Model of conserved domains identified 520 genes distributed among 20 gene families related to biosynthesis/modification of various cell wall polymers such as cellulose, hemicellulose, pectin, and lignin. Chromosomal localization analysis of these genes revealed that about 65% of cell wall related genes were confined to four chromosomes (Chr. 1–4). Further, 56 tandem duplication events involving 169 genes were identified in these gene families which could be associated with expansion of genes within families in sorghum. Additionally, we also identified 137 Simple Sequence Repeats related to 112 genes and target sites for 10 miRNAs in some important families such as cellulose synthase, cellulose synthase-like, and laccases, etc. To gain further insight into potential functional roles, expression analysis of these gene families was performed using publically available data sets in various tissues and under abiotic stress conditions. Expression analysis showed tissue specificity as well as differential expression under abiotic stress conditions. Overall, our study provides a comprehensive information on cell wall related genes families in sorghum which offers a valuable resource to develop strategies for altering biomass composition by plant breeding and genetic engineering approaches.

  7. Identification, Characterization, and Expression Analysis of Cell Wall Related Genes in Sorghum bicolor (L.) Moench, a Food, Fodder, and Biofuel Crop

    Science.gov (United States)

    Rai, Krishan M.; Thu, Sandi W.; Balasubramanian, Vimal K.; Cobos, Christopher J.; Disasa, Tesfaye; Mendu, Venugopal

    2016-01-01

    Biomass based alternative fuels offer a solution to the world's ever-increasing energy demand. With the ability to produce high biomass in marginal lands with low inputs, sorghum has a great potential to meet second-generation biofuel needs. Despite the sorghum crop importance in biofuel and fodder industry, there is no comprehensive information available on the cell wall related genes and gene families (biosynthetic and modification). It is important to identify the cell wall related genes to understand the cell wall biosynthetic process as well as to facilitate biomass manipulation. Genome-wide analysis using gene family specific Hidden Markov Model of conserved domains identified 520 genes distributed among 20 gene families related to biosynthesis/modification of various cell wall polymers such as cellulose, hemicellulose, pectin, and lignin. Chromosomal localization analysis of these genes revealed that about 65% of cell wall related genes were confined to four chromosomes (Chr. 1–4). Further, 56 tandem duplication events involving 169 genes were identified in these gene families which could be associated with expansion of genes within families in sorghum. Additionally, we also identified 137 Simple Sequence Repeats related to 112 genes and target sites for 10 miRNAs in some important families such as cellulose synthase, cellulose synthase-like, and laccases, etc. To gain further insight into potential functional roles, expression analysis of these gene families was performed using publically available data sets in various tissues and under abiotic stress conditions. Expression analysis showed tissue specificity as well as differential expression under abiotic stress conditions. Overall, our study provides a comprehensive information on cell wall related genes families in sorghum which offers a valuable resource to develop strategies for altering biomass composition by plant breeding and genetic engineering approaches. PMID:27630645

  8. Identification, Characterization, and Expression Analysis of Cell Wall Related Genes in Sorghum bicolor (L.) Moench, a Food, Fodder, and Biofuel Crop.

    Science.gov (United States)

    Rai, Krishan M; Thu, Sandi W; Balasubramanian, Vimal K; Cobos, Christopher J; Disasa, Tesfaye; Mendu, Venugopal

    2016-01-01

    Biomass based alternative fuels offer a solution to the world's ever-increasing energy demand. With the ability to produce high biomass in marginal lands with low inputs, sorghum has a great potential to meet second-generation biofuel needs. Despite the sorghum crop importance in biofuel and fodder industry, there is no comprehensive information available on the cell wall related genes and gene families (biosynthetic and modification). It is important to identify the cell wall related genes to understand the cell wall biosynthetic process as well as to facilitate biomass manipulation. Genome-wide analysis using gene family specific Hidden Markov Model of conserved domains identified 520 genes distributed among 20 gene families related to biosynthesis/modification of various cell wall polymers such as cellulose, hemicellulose, pectin, and lignin. Chromosomal localization analysis of these genes revealed that about 65% of cell wall related genes were confined to four chromosomes (Chr. 1-4). Further, 56 tandem duplication events involving 169 genes were identified in these gene families which could be associated with expansion of genes within families in sorghum. Additionally, we also identified 137 Simple Sequence Repeats related to 112 genes and target sites for 10 miRNAs in some important families such as cellulose synthase, cellulose synthase-like, and laccases, etc. To gain further insight into potential functional roles, expression analysis of these gene families was performed using publically available data sets in various tissues and under abiotic stress conditions. Expression analysis showed tissue specificity as well as differential expression under abiotic stress conditions. Overall, our study provides a comprehensive information on cell wall related genes families in sorghum which offers a valuable resource to develop strategies for altering biomass composition by plant breeding and genetic engineering approaches. PMID:27630645

  9. Biofuels, poverty, and growth

    DEFF Research Database (Denmark)

    Arndt, Channing; Benfica, Rui; Tarp, Finn;

    2010-01-01

    This paper assesses the implications of large-scale investments in biofuels for growth and income distribution. We find that biofuels investment enhances growth and poverty reduction despite some displacement of food crops by biofuels. Overall, the biofuel investment trajectory analyzed increases...... Mozambique's annual economic growth by 0.6 percentage points and reduces the incidence of poverty by about 6 percentage points over a 12-year phase-in period. Benefits depend on production technology. An outgrower approach to producing biofuels is more pro-poor, due to the greater use of unskilled labor...... and accrual of land rents to smallholders, compared with the more capital-intensive plantation approach. Moreover, the benefits of outgrower schemes are enhanced if they result in technology spillovers to other crops. These results should not be taken as a green light for unrestrained biofuels development...

  10. Biofuel goes underground

    Energy Technology Data Exchange (ETDEWEB)

    Tollinsky, Norm

    2011-09-15

    Kirkland Lake Gold, a gold producer, is switching to a blend of biofuel to power the mine's underground equipment. Kirkland Lake Gold is using a soy-based product which has several advantages: less expensive: for example, the soybean-based biofuel used by Kirkland Lake Gold is 10 cents a liter less expensive than diesel; cleaner: biofuel can reduce emissions by up to 80 per cent compared to conventional diesel; and safer: biofuel is safer than miner's diesel because it has a much higher flash point. Testing with soybean-based biofuel began in the early 90s but its price was too high at that time. The federal government's regulation of renewable fuel quotas has led to the better availability of biofuel now. The supply should be doubled to meet government quotas.

  11. Compartment-less Biofuel Cell: Fabricated with Pressed Graphite Pellets Incorporated Biocatalysts and Mediators as Bio-electrodes

    Institute of Scientific and Technical Information of China (English)

    Ding Shou-Nian; Dan Shan; Serge Cosnier

    2009-01-01

    @@ More recently,there has been an upsurge in research on enzymatic BFCs,due to their most intuitive application in the implantable power sources for mierobioeleetronics such as cardiac pacemaker~([1,2]).

  12. LCA of Transportation Biofuels

    OpenAIRE

    Adlam, Elisabeth

    2007-01-01

    An increasing need to find alternatives to fossil fuels, and a growing awareness of the global warming effect has resulted in substantial research and development on biofuels. Biofuels are being considered a potential substitution of petroleum based fuels in the transport sector.With this increasing interest in biofuels comes the need to establish the environmental effect of the fuels. Results from several life cycle assessments reviewed in this report show that there are some benefits of bio...

  13. Efficacy of a small cell-binding peptide coated hydroxyapatite substitute on bone formation and implant fixation in sheep

    DEFF Research Database (Denmark)

    Ding, Ming; Andreasen, Christina Møller; Dencker, Mads L.;

    2015-01-01

    Cylindrical critical size defects were created at the distal femoral condyles bilaterally of eight female adult sheep. Titanium implants with 2-mm concentric gaps were inserted and the gaps were filled with one of the four materials: allograft; a synthetic 15-amino acid cell-binding peptide coated...... hydroxyapatite (ABM/P-15); hydroxyapatite + βtricalciumphosphate+ Poly-Lactic-Acid (HA/βTCP-PDLLA); or ABM/P-15+HA/βTCP-PDLLA. After nine weeks, bone-implant blocks were harvested and sectioned for micro-CT scanning, push-out test, and histomorphometry. Significant bone formation and implant fixation could...... formation in concentric gap, and its enhancements on bone formation and implant fixation were at least as good as allograft. It is suggested that ABM/P-15 might be a good alternative biomaterial for bone implant fixation in this well-validated critical-size defect gap model in sheep. Nevertheless, future...

  14. Plasma immersion ion implantation of boron for ribbon silicon solar cells

    Directory of Open Access Journals (Sweden)

    Derbouz K.

    2013-09-01

    Full Text Available In this work, we report for the first time on the solar cell fabrication on n-type silicon RST (for Ribbon on Sacrificial Template using plasma immersion ion implantation. The experiments were also carried out on FZ silicon as a reference. Boron was implanted at energies from 10 to 15 kV and doses from 1015 to 1016 cm-2, then activated by a thermal annealing in a conventional furnace at 900 and 950 °C for 30 min. The n+ region acting as a back surface field was achieved by phosphorus spin-coating. The frontside boron emitter was passivated either by applying a 10 nm deposited SiOX plasma-enhanced chemical vapor deposition (PECVD or with a 10 nm grown thermal oxide. The anti-reflection coating layer formed a 60 nm thick SiNX layer. We show that energies less than 15 kV and doses around 5 × 1015 cm-2 are appropriate to achieve open circuit voltage higher than 590 mV and efficiency around 16.7% on FZ-Si. The photovoltaic performances on ribbon silicon are so far limited by the bulk quality of the material and by the quality of the junction through the presence of silicon carbide precipitates at the surface. Nevertheless, we demonstrate that plasma immersion ion implantation is very promising for solar cell fabrication on ultrathin silicon wafers such as ribbons.

  15. Plasma immersion ion implantation of boron for ribbon silicon solar cells

    Science.gov (United States)

    Derbouz, K.; Michel, T.; De Moro, F.; Spiegel, Y.; Torregrosa, F.; Belouet, C.; Slaoui, A.

    2013-09-01

    In this work, we report for the first time on the solar cell fabrication on n-type silicon RST (for Ribbon on Sacrificial Template) using plasma immersion ion implantation. The experiments were also carried out on FZ silicon as a reference. Boron was implanted at energies from 10 to 15 kV and doses from 1015 to 1016 cm-2, then activated by a thermal annealing in a conventional furnace at 900 and 950 °C for 30 min. The n+ region acting as a back surface field was achieved by phosphorus spin-coating. The frontside boron emitter was passivated either by applying a 10 nm deposited SiOX plasma-enhanced chemical vapor deposition (PECVD) or with a 10 nm grown thermal oxide. The anti-reflection coating layer formed a 60 nm thick SiNX layer. We show that energies less than 15 kV and doses around 5 × 1015 cm-2 are appropriate to achieve open circuit voltage higher than 590 mV and efficiency around 16.7% on FZ-Si. The photovoltaic performances on ribbon silicon are so far limited by the bulk quality of the material and by the quality of the junction through the presence of silicon carbide precipitates at the surface. Nevertheless, we demonstrate that plasma immersion ion implantation is very promising for solar cell fabrication on ultrathin silicon wafers such as ribbons.

  16. NREL biofuels program overview

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    The NREL Biofuels Program has been developing technology for conversion of biomass to transportation fuels with support from DOE Office of Transportation Technologies Biofuels System Program. This support has gone to both the National Renewable Energy Laboratory, and over 100 subcontractors in universities and industry. This overview will outline the value of the Biofuels development program to the Nation, the current status of the technology development, and what research areas still need further support and progress for the development of a biofuels industry in the US.

  17. A superhydrophilic titanium implant functionalized by ozone gas modulates bone marrow cell and macrophage responses.

    Science.gov (United States)

    Sunarso; Toita, Riki; Tsuru, Kanji; Ishikawa, Kunio

    2016-08-01

    Bone-forming cells and Mϕ play key roles in bone tissue repair. In this study, we prepared a superhydrophilic titanium implant functionalized by ozone gas to modulate osteoconductivity and inhibit inflammatory response towards titanium implants. After 24 h of ozone gas treatment, the water contact angle of the titanium surface became zero. XPS analysis revealed that hydroxyl groups were greatly increased, but carbon contaminants were largely decreased 24 h after ozone gas functionalization. Also, ozone gas functionalization did not alter titanium surface topography. Superhydrophilic titanium (O3-Ti) largely increased the aspect ratio, size and perimeter of cells when compared with untreated titanium (unTi). In addition, O3-Ti facilitated rat bone marrow derived MSCs differentiation and mineralization evidenced by greater ALP activity and bone-like nodule formation. Interestingly, O3-Ti did not affect RAW264.7 Mϕ proliferation. However, naive RAW264.7 Mϕ cultured on unTi produced a two-fold larger amount of TNFα than that on O3-Ti. Furthermore, O3-Ti greatly mitigated proinflammatory cytokine production, including TNFα and IL-6 from LSP-stimulated RAW264.7 Mϕ. These results demonstrated that a superhydrophilic titanium prepared by simple ozone gas functionalization successfully increased MSCs proliferation and differentiation, and mitigated proinflammatory cytokine production from both naive and LPS-stimulated Mϕ. This superhydrophilic surface would be useful as an endosseous implantable biomaterials and as a biomaterial for implantation into other tissues. PMID:27344451

  18. Biofunctionalization of conductive hydrogel coatings to support olfactory ensheathing cells at implantable electrode interfaces.

    Science.gov (United States)

    Hassarati, Rachelle T; Marcal, Helder; John, L; Foster, R; Green, Rylie A

    2016-05-01

    Mechanical discrepancies between conventional platinum (Pt) electrodes and neural tissue often result in scar tissue encapsulation of implanted neural recording and stimulating devices. Olfactory ensheathing cells (OECs) are a supportive glial cell in the olfactory nervous system which can transition through glial scar tissue while supporting the outgrowth of neural processes. It has been proposed that this function can be used to reconnect implanted electrodes with the target neural pathways. Conductive hydrogel (CH) electrode coatings have been proposed as a substrate for supporting OEC survival and proliferation at the device interface. To determine an ideal CH to support OECs, this study explored eight CH variants, with differing biochemical composition, in comparison to a conventional Pt electrodes. All CH variants were based on a biosynthetic hydrogel, consisting of poly(vinyl alcohol) and heparin, through which the conductive polymer (CP) poly(3,4-ethylenedioxythiophene) was electropolymerized. The biochemical composition was varied through incorporation of gelatin and sericin, which were expected to provide cell adherence functionality, supporting attachment, and cell spreading. Combinations of these biomolecules varied from 1 to 3 wt %. The physical, electrical, and biological impact of these molecules on electrode performance was assessed. Cyclic voltammetry and electrochemical impedance spectroscopy demonstrated that the addition of these biological molecules had little significant effect on the coating's ability to safely transfer charge. Cell attachment studies, however, determined that the incorporation of 1 wt % gelatin in the hydrogel was sufficient to significantly increase the attachment of OECs compared to the nonfunctionalized CH.

  19. Mesenchymal stem cell interaction with ultra-smooth nanostructured diamond for wear-resistant orthopaedic implants.

    Science.gov (United States)

    Clem, William C; Chowdhury, Shafiul; Catledge, Shane A; Weimer, Jeffrey J; Shaikh, Faheem M; Hennessy, Kristin M; Konovalov, Valery V; Hill, Michael R; Waterfeld, Alfred; Bellis, Susan L; Vohra, Yogesh K

    2008-01-01

    Ultra-smooth nanostructured diamond (USND) can be applied to greatly increase the wear resistance of orthopaedic implants over conventional designs. Herein we describe surface modification techniques and cytocompatibility studies performed on this new material. We report that hydrogen (H)-terminated USND surfaces supported robust mesenchymal stem cell (MSC) adhesion and survival, while oxygen- (O) and fluorine (F)-terminated surfaces resisted cell adhesion, indicating that USND can be modified to either promote or prevent cell/biomaterial interactions. Given the favorable cell response to H-terminated USND, this material was further compared with two commonly used biocompatible metals, titanium alloy (Ti-6Al-4V) and cobalt chrome (CoCrMo). MSC adhesion and proliferation were significantly improved on USND compared with CoCrMo, although cell adhesion was greatest on Ti-6Al-4V. Comparable amounts of the pro-adhesive protein, fibronectin, were deposited from serum on the three substrates. Finally, MSCs were induced to undergo osteoblastic differentiation on the three materials, and deposition of a mineralized matrix was quantified. Similar amounts of mineral were deposited onto USND and CoCrMo, whereas mineral deposition was slightly higher on Ti-6Al-4V. When coupled with recently published wear studies, these in vitro results suggest that USND has the potential to reduce debris particle release from orthopaedic implants without compromising osseointegration. PMID:18490051

  20. 表面展示工程在酒精发酵方面的应用%Cell Surface Engineering of Yeast Application in Biofuel

    Institute of Scientific and Technical Information of China (English)

    李小冬; 杨娜; 万永虎; 吴嘉; 贾东晨; 乔敏

    2012-01-01

    目前,表面展示工程作为一种新型的极具应用潜力的技术手段,在组合文库的筛选、蛋白质工程、燃料乙醇的生产和生物修复等技术中已经扮演了极其重要的角色.介绍了表面展示工程在酒精发酵方面的应用,重点阐述酒精发酵过程中酶类展示原理和全细胞催化的应用前景.%The research of surface display has become a powerful and active topic, which has played a critical role from combinatorial library screening and protein engineering to biofuels production and bioremediation. Surface display technology and its application in biofuel has been described, research on the mechanism about the enzymes of fermentation process and application prospect of whole-cell biocalalysls were also reviewed.

  1. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    Science.gov (United States)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-03-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently.

  2. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    Science.gov (United States)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-01-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently. PMID:26955791

  3. Spatially Controlled Delivery of siRNAs to Stem Cells in Implants Generated by Multi-Component Additive Manufacturing

    DEFF Research Database (Denmark)

    Andersen, Morten Østergaard; Le, Dang Quang Svend; Chen, Muwan;

    2013-01-01

    Additive manufacturing is a promising technique in tissue engineering, as it enables truly individualized implants to be made to fit a particular defect. As previously shown, a feasible strategy to produce complex multicellular tissues is to deposit different small interfering RNA (siRNA) in porous...... implants that are subsequently sutured together. In this study, an additive manufacturing strategy to deposit carbohydrate hydrogels containing different siRNAs is applied into an implant, in a spatially controlled manner. When the obtained structures are seeded with mesenchymal stem (stromal) cells......, the selected siRNAs are delivered to the cells and induces specific and localized gene silencing. Here, it is demonstrated how to replicate part of a patient's spinal cord from a computed tomography scan, using an additive manufacturing technique to produce an implant with compartmentalized si...

  4. MR imaging features of gadofluorine-labeled matrix-associated stem cell implants in cartilage defects.

    Directory of Open Access Journals (Sweden)

    Hossein Nejadnik

    Full Text Available OBJECTIVES: The purpose of our study was to assess the chondrogenic potential and the MR signal effects of GadofluorineM-Cy labeled matrix associated stem cell implants (MASI in pig knee specimen. MATERIALS AND METHODS: Human mesenchymal stem cells (hMSCs were labeled with the micelle-based contrast agent GadofluorineM-Cy. Ferucarbotran-labeled hMSCs, non-labeled hMSCs and scaffold only served as controls. Chondrogenic differentiation was induced and gene expression and histologic evaluation were performed. The proportions of spindle-shaped vs. round cells of chondrogenic pellets were compared between experimental groups using the Fisher's exact test. Labeled and unlabeled hMSCs and chondrocytes in scaffolds were implanted into cartilage defects of porcine femoral condyles and underwent MR imaging with T1- and T2-weighted SE and GE sequences. Contrast-to-noise ratios (CNR between implants and adjacent cartilage were determined and analyzed for significant differences between different experimental groups using the Kruskal-Wallis test. Significance was assigned for p0.017. However, hMSC differentiation into chondrocytes was superior for unlabeled and GadofluorineM-Cy-labeled cells compared with Ferucarbotran-labeled cells, as evidenced by a significantly higher proportion of spindle cells in chondrogenic pellets (p<0.05. GadofluorineM-Cy-labeled hMSCs and chondrocytes showed a positive signal effect on T1-weighted images and a negative signal effect on T2-weighted images while Ferucarbotran-labeled cells provided a negative signal effect on all sequences. CNR data for both GadofluorineM-Cy-labeled and Ferucarbotran-labeled hMSCs were significantly different compared to unlabeled control cells on T1-weighted SE and T2*-weighted MR images (p<0.017. CONCLUSION: hMSCs can be labeled by simple incubation with GadofluorineM-Cy. The labeled cells provide significant MR signal effects and less impaired chondrogenesis compared to Ferucarbotran-labeled h

  5. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant.

    Science.gov (United States)

    Folcher, Marc; Oesterle, Sabine; Zwicky, Katharina; Thekkottil, Thushara; Heymoz, Julie; Hohmann, Muriel; Christen, Matthias; Daoud El-Baba, Marie; Buchmann, Peter; Fussenegger, Martin

    2014-01-01

    Synthetic devices for traceless remote control of gene expression may provide new treatment opportunities in future gene- and cell-based therapies. Here we report the design of a synthetic mind-controlled gene switch that enables human brain activities and mental states to wirelessly programme the transgene expression in human cells. An electroencephalography (EEG)-based brain-computer interface (BCI) processing mental state-specific brain waves programs an inductively linked wireless-powered optogenetic implant containing designer cells engineered for near-infrared (NIR) light-adjustable expression of the human glycoprotein SEAP (secreted alkaline phosphatase). The synthetic optogenetic signalling pathway interfacing the BCI with target gene expression consists of an engineered NIR light-activated bacterial diguanylate cyclase (DGCL) producing the orthogonal second messenger cyclic diguanosine monophosphate (c-di-GMP), which triggers the stimulator of interferon genes (STING)-dependent induction of synthetic interferon-β promoters. Humans generating different mental states (biofeedback control, concentration, meditation) can differentially control SEAP production of the designer cells in culture and of subcutaneous wireless-powered optogenetic implants in mice. PMID:25386727

  6. Implantation of stem cells in the treatment of acute myocardial infarction

    International Nuclear Information System (INIS)

    A lot of investigations demonstrate the possibility of regeneration of the cardiomiocity from stem cells. A longitudinal, prospective, observational study was conducted in patients with acute myocardial infarction in CIMEQ'S hospital since January 2004 up to January 2007 with the purpose to evaluate the security and efficacy of the intracoronary transfer of autologous bone-marrow-cells during acute myocardial infarction. Patients within seven days of the onset of symptoms of a first ST-segment elevation myocardial infarction, and between 18 and 70 years old. The patients are evaluated previous to apply the procedure and 6 months for clinic, electrocardiography, echocardiography, ergometry and coronariography. The drug eluting stent is placed on the culprit lesion and the bone marrow is stimulated with granulocyte colony-stimulating factor (G-CSF). The mononuclear's cells which are obtained have been implanted using the intracoronary way. The implantation by means of the intracoronary way of stem cells, after of stimulation of bone marrow during acute myocardial infarction demonstrated to be an effective and safety procedure

  7. Human eccrine sweat gland cells reconstitute polarized spheroids when subcutaneously implanted with Matrigel in nude mice.

    Science.gov (United States)

    Li, Haihong; Zhang, Mingjun; Chen, Liyun; Li, Xuexue; Zhang, Bingna

    2016-10-01

    Increasing evidence indicates that maintenance of cell polarity plays a pivotal role in the regulation of glandular homeostasis and function. We examine the markers for polarity at different time points to investigate the formation of cell polarity during 3D reconstitution of eccrine sweat glands. Mixtures of eccrine sweat gland cells and Matrigel were injected subcutaneously into the inguinal regions of nude mice. At 2, 3, 4, 5 and 6 weeks post-implantation, Matrigel plugs were removed and immunostained for basal collagen IV, lateral β-catenin, lateroapical ZO-1 and apical F-actin. The results showed that the cell polarity of the spheroids appeared in sequence. Formation of basal polarity was prior to lateral, apical and lateroapical polarity. Collagen IV was detected basally at 2 weeks, β-catenin laterally and ZO-1 lateroapically at 3 weeks, and F-actin apically at 4 weeks post-implantation. At week 5 and week 6, the localization and the positive percentage of collagen IV, β-catenin, ZO-1 or F-actin in spheroids was similar to that in native eccrine sweat glands. We conclude that the reconstituted 3D eccrine sweat glands are functional or potentially functional. PMID:27492422

  8. Mga is essential for the survival of pluripotent cells during peri-implantation development.

    Science.gov (United States)

    Washkowitz, Andrew J; Schall, Caroline; Zhang, Kun; Wurst, Wolfgang; Floss, Thomas; Mager, Jesse; Papaioannou, Virginia E

    2015-01-01

    The maintenance and control of pluripotency is of great interest in stem cell biology. The dual specificity T-box/basic-helix-loop-helix-zipper transcription factor Mga is expressed in the pluripotent cells of the inner cell mass (ICM) and epiblast of the peri-implantation mouse embryo, but its function has not been investigated previously. Here, we use a loss-of-function allele and RNA knockdown to demonstrate that Mga depletion leads to the death of proliferating pluripotent ICM cells in vivo and in vitro, and the death of embryonic stem cells (ESCs) in vitro. Additionally, quiescent pluripotent cells lacking Mga are lost during embryonic diapause. Expression of Odc1, the rate-limiting enzyme in the conversion of ornithine into putrescine in the synthesis of polyamines, is reduced in Mga mutant cells, and the survival of mutant ICM cells as well as ESCs is rescued in culture by the addition of exogenous putrescine. These results suggest a mechanism whereby Mga influences pluripotent cell survival through regulation of the polyamine pool in pluripotent cells of the embryo, whether they are in a proliferative or quiescent state. PMID:25516968

  9. Nickel-phendione complex covalently attached onto carbon nanotube/cross linked glucose dehydrogenase as bioanode for glucose/oxygen compartment-less biofuel cell

    Science.gov (United States)

    Korani, Aazam; Salimi, Abdollah; Hadadzadeh, Hasan

    2015-05-01

    Here, [Ni(phendion) (phen)]Cl2 complex, (phendion and phen are 1,10-phenanthroline-5,6-dione and 5-amino-1, 10-phenanthrolin) covalently attached onto carboxyl functionalized multi walls carbon nanotube modified glassy carbon electrode (GCE/MWCNTs-COOH) using solid phase interactions and combinatorial approaches.The attached [Ni(phendion) (phen)]Cl2 complex displays a surface controlled electrode process and it acts as an effective redox mediator for electrocatalytic oxidation of dihydronicotinamide adenine dinucleotide (NADH) at reduced overpotentials. With co-immobilization of glucose dehydrogenase enzyme (GDH) by crosslinking an effective biocatalyst for glucose oxidation designed. The onset potential and current density are -0.1 V versus Ag/AgCl electrode and 0.550 mA cm-2, which indicate the applicability of the proposed system as an efficient bioanode for biofuel cell (BFC) design. A GCE/MWCNTs modified with electrodeposited gold nanoparticles (AuNPs) as a platform for immobilization of bilirubin oxidase (BOD) and the prepared GCE/MWCNTs/AuNPs/BOD biocathode exhibits an onset potential of 0.56 V versus Ag/AgCl. The performance of the fabricated bioanode and biocathode in a membraneless enzyme based glucose/O2 biofuel cell is evaluated. The open circuit voltage of the cell and maximum current density are 520 mV and 0.233 mA cm-2, respectively, while maximum power density of 40 μWcm-2 achieves at voltage of 280 mV with stable output power after 24 h continues operation.

  10. Growth of Bone Marrow Derived Osteoblast-Like Cells into Coral Implant Scaffold: Preliminary Study on Malaysian Coral

    Directory of Open Access Journals (Sweden)

    K. A. AL-Salihi

    2009-01-01

    Full Text Available Problem statement: Biomaterial fabrication in Malaysia started as a consequence of the demand for cheaper implant materials. Various biomaterials have been developed utilizing local resources like Malaysian coral. Locally processed Malaysian coral need to be complemented with proper evaluation and testing including toxicology, biocompatibility, mechanical properties, physicochemical characterization and in vivo testing. The present study was carried out to assess natural coral of porites species as scaffold combined with in vitro expanded Bone Marrow Derived Osteoblast-Like cells (BM-DOL, in order to develop a tissue-engineered bone graft in a rat model. Approach: Coral was used in a block shape with a dimension of 10 mm length × 5 mm width × 5 mm thickness. BM-DOL cells were seeded into porous coral scaffold in a density of 5×106 mL-1. After 7 days of in vitro incubation in osteogenic medium, one block was processed for light (LM and Scanning Electron Microscopy (SEM observations while the other blocks were implanted subcutaneously in the back of 5 weeks-old Sprague-Dawely rats for 3 months. Coral blocks without cells were implanted as a control. The implants harvested and processed for gross inspection, histological and scanning electron microscopy observations. Results: Both LM and SEM showed attachment of well arrangement multilayer cells inside the pores of in vitro seeded coral scaffolds. Gross inspection of all in vivo coral-cell complexes implants revealed vascularized like bone tissue formation. Histological sections revealed mature bone formation occurred in the manner resemble intramembraneous bone formation. SEM observations revealed multi-layer cellular proliferation with abundant collagen covered the surface of coral implants. Control group showed resorbed coral block. Conclusion: This study demonstrated that Malaysian coral can be use as a suitable scaffold material for delivering bone marrow mesenchymal

  11. Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Testrich, H., E-mail: holger.testrich@uni-greifswald.de [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany); Rebl, H. [University of Rostock, Biomedical Research Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Finke, B.; Hempel, F. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff Str. 2, 17489 Greifswald (Germany); Nebe, B. [University of Rostock, Biomedical Research Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Meichsner, J. [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany)

    2013-10-15

    Thin plasma polymer films from ethylenediamine were deposited on planar substrates placed on the powered electrode of a low pressure capacitively coupled 13.56 MHz discharge. The chemical composition of the plasma polymer films was analyzed by Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) as well as by X-ray photoelectron spectroscopy (XPS) after derivatization of the primary amino groups. The PPEDA films undergo an alteration during the storage in ambient air, particularly, due to reactions with oxygen. The molecular changes in PPEDA films were studied over a long-time period of 360 days. Simultaneously, the adhesion of human osteoblast-like cells MG-63 (ATCC) was investigated on PPEDA coated corundum blasted titanium alloy (Ti-6Al-4V), which is applied as implant material in orthopedic surgery. The cell adhesion was determined by flow cytometry and the cell shape was analyzed by scanning electron microscopy. Compared to uncoated reference samples a significantly enhanced cell adhesion and proliferation were measured for PPEDA coated samples, which have been maintained after long-time storage in ambient air and additional sterilization by γ−irradiation. - Highlights: • Development of cell-adhesive nitrogen-rich coatings for biomedical applications. • Plasma polymer films from low pressure 13.56 MHz discharge in argon-ethylenediamine. • Enhanced osteoblast adhesion/proliferation on coated implant material (Ti-6Al-4V). • Despite film aging over 360 days the enhanced cell adhesion of the coating remains. • No influence of additional y-sterilization on the enhanced cell adhesion.

  12. Implantable tissue-engineered blood vessels from human induced pluripotent stem cells.

    Science.gov (United States)

    Gui, Liqiong; Dash, Biraja C; Luo, Jiesi; Qin, Lingfeng; Zhao, Liping; Yamamoto, Kota; Hashimoto, Takuya; Wu, Hongwei; Dardik, Alan; Tellides, George; Niklason, Laura E; Qyang, Yibing

    2016-09-01

    Derivation of functional vascular smooth muscle cells (VSMCs) from human induced pluripotent stem cells (hiPSCs) to generate tissue-engineered blood vessels (TEBVs) holds great potential in treating patients with vascular diseases. Herein, hiPSCs were differentiated into alpha-smooth muscle actin (α-SMA) and calponin-positive VSMCs, which were seeded onto polymer scaffolds in bioreactors for vascular tissue growth. A functional TEBV with abundant collagenous matrix and sound mechanics resulted, which contained cells largely positive for α-SMA and smooth muscle myosin heavy chain (SM-MHC). Moreover, when hiPSC-derived TEBV segments were implanted into nude rats as abdominal aorta interposition grafts, they remained unruptured and patent with active vascular remodeling, and showed no evidence of teratoma formation during a 2-week proof-of-principle study. Our studies represent the development of the first implantable TEBVs based on hiPSCs, and pave the way for developing autologous or allogeneic grafts for clinical use in patients with vascular disease. PMID:27336184

  13. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts.

    Science.gov (United States)

    Satué, María; Ramis, Joana M; Monjo, Marta

    2016-01-01

    Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants.

  14. Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2

    International Nuclear Information System (INIS)

    In this study, we reported that the adipose-derived stromal cells (ADSCs) genetically modified by bone morphogenetic protein 2 (BMP-2) healed critical-sized canine ulnar bone defects. First, the osteogenic and adipogenic differentiation potential of the ADSCs derived from canine adipose tissue were demonstrated. And then the cells were modified by the BMP-2 gene and the expression and bone-induction ability of BMP-2 were identified. Finally, the cells modified by BMP-2 gene were applied to a β-tricalcium phosphate (TCP) carrier and implanted into ulnar bone defects in the canine model. After 16 weeks, radiographic, histological, and histomorphometry analysis showed that ADSCs modified by BMP-2 gene produced a significant increase of newly formed bone area and healed or partly healed all of the bone defects. We conclude that ADSCs modified by the BMP-2 gene can enhance the repair of critical-sized bone defects in large animals

  15. Ion implantation into amorphous Si layers to form carrier-selective contacts for Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, Frank; Mueller, Ralph; Reichel, Christian; Hermle, Martin [Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, 79110, Freiburg (Germany)

    2014-09-15

    This paper reports our findings on the boron and phosphorus doping of very thin amorphous silicon layers by low energy ion implantation. These doped layers are implemented into a so-called tunnel oxide passivated contact structure for Si solar cells. They act as carrier-selective contacts and, thereby, lead to a significant reduction of the cell's recombination current. In this paper we address the influence of ion energy and ion dose in conjunction with the obligatory high-temperature anneal needed for the realization of the passivation quality of the carrier-selective contacts. The good results on the phosphorus-doped (implied V{sub oc} = 725 mV) and boron-doped passivated contacts (iV{sub oc} = 694 mV) open a promising route to a simplified interdigitated back contact (IBC) solar cell featuring passivated contacts. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis.

    Science.gov (United States)

    Schukur, Lina; Geering, Barbara; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2015-12-16

    Psoriasis is a chronic inflammatory skin disease characterized by a relapsing-remitting disease course and correlated with increased expression of proinflammatory cytokines, such as tumor necrosis factor (TNF) and interleukin 22 (IL22). Psoriasis is hard to treat because of the unpredictable and asymptomatic flare-up, which limits handling of skin lesions to symptomatic treatment. Synthetic biology-based gene circuits are uniquely suited for the treatment of diseases with complex dynamics, such as psoriasis, because they can autonomously couple the detection of disease biomarkers with the production of therapeutic proteins. We designed a mammalian cell synthetic cytokine converter that quantifies psoriasis-associated TNF and IL22 levels using serially linked receptor-based synthetic signaling cascades, processes the levels of these proinflammatory cytokines with AND-gate logic, and triggers the corresponding expression of therapeutic levels of the anti-inflammatory/psoriatic cytokines IL4 and IL10, which have been shown to be immunomodulatory in patients. Implants of microencapsulated cytokine converter transgenic designer cells were insensitive to simulated bacterial and viral infections as well as psoriatic-unrelated inflammation. The designer cells specifically prevented the onset of psoriatic flares, stopped acute psoriasis, improved psoriatic skin lesions and restored normal skin-tissue morphology in mice. The antipsoriatic designer cells were equally responsive to blood samples from psoriasis patients, suggesting that the synthetic cytokine converter captures the clinically relevant cytokine range. Implanted designer cells that dynamically interface with the patient's metabolism by detecting specific disease metabolites or biomarkers, processing their blood levels with synthetic circuits in real time, and coordinating immediate production and systemic delivery of protein therapeutics may advance personalized gene- and cell-based therapies. PMID:26676608

  17. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis.

    Science.gov (United States)

    Schukur, Lina; Geering, Barbara; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2015-12-16

    Psoriasis is a chronic inflammatory skin disease characterized by a relapsing-remitting disease course and correlated with increased expression of proinflammatory cytokines, such as tumor necrosis factor (TNF) and interleukin 22 (IL22). Psoriasis is hard to treat because of the unpredictable and asymptomatic flare-up, which limits handling of skin lesions to symptomatic treatment. Synthetic biology-based gene circuits are uniquely suited for the treatment of diseases with complex dynamics, such as psoriasis, because they can autonomously couple the detection of disease biomarkers with the production of therapeutic proteins. We designed a mammalian cell synthetic cytokine converter that quantifies psoriasis-associated TNF and IL22 levels using serially linked receptor-based synthetic signaling cascades, processes the levels of these proinflammatory cytokines with AND-gate logic, and triggers the corresponding expression of therapeutic levels of the anti-inflammatory/psoriatic cytokines IL4 and IL10, which have been shown to be immunomodulatory in patients. Implants of microencapsulated cytokine converter transgenic designer cells were insensitive to simulated bacterial and viral infections as well as psoriatic-unrelated inflammation. The designer cells specifically prevented the onset of psoriatic flares, stopped acute psoriasis, improved psoriatic skin lesions and restored normal skin-tissue morphology in mice. The antipsoriatic designer cells were equally responsive to blood samples from psoriasis patients, suggesting that the synthetic cytokine converter captures the clinically relevant cytokine range. Implanted designer cells that dynamically interface with the patient's metabolism by detecting specific disease metabolites or biomarkers, processing their blood levels with synthetic circuits in real time, and coordinating immediate production and systemic delivery of protein therapeutics may advance personalized gene- and cell-based therapies.

