WorldWideScience

Sample records for biofouling resistant water-treatment

  1. Use of ceragenins to create novel biofouling resistant water-treatment membranes.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu (Brigham Young University, Provo, UT); Savage, Paul B. (Brigham Young University, Provo, UT); Pollard, Jacob (Brigham Young University, Provo, UT); Sanchez, Andres L. (LMATA, Albuquerque, NM); Fellows, Benjamin D.; Jones, Howland D. T.; McGrath, Lucas K. (LMATA, Albuquerque, NM)

    2008-12-01

    Scoping studies have demonstrated that ceragenins, when linked to water-treatment membranes have the potential to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced molecules that mimic antimicrobial peptides. Evidence includes measurements of CSA-13 prohibiting the growth of and killing planktonic Pseudomonas fluorescens. In addition, imaging of biofilms that were in contact of a ceragenin showed more dead cells relative to live cells than in a biofilm that had not been treated with a ceragenin. This work has demonstrated that ceragenins can be attached to polyamide reverse osmosis (RO) membranes, though work needs to improve the uniformity of the attachment. Finally, methods have been developed to use hyperspectral imaging with multivariate curve resolution to view ceragenins attached to the RO membrane. Future work will be conducted to better attach the ceragenin to the RO membranes and more completely test the biocidal effectiveness of the ceragenins on the membranes.

  2. Use of ceregenins to create novel biofouling resistant water water-treatment membranes.

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Matthew F.; Jones, Howland D. T.; Feng, Yanshu; McGrath, Lucas K.; Altman, Susan Jeanne; Pollard, Jacob; Hibbs, Michael R.; Savage, Paul B.

    2010-05-01

    Scoping studies have demonstrated that ceragenins, when linked to water-treatment membranes have the potential to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced molecules that mimic antimicrobial peptides. Evidence includes measurements of CSA-13 prohibiting the growth of and killing planktonic Pseudomonas fluorescens. In addition, imaging of biofilms that were in contact of a ceragenin showed more dead cells relative to live cells than in a biofilm that had not been treated with a ceragenin. This work has demonstrated that ceragenins can be attached to polyamide reverse osmosis (RO) membranes, though work needs to improve the uniformity of the attachment. Finally, methods have been developed to use hyperspectral imaging with multivariate curve resolution to view ceragenins attached to the RO membrane. Future work will be conducted to better attach the ceragenin to the RO membranes and more completely test the biocidal effectiveness of the ceragenins on the membranes.

  3. Linking ceragenins to water-treatment membranes to minimize biofouling.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu (Brigham Young University, Provo, Utah); Savage, Paul B. (Brigham Young University, Provo, Utah); Pollard, Jacob (Brigham Young University, Provo, Utah); Branda, Steven S.; Goeres, Darla (Montana State University, Bozeman, MT); Buckingham-Meyer, Kelli (Montana State University, Bozeman, MT); Stafslien, Shane (North Dakota State University, Fargo, ND); Marry, Christopher; Jones, Howland D. T.; Lichtenberger, Alyssa; Kirk, Matthew F.; McGrath, Lucas K. (LMATA, Albuquerque, NM)

    2012-01-01

    Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different ceragenin molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter

  4. Biofouling-resistant ceragenin-modified materials and structures for water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael; Altman, Susan J.; Jones, Howland D. T.; Savage, Paul B.

    2013-09-10

    This invention relates to methods for chemically grafting and attaching ceragenin molecules to polymer substrates; methods for synthesizing ceragenin-containing copolymers; methods for making ceragenin-modified water treatment membranes and spacers; and methods of treating contaminated water using ceragenin-modified treatment membranes and spacers. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. Alkene-functionalized ceragenins (e.g., acrylamide-functionalized ceragenins) can be attached to polyamide reverse osmosis membranes using amine-linking, amide-linking, UV-grafting, or silane-coating methods. In addition, silane-functionalized ceragenins can be directly attached to polymer surfaces that have free hydroxyls.

  5. Analysis of micromixers and biocidal coatings on water-treatment membranes to minimize biofouling.

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Stephen W.; James, Darryl L. (Texas Tech University, Lubbock, TX); Hibbs, Michael R.; Jones, Howland D. T.; Hart, William Eugene; Khalsa, Siri Sahib; Altman, Susan Jeanne; Clem, Paul Gilbert; Elimelech, Menachem (Yale University, New Haven, CT); Cornelius, Christopher James; Sanchez, Andres L. (LMATA Government Services LLC, Albuquerque, NM); Noek, Rachael M.; Ho, Clifford Kuofei; Kang, Seokatae (Yale University, New Haven, CT); Sun, Amy Cha-Tien; Adout, Atar (Yale University, New Haven, CT); McGrath, Lucas K. (LMATA Government Services LLC, Albuquerque, NM); Cappelle, Malynda A.; Cook, Adam W.

    2009-12-01

    Biofouling, the unwanted growth of biofilms on a surface, of water-treatment membranes negatively impacts in desalination and water treatment. With biofouling there is a decrease in permeate production, degradation of permeate water quality, and an increase in energy expenditure due to increased cross-flow pressure needed. To date, a universal successful and cost-effect method for controlling biofouling has not been implemented. The overall goal of the work described in this report was to use high-performance computing to direct polymer, material, and biological research to create the next generation of water-treatment membranes. Both physical (micromixers - UV-curable epoxy traces printed on the surface of a water-treatment membrane that promote chaotic mixing) and chemical (quaternary ammonium groups) modifications of the membranes for the purpose of increasing resistance to biofouling were evaluated. Creation of low-cost, efficient water-treatment membranes helps assure the availability of fresh water for human use, a growing need in both the U. S. and the world.

  6. Superhydrophobic resistance to dynamic freshwater biofouling inception.

    Science.gov (United States)

    Krishnan, K Ghokulla; Malm, Peter; Loth, Eric

    2015-01-01

    Superhydrophobic nanotextured surfaces have gained increased usage in various applications due to their non-wetting and self-cleaning abilities. The aim of this study was to investigate nanotextured surfaces with respect to their resistance to the inception of freshwater biofouling at transitional flow conditions. Several coatings were tested including industry standard polyurethane (PUR), polytetrafluoroethylene (PTFE), capstone mixed polyurethane (PUR + CAP) and nanocomposite infused polyurethane (PUR + NC). Each surface was exposed to freshwater conditions in a lake at 4 m s(-1) for a duration of 45 min. The polyurethane exhibited the greatest fouling elements, in terms of both height and number of elements, with the superhydrophobic nanocomposite based polyurethane (PUR + NC) showing very little to no fouling. A correlation between the surface characteristics and the degree of fouling inception was observed.

  7. Biofouling of Water Treatment Membranes: A Review of the Underlying Causes, Monitoring Techniques and Control Measures

    Directory of Open Access Journals (Sweden)

    Felicity A. Roddick

    2012-11-01

    Full Text Available Biofouling is a critical issue in membrane water and wastewater treatment as it greatly compromises the efficiency of the treatment processes. It is difficult to control, and significant economic resources have been dedicated to the development of effective biofouling monitoring and control strategies. This paper highlights the underlying causes of membrane biofouling and provides a review on recent developments of potential monitoring and control methods in water and wastewater treatment with the aim of identifying the remaining issues and challenges in this area.

  8. Impact of biofouling on corrosion resistance of reinforced concrete

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, B.T.; Gajendragad, M.R.; Ranganna, G.; Wagh, A.B.; Sudhakaran, T.

    The settlement of marine organisms on reinforced concrete surfaces can affect the durability of concrete structures due to the initiation of corrosion processes. A uniform settlement of biofoulers covering an entire concrete surface can protect...

  9. The biofilm ecology of microbial biofouling, biocide resistance and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C. [Univ. of Tennessee, Knoxville, TN (United States). Center for Environmental Biotechnology]|[Oak Ridge National Lab., TN (United States). Environmental Science Div.; Kirkegaard, R.D.; Palmer, R.J. Jr.; Flemming, C.A.; Chen, G.; Leung, K.T.; Phiefer, C.B. [Univ. of Tennessee, Knoxville, TN (United States). Center for Environmental Biotechnology; Arrage, A.A. [Univ. of Tennessee, Knoxville, TN (United States). Center for Environmental Biotechnology]|[Microbial Insights, Inc., Rockford, TN (United States)

    1997-06-01

    In biotechnological or bioremediation processes it is often the aim to promote biofilm formation, and maintain active, high density biomass. In other situations, biofouling can seriously restrict effective heat transport, membrane processes, and potentate macrofouling with loss of transportation efficiency. In biotechnological or bioremediation processes it is often the aim to promote biofilm formation, and maintain active, high density biomass. In other situations, biofouling can seriously restrict effective heat transport, membrane processes, and potentate macrofouling with loss of transportation efficiency. Heterogeneous distribution of microbes and/or their metabolic activity can promote microbially influenced corrosion (MIC) which is a multibillion dollar problem. Consequently, it is important that biofilm microbial ecology be understood so it can be manipulated rationally. It is usually simple to select organisms that form biofilms by flowing a considerably dilute media over a substratum, and propagating the organisms that attach. To examine the biofilm most expeditiously, the biomass accumulation, desquamation, and metabolic activities need to be monitored on-line and non-destructively. This on-line monitoring becomes even more valuable if the activities can be locally mapped in time and space within the biofilm. Herein the authors describe quantitative measures of microbial biofouling, the ecology of pathogens in drinking water distributions systems, and localization of microbial biofilms and activities with localized MIC.

  10. The construction of a zwitterionic PVDF membrane surface to improve biofouling resistance.

    Science.gov (United States)

    Shen, Xiang; Zhao, Yiping; Chen, Li

    2013-09-01

    Biofouling of membrane surfaces by the attachment of microorganisms is one of the major obstacles for ensuring the effectiveness of membrane separation processes. This work presents the construction of a zwitterionic PVDF membrane surface with improved resistance to biofouling. An amphiphilic copolymer of poly(vinylidene fluoride)-graft-poly(N,N-dimethylamino-2-ethylmethacrylate) (PVDF-g-PDMAEMA) was first synthesized via radical graft copolymerization and then the flat membrane was cast with immersed phase inversion. The PDMAEMA side chains tended to aggregate on the membrane surface, pore surface and internal pore channel surface, and were converted with 1,3-propane sultone (1,3-PS) to yield a zwitterionic membrane surface. A higher conversion of PDMAEMA chains and distribution of zwitterions were obtained using a longer treatment time. A biofouling assay indicated that incorporation of zwitterions suppressed the adsorption of extracellular polymer substances and the adhesion of Escherichia coli bacterial cells to the membrane surface, endowing the membrane with a high flux recovery and biofouling resistance in the filtration process.

  11. Corrosion and biofouling resistance evaluation of 90-10 copper-nickel

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Carol [Consultant to Copper Development Association, UK, Square Covert, Caynham, Ludlow, Shropshire (United Kingdom)

    2004-07-01

    Copper-nickel alloys for marine use were developed for naval applications in the early part of the 20. century with a view to improving the corrosion resistance of condenser tubes and seawater piping. They still enjoy widespread use today not only for many navies but also in commercial shipping, floating production, storage and off loading vessels (FPSOs), and in multistage flash desalination. The two popular alloys contain 90% or 70% copper and differ in strength and maximum sea water velocity levels they can handle but it is the 90-10 copper-nickel (CuNi10Fe1Mn) which is the more economic and extensively used. An additional benefit of this alloy is its high resistance to biofouling: in recent years this has led to sheathing developments particularly for structures and boat hulls. This paper provides a review of the corrosion and biofouling resistance of 90-10 copper-nickel based on laboratory test data and documented experience of the alloy in marine environments. Particular attention is given to exposure trials over 8 years in Langstone Harbour, UK, which have recently been completed by Portsmouth University on behalf of the Nickel Institute. These examined four sheathing products; plate and foil as well as two composite products with rubber backing. The latter involved copper-nickel granules and slit sheet. The trial results are consistent with the behaviour of the alloy in the overall review. There is an inherent high resistance to marine biofouling when freely exposed. Prolonged exposure to quiet conditions can result in some growth of marine organisms but this is loosely attached and can readily be removed by wiping or a light scraping. The good corrosion resistance of 90-10 copper-nickel in sea water is also confirmed and associated with the formation of a thin, complex, protective and predominantly cuprous oxide surface film, which forms and matures naturally on exposure to seawater. Sound initial oxide film formation is also known to help protect against

  12. Selection of antibiotic-resistant standard plate count bacteria during water treatment.

    Science.gov (United States)

    Armstrong, J L; Calomiris, J J; Seidler, R J

    1982-08-01

    Standard plate count (SPC) bacteria were isolated from a drinking-water treatment facility and from the river supplying the facility. All isolates were identified and tested for their resistance to six antibiotics to determine if drug-resistant bacteria were selected for as a consequence of water treatment. Among the isolates surviving our test procedures, there was a significant selection (P less than 0.05) of gram-negative SPC organisms resistant to two or more of the test antibiotics. These bacteria were isolated from the flash mix tank, where chlorine, alum, and lime are added to the water. Streptomycin resistance in particular was more frequent in this population as compared with bacteria in the untreated river water (P less than 0.01). SPC bacteria from the clear well, which is a tank holding the finished drinking water at the treatment facility, were also more frequently antibiotic resistant than were the respective river water populations. When 15.8 and 18.2% of the river water bacteria were multiply antibiotic resistant, 57.1 and 43.5%, respectively, of the SPC bacteria in the clear well were multiply antibiotic resistant. Selection for bacteria exhibiting resistance to streptomycin was achieved by chlorinating river water in the laboratory. We concluded that the selective factors operating in the aquatic environment of a water treatment facility can act to increase the proportion of antibiotic-resistant members of the SPC bacterial population in treated drinking water.

  13. The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance.

    Science.gov (United States)

    Bai, Xiaohui; Ma, Xiaolin; Xu, Fengming; Li, Jing; Zhang, Hang; Xiao, Xiang

    2015-11-15

    Two waterworks, with source water derived from the Huangpu or Yangtze River in Shanghai, were investigated, and the effluents were plate-screened for antibiotic-resistant bacteria (ARB) using five antibiotics: ampicillin (AMP), kanamycin (KAN), rifampicin (RFP), chloramphenicol (CM) and streptomycin (STR). The influence of water treatment procedures on the bacterial antibiotic resistance rate and the changes that bacteria underwent when exposed to the five antibiotics at concentration levels ranging from 1 to 100 μg/mL were studied. Multi-drug resistance was also analyzed using drug sensitivity tests. The results indicated that bacteria derived from water treatment plant effluent that used the Huangpu River rather than the Yangtze River as source water exhibited higher antibiotic resistance rates against AMP, STR, RFP and CM but lower antibiotic resistance rates against KAN. When the antibiotic concentration levels ranged from 1 to 10 μg/mL, the antibiotic resistance rates of the bacteria in the water increased as water treatment progressed. Biological activated carbon (BAC) filtration played a key role in increasing the antibiotic resistance rate of bacteria. Chloramine disinfection can enhance antibiotic resistance. Among the isolated ARB, 75% were resistant to multiple antibiotics. Ozone oxidation, BAC filtration and chloramine disinfection can greatly affect the relative abundance of bacteria in the community.

  14. Modification of Silicone Elastomer Surfaces with Zwitterionic Polymers: Short-Term Fouling Resistance and Triggered Biofouling Release.

    Science.gov (United States)

    Shivapooja, Phanindhar; Yu, Qian; Orihuela, Beatriz; Mays, Robin; Rittschof, Daniel; Genzer, Jan; López, Gabriel P

    2015-11-25

    We present a method for dual-mode-management of biofouling by modifying surface of silicone elastomers with zwitterionic polymeric grafts. Poly(sulfobetaine methacrylate) was grafted from poly(vinylmethylsiloxane) elastomer substrates using thiol-ene click chemistry and surface-initiated, controlled radical polymerization. These surfaces exhibited both fouling resistance and triggered fouling-release functionality. The zwitterionic polymers exhibited fouling resistance over short-term (∼hours) exposure to bacteria and barnacle cyprids. The biofilms that eventually accumulated over prolonged-exposure (∼days) were easily detached by applying mechanical strain to the elastomer substrate. Such dual-functional surfaces may be useful in developing environmentally and biologically friendly coatings for biofouling management on marine, industrial, and biomedical equipment because they can obviate the use of toxic compounds.

  15. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants.

    Science.gov (United States)

    Figueira, Vânia; Vaz-Moreira, Ivone; Silva, Márcia; Manaia, Célia M

    2011-11-01

    The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed.

  16. Biofouling resistance of boron-doped diamond neural stimulation electrodes is superior to titanium nitride electrodes in vivo

    DEFF Research Database (Denmark)

    Meijs, Suzan; Alcaide, Maria; Sørensen, Charlotte;

    2016-01-01

    OBJECTIVE: The goal of this study was to assess the electrochemical properties of boron-doped diamond (BDD) electrodes in relation to conventional titanium nitride (TiN) electrodes through in vitro and in vivo measurements. APPROACH: Electrochemical impedance spectroscopy, cyclic voltammetry and ...... electrodes possess a superior biofouling resistance, which provides significantly stable electrochemical properties both in protein solution as well as in vivo compared to TiN electrodes....

  17. Bacteriophage therapy for membrane biofouling in membrane bioreactors and antibiotic-resistant bacterial biofilms.

    Science.gov (United States)

    Bhattacharjee, Ananda Shankar; Choi, Jeongdong; Motlagh, Amir Mohaghegh; Mukherji, Sachiyo T; Goel, Ramesh

    2015-08-01

    To demonstrate elimination of bacterial biofilm on membranes to represent wastewater treatment as well as biofilm formed by antibiotic-resistant bacterial (ARB) to signify medical application, an antibiotic-resistant bacterium and its lytic bacteriophage were isolated from a full-scale wastewater treatment plant. Based on gram staining and complete 16 S rDNA sequencing, the isolated bacterium showed a more than 99% homology with Delftia tsuruhatensis, a gram-negative bacterium belonging to β-proteobacteria. The Delftia lytic phage's draft genome revealed the phage to be an N4-like phage with 59.7% G + C content. No transfer RNAs were detected for the phage suggesting that the phage is highly adapted to its host Delftia tsuruhatensis ARB-1 with regard to codon usage, and does not require additional tRNAs of its own. The gene annotation of the Delftia lytic phage found three different components of RNA polymerase (RNAP) in the genome, which is a typical characteristic of N4-like phages. The lytic phage specific to D. tsuruhatensis ARB-1 could successfully remove the biofilm formed by it on a glass slide. The water flux through the membrane of a prototype lab-scale membrane bioreactor decreased from 47 L/h m(2) to ∼15 L/h m(2) over 4 days due to a biofilm formed by D. tsuruhatensis ARB-1. However, the flux increased to 70% of the original after the lytic phage application. Overall, this research demonstrated phage therapy's great potential to solve the problem of membrane biofouling, as well as the problems posed by pathogenic biofilms in external wounds and on medical instruments.

  18. The agricultural use of water treatment plant sludge: pathogens and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Ignacio Nadal Rocamora

    2015-12-01

    Full Text Available The use of water treatment plant sludge to restore degraded soils is customary agricultural practice, but it could be dangerous from the point of view of both health and the environment. A transient increase of either pathogenic or indicator microbial populations, whose persistence in time is variable and attributed to the characteristics of the soil (types of materials in the soil, any amendments (origin and treatments it has undergone or the weather (humidity and temperature mainly, has often been detected in soils treated with this kind of waste. Given their origin, water treatment plant sludges could lead to the transmission of a pathogens and b antibiotic-resistant microorganisms to human beings through the food chain and cause the spreading of antibiotic resistances as a result of their increase and persistence in the soil for variable periods of time. However, Spanish legislation regulating the use of sludges in the farming industry is based on a very restricted microbiological criterion. Thus, we believe better parameters should be established to appropriately inform of the state of health of soils treated with water treatment plant sludge, including aspects which are not presently assessed such as antibiotic resistance.

  19. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems.

    Science.gov (United States)

    Xu, Like; Ouyang, Weiying; Qian, Yanyun; Su, Chao; Su, Jianqiang; Chen, Hong

    2016-06-01

    Antibiotic resistance genes (ARGs) are present in surface water and often cannot be completely eliminated by drinking water treatment plants (DWTPs). Improper elimination of the ARG-harboring microorganisms contaminates the water supply and would lead to animal and human disease. Therefore, it is of utmost importance to determine the most effective ways by which DWTPs can eliminate ARGs. Here, we tested water samples from two DWTPs and distribution systems and detected the presence of 285 ARGs, 8 transposases, and intI-1 by utilizing high-throughput qPCR. The prevalence of ARGs differed in the two DWTPs, one of which employed conventional water treatments while the other had advanced treatment processes. The relative abundance of ARGs increased significantly after the treatment with biological activated carbon (BAC), raising the number of detected ARGs from 76 to 150. Furthermore, the final chlorination step enhanced the relative abundance of ARGs in the finished water generated from both DWTPs. The total enrichment of ARGs varied from 6.4-to 109.2-fold in tap water compared to finished water, among which beta-lactam resistance genes displayed the highest enrichment. Six transposase genes were detected in tap water samples, with the transposase gene TnpA-04 showing the greatest enrichment (up to 124.9-fold). We observed significant positive correlations between ARGs and mobile genetic elements (MGEs) during the distribution systems, indicating that transposases and intI-1 may contribute to antibiotic resistance in drinking water. To our knowledge, this is the first study to investigate the diversity and abundance of ARGs in drinking water treatment systems utilizing high-throughput qPCR techniques in China.

  20. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel

    Science.gov (United States)

    Tesler, Alexander B.; Kim, Philseok; Kolle, Stefan; Howell, Caitlin; Ahanotu, Onye; Aizenberg, Joanna

    2015-10-01

    Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and results in reduction in durability and function. Here we report a new route to form anti-fouling steel surfaces by electrodeposition of nanoporous tungsten oxide (TO) films. TO-modified steels are as mechanically durable as bare steel and highly tolerant to compressive and tensile stresses due to chemical bonding to the substrate and island-like morphology. When inherently superhydrophilic TO coatings are converted to superhydrophobic, they remain non-wetting even after impingement with yttria-stabilized-zirconia particles, or exposure to ultraviolet light and extreme temperatures. Upon lubrication, these surfaces display omniphobicity against highly contaminating media retaining hitherto unseen mechanical durability. To illustrate the applicability of such a durable coating in biofouling conditions, we modified naval construction steels and surgical instruments and demonstrated significantly reduced marine algal film adhesion, Escherichia coli attachment and blood staining.

  1. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel.