  18. Effect of ultraviolet photofunctionalisation on the cell attractiveness of zirconia implant materials

    Directory of Open Access Journals (Sweden)

    T Tuna

    2015-01-01

    Full Text Available Ultraviolet (UV light treatment of implant surfaces has been demonstrated to enhance their bioactivity significantly. This study examined the effect of UV treatment of different zirconia surfaces on the response of primary human alveolar bone-derived osteoblasts (PhABO. Disks of two zirconia-based materials with two different surface topographies (smooth, roughened were exposed to UV light. Qualitative and quantitative assessment of PhABO on zirconia surfaces, by means of immunofluorescence, scanning electron microscopy and DNA quantification at 4 and 24 h revealed a higher number of initially attached osteoblasts on UV-treated surfaces. Cell area and perimeter were significantly larger on all UV-treated surfaces (p < 0.05. The proliferation activity was significantly higher on both roughened UV-treated surfaces than on untreated samples at day 3 of culture (p < 0.05. The expression levels of collagen I, osteopontin and osteocalcin at day 14 and alkaline phosphatase activity at day 7 and 14 of culture period were similar among UV-treated and untreated surfaces. Alizarin-Red-Staining at day 21 demonstrated significantly more mineralised nodules on UV-treated samples than on untreated samples. Contact angle measurements and X-ray photoelectron spectroscopy showed that UV light transformed zirconia surfaces from hydrophobic to (super- hydrophilic (p < 0.05 and significantly reduced the atomic percentage of surface carbon. The results showed that UV light pre-treatment of zirconia surfaces changes their physicochemical properties and improves their attractiveness against PhABO, primarily demonstrated by an augmented cell attachment and spreading. This may result in faster healing and better bone-to-implant contact of zirconia implants in vivo following such a pre-treatment.

  19. Biofuels and sustainability.

    Science.gov (United States)

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria. PMID:20146765

  20. Locally advanced breast implant associated anaplastic large cell lymphoma: A case report of successful treatment with radiation and chemotherapy

    Directory of Open Access Journals (Sweden)

    Christopher Fleighton Estes

    2015-02-01

    Full Text Available The development of breast implant associated anaplastic large cell lymphoma (ALCL is a rare phenomenon. A typical presentation is an effusion associated with a breast implant. Less commonly, disease can become more advanced locoregionally or distantly. The optimal treatment schema is a topic of debate: localized ALCL can potentially be cured with implant removal alone, while other cases in the literature, including those that are more advanced, have been treated with varying combinations of surgery, chemotherapy, and external beam radiotherapy. This is a case report of breast implant ALCL with pathologically proven lymph node involvement, the fifth such patient reported. Our patient experienced a favorable outcome with radiation therapy and chemotherapy.

  1. Biofunctionalization of conductive hydrogel coatings to support olfactory ensheathing cells at implantable electrode interfaces.

    Science.gov (United States)

    Hassarati, Rachelle T; Marcal, Helder; John, L; Foster, R; Green, Rylie A

    2016-05-01

    Mechanical discrepancies between conventional platinum (Pt) electrodes and neural tissue often result in scar tissue encapsulation of implanted neural recording and stimulating devices. Olfactory ensheathing cells (OECs) are a supportive glial cell in the olfactory nervous system which can transition through glial scar tissue while supporting the outgrowth of neural processes. It has been proposed that this function can be used to reconnect implanted electrodes with the target neural pathways. Conductive hydrogel (CH) electrode coatings have been proposed as a substrate for supporting OEC survival and proliferation at the device interface. To determine an ideal CH to support OECs, this study explored eight CH variants, with differing biochemical composition, in comparison to a conventional Pt electrodes. All CH variants were based on a biosynthetic hydrogel, consisting of poly(vinyl alcohol) and heparin, through which the conductive polymer (CP) poly(3,4-ethylenedioxythiophene) was electropolymerized. The biochemical composition was varied through incorporation of gelatin and sericin, which were expected to provide cell adherence functionality, supporting attachment, and cell spreading. Combinations of these biomolecules varied from 1 to 3 wt %. The physical, electrical, and biological impact of these molecules on electrode performance was assessed. Cyclic voltammetry and electrochemical impedance spectroscopy demonstrated that the addition of these biological molecules had little significant effect on the coating's ability to safely transfer charge. Cell attachment studies, however, determined that the incorporation of 1 wt % gelatin in the hydrogel was sufficient to significantly increase the attachment of OECs compared to the nonfunctionalized CH. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 104B: 712-722, 2016. PMID:26248597

  2. Silicon Heterojunction Solar Cells Using AlOx and Plasma-Immersion Ion Implantation

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Lin

    2014-06-01

    Full Text Available Aluminum oxide (AlOx and plasma immersion ion implantation (PIII were studied in relation to passivated silicon heterojunction solar cells. When aluminum oxide (AlOx was deposited on the surface of a wafer; the electric field near the surface of wafer was enhanced; and the mobility of the carrier was improved; thus reducing carrier traps associated with dangling bonds. Using PIII enabled implanting nitrogen into the device to reduce dangling bonds and achieve the desired passivation effect. Depositing AlOx on the surface of a solar cell increased the short-circuit current density (Jsc; open-circuit voltage (Voc; and conversion efficiency from 27.84 mA/cm2; 0.52 V; and 8.97% to 29.34 mA/cm2; 0.54 V; and 9.68%; respectively. After controlling the depth and concentration of nitrogen by modulating the PIII energy; the ideal PIII condition was determined to be 2 keV and 10 min. As a result; a 15.42% conversion efficiency was thus achieved; and the Jsc; Voc; and fill factor were 37.78 mA/cm2; 0.55 V; and 0.742; respectively.

  3. DMF - A New Biofuel Candidate

    OpenAIRE

    Tian, Guohong; Daniel, Ritchie; Xu, Hongming

    2011-01-01

    This book aspires to be a comprehensive summary of current biofuels issues and thereby contribute to the understanding of this important topic. Readers will find themes including biofuels development efforts, their implications for the food industry, current and future biofuels crops, the successful Brazilian ethanol program, insights of the first, second, third and fourth biofuel generations, advanced biofuel production techniques, related waste treatment, emissions and environmental impacts...

  4. Biofuels: which interest, which perspectives?

    International Nuclear Information System (INIS)

    This paper is a synthesis of several studies concerning the production and utilization of bio-fuels: energy balance and greenhouse effect of the various bio-fuel systems; economical analysis and profitability of bio-fuel production; is the valorization of bio-fuel residues and by-products in animal feeding a realistic hypothesis?; assessment of the cost for the community due to tax exemption for bio-fuels

  5. Single-cell RNA sequencing: revealing human pre-implantation development, pluripotency and germline development.

    Science.gov (United States)

    Petropoulos, S; Panula, S P; Schell, J P; Lanner, F

    2016-09-01

    Early human development is a dynamic, heterogeneous, complex and multidimensional process. During the first week, the single-cell zygote undergoes eight to nine rounds of cell division generating the multicellular blastocyst, which consists of hundreds of cells forming spatially organized embryonic and extra-embryonic tissues. At the level of transcription, degradation of maternal RNA commences at around the two-cell stage, coinciding with embryonic genome activation. Although numerous efforts have recently focused on delineating this process in humans, many questions still remain as thorough investigation has been limited by ethical issues, scarce availability of human embryos and the presence of minute amounts of DNA and RNA. In vitro cultures of embryonic stem cells provide some insight into early human development, but such studies have been confounded by analysis on a population level failing to appreciate cellular heterogeneity. Recent technical developments in single-cell RNA sequencing have provided a novel and powerful tool to explore the early human embryo in a systematic manner. In this review, we will discuss the advantages and disadvantages of the techniques utilized to specifically investigate human development and consider how the technology has yielded new insights into pre-implantation development, embryonic stem cells and the establishment of the germ line. PMID:27046137

  6. Single-cell RNA sequencing: revealing human pre-implantation development, pluripotency and germline development.

    Science.gov (United States)

    Petropoulos, S; Panula, S P; Schell, J P; Lanner, F

    2016-09-01

    Early human development is a dynamic, heterogeneous, complex and multidimensional process. During the first week, the single-cell zygote undergoes eight to nine rounds of cell division generating the multicellular blastocyst, which consists of hundreds of cells forming spatially organized embryonic and extra-embryonic tissues. At the level of transcription, degradation of maternal RNA commences at around the two-cell stage, coinciding with embryonic genome activation. Although numerous efforts have recently focused on delineating this process in humans, many questions still remain as thorough investigation has been limited by ethical issues, scarce availability of human embryos and the presence of minute amounts of DNA and RNA. In vitro cultures of embryonic stem cells provide some insight into early human development, but such studies have been confounded by analysis on a population level failing to appreciate cellular heterogeneity. Recent technical developments in single-cell RNA sequencing have provided a novel and powerful tool to explore the early human embryo in a systematic manner. In this review, we will discuss the advantages and disadvantages of the techniques utilized to specifically investigate human development and consider how the technology has yielded new insights into pre-implantation development, embryonic stem cells and the establishment of the germ line.

  7. Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability.

    Science.gov (United States)

    Gulati, Karan; Kogawa, Masakazu; Prideaux, Matthew; Findlay, David M; Atkins, Gerald J; Losic, Dusan

    2016-12-01

    There is an ongoing demand for new approaches for treating localized bone pathologies. Here we propose a new strategy for treatment of such conditions, via local delivery of hormones/drugs to the trauma site using drug releasing nano-engineered implants. The proposed implants were prepared in the form of small Ti wires/needles with a nano-engineered oxide layer composed of array of titania nanotubes (TNTs). TNTs implants were inserted into a 3D collagen gel matrix containing human osteoblast-like, and the results confirmed cell migration onto the implants and their attachment and spread. To investigate therapeutic efficacy, TNTs/Ti wires loaded with parathyroid hormone (PTH), an approved anabolic therapeutic for the treatment of severe bone fractures, were inserted into 3D gels containing osteoblast-like cells. Gene expression studies revealed a suppression of SOST (sclerostin) and an increase in RANKL (receptor activator of nuclear factor kappa-B ligand) mRNA expression, confirming the release of PTH from TNTs at concentrations sufficient to alter cell function. The performance of the TNTs wire implants using an example of a drug needed at relatively higher concentrations, the anti-inflammatory drug indomethacin, is also demonstrated. Finally, the mechanical stability of the prepared implants was tested by their insertion into bovine trabecular bone cores ex vivo followed by retrieval, which confirmed the robustness of the TNT structures. This study provides proof of principle for the suitability of the TNT/Ti wire implants for localized bone therapy, which can be customized to cater for specific therapeutic requirements. PMID:27612777

  8. The Danish Biofuel Debate

    DEFF Research Database (Denmark)

    Hansen, Janus

    2014-01-01

    What role does scientific claims-making play in the worldwide promotion of biofuels for transport, which continues despite serious concerns about its potentially adverse social and environmental effects? And how do actors with very different and conflicting viewpoints on the benefits and drawbacks...... of biofuels enrol scientific authority to support their positions? The sociological theory of functional differentiation combined with the concept of advocacy coalition can help in exploring this relationship between scientific claims-making and the policy stance of different actors in public debates about...... biofuels. In Denmark two distinct scientific perspectives about biofuels map onto the policy debates through articulation by two competing advocacy coalitions. One is a reductionist biorefinery perspective originating in biochemistry and neighbouring disciplines. This perspective works upwards from...

  9. Genetic engineering of cell lines using lentiviral vectors to achieve antibody secretion following encapsulated implantation.

    Science.gov (United States)

    Lathuilière, Aurélien; Bohrmann, Bernd; Kopetzki, Erhard; Schweitzer, Christoph; Jacobsen, Helmut; Moniatte, Marc; Aebischer, Patrick; Schneider, Bernard L

    2014-01-01

    The controlled delivery of antibodies by immunoisolated bioimplants containing genetically engineered cells is an attractive and safe approach for chronic treatments. To reach therapeutic antibody levels there is a need to generate renewable cell lines, which can long-term survive in macroencapsulation devices while maintaining high antibody specific productivity. Here we have developed a dual lentiviral vector strategy for the genetic engineering of cell lines compatible with macroencapsulation, using separate vectors encoding IgG light and heavy chains. We show that IgG expression level can be maximized as a function of vector dose and transgene ratio. This approach allows for the generation of stable populations of IgG-expressing C2C12 mouse myoblasts, and for the subsequent isolation of clones stably secreting high IgG levels. Moreover, we demonstrate that cell transduction using this lentiviral system leads to the production of a functional glycosylated antibody by myogenic cells. Subsequent implantation of antibody-secreting cells in a high-capacity macroencapsulation device enables continuous delivery of recombinant antibodies in the mouse subcutaneous tissue, leading to substantial levels of therapeutic IgG detectable in the plasma.

  10. Intrauterine insemination of cultured peripheral blood mononuclear cells prior to embryo transfer improves clinical outcome for patients with repeated implantation failures.

    Science.gov (United States)

    Madkour, Aicha; Bouamoud, Nouzha; Louanjli, Noureddine; Kaarouch, Ismail; Copin, Henri; Benkhalifa, Moncef; Sefrioui, Omar

    2016-02-01

    Implantation failure is a major limiting factor in assisted reproduction improvement. Dysfunction of embryo-maternal immuno-tolerance pathways may be responsible for repeated implantation failures. This fact is supported by immunotropic theory stipulating that maternal immune cells, essentially uterine CD56+ natural killer cells, are determinants of implantation success. In order to test this hypothesis, we applied endometrium immuno-modulation prior to fresh embryo transfer for patients with repeated implantation failures. Peripheral blood mononuclear cells were isolated from repeated implantation failure patients undergoing assisted reproductive technology cycles. On the day of ovulation induction, cells were isolated and then cultured for 3 days and transferred into the endometrium cavity prior to fresh embryo transfer. This immunotherapy was performed on 27 patients with repeated implantation failures and compared with another 27 patients who served as controls. Implantation and clinical pregnancy were increased significantly in the peripheral blood mononuclear cell test versus control (21.54, 44.44 vs. 8.62, 14.81%). This finding suggests a clear role for endometrium immuno-modulation and the inflammation process in implantation success. Our study showed the feasibility of intrauterine administration of autologous peripheral blood mononuclear cells as an effective therapy to improve clinical outcomes for patients with repeated implantation failures and who are undergoing in vitro fertilization cycles. PMID:25613318

  11. IGF-1,bFGF EXPRESSION AND VASCULAR REGENERATION IN ACUTE INFARCTED CANINE MYOCARDIUM AFTER AUTOLOGUS SKELETAL MUSCLE SATELLITE CELL IMPLANTATION

    Institute of Scientific and Technical Information of China (English)

    朱洪生; 钟竑; 张臻

    2003-01-01

    Objective To study the cell growth factor secretion and vascular regeneration in acute infarcted myocardium after autologous skeletal muscle satellite cell implantation.MethodsAutologous skeletal muscle satellite cells from adult mongrel canine were implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) artery. Specimens were harvested at 2, 4, 8 weeks after implantation for the expression of insulin like growth factor-1 (IGF-1), basic fibroblast growth factor (Bfgf) and the vascular density.ResultsThe expression of IGF-1, Bfgf and the vascular density in skeletal muscle satellite cell implant group were higher than that in the control group.ConclusionThe skeletal muscle satellite cells, after being implanted into the acute myocardial infarction, not only showed myocardial regeneration, but also showed the ability to secrete the cell factors, hence representing a positive effect on the regeneration of the infarcted myocardium.

  12. Microalgae: biofuel production

    OpenAIRE

    Babita Kumari; Vinay Sharma

    2013-01-01

    In the present day, microalgae feedstocks are gaining interest in energy scenario due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrients contents. All of these properties render them an excellent source for biofuels such as biodiesel, bioethanol and biomethane; as well as a number of other valuable pharmaceutical and nutraceutical products. The present review is a critical appraisal of the commercialization potential of microalgae biofuels....

  13. The biofuels, situation, perspectives

    International Nuclear Information System (INIS)

    The climatic change with the fight against the greenhouse effect gases, sees the development of ''clean'' energy sources. Meanwhile the biofuels remain penalized by their high production cost, the interest is increasing. Facing their development ecologists highlight the environmental and social negative impacts of the development of the biofuels. The author aims to take stock on the techniques and the utilizations. (A.L.B.)

  14. Characterization of the aspects of osteoprogenitor cell interactions with physical tetracalcium phosphate anchorage on titanium implant surfaces

    International Nuclear Information System (INIS)

    Well-designed implants are used not only to modify the geometry of the implant but also to change the chemical properties of its surfaces. The present study aims to assess the biofunctional effects of tetracalcium phosphate (TTCP) particles as a physical anchor on the implant surface derived through sandblasting. The characteristics of the surface, cell viability, and alkaline phosphatase (ALP) activity toward osteoprogenitor cells (D1) were obtained. D1 cells were cultured on a plain surface that underwent sandblasting and acid etching (SLA) (control SLA group) and on different SLA surfaces with different anchoring TTCP rates (new test groups, M and H). The mean anchoring rates were 57% (M) and 74% (H), and the anchored thickness was estimated to range from 12.6 μm to 18.3 μm. Compared with the control SLA surface on Ti substrate, the new test groups with different TTCP anchoring rates (M and H) failed to improve cell proliferation significantly but had a well-differentiated D1 cell phenotype that enhanced ALP expression in the early stage of cell cultures, specifically, at day 7. Results suggest that the SLA surface with anchored TTCP can accelerate progenitor bone cell mineralization. This study shows the potential clinical application of the constructed geometry in TTCP anchorage on Ti for dental implant surface modification. - Highlights: • TTCP (tetracalcium phosphate) as a physical anchorage on implant is characterized. • Theoretical values of anchored thickness and capping areas were estimated. • TTCP anchored by sandblasting can accelerate progenitor bone cell mineralization. • TTCP anchored on SLA (sandblasting and acid etching) surface is a promising method

  15. Characterization of the aspects of osteoprogenitor cell interactions with physical tetracalcium phosphate anchorage on titanium implant surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Chia-Ling [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan (China); Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Ya-Yuan; Liou, Cian-Hua [Alliance Global Technology Co., Ltd., Kaohsiung Medical Device Special Zone in Southern Taiwan Science Park, Kaohsiung 82151, Taiwan (China); Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan (China)

    2015-04-01

    Well-designed implants are used not only to modify the geometry of the implant but also to change the chemical properties of its surfaces. The present study aims to assess the biofunctional effects of tetracalcium phosphate (TTCP) particles as a physical anchor on the implant surface derived through sandblasting. The characteristics of the surface, cell viability, and alkaline phosphatase (ALP) activity toward osteoprogenitor cells (D1) were obtained. D1 cells were cultured on a plain surface that underwent sandblasting and acid etching (SLA) (control SLA group) and on different SLA surfaces with different anchoring TTCP rates (new test groups, M and H). The mean anchoring rates were 57% (M) and 74% (H), and the anchored thickness was estimated to range from 12.6 μm to 18.3 μm. Compared with the control SLA surface on Ti substrate, the new test groups with different TTCP anchoring rates (M and H) failed to improve cell proliferation significantly but had a well-differentiated D1 cell phenotype that enhanced ALP expression in the early stage of cell cultures, specifically, at day 7. Results suggest that the SLA surface with anchored TTCP can accelerate progenitor bone cell mineralization. This study shows the potential clinical application of the constructed geometry in TTCP anchorage on Ti for dental implant surface modification. - Highlights: • TTCP (tetracalcium phosphate) as a physical anchorage on implant is characterized. • Theoretical values of anchored thickness and capping areas were estimated. • TTCP anchored by sandblasting can accelerate progenitor bone cell mineralization. • TTCP anchored on SLA (sandblasting and acid etching) surface is a promising method.

  16. Making biofuels sustainable

    International Nuclear Information System (INIS)

    Full text: As the twentieth century drew to a close, there was considerable support for the use of biofuels as a source of renewable energy. To many people, they offered significant savings in greenhouse gas emissions compared to fossil fuels, an opportunity for reduced dependency on oil for transport, and potential as a counter weight to increasing oil prices. They also promised an opportunity for rural economies to benefit from a new market for their products and a chance of narrowing the gap between rich and poor nations. Biofuel development was encouraged by government subsidies, and rapid growth occurred in many parts of the world. Forty per cent of Brazilian sugar cane is used for biofuel production, for example, as is almost a quarter of maize grown in the United States. Although only around 1 per cent of arable land is cultivated to grow feedstock for biofuels, there has been increasing concern over the way a largely unchecked market has developed, and about its social and environmental consequences. Recent research has confirmed that food prices have been driven significantly higher by competition for prime agricultural land and that savings in greenhouse gas emissions are much smaller - and in some cases entirely eliminated - when environmentally important land, such as rainforest, is destroyed to grow biofuels. As a result, many now believe that the economic benefits of biofuels have been obtained at too high a social and environmental price, and they question whether they can be a truly sustainable source of energy. The United Kingdom has always had sustainability at the heart of its biofuel policies and set up the Renewable Fuels Agency to ensure that this goal was met. The direct effects of biofuel production are already being assessed through five measures of environmental performance and two measures of social performance, as well as measures of the energy efficiency of the production processes used and of the greenhouse gas savings achieved

  17. Enhancement of the performances of a single concentric glucose/O{sub 2} biofuel cell by combination of bilirubin oxidase/Nafion cathode and Au-Pt anode

    Energy Technology Data Exchange (ETDEWEB)

    Habrioux, A.; Servat, K.; Kokoh, K.B. [LACCO ' ' Equipe Electrocatalyse' ' , UMR 6503 CNRS-Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers (France); Tingry, S. [Institut Europeen des Membranes, UMR 5635, ENSCM-UMII-CNRS Place Eugene Bataillon, CC 047, 34095 Montpellier, Cedex 5 (France)

    2009-01-15

    This work deals with a novel preparation method of bilirubin oxidase/2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid electrode. The enzyme and its mediator were adsorbed on carbon Vulcan XC-72R before their immobilization into a Nafion {sup registered} matrix. Promising results were obtained when this biocathode was associated with Au{sub 70}Pt{sub 30} nanoparticles as anode in a single concentric glucose/O{sub 2} biofuel cell (BFC). The latter BFC delivered at 37 C a power density of 90 {mu}W cm{sup -2} for a cell voltage of 0.4 V in phosphate buffer (pH 7.4) containing 0.01 M glucose. Moreover, the electrical performances were increased with the concentration of glucose by generating up to 190 {mu}W cm{sup -2} for a cell voltage of 0.52 V when the concentration of the renewable fuel reached 0.7 M. (author)

  18. Double Ion Implantation and Pulsed Laser Melting Processes for Third Generation Solar Cells

    Directory of Open Access Journals (Sweden)

    Eric García-Hemme

    2013-01-01

    Full Text Available In the framework of the third generation of photovoltaic devices, the intermediate band solar cell is one of the possible candidates to reach higher efficiencies with a lower processing cost. In this work, we introduce a novel processing method based on a double ion implantation and, subsequently, a pulsed laser melting (PLM process to obtain thicker layers of Ti supersaturated Si. We perform ab initio theoretical calculations of Si impurified with Ti showing that Ti in Si is a good candidate to theoretically form an intermediate band material in the Ti supersaturated Si. From time-of-flight secondary ion mass spectroscopy measurements, we confirm that we have obtained a Ti implanted and PLM thicker layer of 135 nm. Transmission electron microscopy reveals a single crystalline structure whilst the electrical characterization confirms the transport properties of an intermediate band material/Si substrate junction. High subbandgap absorption has been measured, obtaining an approximate value of 104 cm−1 in the photons energy range from 1.1 to 0.6 eV.

  19. Circadian continuous chemotherapy of renal cell carcinoma with an implantable, programmable infusion pump.

    Science.gov (United States)

    Damascelli, B; Marchianò, A; Spreafico, C; Lutman, R; Salvetti, M; Bonalumi, M G; Mauri, M; Garbagnati, F; Del Nero, A; Comeri, G

    1990-07-15

    The authors treated 42 metastatic renal cell carcinoma (RCC) patients who had received no previous chemotherapy or radiation therapy with circadian venous continuous infusion of 5-fluoro-2-deoxyuridine (FUDR). The drug was delivered by Medtronic Synchromed implantable pump (Medtronic, Inc., Minneapolis, MN) in 14-day cycles alternating with 14-day intervals of heparinized physiologic saline infusion. In the course of 24 months 444 cycles of therapy have been given for a total of 12449 days of pump function. Of the patients observed for at least 3 months (range, 3 to 23 months; median, 7 months) three showed complete response (7%; 95% confidence interval, 0% to 15%), three partial response (7%; confidence interval, 0% to 15%), 18 stable disease, and 18 showed progression. Eighteen patients, all with advanced disease at the time of implantation, were living 6 months after treatment started. Circadian continuous central venous infusion of FUDR is minimally toxic. The FUDR can be delivered safely and conveniently in this way for long spans. This therapy is as active as any currently available treatment, is administered in an entirely outpatient setting, and is associated with a normal quality of life. PMID:2142443

  20. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Science.gov (United States)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-11-01

    The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  1. Thyroid Autoimmunity is Associated with Decreased Cytotoxicity T Cells in Women with Repeated Implantation Failure

    Directory of Open Access Journals (Sweden)

    Chunyu Huang

    2015-08-01

    Full Text Available Thyroid autoimmunity (TAI, which is defined as the presence of autoantibodies against thyroid peroxidase (TPO and/or thyroglobulin (TG, is related to repeated implantation failure (RIF. It is reported that TAI was involved in reproductive failure not only through leading thyroid function abnormality, but it can also be accompanied with immune imbalance. Therefore, this study was designed to investigate the association of thyroid function, immune status and TAI in women with RIF. Blood samples were drawn from 72 women with RIF to evaluate the prevalence of TAI, the thyroid function, the absolute numbers and percentages of lymphocytes. The prevalence of thyroid function abnormality in RIF women with TAI was not significantly different from that in RIF women without TAI (c2 = 0.484, p > 0.05. The absolute number and percentage of T cells, T helper (Th cells, B cells and natural killer (NK cells were not significantly different in RIF women with TAI compared to those without TAI (all p > 0.05. The percentage of T cytotoxicity (Tc cells was significantly decreased in RIF women with TAI compared to those without TAI (p < 0.05. Meanwhile, Th/Tc ratio was significantly increased (p < 0.05. These results indicated that the decreased Tc percentage and increased Th/Tc ratio may be another influential factor of adverse pregnancy outcomes in RIF women with TAI.

  2. Nanoporous metals for biodegradable implants: Initial bone mesenchymal stem cell adhesion and degradation behavior.

    Science.gov (United States)

    Heiden, Michael; Huang, Sabrina; Nauman, Eric; Johnson, David; Stanciu, Lia

    2016-07-01

    Nanostructured Fe-Mn and Fe-Mn-Zn metal scaffolds were generated through a well-controlled selective leaching process in order to fulfill the growing demand for adjustable degradation rates and improved cellular response of resorbable materials. Mouse bone marrow mesenchymal stem cells (D1 ORL UVA) were seeded onto eleven, carefully chosen nanoporous surfaces for 24 h in vitro. Using a combination of fluorescence microscopy, scanning electron microscopy (SEM), and an MTS assay, it was discovered that scaffolds with nanoscale roughened surfaces had increased cell attachment by up to 123% compared to polished smooth Fe-Mn surfaces. Significant cell spreading and construction of cell multilayers were also apparent after 24 h, suggesting better adhesion. Additionally, static electrochemical polarization experiments revealed an improvement of up to 26% in the actual rate of biodegradation for Fe-Mn surface-modified materials. However, any residual concentration of zinc after leaching was shown to slightly increase corrosion resistance. The results demonstrate that selectively leached, nanostructured Fe-Mn surfaces have the potential of being tailored to a diverse set of transient implant scenarios, while also effectively boosting overall biocompatibility, initial cell attachment, and degradation rate. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1747-1758, 2016. PMID:26990484

  3. Progesterone Induces the Growth and Infiltration of Human Astrocytoma Cells Implanted in the Cerebral Cortex of the Rat

    Directory of Open Access Journals (Sweden)

    Liliana Germán-Castelán

    2014-01-01

    Full Text Available Progesterone (P4 promotes cell proliferation in several types of cancer, including brain tumors such as astrocytomas, the most common and aggressive primary intracerebral neoplasm in humans. In this work, we studied the effects of P4 and its intracellular receptor antagonist, RU486, on growth and infiltration of U373 cells derived from a human astrocytoma grade III, implanted in the motor cortex of adult male rats, using two treatment schemes. In the first one, fifteen days after cells implantation, rats were daily subcutaneously treated with vehicle (propylene glycol, 160 μL, P4 (1 mg, RU486 (5 mg, or P4 + RU486 (1 mg and 5 mg, resp. for 21 days. In the second one, treatments started 8 weeks after cells implantation and lasted for 14 days. In both schemes we found that P4 significantly increased the tumor area as compared with the rest of the treatments, whereas RU486 blocked P4 effects. All rats treated with P4 showed tumor infiltration, while 28.6% and 42.9% of the animals treated with RU486 and P4 + RU486, respectively, presented it. Our data suggest that P4 promotes growth and migration of human astrocytoma cells implanted in the motor cortex of the rat through the interaction with its intracellular receptor.

  4. COCHLEAR IMPLANTATION: MY EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Shankar

    2015-12-01

    Full Text Available Cochlear implant is a small, surgically implanted complex electronic device that can help to provide a sense of sound to a person with severe to profound sensorineural hearing loss. This type of hearing loss, typically involves damage to hair cells in the cochlea, as a result sound cannot reach the auditory nerve which usually receives information from hair cells. A cochlear implant skips the damaged hair cells and to stimulate the auditory nerve directly. An implant does not restore normal hearing, instead it can give a deaf person a useful representation of sounds in the environment and help him or her to understand speech. I am here presenting this article in relation to the indications, intraoperative and postoperative complications of cochlear implantation in our institute since January 2013. Children who receive implants at earlier age, outperform their peers who are implanted at a later age. This is reflected in all the areas of speech and language development.

  5. Synthetic feedback loop model for increasing microbial biofuel production using a biosensor

    Directory of Open Access Journals (Sweden)

    Mary eHarrison

    2012-10-01

    Full Text Available Current biofuel production methods use engineered bacteria to break down cellulose and convert it to biofuel. A major challenge in microbial fuel production is that increasing biofuel yields can be limited by the toxicity of the biofuel to the organism that is producing it. Previous research has demonstrated that efflux pumps are effective at increasing tolerance to various biofuels. However, when overexpressed, efflux pumps burden cells, which hinders growth and slows biofuel production. Therefore, the toxicity of the biofuel must be balanced with the toxicity of pump overexpression. We have developed a mathematical model for cell growth and biofuel production that implements a synthetic feedback loop using a biosensor to control efflux pump expression. In this way, the production rate will be maximal when the concentration of biofuel is low because the cell does not expend energy expressing efflux pumps when they are not needed. Additionally, the microbe is able to adapt to toxic conditions by triggering the expression of efflux pumps, which allow it to continue biofuel production. Sensitivity analysis indicates that the feedback sensor model is insensitive to most system parameters, but a few key parameters can influence growth and production. In comparison to systems that express efflux pumps at a constant level, the feedback sensor increases overall biofuel production by delaying pump expression until it is needed. This result is more pronounced when model parameters are variable because the system can use feedback to adjust to the actual rate of biofuel production.

  6. Titanium Implant Impairment and Surrounding Muscle Cell Death Following High-Salt Diet: An In Vivo Study.

    Directory of Open Access Journals (Sweden)

    Mathieu Lecocq

    Full Text Available High-salt consumption has been widely described as a risk factor for cardiovascular, renal and bone functions. In the present study, the extent to which high-salt diet could influence Ti6Al4V implant surface characteristic, its adhesion to rat tibial crest, and could modify muscle cell viability of two surrounding muscles, was investigated in vivo. These parameters have also been assessed following a NMES (neuro-myoelectrostimulation program similar to that currently used in human care following arthroplasty.After a three-week diet, a harmful effect on titanium implant surface and muscle cell viability was noted. This is probably due to salt corrosive effect on metal and then release of toxic substance around biologic tissue. Moreover, if the use of NMES with high-salt diet induced muscles damages, the latter were higher when implant was added. Unexpectedly, higher implant-to-bone adhesion was found for implanted animals receiving salt supplementation.Our in vivo study highlights the potential dangerous effect of high-salt diet in arthroplasty based on titanium prosthesis. This effect appears to be more important when high-salt diet is combined with NMES.

  7. Biofuels and biodiversity.

    Science.gov (United States)

    Wiens, John; Fargione, Joseph; Hill, Jason

    2011-06-01

    The recent increase in liquid biofuel production has stemmed from a desire to reduce dependence on foreign oil, mitigate rising energy prices, promote rural economic development, and reduce greenhouse gas emissions. The growth of this industry has important implications for biodiversity, the effects of which depend largely on which biofuel feedstocks are being grown and the spatial extent and landscape pattern of land requirements for growing these feedstocks. Current biofuel production occurs largely on croplands that have long been in agricultural production. The additional land area required for future biofuels production can be met in part by reclaiming reserve or abandoned croplands and by extending cropping into lands formerly deemed marginal for agriculture. In the United States, many such marginal lands have been enrolled in the Conservation Reserve Program (CRP), providing important habitat for grassland species. The demand for corn ethanOl has changed agricultural commodity economics dramatically, already contributing to loss of CRP lands as contracts expire and lands are returned to agricultural production. Nevertheless, there are ways in which biofuels can be developed to enhance their coexistence with biodiversity. Landscape heterogeneity can be improved by interspersion of land uses, which is easier around facilities with smaller or more varied feedstock demands. The development of biofuel feedstocks that yield high net energy returns with minimal carbon debts or that do not require additional land for production, such as residues and wastes, should be encouraged. Competing land uses, including both biofuel production and biodiversity protection, should be subjected to comprehensive cost-benefit analysis, so that incentives can be directed where they will do the most good.

  8. Temporal network based analysis of cell specific vein graft transcriptome defines key pathways and hub genes in implantation injury.

    Directory of Open Access Journals (Sweden)

    Manoj Bhasin

    Full Text Available Vein graft failure occurs between 1 and 6 months after implantation due to obstructive intimal hyperplasia, related in part to implantation injury. The cell-specific and temporal response of the transcriptome to vein graft implantation injury was determined by transcriptional profiling of laser capture microdissected endothelial cells (EC and medial smooth muscle cells (SMC from canine vein grafts, 2 hours (H to 30 days (D following surgery. Our results demonstrate a robust genomic response beginning at 2 H, peaking at 12-24 H, declining by 7 D, and resolving by 30 D. Gene ontology and pathway analyses of differentially expressed genes indicated that implantation injury affects inflammatory and immune responses, apoptosis, mitosis, and extracellular matrix reorganization in both cell types. Through backpropagation an integrated network was built, starting with genes differentially expressed at 30 D, followed by adding upstream interactive genes from each prior time-point. This identified significant enrichment of IL-6, IL-8, NF-κB, dendritic cell maturation, glucocorticoid receptor, and Triggering Receptor Expressed on Myeloid Cells (TREM-1 signaling, as well as PPARα activation pathways in graft EC and SMC. Interactive network-based analyses identified IL-6, IL-8, IL-1α, and Insulin Receptor (INSR as focus hub genes within these pathways. Real-time PCR was used for the validation of two of these genes: IL-6 and IL-8, in addition to Collagen 11A1 (COL11A1, a cornerstone of the backpropagation. In conclusion, these results establish causality relationships clarifying the pathogenesis of vein graft implantation injury, and identifying novel targets for its prevention.

  9. Lithium-manganese dioxide cells for implantable defibrillator devices-Discharge voltage models

    Science.gov (United States)

    Root, Michael J.

    The discharge potential behavior of lithium-manganese dioxide cells designed for implantable cardiac defibrillators was characterized as a function of extent of cell depletion for tests designed to discharge the cells for times between 1 and 7 years. The discharge potential curves may be separated into two segments from 0 ≤ x ≤ ∼0.51 and ∼0.51 ≤ x ≤ 1.00, where x is the dimensionless extent of discharge referenced to the rated cell capacity. The discharge potentials conform to Tafel kinetics in each segment. This behavior allows the discharge potential curves to be predicted for an arbitrary discharge load and long term discharge performance may be predicted from short term test results. The discharge potentials may subsequently be modeled by fitting the discharge curves to empirical functions like polynomials and Padé approximants. A function based on the Nernst equation that includes a term accounting for nonideal interactions between lithium ions and the cathode host material, such as the Redlich-Kister relationship, also may be used to predict discharge behavior.

  10. Lithium-manganese dioxide cells for implantable defibrillator devices - Discharge voltage models

    Energy Technology Data Exchange (ETDEWEB)

    Root, Michael J. [Cardiac Rhythm Management Research and Development, Boston Scientific Corp., 4100 Hamline Ave. N., St. Paul, MN 55112 (United States)

    2010-08-01

    The discharge potential behavior of lithium-manganese dioxide cells designed for implantable cardiac defibrillators was characterized as a function of extent of cell depletion for tests designed to discharge the cells for times between 1 and 7 years. The discharge potential curves may be separated into two segments from 0 {<=} x {<=} {proportional_to}0.51 and {proportional_to}0.51 {<=} x {<=} 1.00, where x is the dimensionless extent of discharge referenced to the rated cell capacity. The discharge potentials conform to Tafel kinetics in each segment. This behavior allows the discharge potential curves to be predicted for an arbitrary discharge load and long term discharge performance may be predicted from short term test results. The discharge potentials may subsequently be modeled by fitting the discharge curves to empirical functions like polynomials and Pade approximants. A function based on the Nernst equation that includes a term accounting for nonideal interactions between lithium ions and the cathode host material, such as the Redlich-Kister relationship, also may be used to predict discharge behavior. (author)

  11. The effectiveness of rigid pericardial endoscopy for minimally invasive minor surgeries: cell transplantation, epicardial pacemaker lead implantation, and epicardial ablation

    Directory of Open Access Journals (Sweden)

    Kimura Takehiro

    2012-11-01

    Full Text Available Abstract Background The efficacy and safety of rigid pericardial endoscopy as the promising minimally invasive approach to the pericardial space was evaluated. Techniques for cell transplantation, epicardial pacemaker lead implantation, and epicardial ablation were developed. Methods Two swine and 5 canines were studied to evaluate the safety and efficacy of rigid pericardial endoscopy. After a double pericardiocentesis, a transurethral rigid endoscope was inserted into the pericardial space. The technique to obtain a clear visual field was examined, and acute complications such as hemodynamic changes and the effects on intra-pericardial pressure were evaluated. Using custom-made needles, pacemaker leads, and forceps, the applications for cell transplantation, epicardial pacemaker lead implantation, and epicardial ablation were also evaluated. Results The use of air, the detention of a stiff guide wire in the pericardial space, and the stretching of the pericardium with the rigid endoscope were all useful to obtain a clear visual field. A side-lying position also aided observation of the posterior side of the heart. As a cell transplantation methodology, we developed an ultrasonography-guided needle, which allows for the safe visualization of transplantation without major complications. Pacemaker leads were safely and properly implanted, which provides a better outcome for cardiac resynchronizing therapy. Furthermore, the success of clear visualization of the pulmonary veins enabled us to perform epicardial ablation. Conclusions Rigid pericardial endoscopy holds promise as a safe method for minimally invasive cell transplantation, epicardial pacemaker lead implantation, and epicardial ablation by allowing clear visualization of the pericardial space.

  12. Plasma-deposited fluorocarbon polymer films on titanium for preventing cell adhesion: a surface finishing for temporarily used orthopaedic implants

    Science.gov (United States)

    Finke, B.; Testrich, H.; Rebl, H.; Walschus, U.; Schlosser, M.; Zietz, C.; Staehlke, S.; Nebe, J. B.; Weltmann, K. D.; Meichsner, J.; Polak, M.

    2016-06-01

    The design of a titanium implant surface should ideally support its later application in clinical use. Temporarily used implants have to fulfil requirements different from permanent implants: they should ensure the mechanical stabilization of the bone stock but in trauma surgery they should not be integrated into the bone because they will be removed after fracture healing. Finishing of the implant surface by a plasma-fluorocarbon-polymer (PFP) coating is a possible approach for preventing cell adhesion of osteoblasts. Two different low pressure gas-discharge plasma processes, microwave (MW 2.45 GHz) and capacitively coupled radio frequency (RF 13.56 MHz) plasma, were applied for the deposition of the PFP film using a mixture of the precursor octafluoropropane (C3F8) and hydrogen (H2). The thin films were characterized by x-ray photoelectron spectroscopy, Fourier transform infrared reflection absorption spectroscopy, and water contact angle measurements. Cell culture experiments show that cell adhesion and spreading of MG-63 osteoblasts were clearly reduced or nonexistent on these surfaces, also after 24 h of storage in the cell culture medium. In vivo data demonstrated that the local inflammatory tissue response for the PFP films deposited in MW and RF plasma were comparable to uncoated controls.

  13. Metacarpal resection with a contoured iliac bone graft and silicone rubber implant for metacarpal giant cell tumor: a case report.

    Science.gov (United States)

    Carlow, S B; Khuri, S M

    1985-03-01

    A definitive surgical procedure for a giant cell tumor that combines metacarpal resection with an iliac bone graft and arthroplasty with a silicone rubber implant is proposed for the elderly patient. The results were encouraging in one patient who had a cosmetically and functionally acceptable hand and no evidence of recurrence.

  14. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Energy Technology Data Exchange (ETDEWEB)

    Abdal-hay, Abdalla [Departmentt of Bionano System Engineering, College of Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Dewidar, Montasser [Department of Materials and Mechanical Design, Faculty of Energy Engineering, South Valley University, Aswan (Egypt); Lim, Jae Kyoo, E-mail: jklim@jbnu.ac.kr [Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The corrosion behavior of magnesium for orthopedic applications is extremely poor. Black-Right-Pointing-Pointer The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. Black-Right-Pointing-Pointer Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. Black-Right-Pointing-Pointer Treated samples indicated significant damping for the degradation rate. Black-Right-Pointing-Pointer Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might

  15. World Biofuels Study

    Energy Technology Data Exchange (ETDEWEB)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very

  16. Biofuels and Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, Jonathan R [ORNL

    2009-01-01

    The world obtains 86% of its energy from fossil fuels, 40% from petroleum, a majority of which goes to the transportation sector (www.IEA.gov). Well-recognized alternatives are fuels derived from renewable sources known as biofuels. There are a number of biofuels useful for transportation fuels, which include ethanol, biobutanol, mixed alcohols, biodiesel, and hydrogen. These biofuels are produced from biologically derived feedstock, almost exclusively being plant materials, either food or feed sources or inedible plant material called biomass. This chapter will discuss technologies for production of liquid transportation biofuels from renewable feedstocks, but hydrogen will not be included, as the production technology and infrastructure are not near term. In addition, a specific emphasis will be placed upon the research opportunities and potential for application of system biology tools to dissect and understand the biological processes central to production of these biofuels from biomass and biological materials. There are a number of technologies for production of each of these biofuels that range from fully mature processes such as grain-derived ethanol, emerging technology of ethanol form cellulose derived ethanol and immature processes such thermochemical conversion technologies and production of hydrogen all produced from renewable biological feedstocks. Conversion of biomass by various thermochemical and combustion technologies to produce thermochemical biodiesel or steam and electricity provide growing sources of bioenergy. However, these technologies are outside of the scope of this chapter, as is the use of biological processing for upgrading and conversion of fossil fuels. Therefore, this chapter will focus on the current status of production of biofuels produced from biological-derived feedstocks using biological processes. Regardless of the status of development of the biological process for production of the biofuels, each process can benefit from

  17. Toward angiogenesis of implanted bio-artificial liver using scaffolds with type I collagen and adipose tissue-derived stem cells

    OpenAIRE

    Lee, Jae Geun; Bak, Seon Young; Nahm, Ji Hae; Lee, Sang Woo; Min, Seon Ok; Kim, Kyung Sik

    2015-01-01

    Backgrounds/Aims Stem cell therapies for liver disease are being studied by many researchers worldwide, but scientific evidence to demonstrate the endocrinologic effects of implanted cells is insufficient, and it is unknown whether implanted cells can function as liver cells. Achieving angiogenesis, arguably the most important characteristic of the liver, is known to be quite difficult, and no practical attempts have been made to achieve this outcome. We carried out this study to observe the ...

  18. Bio-fuels

    International Nuclear Information System (INIS)

    This report presents an overview of the technologies which are currently used or presently developed for the production of bio-fuels in Europe and more particularly in France. After a brief history of this production since the beginning of the 20. century, the authors describe the support to agriculture and the influence of the Common Agricultural Policy, outline the influence of the present context of struggle against the greenhouse effect, and present the European legislative context. Data on the bio-fuels consumption in the European Union in 2006 are discussed. An overview of the evolution of the activity related to bio-fuels in France, indicating the locations of ethanol and bio-diesel production facilities, and the evolution of bio-fuel consumption, is given. The German situation is briefly presented. Production of ethanol by fermentation, the manufacturing of ETBE, the bio-diesel production from vegetable oils are discussed. Second generation bio-fuels are then presented (cellulose enzymatic processing), together with studies on thermochemical processes and available biomass resources

  19. Bioenergy from Biofuel Residues and Wastes.

    Science.gov (United States)

    Choudri, B S; Baawain, Mahad

    2016-10-01

    This review includes works published in the general scientific literature during 2015 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. A section of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae discussed alongwith policies and economics are also provided.

  20. Bioenergy from Biofuel Residues and Wastes.

    Science.gov (United States)

    Choudri, B S; Baawain, Mahad

    2016-10-01

    This review includes works published in the general scientific literature during 2015 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. A section of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae discussed alongwith policies and economics are also provided. PMID:27620098

  1. Efficacy of a small cell-binding peptide coated hydroxyapatite substitute on bone formation and implant fixation in sheep.

    Science.gov (United States)

    Ding, Ming; Andreasen, Christina M; Dencker, Mads L; Jensen, Anders E; Theilgaard, Naseem; Overgaard, Søren

    2015-04-01

    Cylindrical critical size defects were created at the distal femoral condyles bilaterally of eight female adult sheep. Titanium implants with 2-mm concentric gaps were inserted and the gaps were filled with one of the four materials: allograft; a synthetic 15-amino acid cell-binding peptide coated hydroxyapatite (ABM/P-15); hydroxyapatite + βtricalciumphosphate+ Poly-Lactic-Acid (HA/βTCP-PDLLA); or ABM/P-15+HA/βTCP-PDLLA. After nine weeks, bone-implant blocks were harvested and sectioned for micro-CT scanning, push-out test, and histomorphometry. Significant bone formation and implant fixation could be observed in all four groups. Interestingly, the microarchitecture of the ABM/P-15 group was significantly different from the control group. Tissue volume fraction and thickness were significantly greater in the ABM/P-15 group than in the allograft group. Bone formation and bone ingrowth to porous titanium implant were not significantly different among the four groups. The ABM/P-15 group had similar shear mechanical properties on implant fixation as the allograft group. Adding HA/βTCP-PDLLA to ABM/P-15 did not significantly change these parameters. This study revealed that ABM/P-15 had significantly bone formation in concentric gap, and its enhancements on bone formation and implant fixation were at least as good as allograft. It is suggested that ABM/P-15 might be a good alternative biomaterial for bone implant fixation in this well-validated critical-size defect gap model in sheep. Nevertheless, future clinical researches should focus on prospective, randomized, controlled trials in order to fully elucidate whether ABM/P-15 could be a feasible candidate for bone substitute material in orthopedic practices.

  2. Growth Suppression of Human Lung Cancer Cells and Implanted Tumors by Adenovirus-mediated Transfer of the PTEN Gene

    Institute of Scientific and Technical Information of China (English)

    陈志雄; 杨炯

    2010-01-01

    This study examined the effects of a recombinant adenovirus Ad-PTEN-EGFP on the proliferation of A549 cells,a human lung carcinoma cell line,in vitro and on the growth of the implanted tumors in the nude mice in vivo,explored the underlying mechanisms and evaluated the in vitro transfection efficiency of Ad-PTEN-EGFP into A549 cells.The expression of Ad-PTEN-EGFP in the A549 cells was determined.The proliferation and the apoptosis rates of the A549 cells with Ad-PTEN-EGFP transfection or not was detected by...

  3. Omics in Chlamydomonas for Biofuel Production.

    Science.gov (United States)

    Aucoin, Hanna R; Gardner, Joseph; Boyle, Nanette R

    2016-01-01

    In response to demands for sustainable domestic fuel sources, research into biofuels has become increasingly important. Many challenges face biofuels in their effort to replace petroleum fuels, but rational strain engineering of algae and photosynthetic organisms offers a great deal of promise. For decades, mutations and stress responses in photosynthetic microbiota were seen to result in production of exciting high-energy fuel molecules, giving hope but minor capability for design. However, '-omics' techniques for visualizing entire cell processing has clarified biosynthesis and regulatory networks. Investigation into the promising production behaviors of the model organism C. reinhardtii and its mutants with these powerful techniques has improved predictability and understanding of the diverse, complex interactions within photosynthetic organisms. This new equipment has created an exciting new frontier for high-throughput, predictable engineering of photosynthetically produced carbon-neutral biofuels.

  4. BioFuels Atlas (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  5. Epidermal growth factor: Porcine uterine luminal epithelial cell migratory signal during the peri-implantation period of pregnancy.

    Science.gov (United States)

    Jeong, Wooyoung; Jung, Seoungo; Bazer, Fuller W; Song, Gwonhwa; Kim, Jinyoung

    2016-01-15

    The majority of early conceptus mortality in pregnancy occurs during the peri-implantation period, suggesting that this period is important for conceptus viability and the establishment of pregnancy. Successful establishment of pregnancy in all mammalian species depends on the orchestrated molecular events that transpire at the conceptus-uterine interface during the peri-implantation period of pregnancy. This maternal-conceptus interaction is especially crucial in pigs because they have a non-invasive epitheliochorial placentation during a protracted peri-implantation period. During the pre-implantation period of pregnancy, conceptus survival and the establishment of pregnancy depend on the developing conceptus receiving an adequate supply of histotroph which contains a wide range of nutrients and growth factors. Evidence links epidermal growth factor (EGF) to embryogenesis or implantation in various mammalian species. EGF exhibits potential growth-promoting activities on the conceptus and endometrium; however, in the case of pigs, little is known its functions, especially their regulatory mechanisms at the maternal-conceptus interface. EGF receptor (EGFR) mRNA and protein are abundant in endometrial luminal (LE) and glandular (GE) epithelia and conceptus trophectoderm on Days 13-14 of pregnancy, suggesting that EGF provides an autocrine signal to uterine LE and GE just prior to implantation. Therefore, the objectives of this study were to determine: 1) the potential intracellular signaling pathways responsible for the activities of EGF in porcine uterine LE (pLE) cells; and 2) the changes in cellular activities induced by EGF. EGF treatment of pLE cells increased the abundance of phosphorylated (p)-ERK1/2, p-P70RSK and p-RPS6 compared to that for control cells. Furthermore, EGF-stimulated phosphorylation of ERK1/2 MAPK was inhibited in pLE cells transfected with an EGFR siRNA compared with control siRNA-transfected pLE cells. Moreover, EGF stimulated migration of

  6. Improved endothelialization of titanium vascular implants by extracellular matrix secreted from endothelial cells.

    Science.gov (United States)

    Tu, Qiufen; Zhao, Yuancong; Xue, Xiaoqing; Wang, Jin; Huang, Nan

    2010-12-01

    A variety of metals have been widely used in construction of cardiovascular implants (CVIs), such as artificial heart valves, ventricular pumps, and vascular stents. Although great effects have been put into rigorous anticoagulation, late thrombosis still occurred due to inferior blood and cell compatibility. Natural endothelium is popularly regarded as the only substance that has long-term anticoagulant ability. So, establishment of a compact endothelial cell (EC) monolayer on CVIs surface is a guarantee for their long-term potency. In the work described here, titanium (Ti) disks were coated with extracellular matrix (ECM) directly secreted by human umbilical vein endothelial cells (HUVECs), so as to help ECs proliferate and migrate and to improve their endothelialization in vivo. Deposition of ECM on Ti disks was detected by immunofluorescence microscopy, diffuse reflectance Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. The surface topography and wettability of the Ti disks significantly changed after ECM deposition. Most importantly, it was found that ECM deposition inhibited platelet adhesion, stimulated EC proliferation, increased EC migration speed in vitro, and eventually accelerated the re-cellularization speed of Ti disks in vivo. These important results render it reasonable and feasible to modify CVIs with ECM secreted from ECs for improving their long-term potency. PMID:20666613

  7. System for determining biofuel concentration

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Shean P.; Janke, Christopher James; Kass, Michael D.; Lewis, Sr, Samuel Arthur; Pawel, Steven J; Theiss, Timothy J.

    2016-09-13

    A measurement device or system configured to measure the content of biofuels within a fuel blend. By measuring a state of a responsive material within a fuel blend, a biofuel content of the fuel blend may be measured. For example, the solubility of a responsive material to biofuel content within a fuel blend, may affect a property of the responsive material, such as shape, dimensional size, or electrical impedance, which may be measured and used as a basis for determining biofuel content.

  8. Biofuels: making tough choices

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, Sonja; Dufey, Annie; Vorley, Bill

    2008-02-15

    The jury is still out on biofuels. But one thing at least is certain: serious trade-offs are involved in the production and use of these biomass-derived alternatives to fossil fuels. This has not been lost on the European Union. The year kicked off with an announcement from the EU environment commissioner that it may be better for the EU to miss its target of reaching 10 per cent biofuel content in road fuels by 2020 than to compromise the environment and human wellbeing. The 'decision tree' outlined here can guide the interdependent processes of deliberation and analysis needed for making tough choices in national biofuels development.

  9. Microalgae biofuel potentials (review).

    Science.gov (United States)

    Ghasemi, Y; Rasoul-Amini, S; Naseri, A T; Montazeri-Najafabady, N; Mobasher, M A; Dabbagh, F

    2012-01-01

    With the decrease of fossil based fuels and the environmental impact of them over the planet, it seems necessary to seek the sustainable sources of clean energy. Biofuels, is becoming a worldwide leader in the development of renewable energy resources. It is worthwhile to say that algal biofuel production is thought to help stabilize the concentration of carbon dioxide in the atmosphere and decrease global warming impacts. Also, among algal fuels' attractive characteristics, algal biodiesel is non toxic, with no sulfur, highly biodegradable and relatively harmless to the environment if spilled. Algae are capable of producing in excess of 30 times more oil per acre than corn and soybean crops. Currently, algal biofuel production has not been commercialized due to high costs associated with production, harvesting and oil extraction but the technology is progressing. Extensive research was conducted to determine the utilization of microalgae as an energy source and make algae oil production commercially viable. PMID:22586908

  10. In vitro biocorrosion of Ti-6Al-4V implant alloy by a mouse macrophage cell line.

    Science.gov (United States)

    Lin, Hsin-Yi; Bumgardner, Joel D

    2004-03-15

    Corrosion of implant alloys releasing metal ions has the potential to cause adverse tissue reactions and implant failure. We hypothesized that macrophage cells and their released reactive chemical species (RCS) affect the alloy's corrosion properties. A custom cell culture corrosion box was used to evaluate how cell culture medium, macrophage cells and RCS altered the Ti-6Al-4V corrosion behaviors in 72 h and how corrosion products affected the cells. There was no difference in the charge transfer in the presence (75.2 +/- 17.7 mC) and absence (62.3 +/- 18.8 mC) of cells. The alloy had the lowest charge transfer (28.2 +/- 4.1 mC) and metal ion release (Ti < 10 ppb, V < 2 ppb) with activated cells (releasing RCS) compared with the other two conditions. This was attributed to an enhancement of the surface oxides by RCS. Metal ion release was very low (Ti < 20 ppb, V < 10 ppb) with nonactivated cells and did not change cell morphology, viability, and NO and ATP release compared with controls. However, IL-1beta released from the activated cells and the proliferation of nonactivated cells were greater on the alloy than the controls. In summary, macrophage cells and RCS reduced the corrosion of Ti-6Al-4V alloys as hypothesized. These data are important in understanding host tissue-material interactions.

  11. Improving EU biofuels policy?

    DEFF Research Database (Denmark)

    Swinbank, Alan; Daugbjerg, Carsten

    2013-01-01

    (from a 2010 base) by the same date. In practice, it will mainly be biofuels that economic operators will use to meet these requirements, but the different approaches can lead to either the RED, or the FQD, acting as the binding constraint. A common set of environmental sustainability criteria apply...... in the WTO, as there would be a clearer link between policy measures and the objective of reductions in GHG emissions; and the combination of the revised RED and the FQD would lessen the commercial incentive to import biofuels with modest GHG emission savings, and thus reduce the risk of trade tension....

  12. The Brazilian biofuels industry

    Directory of Open Access Journals (Sweden)

    Goldemberg José

    2008-05-01

    Full Text Available Abstract Ethanol is a biofuel that is used as a replacement for approximately 3% of the fossil-based gasoline consumed in the world today. Most of this biofuel is produced from sugarcane in Brazil and corn in the United States. We present here the rationale for the ethanol program in Brazil, its present 'status' and its perspectives. The environmental benefits of the program, particularly the contribution of ethanol to reducing the emission of greenhouse gases, are discussed, as well as the limitations to its expansion.

  13. Hydrogen bioelectrooxidation on gold nanoparticle-based electrodes modified by Aquifex aeolicus hydrogenase: Application to hydrogen/oxygen enzymatic biofuel cells.

    Science.gov (United States)

    Monsalve, Karen; Roger, Magali; Gutierrez-Sanchez, Cristina; Ilbert, Marianne; Nitsche, Serge; Byrne-Kodjabachian, Deborah; Marchi, Valérie; Lojou, Elisabeth

    2015-12-01

    For the first time, gold nanoparticle-based electrodes have been used as platforms for efficient immobilization of the [NiFe] hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus. AuNPs were characterized by electronic microscopy, dynamic light scattering and UV-Vis spectroscopy. Two sizes around 20.0±5.3 nm and 37.2±4.3 nm nm were synthesized. After thiol-based functionalization, the AuNPs were proved to allow direct H2 oxidation over a large range of temperatures. A high current density up to 1.85±0.15 mA·cm(-2) was reached at the smallest AuNPs, which is 170 times higher than the one recorded at the bare gold electrode. The catalytic current was especially studied as a function of the AuNP size and amount, and procedure for deposition. A synergetic effect between the AuNP porous deposit and the increase surface area was shown. Compared to previously used nanomaterials such as carbon nanofibers, the covalent grafting of the enzyme on the thiol-modified gold nanoparticles was shown to enhance the stability of the hydrogenase. This bioanode was finally coupled to a biocathode where BOD from Myrothecium verrucaria was immobilized on AuNP-based film. The performance of the so-mounted H2/O2 biofuel cell was evaluated, and a power density of 0.25 mW·cm(-2) was recorded. PMID:25960259

  14. A miniature glucose/O{sub 2} biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xianchan; Zhou, Haojie [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100080 (China); Graduate School of CAS, Beijing 100049 (China); Yu, Ping; Su, Lei; Mao, Lanqun [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100080 (China); Ohsaka, Takeo [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2008-06-15

    This study demonstrates a new kind of miniature glucose/O{sub 2} biofuel cells (BFCs) based on carbon fiber microelectrodes (CFMEs) modified with single-walled carbon nanotubes (SWNTs). SWNTs are used as a support both for stably confining the electrocatalyst (i.e., methylene green, MG) for the oxidation of NADH and the anodic biocatalyst (i.e., NAD{sup +}-dependent glucose dehydrogenase, GDH) for the oxidation of glucose and for efficiently facilitating direct electrochemistry of the cathodic biocatalyst (i.e., laccase) for the O{sub 2} reduction. The prepared micro-sized GDH-based bioanode and laccase-based biocathode exhibit good bioelectrocatalytic activity toward the oxidation of glucose and the reduction of oxygen, respectively. In 0.10 M phosphate buffer containing 10 mM NAD{sup +} and 45 mM glucose under ambient air, the power density of the assembled miniature compartment-less glucose/O{sub 2} BFC reaches 58 {mu}W cm{sup -2} at 0.40 V. The stability of the miniature glucose/O{sub 2} BFC is also evaluated. (author)

  15. Performance of a glucose/O{sub 2} enzymatic biofuel cell containing a mediated melanocarpus albomyces laccase cathode in a physiological buffer

    Energy Technology Data Exchange (ETDEWEB)

    Kavanagh, P.; Boland, S.; Jenkins, P.; Leech, D. [Department of Chemistry, National University of Ireland, Galway (Ireland)

    2009-02-15

    We report on the performance of a prototype glucose/O{sub 2} biofuel cell in a physiological buffer. The cell consists of cathode based on Melanocarpus albomyces laccase (with a reported T1 copper redox potential of +0.26 V vs. Ag/AgCl) co-immobilised with an osmium redox polymer mediating film on glassy carbon (GC) separated by a Nafion 117 membrane from a GC anode in anolyte of glucose oxidase, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) as a mediator, all immersed in pH 7.4 phosphate buffer solution containing 0.15 M NaCl and dissolved oxygen, thermostated at 37 C, mimicking physiological conditions. Two osmium redox polymers are employed for cathodic mediation: [Os(2,2'-bipyridine){sub 2}(polyvinylimidazole){sub 10}Cl]{sup +/2+} (E ' 0.22 V vs. Ag/AgCl) and [Os(4,4'-dichloro-2,2'-bipyridine){sub 2}(polyvinylimidazole){sub 10}Cl]{sup +/2+} (E ' 0.35 V vs. Ag/AgCl). Power outputs of 52 {mu}W cm{sup -2} at 0.21 V and 17 {mu}W cm{sup -2} at 0.34 V were obtained for assembled fuel cells containing the respective redox polymer-mediated laccase cathodes, illustrating the increased power obtained as a result of higher biocatalytic efficiency using a redox polymer with redox potential tailored for the enzyme. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  16. Rational Tuning of the Electrocatalytic Nanobiointerface for a "Turn-Off" Biofuel-Cell-Based Self-Powered Biosensor for p53 Protein.

    Science.gov (United States)

    Han, Yajing; Chabu, Johnny Muya; Hu, Shengqiang; Deng, Liu; Liu, You-Nian; Guo, Shaojun

    2015-09-01

    Herein, a novel tunable electrocatalytic nanobiointerface for the construction of a high-sensitivity and high-selectivity biofuel-cell (BFC)-based self-powered biosensor for the detection of transcription factor protein p53 is reported, in which bilirubin oxidase (BOD)/DNA supramolecular modified graphene/platinum nanoparticles hybrid nanosheet (GPNHN) works as a new enhanced material of biocathode to control the attachment of target, and thus tune the electron-transfer process of oxygen reduction for transducing signaling magnification. It is found that in the presence of p53, the strong interaction between the wild-type p53 and its consensus DNA sequence on the electrode surface can block the electron transfer from the BOD to the electrode, thus providing a good opportunity for reducing the electrocatalytic activity of oxygen reduction in the biocathode. This in combination with the glucose oxidation at the carbon nanotube/Meldola's blue/glucose dehydrogenase bioanode can result in a current/or power decrease of BFC in the presence of wild-type p53. The specially designed BFC-based self-powered p53 sensor shows a wide linear range from 1 pM to 1 μM with a detection limit of 1 pM for analyzing wild-type p53. Most importantly, our BFC-based self-powered sensors can detect the concentrations of wild-type p53 in normal and cancer cell lysates without any extensive sample pretreatment/separation or specialized instruments. The present BFC-based self-powered sensor can provide a simple, economical, sensitive, and rapid way for analyzing p53 protein in normal and cancer cells at clinical level, which shows great potential for creating the treatment modalities that capitalize on the concentration variation of the wild-type p53. PMID:26211519

  17. Rational Tuning of the Electrocatalytic Nanobiointerface for a "Turn-Off" Biofuel-Cell-Based Self-Powered Biosensor for p53 Protein.

    Science.gov (United States)

    Han, Yajing; Chabu, Johnny Muya; Hu, Shengqiang; Deng, Liu; Liu, You-Nian; Guo, Shaojun

    2015-09-01

    Herein, a novel tunable electrocatalytic nanobiointerface for the construction of a high-sensitivity and high-selectivity biofuel-cell (BFC)-based self-powered biosensor for the detection of transcription factor protein p53 is reported, in which bilirubin oxidase (BOD)/DNA supramolecular modified graphene/platinum nanoparticles hybrid nanosheet (GPNHN) works as a new enhanced material of biocathode to control the attachment of target, and thus tune the electron-transfer process of oxygen reduction for transducing signaling magnification. It is found that in the presence of p53, the strong interaction between the wild-type p53 and its consensus DNA sequence on the electrode surface can block the electron transfer from the BOD to the electrode, thus providing a good opportunity for reducing the electrocatalytic activity of oxygen reduction in the biocathode. This in combination with the glucose oxidation at the carbon nanotube/Meldola's blue/glucose dehydrogenase bioanode can result in a current/or power decrease of BFC in the presence of wild-type p53. The specially designed BFC-based self-powered p53 sensor shows a wide linear range from 1 pM to 1 μM with a detection limit of 1 pM for analyzing wild-type p53. Most importantly, our BFC-based self-powered sensors can detect the concentrations of wild-type p53 in normal and cancer cell lysates without any extensive sample pretreatment/separation or specialized instruments. The present BFC-based self-powered sensor can provide a simple, economical, sensitive, and rapid way for analyzing p53 protein in normal and cancer cells at clinical level, which shows great potential for creating the treatment modalities that capitalize on the concentration variation of the wild-type p53.

  18. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    International Nuclear Information System (INIS)

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior. (paper)

  19. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    Science.gov (United States)

    Laranjeira, Marta S.; Carvalho, Ângela; Pelaez-Vargas, Alejandro; Hansford, Derek; Ferraz, Maria Pia; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena; Monteiro, Fernando Jorge

    2014-04-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol-gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

  20. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    Directory of Open Access Journals (Sweden)

    Marta S Laranjeira

    2014-03-01

    Full Text Available Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs and human dermal microvascular endothelial cells (HDMECs on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves. Our results showed that cells had a higher metabolic activity (HGF, HDMEC and increased gene expression levels of fibroblast-specific protein-1 (FSP-1 and collagen type I (COL I on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

  1. Cell-mediated BMP-2 liberation promotes bone formation in a mechanically unstable implant environment.

    Science.gov (United States)

    Hägi, Tobias T; Wu, Gang; Liu, Yuelian; Hunziker, Ernst B

    2010-05-01

    The flexible alloplastic materials that are used in bone-reconstruction surgery lack the mechanical stability that is necessary for sustained bone formation, even if this process is promoted by the application of an osteogenic agent, such as BMP-2. We hypothesize that if BMP-2 is delivered gradually, in a cell-mediated manner, to the surgical site, then the scaffolding material's lack of mechanical stability becomes a matter of indifference. Flexible discs of Ethisorb were functionalized with BMP-2, which was either adsorbed directly onto the material (rapid release kinetics) or incorporated into a calcium-phosphate coating (slow release kinetics). Unstabilized and titanium-plate-stabilized samples were implanted subcutaneously in rats and retrieved up to 14 days later for a histomorphometric analysis of bone and cartilage volumes. On day 14, the bone volume associated with titanium-plate-stabilized discs bearing an adsorbed depot of BMP-2 was 10-fold higher than that associated with their mechanically unstabilized counterparts. The bone volume associated with discs bearing a coating-incorporated depot of BMP-2 was similar in the mechanically unstabilized and titanium-plate-stabilized groups, and comparable to that associated with the titanium-plate-stabilized discs bearing an adsorbed depot of BMP-2. Hence, if an osteogenic agent is delivered in a cell-mediated manner (via coating degradation), ossification can be promoted even within a mechanically unstable environment.

  2. Iodine-125 seed implantation as an adjunct to surgery in advanced recurrent squamous cell cancer of the head and neck

    Energy Technology Data Exchange (ETDEWEB)

    Park, R.I.; Liberman, F.Z.; Lee, D.J.; Goldsmith, M.M.; Price, J.C. (Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Hospital, Baltimore, MD (United States))

    1991-04-01

    Survival for extensive recurrent squamous cell carcinomas of the head and neck remains poor, with the major cause of death being local recurrence. Surgical implantation of iodine-125 interstitial seeds allows tumoricidal doses of radiation to be delivered to residual tumor while minimizing radiation doses to the surrounding tissues. From 1978 to 1988, 39 implantations were performed on 35 patients for extensive recurrent squamous cell carcinoma of the head and neck. The decision for implantation was based on positive margins or close to resection margins from frozen sections after salvage resection. The determinate 5-year disease-free survival was 41%, with both the overall and no evidence of disease 5-year survivals being 29%. Significant complications occurred in 36% of all cases. This figure increased to 56% when flap reconstruction was required. Possible reasons for this seemingly high complication rate are discussed. Considering the advanced nature of these recurrent carcinomas, surgical resection with iodine-125 seed implantation appears to be an effective method of managing disease that might otherwise be judged unresectable and treated for palliation only.

  3. Autologous Cell Delivery to the Skin-Implant Interface via the Lumen of Percutaneous Devices in vitro

    Directory of Open Access Journals (Sweden)

    Antonio Peramo

    2010-11-01

    Full Text Available Induced tissue regeneration around percutaneous medical implants could be a useful method to prevent the failure of the medical device, especially when the epidermal seal around the implant is disrupted and the implant must be maintained over a long period of time. In this manuscript, a novel concept and technique is introduced in which autologous keratinocytes were delivered to the interfacial area of a skin-implant using the hollow interior of a fixator pin as a conduit. Full thickness human skin explants discarded from surgeries were cultured at the air-liquid interface and were punctured to fit at the bottom of hollow cylindrical stainless steel fixator pins. Autologous keratinocytes, previously extracted from the same piece of skin and cultured separately, were delivered to the specimens thorough the interior of the hollow pins. The delivered cells survived the process and resembled undifferentiated epithelium, with variations in size and shape. Viability was demonstrated by the lack of morphologic evidence of necrosis or apoptosis. Although the cells did not form organized epithelial structures, differentiation toward a keratinocyte phenotype was evident immunohistochemically. These results suggest that an adaptation of this technique could be useful for the treatment of complications arising from the contact between skin and percutaneous devices in vivo.

  4. Technology Roadmaps: Biofuels for Transport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Biofuels could provide up to 27% of total transport fuel worldwide by 2050. The use of transport fuels from biomass, when produced sustainably, can help cut petroleum use and reduce CO2 emissions in the transport sector, especially in heavy transport. Sustainable biofuel technologies, in particular advanced biofuels, will play an important role in achieving this roadmap vision. The roadmap describes the steps necessary to realise this ambitious biofuels target; identifies key actions by different stakeholders, and the role for government policy to adopt measures needed to ensure the sustainable expansion of both conventional and advanced biofuel production.

  5. Outlook for advanced biofuels

    NARCIS (Netherlands)

    Hamelinck, Carlo Noël

    2004-01-01

    Modern use of biomass can play an important role in a sustainable energy supply. Biomass abounds in most parts of the world and substantial amounts could be produced at low costs. Motor biofuels seem a sensible application of biomass: they are among the few sustainable alternatives to the tran

  6. Biofuel seeks endorsement

    NARCIS (Netherlands)

    Jongeneel, C.; Rentmeester, S.

    2015-01-01

    Biofuels such as ethanol from sugar cane and cellulose ‘waste’ are theoretically sustainable, as their combustion releases no more CO2 than is absorbed during production. Even so, they are also controversial, because they are believed to be grown at the expense of food crops, or because areas of rai

  7. Corneal Endothelial Cell Changes Due to Combined Phacoemulsification-Posterior Chamber Intraocular Lens Implantation and Transpupillary Silicone Oil Removal

    Directory of Open Access Journals (Sweden)

    Mehmet Hanifi Alp

    2014-12-01

    Full Text Available Objectives: The aim of this study was to evaluate the effects of combined phacoemulsification-posterior chamber intraocular lens (PCIOL implantation and removal of transpupillary silicone oil on the corneal endothelial cell layer. Materials and Methods: In this study, we included seven eyes of 7 patients who had intravitreal hemorrhage resulting from retinal detachment or tractional retinal detachment due to proliferative diabetic retinopathy and who underwent pars plana vitrectomy and silicone oil injection. Complicated cataract developed, and phacoemulsification-PC-IOL implantation combined with transpupillary silicon oil removal were performed. Preoperative and postoperative corneal endothelial cell count values were taken by Topcon SP-2000P automatic non-contact specular microscopy and were assessed by IMAGEnet 2000 Endothelial Cell Analysis. The results were compared with the findings in the literature. Results: The mean endothelial cell density (ECD was 2461 cell/mm2 preoperatively. The silicone oil removal was performed after an average of 10±3.5 months (range 5-14 months, and then endothelial cells were counted after a mean of 17±21.2 months (range 1-49 months of the combined surgery. The mean ECD was determined as 1906 cell/mm2 postoperatively. While mean endothelial cell loss was found to be 32% in two patients with diabetes mellitus, five non-diabetic patients had 19% cell loss. Corneal decompensation was not observed in any patient during the follow-up period. Conclusion: After combined phacoemulsification-PC-IOL implantation and transpupillary silicone oil removal, significant reduction in endothelial cells was observed. We detected that this reduction was greater in diabetics. (Turk J Ophthalmol 2014; 44: 424-7

  8. Biofuel on contaminated land

    Science.gov (United States)

    Suer, Pascal; Andersson-Sköld, Yvonne; Blom, Sonja; Bardos, Paul; Polland, Marcel; Track, Thomas

    2010-05-01

    Desktop studies of two Swedish contaminated sites has indicated that growing biofuel crops on these sites may be more environmentally beneficial than alternative risk management approaches such as excavation / removal or containment The demand for biofuel increases pressure on the cultivatable soil of the world. While contaminated land is not very suitable for food production, cultivation of low and medium contaminated soil may remove some pressure from agricultural soils. For larger sites, biofuel cultivation may be economically viable without a remediation bonus. Suitable sites have topographic conditions that allow agricultural machinery, are not in urgent need of remediation, and contamination levels are not plant toxic. Life cycle assessment (LCA) was done for two cases. The (desk top) case studies were - Case K, a 5000 m2 site where salix (willow) was cultivated with hand-held machinery and the biofuel harvest was left on site, and - Case F, a 12 ha site were on site ensuring was being considered, and were salix might have rented an economic profit if the remediation had not been urgent due to exploitation pressure. Some selected results for biofuel K; biofuel F; excavation K; and on site ensuring F respectively: Energy: 0,05; 1,4; 3,5; 19 TJ Waste: 1; 9; 1200; 340 ton Land use off-site: 190; 3 500; 200 000; 1 400 000 m² a Global warming: 3; 86; 230; 1 200 ton CO2 eq Acidification: 25; 1 000; 2 600; 14 000 kg SO2 eq Photochemical smog: 10; 180; 410; 2 300 kg ethene eq Human health: 2; 51; 150; 620 index The environmental impact of the traditional remediation methods of excavation and on-site ensuring was mainly due to the transport of contaminated soil and replacement soil, and landfilling of the contaminated soil. Biofuel cultivation avoids these impacts, while fertiliser production and agricultural machinery would have a lower environmental impact than moving large volumes of soil around. Journeys of a controller to check on the groundwater quality also

  9. Titanium implant impairment and surrounding muscle cell death following neuro-myoelectrostimulation: An in vivo study.

    Science.gov (United States)

    Lecocq, Mathieu; Félix, Marie-Solenne; Linares, Jean-Marc; Chaves-Jacob, Julien; Decherchi, Patrick; Dousset, Erick

    2015-11-01

    Electrical currents have deleterious effects on biomedical metallic implants. However, following arthroplasty, neuro-myoelectrostimulation (NMES) is often used in patient rehabilitation. Such a rehabilitation technique could compromise patient recovery through deleterious effects on metallic alloys and biological tissues. The purpose of our study was to assess the effects of NMES on a Ti6Al4V implant placed in a rat tibial crest and the surrounding muscle tissues. This in vivo study allowed to bring to the fore the prosthesis behavior under mechanical and electromagnetic loads induced by NEMS stimulation. After 3 weeks, implant-to-bone adhesion significantly decreased in stimulated animals compared with nonstimulated animals. Surface mapping indicated titanium implant degradation after NMES. Furthermore, NMES alone did not induce muscle damage contrary to that found in implanted animals. The muscle damage rate was significantly higher in implanted and stimulated animals compared with implanted-only animals. It seems obvious that rehabilitation programs using the NMES technique could induce early deterioration of biomaterial employed for surgical implants. Clinicians should reconsider the use of NMES as a rehabilitation technique for patients with titanium prostheses.