    Science.gov (United States)

    Tesler, Alexander B; Kim, Philseok; Kolle, Stefan; Howell, Caitlin; Ahanotu, Onye; Aizenberg, Joanna

    2015-10-20

    Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and results in reduction in durability and function. Here we report a new route to form anti-fouling steel surfaces by electrodeposition of nanoporous tungsten oxide (TO) films. TO-modified steels are as mechanically durable as bare steel and highly tolerant to compressive and tensile stresses due to chemical bonding to the substrate and island-like morphology. When inherently superhydrophilic TO coatings are converted to superhydrophobic, they remain non-wetting even after impingement with yttria-stabilized-zirconia particles, or exposure to ultraviolet light and extreme temperatures. Upon lubrication, these surfaces display omniphobicity against highly contaminating media retaining hitherto unseen mechanical durability. To illustrate the applicability of such a durable coating in biofouling conditions, we modified naval construction steels and surgical instruments and demonstrated significantly reduced marine algal film adhesion, Escherichia coli attachment and blood staining.

  2. Microbiological contamination and resistance genes in biofilms occurring during the drinking water treatment process.

    Science.gov (United States)

    Farkas, Anca; Butiuc-Keul, Anca; Ciatarâş, Dorin; Neamţu, Călin; Crăciunaş, Cornelia; Podar, Dorina; Drăgan-Bularda, Mihail

    2013-01-15

    Biofilms are the predominant mode of microbial growth in drinking water systems. A dynamic exchange of individuals occurs between the attached and planktonic populations, while lateral gene transfer mediates genetic exchange in these bacterial communities. Integrons are important vectors for the spread of antimicrobial resistance. The presence of class 1 integrons (intI1, qac and sul genes) was assessed in biofilms occurring throughout the drinking water treatment process. Isolates from general and specific culture media, covering a wide range of environmental bacteria, fecal indicators and opportunistic pathogens were tested. From 96 isolates tested, 9.37% were found to possess genetic determinants of putative antimicrobial resistance, and these occurred in both Gram-positive and Gram-negative bacteria. Class 1 integron integrase gene was present in 8.33% of bacteria, all positive for the qacEΔ1 gene. The sul1 gene was present in 3.12% of total isolates, representing 37.5% of the class 1 integron positive cells. The present study shows that biofilm communities in a drinking water treatment plant are a reservoir of class 1 integrons, mainly in bacteria that may be associated with microbiological contamination. Eight out of nine integron bearing strains (88.8%) were identified based on 16S rRNA gene sequencing as either enteric bacteria or species that may be connected to animal and anthropogenic disturbance.

  3. [Biofouling of heat exchange tubes].

    Science.gov (United States)

    Montero, F; Pintado, J L

    1994-01-01

    We compared the biofouling behavior of different materials (admiralty brass, stainless steel, and titanium) commonly used to construct heat exchangers in thermoelectric plants. The incidence of film formation on the loss of heat during transference was assessed, and analyzed in terms of plant efficiency and corrosion, both general and localized development. Our results showed that the resistance of titanium and stainless steel to corrosion was similar, and much better than that of admiralty brass. Biofouling, however, was higher in the first two materials.

  4. Nanoclay embedded mixed matrix PVDF nanocomposite membrane: Preparation, characterization and biofouling resistance

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Hamid [Membrane Research Centre, Department of Chemical Engineering, Razi University, Tagh Bostan, 67149 Kermanshah (Iran, Islamic Republic of); Department of Civil Engineering, Razi University, 67149 Kermanshah (Iran, Islamic Republic of); Ghaemi, Negin, E-mail: negin_ghaemi@kut.ac.ir [Department of Chemical Engineering, Kermanshah University of Technology, 67178 Kermanshah (Iran, Islamic Republic of); Madaeni, Sayed S. [Membrane Research Centre, Department of Chemical Engineering, Razi University, Tagh Bostan, 67149 Kermanshah (Iran, Islamic Republic of); Daraei, Parisa [Department of Chemical Engineering, Kermanshah University of Technology, 67178 Kermanshah (Iran, Islamic Republic of); Khadivi, Mohammad Ali [Friedrich-Alexander University, Erlangen-Nuremberg, Egerland Strasse 3, D-91058 Erlangen (Germany); Falsafi, Monir [Department of Chemistry, Faculty of Science, Razi University, 67149 Kermanshah (Iran, Islamic Republic of)

    2014-09-15

    Highlights: • Nanocomposite membranes were prepared by addition of OMMT to PVDF membrane. • Addition of nanoclay considerably increased the hydrophilicity of PVDF membrane. • Nanocomposite membranes had higher water flux and antifouling properties. • Fouling of membranes blended with nanoclay (<4 wt.%) reduced. - Abstract: In this paper, nanocomposite PVDF/nanoclay membranes were prepared with addition of different concentrations of organically modified montmorillonite (OMMT) into the polymeric casting solution using combination of solution dispersion and phase inversion methods. Membranes were characterized by use of X-ray diffraction (XRD), water contact angle, scanning electron microscopy (SEM) and atomic force microscopy (AFM), and their performances were evaluated in terms of pure water flux and fouling parameters. The surface hydrophilicity of all nanocomposites markedly improved compared to nascent PVDF. In addition, XRD patterns revealed the formation of intercalated layers of mineral clays in PVDF matrix. SEM and AFM images showed that addition of OMMT resulted in nanocomposite membranes with thinner skin layer and higher porosity rather than PVDF membranes. Pure water flux of PVDF/OMMT membranes increased significantly (particularly for fabricated membranes by 4 and 6 wt.% OMMT) compared to that of PVDF membrane. Moreover, nanocomposite membranes showed the elevated antifouling properties, and flux recovery of nascent PVDF membranes increased from 51 to 72% with addition of 2 wt.% OMMT nanoparticles. These nanocomposite membranes also offered a remarkable reusability and durability against biofouling.

  5. Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators

    KAUST Repository

    Siddiqui, A.

    2016-12-22

    Feed spacers are an essential part of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane modules. Geometric modification of feed spacers is a potential option to reduce the impact of biofouling on the performance of membrane systems. The objective of this study was to evaluate the biofouling potential of two commercially available reference feed spacers and four modified feed spacers. The spacers were compared on hydraulic characterization and in biofouling studies with membrane fouling simulators (MFSs). The virgin feed spacer was characterized hydraulically by their resistance, measured in terms of feed channel pressure drop, performed by operating MFSs at varying feed water flow rates. Short-term (9 days) biofouling studies were carried out with nutrient dosage to the MFS feed water to accelerate the biofouling rate. Long-term (96 days) biofouling studies were done without nutrient dosage to the MFS feed water. Feed channel pressure drop was monitored and accumulation of active biomass was quantified by adenosine tri phosphate (ATP) determination. The six feed spacers were ranked on pressure drop (hydraulic characterization) and on biofouling impact (biofouling studies). Significantly different trends in hydraulic resistance and biofouling impact for the six feed spacers were observed. The same ranking for biofouling impact on the feed spacers was found for the (i) short-term biofouling study with nutrient dosage and the (ii) long-term biofouling study without nutrient dosage. The ranking for hydraulic resistance for six virgin feed spacers differed significantly from the ranking of the biofouling impact, indicating that hydraulic resistance of clean feed spacers does not predict the hydraulic resistance of biofouled feed spacers. Better geometric design of feed spacers can be a suitable approach to minimize impact of biofouling in spiral wound membrane systems.

  6. Biofouling resistance of boron-doped diamond neural stimulation electrodes is superior to titanium nitride electrodes in vivo

    Science.gov (United States)

    Meijs, S.; Alcaide, M.; Sørensen, C.; McDonald, M.; Sørensen, S.; Rechendorff, K.; Gerhardt, A.; Nesladek, M.; Rijkhoff, N. J. M.; Pennisi, C. P.

    2016-10-01

    Objective. The goal of this study was to assess the electrochemical properties of boron-doped diamond (BDD) electrodes in relation to conventional titanium nitride (TiN) electrodes through in vitro and in vivo measurements. Approach. Electrochemical impedance spectroscopy, cyclic voltammetry and voltage transient (VT) measurements were performed in vitro after immersion in a 5% albumin solution and in vivo after subcutaneous implantation in rats for 6 weeks. Main results. In contrast to the TiN electrodes, the capacitance of the BDD electrodes was not significantly reduced in albumin solution. Furthermore, BDD electrodes displayed a decrease in the VTs and an increase in the pulsing capacitances immediately upon implantation, which remained stable throughout the whole implantation period, whereas the opposite was the case for the TiN electrodes. Significance. These results reveal that BDD electrodes possess a superior biofouling resistance, which provides significantly stable electrochemical properties both in protein solution as well as in vivo compared to TiN electrodes.

  7. Plasma deposition of silver nanoparticles on ultrafiltration membranes: antibacterial and anti-biofouling properties.

    Science.gov (United States)

    Cruz, Mercedes Cecilia; Ruano, Gustavo; Wolf, Marcus; Hecker, Dominic; Vidaurre, Elza Castro; Schmittgens, Ralph; Rajal, Verónica Beatriz

    2015-02-01

    A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive (Enterococcus faecalis) and -negative (Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation.

  8. Systematic analysis of micromixers to minimize biofouling on reverse osmosis membranes.

    Science.gov (United States)

    Altman, Susan J; McGrath, Lucas K; Jones, Howland D T; Sanchez, Andres; Noek, Rachel; Clem, Paul; Cook, Adam; Ho, Clifford K

    2010-06-01

    Micromixers, UV-curable epoxy traces printed on the surface of a reverse osmosis membrane, were tested on a cross-flow system to determine their success at reducing biofouling. Biofouling was quantified by measuring the rate of permeate flux decline and the median bacteria concentration on the surface of the membrane (as determined by fluorescence intensity counts due to nucleic acid stains as measured by hyperspectral imaging). The micromixers do not appear to significantly increase the pressure needed to maintain the same initial permeate flux and salt rejection. Chevrons helped prevent biofouling of the membranes in comparison with blank membranes. The chevron design controlled where the bacteria adhered to the membrane surface. However, blank membranes with spacers had a lower rate of permeate flux decline than the membranes with chevrons despite having greater bacteria concentrations on their surfaces. With better optimization of the micromixer design, the micromixers could be used to control where the bacteria will adhere to the surface and create a more biofouling resistant membrane that will help to drive down the cost of water treatment.

  9. Effects of full-scale advanced water treatment on antibiotic resistance genes in the Yangtze Delta area in China.

    Science.gov (United States)

    Zhang, Shuting; Lin, Wenfang; Yu, Xin

    2016-05-01

    As emerging microbial contaminants, antibiotic resistance genes (ARGs) are widespread in the aquatic environment, including source water, which might enter water supply systems and endanger public health by enhancing the resistance of opportunistic pathogens to some antibiotics. In the present study, we investigated how water treatments affect the levels of ARGs in a full-scale drinking water treatment plant for one year using real-time PCR. The 16s rRNA gene and eleven ARG families, including tetA, tetG, aacC1, strA, ermB, cmlA5, vanA, dfrA1, sulII, blaTEM-1 and blaoxa-1, in source water and the outlet of each treatment and tap water were monitored. The results showed that nine ARG families were detected at relatively high levels, for example, the sulII gene was detected at ∼10(4) copies mL(-1) compared with 10(5) copies mL(-1) in finished water and tap water in July, whose relative concentrations were consistently high. Treatments for the reduction of the absolute concentrations of ARGs included sand filtration, coagulation/sedimentation and two-stage O3-BAC filtration, while distribution could increase ARGs an average of 0.50 log.

  10. Surface self-assembled PEGylation of fluoro-based PVDF membranes via hydrophobic-driven copolymer anchoring for ultra-stable biofouling resistance.

    Science.gov (United States)

    Lin, Nien-Jung; Yang, Hui-Shan; Chang, Yung; Tung, Kuo-Lun; Chen, Wei-Hao; Cheng, Hui-Wen; Hsiao, Sheng-Wen; Aimar, Pierre; Yamamoto, Kazuo; Lai, Juin-Yih

    2013-08-13

    Stable biofouling resistance is significant for general filtration requirements, especially for the improvement of membrane lifetime. A systematic group of hyper-brush PEGylated diblock copolymers containing poly(ethylene glycol) methacrylate (PEGMA) and polystyrene (PS) was synthesized using an atom transfer radical polymerization (ATRP) method and varying PEGMA lengths. This study demonstrates the antibiofouling membrane surfaces by self-assembled anchoring PEGylated diblock copolymers of PS-b-PEGMA on the microporous poly(vinylidene fluoride) (PVDF) membrane. Two types of copolymers are used to modify the PVDF surface, one with different PS/PEGMA molar ratios in a range from 0.3 to 2.7 but the same PS molecular weights (MWs, ∼5.7 kDa), the other with different copolymer MWs (∼11.4, 19.9, and 34.1 kDa) but the similar PS/PEGMA ratio (∼1.7 ± 0.2). It was found that the adsorption capacities of diblock copolymers on PVDF membranes decreased as molar mass ratios of PS/PEGMA ratio reduced or molecular weights of PS-b-PEGMA increased because of steric hindrance. The increase in styrene content in copolymer enhanced the stability of polymer anchoring on the membrane, and the increase in PEGMA content enhanced the protein resistance of membranes. The optimum PS/PEGMA ratio was found to be in the range between 1.5 and 2.0 with copolymer MWs above 20.0 kDa for the ultrastable resistance of protein adsorption on the PEGylated PVDF membranes. The PVDF membrane coated with such a diblock copolymer owned excellent biofouling resistance to proteins of BSA and lysozyme as well as bacterium of Escherichia coli and Staphylococcus epidermidis and high stable microfiltration operated with domestic wastewater solution in a membrane bioreactor.

  11. Contact angle hysteresis, adhesion, and marine biofouling.

    Science.gov (United States)

    Schmidt, Donald L; Brady, Robert F; Lam, Karen; Schmidt, Dale C; Chaudhury, Manoj K

    2004-03-30

    Adhesive and marine biofouling release properties of coatings containing surface-oriented perfluoroalkyl groups were investigated. These coatings were prepared by cross-linking a copolymer of 1H,1H,2H,2H-heptadecafluorodecyl acrylate and acrylic acid with a copolymer of poly(2-isopropenyl-2-oxazoline) and methyl methacrylate at different molar ratios. The relationships between contact angle, contact angle hysteresis, adhesion, and marine biofouling were studied. Adhesion was determined by peel tests using pressure-sensitive adhesives. The chemical nature of the surfaces was studied by using X-ray photoelectron spectroscopy. Resistance to marine biofouling of an optimized coating was studied by immersion in seawater and compared to previous, less optimized coatings. The adhesive release properties of the coatings did not correlate well with the surface energies of the coatings estimated from the static and advancing contact angles nor with the amount of fluorine present on the surface. The adhesive properties of the surfaces, however, show a correlation with water receding contact angles and contact angle hysteresis (or wetting hysteresis) resulting from surface penetration and surface reconstruction. Coatings having the best release properties had both the highest cross-link density and the lowest contact angle hysteresis. An optimized coating exhibited unprecedented resistance to marine biofouling. Water contact angle hysteresis appears to correlate with marine biofouling resistance.

  12. Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China.

    Science.gov (United States)

    Guo, Xueping; Li, Jing; Yang, Fan; Yang, Jie; Yin, Daqiang

    2014-09-15

    The occurrence and distribution of antibiotic resistance genes (ARGs) in drinking water treatment plants (DWTPs) and finished water are not well understood, and even less is known about the contribution of each treatment process to resistance gene reduction. The prevalence of ten commonly detected sulfonamide and tetracycline resistance genes, namely, sul I, sul II, tet(C), tet(G), tet(X), tet(A), tet(B), tet(O), tet(M) and tet(W) as well as 16S-rRNA genes, were surveyed in seven DWTPs in the Yangtze River Delta, China, with SYBR Green I-based real-time quantitative polymerase chain reaction. All of the investigated ARGs were detected in the source waters of the seven DWTPs, and sul I, sul II, tet(C) and tet(G) were the four most abundant ARGs. Total concentrations of ARGs belonging to either the sulfonamide or tetracycline resistance gene class were above 10(5) copies/mL. The effects of a treatment process on ARG removal varied depending on the overall treatment scheme of the DWTP. With combinations of the treatment procedures, however, the copy numbers of resistance genes were reduced effectively, but the proportions of ARGs to bacteria numbers increased in several cases. Among the treatment processes, the biological treatment tanks might serve as reservoirs of ARGs. ARGs were found in finished water of two plants, imposing a potential risk to human health. The results presented in this study not only provide information for the management of antibiotics and ARGs but also facilitate improvement of drinking water quality.

  13. Induction of resistance to Penicillium digitatum in tangerine fruit cv. Sai Num Phung flavedo by hot water treatment

    Directory of Open Access Journals (Sweden)

    Sirisopha Inkha

    2010-10-01

    Full Text Available The effects of hot water treatment (HWT were investigated for enhancing host resistance to green mold rot causedby Penicillium digitatum. Tangerine fruits cv. Sai Num Phung were dipped in hot water at 50±2°C for 3 minutes and 55±2°Cfor 2 and 3 minutes after inoculation with P. digitatum and then stored at 4±2C with 90±5% relative humidity for 30 days. Theresults showed that the HWT remarkably delayed the onset of disease infection, reduced the number of infected fruits andlowered the severity of infection (lesion diameter. The chitinase and -1,3-glucanase activities in flavedo tissues of treatedfruits increased after storage for 15 days, but activity of peroxidase increased after storage for 25 days, compared with untreatedand uninoculated fruits. The protein patterns of tangerine fruit peels treated with HWT appeared to have 112.20 and100.00 kDa proteins only on the fifth day of storage which indicated that HWT led to heat stress circumstances in the fruitpeel tissue and induced biochemical changes. The protein patterns of HWT treated fruit at 22.39 kDa exhibited thicker bandcompared to untreated and uninoculated fruit peels. The findings indicated that HWT reduced disease incidence partly byinducing defence mechanism in the fruit peel tissue.

  14. Biofouling and biocorrosion in industrial water systems.

    Science.gov (United States)

    Coetser, S E; Cloete, T E

    2005-01-01

    Corrosion associated with microorganisms has been recognized for over 50 years and yet the study of microbiologically influenced corrosion (MIC) is relatively new. MIC can occur in diverse environments and is not limited to aqueous corrosion under submerged conditions, but also takes place in humid atmospheres. Biofouling of industrial water systems is the phenomenon whereby surfaces in contact with water are colonized by microorganisms, which are ubiquitous in our environment. However, the economic implications of biofouling in industrial water systems are much greater than many people realize. In a survey conducted by the National Association of Corrosion Engineers of the United States ten years ago, it was found that many corrosion engineer did not accept the role of bacteria in corrosion, and many of then that did, could not recognize and mitigate the problem. Biofouling can be described in terms of its effects on processes and products such as material degradation (bio-corossion), product contamination, mechanical blockages, and impedance of heat transfer. Microorganisms distinguish themselves from other industrial water contaminants by their ability to utilize available nutrient sources, reproduce, and generate intra- and extracellular organic and inorganic substances in water. A sound understanding of the molecular and physiological activities of the microorganisms involved is necessary before strategies for the long term control of biofouling can be format. Traditional water treatment strategies however, have largely failed to address those factors that promote biofouling activities and lead to biocorrosion. Some of the major developments in recent years have been a redefinition of biofilm architecture and the realization that MIC of metals can be best understood as biomineralization.

  15. Biofouling control: Bacterial quorum quenching versus chlorination in membrane bioreactors.

    Science.gov (United States)

    Weerasekara, Nuwan A; Choo, Kwang-Ho; Lee, Chung-Hak

    2016-10-15

    Biofilm formation (biofouling) induced via cell-to-cell communication (quorum sensing) causes problems in membrane filtration processes. Chorine is one of the most common chemicals used to interfere with biofouling; however, biofouling control is challenging because it is a natural process. This study demonstrates biofouling control for submerged hollow fiber membranes in membrane bioreactors by means of bacterial quorum quenching (QQ) using Rhodococcus sp. BH4 with chemically enhanced backwashing. This is the first trial to bring QQ alongside chlorine injection into practice. A high chlorine dose (100 mg/L as Cl2) to the system is insufficient for preventing biofouling, but addition of the QQ bacterium is effective for disrupting biofouling that cannot be achieved by chlorination alone. QQ reduces the biologically induced metal precipitate and extracellular biopolymer levels in the biofilm, and biofouling is significantly delayed when QQ is applied in addition to chlorine dosing. QQ with chlorine injection gives synergistic effects on reducing physically and chemically reversible fouling resistances while saving substantial filtration energy. Manipulating microbial community functions with chemical treatment is an attractive tool for biofilm dispersal in membrane bioreactors.

  16. Biofouling: lessons from nature.

    Science.gov (United States)

    Bixler, Gregory D; Bhushan, Bharat

    2012-05-28

    Biofouling is generally undesirable for many applications. An overview of the medical, marine and industrial fields susceptible to fouling is presented. Two types of fouling include biofouling from organism colonization and inorganic fouling from non-living particles. Nature offers many solutions to control fouling through various physical and chemical control mechanisms. Examples include low drag, low adhesion, wettability (water repellency and attraction), microtexture, grooming, sloughing, various miscellaneous behaviours and chemical secretions. A survey of nature's flora and fauna was taken in order to discover new antifouling methods that could be mimicked for engineering applications. Antifouling methods currently employed, ranging from coatings to cleaning techniques, are described. New antifouling methods will presumably incorporate a combination of physical and chemical controls.

  17. Biofouling ecology as a means to better understand membrane biofouling.

    Science.gov (United States)

    Vanysacker, Louise; Boerjan, Bart; Declerck, Priscilla; Vankelecom, Ivo F J

    2014-10-01

    Despite more than a decade of worldwide research on membrane fouling in membrane bioreactors, many questions remain to be answered. Biofouling, which is referred to as the unwanted deposition and growth of biofilms, remains the main problem. Due to its complexity, most of the existing anti-biofouling strategies are not completely successful. To unravel this complexity and finally to developed well-adapted control strategies, a microbial-based description of the biofouling development is needed. Therefore, in this review, the biofouling formation will be described as a typical biofilm formation in five steps including the formation of a conditioning film, the bacterial attachment, the production of extracellular polymeric substances, the biofilm maturation, and the bacterial detachment. Moreover, important processes such as hydrodynamics and bacterial communication or quorum sensing will be taken into account. It is finally discussed whether biofouling formation is an active or inactive biofilm process together with suggestion for further research.

  18. Biofouling Control in Cooling Water

    Directory of Open Access Journals (Sweden)

    T. Reg Bott

    2009-01-01

    Full Text Available An important aspect of environmental engineering is the control of greenhouse gas emissions. Fossil fuel-fired power stations, for instance, represent a substantial contribution to this problem. Unless suitable steps are taken the accumulation of microbial deposits (biofouling on the cooling water side of the steam condensers can reduce their efficiency and in consequence, the overall efficiency of power production, with an attendant increase in fuel consumption and hence CO2 production. Biofouling control, therefore, is extremely important and can be exercised by chemical or physical techniques or a combination of both. The paper gives some examples of the effectiveness of different approaches to biofouling control.

  19. Antiviral oseltamivir is not removed or degraded in normal sewage water treatment: implications for development of resistance by influenza A virus.

    Directory of Open Access Journals (Sweden)

    Jerker Fick

    Full Text Available Oseltamivir is the main antiviral for treatment and prevention of pandemic influenza. The increase in oseltamivir resistance reported recently has therefore sparked a debate on how to use oseltamivir in non pandemic influenza and the risks associated with wide spread use during a pandemic. Several questions have been asked about the fate of oseltamivir in the sewage treatment plants and in the environment. We have assessed the fate of oseltamivir and discuss the implications of environmental residues of oseltamivir regarding the occurrence of resistance. A series of batch experiments that simulated normal sewage treatment with oseltamivir present was conducted and the UV-spectra of oseltamivir were recorded.Our experiments show that the active moiety of oseltamivir is not removed in normal sewage water treatments and is not degraded substantially by UV light radiation, and that the active substance is released in waste water leaving the plant. Our conclusion is that a ubiquitous use of oseltamivir may result in selection pressures in the environment that favor development of drug-resistance.

  20. Water Treatment Group

    Data.gov (United States)

    Federal Laboratory Consortium — This team researches and designs desalination, water treatment, and wastewater treatment systems. These systems remediate water containing hazardous c hemicals and...

  1. Alternative disinfectant water treatments

    Science.gov (United States)

    Alternative disinfestant water treatments are disinfestants not as commonly used by the horticultural industry. Chlorine products that produce hypochlorous acid are the main disinfestants used for treating irrigation water. Chlorine dioxide will be the primary disinfestant discussed as an alternativ...

  2. Basic Water Treatment Operation.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to introduce the fundamentals of water treatment plant operations. The course consists of lecture-discussions and hands-on activities. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that…

  3. Water Treatment Technology - Springs.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on springs provides instructional materials for two competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on spring basin construction and spring protection. For each competency, student…

  4. Water Treatment Technology - Wells.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

  5. Water Treatment Technology - Flouridation.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on flouridation provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of flouridation, correct…

  6. Water Treatment Technology - Pumps.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  7. Water Treatment Technology - Hydraulics.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  8. Water Treatment Technology - Chlorination.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chlorination provides instructional materials for nine competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of chlorination, chlorine…

  9. DRINKING WATER TREATMENT

    Science.gov (United States)

    The purpose of water treatment is threefold: 1. To improve the aethetic quality ofwater, 2. to remove toxic or health-hazardous chemicals, 3. to remove and/or inactivate any disease causing microorganisms. These objectives should be accomplished using a reasonable safety factor...

  10. Water Treatment Technology - Filtration.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  11. Electrocoagulation in Water Treatment

    Science.gov (United States)

    Liu, Huijuan; Zhao, Xu; Qu, Jiuhui

    Electrocoagulation (EC) is an electrochemical method of treating polluted water where sacrificial anodes corrode to release active coagulant precursors (usually aluminum or iron cations) into solution. At the cathode, gas evolves (usually as hydrogen bubbles) accompanying electrolytic reactions. EC needs simple equipments and is designable for virtually any size. It is cost effective and easily operable. Specially, the recent technical improvements combined with a growing need for small-scale water treatment facilities have led to a revaluation of EC. In this chapter, the basic principle of EC was introduced first. Following that, reactions at the electrodes and electrode assignment were reviewed; electrode passivation process and activation method were presented; comparison between electrocoagulation and chemical coagulation was performed; typical design of the EC reactors was also described; and factors affecting electrocoagulation including current density, effect of conductivity, temperature, and pH were introduced in details. Finally, application of EC in water treatment was given in details.

  12. Biofouling reduction in recirculating cooling systems through biofiltration of process water.

    Science.gov (United States)

    Meesters, K P H; Van Groenestijn, J W; Gerritse, J

    2003-02-01

    Biofouling is a serious problem in industrial recirculating cooling systems. It damages equipment, through biocorrosion, and causes clogging and increased energy consumption, through decreased heat transfer. In this research a fixed-bed biofilter was developed which removed assimilable organic carbon (AOC) from process water, thus limiting the major substrate for the growth of biofouling. The biofilter was tested in a laboratory model recirculating cooling water system, including a heat exchanger and a cooling tower. A second identical model system without a biofilter served as a reference. Both installations were challenged with organic carbon (sucrose and yeast extract) to provoke biofouling. The biofilter improved the quality of the recirculating cooling water by reducing the AOC content, the ATP concentration, bacterial numbers (30-40 fold) and the turbidity (OD660). The process of biofouling in the heat exchangers, the process water pipelines and the cooling towers, was monitored by protein increase, heat transfer resistance, and chlorine demanded for maintenance. This revealed that biofouling was lower in the system with the biofilter compared to the reference installation. It was concluded that AOC removal through biofiltration provides an attractive, environmental-friendly means to reduce biofouling in industrial cooling systems.

  13. Thermoresponsive oligomers reduce Escherichia coli O157:H7 biofouling and virulence.

    Science.gov (United States)

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Hyun Seob; Kim, Jintae; Kim, Seong-Cheol; Cho, Moo Hwan; Lee, Jintae

    2014-01-01

    Thermoresponsive polymers have potential biomedical applications for drug delivery and tissue engineering. Here, two thermoresponsive oligomers were synthesized, viz. oligo(N-isopropylacrylamide) (ONIPAM) and oligo(N-vinylcaprolactam) (OVCL), and their anti-biofouling abilities investigated against enterohemorrhagic E. coli O157:H7, which produces Shiga-like toxins and forms biofilms. Biofilm formation (biofouling) is closely related to E. coli O157:H7 infection and constitutes a major mechanism of antimicrobial resistance. The synthetic OVCL (MW 679) and three commercial OVCLs (up to MW 54,000) at 30 μg ml(-1) were found to inhibit biofouling by E. coli O157:H7 at 37 °C by more than 80% without adversely affecting bacterial growth. The anti-biofouling activity of ONIPAM was weaker than that of OVCL. However, at 25 °C, ONIPAM and OVCL did not affect E. coli O157:H7 biofouling. Transcriptional analysis showed that OVCL temperature-dependently downregulated curli genes in E. coli O157:H7, and this finding was in line with observed reductions in fimbriae production and biofouling. In addition, OVCL downregulated the Shiga-like toxin genes stx1 and stx2 in E. coli O157:H7 and attenuated its in vivo virulence in the nematode Caenorhabditis elegans. These results suggest that OVCL has potential use in antivirulence strategies against persistent E. coli O157:H7 infection.

  14. Spatial heterogeneity of biofouling under different cross-flow velocities in reverse osmosis membrane systems

    KAUST Repository

    Farhat, N.M.

    2016-09-06

    The spatially heterogeneous distribution of biofouling in spiral wound membrane systems restricts (i) the water distribution over the membrane surface and therefore (ii) the membrane-based water treatment. The objective of the study was to assess the spatial heterogeneity of biofilm development over the membrane fouling simulator (MFS) length (inlet and outlet part) at three different cross-flow velocities (0.08, 0.12 and 0.16 m/s). The MFS contained sheets of membrane and feed spacer and simulated the first 0.20 m of spiral-wound membrane modules where biofouling accumulates the most in practice. In-situ non-destructive oxygen imaging using planar optodes was applied to determine the biofilm spatially resolved activity and heterogeneity.

  15. Green Materials Science and Engineering Reduces Biofouling: Approaches for Medical and Membrane-based Technologies

    Directory of Open Access Journals (Sweden)

    Kerianne M Dobosz

    2015-03-01

    Full Text Available Numerous engineered and natural environments suffer deleterious effects from biofouling and/or biofilm formation. For instance, bacterial contamination on biomedical devices pose serious health concerns. In membrane-based technologies, such as desalination and wastewater reuse, biofouling decreases membrane lifetime and increases the energy required to produce clean water. Traditionally, approaches have combatted bacteria using bactericidal agents. However, due to globalization, a decline in antibiotic discovery, and the widespread resistance of microbes to many commercial antibiotics and metallic nanoparticles, new materials and approaches to reduce biofilm formation are needed. In this mini-review, we cover the recent strategies that have been explored to combat microbial contamination without exerting evolutionary pressure on microorganisms. Renewable feedstocks, relying on structure-property relationships, bioinspired/nature-derived compounds, and green processing methods are discussed. Greener strategies that mitigate biofouling hold great potential to positively impact human health and safety.

  16. Green materials science and engineering reduces biofouling: approaches for medical and membrane-based technologies

    Science.gov (United States)

    Dobosz, Kerianne M.; Kolewe, Kristopher W.; Schiffman, Jessica D.

    2015-01-01

    Numerous engineered and natural environments suffer deleterious effects from biofouling and/or biofilm formation. For instance, bacterial contamination on biomedical devices pose serious health concerns. In membrane-based technologies, such as desalination and wastewater reuse, biofouling decreases membrane lifetime, and increases the energy required to produce clean water. Traditionally, approaches have combatted bacteria using bactericidal agents. However, due to globalization, a decline in antibiotic discovery, and the widespread resistance of microbes to many commercial antibiotics and metallic nanoparticles, new materials, and approaches to reduce biofilm formation are needed. In this mini-review, we cover the recent strategies that have been explored to combat microbial contamination without exerting evolutionary pressure on microorganisms. Renewable feedstocks, relying on structure-property relationships, bioinspired/nature-derived compounds, and green processing methods are discussed. Greener strategies that mitigate biofouling hold great potential to positively impact human health and safety. PMID:25852659

  17. Green materials science and engineering reduces biofouling: approaches for medical and membrane-based technologies.

    Science.gov (United States)

    Dobosz, Kerianne M; Kolewe, Kristopher W; Schiffman, Jessica D

    2015-01-01

    Numerous engineered and natural environments suffer deleterious effects from biofouling and/or biofilm formation. For instance, bacterial contamination on biomedical devices pose serious health concerns. In membrane-based technologies, such as desalination and wastewater reuse, biofouling decreases membrane lifetime, and increases the energy required to produce clean water. Traditionally, approaches have combatted bacteria using bactericidal agents. However, due to globalization, a decline in antibiotic discovery, and the widespread resistance of microbes to many commercial antibiotics and metallic nanoparticles, new materials, and approaches to reduce biofilm formation are needed. In this mini-review, we cover the recent strategies that have been explored to combat microbial contamination without exerting evolutionary pressure on microorganisms. Renewable feedstocks, relying on structure-property relationships, bioinspired/nature-derived compounds, and green processing methods are discussed. Greener strategies that mitigate biofouling hold great potential to positively impact human health and safety.

  18. An Investigation of Low Biofouling Copper-charged Membranes

    Science.gov (United States)

    Asapu, Sunitha

    with increased biofouling resistance. The goal of this project was to develop low-biofouling nanofiltration cellulose acetate (CA) membranes through functionalization with metal chelating ligands charged with biocidal metal ions, i.e. copper ions. To this end, glycidyl methacrylate (GMA), an epoxy, was used to attach a chelating agent, iminodiacetic acid (IDA) to facilitate the charging of copper to the membrane surface. Both CA and CA-GMA membranes were cast using the phase-inversion method. The CA-GMA membranes were then charged with copper ions to make them low biofouling. Pore size distribution analysis of CA and copper charged membranes were conducted using various molecular weights of polyethylene glycol (PEG). CA and copper-charged membranes were characterized using Fourier Transform Infrared (FTIR), contact angle to measure hydrophilicity changes, and using scanning electron microscope (SEM) coupled with X-ray energy dispersive spectroscopy EDS to monitor copper leaching. Permeation experiments were conducted with distilled (DI) water, protein solutions, and synthetic brackish water containing microorganisms. The DI water permeation of the copper-charged membranes was initially lower than the CA membranes. The membranes were then subjected to bovine serum albumin (BSA) and lipase filtration. The copper-charged membranes showed higher pure water flux values for both proteins as compared to CA membranes. The rejection of BSA and lipase was the same for both the copper charged and CA membranes. The filtration with the synthetic brackish water showed that copper-charged membranes had higher flux values as compared to CA membranes, and biofouling analysis showed more bacteria on the CA membranes as compared to copper-charged membranes. Therefore, the copper-charged membranes made here have shown a potential to be used as low-biofouling membranes in the future.

  19. The Effect of Hull Biofouling on Parameters Characterising Ship Propulsion System Efficiency

    Directory of Open Access Journals (Sweden)

    Tarełko Wiesła

    2015-01-01

    Full Text Available One of most important issues concerning technical objects is the increase of their operating performance. For a ship this performance mainly depends on the efficiency of its main pro-pulsion system and the resistance generated during its motion on water. The overall ship re-sistance, in turn, mainly depends on the hull friction resistance, closely related with the pres-ence of different types of roughness on the hull surface, including underwater part biofouling. The article analyses the effect of hull biofouling on selected parameters characterising the efficiency of the ship propulsion system with adjustable propeller. For this purpose a two-year research experiment was performed on a sailing vessel during its motor navigation phases. Based on the obtained results, three groups of characteristics were worked out for different combinations of engine rotational speed and adjustable propeller pitch settings. The obtained results have revealed that the phenomenon of underwater hull biofouling affects remarkably the parameters characterising propulsion system efficiency. In particular, the development of the biofouling layer leads to significant reduction of the speed of navigation.

  20. Potential biocontrol agents for biofouling on artificial structures.

    Science.gov (United States)

    Atalah, Javier; Newcombe, Emma M; Hopkins, Grant A; Forrest, Barrie M

    2014-09-01

    The accumulation of biofouling on coastal structures can lead to operational impacts and may harbour problematic organisms, including non-indigenous species. Benthic predators and grazers that can supress biofouling, and which are able to be artificially enhanced, have potential value as augmentative biocontrol agents. The ability of New Zealand native invertebrates to control biofouling on marina pontoons and wharf piles was tested. Caging experiments evaluated the ability of biocontrol to mitigate established biofouling, and to prevent fouling accumulation on defouled surfaces. On pontoons, the gastropods Haliotis iris and Cookia sulcata reduced established biofouling cover by >55% and largely prevented the accumulation of new biofouling over three months. On wharf piles C. sulcata removed 65% of biofouling biomass and reduced its cover by 73%. C. sulcata also had better retention and survival rates than other agents. Augmentative biocontrol has the potential to be an effective method to mitigate biofouling on marine structures.

  1. Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation

    Science.gov (United States)

    Maddah, Hisham; Chogle, Aman

    2016-10-01

    This paper is a comprehensive review of biofouling in reverse osmosis modules where we have discussed the mechanism of biofouling. Water crisis is an issue of pandemic concern because of the steady rise in demand of drinking water. Overcoming biofouling is vital since we need to optimize expenses and quality of potable water production. Various kinds of microorganisms responsible for biofouling have been identified to develop better understanding of their attacking behavior enabling us to encounter the problem. Both primitive and advanced detection techniques have been studied for the monitoring of biofilm development on reverse osmosis membranes. Biofouling has a negative impact on membrane life as well as permeate flux and quality. Thus, a mathematical model has been presented for the calculation of normalized permeate flux for evaluating the extent of biofouling. It is concluded that biofouling can be controlled by the application of several physical and chemical remediation techniques.

  2. Nitric oxide treatment for the control of reverse osmosis membrane biofouling.

    Science.gov (United States)

    Barnes, Robert J; Low, Jiun Hui; Bandi, Ratnaharika R; Tay, Martin; Chua, Felicia; Aung, Theingi; Fane, Anthony G; Kjelleberg, Staffan; Rice, Scott A

    2015-04-01

    Biofouling remains a key challenge for membrane-based water treatment systems. This study investigated the dispersal potential of the nitric oxide (NO) donor compound, PROLI NONOate, on single- and mixed-species biofilms formed by bacteria isolated from industrial membrane bioreactor and reverse osmosis (RO) membranes. The potential of PROLI NONOate to control RO membrane biofouling was also examined. Confocal microscopy revealed that PROLI NONOate exposure induced biofilm dispersal in all but two of the bacteria tested and successfully dispersed mixed-species biofilms. The addition of 40 μM PROLI NONOate at 24-h intervals to a laboratory-scale RO system led to a 92% reduction in the rate of biofouling (pressure rise over a given period) by a bacterial community cultured from an industrial RO membrane. Confocal microscopy and extracellular polymeric substances (EPS) extraction revealed that PROLI NONOate treatment led to a 48% reduction in polysaccharides, a 66% reduction in proteins, and a 29% reduction in microbial cells compared to the untreated control. A reduction in biofilm surface coverage (59% compared to 98%, treated compared to control) and average thickness (20 μm compared to 26 μm, treated compared to control) was also observed. The addition of PROLI NONOate led to a 22% increase in the time required for the RO module to reach its maximum transmembrane pressure (TMP), further indicating that NO treatment delayed fouling. Pyrosequencing analysis revealed that the NO treatment did not significantly alter the microbial community composition of the membrane biofilm. These results present strong evidence for the application of PROLI NONOate for prevention of RO biofouling.

  3. Effect of calcium ions on the evolution of biofouling by Bacillus subtilis in plate heat exchangers simulating the heat pump system used with treated sewage in the 2008 Olympic Village.

    Science.gov (United States)

    Tian, Lei; Chen, Xiao Dong; Yang, Qian Peng; Chen, Jin Chun; Shi, Lin; Li, Qiong

    2012-06-01

    Heat pump systems using treated sewage water as the heat source were used in the Beijing Olympic Village for domestic heating and cooling. However, considerable biofouling occurred in the plate heat exchangers used in the heat pump system, greatly limiting the system efficiency. This study investigates the biofouling characteristics using a plate heat exchanger in parallel with a flow cell system to focus on the effect of calcium ions on the biofilm development. The interactions between the microorganisms and Ca(2+) enhances both the extent and the rate of biofilm development with increasing Ca(2+) concentration, leading to increased heat transfer and flow resistances. Three stages of biofouling development were identified in the presence of Ca(2+) from different biofouling mass growth rates with an initial stage, a rapid growth stage and an extended growth stage. Each growth stage had different biofouling morphologies influenced by the Ca(2+) concentration. The effects of Ca(2+) on the biofouling heat transfer and flow resistances had a synergistic effect related to both the biofouling mass and the morphology. The effect of Ca(2+) on the biofouling development was most prominent during the rapid growth stage.

  4. Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control

    KAUST Repository

    Araújo, Paula A.

    2012-06-01

    The influence of polydopamine- and polydopamine-. graft-poly(ethylene glycol)-coated feed spacers and membranes, copper-coated feed spacers, and commercially-available biostatic feed spacers on biofouling has been studied in membrane fouling simulators. Feed spacers and membranes applied in practical membrane filtration systems were used; biofouling development was monitored by feed channel pressure drop increase and biomass accumulation. Polydopamine and polydopamine-. g-PEG are hydrophilic surface modification agents expected to resist protein and bacterial adhesion, while copper feed spacer coatings and biocides infused in feed spacers are expected to restrict biological growth. Our studies showed that polydopamine and polydopamine-. g-PEG coatings on feed spacers and membranes, copper coatings on feed spacers, and a commercial biostatic feed spacer did not have a significant impact on feed channel pressure drop increase and biofilm accumulation as measured by ATP and TOC content. The studied spacer and membrane modifications were not effective for biofouling control; it is doubtful that feed spacer and membrane modification, in general, may be effective for biofouling control regardless of the type of applied coating. © 2012 Elsevier B.V.

  5. Biofouling protection for marine environmental sensors

    Science.gov (United States)

    Delauney, L.; Compère, C.; Lehaitre, M.

    2010-05-01

    These days, many marine autonomous environment monitoring networks are set up in the world. These systems take advantage of existing superstructures such as offshore platforms, lightships, piers, breakwaters or are placed on specially designed buoys or underwater oceanographic structures. These systems commonly use various sensors to measure parameters such as dissolved oxygen, turbidity, conductivity, pH or fluorescence. Emphasis has to be put on the long term quality of measurements, yet sensors may face very short-term biofouling effects. Biofouling can disrupt the quality of the measurements, sometimes in less than a week. Many techniques to prevent biofouling on instrumentation are listed and studied by researchers and manufacturers. Very few of them are implemented on instruments and of those very few have been tested in situ on oceanographic sensors for deployment of at least one or two months. This paper presents a review of techniques used to protect against biofouling of in situ sensors and gives a short list and description of promising techniques.

  6. Vessel Biofouling Prevention and Management Options Report

    Science.gov (United States)

    2015-03-01

    from web searches and interviews via phone and email to provide an up-to-date review of biofouling policy around the world. Information on policy in...ensures that non-native species are not introduced into a country’s waters. It would also require containment and disposal of scraped material from

  7. Biofouling protection for marine environmental sensors

    Directory of Open Access Journals (Sweden)

    L. Delauney

    2010-05-01

    Full Text Available These days, many marine autonomous environment monitoring networks are set up in the world. These systems take advantage of existing superstructures such as offshore platforms, lightships, piers, breakwaters or are placed on specially designed buoys or underwater oceanographic structures. These systems commonly use various sensors to measure parameters such as dissolved oxygen, turbidity, conductivity, pH or fluorescence. Emphasis has to be put on the long term quality of measurements, yet sensors may face very short-term biofouling effects. Biofouling can disrupt the quality of the measurements, sometimes in less than a week.

    Many techniques to prevent biofouling on instrumentation are listed and studied by researchers and manufacturers. Very few of them are implemented on instruments and of those very few have been tested in situ on oceanographic sensors for deployment of at least one or two months.

    This paper presents a review of techniques used to protect against biofouling of in situ sensors and gives a short list and description of promising techniques.

  8. Biomolecular and metagenomic analyses of biofouling communities

    Science.gov (United States)

    Despite the decades of research that have focused on understanding the formation of biofouling communities, relatively little is known about the soft fouling consortia that are responsible for their formation and function. In this study, we used PhyloChip microbial profiling, metagenomic DNA sequenc...

  9. Biofouling of spiral wound membrane systems

    NARCIS (Netherlands)

    Vrouwenvelder, J.S.

    2009-01-01

    Biofouling of spiral wound membrane systems High quality drinking water can be produced with membrane filtration processes like reverse osmosis (RO) and nanofiltration (NF). Because the global demand for fresh clean water is increasing, these membrane technologies will increase in importance in the

  10. Surface Water Treatment Workshop Manual.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  11. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  12. CFD in drinking water treatment

    NARCIS (Netherlands)

    Wols, B.A.