  10. A model for improving microbial biofuel production using a synthetic feedback loop

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  11. A novel poly(propylene-co-imidazole) based biofuel cell: System optimization and operation for energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Muhammet Samet [Department of Chemistry, Bulent Ecevit University, 67100 Zonguldak (Turkey); Korkut, Seyda, E-mail: s.korkut@beun.edu.tr [Department of Environmental Engineering, Bulent Ecevit University, 67100 Zonguldak (Turkey); Hazer, Baki [Department of Chemistry, Bulent Ecevit University, 67100 Zonguldak (Turkey)

    2015-02-01

    This study describes the construction of an enzymatic fuel cell comprised of novel gold nanoparticles embedded poly(propylene-co-imidazole) coated anode and cathode. Working electrode fabrication steps and operational conditions for the fuel cell have been optimized to get enhanced power output. Electrical generation capacity of the optimized cell was tested by using the municipal wastewater sample. The enzymatic fuel cell system reached to maximum power density with 1 μg and 8 μg of polymer quantity and bilirubin oxidase on electrode surface, respectively. The maximum power output was calculated to be 5 μW cm{sup −2} at + 0.56 V (vs. Ag/AgCl) in phosphate buffer (pH 7.4, 100 mM, 20 °C) by the addition of 15 mM of glucose as a fuel source. The optimized enzymatic fuel cell generated a power density of 0.46 μW cm{sup −2} for the municipal wastewater sample. Poly(propylene-co-imidazole) was easily used for a fuel cell system owing to its metallic nanoparticle content. The developed fuel cell will play a significant role for energy conversion by using glucose readily found in wastewater and in vivo mediums. - Highlights: • Gold nanoparticles provided faster electron transfer in the circuit. • The maximum power density of 5 μW cm{sup −2} was generated at + 0.56 V cell potential. • The cell can be easily operated for in vivo mediums.

  12. Biofuels in Europe

    International Nuclear Information System (INIS)

    This article contains a short overview of biomass consumption in Eu countries. The market share of biomass comparing with the other renewable energy sources, analysis, figures of development options and potential barriers are presented. Some special paragraphs were devoted to liquid biofuels like ethanol, methanol and bio-diesel oils. Lacking of the distribution system of liquid biofuels is one of the barriers in implementation. The granulated wood pellets is going to be one of the most widespread bio fuel for households in Austria and Southern Germany and for small scale district heating in Denmark and Sweden. From the analyse follows, that in countries with the state support and subsidies, the biomass consumption is much more developed and is competing with the fossil fuels in heat and power market. But in countries without this support the share of biofuels is decreasing. The last paragraph is describing the situation of biomass consumption in Estonia. Up to now here are positive as well as negative examples of biomass boilers implementation. Comparison of the heat prices in Estonia and in E U countries is presented in Fig. 2. Considering that our heat prices are about 2 times less than the E U average, implementation of the quite expensive western burning technology in Estonia would be more complicated than in E U countries. This points out even bigger necessity of the state support or subsidizing in Estonia. But there is another, economically more feasible way for subsidizing - to start the production of the small bio-fuelled boilers and the fuel handling technology in Estonia. This should reduce the total investment cost of the bio-fuelled heating systems. (author)

  13. External fixation of femoral defects in athymic rats: Applications for human stem cell implantation and bone regeneration

    Directory of Open Access Journals (Sweden)

    Terasa Foo

    2013-01-01

    Full Text Available An appropriate animal model is critical for the research of stem/progenitor cell therapy and tissue engineering for bone regeneration in vivo. This study reports the design of an external fixator and its application to critical-sized femoral defects in athymic rats. The external fixator consists of clamps and screws that are readily available from hardware stores as well as Kirschner wires. A total of 35 rats underwent application of the external fixator with creation of a 6-mm bone defect in one femur of each animal. This model had been used in several separate studies, including implantation of collagen gel, umbilical cord blood mesenchymal stem cells, endothelial progenitor cells, or bone morphogenetic protein-2. One rat developed fracture at the proximal pin site and two rats developed deep tissue infection. Pin loosening was found in nine rats, but it only led to the failure of external fixation in two animals. In 8 to 10 weeks, various degrees of bone growth in the femoral defects were observed in different study groups, from full repair of the bone defect with bone morphogenetic protein-2 implantation to fibrous nonunion with collagen gel implantation. The external fixator used in these studies provided sufficient mechanical stability to the bone defects and had a comparable complication rate in athymic rats as in immunocompetent rats. The external fixator does not interfere with the natural environment of a bone defect. This model is particularly valuable for investigation of osteogenesis of human stem/progenitor cells in vivo.

  14. Characterization of gastric cancer models from different cell lines orthotopically constructed using improved implantation techniques

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Bo Li; Chun-Ping Xiang; Yu Zhang; Yuan-Yuan Li; Xiao-Ling Wu

    2012-01-01

    AIM: To develop orthotopic gastric cancer mouse models from different cell lines and characterize the tumor features to assist further in preclinical trials and clinical treatment strategies. METHODS: Human gastric cancer SGC-7901 and BGC- 823 cell suspensions were injected subcutaneously into nude mice to develop solid tumors, and tumor tissue pieces were then implanted under the serous coat of the stomach. An autopsy was performed on all animals of the SGC-7901 and BGC-823 models to observe the primary tumor growth and metastases using pathological and immunohistochemical methods. RESULTS: Both models showed large tumors in situ resulting in pressure and infiltration of the adjacent organs. The gastric cavity became smaller, along with stenosis of the cardia or pylorus. There were biological and statistical differences between the two models. The metastasis rate in involved organs (lymph nodes, kidney, spleen, testis) was significantly higher in the BGC-823 model compared to the SGC-7901 model (P < 0.05 or P < 0.01). The median survival of the BGC-823 model was shorter than that of SGC-7901 (23 d vs 84 d, P < 0.05). Histopathologically, the primary tumor and metastatic lesions of the two models showed obvious atypia and mucus in the cytoplasm. Compared with the SGC-7901 model, BGC-823 appeared more poorly differentiated (absence of adenoid structure), had a smaller volume, and richer capillary structure. Immunohistochemical staining revealed cytokeratin 20 and epithelial membrane antigen expression was positive in the SGC-7901 tumors, while negative in BGC-823 ones. CONCLUSION: Models using the SGC-7901 and BGC-823 cell lines were established which could function in gastric cancer research on carcinogenesis mechanism and drug discovery. The two models showed different tumor behavior and the latter was more malignant than the former.

  15. Beam dynamics of a double-gap acceleration cell for ion implantation with multiple atomic species

    International Nuclear Information System (INIS)

    As a result of our work on ion implantation, we derived equations for the beam dynamics of a two-gap-resonator cavity for accelerating and bunching various ion species of varying energies with the cavity designed for one particular ion species of a given energy (the design-reference particle). A two gap structure is useful at low resonant frequencies where lumped circuit elements (inductors) can be used and the structure kept small. A single gap structure has the advantage that each gap can be independently phased to produce the desired beam dynamics behavior for various ion species and ion energies. However at low frequencies, single gap resonant structures can be large. We find that the two-gap structure, where the phase difference between gaps, for the design reference particle, is fixed at π radians can give acceptable performance provided that the individual two gap cells in the entire accelerator are optimized for the ion species having the largest mass to charge ratio and having the maximum required output energy. Our equations show how to adjust the cavity phases and electric fields to obtain equivalent first-order accelerator performance for various ion species and energies. These equations allow for the effective evaluation of various accelerator concepts and can facilitate the tuning of a linac when changing energies and ion species. Extensive simulations have confirmed the efficacy of our equations. copyright 1997 American Institute of Physics

  16. Radiation protective nursing intervene of 125I seed implantation in non-small cell lung carcinoma guided by CT

    International Nuclear Information System (INIS)

    Objective: To research radiation protective nursing intervene and important notice of 125I seeds minimally invasive implantation in non-small cell lung carcinoma (NSCLC) by CT. Methods: Under the system of therapy planning system (TPS) and posologic validation, 125I seeds were implanted in 89 cases of NSCLC patients. The consistent radiation protective nursing intervene was used in perioperative period management. The operative successful rate, therapeutic effect and complication rate, therapeutic effect and complication rate was observed. Results: The scientific radiation protective nursing intervene can ensure that the radioactive dose distribution of 125I seed implantation brachytherapy is consistent with the principles of effective and minimally invasive. The operative successful rate was 100%. The local control rate and 1 year survival rate respectively was 97.4% and 92.2%. But the early and later incidence rate of radioactive damaging effect was 14.6% and 1.1% respectively. Leakage of radioactive contamination has not occurred. Conclusion: The consistent TPS and posologic validation 125I seeds implantation integrated scientific radiation protective nursing intervene. It is very important to improve the therapeutic effect of NSCLC and reduce the incidence of complications. (authors)

  17. Corneal Endothelial Cell Changes Due to Combined Phacoemulsification-Posterior Chamber Intraocular Lens Implantation and Transpupillary Silicone Oil Removal

    OpenAIRE

    Mehmet Hanifi Alp; Haluk Esgin

    2014-01-01

    Objectives: The aim of this study was to evaluate the effects of combined phacoemulsification-posterior chamber intraocular lens (PCIOL) implantation and removal of transpupillary silicone oil on the corneal endothelial cell layer. Materials and Methods: In this study, we included seven eyes of 7 patients who had intravitreal hemorrhage resulting from retinal detachment or tractional retinal detachment due to proliferative diabetic retinopathy and who underwent pars plana vitrectomy ...

  18. Arid Lands Biofuel

    Science.gov (United States)

    Neupane, B. P.

    2013-05-01

    Dependence on imported petroleum, as well as consequences from burning fossil fuels, has increased the demand for biofuel sources in the United States. Competition between food crops and biofuel crops has been an increasing concern, however, since it has the potential to raise prices for US beef and grain products due to land and resource competition. Biofuel crops that can be grown on land not suitable for food crops are thus attractive, but also need to produce biofuels in a financially sustainable manner. In the intermountain west of Nevada, biofuel crops need to survive on low-organic soils with limited precipitation when grown in areas that are not competing with food and feed. The plants must also yield an oil content sufficiently high to allow economically viable fuel production, including growing and harvesting the crop as well as converting the hydrocarbons into a liquid fuel. Gumweed (Grindelia squarrosa) currently appears to satisfy all of these requirements and is commonly observed throughout the west. The plant favors dry, sandy soils and is most commonly found on roadsides and other freshly disturbed land. A warm season biennial, the gumweed plant is part of the sunflower family and normally grows 2-4 feet high with numerous yellow flowers and curly leaves. The gumweed plant contains a large store of diterpene resins—most abundantly grindelic acid— similar to the saps found on pine trees that are used to make inks and adhesives. The dry weight harvest on the experimental field is 5130 lbs/acre. Whole plant biomass yields between 11-15% (average 13%) biocrude when subjected to acetone extraction whereas the buds alone contains up to a maximum of 35% biocrude when harvested in 'white milky' stage. The extract is then converted to basic form (sodium grindelate) followed by extraction of nonpolar constituents (mostly terpenes) with hexane and extracted back to ethyl acetate in acidified condition. Ethyl acetate is removed under vacuum to leave a dark

  19. Fabrication of a biofuel cell improved by the π-conjugated electron pathway effect induced from a new enzyme catalyst employing terephthalaldehyde

    Science.gov (United States)

    Chung, Yongjin; Hyun, Kyu Hwan; Kwon, Yongchai

    2015-12-01

    A model explaining the π-conjugated electron pathway effect induced by a novel cross-linker adopted enzyme catalyst is suggested and the performance and stability of an enzymatic biofuel cell (EBC) adopting the new catalyst are evaluated. For this purpose, new terephthalaldehyde (TPA) and conventional glutaraldehyde (GA) cross-linkers are adopted on a glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT)(GOx/PEI/CNT) structure. GOx/PEI/CNT cross-linked by TPA (TPA/[GOx/PEI/CNT]) results in a superior EBC performance and stability to other catalysts. It is attributed to the π bonds conjugated between the aldehyde of TPA and amine of the GOx/PEI molecules. By π conjugation, electrons bonded with carbon and nitrogen are delocalized, promoting the electron transfer and catalytic activity with an excellent EBC performance. The maximum power density (MPD) of an EBC adopting TPA/[GOx/PEI/CNT] (0.66 mW cm-2) is far better than that of the other EBCs (the MPD of EBC adopting GOx/PEI/CNT is 0.40 mW cm-2). Regarding stability, the covalent bonding formed between TPA and GOx/PEI plays a critical role in preventing the denaturation of GOx molecules, leading to an excellent stability. By repeated measurements of the catalytic activity, TPA/[GOx/PEI/CNT] maintains its activity to 92% of its initial value even after five weeks.A model explaining the π-conjugated electron pathway effect induced by a novel cross-linker adopted enzyme catalyst is suggested and the performance and stability of an enzymatic biofuel cell (EBC) adopting the new catalyst are evaluated. For this purpose, new terephthalaldehyde (TPA) and conventional glutaraldehyde (GA) cross-linkers are adopted on a glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT)(GOx/PEI/CNT) structure. GOx/PEI/CNT cross-linked by TPA (TPA/[GOx/PEI/CNT]) results in a superior EBC performance and stability to other catalysts. It is attributed to the π bonds conjugated between the aldehyde of

  20. Anticancer activity of resveratrol on implanted human primary gastric carcinoma cells in nude mice

    Institute of Scientific and Technical Information of China (English)

    Hai-Bo Zhou; Juan-Juan Chen; Wen-Xia Wang; Jian-Ting Cai; Qin Du

    2005-01-01

    AIM: To investigate the apoptosis of implanted primary gastric cancer cells in nude mice induced by resveratrol and the relation between this apoptosis and expression of bcl-2and bax.METHODS: A transplanted tumor model was established by injecting human primary gastric cancer cells into subcutaneous tissue of nude mice. Resveratrol (500 mg/kg, 1000 mg/kg and 1500 mg/kg) was directly injected beside tumor body 6 times at an interval of 2 d. Then changes of tumor volume were measured continuously and tumor inhibition rate of each group was calculated. We observed the morphologic alterations by electron microscope, measured the apoptotic rate by TUNEL staining method, detected the expression of apoptosis-regulated genes bcl-2and bax by immunohistochemical staining and PT-PCR.RESULTS: Resveratrol could significantly inhibit carcinoma growth when it was injected near the carcinoma. An inhibitory effect was observed in all therapeutic groups and the inhibition rate of resveratrol at the dose of 500 mg/kg,1 000 mg/kg and 1 500 mg/kg was 10.58%, 29.68% and 39.14%, respectively. Resveratrol induced implanted tumor cells to undergo apoptosis with apoptotic characteristics,including morphological changes of chromatin condensation,chromatin crescent formation, nucleus fragmentation. The inhibition rate of 0.2 mL of normal saline solution, 1 500 mg/kg DMSO, 500 mg/kg resveratrol, 1 000 mg/kg resveratrol, and 1 500 mg/kg resveratrol was L3.68±0.37%, 13.8±0.43%,48.7±1.07%, 56.44±1.39% and 67±0.96%, respectively. The positive rate of bcl-2 protein of each group was 29.48±0.51%,27.56±1.40%, 11.86±0.97%, 5.7±0.84% and 3.92±0.85%,respectively by immunohistochemical staining. The positive rate of bax protein of each group was 19.34±0.35%,20.88±0.91%, 40.02±1.20%, 45.72±0.88% and 52.3±1.54%,respectively by immunohistochemical staining. The density of bcl-2 mRNA in 0.2 mL normal saline solution, 1 500 mg/kg DMSO, 500 mg/kg resveratrol, 1 000 mg/kg resveratrol,and 1 500 mg

  1. Evaluation of the inflammatory potential of implant materials in a mouse model by bioluminescent imaging of intravenously injected bone marrow cells.

    Science.gov (United States)

    Rais, Bushra; Köster, Mario; Rahim, Muhammad Imran; Pils, Marina; Seitz, Jan-Marten; Hauser, Hansjörg; Wirth, Dagmar; Mueller, Peter P

    2016-09-01

    To evaluate the inflammatory potential of implants a bioluminescent imaging assay was developed using luciferase-expressing bone marrow cells that were injected into the blood circulation of wild-type mice. After subcutaneous implantation of titanium discs as an example for a clinically established biocompatible material, the luminosity was modest. Similarly, low luminosity signals were generated by pure magnesium implants that were used to represent metallic alloys that are presently under investigation as novel degradable implant materials. Increased luminosity was observed in response to degradable polymeric PLGA implants. Surgical wounds induced a basic luminescent response even in the absence of an implant. However, the material-independent response to injury could be minimized using injectable microparticle suspensions. In parallel with the resorption of biodegradable microparticles, the signal induced by PLGA declined faster when compared to non-degradable polystyrene suspensions. By using an interferon type I inducible Mx2 promoter construct to drive luciferase gene expression, the highest luminosity was observed in response to bacteria, indicating that the system could also be employed to monitor implant infections. Overall, labeled bone marrow cells yielded specific, well-defined localized signals that correlated with the inflammatory responses to implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2149-2158, 2016. PMID:27102724

  2. Mesenchymal stem cell implantation in atrophic nonunion of the long bones

    Science.gov (United States)

    Phedy, P.; Kholinne, E.; Djaja, Y. P.; Kusnadi, Y.; Merlina, M.; Yulisa, N. D.

    2016-01-01

    Objectives To explore the therapeutic potential of combining bone marrow-derived mesenchymal stem cells (BM-MSCs) and hydroxyapatite (HA) granules to treat nonunion of the long bone. Methods Ten patients with an atrophic nonunion of a long bone fracture were selectively divided into two groups. Five subjects in the treatment group were treated with the combination of 15 million autologous BM-MSCs, 5g/cm3 (HA) granules and internal fixation. Control subjects were treated with iliac crest autograft, 5g/cm3 HA granules and internal fixation. The outcomes measured were post-operative pain (visual analogue scale), level of functionality (LEFS and DASH), and radiograph assessment. Results Post-operative pain evaluation showed no significant differences between the two groups. The treatment group demonstrated faster initial radiographic and functional improvements. Statistically significant differences in functional scores were present during the first (p = 0.002), second (p = 0.005) and third (p = 0.01) month. Both groups achieved similar outcomes by the end of one-year follow-up. No immunologic or neoplastic side effects were reported. Conclusions All cases of nonunion of a long bone presented in this study were successfully treated using autologous BM-MSCs. The combination of autologous BM-MSCs and HA granules is a safe method for treating nonunion. Patients treated with BM-MSCs had faster initial radiographic and functional improvements. By the end of 12 months, both groups had similar outcomes. Cite this article: H.D. Ismail, P. Phedy, E. Kholinne, Y. P. Djaja, Y. Kusnadi, M. Merlina, N. D. Yulisa. Mesenchymal stem cell implantation in atrophic nonunion of the long bones: A translational study. Bone Joint Res 2016;5:287–293. DOI: 10.1302/2046-3758.57.2000587. PMID:27412657

  3. Energy crops for biofuel feedstocks: facts and recent patents on genetic manipulation to improve biofuel crops.

    Science.gov (United States)

    Kumar, Suresh

    2013-12-01

    Burning fossil-fuels to meet the global energy requirements by human being has intensified the concerns of increasing concentrations of greenhouse gases. Therefore, serious efforts are required to develop nonfossil-based renewable energy sources. Plants are more efficient in utilizing solar energy to convert it into biomass which can be used as feedstocks for biofuel production. Hence with the increasing demands of energy and the needs of cost-effective, sustainable production of fuels, it has become necessary to switch over to plant biomass as a renewable source of energy. Biofuels derived from more sustainable biological materials such as lignocellulosic plant residues, considered as second generation biofuels, are more dependable. However, there are technical challenges such as pretreatment and hydrolysis of lignocellulosic biomass to convert it into fermentable sugars. Plant genetic engineering has already proven its potential in modifying cell wall composition of plants for enhancing the efficiency of biofuel production. Interest and potential in the area are very much evident from the growing number of patents in the recent years on the subject. In this review, recent trends in genetic engineering of energy crops for biofuel production have been introduced, and strategies for the future developments have been discussed.

  4. Energy crops for biofuel feedstocks: facts and recent patents on genetic manipulation to improve biofuel crops.

    Science.gov (United States)

    Kumar, Suresh

    2013-12-01

    Burning fossil-fuels to meet the global energy requirements by human being has intensified the concerns of increasing concentrations of greenhouse gases. Therefore, serious efforts are required to develop nonfossil-based renewable energy sources. Plants are more efficient in utilizing solar energy to convert it into biomass which can be used as feedstocks for biofuel production. Hence with the increasing demands of energy and the needs of cost-effective, sustainable production of fuels, it has become necessary to switch over to plant biomass as a renewable source of energy. Biofuels derived from more sustainable biological materials such as lignocellulosic plant residues, considered as second generation biofuels, are more dependable. However, there are technical challenges such as pretreatment and hydrolysis of lignocellulosic biomass to convert it into fermentable sugars. Plant genetic engineering has already proven its potential in modifying cell wall composition of plants for enhancing the efficiency of biofuel production. Interest and potential in the area are very much evident from the growing number of patents in the recent years on the subject. In this review, recent trends in genetic engineering of energy crops for biofuel production have been introduced, and strategies for the future developments have been discussed. PMID:24456235

  5. Microalgae: biofuel production

    Directory of Open Access Journals (Sweden)

    Babita Kumari

    2013-04-01

    Full Text Available In the present day, microalgae feedstocks are gaining interest in energy scenario due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrients contents. All of these properties render them an excellent source for biofuels such as biodiesel, bioethanol and biomethane; as well as a number of other valuable pharmaceutical and nutraceutical products. The present review is a critical appraisal of the commercialization potential of microalgae biofuels. The available literature on various aspects of microalgae for e.g. its cultivation, life cycle assessment, and conceptualization of an algal biorefinery, has been done. The evaluation of available information suggests the operational and maintenance cost along with maximization of oil-rich microalgae production is the key factor for successful commercialization of microalgae-based fuels.

  6. Fermentative biofuels production

    International Nuclear Information System (INIS)

    The limited reserves and increasing prices of fossil carbohydrates, as well as the global warming due to their utilization, impose the finding of renewable energy sources. Because of this, since decades an increasing interest in production of alcohols, which can be used as a fuel additives or fuels for direct replacement in gasoline engines, is observed. Alcohols can be obtained chemically or as products of microbial metabolism of different species in fermentation of sugars or starchy materials. In the present review are summarized different fermentative pathways for production of all alcohols, which are or could be used as biofuels. The focus of the paper is on production limitations, strains development and economical perspectives. Key words: fermentation, biofuel, alcohols

  7. Biofuels made easy

    International Nuclear Information System (INIS)

    Much has been said and written in Australia since the Federal Government introduced its Clean Fuels Policy in September 2001. Various biofuel projects are now being considered in different states of Australia for the manufacture of bioethanol and biodiesel from renewable resources. However, the economic viability required to establish an Australian liquid biofuels industry is predicated on supportive government legislation and an encouraging fuel excise regime. On the other hand, the benefits of such an industry are also in debate. In an attempt to clarify some of the concerns being raised, this paper endeavours to provide an overview of the current use of bioethanol and biodiesel around the world, to summarise the process technologies involved, to review the benefits and non-benefits of renewable fuels to the transport industry and to address the issues for such an industry here in Australia

  8. Biofuel market and carbon modeling to evaluate French biofuel policy

    International Nuclear Information System (INIS)

    In order to comply with European objectives, France has set up an ambitious biofuel plan. This plan is evaluated considering two criteria: tax exemption need and GHG emission savings. An economic marginal analysis and a life cycle assessment (LCA) are provided using a coupling procedure between a partial agro-industrial equilibrium model and a refining optimization model. Thus, we are able to determine the minimum tax exemption needed to place on the market a targeted quantity of biofuel by deducing the agro-industrial marginal cost of biofuel production to the biofuel refining long-run marginal revenue. In parallel, a biofuels LCA is carried out using model outputs. Such a method avoid common allocation problems between joint products. The French biofuel plan is evaluated for 2008, 2010 and 2012 using prospective scenarios. Results suggest that biofuel competitiveness depends on crude oil prices and petroleum products demands. Consequently, biofuel tax exemption does not always appear to be necessary. LCA results show that biofuels production and use, from 'seed to wheel', would facilitate the French Government's to compliance with its 'Plan Climat' objectives by reducing up to 5% GHG emissions in the French road transport sector by 2010. (authors)

  9. Protein network signatures associated with exogenous biofuels treatments in cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Guangsheng ePei

    2014-11-01

    Full Text Available Although recognized as a promising microbial cell factory for producing biofuels, current productivity in cyanobacterial systems is low. To make the processes economically feasible, one of the hurdles which needs to be overcome is the low tolerance of hosts to toxic biofuels. Meanwhile, little information is available regarding the cellular responses to biofuels stress in cyanobacteria, which makes it challenging for tolerance engineering. Using large proteomic datasets of Synechocystis under various biofuels stress and environmental perturbation, a protein co-expression network was first constructed and then combined with the experimentally determined protein-protein interaction (PPI network. Proteins with statistically higher topological overlap in the integrated network were identified as common responsive proteins to both biofuels stress and environmental perturbations. In addition, a WGCNA network analysis was performed to distinguish unique responses to biofuels from those to environmental perturbations and to uncover metabolic modules and proteins uniquely associated with biofuels stress. The results showed that biofuel-specific proteins and modules were enriched in several functional categories, including photosynthesis, carbon fixation and amino acid metabolism, which may represent potential key signatures for biofuels stress responses in Synechocystis. Network-based analysis allowed determination of the responses specifically related to biofuels stress, and the results constituted an important knowledge foundation for tolerance engineering against biofuels in Synechocystis.

  10. Benchmarking biofuels; Biobrandstoffen benchmarken

    Energy Technology Data Exchange (ETDEWEB)

    Croezen, H.; Kampman, B.; Bergsma, G.

    2012-03-15

    A sustainability benchmark for transport biofuels has been developed and used to evaluate the various biofuels currently on the market. For comparison, electric vehicles, hydrogen vehicles and petrol/diesel vehicles were also included. A range of studies as well as growing insight are making it ever clearer that biomass-based transport fuels may have just as big a carbon footprint as fossil fuels like petrol or diesel, or even bigger. At the request of Greenpeace Netherlands, CE Delft has brought together current understanding on the sustainability of fossil fuels, biofuels and electric vehicles, with particular focus on the performance of the respective energy carriers on three sustainability criteria, with the first weighing the heaviest: (1) Greenhouse gas emissions; (2) Land use; and (3) Nutrient consumption [Dutch] Greenpeace Nederland heeft CE Delft gevraagd een duurzaamheidsmeetlat voor biobrandstoffen voor transport te ontwerpen en hierop de verschillende biobrandstoffen te scoren. Voor een vergelijk zijn ook elektrisch rijden, rijden op waterstof en rijden op benzine of diesel opgenomen. Door onderzoek en voortschrijdend inzicht blijkt steeds vaker dat transportbrandstoffen op basis van biomassa soms net zoveel of zelfs meer broeikasgassen veroorzaken dan fossiele brandstoffen als benzine en diesel. CE Delft heeft voor Greenpeace Nederland op een rijtje gezet wat de huidige inzichten zijn over de duurzaamheid van fossiele brandstoffen, biobrandstoffen en elektrisch rijden. Daarbij is gekeken naar de effecten van de brandstoffen op drie duurzaamheidscriteria, waarbij broeikasgasemissies het zwaarst wegen: (1) Broeikasgasemissies; (2) Landgebruik; en (3) Nutriëntengebruik.

  11. Potentials of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Munack, A.; Schroder, O. [Johann Heinrich von Thunen Inst., Braunschweig (Germany); Krahl, J. [Coburg Univ. of Applied Sciences, Coburg (Germany); Bunger, J. [Inst. for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-Univ. Inst., Bochum (Germany)

    2010-07-01

    This paper discussed the potential of biofuels with particular reference to the situation in Germany and Europe. Emphasis was on technical potential, such as biofuel production, utilization and environmental aspects. The Institute of Agricultural Technology and Biosystems Engineering ran vTI emission tests on diesel engines to evaluate the environmental impacts of biofuels. This testing facility is able to drive heavy-duty diesel engines in both stationary and dynamic test cycles, such as the European ESC and ETC. Additional analyses were conducted to determine the fine and ultra-fine particles, polycyclic aromatic hydrocarbons (PAH), aldehydes, ketones, and the usual regulated exhaust gas compounds. Ames tests were conducted to assess the mutagenic potential of tailpipe emissions. Previous study results showed that neat vegetable oils can render the exhaust high in mutagenic potency. Some of the non-regulated exhaust gas compounds were found to vary nonlinearly with the blend composition. B20 was found to have high mutagenic potential and was subject to sedimentation.

  12. Biofuels: The African experience

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo, L.A.; Nkolo, M. [German Agency for Technical Cooperation GTZ, Delegation Regionale des Eaux et Forets, Bertoua (Cameroon)

    2009-07-01

    In July 2006, the African Non-Petroleum Producers Association was formed in Senegal, Africa to develop alternative energy sources. It involved 13 of Africa's poorest nations, who joined forces to become global suppliers of biofuels, and some have set mandatory mixing of ethanol into gasoline. Although several biofuel production projects have been launched in western Africa, many of the new projects and plantations have not yet reached maturity due to the time lag between plantation and full-scale production, which is about 6 years. Major projects that could be producing significant quantities of biofuels in the next few years are not yet reflected in production statistics. Although ethanol is not yet being produced in large quantities in Africa, short-term opportunities exist. Countries in the South African Development Community are using molasses from the sugar can industry to produce ethanol. Biodiesel is also not currently produced on a significant scale in western Africa, but several other countries are gaining experience with cotton and palm oil resources, and Jatropha. Biomass residue also represents a large potential for all African countries involved in timber production. Unlike biodiesel production, land use conflicts are not an issue with biomass residue production.

  13. Plants producing biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Papavinasam, S. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Lab

    2009-08-15

    Biofuels are currently produced primarily from five plants, namely corn, canola, sugar cane, palm oil, jatropha. However, research and development efforts are underway around the world produce biofuels from other sources, particularly from algae. This paper described the characteristics of the top 5 plants and their role in the production of biofuels. Countries where these plants are cultivated were also summarized. The article indicated that producing ethanol from corn, is not very efficient since growing corn requires more fertilizer and pesticides than most other crops, plus the corn kernels have to undergo energy-intensive distillation and chemical extraction processes. China is the world's largest producer of rapeseed oil, with an annual production of 12 million tons. The countries of the European Union collectively produce another 16 million tons, of which nearly 4 million tons were used in 2006 to produce biodiesel. Brazil is the world's largest producer of sugar cane, and accounts for about 45 per cent of global ethanol production. Malaysia and Indonesia are the key players in the palm oil market, accounting for 85 per cent of global production. India has identified more than 11 million hectares that would be suitable for growing jatropha, whose seeds contain up to 40 per cent oil that can be burned in a conventional diesel engine after extraction. 1 tab.

  14. Modeling Stem/Progenitor Cell-Induced Neovascularization and Oxygenation around Solid Implants

    OpenAIRE

    Jain, H. V.; Moldovan, N. I.; Byrne, H. M.

    2012-01-01

    Tissue engineering constructs and other solid implants with biomedical applications, such as drug delivery devices or bioartificial organs, need oxygen (O2) to function properly. To understand better the vascular integration of such devices, we recently developed a novel model sensor containing O2-sensitive crystals, consisting of a polymeric capsule limited by a nano-porous filter. The sensor was implanted in mice with hydrogel alone (control) or hydrogel embedded with mouse CD117/c-kit+ bon...

  15. Power sources and electrical recharging strategies for implantable medical devices

    Institute of Scientific and Technical Information of China (English)

    Xiaojuan WEI; Jing LIU

    2008-01-01

    Implantable medical devices (IMDs) are crit-ically requested for the survival of patients subject to certain serious diseases such as bradycardia, fibrillation, diabetes, and disability, etc. Appropriate working of an active implantable medical device (IMD) heavily relies on the continuous supply of electricity. In this sense, long-term powering and recharging of an IMD via a highly safe, efficient and convenient way is, therefore, extremely important in clinics. Several conventional batteries, such as lithium cell, nuclear cell and bio-fuel cell, etc., have been developed to power IMDs. Meanwhile, the recharge of IMD from outside of the human body is also under investigation. In this paper, some of the most typical IMD batteries are reviewed. Their advantages and disadvantages are compared. In addition, several emer-ging innovations to recharge or directly drive the implanted batteries, including electromagnetic energy transmission, piezoelectric power generation, thermoelec-tric devices, ultrasonic power motors, radio frequency recharging and optical recharging methods, etc., are also discussed. Some fundamental and practical issues thus involved are summarized, and future prospects in this area are made.

  16. Yarrowia lipolytica as an oleaginous cell factory platform for the production of fatty acid-based biofuel and bioproducts

    Directory of Open Access Journals (Sweden)

    Ali eAbghari

    2014-06-01

    Full Text Available Today’s biotechnologists seek new biocatalysts to meet the growing demand for the bioproducts. This review critically evaluates the potential use of Y. lipolytica as an oleaginous cell factory platform. This yeast has undergone extensive modifications for converting a wide range of hydrophobic and hydrophilic biomass, including alkane, oil, glycerol and sugars to fatty acid-based products. This article highlights challenges in the development of this platform and provides an overview of strategies to enhance its potential in the sustainable production of biodiesel, functional dietary lipid compounds and other value-added oleochemical compounds. Future applications of the recombinant Y. lipolytica platform are also discussed.

  17. Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material

    International Nuclear Information System (INIS)

    Demand is increasing for shortening the long (3–6 months) osseointegration period to rehabilitate patients' damaged chewing apparatus in as short a time as possible. For dental implants, as for biomaterials in general, the bio- and osseointegration processes can be controlled at molecular and cellular levels by modification of the implant surface. One of the most promising of such surface modifications is laser ablation, as demonstrated by our previous results [46]. Commercially pure (CP4) sand-blasted, acid-etched titanium disks (Denti® System Ltd., Hungary) were irradiated with a KrF excimer laser (248 nm, fluence 0.4 J/cm2, FWHM 18 ns, 2000 pulses), or with a Nd:YAG laser (532 nm, 1.3 J/cm2, 10 ns, 200 pulses) then examined by SEM, AFM, and XPS. In vitro attachment (24 h) and proliferation (72 h) of MG-63 osteoblast cells were investigated via dimethylthiazol-diphenyl tetrazolium bromide (MTT), alamarBlue (AB) assays alkaline phosphatase quantification (ALP) and SEM. SEM and AFM revealed significant changes in morphology and roughness. XPS confirmed the presence of TiO2 on each sample; after Nd:YAG treatment a reduced state of Ti (Ti3+) was also observed. MTT, AB and ALP measurements detected an increase in the number of cells between the 24- and 72 hour observations; however, laser treatment did not affect cell attachment and proliferation significantly. - Highlights: • CP4 titanium implant surfaces were modified with Nd:YAG and KrF excimer laser. • SEM and AFM revealed significant changes in morphology and roughness. • XPS confirmed the presence of TiO2 on each sample; after Nd:YAG treatment a reduced state of Ti (Ti3+) was found. • Cell proliferation experiments detected an increased number of MG-63 cells between the 24 h and 72 h observations. • Laser treatments neither disturbed, nor enhanced MG-63 cell attachment and proliferation significantly

  18. Progenitor Hematopoietic Cells Implantation Improves Functional Capacity of End Stage Coronary Artery Disease Patients with Advanced Heart Failure.

    Science.gov (United States)

    Yuniadi, Yoga; Kusnadi, Yuyus; Sandhow, Lakshmi; Erika, Rendra; Hanafy, Dicky A; Sardjono, Caroline; Kaligis, R W M; Kasim, Manoefris; Harimurti, Ganesja M

    2016-01-01

    Background. Proangiogenic Hematopoietic Cells (PHC) which comprise diverse mixture of cell types are able to secrete proangiogenic factors and interesting candidate for cell therapy. The aim of this study was to seek for benefit in implantation of PHC on functional improvement in end stage coronary artery disease patients with advanced heart failure. Methods. Patients with symptomatic heart failure despite guideline directed medical therapy and LVEF less than 35% were included. Peripheral blood mononuclear cells were isolated, cultivated for 5 days, and then harvested. Flow cytometry and cell surface markers were used to characterize PHC. The PHC were delivered retrogradely via sinus coronarius. Echocardiography, myocardial perfusion, and clinical and functional data were analyzed up to 1-year observation. Results. Of 30 patients (56.4 ± 7.40 yo) preimplant NT proBNP level is 5124.5 ± 4682.50 pmol/L. Harvested cells characterized with CD133, CD34, CD45, and KDR showed 0.87 ± 0.41, 0.63 ± 0.66, 99.00 ± 2.60, and 3.22 ± 3.79%, respectively. LVEF was improved (22 ± 5.68 versus 26.8 ± 7.93, p observation. Myocardial perfusion significantly improved 6 months after treatment. NYHA Class and six-minute walk test are improved during short term and long term follow-up. Conclusion. Expanded peripheral blood PHC implantation using retrograde delivery approach improved LV systolic function, myocardial perfusion, and functional capacity.

  19. BIOFUELS: FROM HOPES TO REALITY

    OpenAIRE

    José Osvaldo Beserra CARIOCA; Friedrich, Horst E.; Ehrenberger, Simone

    2011-01-01

    This paper combines the research for biofuels processing development with the vehicle conception to focus on realistic scenarios for biofuels to attend vehicle specifications and future green mobility. Actually, these are two important segments of fuels and biofuels context which should converge to a sustainable and realistic model. Recently, due to the climate changes versus fossil fuels use, and its consequences, the United Nations System addressed to the world a report on green economy ind...