    2010-01-01

    Hydrodynamic processes largely determine the efficacy of drinking water treatment systems, in particular disinfection systems. A lack of understanding of the hydrodynamics has resulted in suboptimal designs of these systems. The formation of unwanted disinfection-by-products and the energy consumpti

  13. Nanostructured Block Copolymer Coatings for Biofouling Inhibition

    Science.gov (United States)

    2015-06-30

    biofouling program contractors. 15. SUBJECT TERMS antifouling; coatings; block copolymers; IR nanoscale imaging ; biocides 16. SECURITY CLASSIFICATION OF...diagnostics and drug delivery. In our scanned probe microscopy studies on collaborator coatings and marine organisms, we have provided teamwork . We have...Studies of Organisms on model fouiants: • H. elegans studies 3. Testing of other contractor materials 4. Imaging technology. We applied our organic

  14. Charged hydrophilic polymer brushes and their relevance for understanding marine biofouling.

    Science.gov (United States)

    Yandi, Wetra; Mieszkin, Sophie; di Fino, Alessio; Martin-Tanchereau, Pierre; Callow, Maureen E; Callow, James A; Tyson, Lyndsey; Clare, Anthony S; Ederth, Thomas

    2016-07-01

    The resistance of charged polymers to biofouling was investigated by subjecting cationic (PDMAEMA), anionic (PSPMA), neutral (PHEMA-co-PEG10MA), and zwitterionic (PSBMA) brushes to assays testing protein adsorption; attachment of the marine bacterium Cobetia marina; settlement and adhesion strength of zoospores of the green alga Ulva linza; settlement of barnacle (Balanus amphitrite and B. improvisus) cypris larvae; and field immersion tests. Several results go beyond the expected dependence on direct electrostatic attraction; PSPMA showed good resistance towards attachment of C. marina, low settlement and adhesion of U. linza zoospores, and significantly lower biofouling than on PHEMA-co-PEG10MA or PSBMA after a field test for one week. PDMAEMA showed potential as a contact-active anti-algal coating due to its capacity to damage attached spores. However, after field testing for eight weeks, there were no significant differences in biofouling coverage among the surfaces. While charged polymers are unsuitable as antifouling coatings in the natural environment, they provide valuable insights into fouling processes, and are relevant for studies due to charging of nominally neutral surfaces.

  15. Enzymatic cleaning of biofouled thin-film composite reverse osmosis (RO) membrane operated in a biofilm membrane reactor.

    Science.gov (United States)

    Khan, Mohiuddin; Danielsen, Steffen; Johansen, Katja; Lorenz, Lindsey; Nelson, Sara; Camper, Anne

    2014-02-01

    Application of environmentally friendly enzymes to remove thin-film composite (TFC) reverse osmosis (RO) membrane biofoulants without changing the physico-chemical properties of the RO surface is a challenging and new concept. Eight enzymes from Novozyme A/S were tested using a commercially available biofouling-resistant TFC polyamide RO membrane (BW30, FilmTech Corporation, Dow Chemical Co.) without filtration in a rotating disk reactor system operated for 58 days. At the end of the operation, the accumulated biofoulants on the TFC RO surfaces were treated with the three best enzymes, Subtilisin protease and lipase; dextranase; and polygalacturonase (PG) based enzymes, at neutral pH (~7) and doses of 50, 100, and 150 ppm. Contact times were 18 and 36 h. Live/dead staining, epifluorescence microscopy measurements, and 5 μm thick cryo-sections of enzyme and physically treated biofouled membranes revealed that Subtilisin protease- and lipase-based enzymes at 100 ppm and 18 h contact time were optimal for removing most of the cells and proteins from the RO surface. Culturable cells inside the biofilm declined by more than five logs even at the lower dose (50 ppm) and shorter incubation period (18 h). Subtilisin protease- and lipase-based enzyme cleaning at 100 ppm and for 18 h contact time restored the hydrophobicity of the TFC RO surface to its virgin condition while physical cleaning alone resulted in a 50° increase in hydrophobicity. Moreover, at this optimum working condition, the Subtilisin protease- and lipase-based enzyme treatment of biofouled RO surface also restored the surface roughness measured with atomic force microscopy and the mass percentage of the chemical compositions on the TFC surface estimated with X-ray photoelectron spectroscopy to its virgin condition. This novel study will encourage the further development and application of enzymes to remove biofoulants on the RO surface without changing its surface properties.

  16. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces.

    Science.gov (United States)

    Khan, Mohiuddin Md Taimur; Stewart, Philip S; Moll, David J; Mickols, William E; Nelson, Sara E; Camper, Anne K

    2011-02-01

    Biofouling is a major reason for flux decline in the performance of membrane-based water and wastewater treatment plants. Initial biochemical characterization of biofilm formation potential and biofouling on two commercially available membrane surfaces from FilmTec Corporation were investigated without filtration in laboratory rotating disc reactor systems. These surfaces were polyamide aromatic thin-film reverse osmosis (RO) (BW30) and semi-aromatic nanofiltration (NF270) membranes. Membrane swatches were fixed on removable coupons and exposed to water with indigenous microorganisms supplemented with 1.5 mg l(-1) organic carbon under continuous flow. After biofilms formed, the membrane swatches were removed for analyses. Staining and epifluorescence microscopy revealed more cells on the RO than on the NF surface. Based on image analyses of 5-μm thick cryo-sections, the accumulation of hydrated biofoulants on the RO and NF surfaces exceeded 0.74 and 0.64 μm day(-1), respectively. As determined by contact angle the biofoulants increased the hydrophobicity up to 30° for RO and 4° for NF surfaces. The initial difference between virgin RO and NO hydrophobicities was ∼5°, which increased up to 25° after biofoulant formation. The initial roughness of RO and NF virgin surfaces (75.3 nm and 8.2 nm, respectively) increased to 48 nm and 39 nm after fouling. A wide range of changes of the chemical element mass percentages on membrane surfaces was observed with X-ray photoelectron spectroscopy. The initial chemical signature on the NF surface was better restored after cleaning than the RO membrane. All the data suggest that the semi-aromatic NF surface was more biofilm resistant than the aromatic RO surface. The morphology of the biofilm and the location of active and dead cell zones could be related to the membrane surface properties and general biofouling accumulation was associated with changes in the surface chemistry of the membranes, suggesting the validity of

  17. Biofouling of reverse osmosis membranes used in river water purification for drinking purposes: analysis of microbial populations.

    Science.gov (United States)

    Chiellini, Carolina; Iannelli, Renato; Modeo, Letizia; Bianchi, Veronica; Petroni, Giulio

    2012-01-01

    Biofouling in water treatment processes represents one of the most frequent causes of plant performance decline. Investigation of clogged membranes (reverse osmosis membranes, microfiltration membranes and ultrafiltration membranes) is generally performed on fresh membranes. In the present study, a multidisciplinary autopsy of a reverse osmosis membrane (ROM) was conducted. The membrane, which was used in sulfate-rich river water purification for drinking purposes, had become inoperative after 6 months because of biofouling and was later stored for 18 months in dry conditions before analysis. SSU rRNA gene library construction, clone sequencing, T-RFLP, light microscope, and scanning electron microscope (SEM) observations were used to identify the microorganisms present on the membrane and possibly responsible for biofouling at the time of removal. The microorganisms were mainly represented by bacteria belonging to the phylum Actinobacteria and by a single protozoan species belonging to the Lobosea group. The microbiological analysis was interpreted in the context of the treatment plant operations to hypothesize as to the possible mechanisms used by microorganisms to enter the plant and colonize the ROM surface.

  18. High Throughput Plasma Water Treatment

    Science.gov (United States)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  19. Functionalised inherently conducting polymers as low biofouling materials.

    Science.gov (United States)

    Zhang, Binbin; Nagle, Alex R; Wallace, Gordon G; Hanks, Timothy W; Molino, Paul J

    2015-01-01

    Diatoms are a major component of microbial biofouling layers that develop on man-made surfaces placed in aquatic environments, resulting in significant economic and environmental impacts. This paper describes surface functionalisation of the inherently conducting polymers (ICPs) polypyrrole (PPy) and polyaniline (PANI) with poly(ethylene glycol) (PEG) and their efficacy as fouling resistant materials. Their ability to resist interactions with the model protein bovine serum albumin (BSA) was tested using a quartz crystal microbalance with dissipation monitoring (QCM-D). The capacity of the ICP-PEG materials to prevent settlement and colonisation of the fouling diatom Amphora coffeaeformis (Cleve) was also assayed. Variations were demonstrated in the dopants used during ICP polymerisation, along with the PEG molecular weight, and the ICP-PEG reaction conditions, all playing a role in guiding the eventual fouling resistant properties of the materials. Optimised ICP-PEG materials resulted in a significant reduction in BSA adsorption, and > 98% reduction in diatom adhesion.

  20. Development and testing of a transparent membrane biofouling monitor

    KAUST Repository

    Dreszer, C.

    2014-01-02

    A modified version of the membrane fouling simulator (MFS) was developed for assessment of (i) hydraulic biofilm resistance, (ii) performance parameters feed-channel pressure drop and transmembrane pressure drop, and (iii) in situ spatial visual and optical observations of the biofilm in the transparent monitor, e.g. using optical coherence tomography. The flow channel height equals the feed spacer thickness enabling operation with and without feed spacer. The effective membrane surface area was enlarged from 80 to 200 cm2 by increasing the monitor width compared to the standard MFS, resulting in larger biomass amounts for analysis. By use of a microfiltration membrane (pore size 0.05 μm) in the monitor salt concentration polarization is avoided, allowing operation at low pressures enabling accurate measurement of the intrinsic hydraulic biofilm resistance. Validation tests on e.g. hydrodynamic behavior, flow field distribution, and reproducibility showed that the small-sized monitor was a representative tool for membranes used in practice under the same operating conditions, such as spiral-wound nanofiltration and reverse osmosis membranes. Monitor studies with and without feed spacer use at a flux of 20 L m-2 h-1 and a cross-flow velocity of 0.1 m s-1 clearly showed the suitability of the monitor to determine hydraulic biofilm resistance and for controlled biofouling studies. © 2013 Balaban Desalination Publications. All rights reserved.

  1. ANTI-BIOFOULING BY DEGRADATION OF POLYMERS

    Institute of Scientific and Technical Information of China (English)

    Chun-feng Ma; Hong-jun Yang; Guang-zhao Zhang

    2012-01-01

    Copolymers of methyl methacrylate (MMA) and acrylate terminated poly(ethylene oxide-co-ethylene carbonate)(PEOC) macromonomer (PEOCA) were synthesized,and the degradation of the polymers was investigated by use of quartz crystal microbalance with dissipation (QCM-D).It is shown that the polymeric surface exhibits degradation in seawater depending on the content of the side chains.Field tests in seawater show that the surface constructed by the copolymer can effectively inhibit marine biofouling because it can be self-renewed due to degradation of the copolymer.

  2. Biofouling inhibition and enhancing performance of microbial fuel cell using silver nano-particles as fungicide and cathode catalyst.

    Science.gov (United States)

    Noori, Md T; Jain, Sumat C; Ghangrekar, M M; Mukherjee, C K

    2016-11-01

    Morphological analysis of biofouling developed on cathode surface in an air-cathode microbial fuel cell (MFC) was performed. For sustaining power production and enhancing Coulombic efficiency (CE) of MFC, studies were conducted to inhibit cathode biofouling using different loadings of silver nanoparticles (Ag-NPs) with 5% and 10% Ag in carbon black powder. In MFC without using Ag-NPs in cathode (MFC-C), cathode biofouling increased the charge transfer resistance (Rct) from 1710Ω.cm(2) to 2409Ω.cm(2), and reduced CE by 32%; whereas in MFC with 10% Ag in cathode Rct increased by only 5%. Power density of 7.9±0.5W/m(3) in MFC using 5% Ag and 9.8±0.3W/m(3) in MFC using 10% Ag in cathode was 4.6 and 5.7-folds higher than MFC-C. These results suggest that the Ag-NPs effectively inhibit the fungal biofouling on cathode surface of MFCs and enhanced the power recovery and CE by improving cathode kinetics.

  3. Electrochemical detection of hydrogen peroxide on platinum-containing tetrahedral amorphous carbon sensors and evaluation of their biofouling properties.

    Science.gov (United States)

    Tujunen, Noora; Kaivosoja, Emilia; Protopopova, Vera; Valle-Delgado, Juan José; Österberg, Monika; Koskinen, Jari; Laurila, Tomi

    2015-10-01

    Hydrogen peroxide is the product of various enzymatic reactions, and is thus typically utilized as the analyte in biosensors. However, its detection with conventional materials, such as noble metals or glassy carbon, is often hindered by slow kinetics and biofouling of the electrode. In this study electrochemical properties and suitability to peroxide detection as well as ability to resist biofouling of Pt-doped ta-C samples were evaluated. Pure ta-C and pure Pt were used as references. According to the results presented here it is proposed that combining ta-C with Pt results in good electrocatalytic activity towards H2O2 oxidation with better tolerance towards aqueous environment mimicking physiological conditions compared to pure Pt. In biofouling experiments, however, both the hybrid material and Pt were almost completely blocked after immersion in protein-containing solutions and did not produce any peaks for ferrocenemethanol oxidation or reduction. On the contrary, it was still possible to obtain clear peaks for H2O2 oxidation with them after similar treatment. Moreover, quartz crystal microbalance experiment showed less protein adsorption on the hybrid sample compared to Pt which is also supported by the electrochemical biofouling experiments for H2O2 detection.

  4. Biofouling prevention with pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Ghazala, A.; Schoenbach, K.H.

    2000-02-01

    Temporary immobilization of aquatic nuisance species through application of short electric pulses has been explored as a method to prevent biofouling in cooling water systems where untreated lake, river, or sea water is used. In laboratory experiments, electrical pulses with amplitudes on the order of kilovolts/centimeter and submicrosecond duration were found to be most effective in stunning time in a temporal range from minutes to hours. The temporary immobilization is assumed to be caused by reversible membrane breakdown. This assumption is supported by results of measurements of the energy required for stunning. Based on the data obtained in laboratory experiments, field experiments in a tidal water environment have been performed. The flow velocity was such that the residence time of the aquatic nuisance species in the system was approximately half a minute. The results showed that the pulsed electric field method provides full protection against biofouling when pulses of 0.77 {micro}s width and 6 kV/cm amplitude are applied to the water at the inlet of such a cooling water system. Even at amplitudes of 1 kV/cm, the protection is still in the 90% range, at an energy expenditure of 1 kWh for the treatment of 60,000 gallons of water.

  5. INVESTIGATIONS INTO BIOFOULING PHENOMENA IN FINE PORE AERATION DEVICES

    Science.gov (United States)

    Microbiologically-based procedures were used to describe biofouling phenomena on fine pore aeration devices and to determine whether biofilm characteristics could be related to diffuser process performance parameters. Fine pore diffusers were obtained from five municipal wastewa...

  6. Biofouling Organisms in the Field and for the Classroom.

    Science.gov (United States)

    Stout, Prentice K.

    1983-01-01

    Biofouling organisms are marine organisms that affix themselves to navigational buoys, floating docks, and pilings. Techniques for collecting these organisms for classroom use are described. General background information on the organisms and a list of common species are included. (JN)

  7. Fouling in your own nest: vessel noise increases biofouling.

    Science.gov (United States)

    Stanley, Jenni A; Wilkens, Serena L; Jeffs, Andrew G

    2014-01-01

    Globally billions of dollars are spent each year on attempting to reduce marine biofouling on commercial vessels, largely because it results in higher fuel costs due to increased hydrodynamic drag. Biofouling has been long assumed to be primarily due to the availability of vacant space on the surface of the hull. Here, it is shown that the addition of the noise emitted through a vessel's hull in port increases the settlement and growth of biofouling organisms within four weeks of clean surfaces being placed in the sea. More than twice as many bryozoans, oysters, calcareous tube worms and barnacles settled and established on surfaces with vessel noise compared to those without. Likewise, individuals from three species grew significantly larger in size in the presence of vessel noise. The results demonstrate that vessel noise in port is promoting biofouling on hulls and that underwater sound plays a much wider ecological role in the marine environment than was previously considered possible.

  8. Variation in biofouling on different species of Indian timbers

    Digital Repository Service at National Institute of Oceanography (India)

    Raveendran, T; Wagh, A.B.

    Biofouling on twenty species of wood exposed in waters of Mormugao Harbour, Goa, India have been presented. Macrofouling biomass varied from species to species. Maximum biomass was recorded on Artocarpus chaplasha (4 kg/m2) and minimum on Hopea...

  9. Novel Self-Cleaning Surfaces for Biofouling Prevention Project

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the most problematic issues that facing efficient water reclamation processes for long duration space missions is biofilm growth and biofouling on RO membrane...

  10. Controlled Architecture of Dual-Functional Block Copolymer Brushes on Thin-Film Composite Membranes for Integrated "Defending" and "Attacking" Strategies against Biofouling.

    Science.gov (United States)

    Ye, Gang; Lee, Jongho; Perreault, François; Elimelech, Menachem

    2015-10-21

    We report a new macromolecular architecture of dual functional block copolymer brushes on commercial thin-film composite (TFC) membranes for integrated "defending" and "attacking" strategies against biofouling. Mussel-inspired catechol chemistry is used for a convenient immobilization of initiator molecules to the membrane surface with the aid of polydopamine (PDA). Zwitterionic polymer brushes with strong hydration capacity and quaternary ammonium salt (QAS) polymer brushes with bactericidal ability are sequentially grafted on TFC membranes via activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP), an environmentally benign and controlled polymerization method. Measurement of membrane intrinsic transport properties in reverse osmosis experiments shows that the modified TFC membrane maintains the same water permeability and salt selectivity as the pristine TFC membrane. Chemical force microscopy and protein/bacterial adhesion studies are carried out for a comprehensive evaluation of the biofouling resistance and antimicrobial ability, demonstrating low biofouling propensity and excellent bacterial inactivation for the modified TFC membrane. We conclude that this polymer architecture, with complementary "defending" and "attacking" capabilities, can effectively prevent the attachment of biofoulants and formation of biofilms and thereby significantly mitigate biofouling on TFC membranes.

  11. Influence of surface conditioning and morphology on biofouling

    OpenAIRE

    Thome, Isabel

    2013-01-01

    Biofouling, the undesired colonization of surfaces, is a major problem for marine-related industries. To prevent unwanted effects caused by biofouling, suitable non-toxic coatings for the marine environment are required. Conditioning, i.e. the adsorption of proteins and macromolecules influences, as surface chemistry and morphology do, the settlement of fouling oragnisms. Investigating the temporal dynamics of conditioning film formation on functionalized self assembled mono...

  12. New approaches to characterizing and understanding biofouling of spiral wound membrane systems

    KAUST Repository

    van Loosdrecht, Mark C.M.

    2012-06-01

    Historically, biofouling research on spiral wound membrane systems is typically problem solving oriented. Membrane modules are studied as black box systems, investigated by autopsies. Biofouling is not a simple process. Many factors influence each other in a non-linear fashion. These features make biofouling a subject which is not easy to study using a fundamental scientific approach. Nevertheless to solve or minimize the negative impacts of biofouling, a clear understanding of the interacting basic principles is needed. Recent research into microbiological characterizing of biofouling, small scale test units, application of in situ visualization methods, and model approaches allow such an integrated study of biofouling. © IWA Publishing 2012.

  13. Quorum quenching mediated approaches for control of membrane biofouling.

    Science.gov (United States)

    Lade, Harshad; Paul, Diby; Kweon, Ji Hyang

    2014-01-01

    Membrane biofouling is widely acknowledged as the most frequent adverse event in wastewater treatment systems resulting in significant loss of treatment efficiency and economy. Different strategies including physical cleaning and use of antimicrobial chemicals or antibiotics have been tried for reducing membrane biofouling. Such traditional practices are aimed to eradicate biofilms or kill the bacteria involved, but the greater efficacy in membrane performance would be achieved by inhibiting biofouling without interfering with bacterial growth. As a result, the search for environmental friendly non-antibiotic antifouling strategies has received much greater attention among scientific community. The use of quorum quenching natural compounds and enzymes will be a potential approach for control of membrane biofouling. This approach has previously proven useful in diseases and membrane biofouling control by triggering the expression of desired phenotypes. In view of this, the present review is provided to give the updated information on quorum quenching compounds and elucidate the significance of quorum sensing inhibition in control of membrane biofouling.

  14. Biofouling on Reservoir in Sea Water

    Science.gov (United States)

    Yoon, H.; Eom, C.; Kong, M.; Park, Y.; Chung, K.; Kim, B.

    2011-12-01

    The organisms which take part in marine biofouling are primarily the attached or sessile forms occurring naturally in the shallower water along the coast [1]. This is mainly because only those organisms with the ability to adapt to the new situations created by man can adhere firmly enough to avoid being washed off. Chemical and microbiological characteristics of the fouling biofilms developed on various surfaces in contact with the seawater were made. The microbial compositions of the biofilm communities formed on the reservoir polymer surfaces were tested for. The quantities of the diverse microorganisms in the biofilm samples developed on the prohibiting polymer reservoir surface were larger when there was no concern about materials for special selection for fouling. To confirm microbial and formation of biofilm on adsorbents was done CLSM (Multi-photon Confocal Laser Scanning Microscope system) analysis. Microbial identified using 16S rRNA. Experiment results, five species which are Vibrio sp., Pseudoalteromonas, Marinomonas, Sulfitobacter, and Alteromonas discovered to reservoir formed biofouling. There are some microorganism cause fouling and there are the others control fouling. The experimental results offered new specific information, concerning the problems in the application of new material as well as surface coating such as anti-fouling coatings. They showed the important role microbial activity in fouling and corrosion of the surfaces in contact with the any seawater. Acknowledgement : This research was supported by the national research project titled "The Development of Technology for Extraction of Resources Dissolved in Seawater" of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Land, Transport and Maritime Affairs. References [1] M. Y. Diego, K. Soren, and D. J. Kim. Prog. Org. Coat. 50, (2004) p.75-104.

  15. Revealing Amphiphilic Nanodornains of Anti-Biofouling Polymer Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amadei, CA; Yang, R; Chiesa, M; Gleason, KK; Santos, S

    2014-04-09

    Undesired bacterial adhesion and biofilm formation on wetted surfaces leads to significant economic and environmental costs in various industries. Amphiphilic coatings with molecular hydrophilic and hydrophobic patches can mitigate such biofouling effectively in an environmentally friendly manner. The coatings are synthesized by copolymerizing (Hydroxyethyl)methacrylate and perfluorodecylacrylate via initiated chemical vapor deposition (iCVD). In previous studies, the size of the patches was estimated to be similar to 1.4-1.75 nm by fitting protein adsorption data to a theoretical model. However, no direct observations of the molecular heterogeneity exist and therefore the origin of the fouling resistance of amphiphilic coatings remains unclear. Here, the amphiphilic nature is investigated by amplitude modulation atomic force microscopy (AM-AFM). High-resolution images obtained by penetrating and oscillating the AFM tip under the naturally present water layer with sub-nanometer amplitudes reveal, for the first time, the existence of amphiphilic nanodomains (1-2 nm(2)). Compositional heterogeneity at the nanoscale is further corroborated by a statistical analysis on the data obtained with dynamic AM-AFM force spectroscopy. Variations in the long range attractive forces, responsible for water affinity, are also identified. These nanoscopic results on the polymers wettability are also confirmed by contact angle measurements (i.e., static and dynamic). The unprecedented ability to visualize the amphiphilic nanodomains as well as sub-nanometer crystalline structures provides strong evidence for the existence of previously postulated nanostructures, and sheds light on the underlying antifouling mechanism of amphiphilic chemistry.

  16. Biofouling e biodeterioração química de argamassa de cimento portland em reservatório de usina hidroelétrica Biofouling and chemical biodeterioration in hydroeletric power plant portland cement mortar

    Directory of Open Access Journals (Sweden)

    Kleber Franke Portella

    2009-01-01

    Full Text Available Last decade Brazilian rivers experimented progressive biofouling of Limnoperna fortunei communities and Cordylophora caspia hydroids. The microhabitat is so favorable that in around 1.5 years L. fortunei increased from 0.39 to nearby 149,000 units/m². Ten Portland cement mortar samples were produced with 1: 3.5: 0.4 dosages and installed for 1 year at Salto Caxias Brazilian Power Plant reservoir in 0.5 m and 1.0 m deep to investigate the biofouling influence on hydraulic civil structures. SEM, EDS, visual investigation and XRF results indicate none direct chemical interrelationships between L. fortunei and the mortar samples. However C. caspia diminished the mortar surface resistance and caused cement paste leaching.

  17. Threshold concentration of easily assimilable organic carton in feedwater for biofouling of spiral-wound membranes.

    Science.gov (United States)

    Hijnen, W A M; Biraud, D; Cornelissen, E R; van der Kooij, D

    2009-07-01

    One of the major impediments in the application of spiral-wound membranes in water treatment or desalination is clogging of the feed channel by biofouling which is induced by nutrients in the feedwater. Organic carbon is, under most conditions, limiting the microbial growth. The objective of this study is to assess the relationship between the concentration of an easily assimilable organic compound such as acetate in the feedwater and the pressure drop increase in the feed channel. For this purpose the membrane fouling simulator (MFS) was used as a model for the feed channel of a spiral-wound membrane. This MFS unit was supplied with drinking water enriched with acetate at concentrations ranging from 1 to 1000 microg C x L(-1). The pressure drop (PD) in the feed channel increased at all tested concentrations but not with the blank. The PD increase could be described by a first order process based on theoretical considerations concerning biofilm formation rate and porosity decline. The relationship between the first order fouling rate constant R(f) and the acetate concentration is described with a saturation function corresponding with the growth kinetics of bacteria. Under the applied conditions the maximum R(f) (0.555 d(-1)) was reached at 25 microg acetate-C x L(-1) and the half saturation constant k(f) was estimated at 15 microg acetate-C x L(-1). This value is higher than k(s) values for suspended bacteria grown on acetate, which is attributed to substrate limited growth conditions in the biofilm. The threshold concentration for biofouling of the feed channel is about 1 microg acetate-C x L(-1).

  18. Water treatment processes for oilfield steam injection

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, A.; Pauley, J.C. [Chevron Canada Ltd., Vancouver, BC (Canada)

    2009-07-01

    Various water treatment processes are used within the oilfield industry. Processes tend to be common within one region of the world, but different between regions due to untreated water characteristics and treated water quality requirements. This paper summarized Chevron's view of water treatment requirements and processes for oilfield steam injection. It identified water treatment systems that have been used at thermal projects, where they are most commonly utilized, their purpose, and the limits of each process. The advantages and disadvantages of different water treatment systems were also reviewed. The paper focused on the treatment of fresh waters, low-TDS produced waters, high-hardness waters, and high-silica produced waters. Challenges and opportunities were also identified. It was concluded that the challenges created by high-silica, or by high-hardness produced waters lead to more costly processes. 25 refs., 5 tabs., 4 figs.

  19. Hybrid Sludge Modeling in Water Treatment Processes

    OpenAIRE

    Brenda, Marian

    2015-01-01

    Sludge occurs in many waste water and drinking water treatment processes. The numeric modeling of sludge is therefore crucial for developing and optimizing water treatment processes. Numeric single-phase sludge models mainly include settling and viscoplastic behavior. Even though many investigators emphasize the importance of modeling the rheology of sludge for good simulation results, it is difficult to measure, because of settling and the viscoplastic behavior. In this thesis, a new method ...

  20. PROBLEMS OF BIOFOULING ON FISH–CAGE NETS IN AQUACULTURE

    Directory of Open Access Journals (Sweden)

    Merica Slišković

    2002-09-01

    Full Text Available Biofouling on fish–cage netting is a serious technical and economical problem to aquaculture worldwide. Compensation for the effects of biofouling must be included in cage system design and planning, as fouling can dramatically increase both weight and drag. Settlements of sessile plants and animals, with accumulation of the detritus diminish the size of mesh and can rapidly occlude mesh. Negative effect of smaller mesh size is changing in water flow trough the cages. Biofouling problems necessitating purchase of a second sets of nets or more, and frequent cleaning and changing of biofouling. Changing and cleaning frequency depend on many factors such as: location of cages (near the coast or off shore, productivity of that location, time of the year, time period in which the cages are placed on that location (cause of loading of phosphorus and nitrogen from the unconsumed food in the sediment. Net changing and cleaning procedures are labor and capital intensive. Process of the cleaning of the nets is inadequate, especially when there isnžt adequate equipment available as it is case in smaller aquaculture industry. Chemical control of biofouling e. g. use of antifoulants is questioningly cause of their possible negative effects on breeding species and environment.

  1. In-Water Treatment of Biofouling in Internal Systems: Field Validation of Quaternary Ammonium Compound (QAC) Chemical Treatment Protocols

    Science.gov (United States)

    2013-06-01

    in European power stations: biology and control of fouling. Hydroecologie Appliquee, 1998. 10(1-2): p. 1-225. 25. Post, R.M., et al., A decade of...p. 227-271. 28. Bax, N.J., et al. Man-made marinas as sheltered islands for alien marine organisms: Establishment and eradiction of an alien...Journal of Experimental Marine Biology and Ecology, 2004. 300: p. 189-215. 32. Lee, J.E. and S.L. Chown, Mytilus on the move: transport of an

  2. Study of electroplated silver-palladium biofouling inhibiting coating

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Schroll, Casper

    2008-01-01

    Biofouling can cause many undesirable effects in industrial and medical settings. In this study, a new biofouling inhibiting Ag-Pd surface was designed to form an inhibiting effect by itself. This design was based on silver combined with nobler palladium, both with catalytic properties. Owing...... to the potential difference between silver and palladium while contacting with an electrolyte, the surface can form numerous discrete anodic and cathodic areas, so that an inhibiting reaction can occur. In this paper, a series of electrochemical and biological investigations were conducted to study the properties...... and biofouling inhibiting mechanism of these surfaces. In this study, the evidence is presented that the inhibiting effect can be caused by the electrochemical interactions and/or electric field between Pd and Ag/AgCl combined with an organic environment....

  3. Impacts of hydrophilic colanic acid on bacterial attachment to microfiltration membranes and subsequent membrane biofouling.

    Science.gov (United States)

    Yoshida, Keitaro; Tashiro, Yosuke; May, Thithiwat; Okabe, Satoshi

    2015-06-01

    In order to examine the interactions between physicochemical properties of specific extracellular polymeric substances (EPS) and membrane biofouling, we investigated the impacts of hydrophilic colanic acid, as a model extracellular polysaccharide component, on initial bacterial attachment to different microfiltration (MF) membranes and membrane biofouling by using Escherichia coli strains producing different amounts of colanic acid. In a newly designed microtiter plate assay, the bacterial attachment by an E. coli strain RcsF(+), which produces massive amounts of colanic acid, decreased only to a hydrophobic membrane because the colanic acid made cell surfaces more hydrophilic, resulting in low cell attachment to hydrophobic membranes. The bench-scale cross-flow filtration tests followed by filtration resistance measurement revealed that RcsF(+) caused severe irreversible membrane fouling (i.e., pore-clogging), whereas less extracellular polysaccharide-producing strains caused moderate but reversible fouling to all membranes used in this study. Further cross-flow filtration tests indicated that colanic acid liberated in the bulk phase could rapidly penetrate pre-accumulated biomass layers (i.e., biofilms) and then directly clogged membrane pores. These results indicate that colanic acid, a hydrophilic extracellular polysaccharide, and possible polysaccharides with similar characteristics with colanic acid are considered as a major cause of severe irreversible membrane fouling (i.e., pore-clogging) regardless of biofilm formation (dynamic membrane).

  4. Environmentally Benign and Permanent Modifications to Prevent Biofouling on Marine and Hydrokinetic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Zhang

    2012-04-19

    Semprus Biosciences is developing environmentally benign and permanent modifications to prevent biofouling on Marine and Hydrokinetic (MHK) devices. Biofouling, including growth on external surfaces by bacteria, algae, barnacles, mussels, and other marine organisms, accumulate quickly on MHK devices, causing mechanical wear and changes in performance. Biofouling on crucial components of hydrokinetic devices, such as rotors, generators, and turbines, imposes substantial mass and hydrodynamic loading with associated efficiency loss and maintenance costs. Most antifouling coatings leach toxic ingredients, such as copper and tributyltin, through an eroding process, but increasingly stringent regulation of biocides has led to interest in the development of non-biocidal technologies to control fouling. Semprus Biosciences research team is developing modifications to prevent fouling from a broad spectrum of organisms on devices of all shapes, sizes, and materials for the life of the product. The research team designed and developed betaine-based polymers as novel underwater coatings to resist the attachment of marine organisms. Different betaine-based monomers and polymers were synthesized and incorporated within various coating formulations. The formulations and application methods were developed on aluminum panels with required adhesion strength and mechanical properties. The coating polymers were chemically stable under UV, hydrolytic and oxidative environments. The sulfobetaine formulations are applicable as nonleaching and stable underwater coatings. For the first time, coating formulations modified with highly packed sulfobetaine polymers were prepared and demonstrated resistance to a broad spectrum of marine organisms. Assays for comparing nonfouling performance were developed to evaluate protein adsorption and bacteria attachment. Barnacle settlement and removal were evaluated and a 60-day field test was performed. Silicone substrates including a commercial

  5. An evaluation of Hanford water treatment practices

    Energy Technology Data Exchange (ETDEWEB)

    Touhill, C.J.

    1965-09-01

    An evaluation of Hanford reactor process water treatment practices was made in an effort to ascertain the reasons for variations in the effluent activity between reactors. Recommendations are made for improvements in unit processes as well as for the over-all treatment process based on field inspection of the water treatment plants. In addition, a research program is proposed to supplement the recommendations. The proposed research is designed to uncover methods of more efficient filtration as well as other procedures which might eventually lead to significant effluent activity reductions. The recommendations and research results will be applied toward process optimization.

  6. Impact of spacer thickness on biofouling in forward osmosis.

    Science.gov (United States)

    Valladares Linares, R; Bucs, Sz S; Li, Z; AbuGhdeeb, M; Amy, G; Vrouwenvelder, J S

    2014-06-15

    Forward osmosis (FO) indirect desalination systems integrate wastewater recovery with seawater desalination. Niche applications for FO systems have been reported recently, due to the demonstrated advantages compared to conventional high-pressure membrane processes such as nanofiltration (NF) and reverse osmosis (RO). Among them, wastewater recovery has been identified to be particularly suitable for practical applications. However, biofouling in FO membranes has rarely been studied in applications involving wastewater effluents. Feed spacers separating the membrane sheets in cross-flow systems play an important role in biofilm formation. The objective of this study was to determine the influence of feed spacer thickness (28, 31 and 46 mil) on biofouling development and membrane performance in a FO system, using identical cross-flow cells in parallel studies. Flux development, biomass accumulation, fouling localization and composition were determined and analyzed. For all spacer thicknesses, operated at the same feed flow and the same run time, the same amount of biomass was found, while the flux reduction decreased with thicker spacers. These observations are in good agreement with biofouling studies for RO systems, considering the key differences between FO and RO. Our findings contradict previous cross-flow studies on particulate/colloidal fouling, where higher cross-flow velocities improved system performance. Thicker spacers reduced the impact of biofouling on FO membrane flux.

  7. Impact of spacer thickness on biofouling in forward osmosis

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-06-01

    Forward osmosis (FO) indirect desalination systems integrate wastewater recovery with seawater desalination. Niche applications for FO systems have been reported recently, due to the demonstrated advantages compared to conventional high-pressure membrane processes such as nanofiltration (NF) and reverse osmosis (RO). Among them, wastewater recovery has been identified to be particularly suitable for practical applications. However, biofouling in FO membranes has rarely been studied in applications involving wastewater effluents. Feed spacers separating the membrane sheets in cross-flow systems play an important role in biofilm formation. The objective of this study was to determine the influence of feed spacer thickness (28, 31 and 46mil) on biofouling development and membrane performance in a FO system, using identical cross-flow cells in parallel studies. Flux development, biomass accumulation, fouling localization and composition were determined and analyzed. For all spacer thicknesses, operated at the same feed flow and the same run time, the same amount of biomass was found, while the flux reduction decreased with thicker spacers. These observations are in good agreement with biofouling studies for RO systems, considering the key differences between FO and RO. Our findings contradict previous cross-flow studies on particulate/colloidal fouling, where higher cross-flow velocities improved system performance. Thicker spacers reduced the impact of biofouling on FO membrane flux. © 2014 Elsevier Ltd.

  8. Role of Reverse Divalent Cation Diffusion in Forward Osmosis Biofouling.

    Science.gov (United States)

    Xie, Ming; Bar-Zeev, Edo; Hashmi, Sara M; Nghiem, Long D; Elimelech, Menachem

    2015-11-17

    We investigated the role of reverse divalent cation diffusion in forward osmosis (FO) biofouling. FO biofouling by Pseudomonas aeruginosa was simulated using pristine and chlorine-treated thin-film composite polyamide membranes with either MgCl2 or CaCl2 draw solution. We related FO biofouling behavior-water flux decline, biofilm architecture, and biofilm composition-to reverse cation diffusion. Experimental results demonstrated that reverse calcium diffusion led to significantly more severe water flux decline in comparison with reverse magnesium permeation. Unlike magnesium, reverse calcium permeation dramatically altered the biofilm architecture and composition, where extracellular polymeric substances (EPS) formed a thicker, denser, and more stable biofilm. We propose that FO biofouling was enhanced by complexation of calcium ions to bacterial EPS. This hypothesis was confirmed by dynamic and static light scattering measurements using extracted bacterial EPS with the addition of either MgCl2 or CaCl2 solution. We observed a dramatic increase in the hydrodynamic radius of bacterial EPS with the addition of CaCl2, but no change was observed after addition of MgCl2. Static light scattering revealed that the radius of gyration of bacterial EPS with addition of CaCl2 was 20 times larger than that with the addition of MgCl2. These observations were further confirmed by transmission electron microscopy imaging, where bacterial EPS in the presence of calcium ions was globular, while that with magnesium ions was rod-shaped.

  9. Biofouling in forward osmosis systems: An experimental and numerical study

    KAUST Repository

    Bucs, Szilard

    2016-09-20

    This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute transport in the FO feed and draw channels, in the FO membrane support layer and in the biofilm developed on one or both sides of the membrane. The developed model was tested against experimental measurements at various osmotic pressure differences and in batch operation without and with the presence of biofilm on the membrane active layer. Numerical studies explored the effect of biofilm properties (thickness, hydraulic permeability and porosity), biofilm membrane surface coverage, and biofilm location on salt external concentration polarization and on the permeation flux. The numerical simulations revealed that (i) when biofouling occurs, external concentration polarization became important, (ii) the biofilm hydraulic permeability and membrane surface coverage have the highest impact on water flux, and (iii) the biofilm formed in the draw channel impacts the process performance more than when formed in the feed channel. The proposed mathematical model helps to understand the impact of biofouling in FO membrane systems and to develop possible strategies to reduce and control biofouling. © 2016 Elsevier Ltd

  10. Microbe-surface interactions in biofouling and biocorrosion processes.

    Science.gov (United States)

    Beech, Iwona B; Sunner, Jan A; Hiraoka, Kenzo

    2005-09-01

    The presence of microorganisms on material surfaces can have a profound effect on materials performance. Surface-associated microbial growth, i.e. a biofilm, is known to instigate biofouling. The presence of biofilms may promote interfacial physico-chemical reactions that are not favored under abiotic conditions. In the case of metallic materials, undesirable changes in material properties due to a biofilm (or a biofouling layer) are referred to as biocorrosion or microbially influenced corrosion (MIC). Biofouling and biocorrosion occur in aquatic and terrestrial habitats varying in nutrient content, temperature, pressure and pH. Interfacial chemistry in such systems reflects a wide variety of physiological activities carried out by diverse microbial populations thriving within biofilms. Biocorrosion can be viewed as a consequence of coupled biological and abiotic electron-transfer reactions, i.e. redox reactions of metals, enabled by microbial ecology. Microbially produced extracellular polymeric substances (EPS), which comprise different macromolecules, mediate initial cell adhesion to the material surface and constitute a biofilm matrix. Despite their unquestionable importance in biofilm development, the extent to which EPS contribute to biocorrosion is not well-understood. This review offers a current perspective on material/microbe interactions pertinent to biocorrosion and biofouling, with EPS as a focal point, while emphasizing the role atomic force spectroscopy and mass spectrometry techniques can play in elucidating such interactions.

  11. Water Treatment Technology - Taste, Odor & Color.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on taste, odor, and color provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: taste and odor determination, control of…

  12. Water Treatment Technology - Cross-Connections.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on cross connections provides instructional materials for two competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on cross connections terminology and control devices. For each…

  13. A Primer on Waste Water Treatment.

    Science.gov (United States)

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  14. Water Treatment Technology - General Plant Operation.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on general plant operations provides instructional materials for seven competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: water supply regulations, water plant…

  15. Rational design of nanomaterials for water treatment

    Science.gov (United States)

    Li, Renyuan; Zhang, Lianbin; Wang, Peng

    2015-10-01

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits. It is now a popular perception that the solutions to the existing and future water challenges will hinge upon further developments in nanomaterial sciences. The concept of rational design emphasizes on `design-for-purpose' and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress in rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil-water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid to the chemical concepts related to nanomaterial design throughout the review.

  16. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan

    2015-08-26

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly hinge upon the further development of nanomaterial sciences. The concept of rational design emphasizes ‘design-for-purpose’ and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress of the rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil/water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid on chemical concepts of the nanomaterial designs throughout the review.

  17. Basic Concepts of Magnetic Water Treatment

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2014-06-01

    Full Text Available This review article outlines an overview of new trends and modern approaches for practical implementation of magnetic water treatment to eliminate scaling salts (carbonate, chloride and sulfate salts of Ca2+, Mg2+, Fe2+ and Fe3+ cations in power heat-exchanger devices and pipe lines. The principles of physical effects of the magnetic field on H2O molecules as well as the parameters of physico-chemical processes occurring in water and the behavior of the dissolved in water scaling salts subjected to the magnetic treatment are discussed. It is demonstrated that the effect of the magnetic field on water is a complex multifactorial phenomenon resulted in changes of the structure of hydrated ions as well as the physico-chemical properties and behavior of dissolved inorganic salts, changes in the rate of electrochemical coagulation and aggregate stability (clumping and consolidation, formation of multiple nucleation sites on the particles of fine dispersed precipitate consisting of crystals of substantially uniform size. There are also submitted data on constructive features of various magnetic water treatment devices produced by domestic industry, based on the permanent magnets and electromagnets (solenoids, such as hydro magnetic systems (HMS, magnetic transducers (MT and magnetic activators (MA of water. It was estimated the efficiency of using the various magnetic water treatment devices in water treatment technologies.

  18. Fate of Carbamazepine during Water Treatment

    DEFF Research Database (Denmark)

    Kosjek, T.; Andersen, Henrik Rasmus; Kompare, Boris;

    2009-01-01

    Seven transformation products of carbamazepine generated by at least one of three common water treatment technologies (W-radiation, oxidation with chlorine dioxide (ClO2), and biological treatment with activated Sludge) were identified by complementary use of ion trap, single quadrupole...

  19. Household Water Treatments in Developing Countries

    Science.gov (United States)

    Smieja, Joanne A.

    2011-01-01

    Household water treatments (HWT) can help provide clean water to millions of people worldwide who do not have access to safe water. This article describes four common HWT used in developing countries and the pertinent chemistry involved. The intent of this article is to inform both high school and college chemical educators and chemistry students…

  20. Cellulose Nanomaterials in Water Treatment Technologies

    OpenAIRE

    Carpenter, Alexis Wells; de Lannoy, Charles François; Mark R. Wiesner

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, ...

  1. Biofouling of various metal oxides in marine environment

    Science.gov (United States)

    Kougo, T.; Kuroda, D.; Wada, N.; Ikegai, H.; Kanematsu, H.

    2012-03-01

    Biofouling has induced serious problems in various industrial fields such as marine structures, bio materials, microbially induced corrosion (MIC) etc. The effects of various metals on biofouling have been investigated so far and the mechanism has been clarified to some extent(1,2), and we proposed that Fe ion attracted lots of bacteria and formed biofilm very easily(3). In this study, we investigated the possibility for biofouling of Pseudomonas aeruginosa on various metal oxides such as Fe2O3, TiO2, WO3, AgO, Cr2O3 etc. And in addition of such a model experiment on laboratory scale, they were immersed into actual sea water as well as artificial sea water. As for the preparation of metal oxides, commercial oxide powders were used as starting material and those whose particle sizes were under 100 micrometers were formed into pellets by a press. Some of them were heated to 700 °C and sintered for 10 hours at the temperatures. After the calcinations, they were immersed into the culture of P. aeruginosa at 35 °C in about one week. After the immersion, they were taken out of the culture and the biofouling behaviors were observed by optical microscopy, low pressure scanning electron microscopy (low pressure SEM) etc. Biofouling is generally classified into several steps. Firstly, conditioning films composed of organic matters were formed on specimens. Then bacterial were attached to the specimen's surfaces, seeking for conditioning films as nutrition. Then bacteria formed biofilm on the specimens. In marine environment, more larger living matters such as shells etc would be attached to biofilms. However, in the culture media, only biofilms were formed.