  20. Biosensors and Biofuel Cells based on Vertically Aligned Carbon Nanotubes for Integrated Energy Sensing, Generation, and Storage (SGS) Systems

    Science.gov (United States)

    Pandey, Archana; Prasad, Abhishek; Khin Yap, Yoke

    2010-03-01

    Diabetes is a growing health issue in the nation. Thus in-situ glucose sensors that can monitor the glucose level in our body are in high demand. Furthermore, it will be exciting if the excessive blood sugar can be converted into usable energy, and be stored in miniature batteries for applications. This will be the basis for an integrated energy sensing, generation, and storage (SGS) system in the future. Here we report the use of functionalized carbon nanotubes arrays as the glucose sensors as well as fuel cells that can convert glucose into energy. In principle, these devices can be integrated to detect excessive blood glucose and then convert the glucose into energy. They are also inline with our efforts on miniature 3D microbatteries using CNTs [1]. All these devices will be the basis for future SGS systems. Details of these results will be discussed in the meeting. [1] Wang et al., in 206^th Meeting of the Electrochemical Society, October 3-8, Honolulu, Hawaii (2004), Symposium Q1, abstract 1492. Y. K. Yap acknowledges supports from DARPA (DAAD17-03-C-0115), USDA (2007-35603-17740), and the Multi-Scale Technologies Institute (MuSTI) at MTU.

  1. Neonatal human retinal pigment epithelial cells secrete limited trophic factors in vitro and in vivo following striatal implantation in parkinsonian rats

    DEFF Research Database (Denmark)

    Russ, Kaspar; Flores, Joseph; Brudek, Tomasz;

    2015-01-01

    Human retinal pigment epithelial (hRPE) cell implants into the striatum have been investigated as a potential cell-based treatment for Parkinson's disease in a Phase II clinical trial that recently failed. We hypothesize that the trophic factor potential of the hRPE cells could potentially influe...

  2. Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies

    Science.gov (United States)

    Harris, J. P.; Capadona, J. R.; Miller, R. H.; Healy, B. C.; Shanmuganathan, K.; Rowan, S. J.; Weder, C.; Tyler, D. J.

    2011-10-01

    The hypothesis is that the mechanical mismatch between brain tissue and microelectrodes influences the inflammatory response. Our unique, mechanically adaptive polymer nanocomposite enabled this study within the cerebral cortex of rats. The initial tensile storage modulus of 5 GPa decreases to 12 MPa within 15 min under physiological conditions. The response to the nanocomposite was compared to surface-matched, stiffer implants of traditional wires (411 GPa) coated with the identical polymer substrate and implanted on the contralateral side. Both implants were tethered. Fluorescent immunohistochemistry labeling examined neurons, intermediate filaments, macrophages, microglia and proteoglycans. We demonstrate, for the first time, a system that decouples the mechanical and surface chemistry components of the neural response. The neuronal nuclei density within 100 µm of the device at four weeks post-implantation was greater for the compliant nanocomposite compared to the stiff wire. At eight weeks post-implantation, the neuronal nuclei density around the nanocomposite was maintained, but the density around the wire recovered to match that of the nanocomposite. The glial scar response to the compliant nanocomposite was less vigorous than it was to the stiffer wire. The results suggest that mechanically associated factors such as proteoglycans and intermediate filaments are important modulators of the response of the compliant nanocomposite.

  3. Natural Selection of Human Embryos: Decidualizing Endometrial Stromal Cells Serve as Sensors of Embryo Quality upon Implantation

    Science.gov (United States)

    Teklenburg, Gijs; Salker, Madhuri; Molokhia, Mariam; Lavery, Stuart; Trew, Geoffrey; Aojanepong, Tepchongchit; Mardon, Helen J.; Lokugamage, Amali U.; Rai, Raj; Landles, Christian; Roelen, Bernard A. J.; Quenby, Siobhan; Kuijk, Ewart W.; Kavelaars, Annemieke; Heijnen, Cobi J.; Regan, Lesley; Brosens, Jan J.; Macklon, Nick S.

    2010-01-01

    Background Pregnancy is widely viewed as dependent upon an intimate dialogue, mediated by locally secreted factors between a developmentally competent embryo and a receptive endometrium. Reproductive success in humans is however limited, largely because of the high prevalence of chromosomally abnormal preimplantation embryos. Moreover, the transient period of endometrial receptivity in humans uniquely coincides with differentiation of endometrial stromal cells (ESCs) into highly specialized decidual cells, which in the absence of pregnancy invariably triggers menstruation. The role of cyclic decidualization of the endometrium in the implantation process and the nature of the decidual cytokines and growth factors that mediate the crosstalk with the embryo are unknown. Methodology/Principal Findings We employed a human co-culture model, consisting of decidualizing ESCs and single hatched blastocysts, to identify the soluble factors involved in implantation. Over the 3-day co-culture period, approximately 75% of embryos arrested whereas the remainder showed normal development. The levels of 14 implantation factors secreted by the stromal cells were determined by multiplex immunoassay. Surprisingly, the presence of a developing embryo had no significant effect on decidual secretions, apart from a modest reduction in IL-5 levels. In contrast, arresting embryos triggered a strong response, characterized by selective inhibition of IL-1β, -6, -10, -17, -18, eotaxin, and HB-EGF secretion. Co-cultures were repeated with undifferentiated ESCs but none of the secreted cytokines were affected by the presence of a developing or arresting embryo. Conclusions Human ESCs become biosensors of embryo quality upon differentiation into decidual cells. In view of the high incidence of gross chromosomal errors in human preimplantation embryos, cyclic decidualization followed by menstrual shedding may represent a mechanism of natural embryo selection that limits maternal investment in

  4. Effect of 935-MHz phone-simulating electromagnetic radiation on endometrial glandular cells during mouse embryo implantation.

    Science.gov (United States)

    Liu, Wenhui; Zheng, Xinmin; Qu, Zaiqing; Zhang, Ming; Zhou, Chun; Ma, Ling; Zhang, Yuanzhen

    2012-10-01

    This study examined the impact of 935MHz phone-simulating electromagnetic radiation on embryo implantation of pregnant mice. Each 7-week-old Kunming (KM) female white mouse was set up with a KM male mouse in a single cage for mating overnight after induction of ovulation. In the first three days of pregnancy, the pregnant mice was exposed to electromagnetic radiation at low-intensity (150 μW/cm(2), ranging from 130 to 200 μW/cm(2), for 2- or 4-h exposure every day), mid-intensity (570 μW/cm(2), ranging from 400 to 700 μW/cm(2), for 2- or 4-h exposure every day) or high-intensity (1400 μW/cm(2), ranging from 1200 to 1500 μW/cm(2), for 2- or 4-h exposure every day), respectively. On the day 4 after gestation (known as the window of murine embryo implantation), the endometrium was collected and the suspension of endometrial glandular cells was made. Laser scanning microscopy was employed to detect the mitochondrial membrane potential and intracellular calcium ion concentration. In high-intensity, 2- and 4-h groups, mitochondrial membrane potential of endometrial glandular cells was significantly lower than that in the normal control group (Pelectromagnetic radiation and longer length of the radiation are required to inflict a remarkable functional and structural damage to mitochondrial membrane. Our data demonstrated that electromagnetic radiation with a 935-MHz phone for 4 h conspicuously decreased mitochondrial membrane potential and lowered the calcium ion concentration of endometrial glandular cells. It is suggested that high-intensity electromagnetic radiation is very likely to induce the death of embryonic cells and decrease the chance of their implantation, thereby posing a high risk to pregnancy.

  5. Hybrid approach of ventricular assist device and autologous bone marrow stem cells implantation in end-stage ischemic heart failure enhances myocardial reperfusion

    Directory of Open Access Journals (Sweden)

    Khayat Andre

    2011-01-01

    Full Text Available Abstract We challenge the hypothesis of enhanced myocardial reperfusion after implanting a left ventricular assist device together with bone marrow mononuclear stem cells in patients with end-stage ischemic cardiomyopathy. Irreversible myocardial loss observed in ischemic cardiomyopathy leads to progressive cardiac remodelling and dysfunction through a complex neurohormonal cascade. New generation assist devices promote myocardial recovery only in patients with dilated or peripartum cardiomyopathy. In the setting of diffuse myocardial ischemia not amenable to revascularization, native myocardial recovery has not been observed after implantation of an assist device as destination therapy. The hybrid approach of implanting autologous bone marrow stem cells during assist device implantation may eventually improve native cardiac function, which may be associated with a better prognosis eventually ameliorating the need for subsequent heart transplantation. The aforementioned hypothesis has to be tested with well-designed prospective multicentre studies.

  6. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  7. Biofuels: Project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  8. Protein network signatures associated with exogenous biofuels treatments in cyanobacterium Synechocystis sp. PCC 6803

    OpenAIRE

    Guangsheng ePei; Lei eChen; Jiangxin eWang; jianjun eQiao; Weiwen eZhang

    2014-01-01

    Although recognized as a promising microbial cell factory for producing biofuels, current productivity in cyanobacterial systems is low. To make the processes economically feasible, one of the hurdles which needs to be overcome is the low tolerance of hosts to toxic biofuels. Meanwhile, little information is available regarding the cellular responses to biofuels stress in cyanobacteria, which makes it challenging for tolerance engineering. Using large proteomic datasets of Synechocystis under...

  9. Limited external irradiation and interstitial 192iridium implant in the treatment of squamous cell carcinoma of the tonsillar region

    International Nuclear Information System (INIS)

    Between January 1976 and March 1982, 80 patients with histologically proven diagnosis of squamous cell carcinoma of the tonsillar region were treated with definitive radiotherapy. Sixty-five (81%) of these patients had locally advanced tumors (Stage III and IV); 49% of patients had clinically palpable cervical lymphadenopathy. All patients received a combined external megavoltage and interstitial irradiation. The dose of external irradiation was limited to 4500-5000 cGy over 41/2 to 51/2 weeks. This was followed by interstitial 192iridium implants to doses of 2000-2500 cGy in 50-60 hours for T1, T2 lesions and 3000-4000 cGy in 60-100 hours for T3, T4 lesions. The neck masses were also separately implanted to deliver additional doses of 2000-4000 cGy in 50-80 hours. Overall local tumor control was observed in 84% of patients with a minimum follow-up period of 2 years. An absolute 3-year disease free survival of the entire group was 72%. Treatment related complications such as soft tissue necrosis or osteoradionecrosis occurred in 6% (5/80) of patients. The salvage of neck failures and local failures was possible in 78 and 38% of patients, respectively, either by surgery or by re-irradiation employing interstitial 192iridium implants. Functional and esthetic integrity was well preserved in most cases

  10. Uterine autonomic nerve innervation plays a crucial role in regulating rat uterine mast cell functions during embryo implantation.

    Science.gov (United States)

    Yuan, Xue-Jun; Huang, Li-Bo; Qiao, Hui-Li; Deng, Ze-Pei; Fa, Jing-Jing

    2009-12-01

    To explore the potential mechanism of how uterine innervations would affect the uterine mast cell (MC) population and functions during the periimplantation. We herein first examined the consequence of uterine neurectomy on embryo implantation events. We observed that amputation of autonomic nerves innervating the uterus led to on-time implantation failure in rats. Exploiting MC culture and ELISA approaches, we then further analyzed the effect of neurectomy on cellular histamine levels and its release from uterine MCs, to elucidate the relation of the autonomic nerves and local cellular immunity in the uterine during early pregnancy. We observed that disconnection of autonomic nerve innervation significantly increased the population of uterine MCs. Most interestingly, these increased number of uterine MCs in neuroectomized rats contained a much reduced cellular level of histamine. Our subsequent challenge experiments revealed that uterine MCs in nerve amputated rats exhibited enhanced histamine releasing rate in response to substance P and antiIgE, suggesting loss of nerve innervation in the uterus not only increases the population of uterine MCs, but also facilitates the release of histamine from MCs, thus subsequently interfere with the normal implantation process. Collectively, our findings provide a new line of evidence supporting the concept that immune-neuro-endocrine network plays important role during pregnancy establishment and maintenance. PMID:19765668

  11. National Algal Biofuels Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Dept. of Energy (DOE), Washington DC (United States); Sarisky-Reed, Valerie [Dept. of Energy (DOE), Washington DC (United States)

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  12. Biofuels. An overview. Final Report

    International Nuclear Information System (INIS)

    The overall objective of this desk study is to get an overview of the most relevant liquid biofuels especially in the African context, and more specifically in the Netherlands' relevant partner countries. The study will focus on biofuels for transport, but will also consider biofuels for cooking and power generation. Biogas as the result of anaerobic fermentation which can be used for cooking, lighting and electricity generation will not be considered in this study. Liquid biofuels are usually divided into alcohols that are used to substitute for gasoline and oils that are used to substitute for diesel and are often called Biodiesel, and this division will be followed in this study. In chapter 2 we will analyse several aspects of the use of alcohols particularly ethanol, in chapter 3 the same analysis will be done for oils, using as example the very promising Jatropha oil. In chapter we will analyse socio-economic issues of the use of these biofuels

  13. In vivo transfer of intracellular labels from locally implanted bone marrow stromal cells to resident tissue macrophages.

    Directory of Open Access Journals (Sweden)

    Edyta Pawelczyk

    Full Text Available Intracellular labels such as dextran coated superparamagnetic iron oxide nanoparticles (SPION, bromodeoxyuridine (BrdU or green fluorescent protein (GFP are frequently used to study the fate of transplanted cells by in vivo magnetic resonance imaging or fluorescent microscopy. Bystander uptake of labeled cells by resident tissue macrophages (TM can confound the interpretation of the presence of intracellular labels especially during direct implantation of cells, which can result in more than 70% cell death. In this study we determined the percentages of TM that took up SPION, BrdU or GFP from labeled bone marrow stromal cells (BMSCs that were placed into areas of angiogenesis and inflammation in a mouse model known as Matrigel plaque perfusion assay. Cells recovered from digested plaques at various time points were analyzed by fluorescence microscopy and flow cytometry. The analysis of harvested plaques revealed 5% of BrdU(+, 5-10% of GFP(+ and 5-15% of dextran(+ macrophages. The transfer of the label was not dependent on cell dose or viability. Collectively, this study suggests that care should be taken to validate donor origin of cells using an independent marker by histology and to assess transplanted cells for TM markers prior to drawing conclusions about the in vivo behavior of transplanted cells.

  14. [Tobacco--a source of biofuels].

    Science.gov (United States)

    Budzianowska, Anna; Budzianowski, Jaromir

    2012-01-01

    One of the concepts of global protection of environment is to reduce greenhouse gas emissions, mainly carbon dioxide, into the atmosphere by replacing fossil fuels by the so-called biofuels, which can be obtained from cultivated plants or any plant waste biomass. Currently applied industrial technologies allow the production of biofuels to receive ethanol, mostly from the reserve carbohydrates of sugar cane and corn as well as biodiesel from oil, mainly from rapeseed or oil palm. Tobacco, which provides a high biomass, can be used to produce biogas, bioethanol and biodiesel. The latter derived from oil from seeds and leaves of tobacco has proved useful for driving cars. Modest oil content in tobacco leaves can be increased by the expression of foreign genes encoding its biosynthesis. Promising future source of biofuels is a waste plant biomass consisting mainly of cell walls, which can be subjected to the degradation to produce sugars suitable for fermentation and the production of bioethanol. A number of enzymes needed for efficient degradation of plant cell walls can be produced using recombinant DNA technology in a variety of plants, particularly in chloroplasts of tobacco.

  15. Analysis of advanced biofuels.

    Energy Technology Data Exchange (ETDEWEB)

    Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

    2010-09-01

    Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

  16. Biofuels: 1995 project summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  17. Changes in corneal endothelium cell characteristics after cataract surgery with and without use of viscoelastic substances during intraocular lens implantation

    Directory of Open Access Journals (Sweden)

    Schulze SD

    2015-11-01

    Full Text Available Stephan D Schulze,1 Thomas Bertelmann,1 Irena Manojlovic,2 Stefan Bodanowitz,2 Sebastian Irle,3 Walter Sekundo11Department of Ophthalmology, Philipps University of Marburg, Marburg, 2Private Practice and Ambulatory Surgical Center, Bremen, 3Freelance Statistician, Friedberg, GermanyPurpose: To evaluate whether the use of balanced salt solution (BSS or an ophthalmic viscoelastic device (OVD during hydrophilic acrylic intraocular lens (IOL implantation variously impacts corneal endothelial cell characteristics in eyes undergoing uneventful phacoemulsifications.Methods: Prospective nonrandomized observational clinical trial. Patients were assigned either to the BSS plus® or to the OVD Z-Celcoat™ group depending on the substance used during IOL implantation. Corneal endothelium cell characteristics were obtained before, 1 week, and 6 weeks after surgery. Intraoperative parameters (eg, surgery time, phacoemulsification energy were recorded.Results: Ninety-seven eyes were assigned to the BSS plus and 86 eyes to the Z-Celcoat group. Preoperative corneal endothelium cell density (ECD and endothelium cell size were 2,506±310 cells/mm2/2,433±261 cells/mm2 and 406±47 µm2/416±50 µm2 (P=0.107/P=0.09. After 1 and 6 weeks, ECD decreased and endothelium cell size increased significantly in both groups (each P<0.001 without significant differences between both groups (each P>0.05. Irrigation–aspiration suction time (30.3±16.6 versus 36.3±14.5 seconds and overall surgical time (7.2±1.2 versus 8.0±1.4 minutes were significantly longer in the OVD Z-Celcoat group (each P<0.001. No complications or serious side effects occurred.Conclusion: Implantation of a hydrophilic acrylic IOL under BSS infusion seems to be a useful and faster alternative in experienced hands without generating higher ECD loss rates.Keywords: phacoemulsification, ophthalmic viscoelastic device, endothelial cell density, IOL

  18. Multi-effects and Mechanism of Broad Bean M1 Root-tip Cells Implanted by Low Energy N+ Beam

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Broad beans were divided into six groups and implanted with N+ beam of 30 KeV, 8 × 1016/cm2 per time for various radiating times respectively. Besides the statistics of its vigor of germination, the M1 root-tip cells of these broad beans were systematically analyzed on their changes in mitotic percentage, morphology and behavior of chromosomes, along with the structure of cytoskeletons, including microtubule and intermediate filament. Based on all results of these studies, our opinions have been expressed in the report on the mechanism of low-energy N+ beams effecting on higher dicotyledons such as broad bean.

  19. Biofuel from "humified" biomass

    Science.gov (United States)

    Kpogbemabou, D.; Lemée, L.; Amblès, A.

    2009-04-01

    In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do

  20. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schrof, Julian, E-mail: julian.schrof@ise.fraunhofer.de; Müller, Ralph; Benick, Jan; Hermle, Martin [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, D-79110 Freiburg (Germany); Reedy, Robert C. [National Renewable Energy Laboratory (NREL), 15013 Denver West Parkway, Golden, Colorado 80401 (United States)

    2015-07-28

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr{sub 3} furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr{sub 3} diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after

  1. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    Science.gov (United States)

    Schrof, Julian; Müller, Ralph; Reedy, Robert C.; Benick, Jan; Hermle, Martin

    2015-07-01

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr3

  2. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    International Nuclear Information System (INIS)

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr3

  3. Experiments in Vitro of Biofuel Cell for Implantable Medical Devices%植入式生物燃料电池的体外实验

    Institute of Scientific and Technical Information of China (English)

    林洁琼; 周晓勤; 马龙

    2009-01-01

    开发了一种利用生理体液的植入式生物燃料电池(BFC)原型装置.通过模拟人体生理环境,进行了植入式生物燃料电池的体外试验.讨论了葡萄糖反应液的浓度、温度和pH值对生物燃料电池输出电流的影响,实验结果表明:随着葡萄糖反应液浓度的降低,生物燃料电池的输出电流相应减少,持续供电时间缩短;随着反应液pH值的降低,生物燃料电池的输出电流增大;升高反应液温度会使生物燃料电池的输出电流产生振荡.

  4. In vitro reactivity to implant metals demonstrates a person-dependent association with both T-cell and B-cell activation.

    Science.gov (United States)

    Hallab, Nadim James; Caicedo, Marco; Epstein, Rachel; McAllister, Kyron; Jacobs, Joshua J

    2010-02-01

    Hypersensitivity to metallic implants remains relatively unpredictable and poorly understood. We initially hypothesized that metal-induced lymphocyte proliferation responses to soluble metal challenge (ions) are mediated exclusively by early T-cell activation (not B-cells), typical of a delayed-type-hypersensitivity response. We tested this by comparing proliferation (6 days) of primary lymphocytes with early T-cell and B-cell activation (48 h) in three groups of subjects likely to demonstrate elevated metal reactivity: group 1 (n = 12) history of metal sensitivity with no implant; group 2a (n = 6) well performing metal-on-metal THRs, and group 2b (n = 20) subjects with poorly performing metal-on-polymer total joint arthroplasties (TJA). Group 1 showed 100% (12/12) metal reactivity (stimulation index > 2) to Ni. Groups 2a and 2b were 83% (5/6) and 75% (15/22) metal reactive (to Co, Cr, or Ni), respectively. Of the n = 32 metal-reactive subjects to Co, Cr, or Ni (SI > 2), n = 22/32 demonstrated >2-fold elevations in % of T-cell or B-cell activation (CD25+, CD69+) to metal challenge when compared with untreated control. 18/22 metal-activated subjects demonstrated an exclusively T-cell or B-cell activation response to metal challenge, where 6/18 demonstrated exclusively B-cell activation and 12/18 demonstrated a T-cell only response, as measured by surface activation markers CD25+ and CD69+. However, there was no direct correlation (R(2) metal reactivity than did subject-dependent results of flow-cytometry analysis of T-cell or B-cell activation. The high incidence of lymphocyte reactivity and activation indicate that more complex than initially hypothesized immune responses may contribute to the etiology of debris-induced osteolysis in metal-sensitive individuals.

  5. Progenitor Hematopoietic Cells Implantation Improves Functional Capacity of End Stage Coronary Artery Disease Patients with Advanced Heart Failure

    Directory of Open Access Journals (Sweden)

    Yoga Yuniadi

    2016-01-01

    Full Text Available Background. Proangiogenic Hematopoietic Cells (PHC which comprise diverse mixture of cell types are able to secrete proangiogenic factors and interesting candidate for cell therapy. The aim of this study was to seek for benefit in implantation of PHC on functional improvement in end stage coronary artery disease patients with advanced heart failure. Methods. Patients with symptomatic heart failure despite guideline directed medical therapy and LVEF less than 35% were included. Peripheral blood mononuclear cells were isolated, cultivated for 5 days, and then harvested. Flow cytometry and cell surface markers were used to characterize PHC. The PHC were delivered retrogradely via sinus coronarius. Echocardiography, myocardial perfusion, and clinical and functional data were analyzed up to 1-year observation. Results. Of 30 patients (56.4±7.40 yo preimplant NT proBNP level is 5124.5±4682.50 pmol/L. Harvested cells characterized with CD133, CD34, CD45, and KDR showed 0.87±0.41, 0.63±0.66, 99.00±2.60, and 3.22±3.79%, respectively. LVEF was improved (22±5.68 versus 26.8±7.93, p<0.001 during short and long term observation. Myocardial perfusion significantly improved 6 months after treatment. NYHA Class and six-minute walk test are improved during short term and long term follow-up. Conclusion. Expanded peripheral blood PHC implantation using retrograde delivery approach improved LV systolic function, myocardial perfusion, and functional capacity.

  6. Repair of the myocardium infarct, with intracoronary implant of mother cells (stem cells) precocious improvement of the ventricular function and the ischemy (first reports of the TECELCOR report)

    International Nuclear Information System (INIS)

    Twenty patients who suffered extensive anterior myocardial infarction with an evolution of 5 to 72 hours were submitted to a primary PTCA with Stent. The ventricular ejection fraction oscillated between 21 to 30% in correlation to the bidimensional echocardiography. Between the 7th and 12th day, mononuclear CD 34(+) and CD 38(-) cells extracted from the patient's bone marrow were implanted through the anterior descendent coronary artery, with occlusion of the anterior coronary vein, in an average amount of 22 x 10 P6. echocardiographic controls were performed each 7 days until 60 days, noticing a progressive increment in the ejection fraction (EF) from 25 to 45% in the first 60 days, and an improvement of the EF up to 80% after 90 days. Between 90 and 120 days after, a coronary ventriculography was performed, and the permeability of all the implanted stents and an improvement of the EF up to 80% with respect to the basal EF, were observed. The Spect studies were negative with negative ergonometry at 700 kgm. This group of patients was comparing red with 16 patients who were submitted only to primary PTCA with Stent. They had an increase of only 45% of the EF respect to the basal one in the next 90 days and 12 % presented restenosis. Stems cells implant improves the left ventricular performance after a myocardial infarction and it seems to avoid the coronary post-restenosis

  7. Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material

    Energy Technology Data Exchange (ETDEWEB)

    Györgyey, Ágnes; Ungvári, Krisztina [Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary); Kecskeméti, Gabriella; Kopniczky, Judit [Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged (Hungary); Hopp, Béla [Research Group on Laser Physics, Hungarian Academy of Sciences and University of Szeged, H-6720 Szeged (Hungary); Oszkó, Albert [Department of Physical Chemistry and Materials Science, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged (Hungary); Pelsöczi, István; Rakonczay, Zoltán [Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary); Nagy, Katalin [Department of Oral Surgery, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary); Turzó, Kinga, E-mail: kturzo@yahoo.com [Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, H-6720 Szeged (Hungary)

    2013-10-15

    Demand is increasing for shortening the long (3–6 months) osseointegration period to rehabilitate patients' damaged chewing apparatus in as short a time as possible. For dental implants, as for biomaterials in general, the bio- and osseointegration processes can be controlled at molecular and cellular levels by modification of the implant surface. One of the most promising of such surface modifications is laser ablation, as demonstrated by our previous results [46]. Commercially pure (CP4) sand-blasted, acid-etched titanium disks (Denti® System Ltd., Hungary) were irradiated with a KrF excimer laser (248 nm, fluence 0.4 J/cm{sup 2}, FWHM 18 ns, 2000 pulses), or with a Nd:YAG laser (532 nm, 1.3 J/cm{sup 2}, 10 ns, 200 pulses) then examined by SEM, AFM, and XPS. In vitro attachment (24 h) and proliferation (72 h) of MG-63 osteoblast cells were investigated via dimethylthiazol-diphenyl tetrazolium bromide (MTT), alamarBlue (AB) assays alkaline phosphatase quantification (ALP) and SEM. SEM and AFM revealed significant changes in morphology and roughness. XPS confirmed the presence of TiO{sub 2} on each sample; after Nd:YAG treatment a reduced state of Ti (Ti{sup 3+}) was also observed. MTT, AB and ALP measurements detected an increase in the number of cells between the 24- and 72 hour observations; however, laser treatment did not affect cell attachment and proliferation significantly. - Highlights: • CP4 titanium implant surfaces were modified with Nd:YAG and KrF excimer laser. • SEM and AFM revealed significant changes in morphology and roughness. • XPS confirmed the presence of TiO{sub 2} on each sample; after Nd:YAG treatment a reduced state of Ti (Ti{sup 3+}) was found. • Cell proliferation experiments detected an increased number of MG-63 cells between the 24 h and 72 h observations. • Laser treatments neither disturbed, nor enhanced MG-63 cell attachment and proliferation significantly.

  8. International Trade of Biofuels (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2013-05-01

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  9. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  10. Radiation protective nursing intervene of 125I seed implantation in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Lung cancer is the most common primary malignant tumor. Because most sufferers have already been in later stage in their first diagnosis, the lump body infringing upon the important organs often influences the excision of tumor. 125I seeds permanent implantation is a new method for tumor brachytherapy, which contributes to kill the tumor completely, ensures the normal physiological functions of organs,reduces tissue injuries and treatment of complications, and raises the survival rate of sufferers. The rapid promotion of this technique is also followed by radiation risks in the treatment. Currently, the researches of 125I seeds implantation is limited to the aspects of treatment means and effects, with no detailed study in intraoperative usage, disinfection and protection. Although a satisfactory curative effect is the key in the treatment,the studies in protection principles, means and technological upgradation are also too important to be ignored. (authors)

  11. Carmustine Implant

    Science.gov (United States)

    Carmustine implant is used along with surgery and sometimes radiation therapy to treat malignant glioma (a certain type of ... Carmustine implant comes as a small wafer that is placed in the brain by a doctor during surgery to ...

  12. Goserelin Implant

    Science.gov (United States)

    Goserelin implant is used in combination with radiation therapy and other medications to treat localized prostate cancer and is ... treatment of abnormal bleeding of the uterus. Goserelin implant is in a class of medications called gonadotropin- ...

  13. Transgenic woody plants for biofuel

    Institute of Scientific and Technical Information of China (English)

    Wei Tang; Anna Y.Tang

    2014-01-01

    Transgenic trees as a new source for biofuel have brought a great interest in tree biotechnology. Genetically modifying forest trees for ethanol production have advantages in technical challenges, costs, environmental concerns, and financial problems over some of crops. Genetic engineering of forest trees can be used to reduce the level of lignin, to produce the fast-growing trees, to develop trees with higher cellulose, and to allow the trees to be grown more widely. Trees can establish themselves in the field with less care of farmers, compared to most of crops. Transgenic crops as a new source for biofuel have been recently reviewed in several reviews. Here, we overview transgenic woody plants as a new source for biofuel including genetically modified woody plants and environment; main focus of woody plants genetic modifications;solar to chemical energy transfer; cellulose biosynthesis;lignin biosynthesis;and cellulosic ethanol as biofuel.

  14. Biofuels: policies, standards and technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Skyrocketing prices of crude oil in the middle of the first decade of the 21st century accompanied by rising prices for food focused political and public attention on the role of biofuels. On the one hand, biofuels were considered as a potential automotive fuel with a bright future, on the other hand, biofuels were accused of competing with food production for land. The truth must lie somewhere in-between and is strongly dependent on the individual circumstance in different countries and regions. As food and energy are closely interconnected and often compete with each other for other resources, such as water, the World Energy Council - following numerous requests of its Member Committees - decided to undertake an independent assessment of biofuels policies, technologies and standards.

  15. Conventional and advanced liquid biofuels

    Directory of Open Access Journals (Sweden)

    Đurišić-Mladenović Nataša L.

    2016-01-01

    Full Text Available Energy security and independence, increase and fluctuation of the oil price, fossil fuel resources depletion and global climate change are some of the greatest challanges facing societies today and in incoming decades. Sustainable economic and industrial growth of every country and the world in general requires safe and renewable resources of energy. It has been expected that re-arrangement of economies towards biofuels would mitigate at least partially problems arised from fossil fuel consumption and create more sustainable development. Of the renewable energy sources, bioenergy draws major and particular development endeavors, primarily due to the extensive availability of biomass, already-existence of biomass production technologies and infrastructure, and biomass being the sole feedstock for liquid fuels. The evolution of biofuels is classified into four generations (from 1st to 4th in accordance to the feedstock origin; if the technologies of feedstock processing are taken into account, than there are two classes of biofuels - conventional and advanced. The conventional biofuels, also known as the 1st generation biofuels, are those produced currently in large quantities using well known, commercially-practiced technologies. The major feedstocks for these biofuels are cereals or oleaginous plants, used also in the food or feed production. Thus, viability of the 1st generation biofuels is questionable due to the conflict with food supply and high feedstocks’ cost. This limitation favoured the search for non-edible biomass for the production of the advanced biofuels. In a general and comparative way, this paper discusses about various definitions of biomass, classification of biofuels, and brief overview of the biomass conversion routes to liquid biofuels depending on the main constituents of the biomass. Liquid biofuels covered by this paper are those compatible with existing infrastructure for gasoline and diesel and ready to be used in

  16. Stem cell homing using local delivery of plerixafor and stromal derived growth factor-1alpha for improved bone regeneration around Ti-implants.

    Science.gov (United States)

    Karlsson, Johan; Harmankaya, Necati; Palmquist, Anders; Atefyekta, Saba; Omar, Omar; Tengvall, Pentti; Andersson, Martin

    2016-10-01

    Triggering of the early healing events, including the recruitment of progenitor cells, has been suggested to promote bone regeneration. In implantology, local drug release technologies could provide an attractive approach to promote tissue regeneration. In this study, we targeted the chemotactic SDF-1α/CXCR4 axis that is responsible e.g. for the homing of stem cells to trauma sites. This was achieved by local delivery of plerixafor, an antagonist to CXCR4, and/or SDF-1α, from titanium implants coated with mesoporous titania thin films with a pore size of 7.5 nm. In vitro drug delivery experiments demonstrated that the mesoporous coating provided a high drug loading capacity and controlled release. The subsequent in vivo study in rat tibia showed beneficial effects with respect to bone-implant anchorage and bone-formation along the surface of the implants when plerixafor and SDF-1α were delivered locally. The effect was most prominent by the finding that the combination of the drugs significantly improved the mechanical bone anchorage. These observations suggest that titanium implants with local delivery of drugs for enhanced local recruitment of progenitor cells have the ability to promote osseointegration. This approach may provide a potential strategy for the development of novel implant treatments. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2466-2475, 2016. PMID:27213764

  17. Effects of neonatal neural progenitor cell implantation on adult neuroanatomy and cognition in the Ts65Dn model of Down syndrome.

    Directory of Open Access Journals (Sweden)

    Angela L Rachubinski

    Full Text Available As much of the aberrant neural development in Down syndrome (DS occurs postnatally, an early opportunity exists to intervene and influence life-long cognitive development. Recent success using neural progenitor cells (NPC in models of adult neurodegeneration indicate such therapy may be a viable option in diseases such as DS. Murine NPC (mNPC, C17.2 cell line or saline were implanted bilaterally into the dorsal hippocampus of postnatal day 2 (PND 2 Ts65Dn pups to explore the feasibility of early postnatal treatment in this mouse model of DS. Disomic littermates provided karyotype controls for trisomic pups. Pups were monitored for developmental milestone achievement, and then underwent adult behavior testing at 14 weeks of age. We found that implanted mNPC survived into adulthood and migrated beyond the implant site in both karyotypes. The implantation of mNPC resulted in a significant increase in the density of dentate granule cells. However, mNPC implantation did not elicit cognitive changes in trisomic mice either neonatally or in adulthood. To the best of our knowledge, these results constitute the first assessment of mNPC as an early intervention on cognitive ability in a DS model.

  18. Third generation biofuels from microalgae

    OpenAIRE

    Dragone, Giuliano; Fernandes, Bruno Daniel; A.A. Vicente; Teixeira, J. A.

    2010-01-01

    Biofuel production from renewable sources is widely considered to be one of the most sustainable alternatives to petroleum sourced fuels and a viable means for environmental and economic sustainability. Microalgae are currently being promoted as an ideal third generation biofuel feedstock because of their rapid growth rate, CO2 fixation ability and high production capacity of lipids; they also do not compete with food or feed crops, and can be produced on non-arable land. Microalg...

  19. Preliminary study on effects of nitrogen ion implantation on corn (Zea mays) somatic cell culture

    International Nuclear Information System (INIS)

    Immature embryos from three self-bred series of M1 corn (Zea mays) were cultured in MN and AG medium after dry seeds were implanted to 2 x 1016 cm-2 N+ ions of 60 keV and grown into M1 plants. The experiments indicated that all genotypes formed pale-yellow or yellow callus in the two media. The average callus induction frequency of M1 immature embryos was 11.7% higher than that of the control. Percentages of callus were different not only for various genotypes of the culture material in the two media, but also for different concentration of 2,4-D and 6-BA

  20. Murine Wee1 Plays a Critical Role in Cell Cycle Regulation and Pre-Implantation Stages of Embryonic Development

    Directory of Open Access Journals (Sweden)

    Yohei Tominaga, Cuiling Li, Rui-Hong Wang, Chu-Xia Deng

    2006-01-01

    Full Text Available Wee1 kinase regulates the G2/M cell cycle checkpoint by phosphorylating and inactivating the mitotic cyclin-dependent kinase 1 (Cdk1. Loss of Wee1 in many systems, including yeast and drosophila, leads to premature mitotic entry. However, the developmental role of Wee1 in mammals remains unclear. In this study, we established Wee1 knockout mice by gene targeting. We found that Wee-/- embryos were defective in the G2/M cell cycle checkpoint induced by γ-irradiation and died of apoptosis before embryonic (E day 3.5. To study the function of Wee1 further, we have developed MEF cells in which Wee1 is disrupted by a tamoxifen inducible Cre-LoxP approach. We found that acute deletion of Wee1 resulted in profound growth defects and cell death. Wee1 deficient cells displayed chromosome aneuploidy and DNA damage as revealed by γ-H2AX foci formation and Chk2 activation. Further studies revealed a conserved mechanism of Wee1 in regulating mitotic entry and the G2/M checkpoint compared with other lower organisms. These data provide in vivo evidence that mammalian Wee1 plays a critical role in maintaining genome integrity and is essential for embryonic survival at the pre-implantation stage of mouse development.

  1. Back-junction back-contact n-type silicon solar cell with diffused boron emitter locally blocked by implanted phosphorus

    Science.gov (United States)

    Müller, Ralph; Schrof, Julian; Reichel, Christian; Benick, Jan; Hermle, Martin

    2014-09-01

    The highest energy conversion efficiencies in the field of silicon-based photovoltaics have been achieved with back-junction back-contact (BJBC) silicon solar cells by several companies and research groups. One of the most complex parts of this cell structure is the fabrication of the locally doped p- and n-type regions, both on the back side of the solar cell. In this work, we introduce a process sequence based on a synergistic use of ion implantation and furnace diffusion. This sequence enables the formation of all doped regions for a BJBC silicon solar cell in only three processing steps. We observed that implanted phosphorus can block the diffusion of boron atoms into the silicon substrate by nearly three orders of magnitude. Thus, locally implanted phosphorus can be used as an in-situ mask for a subsequent boron diffusion which simultaneously anneals the implanted phosphorus and forms the boron emitter. BJBC silicon solar cells produced with such an easy-to-fabricate process achieved conversion efficiencies of up to 21.7%. An open-circuit voltage of 674 mV and a fill factor of 80.6% prove that there is no significant recombination at the sharp transition between the highly doped emitter and the highly doped back surface field at the device level.