  2. Early non-destructive biofouling detection and spatial distribution: Application of oxygen sensing optodes.

    Science.gov (United States)

    Farhat, N M; Staal, M; Siddiqui, A; Borisov, S M; Bucs, Sz S; Vrouwenvelder, J S

    2015-10-15

    Biofouling is a serious problem in reverse osmosis/nanofiltration (RO/NF) applications, reducing membrane performance. Early detection of biofouling plays an essential role in an adequate anti-biofouling strategy. Presently, fouling of membrane filtration systems is mainly determined by measuring changes in pressure drop, which is not exclusively linked to biofouling. Non-destructive imaging of oxygen concentrations (i) is specific for biological activity of biofilms and (ii) may enable earlier detection of biofilm accumulation than pressure drop. The objective of this study was to test whether transparent luminescent planar O2 optodes, in combination with a simple imaging system, can be used for early non-destructive biofouling detection. This biofouling detection is done by mapping the two-dimensional distribution of O2 concentrations and O2 decrease rates inside a membrane fouling simulator (MFS). Results show that at an early stage, biofouling development was detected by the oxygen sensing optodes while no significant increase in pressure drop was yet observed. Additionally, optodes could detect spatial heterogeneities in biofouling distribution at a micro scale. Biofilm development started mainly at the feed spacer crossings. The spatial and quantitative information on biological activity will lead to better understanding of the biofouling processes, contributing to the development of more effective biofouling control strategies.

  3. Early non-destructive biofouling detection and spatial distribution: Application of oxygen sensing optodes

    KAUST Repository

    Farhat, N.M.

    2015-06-11

    Biofouling is a serious problem in reverse osmosis/nanofiltration (RO/NF) applications, reducing membrane performance. Early detection of biofouling plays an essential role in an adequate anti-biofouling strategy. Presently, fouling of membrane filtration systems is mainly determined by measuring changes in pressure drop, which is not exclusively linked to biofouling. Non-destructive imaging of oxygen concentrations (i) is specific for biological activity of biofilms and (ii) may enable earlier detection of biofilm accumulation than pressure drop. The objective of this study was to test whether transparent luminescent planar O2 optodes, in combination with a simple imaging system, can be used for early non-destructive biofouling detection. This biofouling detection is done by mapping the two-dimensional distribution of O2 concentrations and O2 decrease rates inside a membrane fouling simulator (MFS). Results show that at an early stage, biofouling development was detected by the oxygen sensing optodes while no significant increase in pressure drop was yet observed. Additionally, optodes could detect spatial heterogeneities in biofouling distribution at a micro scale. Biofilm development started mainly at the feed spacer crossings. The spatial and quantitative information on biological activity will lead to better understanding of the biofouling processes, contributing to the development of more effective biofouling control strategies.

  4. Effect of flow velocity, substrate concentration and hydraulic cleaning on biofouling of reverse osmosis feed channels

    KAUST Repository

    Radu, Andrea I.

    2012-04-01

    A two-dimensional mathematical model coupling fluid dynamics, salt and substrate transport and biofilm development in time was used to investigate the effects of cross-flow velocity and substrate availability on biofouling in reverse osmosis (RO)/nanofiltration (NF) feed channels. Simulations performed in channels with or without spacer filaments describe how higher liquid velocities lead to less overall biomass amount in the channel by increasing the shear stress. In all studied cases at constant feed flow rate, biomass accumulation in the channel reached a steady state. Replicate simulation runs prove that the stochastic biomass attachment model does not affect the stationary biomass level achieved and has only a slight influence on the dynamics of biomass accumulation. Biofilm removal strategies based on velocity variations are evaluated. Numerical results indicate that sudden velocity increase could lead to biomass sloughing, followed however by biomass re-growth when returning to initial operating conditions. Simulations show particularities of substrate availability in membrane devices used for water treatment, e.g., the accumulation of rejected substrates at the membrane surface due to concentration polarization. Interestingly, with an increased biofilm thickness, the overall substrate consumption rate dominates over accumulation due to substrate concentration polarization, eventually leading to decreased substrate concentrations in the biofilm compared to bulk liquid. © 2012 Elsevier B.V.

  5. Pathogenic Vibrio parahaemolyticus isolated from biofouling on commercial vessels and harbor structures.

    Science.gov (United States)

    Revilla-Castellanos, Valeria J; Guerrero, Abraham; Gomez-Gil, Bruno; Navarro-Barrón, Erick; Lizárraga-Partida, Marcial L

    2015-01-01

    Ballast water is a significant vector of microbial dissemination; however, biofouling on commercial vessel hulls has been poorly studied with regard to pathogenic bacteria transport. Biofouling on three commercial vessels and seven port structures in Ensenada, Baja California, Mexico, was examined by qPCR to identify and quantify Vibrio parahaemolyticus, a worldwide recognized food-borne human pathogen. Pathogenic variants (trh+, tdh+) of V. parahaemolyticus were detected in biofouling homogenates samples from several docks in Ensenada and on the hulls of ships with Japanese and South Korean homeports, but not in reference sampling stations. A total of 26 tdh+ V. parahaemolyticus colonies and 1 ORF8+/O3:K6 strain were also isolated from enriched biofouling homogenate samples confirming the qPCR analysis. Our results suggest that biofouling is an important reservoir of pathogenic vibrios. Thus, ship biofouling might be an overlooked vector with regard to the dissemination of pathogens, primarily pathogenic V. parahaemolyticus.

  6. Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control

    KAUST Repository

    Miller, Daniel J.

    2012-08-01

    Ultrafiltration, nanofiltration membranes and feed spacers were hydrophilized with polydopamine and polydopamine- g-poly(ethylene glycol) surface coatings. The fouling propensity of modified and unmodified membranes was evaluated by short-term batch protein and bacterial adhesion tests. The fouling propensity of modified and unmodified membranes and spacers was evaluated by continuous biofouling experiments in a membrane fouling simulator. The goals of the study were: 1) to determine the effectiveness of polydopamine and polydopamine- g-poly(ethylene glycol) membrane coatings for biofouling control and 2) to compare techniques commonly used in assessment of membrane biofouling propensity with biofouling experiments under practical conditions. Short-term adhesion tests were carried out under static, no-flow conditions for 1 h using bovine serum albumin, a common model globular protein, and Pseudomonas aeruginosa, a common model Gram-negative bacterium. Biofouling tests were performed in a membrane fouling simulator (MFS) for several days under flow conditions similar to those encountered in industrial modules with the autochthonous drinking water population and acetate dosage as organic substrate. Polydopamine- and polydopamine- g-poly(ethylene glycol)-modified membranes showed significantly reduced adhesion of bovine serum albumin and P. aeruginosa in the short-term adhesion tests, but no reduction of biofouling was observed during longer biofouling experiments with modified membranes and spacers. These results demonstrate that short-term batch adhesion experiments using model proteins or bacteria under static conditions are not indicative of biofouling, while continuous biofouling experiments showed that membrane surface modification by polydopamine and polydopamine- g-poly(ethylene glycol) is not effective for biofouling control. © 2012 Elsevier Ltd.

  7. Marine biofouling resistance of polyurethane with biodegradation and hydrolyzation.

    Science.gov (United States)

    Xu, Wentao; Ma, Chunfeng; Ma, Jielin; Gan, Tiansheng; Zhang, Guangzhao

    2014-03-26

    We have prepared polyurethane with poly(ε-caprolactone) (PCL) as the segments of the main chain and poly(triisopropylsilyl acrylate) (PTIPSA) as the side chains by a combination of radical polymerization and a condensation reaction. Quartz crystal microbalance with dissipation studies show that polyurethane can degrade in the presence of enzyme and the degradation rate decreases with the PTIPSA content. Our studies also demonstrate that polyurethane is able to hydrolyze in artificial seawater and the hydrolysis rate increases as the PTIPSA content increases. Moreover, hydrolysis leads to a hydrophilic surface that is favorable to reduction of the frictional drag under dynamic conditions. Marine field tests reveal that polyurethane has good antifouling ability because polyurethane with a biodegradable PCL main chain and hydrolyzable PTIPSA side chains can form a self-renewal surface. Polyurethane was also used to carry and release a relatively environmentally friendly antifoulant, and the combined system exhibits a much higher antifouling performance even in a static marine environment.

  8. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    OpenAIRE

    CORNELIA DIANA HERTIA; ANCA ELENA GURZAU; MARIA ILONA SZASZ

    2011-01-01

    This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very...

  9. Nanotechnology for water treatment and purification

    CERN Document Server

    Apblett, Allen

    2014-01-01

    This book describes the latest progress in the application of nanotechnology for water treatment and purification. Leaders in the field present both the fundamental science and a comprehensive overview of the diverse range of tools and technologies that have been developed in this critical area. Expert chapters present the unique physicochemical and surface properties of nanoparticles and the advantages that these provide for engineering applications that ensure a supply of safe drinking water for our growing population. Application areas include generating fresh water from seawater, preventing contamination of the environment, and creating effective and efficient methods for remediation of polluted waters. The chapter authors are leading world-wide experts in the field with either academic or industrial experience, ensuring that this comprehensive volume presents the state-of-the-art in the integration of nanotechnology with water treatment and purification. Covers both wastewater and drinking water treatmen...

  10. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  11. Portable pilot plant for evaluating marine biofouling growth and control in heat exchangers-condensers.

    Science.gov (United States)

    Casanueva, J F; Sánchez, J; García-Morales, J L; Casanueva-Robles, T; López, J A; Portela, J R; Nebot, E; Sales, D

    2003-01-01

    Biofouling frequently involves a serious impediment to achieving optimum operating conditions in heat exchangers-condensers. The economic coat and energy losses associated with this phenomenon are significant and the environmental impact of biocides must satisfy stringent regulations. A portable pilot plant has been designed in order to carry out in-situ experimental study as biofilm is formed under thermal and hydrodynamically controlled conditions. The pilot plant has an automatic monitoring, control and data acquisition system, which automatically processes data from indirect measure of fouling in terms of increased fluid frictional and heat transfer resistances. A particular method is used and proposed for direct measuring and biofilm characterization. Once we know the actual film thickness, we can calculate the effective thermal conductivity of the layer by using the appropriate heat transfer equations.

  12. A new approach for water treatment

    CERN Document Server

    Principe, R

    1999-01-01

    A quantity of up to 4000 m3/h of water is used at CERN for cooling purposes: experiments, magnets and radio frequency cavities are refrigerated by closed circuits filled with deionized water; other utilities, such as air-conditioning, use chilled/hot water, also in closed circuits. All these methods all employ a cold source, the primary supply of water, coming from the cooling towers. About 500 kCHF are spent every year on water treatment in order to keep the water within these networks in operational conditions. In the line of further rationalization of resources, the next generation of contracts with the water treatment industry will aim for improved performance and better monitoring of quality related parameters in this context. The author will provide a concise report based upon an examination of the state of the installations and of the philosophy followed up until now for water treatment. Furthermore, he/she will propose a new approach from both a technical and contractual point of view, in preparation ...

  13. Biofouling in water systems--cases, causes and countermeasures.

    Science.gov (United States)

    Flemming, H-C

    2002-09-01

    Biofouling is referred to as the unwanted deposition and growth of biofilms. This phenomenon can occur in an extremely wide range of situations, from the colonisation of medical devices to the production of ultra-pure, drinking and process water and the fouling of ship hulls, pipelines and reservoirs. Although biofouling occurs in such different areas, it has a common cause, which is the biofilm. Biofilms are the most successful form of life on Earth and tolerate high amounts of biocides. For a sustainable anti-fouling strategy, an integrated approach is suggested which includes the analysis of the fouling situation, a selection of suitable components from the anti-fouling menu and an effective and representative monitoring of biofilm development.

  14. Study of electroplated silver-palladium biofouling inhibiting coating

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Møller, Per

    , a new coating has been designed to form an inhibiting effect on the surface by itself. In this way, it is desired that the release of any matter will be in low concentration. This design is based on silver combined with nobler palladium, both with catalytic properties. Due to the potential difference......The undesired microbial and biofilm adhesions on the surfaces of food industrial facilities, water supply systems and etc. are so called as “biofouling”. Biofouling can cause many undesirable effects. Until now for solving biofouling, there are few non-toxic inhibiting treatments. In this study...... between silver and palladium while contacting with an electrolyte, the surface can form numerous discrete anodic and cathodic areas, so that an inhibiting reaction can be formed. In this paper, a series of electrochemical and biological tests were conducted to study the properties of these surfaces...

  15. Use of rhamnolipid biosurfactant for membrane biofouling prevention and cleaning.

    Science.gov (United States)

    Kim, Lan Hee; Jung, Yongmoon; Kim, Sung-Jo; Kim, Chang-Min; Yu, Hye-Weon; Park, Hee-Deung; Kim, In S

    2015-01-01

    Rhamnolipids were evaluated as biofouling reducing agents in this study. The permeability of the bacterial outer membrane was increased by rhamnolipids while the growth rate of Pseudomonas aeruginosa was not affected. The surface hydrophobicity was increased through the release of lipopolysaccharides and extracellular polymeric substances from the outer cell membrane. Rhamnolipids were evaluated as agents for the prevention and cleaning of biofilms. A high degree of biofilm detachment was observed when the rhamnolipids were used as a cleaning agent. In addition, effective biofilm reduction occurred when rhamnolipids were applied to various species of Gram-negative bacteria isolated from seawater samples. Biofilm reduction using rhamnolipids was comparable to commercially available surfactants. In addition, 20% of the water flux was increased after rhamnolipid treatment (300 μg ml(-1), 6 h exposure time) in a dead-end filtration system. Rhamnolipids appear to have promise as biological agents for reducing membrane biofouling.

  16. Validation of 3D simulations of reverse osmosis membrane biofouling.

    Science.gov (United States)

    Pintelon, Thomas R R; Creber, Sarah A; von der Schulenburg, Daniel A Graf; Johns, Michael L

    2010-07-01

    The increasing demand for drinking water and its stricter quality requirements have resulted in an exponentially expanding industry of membrane filtration processes. Currently, reverse osmosis (RO) is the most common method of desalination, able to produce water that is virtually free of pollutants and pathogenic micro-organisms. Biofouling of these devices however is a significant limitation. Here we present a 3D simulation of RO membrane biofouling based on a lattice Boltzmann (LB) platform that we subsequently favorably compare with experimental data. This data consists of temporally (and spatially) resolved velocity measurements acquired for a RO membrane using magnetic resonance techniques. The effect of biofilm cohesive strength on system pressure drop is then explored; weaker biomass is observed to have a reduced impact on pressure drop (per unit biomass accumulated).

  17. Does Chlorination of Seawater Reverse Osmosis Membranes Control Biofouling?

    KAUST Repository

    Khan, Muhammad Tariq

    2015-04-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full–scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations.

  18. Does chlorination of seawater reverse osmosis membranes control biofouling?

    Science.gov (United States)

    Khan, Muhammad Tariq; Hong, Pei-Ying; Nada, Nabil; Croue, Jean Philippe

    2015-07-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full-scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations.

  19. Drag force and surface roughness measurements on freshwater biofouled surfaces.

    Science.gov (United States)

    Andrewartha, J; Perkins, K; Sargison, J; Osborn, J; Walker, G; Henderson, A; Hallegraeff, G

    2010-05-01

    The detrimental effect of biofilms on skin friction for near wall flows is well known. The diatom genera Gomphonema and Tabellaria dominated the biofilm mat in the freshwater open channels of the Tarraleah Hydropower Scheme in Tasmania, Australia. A multi-faceted approach was adopted to investigate the drag penalty for biofouled 1.0 m x 0.6 m test plates which incorporated species identification, drag measurement in a recirculating water tunnel and surface characterisation using close-range photogrammetry. Increases in total drag coefficient of up to 99% were measured over clean surface values for biofouled test plates incubated under flow conditions in a hydropower canal. The effective roughness of the biofouled surfaces was found to be larger than the physical roughness; the additional energy dissipation was caused in part by the vibration of the biofilms in three-dimensions under flow conditions. The data indicate that there was a roughly linear relationship between the maximum peak-to-valley height of a biofilm and the total drag coefficient.

  20. Potential impact of biofouling on the photobioreactors of the Offshore Membrane Enclosures for Growing Algae (OMEGA) system.

    Science.gov (United States)

    Harris, Linden; Tozzi, Sasha; Wiley, Patrick; Young, Colleen; Richardson, Tra-My Justine; Clark, Kit; Trent, Jonathan D

    2013-09-01

    The influence of PBR composition [clear polyurethane (PolyU) vs. clear linear low-density polyethylene (LLDPE) (top) and black opaque high-density polyethylene (bottom)] and shape (rectangular vs. tubular) on biofouling and the influence of biofouling on algae productivity were investigated. In 9-week experiments, PBR biofouling was dominated by pennate diatoms and clear plastics developed macroalgae. LLDPE exhibited lower photosynthetic-active-radiation (PAR) light transmittance than PolyU before biofouling, but higher transmittance afterwards. Both rectangular and tubular LLDPE PBRs accumulated biofouling predominantly along their wetted edges. For a tubular LLDPE PBR after 12 weeks of biofouling, the correlation between biomass, percent surface coverage, and PAR transmittance was complex, but in general biomass inversely correlated with transmittance. Wrapping segments of this biofouled LLDPE around an algae culture reduced CO2 and NH3-N utilization, indicating that external biofouling must be controlled.

  1. The role of "inert" surface chemistry in marine biofouling prevention.

    Science.gov (United States)

    Rosenhahn, Axel; Schilp, Sören; Kreuzer, Hans Jürgen; Grunze, Michael

    2010-05-01

    The settlement and colonization of marine organisms on submerged man-made surfaces is a major economic problem for many marine industries. The most apparent detrimental effects of biofouling are increased fuel consumption of ships, clogging of membranes and heat exchangers, disabled underwater sensors, and growth of biofoulers in aquaculture systems. The presently common-but environmentally very problematic-way to deal with marine biofouling is to incorporate biocides, which use biocidal products in the surface coatings to kill the colonizing organisms, into the surface coatings. Since the implementation of the International Maritime Organization Treaty on biocides in 2008, the use of tributyltin (TBT) is restricted and thus environmentally benign but effective surface coatings are required. In this short review, we summarize the different strategies which are pursued in academia and industry to better understand the mechanisms of biofouling and to develop strategies which can be used for industrial products. Our focus will be on chemically "inert" model surface coatings, in particular oligo- and poly(ethylene glycol) (OEG and PEG) functionalized surface films. The reasons for choosing this class of chemistry as an example are three-fold: Firstly, experiments on spore settlement on OEG and PEG coatings help to understand the mechanism of non-fouling of highly hydrated interfaces; secondly, these studies defy the common assumption that surface hydrophilicity-as measured by water contact angles-is an unambiguous and predictive tool to determine the fouling behavior on the surface; and thirdly, choosing this system is a good example for "interfacial systems chemistry": it connects the behavior of unicellular marine organisms with the antifouling properties of a hydrated surface coating with structural and electronic properties as derived from ab initio quantum mechanical calculations using the electronic wave functions of oxygen, hydrogen, and carbon. This short

  2. Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review.

    Science.gov (United States)

    Upadhyayula, Venkata K K; Gadhamshetty, Venkataramana

    2010-01-01

    The ability of carbon nanotubes (CNTs) to undergo surface modification allows them to form nanocomposites (NCs) with materials such as polymers, metal nanoparticles, biomolecules, and metal oxides. The biocidal nature, protein fouling resistance, and fouling release properties of CNT-NCs render them the perfect material for biofouling prevention. At the same time, the cytotoxicity of CNT-NCs can be reduced before applying them as substrates to promote biofilm formation in environmental biotechnology applications. This paper reviews the potential prospects of CNT-NCs to accomplish two widely varying objectives in environmental engineering applications: (i) preventing biofouling, and (ii) promoting the formation of desirable biofilms on materials surface. This paper addresses practical issues such as costs, risks to human health, and ecological impacts that are associated with the application, development and commercialization of CNT-NC technology.

  3. 40 CFR 141.83 - Source water treatment requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Source water treatment requirements... water treatment requirements. Systems shall complete the applicable source water monitoring and... monitoring (§ 141.88(d)). (b) Description of source water treatment requirements—(1) System...

  4. A carbon nanotube wall membrane for water treatment.

    Science.gov (United States)

    Lee, Byeongho; Baek, Youngbin; Lee, Minwoo; Jeong, Dae Hong; Lee, Hong H; Yoon, Jeyong; Kim, Yong Hyup

    2015-05-14

    Various forms of carbon nanotubes have been utilized in water treatment applications. The unique characteristics of carbon nanotubes, however, have not been fully exploited for such applications. Here we exploit the characteristics and corresponding attributes of carbon nanotubes to develop a millimetre-thick ultrafiltration membrane that can provide a water permeability that approaches 30,000 l m(-2) h(-1) bar(-1), compared with the best water permeability of 2,400 l m(-2) h(-1) bar(-1) reported for carbon nanotube membranes. The developed membrane consists only of vertically aligned carbon nanotube walls that provide 6-nm-wide inner pores and 7-nm-wide outer pores that form between the walls of the carbon nanotubes when the carbon nanotube forest is densified. The experimental results reveal that the permeance increases as the pore size decreases. The carbon nanotube walls of the membrane are observed to impede bacterial adhesion and resist biofilm formation.

  5. The application of nitric oxide to control biofouling of membrane bioreactors.

    Science.gov (United States)

    Luo, Jinxue; Zhang, Jinsong; Barnes, Robert J; Tan, Xiaohui; McDougald, Diane; Fane, Anthony G; Zhuang, Guoqiang; Kjelleberg, Staffan; Cohen, Yehuda; Rice, Scott A

    2015-05-01

    A novel strategy to control membrane bioreactor (MBR) biofouling using the nitric oxide (NO) donor compound PROLI NONOate was examined. When the biofilm was pre-established on membranes at transmembrane pressure (TMP) of 88-90 kPa, backwashing of the membrane module with 80 μM PROLI NONOate for 45 min once daily for 37 days reduced the fouling resistance (Rf ) by 56%. Similarly, a daily, 1 h exposure of the membrane to 80 μM PROLI NONOate from the commencement of MBR operation for 85 days resulted in reduction of the TMP and Rf by 32.3% and 28.2%. The microbial community in the control MBR was observed to change from days 71 to 85, which correlates with the rapid TMP increase. Interestingly, NO-treated biofilms at 85 days had a higher similarity with the control biofilms at 71 days relative to the control biofilms at 85 days, indicating that the NO treatment delayed the development of biofilm bacterial community. Despite this difference, sequence analysis indicated that NO treatment did not result in a significant shift in the dominant fouling species. Confocal microscopy revealed that the biomass of biopolymers and microorganisms in biofilms were all reduced on the PROLI NONOate-treated membranes, where there were reductions of 37.7% for proteins and 66.7% for microbial cells, which correlates with the reduction in TMP. These results suggest that NO treatment could be a promising strategy to control biofouling in MBRs.

  6. Managing peatland vegetation for drinking water treatment

    Science.gov (United States)

    Ritson, Jonathan P.; Bell, Michael; Brazier, Richard E.; Grand-Clement, Emilie; Graham, Nigel J. D.; Freeman, Chris; Smith, David; Templeton, Michael R.; Clark, Joanna M.

    2016-11-01

    Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to ‘end-of-pipe’ solutions through management of ecosystem service provision.

  7. A review of water treatment membrane nanotechnologies

    KAUST Repository

    Pendergast, MaryTheresa M.