  2. Back-junction back-contact n-type silicon solar cell with diffused boron emitter locally blocked by implanted phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Ralph, E-mail: ralph.mueller@ise.fraunhofer.de; Schrof, Julian; Reichel, Christian; Benick, Jan; Hermle, Martin [Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, Freiburg D-79110 (Germany)

    2014-09-08

    The highest energy conversion efficiencies in the field of silicon-based photovoltaics have been achieved with back-junction back-contact (BJBC) silicon solar cells by several companies and research groups. One of the most complex parts of this cell structure is the fabrication of the locally doped p- and n-type regions, both on the back side of the solar cell. In this work, we introduce a process sequence based on a synergistic use of ion implantation and furnace diffusion. This sequence enables the formation of all doped regions for a BJBC silicon solar cell in only three processing steps. We observed that implanted phosphorus can block the diffusion of boron atoms into the silicon substrate by nearly three orders of magnitude. Thus, locally implanted phosphorus can be used as an in-situ mask for a subsequent boron diffusion which simultaneously anneals the implanted phosphorus and forms the boron emitter. BJBC silicon solar cells produced with such an easy-to-fabricate process achieved conversion efficiencies of up to 21.7%. An open-circuit voltage of 674 mV and a fill factor of 80.6% prove that there is no significant recombination at the sharp transition between the highly doped emitter and the highly doped back surface field at the device level.

  3. Nanomaterial N-CP/DLPLG as potent1onal tissue graft in osteoreparation in combination with bone marrow cells on subcutaneous implantation model

    Directory of Open Access Journals (Sweden)

    Janićijević Jelena M.

    2008-01-01

    Full Text Available The need for bone graft materials in osteoreparation is tremendous. Many researches have shown that calcium-phosphate bioceramics have good biocompatibility and osteoconductivity. We used nanocomposite biomaterial calcium phosphate coated with poly (dl-lactide-co-glycolide or N-CP/DLPLG. The goal of this investigation was to examine weather N-CP/DLPLG has ability to sustain growth of bone marrow cells after subcutaneous implantation in Balb/c mice. For that purpose N-CP/DLPLG implants with and without bone marrow cells (control were made. Implants were extracted after eight days and eight weeks. In implants loaded with bone marrow cells after eight days and eight weeks we observed fields rich in cells, angiogenesis and collagen genesis. These results showed that N-CP/DLPLG has property of tissue scaffold which sustain bone marrow cells growth and collagen production. This represents a good way for further examination of N-CP/DLPLG as potentional tissue scaffold in osteoreparation.

  4. BIOFUEL FROM CORN STOVER

    Directory of Open Access Journals (Sweden)

    Ljiljanka Tomerlin

    2003-12-01

    Full Text Available This paper deals with production of ethyl alcohol (biofuel from corn stover acid hydrolysate by yeasts, respectively at Pichia stipitis y-7124 and Pachysolen tannophilus y-2460 and Candida shehatae y-12856. Since moist corn stover (Hybryds 619 is proving to decomposition by phyllospheric microflora. It was (conserved spattered individually by microbicids: Busan-90, Izosan-G and formalin. In form of prismatic bales, it was left in the open air during 6 months (Octobar - March. At the beginning and after 6 months the microbiological control was carried out. The only one unspattered (control and three stover corn bals being individually spattered by microbicids were fragmented and cooked with sulfur acid. The obtained four acid hydrolysates are complex substratums, containing, apart from the sugars (about 11 g dm-3 pentosa and about 5.4 g dm-3 hexose, decomposite components as lignin, caramel sugars and uronic acids. By controlling the activity of the mentioned yeasts it was confirmed that yeasts Pichia stipitis y-7124 obtained best capability of ethyl alcohol production from corn stover acid hydrolysate at 0.23 vol. % to 0.49 vol. %.

  5. Sustainable Biofuels Development Center

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, Kenneth F. [Colorado State Univ., Fort Collins, CO (United States)

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  6. Biofuels and food security

    Directory of Open Access Journals (Sweden)

    Dmitry S. STREBKOV

    2015-03-01

    Full Text Available The major source of energy comes from fossil fuels. The current situation in the field of fuel and energy is becoming more problematic as world population continues to grow because of the limitation of fossil fuels reserve and its pressure on environment. This review aims to find economic, reliable, renewable and non-polluting energy sources to reduce high energy tariffs in Russian Federation. Biofuel is fuel derived directly from plants, or indirectly from agricultural, commercial, domestic, and/or industrial wastes. Other alternative energy sources including solar energy and electric power generation are also discussed. Over 100 Mt of biomass available for energy purposes is produced every year in Russian. One of the downsides of biomass energy is its potential threatens to food security and forage industries. An innovative approach proved that multicomponent fuel (80% diesel oil content for motor and 64% for in stove fuel can remarkably reduce the costs. This paper proposed that the most promising energy model for future is based on direct solar energy conversion and transcontinental terawatt power transmission with the use of resonant wave-guide technology.

  7. Sustainable Biofuels Development Center

    Energy Technology Data Exchange (ETDEWEB)

    SRIVASTAVA, PREM

    2015-03-02

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  8. Biofuels feedstock development program

    International Nuclear Information System (INIS)

    The Department of Energy's (DOE's) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires

  9. From Biomass to Biofuels: NREL Leads the Way

    Energy Technology Data Exchange (ETDEWEB)

    2006-08-01

    This brochure covers how biofuels can help meet future needs for transportation fuels, how biofuels are produced, U.S. potential for biofuels, and NREL's approach to efficient affordable biofuels.

  10. Foresight Brief: Seaweed & Algae as Biofuels Feedstocks

    OpenAIRE

    Institute, Marine

    2008-01-01

    Seaweed is a known potential carbon-dioxide (CO2) neutral source of second generation biofuels. When seaweed grows it absorbs CO2 from the atmosphere and this CO2 is released back to the atmosphere during combustion. What makes seaweed, and in particular micro algae, so promising as a fuel source is their growth rates and high lipid (oil) content. Algae are among the fastest-growing plants in the world. Energy is stored inside the cell as lipids and carbohydrates, and can be converted into fu...

  11. Biofuels and sustainability in Africa

    International Nuclear Information System (INIS)

    The combined effects of climate change, the continued volatility of fuel prices, the recent food crisis and global economic turbulence have triggered a sense of urgency among policymakers, industries and development practitioners to find sustainable and viable solutions in the area of biofuels. This sense of urgency is reflected in the rapid expansion of global biofuels production and markets over the past few years. Biofuels development offers developing countries some prospect of self-reliant energy supplies at national and local levels, with potential economic, ecological, social, and security benefits. Forty-two African countries are net oil importers. This makes them particularly vulnerable to volatility in global fuel prices and dependent on foreign exchange to cover their domestic energy needs. The goal therefore is to reduce the high dependence on imported petroleum by developing domestic, renewable energy. But can this objective be achieved while leaving a minimal social and environmental footprint? A fundamental question is if biofuels can be produced with consideration of social, economic and environmental factors without setting unrealistic expectation for an evolving renewable energy industry that holds such great promise. The overall performance of different biofuels in reducing non-renewable energy use and greenhouse gas emissions varies when considering the entire lifecycle from production through to use. The net performance depends on the type of feedstock, the production process and the amount of non-renewable energy needed. This paper presents an overview of the development of biofuels in Africa, and highlights country-specific economic, environmental and social issues. It proposes a combination framework of policy incentives as a function of technology maturity, discusses practices, processes and technologies that can improve efficiency, lower energy and water demand, and further reduce the social and environmental footprint of biofuels

  12. Lab-on-a-brain: Implantable micro-optical fluidic devices for neural cell analysis in vivo

    Science.gov (United States)

    Takehara, Hiroaki; Nagaoka, Akira; Noguchi, Jun; Akagi, Takanori; Kasai, Haruo; Ichiki, Takanori

    2014-10-01

    The high-resolution imaging of neural cells in vivo has brought about great progress in neuroscience research. Here, we report a novel experimental platform, where the intact brain of a living mouse can be studied with the aid of a surgically implanted micro-optical fluidic device; acting as an interface between neurons and the outer world. The newly developed device provides the functions required for the long-term and high-resolution observation of the fine structures of neurons by two-photon laser scanning microscopy and the microfluidic delivery of chemicals or drugs directly into the brain. A proof-of-concept experiment of single-synapse stimulation by two-photon uncaging of caged glutamate and observation of dendritic spine shrinkage over subsequent days demonstrated a promising use for the present technology.

  13. In vitro cell culture, platelet adhesion tests and in vivo implant tests of plasma-polymerized para-xylene films

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Man [Department of Surgery, Taichung Veterans General Hospital, Taiwan, ROC (China); National Yang-Ming University, Taipei, Taiwan, ROC (China); Yeh, Chou-Ming, E-mail: cmchou4301@gmail.com [Taichung Hospital, Department of Health, Executive Yuan, Taiwan, ROC (China); Chung, Chi-Jen [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan, ROC (China); He, Ju-Liang [Department of Materials Science and Engineering, Feng Chia University, Taiwan, ROC (China)

    2013-09-01

    Plasma-polymerized para-xylene (PPX) was developed in a previous study by adjusting the process parameters: pulse frequency of the power supply (ω{sub p}) and para-xylene monomer flow rate (f{sub p}). All the obtained PPX films exhibit an amorphous structure and present hydrophobicity (water contact angle ranging from 98.5° to 121.1°), higher film growth rate and good fibroblast cell proliferation. In this study, in vitro tests (fibroblast cell compatibility and platelet adhesion) and an in vivo animal study were performed by using PPX deposited industrial-grade silicone sheets (IGS) and compared with medical-grade silicone ones (MS), which were commonly manufactured into catheters or drainage tubes in clinical use. The results reveal that PPX deposited at high ω{sub p} or high f{sub p}, in comparison with MS, exhibit better cell proliferation and clearly shows less cell adhesion regardless of ω{sub p} and f{sub p}. PPX also exhibit a comparatively lower level of platelet adhesion than MS. In the animal study, PPX-coated IGS result in similar local tissue responses at 3, 7 and 28 days (short-term) and 84 days (long-term) after subcutaneous implantation the abdominal wall of rodents compared with respective responses to MS. These results suggest that PPX-coated industrial-grade silicone is one alternative to high cost medical-grade silicone.

  14. In vitro cell culture, platelet adhesion tests and in vivo implant tests of plasma-polymerized para-xylene films

    International Nuclear Information System (INIS)

    Plasma-polymerized para-xylene (PPX) was developed in a previous study by adjusting the process parameters: pulse frequency of the power supply (ωp) and para-xylene monomer flow rate (fp). All the obtained PPX films exhibit an amorphous structure and present hydrophobicity (water contact angle ranging from 98.5° to 121.1°), higher film growth rate and good fibroblast cell proliferation. In this study, in vitro tests (fibroblast cell compatibility and platelet adhesion) and an in vivo animal study were performed by using PPX deposited industrial-grade silicone sheets (IGS) and compared with medical-grade silicone ones (MS), which were commonly manufactured into catheters or drainage tubes in clinical use. The results reveal that PPX deposited at high ωp or high fp, in comparison with MS, exhibit better cell proliferation and clearly shows less cell adhesion regardless of ωp and fp. PPX also exhibit a comparatively lower level of platelet adhesion than MS. In the animal study, PPX-coated IGS result in similar local tissue responses at 3, 7 and 28 days (short-term) and 84 days (long-term) after subcutaneous implantation the abdominal wall of rodents compared with respective responses to MS. These results suggest that PPX-coated industrial-grade silicone is one alternative to high cost medical-grade silicone.

  15. In vitro cell culture, platelet adhesion tests and in vivo implant tests of plasma-polymerized para-xylene films

    Science.gov (United States)

    Chou, Chia-Man; Yeh, Chou-Ming; Chung, Chi-Jen; He, Ju-Liang

    2013-09-01

    Plasma-polymerized para-xylene (PPX) was developed in a previous study by adjusting the process parameters: pulse frequency of the power supply (ωp) and para-xylene monomer flow rate (fp). All the obtained PPX films exhibit an amorphous structure and present hydrophobicity (water contact angle ranging from 98.5° to 121.1°), higher film growth rate and good fibroblast cell proliferation. In this study, in vitro tests (fibroblast cell compatibility and platelet adhesion) and an in vivo animal study were performed by using PPX deposited industrial-grade silicone sheets (IGS) and compared with medical-grade silicone ones (MS), which were commonly manufactured into catheters or drainage tubes in clinical use. The results reveal that PPX deposited at high ωp or high fp, in comparison with MS, exhibit better cell proliferation and clearly shows less cell adhesion regardless of ωp and fp. PPX also exhibit a comparatively lower level of platelet adhesion than MS. In the animal study, PPX-coated IGS result in similar local tissue responses at 3, 7 and 28 days (short-term) and 84 days (long-term) after subcutaneous implantation the abdominal wall of rodents compared with respective responses to MS. These results suggest that PPX-coated industrial-grade silicone is one alternative to high cost medical-grade silicone.

  16. Design of high-performance memristor cell using W-implanted SiO2 films

    Science.gov (United States)

    Li, Wenqing; Liu, Xinqiang; Wang, Yongqiang; Dai, Zhigao; Wu, Wei; Cheng, Li; Zhang, Yupeng; Liu, Qi; Xiao, Xiangheng; Jiang, Changzhong

    2016-04-01

    Highly reproducible bipolar resistance switching was demonstrated in a composite material of W-implanted silicon dioxide. Because of its excellent dielectric properties, SiO2 was selected as the sole active material for fabricating the resistance switching devices. The device employed a metal-insulator-semiconductor structure, showing an excellent resistance switching performance (the ON/OFF ratio is close to ˜106). In addition, this sandwich structure device shows a forming-free resistance switching behavior. The overall device performance of the SiO2-based memristor has the potential to open up a new avenue to a large-scale high-performance resistive random access memory, which could significantly impact their existing applications.

  17. Primary anaplastic large cell lymphoma of the breast arising in reconstruction mammoplasty capsule of saline filled breast implant after radical mastectomy for breast cancer: an unusual case presentation

    Directory of Open Access Journals (Sweden)

    Sur Monalisa

    2009-04-01

    Full Text Available Abstract Background Primary non-Hodgkin lymphoma (NHL of the breast represents 0.04–0.5% of malignant lesions of the breast and accounts for 1.7–2.2% of extra-nodal NHL. Most primary cases are of B-cell phenotype and only rare cases are of T-cell phenotype. Anaplastic large cell lymphoma (ALCL is a rare T-cell lymphoma typically seen in children and young adults with the breast being one of the least common locations. There are a total of eleven cases of primary ALCL of the breast described in the literature. Eight of these cases occurred in proximity to breast implants, four in relation to silicone breast implant and three in relation to saline filled breast implant with three out of the eight implant related cases having previous history of breast cancer treated surgically. Adjuvant postoperative chemotherapy is given in only one case. Secondary hematological malignancies after breast cancer chemotherapy have been reported in literature. However in contrast to acute myeloid leukemia (AML, the association between lymphoma and administration of chemotherapy has never been clearly demonstrated. Case Presentation In this report we present a case of primary ALCL of the breast arising in reconstruction mamoplasty capsule of saline filled breast implant after radical mastectomy for infiltrating ductal carcinoma followed by postoperative chemotherapy twelve years ago. Conclusion Primary ALK negative ALCL arising at the site of saline filled breast implant is rare. It is still unclear whether chemotherapy and breast implantation increases risk of secondary hematological malignancies significantly. However, it is important to be aware of these complications and need for careful pathologic examination of tissue removed for implant related complications to make the correct diagnosis for further patient management and treatment. It is important to be aware of this entity at this site as it can be easily misdiagnosed on histologic grounds and to exclude

  18. In vitro osteogenic induction of bone marrow stromal cells with encapsulated gene-modified bone marrow stromal cells and in vivo implantation for orbital bone repair.

    Science.gov (United States)

    Deng, Yuan; Zhou, Huifang; Yan, Chenxi; Wang, Yefei; Xiao, Caiwen; Gu, Ping; Fan, Xianqun

    2014-07-01

    Osteogenic induction with either growth factors or genetic modification has limitations due to the short half-life and cost of the former, or safety concerns regarding the latter. The objective of this study was to employ a microcapsulation technique to separate genetically modified and nonmodified bone marrow stromal cells (BMSCs) to establish a cost-effective and biosafe osteogenic induction methodology with functional evaluation in vitro and in vivo in a canine model. Autologous BMSCs were isolated and transduced with adenoviral vectors containing either BMP-2 or vascular endothelial growth factor (VEGF) or were dual transduced followed by encapsulation in alginate microcapsules using an electrostatic bead generator. After cocultured with encapsulated cells, normal autologous BMSCs were analyzed for osteogenic differentiation and seeded onto tricalcium phosphate (TCP) scaffolds for in vivo implantation to repair orbital wall bone defects (12 mm in diameter) in a canine model. In vitro assays showed that the expression of the transduced genes was significantly upregulated, with significantly more transduced proteins released from the transduced cells compared with control cells. Importantly, examination of the BMSCs induced by soluble factors released from the encapsulated cells revealed a significant upregulation of expression of osteogenic markers Runx2, BSP, OPN, and OCN in dual-transduction or induction groups. In addition, dual transduction and induction resulted in the highest increase of alkaline phosphatase activity and mineralization compared with other experimental groups. In vivo assays using CT, micro-CT, and histology further supported the qPCR and western blot findings. In conclusion, encapsulation of genetically modified BMSCs was able to release a sufficient amount of BMP-2 and VEGF, which effectively induced osteogenic differentiation of normal-cultured BMSCs and demonstrated bone repair of the orbital wall defect after implantation with

  19. Interaction of progenitor bone cells with different surface modifications of titanium implant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Chen, Ya-Shun [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Ko, Chia-Ling [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, Yi; Kuo, Tzu-Huang; Kuo, Hsien-Nan [Medical Device Development Division, Metal Industries Research and Development Centre, Kaohsiung 82151, Taiwan (China)

    2014-04-01

    Changes in the physical and chemical properties of Ti surfaces can be attributed to cell performance, which improves surface biocompatibility. The cell proliferation, mineralization ability, and gene expression of progenitor bone cells (D1 cell) were compared on five different Ti surfaces, namely, mechanical grinding (M), electrochemical modification through potentiostatic anodization (ECH), sandblasting and acid etching (SLA), sandblasting, hydrogen peroxide treatment, and heating (SAOH), and sandblasting, alkali heating, and etching (SMART). SAOH treatment produced the most hydrophilic surface, whereas SLA produced the most hydrophobic surface. Cell activity indicated that SLA and SMART produced significantly rougher surfaces and promoted D1 cell attachment within 1 day of culturing, whereas SAOH treatment produced moderate roughness (Ra = 1.26 μm) and accelerated the D1 cell proliferation up to 7 days after culturing. The ECH surface significantly promoted alkaline phosphatase (ALP) expression and osteocalcin (OCN) secretion in the D1 cells compared with the other surface groups. The ECH and SMART-treated Ti surfaces resulted in maximum ALP and OCN expressions during the D1 cell culture. SLA, SAOH, and SMART substrate surfaces were rougher and exhibited better cell metabolic responses during the early stage of cell attachment, proliferation, and morphologic expressions within 1 day of D1 cell culture. The D1 cells cultured on the ECH and SMART substrates exhibited higher differentiation, and higher ALP and OCN expressions after 10 days of culture. Thus, the ECH and SMART treatments promote better ability of cell mineralization in vitro, which demonstrate their great potential for clinical use. - Highlights: • Progenitor bone cells onto Ti with different modifications are characterized. • Surface roughness and hydrophilicity encourage early stage cell attachment. • Composition and surface treatments are more vital in bone cell mineralization.

  20. Interaction of progenitor bone cells with different surface modifications of titanium implant

    International Nuclear Information System (INIS)

    Changes in the physical and chemical properties of Ti surfaces can be attributed to cell performance, which improves surface biocompatibility. The cell proliferation, mineralization ability, and gene expression of progenitor bone cells (D1 cell) were compared on five different Ti surfaces, namely, mechanical grinding (M), electrochemical modification through potentiostatic anodization (ECH), sandblasting and acid etching (SLA), sandblasting, hydrogen peroxide treatment, and heating (SAOH), and sandblasting, alkali heating, and etching (SMART). SAOH treatment produced the most hydrophilic surface, whereas SLA produced the most hydrophobic surface. Cell activity indicated that SLA and SMART produced significantly rougher surfaces and promoted D1 cell attachment within 1 day of culturing, whereas SAOH treatment produced moderate roughness (Ra = 1.26 μm) and accelerated the D1 cell proliferation up to 7 days after culturing. The ECH surface significantly promoted alkaline phosphatase (ALP) expression and osteocalcin (OCN) secretion in the D1 cells compared with the other surface groups. The ECH and SMART-treated Ti surfaces resulted in maximum ALP and OCN expressions during the D1 cell culture. SLA, SAOH, and SMART substrate surfaces were rougher and exhibited better cell metabolic responses during the early stage of cell attachment, proliferation, and morphologic expressions within 1 day of D1 cell culture. The D1 cells cultured on the ECH and SMART substrates exhibited higher differentiation, and higher ALP and OCN expressions after 10 days of culture. Thus, the ECH and SMART treatments promote better ability of cell mineralization in vitro, which demonstrate their great potential for clinical use. - Highlights: • Progenitor bone cells onto Ti with different modifications are characterized. • Surface roughness and hydrophilicity encourage early stage cell attachment. • Composition and surface treatments are more vital in bone cell mineralization.

  1. In vitro biocorrosion of Co-Cr-Mo implant alloy by macrophage cells.

    Science.gov (United States)

    Lin, Hsin-Yi; Bumgardner, Joel D

    2004-11-01

    We hypothesized that macrophage cells and their released reactive chemical species (RCS) affect Co-Cr-Mo alloy's corrosion properties and that alloy corrosion products change macrophage cell behavior. A custom cell culture corrosion cell was used to evaluate how culture medium, cells, and RCS altered alloy corrosion in 3-day tests. Corrosion was evaluated by measuring total charge transfer at a constant potential using a potentiostat and metal ion release by atomic emission spectroscopy. Viability, proliferation, and NO (nitric oxide) and IL-1beta (interlukin-1beta) release were used to assess cellular response to alloy corrosion products. In the presence of activated cells, total charge transfers and Co ion release were the lowest (p < 0.05). This was attributed to an enhancement of the surface oxide by RCS. Cr and Mo release were not different between cells and activated cells. Low levels of metal ions did not affect cell viability, proliferation, or NO release, though IL-1beta released from the activated cells was higher on the alloy compared to the controls. These data support the hypothesis that macrophage cells and their RCS affect alloy corrosion. Changes in alloy corrosion by cells may be important to the development of host responses to the alloy and its corrosion products.

  2. Biofuels and Sustainable Transport: A Conceptual Discussion

    OpenAIRE

    Geoffrey Gilpin; Erling Holden

    2013-01-01

    Strategies for sustainably using biofuels must be thoroughly assessed at several levels. First, the use of biofuels must comply with sustainable development’s main dimensions. Second, the use of biofuels must comply with sustainable transport’s main dimensions. Third, gains from using biofuels strategies must compare favorably to gains from other sustainable transport strategies, such as altering transport patterns and reducing transport volume. Fourth, the gains must compare favorably to...

  3. Biofuels from food processing wastes.

    Science.gov (United States)

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed.

  4. Green chemistry, biofuels, and biorefinery.

    Science.gov (United States)

    Clark, James H; Luque, Rafael; Matharu, Avtar S

    2012-01-01

    In the current climate of several interrelated impending global crises, namely, climate change, chemicals, energy, and oil, the impact of green chemistry with respect to chemicals and biofuels generated from within a holistic concept of a biorefinery is discussed. Green chemistry provides unique opportunities for innovation via product substitution, new feedstock generation, catalysis in aqueous media, utilization of microwaves, and scope for alternative or natural solvents. The potential of utilizing waste as a new resource and the development of integrated facilities producing multiple products from biomass is discussed under the guise of biorefineries. Biofuels are discussed in depth, as they not only provide fuel (energy) but are also a source of feedstock chemicals. In the future, the commercial success of biofuels commensurate with consumer demand will depend on the availability of new green (bio)chemical technologies capable of converting waste biomass to fuel in a context of a biorefinery.

  5. Green chemistry, biofuels, and biorefinery.

    Science.gov (United States)

    Clark, James H; Luque, Rafael; Matharu, Avtar S

    2012-01-01

    In the current climate of several interrelated impending global crises, namely, climate change, chemicals, energy, and oil, the impact of green chemistry with respect to chemicals and biofuels generated from within a holistic concept of a biorefinery is discussed. Green chemistry provides unique opportunities for innovation via product substitution, new feedstock generation, catalysis in aqueous media, utilization of microwaves, and scope for alternative or natural solvents. The potential of utilizing waste as a new resource and the development of integrated facilities producing multiple products from biomass is discussed under the guise of biorefineries. Biofuels are discussed in depth, as they not only provide fuel (energy) but are also a source of feedstock chemicals. In the future, the commercial success of biofuels commensurate with consumer demand will depend on the availability of new green (bio)chemical technologies capable of converting waste biomass to fuel in a context of a biorefinery. PMID:22468603

  6. Biofuels from food processing wastes.

    Science.gov (United States)

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. PMID:26874262

  7. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants.

    Science.gov (United States)

    Bacakova, Lucie; Filova, Elena; Parizek, Martin; Ruml, Tomas; Svorcik, Vaclav

    2011-01-01

    The interaction of cells and tissues with artificial materials designed for applications in biotechnologies and in medicine is governed by the physical and chemical properties of the material surface. There is optimal cell adhesion to moderately hydrophilic and positively charged substrates, due to the adsorption of cell adhesion-mediating molecules (e.g. vitronectin, fibronectin) in an advantageous geometrical conformation, which makes specific sites on these molecules (e.g. specific amino acid sequences) accessible to cell adhesion receptors (e.g. integrins). Highly hydrophilic surfaces prevent the adsorption of proteins, or these molecules are bound very weakly. On highly hydrophobic materials, however, proteins are adsorbed in rigid and denatured forms, hampering cell adhesion. The wettability of the material surface, particularly in synthetic polymers, can be effectively regulated by physical treatments, e.g. by irradiation with ions, plasma or UV light. The irradiation-activated material surface can be functionalized by various biomolecules and nanoparticles, and this further enhances its attractiveness for cells and its effectiveness in regulating cell functions. Another important factor for cell-material interaction is surface roughness and surface topography. Nanostructured substrates (i.e. substrates with irregularities smaller than 100nm), are generally considered to be beneficial for cell adhesion and growth, while microstructured substrates behave more controversially (e.g. they can hamper cell spreading and proliferation but they enhance cell differentiation, particularly in osteogenic cells). A factor which has been relatively less investigated, but which is essential for cell-material interaction, is material deformability. Highly soft and deformable substrates cannot resist the tractional forces generated by cells during cell adhesion, and cells are not able to attach, spread and survive on such materials. Local variation in the physical and

  8. Biofuels in Africa : Opportunities, Prospects, and Challenges

    OpenAIRE

    Mitchell, Donald

    2011-01-01

    Biofuels offer new opportunities for African countries. They can contribute to economic growth, employment, and rural incomes. They can become an important export for some countries and provide low-cost fuel for others. There is also a potentially large demand for biofuels to meet the rapidly growing need for local fuel. Abundant natural resources and low-cost labor make producing biofuel ...

  9. Assessing the environmental sustainability of biofuels.

    Science.gov (United States)

    Kazamia, Elena; Smith, Alison G

    2014-10-01

    Biofuels vary in their potential to reduce greenhouse gas emissions when displacing fossil fuels. Savings depend primarily on the crop used for biofuel production, and on the effect that expanding its cultivation has on land use. Evidence-based policies should be used to ensure that maximal sustainability benefits result from the development of biofuels. PMID:25281367

  10. Policies promoting Biofuels in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Kristina [IVL Swedish Environmental Research Inst., Goeteborg (Sweden); Chalmers Univ. of Technology, Div. of Heat and Power Technology., Goeteborg (Sweden)

    2012-07-01

    This report was written as part of a course in Environmental Economics and Policy Instruments at the University of Gothenburg. It aims at summarizing the policy instruments introduced to directly affect the production and use of biofuels in Sweden. Since Sweden is part of the EU also EU policies were included. There are additional policy instruments which affect the production and utilization of biofuels in a more indirect way that are not presented here. The economic analysis in this paper is limited and could be developed from the information presented in order to draw further conclusions on necessary changes in order to reach set targets.

  11. Panorama 2007: Biofuels in Europe

    International Nuclear Information System (INIS)

    The current leader on the world bio-diesel market, Europe is, after the United States and Brazil, one of the regions driving the production and utilization of biofuels. Its ambitious bio-fuel content targets for motor fuels (5.75% by 2010 and 8% by 2015) encourage Member States to significantly develop those pathways. This raises certain questions, especially about available biomass resources. It is likely that, beyond 2010, technologies other than those in existence today, using ligno-cellulosic biomass, will have to be implemented. (author)

  12. Biofuel supply chain, market, and policy analysis

    Science.gov (United States)

    Zhang, Leilei

    Renewable fuel is receiving an increasing attention as a substitute for fossil based energy. The US Department of Energy (DOE) has employed increasing effort on promoting the advanced biofuel productions. Although the advanced biofuel remains at its early stage, it is expected to play an important role in climate policy in the future in the transportation sector. This dissertation studies the emerging biofuel supply chain and markets by analyzing the production cost, and the outcomes of the biofuel market, including blended fuel market price and quantity, biofuel contract price and quantity, profitability of each stakeholder (farmers, biofuel producers, biofuel blenders) in the market. I also address government policy impacts on the emerging biofuel market. The dissertation is composed with three parts, each in a paper format. The first part studies the supply chain of emerging biofuel industry. Two optimization-based models are built to determine the number of facilities to deploy, facility locations, facility capacities, and operational planning within facilities. Cost analyses have been conducted under a variety of biofuel demand scenarios. It is my intention that this model will shed light on biofuel supply chain design considering operational planning under uncertain demand situations. The second part of the dissertation work focuses on analyzing the interaction between the key stakeholders along the supply chain. A bottom-up equilibrium model is built for the emerging biofuel market to study the competition in the advanced biofuel market, explicitly formulating the interactions between farmers, biofuel producers, blenders, and consumers. The model simulates the profit maximization of multiple market entities by incorporating their competitive decisions in farmers' land allocation, biomass transportation, biofuel production, and biofuel blending. As such, the equilibrium model is capable of and appropriate for policy analysis, especially for those policies

  13. Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model.

    Directory of Open Access Journals (Sweden)

    Emerson C Perin

    Full Text Available The long-term fate of stem cells after intramyocardial delivery is unknown. We used noninvasive, repetitive PET/CT imaging with [(18F]FEAU to monitor the long-term (up to 5 months spatial-temporal dynamics of MSCs retrovirally transduced with the sr39HSV1-tk gene (sr39HSV1-tk-MSC and implanted intramyocardially in pigs with induced acute myocardial infarction. Repetitive [(18F]FEAU PET/CT revealed a biphasic pattern of sr39HSV1-tk-MSC dynamics; cell proliferation peaked at 33-35 days after injection, in periinfarct regions and the major cardiac lymphatic vessels and lymph nodes. The sr39HSV1-tk-MSC-associated [(18F]FEAU signals gradually decreased thereafter. Cardiac lymphography studies using PG-Gd-NIRF813 contrast for MRI and near-infrared fluorescence imaging showed rapid clearance of the contrast from the site of intramyocardial injection through the subepicardial lymphatic network into the lymphatic vessels and periaortic lymph nodes. Immunohistochemical analysis of cardiac tissue obtained at 35 and 150 days demonstrated several types of sr39HSV1-tk expressing cells, including fibro-myoblasts, lymphovascular cells, and microvascular and arterial endothelium. In summary, this study demonstrated the feasibility and sensitivity of [(18F]FEAU PET/CT imaging for long-term, in-vivo monitoring (up to 5 months of the fate of intramyocardially injected sr39HSV1-tk-MSC cells. Intramyocardially transplanted MSCs appear to integrate into the lymphatic endothelium and may help improve myocardial lymphatic system function after MI.

  14. Methods and materials for deconstruction of biomass for biofuels production

    Energy Technology Data Exchange (ETDEWEB)

    Schoeniger, Joseph S; Hadi, Masood Zia

    2015-05-05

    The present invention relates to nucleic acids, peptides, vectors, cells, and plants useful in the production of biofuels. In certain embodiments, the invention relates to nucleic acid sequences and peptides from extremophile organisms, such as SSO1949 and Ce1A, that are useful for hydrolyzing plant cell wall materials. In further embodiments, the invention relates to modified versions of such sequences that have been optimized for production in one or both of monocot and dicot plants. In other embodiments, the invention provides for targeting peptide production or activity to a certain location within the cell or organism, such as the apoplast. In further embodiments, the invention relates to transformed cells or plants. In additional embodiments, the invention relates to methods of producing biofuel utilizing such nucleic acids, peptides, targeting sequences, vectors, cells, and/or plants.

  15. Design, fabrication and perivascular implantation of bioactive scaffolds engineered with human adventitial progenitor cells for stimulation of arteriogenesis in peripheral ischemia.

    Science.gov (United States)

    Carrabba, M; De Maria, C; Oikawa, A; Reni, C; Rodriguez-Arabaolaza, I; Spencer, H; Slater, S; Avolio, E; Dang, Z; Spinetti, G; Madeddu, P; Vozzi, G

    2016-03-01

    Cell therapy represents a promising option for revascularization of ischemic tissues. However, injection of dispersed cells is not optimal to ensure precise homing into the recipient's vasculature. Implantation of cell-engineered scaffolds around the occluded artery may obviate these limitations. Here, we employed the synthetic polymer polycaprolactone for fabrication of 3D woodpile- or channel-shaped scaffolds by a computer-assisted writing system (pressure assisted micro-syringe square), followed by deposition of gelatin (GL) nanofibers by electro-spinning. Scaffolds were then cross-linked with natural (genipin, GP) or synthetic (3-glycidyloxy-propyl-trimethoxy-silane, GPTMS) agents to improve mechanical properties and durability in vivo. The composite scaffolds were next fixed by crown inserts in each well of a multi-well plate and seeded with adventitial progenitor cells (APCs, 3 cell lines in duplicate), which were isolated/expanded from human saphenous vein surgical leftovers. Cell density, alignment, proliferation and viability were assessed 1 week later. Data from in vitro assays showed channel-shaped/GPTMS-crosslinked scaffolds confer APCs with best alignment and survival/growth characteristics. Based on these results, channel-shaped/GPTMS-crosslinked scaffolds with or without APCs were implanted around the femoral artery of mice with unilateral limb ischemia. Perivascular implantation of scaffolds accelerated limb blood flow recovery, as assessed by laser Doppler or fluorescent microspheres, and increased arterial collaterals around the femoral artery and in limb muscles compared with non-implanted controls. Blood flow recovery and perivascular arteriogenesis were additionally incremented by APC-engineered scaffolds. In conclusion, perivascular application of human APC-engineered scaffolds may represent a novel option for targeted delivery of therapeutic cells in patients with critical limb ischemia.

  16. Do uterine natural killer cell numbers in peri-implantation endometrium predict hypertensive disorder in pregnancy in women with a history of reproductive failure?

    Science.gov (United States)

    Wong, Alice Wai Yee; Archer, Bethan; Mariee, Najat; Li, Tin Chiu; Laird, Susan M

    2014-12-01

    The aim of this study was to investigate whether or not increased uterine natural killer (uNK) cell numbers in the peri-implantation endometrium are associated with an increased risk of hypertensive disorders in a subsequent pregnancy. This is a retrospective study including 80 women with a history of unexplained recurrent miscarriage or recurrent implantation failure. Precisely timed endometrial biopsies were obtained from women 7-9 days after the luteinising hormone surge. uNK cells were immunostained for CD56+ and expressed as a percentage of total stromal cells. Patients were defined as having a high uNK cell count if the percentage of total stromal cells was more than 13.9%. Five out of 29 (17.2%) women in the high uNK cell count group and 5 out of 51 (9.8%) women in the normal uNK cell count group developed gestational hypertension. Pre-eclampsia was diagnosed in 2 (6.9%) patients in the high uNK cell count group and 1 (2.0%) patient from the normal uNK cell count group. There was no significant difference in the incidence of either gestational hypertension (P=0.483) and pre-eclampsia (P=0.296) between groups. The overall incidence of hypertensive disease in women with high uNK cell count (24.1%) was two times higher than women with normal uNK cell count (11.8%), but it was not statistically significant (P=0.208). An increased uNK cells count in the peri-implantation period in a cycle prior to conception did not appear to significantly increase the likelihood of hypertensive disease of pregnancy.

  17. Functional effect of mouse embryonic stem cell implantation after spinal cord injury

    OpenAIRE

    Lee, Tae-Hoon

    2013-01-01

    We transplanted mouse embryonic stem cells (mESCs) to improve functional loss in a rat model of clip-compression spinal cord injury (SCI). The mouse embryonic stem cells were transplanted to injured cord 7 days after injury. We include minimizing the progression of secondary injury, manipulating the neuroinhibitory environment of the spinal cord, replacing lost tissue with transplanted cells and substantial improvement of motor. A number of potential approaches optimize functional recovery af...

  18. Cochlear implants in genetic deafness

    Institute of Scientific and Technical Information of China (English)

    Xuezhong Liu

    2014-01-01

    Genetic defects are one of the most important etiologies of severe to profound sensorineural hearing loss and play an important role in determining cochlear implantation outcomes. While the pathogenic mutation types of a number of deafness genes have been cloned, the pathogenesis mechanisms and their relationship to the outcomes of cochlear implantation remain a hot research area. The auditory performance is considered to be affected by the etiology of hearing loss and the number of surviving spiral ganglion cells, as well as others. Current research advances in cochlear implantation for hereditary deafness, especially the relationship among clinic-types, genotypes and outcomes of cochlear implantation, will be discussed in this review.