    2011-01-01

    Nanotechnology is being used to enhance conventional ceramic and polymeric water treatment membrane materials through various avenues. Among the numerous concepts proposed, the most promising to date include zeolitic and catalytic nanoparticle coated ceramic membranes, hybrid inorganic-organic nanocomposite membranes, and bio-inspired membranes such as hybrid protein-polymer biomimetic membranes, aligned nanotube membranes, and isoporous block copolymer membranes. A semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness. Performance enhancement was based on water permeability, solute selectivity, and operational robustness, while commercial readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality, but offer the most promise for performance enhancements; however, nanocomposite membranes offering significant performance enhancements are already commercially available. Zeolitic and catalytic membranes appear reasonably far from commercial reality and offer small to moderate performance enhancements. The ranking of each membrane nanotechnology is discussed along with the key commercialization hurdles for each membrane nanotechnology. © 2011 The Royal Society of Chemistry.

  8. Mini-review: Assessing the drivers of ship biofouling management--aligning industry and biosecurity goals.

    Science.gov (United States)

    Davidson, Ian; Scianni, Christopher; Hewitt, Chad; Everett, Richard; Holm, Eric; Tamburri, Mario; Ruiz, Gregory

    2016-01-01

    Biofouling exerts a frictional and cost penalty on ships and is a direct cause of invasion by marine species. These negative consequences provide a unifying purpose for the maritime industry and biosecurity managers to prevent biofouling accumulation and transfer, but important gaps exist between these sectors. This mini-review examines the approach to assessments of ship biofouling among sectors (industry, biosecurity and marine science) and the implications for existing and emerging management of biofouling. The primary distinctions between industry and biosecurity in assessment of vessels biofouling revolve around the resolution of biological information collected and the specific wetted surface areas of primary concern to each sector. The morphological characteristics of biofouling and their effects on propulsion dynamics are of primary concern to industry, with an almost exclusive focus on the vertical sides and flat bottom of hulls and an emphasis on antifouling and operational performance. In contrast, the identity, biogeography, and ecology of translocated organisms is of highest concern to invasion researchers and biosecurity managers and policymakers, especially as it relates to species with known histories of invasion elsewhere. Current management practices often provide adequate, although not complete, provision for hull surfaces, but niche areas are well known to enhance biosecurity risk. As regulations to prevent invasions emerge in this arena, there is a growing opportunity for industry, biosecurity and academic stakeholders to collaborate and harmonize efforts to assess and manage biofouling of ships that should lead to more comprehensive biofouling solutions that promote industry goals while reducing biosecurity risk and greenhouse gas emissions.

  9. Biosecurity Management of Submarine Niche Areas: the Effect of Water Pressure on Biofouling Survival

    Science.gov (United States)

    2014-01-01

    UNCLASSIFIED UNCLASSIFIED Biosecurity Management of Submarine Niche Areas: the Effect of Water Pressure on Biofouling Survival Clare...operational impacts and biosecurity risks. Approved for public release RELEASE LIMITATION UNCLASSIFIED...UNCLASSIFIED UNCLASSIFIED Biosecurity Management of Submarine Niche Areas: the Effect of Water Pressure on Biofouling Survival Executive Summary

  10. Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations

    NARCIS (Netherlands)

    Vrouwenvelder, J.S.; Manolarakis, S.A.; Hoek, van der J.P.; Paassen, van J.A.M.; Meer, van der W.G.J.; Agtmaal, van J.M.C.; Prummel, H.D.M.; Kruithof, J.C.; Loosdrecht, M.C.M.

    2008-01-01

    Biofilm accumulation in nanofiltration and reverse osmosis membrane elements results in a relative increase of normalised pressure drop (ΔNPD). However, an increase in ΔNPD is not exclusively linked to biofouling. In order to quantify biofouling, the biomass parameters adenosine triphosphate (ATP),

  11. Experimental investigation of interactions between the temperature field and biofouling in a synthetic treated sewage stream.

    Science.gov (United States)

    Yang, Qianpeng; Wilson, D Ian; Chen, Xiaodong; Shi, Lin

    2013-01-01

    Biofouling causes significant losses in efficiency in heat exchangers recovering waste heat from treated sewage. The influence of the temperature field on biofouling was investigated using a flat plate heat exchanger which simulated the channels in a plate and frame unit. The test surface was a 316 stainless steel plate, and a solution of Bacillus sp. and Aeromonas sp. was used as a model process liquid. The test cell was operated under co-current, counter-current, and constant wall temperature configurations, which gave different temperature distributions. Biofouling was monitored via changes in heat transfer and biofilm thickness. The effect of uniform temperature on biofouling formation was similar to the effect of uniform temperature on planktonic growth of the organisms. Further results showed that the temperature field, and particularly the wall temperature, influenced the rate of biofouling strongly. The importance of wall temperature suggests that fouling could be mitigated by using different configurations in summer and winter.

  12. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA HERTIA

    2011-03-01

    Full Text Available This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very short period of time. The treatment technological process is the classic one, represented by coagulation, sedimentation, filtration and disinfection, but also prechlorination was constantly applied as additional treatment during 2008. Results showed that for the measured parameters, raw water at the water treatment plant fits into class A3 for surface waters, framing dictated by the bacterial load. The treatment processes efficiency is based on the performance calculation for sedimentation, filtration, global and for disinfection, a better conformation degree of technological steps standing out in January in comparison to the other three analyzed months. A variable non-compliance of turbidity and residual chlorine levels in the disinfected water was observed constantly. Previous treatment steps managed to maintain a low level of oxidisability, chlorine consumption and residual chlorine levels being also low. 12% samples were found inconsistent with the national legislation in terms of bacteriological quality. Measures for the water treatment plant retechnologization are taken primarily for hyperchlorination elimination, which currently constitutes a discomfort factor (taste, smell, and a generating factor of chlorination by-products.

  13. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  14. Linking water treatment practices and fish welfare

    DEFF Research Database (Denmark)

    Zubiaurre, Claire; Pedersen, Lars-Flemming

    2016-01-01

    Peracetic acids can be used as sanitizers to control water quality in aquaculture systems. As an alternative to formalin, chloramine-T or copper sulphate, PAA has strong anti-microbial effects, degrades quickly and is relatively safe to use. Its mode of action and associated rapid decay can make...... optimizing treatment protocols a challenge. Continuous low-dose applications seem to be a promising solution. In this preliminary study behavioral response was used to assess potential correlations with PAA dosage. A behavioral change or response is not necessarily an indication of compromised welfare....... Supportive enzymatic, biochemical and physiological biomarkers can be used along with gill and epidermal histological measures to evaluate the effects on water treatment regimens. The ultimate goal is to define the therapeutic window where fish welfare is not compromised.PAA is among the few disinfectants...

  15. Particle separation options for emergency water treatment.

    Science.gov (United States)

    Dorea, C C; Bertrand, S; Clarke, B A

    2006-01-01

    Emergencies can result from the effects of unpredictable natural forces or from the cruelty of conflicts. The affected population is often left vulnerable to increased health risks. The victims' exposure to these risks can be reduced by timely public health interventions. Often, one of the first basic mitigations is the provision of water for essential needs. The quickest option, and generally more polluted, is of surface waters. We have reviewed particle separation options for emergency water treatment of surface waters. These vary from granular filtration package treatment facilities to ceramic candle filters and have therefore been broadly classified in three categories: modular, mobile and point-of-use (or household). The operational requirements and process limitations that can influence the choice of each option are discussed alongside with their underlying particle separation mechanisms and performance data.

  16. Biogenic metals in advanced water treatment.

    Science.gov (United States)

    Hennebel, Tom; De Gusseme, Bart; Boon, Nico; Verstraete, Willy

    2009-02-01

    Microorganisms can change the oxidation state of metals and concomitantly deposit metal oxides and zerovalent metals on or into their cells. The microbial mechanisms involved in these processes have been extensively studied in natural environments, and researchers have recently gained interest in the applications of microbe-metal interactions in biotechnology. Because of their specific characteristics, such as high specific surface areas and high catalytic reactivity, biogenic metals offer promising perspectives for the sorption and (bio)degradation of contaminants. In this review, the precipitation of biogenic manganese and iron species and the microbial reduction of precious metals, such as palladium, platinum, silver and gold, are discussed with specific attention to the application of these biogenic metals in innovative remediation technologies in advanced water treatment.

  17. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review.

    Science.gov (United States)

    Rahman, Mohammad Feisal; Peldszus, Sigrid; Anderson, William B

    2014-03-01

    This article reviews perfluoroalkyl and polyfluoroalkyl substance (PFAS) characteristics, their occurrence in surface water, and their fate in drinking water treatment processes. PFASs have been detected globally in the aquatic environment including drinking water at trace concentrations and due, in part, to their persistence in human tissue some are being investigated for regulation. They are aliphatic compounds containing saturated carbon-fluorine bonds and are resistant to chemical, physical, and biological degradation. Functional groups, carbon chain length, and hydrophilicity/hydrophobicity are some of the important structural properties of PFASs that affect their fate during drinking water treatment. Full-scale drinking water treatment plant occurrence data indicate that PFASs, if present in raw water, are not substantially removed by most drinking water treatment processes including coagulation, flocculation, sedimentation, filtration, biofiltration, oxidation (chlorination, ozonation, AOPs), UV irradiation, and low pressure membranes. Early observations suggest that activated carbon adsorption, ion exchange, and high pressure membrane filtration may be effective in controlling these contaminants. However, branched isomers and the increasingly used shorter chain PFAS replacement products may be problematic as it pertains to the accurate assessment of PFAS behaviour through drinking water treatment processes since only limited information is available for these PFASs.

  18. Online monitoring of biofouling using coaxial stub resonator technique

    Directory of Open Access Journals (Sweden)

    N.A. Hoog

    2015-03-01

    Analysis of the biofilm and the stub resonator signal, both as function of time, indicates that the sensor allows detection of early stages of biofilm formation. In addition, the sensor signal clearly discriminates between the first stages of biofilm formation (characterized by separated, individual spots of bacterial growth on the glass beads and the presence of a nearly homogeneous biofilm later on in time. Model simulations based on the transmission line theory predict a shift of the sensor response in the same direction and order of magnitude as observed in the biofouling experiments, thereby confirming the operating principle of the sensor.

  19. Marine biofouling in Hong Kong:a review

    Institute of Scientific and Technical Information of China (English)

    Zongguo Huang

    2003-01-01

    From 1980 to 1998, biofouling communities in Hong Kong waters, the Zhujiang RiverEstuary and the Mirs Bay were studied and a total of 610 samples. The samples were collected from ves-sels, buoys, piers and cages. Totally, 340 species (see Appendix Ⅰ ) have been recorded and identified,six of which are new. At the same time, research on the biology of the cirripede, bryozoan, polychaeteand mollusc communities were also conducted. Twenty-three related papers have been published. Thisreview summarizes works in Hong Kong over past twenty years, and some unpublished data are also re-ported.

  20. Fine-Tuning the Surface of Forward Osmosis Membranes via Grafting Graphene Oxide: Performance Patterns and Biofouling Propensity.

    Science.gov (United States)

    Hegab, Hanaa M; ElMekawy, Ahmed; Barclay, Thomas G; Michelmore, Andrew; Zou, Linda; Saint, Christopher P; Ginic-Markovic, Milena

    2015-08-19

    Graphene oxide (GO) nanosheets were attached to the polyamide selective layer of thin film composite (TFC) forward osmosis (FO) membranes through a poly L-Lysine (PLL) intermediary using either layer-by-layer or hybrid (H) grafting strategies. Fourier transform infrared spectroscopy, zeta potential, and thermogravimetric analysis confirmed the successful attachment of GO/PLL, the surface modification enhancing both the hydrophilicity and smoothness of the membrane's surface demonstrated by water contact angle, atomic force microscopy, and transmission electron microscopy. The biofouling resistance of the FO membranes determined using an adenosine triphosphate bioluminescence test showed a 99% reduction in surviving bacteria for GO/PLL-H modified membranes compared to pristine membrane. This antibiofouling property of the GO/PLL-H modified membrane was reflected in reduced flux decline compared to all other samples when filtering brackish water under biofouling conditions. Further, the high density and tightly bound GO nanosheets using the hybrid modification reduced the reverse solute flux compared to the pristine, which reflects improved membrane selectivity. These results illustrate that the GO/PLL-H modification is a valuable addition to improve the performance of FO TFC membranes.

  1. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-12-01

    Reverse osmosis (RO) and nanofiltration (NF) membrane systems are high-pressure membrane filtration processes that can produce high quality drinking water. Biofouling, biofilm formation that exceeds a certain threshold, is a major problem in spiral wound RO and NF membrane systems resulting in a decline in membrane performance, produced water quality, and quantity. In practice, detection of biofouling is typically done indirectly through measurements of performance decline. Existing direct biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar oxygen sensing optodes, in combination with a simple imaging system, can be used for in-situ, non-destructive biofouling characterization. Aspects of the study were early detection of biofouling, biofilm spatial patterning in spacer filled channels, and the effect of feed cross-flow velocity, and feed flow temperature. Oxygen sensing optode imaging was found suitable for studying biofilm processes and gave detailed spatial and quantitative biofilm development information enabling better understanding of the biofouling development process. The outcome of this study attests the importance of in-situ, non-destructive imaging in acquiring detailed knowledge on biofilm development in membrane systems contributing to the development of effective biofouling control strategies.

  2. Biofouling Control in Spiral-Wound Membrane Systems: Impact of Feed Spacer Modification and Biocides

    KAUST Repository

    Siddiqui, Amber

    2016-12-01

    High-quality drinking water can be produced with membrane-based filtration processes like reverse osmosis and nanofiltration. One of the major problems in these membrane systems is biofouling that reduces the membrane performance, increasing operational costs. Current biofouling control strategies such as pre-treatment, membrane modification, and chemical cleaning are not sufficient in all cases. Feed spacers are thin (0.8 mm), complex geometry meshes that separate membranes in a module. The main objective of this research was to evaluate whether feed spacer modification is a suitable strategy to control biofouling. Membrane fouling simulator studies with six feed spacers showed differences in biofouled spacer performance, concluding that (i) spacer geometry influences biofouling impact and (ii) biofouling studies are essential for evaluation of spacer biofouling impact. Computed tomography (CT) was found as a suitable technique to obtain three-dimensional (3D) measurements of spacers, enabling more representative mathematical modeling of hydraulic behavior of spacers in membrane systems. A strategy for developing, characterizing, and testing of spacers by numerical modeling, 3D printing of spacers and experimental membrane fouling simulator studies was developed. The combination of modeling and experimental testing of 3D printed spacers is a promising strategy to develop advanced spacers aiming to reduce the impact of biofilm formation on membrane performance and to improve the cleanability of spiral-wound membrane systems.

  3. Mini-review: Inhibition of biofouling by marine microorganisms.

    Science.gov (United States)

    Dobretsov, Sergey; Abed, Raeid M M; Teplitski, Max

    2013-01-01

    Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.

  4. Layer-by-layer click deposition of functional polymer coatings for combating marine biofouling.

    Science.gov (United States)

    Yang, Wen Jing; Pranantyo, Dicky; Neoh, Koon-Gee; Kang, En-Tang; Teo, Serena Lay-Ming; Rittschof, Daniel

    2012-09-10

    "Click" chemistry-enabled layer-by-layer (LBL) deposition of multilayer functional polymer coatings provides an alternative approach to combating biofouling. Fouling-resistant azido-functionalized poly(ethylene glycol) methyl ether methacrylate-based polymer chains (azido-poly(PEGMA)) and antimicrobial alkynyl-functionalized 2-(methacryloyloxy)ethyl trimethyl ammonium chloride-based polymer chains (alkynyl-poly(META)) were click-assembled layer-by-layer via alkyne-azide 1,3-dipolar cycloaddition. The polymer multilayer coatings are resistant to bacterial adhesion and are bactericidal to marine Gram-negative Pseudomonas sp. NCIMB 2021 bacteria. Settlement of barnacle ( Amphibalanus (= Balanus ) amphitrite ) cyprids is greatly reduced on the multilayer polymer-functionalized substrates. As the number of the polymer layers increases, efficacy against bacterial fouling and settlement of barnacle cyprids increases. The LBL-functionalized surfaces exhibit low toxicity toward the barnacle cyprids and are stable upon prolonged exposure to seawater. LBL click deposition is thus an effective and potentially environmentally benign way to prepare antifouling coatings.

  5. Nanotechnology-based water treatment strategies.

    Science.gov (United States)

    Kumar, Sandeep; Ahlawat, Wandit; Bhanjana, Gaurav; Heydarifard, Solmaz; Nazhad, Mousa M; Dilbaghi, Neeraj

    2014-02-01

    The most important component for living beings on the earth is access to clean and safe drinking water. Globally, water scarcity is pervasive even in water-rich areas as immense pressure has been created by the burgeoning human population, industrialization, civilization, environmental changes and agricultural activities. The problem of access to safe water is inevitable and requires tremendous research to devise new, cheaper technologies for purification of water, while taking into account energy requirements and environmental impact. This review highlights nanotechnology-based water treatment technologies being developed and used to improve desalination of sea and brackish water, safe reuse of wastewater, disinfection and decontamination of water, i.e., biosorption and nanoadsorption for contaminant removal, nanophotocatalysis for chemical degradation of contaminants, nanosensors for contaminant detection, different membrane technologies including reverse osmosis, nanofiltration, ultrafiltration, electro-dialysis etc. This review also deals with the fate and transport of engineered nanomaterials in water and wastewater treatment systems along with the risks associated with nanomaterials.

  6. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  7. K West integrated water treatment system subproject safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  8. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  9. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  10. Effect of conventional chemical treatment on the microbial population in a biofouling layer of reverse osmosis systems.

    Science.gov (United States)

    Bereschenko, L A; Prummel, H; Euverink, G J W; Stams, A J M; van Loosdrecht, M C M

    2011-01-01

    The impact of conventional chemical treatment on initiation and spatiotemporal development of biofilms on reverse osmosis (RO) membranes was investigated in situ using flow cells placed in parallel with the RO system of a full-scale water treatment plant. The flow cells got the same feed (extensively pre-treated fresh surface water) and operational conditions (temperature, pressure and membrane flux) as the full-scale installation. With regular intervals both the full-scale RO membrane modules and the flow cells were cleaned using conventional chemical treatment. For comparison some flow cells were not cleaned. Sampling was done at different time periods of flow cell operation (i.e., 1, 5, 10 and 17 days and 1, 3, 6 and 12 months). The combination of molecular (FISH, DGGE, clone libraries and sequencing) and microscopic (field emission scanning electron, epifluorescence and confocal laser scanning microscopy) techniques made it possible to thoroughly analyze the abundance, composition and 3D architecture of the emerged microbial layers. The results suggest that chemical treatment facilitates initiation and subsequent maturation of biofilm structures on the RO membrane and feed-side spacer surfaces. Biofouling control might be possible only if the cleaning procedures are adapted to effectively remove the (dead) biomass from the RO modules after chemical treatment.

  11. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment plants

  12. Hydraulic modelling of drinking water treatment plant operations

    NARCIS (Netherlands)

    Worm, G.I.M.; Mesman, G.A.M.; Van Schagen, K.M.; Borger, K.J.; Rietveld, L.C.

    2009-01-01

    The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filt

  13. Package plant of extended aeration membrane bioreactors: a study on aeration intensity and biofouling control.

    Science.gov (United States)

    Ujang, Z; Ng, S S; Nagaoka, H

    2005-01-01

    Biofouling control is important for effective process of membrane bioreactor (MBR). In this study, phenomena of biofouling for immersed type extended aeration MBR with two different anti-fouling aeration intensities were studied through a laboratory set up. The objectives of this study were (a) to observe biofouling phenomena of MBR that operates under different anti-fouling bubbling intensity, and simultaneously monitors performance of the MBR in organic carbon and nutrients removal; (b) to compare effectiveness of detergent and detergent-enzyme cleaning solutions in recovering biofouled membranes that operated in the extended aeration MBR. For MBR, which operated under continuous anti-fouling aeration, deposition and accumulation of suspended biomass on membrane surface were prohibited. However, flux loss was inescapable that biofilm layer was the main problem. Membrane cleaning was successfully carried out with detergent-enzyme mixture solutions and its effectiveness was compared with result from cleaning with just detergent solution.

  14. Comparing Biofouling Control Treatments for Use on Aquaculture Nets

    Directory of Open Access Journals (Sweden)

    Geoffrey Swain

    2014-12-01

    Full Text Available Test panels comprised of uncoated, copper coated and silicone coated 7/8'' (22 mm mesh knitted nylon net were evaluated to compare their properties and the effectiveness to prevent biofouling. This paper describes test procedures that were developed to quantify the performance in terms of antifouling, cleanability, drag and cost. The copper treatment was the most effective at controlling fouling, however, the silicone treated nets were the easiest to clean. The drag forces on the net were a function of twine diameter, twine roughness and fouling. After immersion, the uncoated nets had the most drag followed by the silicone and copper treatments. The cost of applying silicone to nets is high; however, improved formulations may provide a non-toxic alternative to control fouling.

  15. Comparing biofouling control treatments for use on aquaculture nets.

    Science.gov (United States)

    Swain, Geoffrey; Shinjo, Nagahiko

    2014-12-02

    Test panels comprised of uncoated, copper coated and silicone coated 7/8'' (22 mm) mesh knitted nylon net were evaluated to compare their properties and the effectiveness to prevent biofouling. This paper describes test procedures that were developed to quantify the performance in terms of antifouling, cleanability, drag and cost. The copper treatment was the most effective at controlling fouling, however, the silicone treated nets were the easiest to clean. The drag forces on the net were a function of twine diameter, twine roughness and fouling. After immersion, the uncoated nets had the most drag followed by the silicone and copper treatments. The cost of applying silicone to nets is high; however, improved formulations may provide a non-toxic alternative to control fouling.

  16. The potential of standard and modified feed spacers for biofouling control

    KAUST Repository

    Araújo, Paula A.

    2012-06-01

    The impact of feed spacers on initial feed channel pressure (FCP) drop, FCP increase and biomass accumulation has been studied in membrane fouling simulators using feed spacers applied in commercially available nanofiltration and reverse osmosis spiral wound membrane modules. All spacers had a similar geometry.Our studies showed that biofouling was not prevented by (i) variation of spacer thickness, (ii) feed spacer orientation, (iii) feed spacer coating with silver, copper or gold and (iv) using a biostatic feed spacer. At constant feed flow, a lower FCP and FCP increase were observed for a thicker feed spacer. At constant linear flow velocity, roughly the same FCP development and biomass accumulation were found irrespective of the feed spacer thickness: hydrodynamics and substrate load were more important for development and impact of biofouling than the thickness of currently applied spacers. Use of biostatic and metal coated spacers were not effective for biofouling control. The same small reduction of biofouling rate was observed with copper and silver coated spacers as well as uncoated 45° rotated spacers.The studied modified spacers were not effective for biofouling prevention and control. The impact of biofouling on FCP increase was reduced significantly by a lower linear flow velocity, while spacer orientation and spacer thickness in membrane modules had a smaller but still significant effect. © 2012 Elsevier B.V.