  19. Increased circulating cell-derived microparticle count is associated with recurrent implantation failure after IVF and embryo transfer.

    Science.gov (United States)

    Martínez-Zamora, M Angeles; Tàssies, Dolors; Reverter, Juan Carlos; Creus, Montserrat; Casals, Gemma; Cívico, Salvadora; Carmona, Francisco; Balasch, Juan

    2016-08-01

    Cell-derived microparticles (cMPs) are small membrane vesicles that are released from many different cell types in response to cellular activation or apoptosis. Elevated cMP counts have been found in almost all thrombotic diseases and pregnancy wastage, such as recurrent spontaneous abortion and in a number of conditions associated with inflammation, cellular activation and angiogenesis. cMP count was investigated in patients experiencing unexplained recurrent implantation failure (RIF). The study group was composed of 30 women diagnosed with RIF (RIF group). The first control group (IVF group) (n = 30) comprised patients undergoing a first successful IVF cycle. The second control group (FER group) included 30 healthy women who had at least one child born at term and no history of infertility or obstetric complications. cMP count was significantly higher in the RIF group compared with the IVF and FER groups (P < 0.05 and P < 0.01, respectively) (RIF group: 15.8 ± 6.2 nM phosphatidylserine equivalent [PS eq]; IVF group: 10.9 ± 5.3 nM PS eq; FER group: 9.6 ± 4.0 nM PS eq). No statistical difference was found in cMP count between the IVF and FER groups. Increased cMP count is, therefore, associated with RIF after IVF and embryo transfer.

  20. Improvement of myocardial perfusion reserve detected by cardiovascular magnetic resonance after direct endomyocardial implantation of autologous bone marrow cells in patients with severe coronary artery disease

    Directory of Open Access Journals (Sweden)

    Lau Chu-Pak

    2010-01-01

    Full Text Available Abstract Background Recent studies suggested that bone marrow (BM cell implantation in patients with severe chronic coronary artery disease (CAD resulted in modest improvement in symptoms and cardiac function. This study sought to investigate the functional changes that occur within the chronic human ischaemic myocardium after direct endomyocardial BM cells implantation by cardiovascular magnetic resonance (CMR. Methods and Results We compared the interval changes of left ventricular ejection fraction (LVEF, myocardial perfusion reserve and the extent of myocardial scar by using late gadolinium enhancement CMR in 12 patients with severe CAD. CMR was performed at baseline and at 6 months after catheter-based direct endomyocardial autologous BM cell (n = 12 injection to viable ischaemic myocardium as guided by electromechanical mapping. In patients randomized to receive BM cell injection, there was significant decrease in percentage area of peri-infarct regions (-23.6%, P = 0.04 and increase in global LVEF (+9.0%, P = 0.02, the percentage of regional wall thickening (+13.1%, P= 0.04 and MPR (+0.25%, P = 0.03 over the target area at 6-months compared with baseline. Conclusions Direct endomyocardial implantation of autologous BM cells significantly improved global LVEF, regional wall thickening and myocardial perfusion reserve, and reduced percentage area of peri-infarct regions in patients with severe CAD.

  1. Surface Modifications of Dental Ceramic Implants with Different Glass Solder Matrices: In Vitro Analyses with Human Primary Osteoblasts and Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jana Markhoff

    2014-01-01

    Full Text Available Ceramic materials show excellent esthetic behavior, along with an absence of hypersensitivity, making them a possible alternative implant material in dental surgery. However, their surface properties enable only limited osseointegration compared to titanium implants. Within this study, a novel surface coating technique for enhanced osseointegration was investigated biologically and mechanically. Specimens of tetragonal zirconia polycrystal (TZP and aluminum toughened zirconia (ATZ were modified with glass solder matrices in two configurations which mainly consisted of SiO2, Al2O3, K2O, and Na2O. The influence on human osteoblastic and epithelial cell viability was examined by means of a WST-1 assay as well as live/dead staining. A C1CP-ELISA was carried out to verify procollagen type I production. Uncoated/sandblasted ceramic specimens and sandblasted titanium surfaces were investigated as a reference. Furthermore, mechanical investigations of bilaterally coated pellets were conducted with respect to surface roughness and adhesive strength of the different coatings. These tests could demonstrate a mechanically stable implant coating with glass solder matrices. The coated ceramic specimens show enhanced osteoblastic and partly epithelial viability and matrix production compared to the titanium control. Hence, the new glass solder matrix coating could improve bone cell growth as a prerequisite for enhanced osseointegration of ceramic implants.

  2. Functionally deficient mesenchymal stem cells reside in the bone marrow niche with M2-macrophages and amyloid-β protein adjacent to loose total joint implants.

    Science.gov (United States)

    Margulies, Bryan S; DeBoyace, Sean D; Parsons, Adrienne M; Policastro, Connor G; Ee, Jessica S S; Damron, Timothy S

    2015-05-01

    We sought to demonstrate whether there is a difference in the local mesenchymal stem cells (MSC) niche obtained from patients undergoing their first total joint replacement surgery versus those patients undergoing a revision surgery for an failing total joint implant. Bone marrow aspirates collected from patients undergoing revision total joint arthroplasty were observed to be less clonal and the expression of PDGFRα, CD51, ALCAM, endoglin, CXCL12, nestin, and nucleostemin were decreased. Revision MSC were also less able to commit to an osteoblast-lineage or an adipocyte-lineage. Further, in revision MSC, OPG, and IL6 expression were increased. Monocytes, derived from revision whole marrow aspirates, were less capable of differentiating into osteoclasts, the cells implicated in the pathologic degradation of bone. Osteoclasts were also not observed in tissue samples collected adjacent to the implants of revision patients; however, the alternatatively activated M2-macrophage phenotype was observed in parallel with pathologic accumulations of amyloid-β, τ-protien and 3-nitrotyrosine. Despite the limited numbers of patients examined, our data suggest that nucleostemin may be a useful functional marker for MSC while the observation of M2-macrophage infiltration around the implant lays the foundation for future investigation into a novel mechanism that we propose is associated with loose total joint implants.

  3. Estimates of US biofuels consumption, 1990

    International Nuclear Information System (INIS)

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs

  4. Regulatory Action of Calcium Ion on Cyclic AMP-Enhanced Expression of Implantation-Related Factors in Human Endometrial Cells.

    Directory of Open Access Journals (Sweden)

    Kazuya Kusama

    Full Text Available Decidualization of human endometrial stroma and gland development is mediated through cyclic AMP (cAMP, but the role of intracellular calcium ion (Ca2+ on cAMP mediated-signaling in human endometrial stroma and glandular epithelia has not been well-characterized. The present study was designed to investigate the role of intracellular Ca2+ on cAMP mediated-decidualization and gland maturation events, which can be identified by the up-regulation of prolactin and IGF-binding protein (IGFBP1 in human endometrial stromal cells (ESCs, and cyclooxygenase 2 (COX2 and prostaglandin E2 (PGE2 and glandular epithelial EM-1 cells. Increases in decidual prolactin and IGFBP-1 transcript levels, induced by cAMP-elevating agents forskolin or dibutyryl cyclic AMP, were inhibited by Ca2+ influx into ESCs with Ca2+ ionophores (alamethicin, ionomycin in a dose-dependent manner. Conversely, inhibitors of Ca2+ influx through L-type voltage-dependent Ca2+ channel (VDCC, nifedipine and verapamil, enhanced the decidual gene expression. Furthermore, dantrolene, an inhibitor of Ca2+ release from the intracellular Ca2+ store, up-regulated prolactin and IGFBP-1 expression. Ca2+ ionophores decreased intracellular cAMP concentrations, whereas nifedipine, verapamil or dantrolene increased cAMP concentrations in ESCs. In glandular epithelial cells, similar responses in COX2 expression and PGE2 production were found when intracellular cAMP levels were up-regulated by decreases in Ca2+ concentrations. Thus, a marked decrease in cytosolic Ca2+ levels caused the elevation of cAMP concentrations, resulting in enhanced expression of implantation-related factors including decidual markers. These findings suggest that fluctuation in cytosolic Ca2+ concentrations alters intracellular cAMP levels, which then regulate differentiation of endometrial stromal and glandular epithelial cells.

  5. Regulatory Action of Calcium Ion on Cyclic AMP-Enhanced Expression of Implantation-Related Factors in Human Endometrial Cells.

    Science.gov (United States)

    Kusama, Kazuya; Yoshie, Mikihiro; Tamura, Kazuhiro; Imakawa, Kazuhiko; Isaka, Keiichi; Tachikawa, Eiichi

    2015-01-01

    Decidualization of human endometrial stroma and gland development is mediated through cyclic AMP (cAMP), but the role of intracellular calcium ion (Ca2+) on cAMP mediated-signaling in human endometrial stroma and glandular epithelia has not been well-characterized. The present study was designed to investigate the role of intracellular Ca2+ on cAMP mediated-decidualization and gland maturation events, which can be identified by the up-regulation of prolactin and IGF-binding protein (IGFBP)1 in human endometrial stromal cells (ESCs), and cyclooxygenase 2 (COX2) and prostaglandin E2 (PGE2) and glandular epithelial EM-1 cells. Increases in decidual prolactin and IGFBP-1 transcript levels, induced by cAMP-elevating agents forskolin or dibutyryl cyclic AMP, were inhibited by Ca2+ influx into ESCs with Ca2+ ionophores (alamethicin, ionomycin) in a dose-dependent manner. Conversely, inhibitors of Ca2+ influx through L-type voltage-dependent Ca2+ channel (VDCC), nifedipine and verapamil, enhanced the decidual gene expression. Furthermore, dantrolene, an inhibitor of Ca2+ release from the intracellular Ca2+ store, up-regulated prolactin and IGFBP-1 expression. Ca2+ ionophores decreased intracellular cAMP concentrations, whereas nifedipine, verapamil or dantrolene increased cAMP concentrations in ESCs. In glandular epithelial cells, similar responses in COX2 expression and PGE2 production were found when intracellular cAMP levels were up-regulated by decreases in Ca2+ concentrations. Thus, a marked decrease in cytosolic Ca2+ levels caused the elevation of cAMP concentrations, resulting in enhanced expression of implantation-related factors including decidual markers. These findings suggest that fluctuation in cytosolic Ca2+ concentrations alters intracellular cAMP levels, which then regulate differentiation of endometrial stromal and glandular epithelial cells. PMID:26161798

  6. Advancing Biofuels: Balancing for Sustainability

    Science.gov (United States)

    As with most technologies, use of biofuels has both benefits and risks, which vary by feedstock. Expected benefits include increased energy independence, reduced consumption of fossil fuels, reduced emission of greenhouse gases and invigorated rural economies. Anticipated risks include potential com...

  7. An Outlook on Microalgal Biofuels

    NARCIS (Netherlands)

    Wijffels, R.H.; Barbosa, M.J.

    2010-01-01

    Microalgae are considered one of the most promising feedstocks for biofuels. The productivity of these photosynthetic microorganisms in converting carbon dioxide into carbon-rich lipids, only a step or two away from biodiesel, greatly exceeds that of agricultural oleaginous crops, without competing

  8. Four myths surrounding U.S. biofuels

    International Nuclear Information System (INIS)

    The rapid growth of biofuels has elicited claims and predictions concerning the current and future role of these fuels in the U.S. vehicle-fuel portfolio. These assertions are at times based on a false set of assumptions concerning the biofuel's market related to the petroleum and agricultural commodities markets, and the nonmarket consequences of our automobile driving. As an aid in clarifying these market relations, the following four biofuel myths are presented: (1) biofuels will be adopted because we will soon run out of oil, (2) biofuels will solve the major external costs associated with our automobile driving, (3) biofuels cause food price inflation (the food before fuel issue), and (4) biofuels will become a major vehicle fuel. - Highlights: → Biofuels will be adopted because we will soon run out of oil. → Biofuels will solve the major external costs associated with our automobile driving. → Biofuels cause food price inflation (the food before fuel issue). → Biofuels will become a major vehicle fuel.

  9. An assessment of Thailand's biofuel development

    DEFF Research Database (Denmark)

    Kumar, S.; Salam, P. Abdul; Shrestha, Pujan;

    2013-01-01

    The paper provides an assessment of first generation biofuel (ethanol and biodiesel) development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues-environmental, socio-economic and food security aspects....... The policies, measures and incentives for the development of biofuel include targets, blending mandates and favorable tax schemes to encourage production and consumption of biofuels. Biofuel development improves energy security, rural income and reduces greenhouse gas (GHG) emissions, but issues related...... to land and water use and food security are important considerations to be addressed for its large scale application. Second generation biofuels derived from agricultural residues perform favorably on environmental and social sustainability issues in comparison to first generation biofuel sources...

  10. Iatrogenic Tumor Implantation

    Institute of Scientific and Technical Information of China (English)

    Ying Ma; Ping Bai

    2008-01-01

    Iatrogenic tumor implantation is a condition that results from various medical procedures used during diagnosis or treatment of a malignancy. It involves desquamation and dissemination of tumor cells that develop into a local recurrence or distant metastasis from the tumor under treatment. The main clinical feature of the condition is nodules at the operation's porous channel or incision, which is easily diagnosed in accordance with the case history. Final diagnosis can be made based on pathological examination. Tumor implantation may occur in various puncturing porous channels, including a laparoscopic port, abdominal wall incision, and perineal incision, etc. Besides a malignant tumor,implantation potential exists with diseases, such as a borderline tumor and endometriosis etc. Once a tumor implantation is diagnosed, or suspected, surgical resection is usually conducted.During the diagnosis and treatment of diseases, avoiding and reducing iatrogenic implantation and dissemination has been regarded as an important principle for surgical treatment of tumors. In a clinical practice setting, if possible, excisional biopsy should be employed, if a biopsy is needed. Repeated puncturing should be avoided during a paracentesis. In a laparoscopic procedure, the tissue is first put into a sample bag and then is taken out from the point of incision. After a laparoscopic procedure, the peritoneum, abdominal muscular fasciae, and skin should be carefully closed, and/or the punctured porous channel be excised. In addition, the sample/tissue should be rinsed with distilled water before surgical closure of the abdominal cavity,allowing the exfoliated tumor cells to swell and rupture in the hypo-osmolar solution. Then surgical closure can be conducted following a change of gloves and equipment. The extent of hysteromyomectomy should as far as possible be away from the uterine cavity. The purpose of this study is to make clinicians aware of the possibility of tumor implantation

  11. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant

    OpenAIRE

    Marc Folcher; Sabine Oesterle; Katharina Zwicky; Thushara Thekkottil; Julie Heymoz; Muriel Hohmann; Matthias Christen; Marie Daoud El-Baba; Peter Buchmann; Martin Fussenegger

    2014-01-01

    Synthetic devices for traceless remote control of gene expression may provide new treatment opportunities in future gene- and cell-based therapies. Here we report the design of a synthetic mind-controlled gene switch that enables human brain activities and mental states to wirelessly programme the transgene expression in human cells. An electroencephalography (EEG)-based brain–computer interface (BCI) processing mental state-specific brain waves programs an inductively linked wireless-powered...

  12. Therapeutic effects of NogoA vaccine and olfactory ensheathing glial cell implantation on acute spinal cord injury

    Directory of Open Access Journals (Sweden)

    Zhang Z

    2013-10-01

    Full Text Available Zhicheng Zhang, Fang Li, Tiansheng Sun, Dajiang Ren, Xiumei Liu PLA Institute of Orthopedics, Beijing Army General Hospital, Beijing, People's Republic of China Background: Many previous studies have focused on the effects of IN-1, a monoclonal antibody that neutralizes Nogo (a neurite growth inhibitory protein, on neurologic regeneration in spinal cord injury (SCI. However, safety problems and the short half-life of the exogenous antibody are still problematic. In the present study, the NogoA polypeptide was used as an antigen to make a therapeutic NogoA vaccine. Rats were immunized with this vaccine and were able to secrete the polyclonal antibody before SCI. The antibody can block NogoA within the injured spinal cord when the antibody gains access to the spinal cord due to a compromised blood–spinal cord barrier. Olfactory ensheathing glial cell transplantation has been used in a spinal cord contusion model to promote the recovery of SCI. The present study was designed to verify the efficacy and safety of NogoA polypeptide vaccine, the effects of immunotherapy with this vaccine, and the synergistic effects of the vaccine and olfactory ensheathing glial cells in repair of SCI. Methods: A 13-polypeptide fragment of NogoA was synthesized. This fragment was then coupled with keyhole limpet hemocyanin to improve the immunogenicity of the polypeptide vaccine. Immunization via injection into the abdominal cavity was performed in rats before SCI. The serum antibody level and ability of the vaccine to bind with Nogo were detected by enzyme-linked immunosorbent assay. The safety of the vaccine was evaluated according to the incidence and severity of experimental autoimmune encephalomyelitis. Olfactory ensheathing glia cells were obtained, purified, and subsequently implanted into a Wistar rat model of thoracic spinal cord contusion injury. The rats were divided into four groups, ie, an SCI model group, an olfactory ensheathing glia group, a vaccine

  13. An Uncommon Presentation of Breast Implant Rupture.

    Science.gov (United States)

    Koh, Eugene; Watson, David I; Dean, Nicola R

    2016-05-01

    Late periprosthetic seroma has lately been concerning for breast implant-associated anaplastic large cell lymphoma. The authors present an uncommon presentation of breast implant rupture with a seroma and skin rash forming 2 years after insertion of the implant. PMID:27579243

  14. IMPLANTATION OF AUTOLOGOUS BONE MARROW MONONUCLEAR CELLS INTO ISCHEMIC MYOCARDIUM ENHANCES CORONARY CAPILLARIES AND SYSTOLIC FUNCTION IN MINISWINE

    Institute of Scientific and Technical Information of China (English)

    Chong-jian Li; Ji-lin Chen; Jian-jun Li; Run-lin Gao; Yue-jin Yang; Feng-huan Hu; Wei-xian Yang; Shi-jie You; Lai-feng Song; Ying-mao Ruan; Shu-bin Qiao

    2008-01-01

    Objective To investigate the therapeutic effectiveness of intracoronary implantation of autologous bone marrow mononuelear cells (BM-MNC) in miniswine model of reperfused myocardial infarction.Methods Sixteen miniswine myocardial isehemic reperfusion injury models made by ligation of the distal one third segment of left anterior descending artery for 90 minutes were randomized into 2 groups.In BM-MNC group (n=9),(3.54±0.90)×108 BM-MNC were intracoronary injected,and in the control group (n=7),phosphate buffered saline was injected by the same way.Echoeardiographic and hemodynamic results,vessel density,and myocardial infarction size were evaluated and compared before and 4 weeks after cell transplantation.Results In BM-MNC group,there were no differences between before and 4 weeks after transplantation in aspects of left ventricular ejection fraction (LVEF),interventricular septai thickness,left ventricular lateral and anterior septal wall thickness,cardiac output,or +dp/dtmax.In control group,LVEF,interventrieular septal thickness,left ventricular lateral and anterior septal wall thickness,cardiac output,and +dp/dtmax decreased significantly 4 weeks after transplantation (P<0.05).Left ventricular end-diastolic pressure and -dp/dtmax did not change significantly before and after cell transplantation in both groups.Capillary density in BM-MNC group was greater than that in control group [(13.39±6.96)/high power field vs.(3.50 ± 1.90)/high power field,P<0.05].Infarction area assessed by tetrazolium red staining and the infarction percentage decreased in BM-MNC group compared with those in control group (P<0.05).Conclusions Transplantation of BM-MNC into myocardium with isehemie reperfusion injury increases capillary density and decreases infarction area.It has significantly beneficial effect on cardiac systolic function rather than on diastolic function.

  15. Fabrication of high performance bioanode based on fruitful association of dendrimer and carbon nanotube used for design O2/glucose membrane-less biofuel cell with improved bilirubine oxidase biocathode.

    Science.gov (United States)

    Korani, Aazam; Salimi, Abdollah

    2013-12-15

    In this study, the preparation of an integrated modified electrode based on the covalent attachment of glucose dehydrogenase (GDH) enzyme and safranin O to amine-derivative multiwalled carbon nanotubes (MWCNTs-NH2) modified glassy carbon (GC) electrode using G2.5-carboxylated PAMAM dendrimer (Den) as linking agent is reported. The obtained results indicated that the proposed system has effective bioelectrocatalytic activity toward glucose oxidation at 100 mV with onset potential of -130 mV (vs. Ag/AgCl). The performance of the prepared hybrid system of GC/MWCNTs-NH2/Den/GDH/Safranin as anode in a membraneless enzyme-based glucose/O2 biofuel cell is further evaluated. The biocathode in this system was composed of bilirubin oxidase (BOX) enzyme immobilized onto a bilirubin modified carbon nanotube GC electrode. Immobilized BOX onto CNTs/bilirubin not only show direct electron transfer but also it has excellent electrocatalytic activity toward oxygen reduction at a positive potential of 610 mV. The open circuit voltage of the cell was 590 mV. The maximum current density was 0.5 mA cm(-2), while maximum power density of 108 μW cm(-2) was achieved at voltage of 330 mV. The immobilized enzymes in anode and cathode are very stable and output power of the BFC is approximately constant after 12 h continues operation.

  16. Cochlear Implants

    Science.gov (United States)

    ... on this topic can be found in our Audiology Information Series [PDF]. How does a cochlear implant ... speech-language pathologists; speech, language, and hearing scientists; audiology and speech-language pathology support personnel; and students. ...

  17. Integrative analysis and expression profiling of secondary cell wall genes in C4 biofuel model Setaria italica reveals targets for lignocellulose bioengineering

    Directory of Open Access Journals (Sweden)

    Mehanathan eMuthamilarasan

    2015-11-01

    Full Text Available Several underutilized grasses have excellent potential for use as bioenergy feedstock due to their lignocellulosic biomass. Genomic tools have enabled identification of lignocellulose biosynthesis genes in several sequenced plants. However, the non-availability of whole genome sequence of bioenergy grasses hinders the study on bioenergy genomics and their genomics-assisted crop improvement. Foxtail millet (Setaria italica L.; Si is a model crop for studying systems biology of bioenergy grasses. In the present study, a systematic approach has been used for identification of gene families involved in cellulose (CesA/Csl, callose (Gsl and monolignol biosynthesis (PAL, C4H, 4CL, HCT, C3H, CCoAOMT, F5H, COMT, CCR, CAD and construction of physical map of foxtail millet. Sequence alignment and phylogenetic analysis of identified proteins showed that monolignol biosynthesis proteins were highly diverse, whereas CesA/Csl and Gsl proteins were homologous to rice and Arabidopsis. Comparative mapping of foxtail millet lignocellulose biosynthesis genes with other C4 panicoid genomes revealed maximum homology with switchgrass, followed by sorghum and maize. Expression profiling of candidate lignocellulose genes in response to different abiotic stresses and hormone treatments showed their differential expression pattern, with significant higher expression of SiGsl12, SiPAL2, SiHCT1, SiF5H2 and SiCAD6 genes. Further, due to the evolutionary conservation of grass genomes, the insights gained from the present study could be extrapolated for identifying genes involved in lignocellulose biosynthesis in other biofuel species for further characterization.

  18. A novel co-culture model of murine K12 osteosarcoma cells and S. aureus on common orthopedic implant materials: 'the race to the surface' studied in vitro.

    Science.gov (United States)

    McConda, David B; Karnes, Jonathan M; Hamza, Therwa; Lindsey, Brock A

    2016-07-01

    Infection is a major cause of orthopedic implant failure. There are few studies assessing both tissue cell and bacterial adherence on common orthopedic implant materials in a co-culture environment. An in vitro co-culture model was created using K12 osteosarcoma cells and Staphylococcus aureus in a medium incubated over metal disks for 48 h. The results showed that, in the presence of S. aureus, there were fewer osteosarcoma cells attached to the disks for all substrata tested. There were significantly more osteosarcoma cells adhering to the cobalt chrome than the stainless steel and titanium disks. Overall, in the presence of osteosarcoma cells, there were more bacteria adhering to the disks for all the substrata tested, with significantly more bacteria adhering to the stainless steel disks compared to cobalt chrome and titanium disks. Scanning electron microscopy verified that osteosarcoma cells and bacteria were adherent to the metal disks after incubation for 48 h. Furthermore, the observation that more bacteria were in the co-culture than in the control sample suggests that the osteosarcoma cells serve as a nutrient source for the bacteria. Future models assessing the interaction of osteogenic cells with bacteria on a substratum would be improved if the model accounted for the role of the immune system in secondary bone healing. PMID:27142312

  19. Invasion of primary glioma- and cell line-derived spheroids implanted into corticostriatal slice cultures

    DEFF Research Database (Denmark)

    Aaberg-Jessen, Charlotte; Nørregaard, Annette; Christensen, Karina;

    2013-01-01

    Gliomas are highly invasive tumors and the pronounced invasive features of gliomas prevent radical surgical resection. In the search for new therapeutics targeting invasive glioma cells, in vivo-like in vitro models are of great interest. We developed and evaluated an in vivo-like in vitro model ...

  20. Zirconia coated titanium for implants and their interactions with osteoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaluđerović, Milena R., E-mail: milena.kaluderovic@medizin.uni-leipzig.de [Department of Oral, Maxillary, Facial and Reconstructive Plastic Surgery, University Hospital of Leipzig, Leipzig (Germany); Schreckenbach, Joachim P. [ZL Microdent Co, Breckerfeld (Germany); Department of Chemistry, Technical University of Chemnitz (Germany); Graf, Hans-Ludwig [Department of Oral, Maxillary, Facial and Reconstructive Plastic Surgery, University Hospital of Leipzig, Leipzig (Germany)

    2014-11-01

    The anodic plasma-electrochemical oxidation in aqueous electrolytes of Zr(SO{sub 4}){sub 2} was used to prepare new zirconia/titania-based surfaces M1 (Ti, Zr and O: 7–10, 22–27 and 65–69 at.%) and M2 (Ti, Zr and O: 11–13, 20–23 and 64–69 at.%). The chemical composition and the microstructure of these coatings were characterized by surface and solid state techniques such as scanning electron microscopy, electron probe microanalysis, Raman spectroscopy and X-ray diffraction. These mixed oxides of ZrO{sub 2}/TiO{sub 2} surfaces consist up to 84% (m/m) of ZrO{sub 2} and 16% (m/m) of TiO{sub 2}. Monoclinic zirconia was detected as the dominant microcrystalline phase. In vitro studies were conducted on primary human osteoblast cells. MTT and DAPI assays were used for assessment on cell proliferation. Immunohistochemical analyses of morphology, cell cluster formation and expression of bone sialoprotein (BSP) and osteocalcin (OC) were performed. Novel surfaces M1 and M2 induced proliferation and expression of OC and BSP similarly to Ticer, used in clinical practice. Furthermore, the presence of zirconia on titanium surface has a higher beneficial effect on the osteoblast morphological changes and cell cluster formation. - Highlights: • Surfaces M1 and M2 (up to 84% (m/m) ZrO{sub 2} and 16% (m/m) TiO{sub 2}) were prepared. • Novel materials promote proliferation of human osteoblasts similarly to Ticer. • Morphological changes and cell cluster formation are induced faster on M1 and M2. • Higher expression of OC and BSP is caused by M1 and M2. • M1 and M2 may influence the rate of bone formation.

  1. From first generation biofuels to advanced solar biofuels.

    Science.gov (United States)

    Aro, Eva-Mari

    2016-01-01

    Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called "synthetic biology", which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.

  2. From first generation biofuels to advanced solar biofuels.

    Science.gov (United States)

    Aro, Eva-Mari

    2016-01-01

    Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called "synthetic biology", which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories. PMID:26667057

  3. Clinical outcomes of osteonecrosis of the femoral head after autologous bone marrow stem cell implantation: a meta-analysis of seven case-control studies

    Directory of Open Access Journals (Sweden)

    Heng-feng Yuan

    2016-02-01

    Full Text Available The purpose of this study was to evaluate the clinical outcomes of osteonecrosis of the femoral head after autologous bone marrow stem cell implantation. We searched the PubMed, Embase and Web of Science databases and included all case-control trials that reported on the clinical outcomes of osteonecrosis progression, incidence of total hip arthroplasty and improvement in Harris hip scores. Overall, seven case-control trials were included. Compared with the controls, patients treated with the bone marrow stem cells implantation treatment showed improved clinical outcomes with delayed osteonecrosis progression (odds ratio = 0.17, 95% CI: 0.09 - 0.32; p<0.001, a lower total hip arthroplasty incidence (odds ratio = 0.30, 95% CI: 0.12 - 0.72; p<0.01 and increased Harris hip scores (mean difference = 4.76, 95% CI: 1.24 - 8.28; p<0.01. The heterogeneity, publication bias, and sensitivity analyses showed no statistical difference significant differences between studies. Thus, our study suggests that autologous bone marrow stem cells implantation has a good therapeutic effect on osteonecrosis of the femoral, resulting in beneficial clinical outcomes. However, trials with larger sample sizes are needed to confirm these findings.

  4. Clinical outcomes of osteonecrosis of the femoral head after autologous bone marrow stem cell implantation: a meta-analysis of seven case-control studies.

    Science.gov (United States)

    Yuan, Heng-Feng; Zhang, Jing; Guo, Chang-An; Yan, Zuo-Qin

    2016-02-01

    The purpose of this study was to evaluate the clinical outcomes of osteonecrosis of the femoral head after autologous bone marrow stem cell implantation. We searched the PubMed, Embase and Web of Science databases and included all case-control trials that reported on the clinical outcomes of osteonecrosis progression, incidence of total hip arthroplasty and improvement in Harris hip scores. Overall, seven case-control trials were included. Compared with the controls, patients treated with the bone marrow stem cells implantation treatment showed improved clinical outcomes with delayed osteonecrosis progression (odds ratio = 0.17, 95% CI: 0.09 - 0.32; p <0.001), a lower total hip arthroplasty incidence (odds ratio = 0.30, 95% CI: 0.12 - 0.72; p <0.01) and increased Harris hip scores (mean difference = 4.76, 95% CI: 1.24 - 8.28; p<0.01). The heterogeneity, publication bias, and sensitivity analyses showed no statistical difference significant differences between studies. Thus, our study suggests that autologous bone marrow stem cells implantation has a good therapeutic effect on osteonecrosis of the femoral, resulting in beneficial clinical outcomes. However, trials with larger sample sizes are needed to confirm these findings. PMID:26934241

  5. 75 FR 20085 - Subpart B-Advanced Biofuel Payment Program

    Science.gov (United States)

    2010-04-16

    ... Rural Business-Cooperative Service 7 CFR Part 4288 RIN 0570-AA75 Subpart B--Advanced Biofuel Payment... biofuels to support existing advanced biofuel production and to encourage new production of advanced biofuels. The Agency would enter into contracts with advanced biofuel producers to pay such producers...

  6. Restoration of scarred vocal folds with stem cell implantation: analyses in a xenograft model

    OpenAIRE

    Svensson, Bengt

    2012-01-01

    Background: Tissue defects in the vocal fold (VF) caused by trauma, surgical procedures, post radiotherapy often heal with scar formation. The scar tissue causes stiffness of the lamina propria rendering disturbed viscoelastic properties to the VF. A scarred VF causes severe voice problems. Treatment is difficult and presently there is no treatment that heals VF scars. Objectives: The aims of this thesis were to evaluate if human stem cell transplantations have the potential...

  7. Integrated biofuel facility, with carbon dioxide consumption and power generation

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.E.; Hill, G.A. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemical Engineering

    2009-07-01

    This presentation provided details of an economical design for a large-scale integrated biofuel facility for coupled production of bioethanol and biodiesel, with carbon dioxide capture and power generation. Several designs were suggested for both batch and continuous culture operations, taking into account all costs and revenues associated with the complete plant integration. The microalgae species Chlorella vulgaris was cultivated in a novel photobioreactor (PBR) in order to consume industrial carbon dioxide (CO{sub 2}). This photosynthetic culture can also act as a biocathode in a microbial fuel cell (MFC), which when coupled to a typical yeast anodic half cell, results in a complete biological MFC. The photosynthetic MFC produces electricity as well as valuable biomass and by-products. The use of this novel photosynthetic microalgae cathodic half cell in an integrated biofuel facility was discussed. A series of novel PBRs for continuous operation can be integrated into a large-scale bioethanol facility, where the PBRs serve as cathodic half cells and are coupled to the existing yeast fermentation tanks which act as anodic half cells. These coupled MFCs generate electricity for use within the biofuel facility. The microalgae growth provides oil for biodiesel production, in addition to the bioethanol from the yeast fermentation. The photosynthetic cultivation in the cathodic PBR also requires carbon dioxide, resulting in consumption of carbon dioxide from bioethanol production. The paper also discussed the effect of plant design on net present worth and internal rate of return. tabs., figs.

  8. Long term effects of the implantation of Wharton's jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus.

    Science.gov (United States)

    Hu, Jianxia; Yu, Xiaolong; Wang, Zhongchao; Wang, Fang; Wang, Li; Gao, Hong; Chen, Ying; Zhao, Wenjuan; Jia, Zhaotong; Yan, Shengli; Wang, Yangang

    2013-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disorder resulted from T cell-mediated destruction of pancreatic β-cells, how to regenerate β-cells and prevent the autoimmune destruction of remnant and neogenetic β-cells is a tough problem. Immunomodulatory propertity of mesenchymal stem cell make it illuminated to overcome it. We assessed the long-term effects of the implantation of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) from the umbilical cord for Newly-onset T1DM. Twenty-nine patients with newly onset T1DM were randomly divided into two groups, patients in group I were treated with WJ-MSCs and patients in group II were treated with normal saline based on insulin intensive therapy. Patients were followed-up after the operation at monthly intervals for the first 3 months and thereafter every 3 months for the next 21 months, the occurrence of any side effects and results of laboratory examinations were evaluated. There were no reported acute or chronic side effects in group I compared with group II, both the HbA1c and C peptide in group I patients were significantly better than either pretherapy values or group II patients during the follow-up period. These data suggested that the implantation of WJ-MSCs for the treatment of newly-onset T1DM is safe and effective. This therapy can restore the function of islet β cells in a longer time, although precise mechanisms are unknown, the implantation of WJ-MSCs is expected to be an effective strategy for treatment of type1 diabetes.

  9. Synthetic Biology Guides Biofuel Production

    OpenAIRE

    2010-01-01

    The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improve...

  10. Towards a single-chip, implantable RFID system: is a single-cell radio possible?

    Science.gov (United States)

    Burke, Peter; Rutherglen, Christopher

    2010-08-01

    We present an overview of progress towards single-chip RFID solutions. To date heterogeneous integration has been appropriate for non-biological systems. However, for in-vivo sensors and even drug delivery systems, a small form factor is required. We discuss fundamental limits on the size of the form factor, the effect of the antenna, and propose a unified single-chip RFID solution appropriate for a broad range of biomedical in-vivo device applications, both current and future. Fundamental issues regarding the possibility of single cell RF radios to interface with biological function are discussed.

  11. Carbon dioxide neutral, integrated biofuel facility

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.E.; Hill, G.A. [Department of Chemical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9 (Canada)

    2010-12-15

    Algae are efficient biocatalysts for both capture and conversion of carbon dioxide in the environment. In earlier work, we have optimized the ability of Chlorella vulgaris to rapidly capture CO{sub 2} from man-made emission sources by varying environmental growth conditions and bioreactor design. Here we demonstrate that a coupled biodiesel-bioethanol facility, using yeast to produce ethanol and photosynthetic algae to produce biodiesel, can result in an integrated, economical, large-scale process for biofuel production. Each bioreactor acts as an electrode for a coupled complete microbial fuel cell system; the integrated cultures produce electricity that is consumed as an energy source within the process. Finally, both the produced yeast and spent algae biomass can be used as added value byproducts in the feed or food industries. Using cost and revenue estimations, an IRR of up to 25% is calculated using a 5 year project lifespan. (author)

  12. Application of FTIR Absorption Spectroscopy to Characterize Waste and Biofuels for Pyrolysis and Gasification

    OpenAIRE

    KALISZ Sylwester; Svoboda, Karel; ROBAK Zbigniew; Baxter, David; Andersen, Lars

    2008-01-01

    The paper discusses the various applications of FTIR absorption spectroscopy as a tool for characterizing waste biofuels for pyrolysis and gasification. The FTIR spectrometer used in the study allows for analysis of solid and liquid waste and biofuel samples. Further, an attached dedicated gas cell is used in the characterization of gases evolving during pyrolysis in a versatile pyrolyser/gasifier attached to the FTIR. The pyrolyser operates in a batch mode and generates large quantities o...

  13. Contrasts and synergies in different biofuel reports

    OpenAIRE

    Michalopoulos, A; Landeweerd, L.; Van der Werf-Kulichova, Z.; Puylaert, P. G. B.; Osseweijer, P.

    2011-01-01

    The societal debate on biofuels is characterised by increased complexity. This can hinder the effective governance of the field. This paper attempts a quantitative bird's eye meta-analysis of this complexity by mapping different stakeholder perspectives and expected outcomes as seen in the secondary literature on biofuels, along the lines of the People-Planet-Profit framework. Our analysis illustrates the tension between stated and actual drivers of large scale biofuel development, especially...

  14. Private governance in the biofuel industry

    OpenAIRE

    Partzsch, Lena

    2010-01-01

    "The boom of biofuel is placing enormous demands on existing cropping systems, with most crucial consequences in the agro-food sector. For instance, spurred by the increasing use of corn for ethanol, tortilla prices in Mexico suddenly tripled in early 2007. While the United Nations Special Rapporteur on the Right to Food Jean Ziegler is demanding an international five-year ban on producing biofuels to combat soaring food prices, the biofuel industry is responding with first ini...

  15. 毛囊细胞移植法诱导毛囊的初步研究%Follicular cell implantation for induce hair follicle growth in nude mice

    Institute of Scientific and Technical Information of China (English)

    谭挺; 胡志奇

    2009-01-01

    目的 构建一个可靠有效的移植毛囊细胞诱导毛发发育的模型,以治疗脱发.方法 取自愿捐献的成人头皮标本,联用显微分离与免疫磁珠法获得人毛囊干细胞;消化法获得毛乳头细胞.培养后混合植入裸鼠皮下,观察毛囊形成情况.结果 在裸鼠的皮肤切片中可以看到较为完整的毛囊结构形成.结论 毛囊细胞移植法可以在体内诱导出毛囊样结构,为将来治疗脱发奠定了基础.%Objective To establish a convenient and reliable method for inducing hair regeneration by follicular cell implantation for the treatment of alopecia. Methods The human hair follicle stem cells were separated and purified by micromanipulation and magnetic cell sorting, and human scalp dermal papilla cells were isolated by enzyme digestion. The two cells were mixed and implanted subcutaneously in nude mice to observe the regeneration of the hair follicles. Results Formation of intact hair follicle-like structures was observed in the skin sections of the recipient nude mice. Conclusion Follicular cell implantation can induce hair follicle-like structures in nude mice, which provides a means for efficient hair regeneration for treatment of hair loss.

  16. Positive aspects issued from bio corrosion studies: from hydrogen production to biofuel cells; Des aspects positifs issus des recherches en biocorrosion: de la production d'hydrogene aux biopiles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Silva Munoz, L. de

    2007-12-15

    Microbially influenced corrosion or bio corrosion is a problem that generates heavy global economic losses (several billion euros per year). In spite of the progress made on the understanding of the underlying mechanisms, the complexity of the phenomenon has prevented finding definitive solutions to the problem and continues to inspire many research works. The participation in bio corrosion of catalytic mechanisms induced by weak acids was studied in this work. Another objective of the thesis has been to take advantage from catalytic phenomena found in bio corrosion research to apply them in other areas: energy production with biofuel cells or electrochemical hydrogen production in mild conditions. This work has shown that the presence of weak acids and amino acids inside bio-films could play a major role in steel bio corrosion accelerating the phenomenon through the catalysis of the water reduction reaction. The reversibility of this mechanism, discerned and proved here, could explain the corrosion increase when hydrogen is removed (bacterial consumption, agitation...). In addition, phosphates allow the production of hydrogen by electrolysis in mild pH conditions (pH 4.0 - 8.0) with an equal or better performance than those found in alkaline electrolysis. Finally, industrial materials like stainless steel and titanium could be used in the fabrication of enzymatic electrodes for biosensors or microsystems. The use of the glucose oxidase/glucose system in an aqueous fuel cell with a stainless steel cathode, allows the improvement of the cell performance thanks to the production of hydrogen peroxide that is easily reduced. Moreover, the use of materials with micro-structured surfaces like sandblasted steels deserve to be studied in detail to exploit the remarkable reactivity they present compared to smooth electrodes. (author)

  17. Neutrophil Responses to Sterile Implant Materials.

    Directory of Open Access Journals (Sweden)

    Siddharth Jhunjhunwala

    Full Text Available In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30-500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices.

  18. Liquid biofuels emergence, development and prospects

    CERN Document Server

    Domingos Padula, Antonio; Benedetti Santos, Omar Inácio; Borenstein, Denis

    2014-01-01

    Discusses the debate on the emergence and diffusion of liquid biofuels as an energy source Presents the different elements that compose the debate on public policy, industry organization, competitiveness and sustainability of different systems for the production of liquid biofuels Covers the Brazilian experience of producing Ethanol and Biodiesel, as well as the experiences of other leading countries in the production of biofuels Bioenergy is coming to be seen as a priority on the international agenda, with the use of liquid biofuels a key strategy in the attempt to meet both the

  19. [Biofuels, food security and transgenic crops].

    Science.gov (United States)

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  20. A novel pressed porous silicon-polycaprolactone composite as a dual-purpose implant for the delivery of cells and drugs to the eye.

    Science.gov (United States)

    Irani, Yazad D; Tian, Yuan; Wang, Mengjia; Klebe, Sonja; McInnes, Steven J; Voelcker, Nicolas H; Coffer, Jeffery L; Williams, Keryn A

    2015-10-01

    Dysfunction of corneal epithelial stem cells can result in painful and blinding disease of the ocular surface. In such cases, treatment may involve transfer of growth factor and normal adult stem cells to the ocular surface. Our purpose was to develop an implantable scaffold for the delivery of drugs and cells to the ocular surface. We examined the potential of novel composite biomaterials fabricated from electrospun polycaprolactone (PCL) fibres into which nanostructured porous silicon (pSi) microparticles of varying sizes (150-250 μm or polymer microfiber component for the Si loadings evaluated. Human lens epithelial cells (SRA01/04) attached to the composite materials, and exhibited enhanced attachment and growth when the materials were coated with foetal bovine serum. To examine the ability of the materials to deliver a small-drug payload, pSi microparticles were loaded with fluorescein diacetate prior to cell attachment. After 6 hours (h), cells exhibited intracellular fluorescence, indicative of transfer of the fluorescein diacetate into viable cells and its subsequent enzymatic conversion to fluorescein. To investigate loading of large-molecule biologics, murine BALB/c 3T3 cells, responsive to epidermal growth factor, insulin and transferrin, were seeded on composite materials. The cells showed significantly more proliferation at 48 h when seeded on composites loaded with these biologics, than on unloaded composites. No cell proliferation was observed on PCL alone, indicating the biologics had loaded into the pSi microparticles. Drug release, measured by ELISA for insulin, indicated a burst followed by a slower, continuous release over six days. When implanted under the rat conjunctiva, the most promising composite material did not cause significant neovascularization but did elicit a macrophage and mild foreign body response. These novel pressed pSi-PCL materials have potential for delivery of both small and large drugs that can be released in active

  1. Cochlear Implant

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this text, the authors recall the main principles and data ruling cochlear implants. Then, a first circle of technical equipment for assistance is presented. This circle includes: device setting (DS), Electrically evoked Auditory Brainstem Responses (EABR), Neural Response Telemetry (NRT), Stapedial Reflex (SR) and Electrodogram Acquisition (EA). This first cycle becomes more and more important as children are implanted younger and younger; the amount of data available with this assistance makes necessary the use of models (implicit or explicit) to handle this information. Consequently, this field is more open than ever.

  2. CXCR4(+) dendritic cells promote angiogenesis during embryo implantation in mice.

    Science.gov (United States)

    Barrientos, Gabriela; Tirado-González, Irene; Freitag, Nancy; Kobelt, Peter; Moschansky, Petra; Klapp, Burghard F; Thijssen, Victor L J L; Blois, Sandra M

    2013-04-01

    Early pregnancy is characterized by decidual adaption to the developing embryo involving angiogenesis and vascular growth. Failure of decidual vascular expansion is linked to diseases of pregnancy. Dendritic cells (DC) have been associated with vascular growth during early gestation, though it is unknown whether their capacity to modulate angiogenesis is ubiquitous to all DC subsets. Here, we show that DC normally found associated with the decidual vasculature co-express the C-X-C chemokine receptor type 4 (CXCR4). In addition, we demonstrate that impaired homing of CXCR4(+)DC during early gestation provoked a disorganized decidual vasculature with impaired spiral artery remodeling later in gestation. In contrast, adoptive transfer experiments provided evidence that CXCR4(+)DC are able to rescue early pregnancy by normalizing decidual vascular growth and delivery of pro-angiogenic factors, which results in adequate remodeling of the spiral arteries during placental development. Taken together, our results indicate an important role of CXCR4(+)DC in the regulation of decidual angiogenesis and highlight the importance of the CXCL12/CXCR4 pathway during this process, suggesting that this may represent a key pathway to evaluate during pregnancy pathologies associated with impaired vascular expansion.

  3. Stent Implantation for Malignant Pulmonary Artery Stenosis in a Metastasizing Non-Small Cell Bronchial Carcinoma

    International Nuclear Information System (INIS)

    A 58-year-old patient with recently diagnosed non-small cell bronchial carcinoma was referred to us with increasing shortness of breath and orthopnea by her family practitioner. To exclude the possibility of a pulmonary embolism, contrast medium-enhanced angio-CT of the thorax was performed. This showed a large mediastinal tumor, which, on the one hand, infiltrated and occluded the left upper lobe bronchus and, on the other, constricted the left pulmonary artery over a considerable part of its length. In view of the palliative situation and massively increasing dyspnea, balloon dilatation of the obstructed left pulmonary artery followed by stent placement was performed. This resulted in an immediate improvement of the symptoms. The originally strongly oxygen-dependent and heavily dyspneic patient could be relieved of the external supply of oxygen and was able to sleep normally without additional medication within 24 h. The patient was able ambulate freely within 2 days, with a markedly improved quality of life.

  4. Active caspase-3 and ultrastructural evidence of apoptosis in spontaneous and induced cell death in bovine in vitro produced pre-implantation embryos

    DEFF Research Database (Denmark)

    Gjørret, Jakob O.; Fabian, Dusan; Avery, Birthe;

    2007-01-01

    In this study we investigated chronological onset and involvement of active caspase-3, apoptotic nuclear morphology, and TUNEL-labeling, as well as ultrastructural evidence of apoptosis, in both spontaneous and induced cell death during pre-implantation development of bovine in vitro produced...... staining for detection of apoptotic nuclear morphology, and subjected to fluorescence microscopy. Additionally, treated and untreated blastocysts were fixed and processed for ultrastructural identification of apoptosis. Untreated embryos revealed no apoptotic features at 2- and 4-cell stages. However......, active caspase-3 and apoptotic nuclear morphology were observed in an untreated 8-cell stage, and TUNEL-labeling was observed from the 16-cell stage. Blastomeres concurrently displaying all apoptotic features were present in a few embryos at 16-cell and morula stages and in all blastocysts. All three...

  5. Long-term stable expression of antisense cDNA of cyclin B1 profoundly inhibits the proliferation of tumor cells and suppresses tumorigenicity in implanted mice

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tao; SU Xiao-mei; ZHANG Ling; LI Ji-cheng; WEI Dong; WEI Yu-quan; ZHANG Ru; CHENG Peng; CHEN Xian-cheng; LIU Huan-yi

    2008-01-01

    Background Cyclin B1 (CLB1) is necessary for mitotic initiation in mammalian cells and plays important roles in cancer development. Therefore, a potential strategy in cancer therapy is to suppress the activity of CLB1 by delivering antisense constructs of CLB1 into tumor cells. In previous CLB1 studies, antisense constructs with a short half life were often used and these constructs might not persistently inhibit CLB1.Methods We successfully created a recombinant plasmid encoding the full-length antisense cDNA of mouse cyclin B1 (AS-mCLB1) and transfected this construct to the murine Lewis lung carcinoma (LL/2) and CT-26 colon carcinoma (CT-26) cells. We isolated clones of LL/2 and CT-26 transfectants with stable expression of AS-mGLB1. Reverse transcriptional polymerase chain reaction (RT-PCR) and Western blot were applied to detect the expression of the mRNA and protein levels of CLB1. To further test the efficacy of this strategy in vivo, AS-mCLBl-expressing LL/2 and CT-26 transfectants were implanted into mice.Results We found the expression of the mRNA and protein levels of CLB1 decrease in these trensfectants. The inhibition of CLB1 caused prominent G1 arrest, abnormal morphology, retarded cell growth and an increase in apoptosis. In AS-mCLB1-expressing LL/2 and CT-26 transfectants implanted mice, tumorigenicity was effectively suppressed compared with the controls. In addition, the expression of AS-mCLB1 also significantly increases the survival duration of implanted animals.Conclusion AS-mCLB1 is likely to be useful in future cancer therapy, which may be associated with its ability to down-regulate the expression of CLB1 and then induce G1 arrest and apoptosis in tumor cells.

  6. Design and application of ion-implanted polySi passivating contacts for interdigitated back contact c-Si solar cells

    Science.gov (United States)

    Yang, Guangtao; Ingenito, Andrea; van Hameren, Nienke; Isabella, Olindo; Zeman, Miro

    2016-01-01

    Ion-implanted passivating contacts based on poly-crystalline silicon (polySi) are enabled by tunneling oxide, optimized, and used to fabricate interdigitated back contact (IBC) solar cells. Both n-type (phosphorous doped) and p-type (boron doped) passivating contacts are fabricated by ion-implantation of intrinsic polySi layers deposited via low-pressure chemical vapor deposition and subsequently annealed. The impact of doping profile on the passivation quality of the polySi doped contacts is studied for both polarities. It was found that an excellent surface passivation could be obtained by confining as much as possible the implanted-and-activated dopants within the polySi layers. The doping profile in the polySi was controlled by modifying the polySi thickness, the energy and dose of ion-implantation, and the temperature and time of annealing. An implied open-circuit voltage of 721 mV for n-type and 692 mV for p-type passivating contacts was achieved. Besides the high passivating quality, the developed passivating contacts exhibit reasonable high conductivity (Rsh n-type = 95 Ω/□ and Rsh p-type = 120 Ω/□). An efficiency of 19.2% (Voc = 673 mV, Jsc = 38.0 mA/cm2, FF = 75.2%, and pseudo-FF = 83.2%) was achieved on a front-textured IBC solar cell with polySi passivating contacts as both back surface field and emitter. By improving the front-side passivation, a VOC of 696 mV was also measured.

  7. Design and application of ion-implanted polySi passivating contacts for interdigitated back contact c-Si solar cells

    International Nuclear Information System (INIS)

    Ion-implanted passivating contacts based on poly-crystalline silicon (polySi) are enabled by tunneling oxide, optimized, and used to fabricate interdigitated back contact (IBC) solar cells. Both n-type (phosphorous doped) and p-type (boron doped) passivating contacts are fabricated by ion-implantation of intrinsic polySi layers deposited via low-pressure chemical vapor deposition and subsequently annealed. The impact of doping profile on the passivation quality of the polySi doped contacts is studied for both polarities. It was found that an excellent surface passivation could be obtained by confining as much as possible the implanted-and-activated dopants within the polySi layers. The doping profile in the polySi was controlled by modifying the polySi thickness, the energy and dose of ion-implantation, and the temperature and time of annealing. An implied open-circuit voltage of 721 mV for n-type and 692 mV for p-type passivating contacts was achieved. Besides the high passivating quality, the developed passivating contacts exhibit reasonable high conductivity (Rsh n-type = 95 Ω/□ and Rsh p-type = 120 Ω/□). An efficiency of 19.2% (Voc = 673 mV, Jsc = 38.0 mA/cm2, FF = 75.2%, and pseudo-FF = 83.2%) was achieved on a front-textured IBC solar cell with polySi passivating contacts as both back surface field and emitter. By improving the front-side passivation, a VOC of 696 mV was also measured

  8. Design and application of ion-implanted polySi passivating contacts for interdigitated back contact c-Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guangtao; Ingenito, Andrea; Hameren, Nienke van; Isabella, Olindo; Zeman, Miro [PVMD, Delft University of Technology, P.O. Box 5031, 2600 GA Delft (Netherlands)

    2016-01-18

    Ion-implanted passivating contacts based on poly-crystalline silicon (polySi) are enabled by tunneling oxide, optimized, and used to fabricate interdigitated back contact (IBC) solar cells. Both n-type (phosphorous doped) and p-type (boron doped) passivating contacts are fabricated by ion-implantation of intrinsic polySi layers deposited via low-pressure chemical vapor deposition and subsequently annealed. The impact of doping profile on the passivation quality of the polySi doped contacts is studied for both polarities. It was found that an excellent surface passivation could be obtained by confining as much as possible the implanted-and-activated dopants within the polySi layers. The doping profile in the polySi was controlled by modifying the polySi thickness, the energy and dose of ion-implantation, and the temperature and time of annealing. An implied open-circuit voltage of 721 mV for n-type and 692 mV for p-type passivating contacts was achieved. Besides the high passivating quality, the developed passivating contacts exhibit reasonable high conductivity (R{sub sh n-type} = 95 Ω/□ and R{sub sh p-type} = 120 Ω/□). An efficiency of 19.2% (V{sub oc} = 673 mV, J{sub sc} = 38.0 mA/cm{sup 2}, FF = 75.2%, and pseudo-FF = 83.2%) was achieved on a front-textured IBC solar cell with polySi passivating contacts as both back surface field and emitter. By improving the front-side passivation, a V{sub OC} of 696 mV was also measured.

  9. Synergistic interactions of blood-borne immune cells, fibroblasts and extracellular matrix drive repair in an in vitro peri-implant wound healing model

    Science.gov (United States)

    Burkhardt, Melanie A.; Waser, Jasmin; Milleret, Vincent; Gerber, Isabel; Emmert, Maximilian Y.; Foolen, Jasper; Hoerstrup, Simon P.; Schlottig, Falko; Vogel, Viola

    2016-02-01

    Low correlations of cell culture data with clinical outcomes pose major medical challenges with costly consequences. While the majority of biomaterials are tested using in vitro cell monocultures, the importance of synergistic interactions between different cell types on paracrine signalling has recently been highlighted. In this proof-of-concept study, we asked whether the first contact of surfaces with whole human blood could steer the tissue healing response. This hypothesis was tested using alkali-treatment of rough titanium (Ti) surfaces since they have clinically been shown to improve early implant integration and stability, yet blood-free in vitro cell cultures poorly correlated with in vivo tissue healing. We show that alkali-treatment, compared to native Ti surfaces, increased blood clot thickness, including platelet adhesion. Strikingly, blood clots with entrapped blood cells in synergistic interactions with fibroblasts, but not fibroblasts alone, upregulated the secretion of major factors associated with fast healing. This includes matrix metalloproteinases (MMPs) to break down extracellular matrix and the growth factor VEGF, known for its angiogenic potential. Consequently, in vitro test platforms, which consider whole blood-implant interactions, might be superior in predicting wound healing in response to biomaterial properties.

  10. Cochlear Implants

    Science.gov (United States)

    ... an optimal period to develop speech and language skills. Research has shown that when these children receive a cochlear implant followed by intensive therapy before they are 18 months ... age develop language skills at a rate comparable to children with normal ...

  11. Dental Implants

    Medline Plus

    Full Text Available ... suffer from social consequences and poor nutrition. Rebuilding Bone When the supporting alveolar bone melts away , it’s gone for good, but through grafting, a skilled dental professional can recreate bone to fuse with and support an implant. This ...

  12. Cochlear implant

    Science.gov (United States)

    ... are sent along the auditory nerve to the brain. A deaf person does not have a functioning inner ear. A cochlear implant tries to replace the function of the inner ear by ... signals to the brain. Sound is picked up by a microphone worn ...

  13. Dental Implants

    Medline Plus

    Full Text Available Dental Implants A fuller, more complete smile is within reach. The following information is designed to provide helpful facts so you ... found in nature. What Happens When You Lose a Tooth? When you lose a tooth, especially a ...

  14. Dental Implants

    Medline Plus

    Full Text Available ... an implant connects directly to the jaw bone. It’s obviously not the same as the original connection , ... may feel you don’t need to replace it, since no one can see that it’s missing ...

  15. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  16. Biofuels and biodiversity: principles for creating better policies for biofuel production.

    Science.gov (United States)

    Groom, Martha J; Gray, Elizabeth M; Townsend, Patricia A

    2008-06-01

    Biofuels are a new priority in efforts to reduce dependence on fossil fuels; nevertheless, the rapid increase in production of biofuel feedstock may threaten biodiversity. There are general principles that should be used in developing guidelines for certifying biodiversity-friendly biofuels. First, biofuel feedstocks should be grown with environmentally safe and biodiversity-friendly agricultural practices. The sustainability of any biofuel feedstock depends on good growing practices and sound environmental practices throughout the fuel-production life cycle. Second, the ecological footprint of a biofuel, in terms of the land area needed to grow sufficient quantities of the feedstock, should be minimized. The best alternatives appear to be fuels of the future, especially fuels derived from microalgae. Third, biofuels that can sequester carbon or that have a negative or zero carbon balance when viewed over the entire production life cycle should be given high priority. Corn-based ethanol is the worst among the alternatives that are available at present, although this is the biofuel that is most advanced for commercial production in the United States. We urge aggressive pursuit of alternatives to corn as a biofuel feedstock. Conservation biologists can significantly broaden and deepen efforts to develop sustainable fuels by playing active roles in pursuing research on biodiversity-friendly biofuel production practices and by helping define biodiversity-friendly biofuel certification standards.

  17. Biofuels and biodiversity: principles for creating better policies for biofuel production.

    Science.gov (United States)

    Groom, Martha J; Gray, Elizabeth M; Townsend, Patricia A

    2008-06-01

    Biofuels are a new priority in efforts to reduce dependence on fossil fuels; nevertheless, the rapid increase in production of biofuel feedstock may threaten biodiversity. There are general principles that should be used in developing guidelines for certifying biodiversity-friendly biofuels. First, biofuel feedstocks should be grown with environmentally safe and biodiversity-friendly agricultural practices. The sustainability of any biofuel feedstock depends on good growing practices and sound environmental practices throughout the fuel-production life cycle. Second, the ecological footprint of a biofuel, in terms of the land area needed to grow sufficient quantities of the feedstock, should be minimized. The best alternatives appear to be fuels of the future, especially fuels derived from microalgae. Third, biofuels that can sequester carbon or that have a negative or zero carbon balance when viewed over the entire production life cycle should be given high priority. Corn-based ethanol is the worst among the alternatives that are available at present, although this is the biofuel that is most advanced for commercial production in the United States. We urge aggressive pursuit of alternatives to corn as a biofuel feedstock. Conservation biologists can significantly broaden and deepen efforts to develop sustainable fuels by playing active roles in pursuing research on biodiversity-friendly biofuel production practices and by helping define biodiversity-friendly biofuel certification standards. PMID:18261147

  18. Synthetic Biology Guides Biofuel Production

    Directory of Open Access Journals (Sweden)

    Michael R. Connor

    2010-01-01

    Full Text Available The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.

  19. Effect of Blood Component Coatings of Enosseal Implants on Proliferation and Synthetic Activity of Human Osteoblasts and Cytokine Production of Peripheral Blood Mononuclear Cells

    Science.gov (United States)

    Hulejova, Hana; Bartova, Jirina; Riedel, Tomas; Pesakova, Vlasta

    2016-01-01

    The study monitored in vitro early response of connective tissue cells and immunocompetent cells to enosseal implant materials coated by different blood components (serum, activated plasma, and plasma/platelets) to evaluate human osteoblast proliferation and synthetic activity and inflammatory response presented as a cytokine profile of peripheral blood mononuclear cells (PBMCs) under conditions imitating the situation upon implantation. The cells were cultivated on coated Ti-plasma-sprayed (Ti-PS), Ti-etched (Ti-Etch), Ti-hydroxyapatite (Ti-HA), and ZrO2 surfaces. The plasma/platelets coating supported osteoblast proliferation only on osteoconductive Ti-HA and Ti-Etch whereas activated plasma enhanced proliferation on all surfaces. Differentiation (BAP) and IL-8 production remained unchanged or decreased irrespective of the coating and surface; only the serum and plasma/platelets-coated ZrO2 exhibited higher BAP and IL-8 expression. RANKL production increased on serum and activated plasma coatings. PBMCs produced especially cytokines playing role in inflammatory phase of wound healing, that is, IL-6, GRO-α, GRO, ENA-78, IL-8, GM-CSF, EGF, and MCP-1. Cytokine profiles were comparable for all tested surfaces; only ENA-78, IL-8, GM-CSF, and MCP-1 expression depended on materials and coatings. The activated plasma coating led to uniformed surfaces and represented a favorable treatment especially for bioinert Ti-PS and ZrO2 whereas all coatings had no distinctive effect on bioactive Ti-HA and Ti-Etch.

  20. International Policies on Bioenergy and Biofuels

    NARCIS (Netherlands)

    Rajcaniova, M.; Ciaian, P.; Drabik, D.

    2015-01-01

    This chapter provides an overview of international biofuel polices and their main impacts on food prices and land use. Global biofuel production has experienced a rapid growth by increasing from almost a zero level in 1970 to 29 billion gallons in 2011; the United States, the European Union, and Bra

  1. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    Energy Technology Data Exchange (ETDEWEB)

    Buell, Carol Robin [Michigan State University; Childs, Kevin L [Michigan State University

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or clearing house for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  2. Global nitrogen requirement for increased biofuel production

    NARCIS (Netherlands)

    Flapper, Joris

    2008-01-01

    Biofuels are thought to be one of the options to substitute fossil fuels and prevent global warming by the greenhouse gas (GHG) effect as they are seen as a renewable form of energy. However, biofuels are almost solely subjected to criticism from an energ

  3. Opportunity for profitable investments in cellulosic biofuels

    International Nuclear Information System (INIS)

    Research efforts to allow large-scale conversion of cellulose into biofuels are being undertaken in the US and EU. These efforts are designed to increase logistic and conversion efficiencies, enhancing the economic competitiveness of cellulosic biofuels. However, not enough attention has been paid to the future market conditions for cellulosic biofuels, which will determine whether the necessary private investment will be available to allow a cellulosic biofuels industry to emerge. We examine the future market for cellulosic biofuels, differentiating between cellulosic ethanol and 'drop-in' cellulosic biofuels that can be transported with petroleum fuels and have equivalent energy values. We show that emergence of a cellulosic ethanol industry is unlikely without costly government subsidies, in part because of strong competition from conventional ethanol and limits on ethanol blending. If production costs of drop-in cellulosic biofuels fall enough to become competitive, then their expansion will not necessarily cause feedstock prices to rise. As long as local supplies of feedstocks that have no or low-valued alternative uses exist, then expansion will not cause prices to rise significantly. If cellulosic feedstocks come from dedicated biomass crops, then the supply curves will have a steeper slope because of competition for land. - Research highlights: → The likelihood of a significant cellulosic ethanol industry in the US looks dim. → Drop-in biofuels made from cellulosic feedstocks have a more promising future. → The spatial dimension of markets for cellulosic feedstocks will be limited. → Corn ethanol will be a tough competitor for cellulosic ethanol.

  4. Next generation of liquid biofuel production

    NARCIS (Netherlands)

    Batidzirai, B.

    2012-01-01

    More than 99% of all currently produced biofuels are classified as “first generation” (i.e. fuels produced primarily from cereals, grains, sugar crops and oil seeds) (IEA, 2008b). “Second generation” or “next generation” biofuels, on the other hand, are produced from lignocellulosic feedstocks such

  5. BIOFUEL: Robbing Peter to Pay Paul?

    Institute of Scientific and Technical Information of China (English)

    Gong Liming

    2007-01-01

    @@ Since the worsening global climate has worried people around the world,there is a rush to find answers.Many countries begin to substitute the greenhouse gas-emitting fossil fuels with biofuel,a kind of new energy processed from plants.There are two kinds of biofuel:ethanol,processed from sugarcane or corn,and biodiesel,made from biomass.

  6. Fibre optic grating sensors for biofuels

    Science.gov (United States)

    Muller, M.; Fabris, J. L.; Kalinowski, H. J.

    2010-09-01

    Biofuels will have more intense impact on the energetic grid of the planet, because known fossil fuels reserves are being exhausted. The biofuel production relies on the transformation process of some organic material in the desired hydrocarbon product. Because of the natural characteristics of the related processes, fibre optic sensors appear to be adequate candidates to be used.

  7. Biofuel investment in Tanzania: Omissions in implementation

    International Nuclear Information System (INIS)

    Increasing demand for biofuels as a component of climate change mitigation, energy security, and a fossil fuel alternative attracts investors to developing countries like Tanzania. Ample unused land is critical for first generation biofuels production and an important feature to attract foreign direct investments that can contribute towards agricultural modernization and poverty reduction initiatives. Despite the economic justifications, the existing institutional and infrastructural capacities dictate the impacts of biofuels market penetrations. Furthermore, exogenous factors like global recessionary pressure depressed oil prices below the level at which biofuel production were profitable in 2007, making Tanzania's competitiveness and potential benefits questionable. This paper investigates the extent that first generation, jatropha-based biofuels industry development in Tanzania observed during fieldwork in Kisarawe and Bahi may fulfill policy objectives. This paper argues that without strong regulatory frameworks for land, investment management, and rural development, biofuel industrialization could further exacerbate poverty and food insecurity in Tanzania. The paper concludes with policy recommendations for first generation biofuel development while keeping in mind implications of second generation production. Since the topic is broad and multifaceted, a multidisciplinary approach is used that includes political, institutional, and agricultural economics to analyze and conceptualize biofuel industry development and food security.

  8. Implantation of 125I seeds for the treatment of non-small cell lung cancer: evaluation of short-term effect

    International Nuclear Information System (INIS)

    Objective: To assess the short-term effect, feasibility and safety of 125I seeds implantation in treating non-small cell lung cancer. Methods: During the period from June 2010 to December 2012 a total of 353 patients with lung cancer were admitted to authors' hospital, of whom 56 met the study standards. The 56 cases were divided into study group (n=24) and control group (n=32). Bronchial artery chemotherapy with subsequent 125I seeds implantation was carried out in the patients of study group, while only bronchial artery chemotherapy was performed in the patients of control group. The median survival time was compared between the two groups. Results: The median survival time of the study group and the control group was (22.8±1.9) months and (14.2±1.3) months respectively. The median survival time of the study group was significantly higher than that of the control group (P=0.006). Conclusion: Compared with simple bronchial artery chemotherapy, permanent implantation of 125I seeds combined with bronchial artery chemotherapy can significantly improve the quality of life and prolong the survival time as well. Therefore, this technique is an effective therapy for advanced lung cancer and should be recommended in clinical practice. (authors)

  9. Coupling of algal biofuel production with wastewater.

    Science.gov (United States)

    Bhatt, Neha Chamoli; Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  10. Which future for aviation bio-fuels?

    International Nuclear Information System (INIS)

    This collective report proposes a detailed overview of the evolution of aviation fuels and bio-fuels from technological, regulatory and economic points of view. It also proposes a road-map for possible future evolutions, and outlines the different assessments between American and European countries regarding the predictions for the beginning of industrial production and use of bio-jet-fuel. After having recalled international objectives, an overview of European and French commitments for technological and operational advances, and a discussion of the role of bio-fuels in the carbon cycle, the report presents various technical constraints met in aircraft industry and describes the role bio-fuels may have. The next part proposes an overview of bio-fuels which are industrially produced in the world in 2013. The authors then focus on aviation bio-fuels (main production processes, thermo-chemical processes), discuss the political context, and examine obstacles, partnerships and the role of public authorities

  11. Arthroscopic Fixation of Cell Free Polymer-Based Cartilage Implants with a Bioinspired Polymer Surface on the Hip Joint: A Cadaveric Pilot Study

    Directory of Open Access Journals (Sweden)

    Matthias Lahner

    2014-01-01

    Full Text Available This study investigates the adhesion capacity of a polyglycolic acid- (PGA- hyaluronan scaffold with a structural modification based on a planar polymer (PM surface in a cadaver cartilage defect model. Two cadaver specimens were used to serially test multiple chondral matrices. In a cadaver hip model, cell free polymer-based cartilage implants with a planar bioinspired PM surface (PGA-PM-scaffolds were implanted arthroscopically on 10 mm × 15 mm full-thickness femoral hip cartilage lesions. Unprocessed cartilage implants without a bioinspired PM surface were used as control group. The cartilage implants were fixed without and with the use of fibrin glue on femoral hip cartilage defects. After 50 movement cycles and removal of the distraction, a rearthroscopy was performed to assess the outline attachment and integrity of the scaffold. The fixation techniques without and with fibrin fixation showed marginal differences for outline attachment, area coverage, scaffold integrity, and endpoint fixation after 50 cycles. The PGA-PM-scaffolds with fibrin fixation achieved a higher score in terms of the attachment, integrity, and endpoint fixation than the PGA-scaffold on the cartilage defect. Relating to the outline attachment, area coverage, scaffold integrity, and endpoint fixation, the fixation with PGA-PM-scaffolds accomplished significantly better results compared to the PGA-scaffolds (P=0.03752, P=0.03078, P=0.00512, P=0.00512. PGA-PM-scaffolds demonstrate increased observed initial fixation strength in cadaver femoral head defects relative to PGA-scaffold, particularly when fibrin glue is used for fixation.

  12. Biofuel from biomass via photo-electrochemical reactions: An overview

    Science.gov (United States)

    Ibrahim, N.; Kamarudin, S. K.; Minggu, L. J.

    2014-08-01

    Biomass is attracting a great deal of attention as a renewable energy resource to reduce carbon dioxide (CO2) emissions. Converting biomass from municipal, agricultural and livestock into biofuel and electrical power has significant environmental and economic advantages. The conversion of biomass into practical energy requires elegant designs and further investigation. Thus, biomass is a promising renewable energy source due to its low production cost and simple manufacturing processes. Biofuel (hydrogen and methanol) from biomass will be possible to be used for transportation with near-zero air pollution, involves efficient uses of land and major contribution to reduce dependence on insecure source of petroleum. Photoelectrochemical (PEC) reactions study has potential pathway for producing fuel from biomass and bio-related compound in the near future. This review highlights recent work related to the PEC conversion of biomass and bio-related compounds into useful biofuels and electricity. This review covers different types of photochemical reaction cells utilizing various types of organic and inorganic waste. It also presents recent developments in photoelectrodes, photocatalysts and electrolytes as well as the production of different types of fuel from PEC cells and highlights current developments and problems in PEC reactions.

  13. Molecular Breeding of Advanced Microorganisms for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakuragi

    2011-01-01

    Full Text Available Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society.

  14. A new rat model of bone cancer pain produced by rat breast cancer cells implantation of the shaft of femur at the third trochanter level

    OpenAIRE

    GUI, QI; Chengcheng XU; Liang ZHUANG; Xia, Shu; Chen, Yu; Peng, Ping; Shiying YU

    2013-01-01

    Bone cancer pain remains one of the most challenging cancer pains to fully control. In order to clarify bone cancer pain mechanisms and examine treatments, animal models mimicking the human condition are required. In our model of Walker 256 tumor cells implantation of the shaft of femur at the third trochanter level, the anatomical structure is relatively simple and the drilled hole is vertical and in the cortical bone only 1–2 mm in depth without injury of the distal femur. Pain behaviors an...

  15. Cochlear implants

    OpenAIRE

    Despotović, Adrijana

    2011-01-01

    The aim of the thesis is to analyze the performance of the child with cochlear implant (CI) at language, math and movement activities. For the purpose of research exercises from all three above mentioned activities are prepared. Results of the exercises constitute the ground for the comparison of a child with CI and children with no hearing disability. Testing language skills was performed with exercises that included understanding, diction and identifying syllables. Mathematic skills...

  16. Human mesenchymal stromal cells could deliver erythropoietin and migrate to the basal layer of hair shaft when subcutaneously implanted in a murine model.

    Science.gov (United States)

    Mok, P L; Cheong, S K; Leong, C F; Chua, K H; Ainoon, O

    2012-08-01

    Mesenchymal stromal cells (MSC) are an attractive cell-targeting vehicle for gene delivery. MIDGE (an acronym for Minimalistic, Immunologically Defined Gene Expression) construct is relatively safer than the viral or plasmid expression system as the detrimental eukaryotic and prokaryotic gene and sequences have been eliminated. The objective of this study was to test the ability of the human MSC (hMSC) to deliver the erythropoietin (EPO) gene in a nude mice model following nucleofection using a MIDGE construct. hMSC nucleofected with MIDGE encoding the EPO gene was injected subcutaneously in Matrigel at the dorsal flank of nude mice. Subcutaneous implantation of nucleofected hMSC resulted in increased hemoglobin level with presence of human EPO in the peripheral blood of the injected nude mice in the first two weeks post-implantation compared with the control groups. The basal layer of the hair shaft in the dermal layer was found to be significantly positive for immunohistochemical staining of a human EPO antibody. However, only a few basal layers of the hair shaft were found to be positively stained for CD105. In conclusion, hMSC harboring MIDGE-EPO could deliver and transiently express the EPO gene in the nude mice model. These cells could be localized to the hair follicle and secreted EPO protein might have possible role in hair regeneration.

  17. Human mesenchymal stromal cells could deliver erythropoietin and migrate to the basal layer of hair shaft when subcutaneously implanted in a murine model.

    Science.gov (United States)

    Mok, P L; Cheong, S K; Leong, C F; Chua, K H; Ainoon, O

    2012-08-01

    Mesenchymal stromal cells (MSC) are an attractive cell-targeting vehicle for gene delivery. MIDGE (an acronym for Minimalistic, Immunologically Defined Gene Expression) construct is relatively safer than the viral or plasmid expression system as the detrimental eukaryotic and prokaryotic gene and sequences have been eliminated. The objective of this study was to test the ability of the human MSC (hMSC) to deliver the erythropoietin (EPO) gene in a nude mice model following nucleofection using a MIDGE construct. hMSC nucleofected with MIDGE encoding the EPO gene was injected subcutaneously in Matrigel at the dorsal flank of nude mice. Subcutaneous implantation of nucleofected hMSC resulted in increased hemoglobin level with presence of human EPO in the peripheral blood of the injected nude mice in the first two weeks post-implantation compared with the control groups. The basal layer of the hair shaft in the dermal layer was found to be significantly positive for immunohistochemical staining of a human EPO antibody. However, only a few basal layers of the hair shaft were found to be positively stained for CD105. In conclusion, hMSC harboring MIDGE-EPO could deliver and transiently express the EPO gene in the nude mice model. These cells could be localized to the hair follicle and secreted EPO protein might have possible role in hair regeneration. PMID:22560724

  18. Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Ivanov

    2010-04-01

    Full Text Available Enzymatic fuel cells convert the chemical energy of biofuels into electrical energy. Unlike traditional fuel cell types, which are mainly based on metal catalysts, the enzymatic fuel cells employ enzymes as catalysts. This fuel cell type can be used as an implantable power source for a variety of medical devices used in modern medicine to administer drugs, treat ailments and monitor bodily functions. Some advantages in comparison to conventional fuel cells include a simple fuel cell design and lower cost of the main fuel cell components, however they suffer from severe kinetic limitations mainly due to inefficiency in electron transfer between the enzyme and the electrode surface. In this review article, the major research activities concerned with the enzymatic fuel cells (anode and cathode development, system design, modeling by highlighting the current problems (low cell voltage, low current density, stability will be presented.

    <