  17. Antibiofilm activity of Bacillus pumilus SW9 against initial biofouling on microfiltration membranes.

    Science.gov (United States)

    Zhang, Ying; Yu, Xin; Gong, Song; Ye, Chengsong; Fan, Zihong; Lin, Huirong

    2014-02-01

    Membrane biofouling, resulting from biofilm formation on the membrane, has become the main obstacle hindering wider application of membrane technology. Initial biofouling proves to be crucial which involves early stages of microbial adhesion and biofilm formation. Biological control of microbial attachment seems to be a promising strategy due to its high efficiency and eco-friendliness. The present study investigated the effects of a bacterium Bacillus pumilus SW9 on controlling the initial fouling formed by four target bacterial strains which were pioneer species responsible for biofouling in membrane bioreactors, using microfiltration membranes as the abiotic surfaces. The results suggested that strain SW9 exhibited excellent antibiofilm activity by decreasing the attached biomass of target strains. The production of extracellular polysaccharides and proteins by four target strains was also reduced. A distinct improvement of permeate flux in dead-end filtration systems was achieved when introducing strain SW9 to microfiltration experiments. Scanning electron microscopy and confocal laser scanning microscopy were performed to further ascertain significant changes of the biofouling layers. A link between biofilm inhibition and initial biofouling mitigation was thus provided, suggesting an alternatively potential way to control membrane biofouling through bacterial interactions.

  18. Rapid novel test for the determination of biofouling potential on reverse osmosis membranes.

    Science.gov (United States)

    Manalo, Cervinia V; Ohno, Masaki; Okuda, Tetsuji; Nakai, Satoshi; Nishijima, Wataru

    2016-01-01

    A novel method was proposed to determine biofouling potential by direct analysis of a reverse osmosis (RO) membrane through fluorescence intensity analysis of biofilm formed on the membrane surface, thereby incorporating fouling tendencies of both feedwater and membrane. Evaluation of the biofouling potential on the RO membrane was done by accelerated biofilm formation through soaking of membranes in high biofouling potential waters obtained by adding microorganisms and glucose in test waters. The biofilm formed on the soaked membrane was quantified by fluorescence intensity microplate analysis. The soaking method's capability in detecting biofilm formation was confirmed when percentage coverage obtained through fluorescence microscopy and intensity values exhibited a linear correlation (R(2) = 0.96). Continuous cross-flow experiments confirmed the ability and reliability of the soaking method in giving biofouling potential on RO membranes when a good correlation (R(2) = 0.87) between intensity values of biofilms formed on the membrane during soaking and filtration conditions was obtained. Applicability of the test developed was shown when three commercially available polyamide (PA) RO membranes were assessed for biofouling potential. This new method can also be applied for the determination of biofouling potential in water with more than 3.6 mg L(-1) easily degradable organic carbon.

  19. Advanced Monitoring and Characterization of Biofouling in Gravity-driven Membrane Filtration

    KAUST Repository

    Wang, Yiran

    2016-05-01

    Gravity-driven membrane (GDM) filtration is one of the promising membrane bioreactor (MBR) technologies. It operates at a low pressure by gravity, requiring a minimal energy. Thus, it exhibits a great potential for a decentralized system, conducting household in developing and transition countries. Biofouling is a universal problem in almost all membrane filtration applications, leading to the decrease in flux or the increase in transmembrane pressure depending on different operation mode. Air scoring or regular membrane cleaning has been utilized for fouling mitigation, which requires increased energy consumption as well as complicated operations. Besides, repeating cleaning will trigger the deterioration of membranes and shorten their lifetime, elevating cost expenditures accordingly. In this way, GDM filtration stands out from conventional MBR technologies in a long-term operation with relative stable flux, which has been observed in many studies. The objective of this study was to monitor the biofilm development on a flat sheet membrane submerged in a GDM reactor with constant gravitational pressure. Morphology of biofilm layer in a fixed position was acquired by an in-situ and on-line OCT (optical coherence tomography) scanning at regular intervals for both visual investigation and structure analysis. The calculated thickness and roughness were compared to the variation of flux, fouling resistance and permeate quality, showing expected consistency. At the end of experiment, the morphology of entire membrane surface was scanned and recorded by OCT. Membrane autopsy was carried out for biofilm composition analysis by total organic carbon (TOC) and liquid chromatography with organic carbon detection (LC-OCD). In addition, biomass concentration was obtained by flow cytometer and adenosine tri-phosphate (ATP) method. The data of biofilm components indicated a homogeneous biofilm structure formed after a long-term running of the GDM system, based on the morphology

  20. Acidification effects on biofouling communities: winners and losers.

    Science.gov (United States)

    Peck, Lloyd S; Clark, Melody S; Power, Deborah; Reis, João; Batista, Frederico M; Harper, Elizabeth M

    2015-05-01

    How ocean acidification affects marine life is a major concern for science and society. However, its impacts on encrusting biofouling communities, that are both the initial colonizers of hard substrata and of great economic importance, are almost unknown. We showed that community composition changed significantly, from 92% spirorbids, 3% ascidians and 4% sponges initially to 47% spirorbids, 23% ascidians and 29% sponges after 100 days in acidified conditions (pH 7.7). In low pH, numbers of the spirorbid Neodexiospira pseudocorrugata were reduced ×5 compared to controls. The two ascidians present behaved differently with Aplidium sp. decreasing ×10 in pH 7.7, whereas Molgula sp. numbers were ×4 higher in low pH than controls. Calcareous sponge (Leucosolenia sp.) numbers increased ×2.5 in pH 7.7 over controls. The diatom and filamentous algal community was also more poorly developed in the low pH treatments compared to controls. Colonization of new surfaces likewise showed large decreases in spirorbid numbers, but numbers of sponges and Molgula sp. increased. Spirorbid losses appeared due to both recruitment failure and loss of existing tubes. Spirorbid tubes are comprised of a loose prismatic fabric of calcite crystals. Loss of tube materials appeared due to changes in the binding matrix and not crystal dissolution, as SEM analyses showed crystal surfaces were not pitted or dissolved in low pH conditions. Biofouling communities face dramatic future changes with reductions in groups with hard exposed exoskeletons and domination by soft-bodied ascidians and sponges.

  1. A superhydrophilic nitinol shape memory alloy with enhanced anti-biofouling and anti-corrosion properties.

    Science.gov (United States)

    Song, K; Min, T; Jung, J-Y; Shin, D; Nam, Y

    2016-01-01

    This work reports on a nitinol (NiTi) surface modification scheme based on a chemical oxidation method, and characterizes its effects on wetting, biofouling and corrosion. The scheme developed is also compared with selected previous oxidation methods. The proposed method turns NiTi into superhydrophilic in ~5 min, and the static contact angle and contact angle hysteresis were measured to be ~7° and ~12°, respectively. In the PRP (platelet rich plasma) test, platelet adhesion was reduced by ~89% and ~77% respectively, compared with the original NiTi and the NiTi treated with the previous chemical oxidation scheme. The method developed provides a high (~1.1 V) breakdown voltage, which surpasses the ASTM standard for intervascular medical devices. It also provides higher superhydrophilicity, hemo-compatibility and anti-corrosion resistance than previous oxidation schemes, with a significantly reduced process time (~5 min), and will help the development of high performance NiTi devices.

  2. Biofouling characteristics and identification of preponderant bacteria at different nutrient levels in batch tests of a recirculating cooling water system.

    Science.gov (United States)

    Liu, Fang; Zhao, Chao-Cheng; Xia, Lu; Yang, Fei; Chang, Xin; Wang, Yong-Qiang

    2011-01-01

    Understanding the influence of nutrient levels on biofouling control is an important requirement for management strategies in a recirculating cooling water system. Nutrient limitation may be one way to control biofouling development without increasing biocide dosing. Therefore, this study was carried out to investigate the effects of nutrient levels on biofouling characteristics and to identify the preponderant bacteria in the batch tests with a simulated cooling water system. The biofouling characteristics were assessed by varying the biofoulant mass and the bacteria respiratory activity, which was estimated by measuring oxygen uptake rates. According to the results obtained in nutrient factor experiments, the biofouling could be better controlled at carbon, nitrogen and phosphorus concentrations of 30 mg N/L, 8 mg N/L and 1.0 mg P/L, respectively. Increasing carbon concentrations shortened the biofouling initial growth period and resulted in higher biofoulant mass. The preponderant bacteria strains involved in biofouling under two culture conditions were identified by applying both physiological and biochemical tests and further molecular biology techniques with phylogenetic affiliation analysis. Enterobacter (family Enterobacteriaceae), Staphylococcus (family Micrococcaceae), Bacillus (family Bacillaceae), Proteus (family Enterobacteriaceae), Neisseria (family Neisseriaceae) and Pseudomonas (family Pseudomonadaceae) were dominant in the conditions of lower carbon concentration (30 mg/L). Enterobacter are autotrophs, but the other five bacteria are all heterotrophs. In the conditions of higher carbon concentration (70 mg/L), Klebsiella (family Enterobacteriaceae), Enterobacter and Microbacterium (family Microbacteriaceae) were dominant; Enterobacter and Microbacterium are heterotrophs.

  3. Biofouling of inlet pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation

    Directory of Open Access Journals (Sweden)

    Brittany E. Alexander

    2015-12-01

    Full Text Available Marine organism are often kept, cultured, and experimented on in running seawater aquaria. However, surprisingly little attention is given to the nutrient composition of the water flowing through these systems, which is generally assumed to equal in situ conditions, but may change due to the presence of biofouling organisms. Significantly lower bacterial abundances and higher inorganic nitrogen species (nitrate, nitrite, and ammonium were measured in aquarium water when biofouling organisms were present within a 7-year old inlet pipe feeding a tropical reef running seawater aquaria system, compared with aquarium water fed by a new, biofouling-free inlet pipe. These water quality changes are indicative of the feeding activity and waste production of the suspension- and filter-feeding communities found in the old pipe, which included sponges, bivalves, barnacles, and ascidians. To illustrate the physiological consequences of these water quality changes on a model organism kept in the aquaria system, we investigated the influence of the presence and absence of the biofouling community on the functioning of the filter-feeding sponge Halisarca caerulea, by determining its choanocyte (filter cell proliferation rates. We found a 34% increase in choanocyte proliferation rates following the replacement of the inlet pipe (i.e., removal of the biofouling community. This indicates that the physiological functioning of the sponge was compromised due to suboptimal food conditions within the aquarium resulting from the presence of the biofouling organisms in the inlet pipe. This study has implications for the husbandry and performance of experiments with marine organisms in running seawater aquaria systems. Inlet pipes should be checked regularly, and replaced if necessary, in order to avoid excessive biofouling and to approach in situ water quality.

  4. Assessment of didecyldimethylammonium chloride as a ballast water treatment method

    NARCIS (Netherlands)

    van Slooten, Cees; Buma, Anita; Peperzak, Louis

    2015-01-01

    Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium

  5. Region 9 NPDES Outfalls 2012- Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  6. Region 9 NPDES Outfalls - Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  7. Produced Water Treatment for Beneficial Use: Emulsified Oil Removal

    NARCIS (Netherlands)

    Waisi, B.I.H.

    2016-01-01

    The development of novel carbon material, high accessible surface area, interconnected porosity, and stable nanofiber nonwoven media for emulsified oil droplets separation from oily wastewater, in particular for oilfields produced water treatment, is discussed in this thesis. Firstly, the quantity

  8. Water Treatment Plants, Published in 2006, City of Carson City.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, was produced all or in part from Hardcopy Maps information as of 2006. Data by this publisher are often provided in State Plane...

  9. Experimental biofilms within drinking water treatment plant origin; evaluation of nutrient concentration and temperature influences upon their development

    Directory of Open Access Journals (Sweden)

    Anca FARKAS

    2009-11-01

    Full Text Available From the planktonic free-floating state, microorganisms pass to the solid state, the biofilm, cells being strongly attached to each other and usually to the interface. This changing in cells’ behavior induces surface colonization and complex interactions development within the biofilm. If the biofilm’s role into the natural aquatic habitats is, undoubtedly, a positive one, consisting in water self-purification, drinking water pipe networks biofouling can be responsible for a wide range of water quality and operational problems. This exploratory experiment was performed in order to investigate, in a time interval of 7 days, the influence of certain environmental factors such as nutrient concentration and temperature upon in vitro biofilm’s development, origin in the biofilm of water treatment plant. The method used for in vitro biofilm growth monitoring is the colorimetric measurement of the biomass. Descriptive analyses, including the mean value, variability, trends, correlations and graphic displays were performed. The correlation analysis shown that the biofilm development in the discussed experiment was influenced as by the origin source as by the temperature, time and nutrients concentration. The biomass increment was significantly different for the biofilms with clarifier and sand filter sites origin, grown at 22 oC, while at 8 oC, the differences were not significant from a statistical point of view. For all the dilutions, moments and temperatures considered, the biofilm’s development with clarifier origin registered was significantly higher than the biofilm with sand filter origin.

  10. FATE OF REVERSE OSMOSIS (RO) MEMBRANES DURING OXIDATION BY DISINFECTANTS USED IN WATER TREATMENT: IMPACT ON MEMBRANE STRUCTURE AND PERFORMANCES

    KAUST Repository

    Maugin, Thomas

    2013-12-01

    Providing pretreatment prior RO filtration is essential to avoid biofouling and subsequent loss of membrane performances. Chlorine is known to degrade polymeric membrane, improving or reducing membrane efficiency depending on oxidation conditions. This study aimed to assess the impact of alternative disinfectant, NH2Cl, as well as secondary oxidants formed during chloramination of seawater, e.g. HOBr, HOI, or used in water treatment e.g. ClO2, O3, on membrane structure and performances. Permeability, total and specific rejection (Cl-, SO4 2-, Br-, Boron), FTIR profile, elemental composition were analyzed. Results showed that each oxidant seems to react differently with the membrane. HOCl, HOBr, ClO2 and O3 improved membrane permeability but decreased rejection in different extent. In comparison, chloramines resulted in identical trends but oxidized membrane very slowly. On the contrary, iodine improved membrane rejection e.g. boron, but decreased permeability. Reaction conducted with chlorine, bromine, iodine and chloramines resulted in the incorporation of halogen in the membrane structure. All oxidant except iodine were able to break amide bonds of the membrane structure in our condition. In addition, chloramine seemed to react with membrane differently, involving a potential addition of nitrogen. Chloramination of seawater amplified membrane performances evolutions due to generation of bromochloramine. Moreover, chloramines reacted both with NOM and membrane during oxidation in natural seawater, leading to additional rejection drop.

  11. Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: A numerical study

    KAUST Repository

    Bucs, Szilard

    2014-06-01

    Feed spacers and hydrodynamics have been found relevant for the impact of biofouling on performance in reverse osmosis (RO) and nanofiltration (NF) membrane systems.The objectives of this study on biofouling development were to determine the impact of (i) linear flow velocity and bacterial cell load, (ii) biomass location and (iii) various feed spacer geometries as applied in practice as well as a modified geometry spacer.A three-dimensional mathematical model for biofouling of feed spacer channels including hydrodynamics, solute mass transport and biofilm formation was developed in COMSOL Multiphysics and MATLAB software.Results of this study indicate that the feed channel pressure drop increase caused by biofilm formation can be reduced by using thicker and/or modified feed spacer geometry and/or a lower flow rate in the feed channel. The increase of feed channel pressure drop by biomass accumulation is shown to be strongly influenced by the location of biomass. Results of numerical simulations are in satisfactory agreement with experimental data, indicating that this micro-scale mechanistic model is representative for practice. The developed model can help to understand better the biofouling process of spiral-wound RO and NF membrane systems and to develop strategies to reduce and control biofouling. © 2013 Elsevier B.V.

  12. Quorum quenching bacteria can be used to inhibit the biofouling of reverse osmosis membranes.

    Science.gov (United States)

    Oh, Hyun-Suk; Tan, Chuan Hao; Low, Jiun Hui; Rzechowicz, Miles; Siddiqui, Muhammad Faisal; Winters, Harvey; Kjelleberg, Staffan; Fane, Anthony G; Rice, Scott A

    2017-04-01

    Over the last few decades, significant efforts have concentrated on mitigating biofouling in reverse osmosis (RO) systems, with a focus on non-toxic and sustainable strategies. Here, we explored the potential of applying quorum quenching (QQ) bacteria to control biofouling in a laboratory-scale RO system. For these experiments, Pantoea stewartii was used as a model biofilm forming organism because it was previously shown to be a relevant wastewater isolate that also forms biofilms in a quorum sensing (QS) dependent fashion. A recombinant Escherichia coli strain, which can produce a QQ enzyme, was first tested in batch biofilm assays and significantly reduced biofilm formation by P. stewartii. Subsequently, RO membranes were fouled with P. stewartii and the QQ bacterium was introduced into the RO system using two different strategies, direct injection and immobilization within a cartridge microfilter. When the QQ bacterial cells were directly injected into the system, N-acylhomoserine lactone signals were degraded, resulting in the reduction of biofouling. Similarly, the QQ bacteria controlled biofouling when immobilized within a microfilter placed downstream of the RO module to remove QS signals circulating in the system. These results demonstrate the proof-of-principle that QQ can be applied to control biofouling of RO membranes and may be applicable for use in full-scale plants.

  13. Transparent exopolymer particles: from aquatic environments and engineered systems to membrane biofouling.

    Science.gov (United States)

    Bar-Zeev, Edo; Passow, Uta; Castrillón, Santiago Romero-Vargas; Elimelech, Menachem

    2015-01-20

    Transparent exopolymer particles (TEP) are ubiquitous in marine and freshwater environments. For the past two decades, the distribution and ecological roles of these polysaccharide microgels in aquatic systems were extensively investigated. More recent studies have implicated TEP as an active agent in biofilm formation and membrane fouling. Since biofouling is one of the main hurdles for efficient operation of membrane-based technologies, there is a heightened interest in understanding the role of TEP in engineered water systems. In this review, we describe relevant TEP terminologies while critically discussing TEP biological origin, biochemical and physical characteristics, and occurrence and distributions in aquatic systems. Moreover, we examine the contribution of TEP to biofouling of various membrane technologies used in the desalination and water/wastewater treatment industry. Emphasis is given to the link between TEP physicochemical and biological properties and the underlying biofouling mechanisms. We highlight that thorough understanding of TEP dynamics in feedwater sources, pretreatment challenges, and biofouling mechanisms will lead to better management of fouling/biofouling in membrane technologies.

  14. Feasibility of supercritical CO₂ treatment for controlling biofouling in the reverse osmosis process.

    Science.gov (United States)

    Mun, Sungmin; Baek, Youngbin; Kim, Cholin; Lee, Youn-Woo; Yoon, Jeyong

    2012-01-01

    Physical cleaning and/or chemical cleaning have been generally used to control biofouling in the reverse osmosis (RO) process. However, conventional membrane cleaning methods to control biofouling are limited due to the generation of by-products and the potential for damage to the RO membranes. In this study, supercritical carbon dioxide (SC CO(2)) treatment, an environmentally friendly technique, was introduced to control biofouling in the RO process. SC CO(2) (100 bar at 35°C) treatment was performed after biofouling was induced on a commercial RO membrane using Pseudomonas aeruginosa PA01 GFP as a model bacterial strain. P. aeruginosa PA01 GFP biofilm cells were reduced on the RO membrane by >8 log within 30 min, and the permeate flux was sufficiently recovered in a laboratory-scale RO membrane system without any significant damage to the RO membrane. These results suggest that SC CO(2) treatment is a promising alternative membrane cleaning technique for biofouling in the RO process.

  15. Slippery liquid-infused porous surface bio-inspired by pitcher plant for marine anti-biofouling application.

    Science.gov (United States)

    Wang, Peng; Zhang, Dun; Lu, Zhou

    2015-12-01

    Marine biofouling, caused by the adhesion of microorganism, is a worldwide problem in marine systems. In this research work, slippery liquid-infused porous surface (SLIPS), inspired by Nepenthes pitcher plant, was constructed over aluminum for marine anti-biofouling application. The as-fabricated SLIPS was characterized with SEM, AFM, and contact angle meter. Its anti-biofouling performance was evaluated with settlement experiment of a typical marine biofouling organism Chlorella vulgaris in both static and dynamic conditions. The effect of solid substrate micro-structure on anti-biofouling property of SLIPS was studied. It was suggested that the micro-structure with low length scale and high degree of regularity should be considered for designing stable SLIPS with exceptional anti-biofouling property. The liquid-like property is proven to be the main contributor for the exceptional anti-biofouling performance of SLIPS in both static and dynamic conditions. The low roughness, which facilitates removing the settled C. vulgaris under shear force, is also a main contributor for the anti-biofouling performance of SLIPS in dynamic condition.

  16. Biofouling-resilient nanoporous gold electrodes for DNA sensing.

    Science.gov (United States)

    Daggumati, Pallavi; Matharu, Zimple; Wang, Ling; Seker, Erkin

    2015-09-01

    Electrochemical nucleic acid sensors are promising tools for point-of-care diagnostic platforms with their facile integration with electronics and scalability. However, nucleic acid detection in complex biological fluids is challenging as biomolecules nonspecifically adsorb on the electrode surface and adversely affect the sensor performance by obscuring the transport of analytes and redox species to the electrode. We report that nanoporous gold (np-Au) electrodes, prepared by a microfabrication-compatible self-assembly process and functionalized with DNA probes, enabled detection of target DNA molecules (10-200 nM) in physiologically relevant complex media (bovine serum albumin and fetal bovine serum). In contrast, the sensor performance was compromised for planar gold electrodes in the same conditions. Hybridization efficiency decreased by 10% for np-Au with coarser pores revealing a pore-size dependence of sensor performance in biofouling conditions. This nanostructure-dependent functionality in complex media suggests that the pores with the optimal size and geometry act as sieves for blocking the biomolecules from inhibiting the surfaces within the porous volume while allowing the transport of nucleic acid analytes and redox molecules.

  17. Heat and Mass Transfer Model of Biofouling Formation%微牛物污垢形成的传热传质模型

    Institute of Scientific and Technical Information of China (English)

    曹生现; 孙嘉伟; 刘洋; 张艳辉; 杨善让; 徐志明

    2012-01-01

    为研究循环冷却水中微生物污垢的形成,本文综合考虑微生物的传质和吸附过程,建立了微生物污垢形成的传热传质模型。该模型基于微生物生长动力学原理,建立了水质参数与污垢热阻的关联关系,并考虑了微生物比生长速率、致垢物质的沉积与脱除速率。通过微生物污垢动态模拟实验,对相关参数进行分析测量,以验证该传热传质模型准确性。实验结果表明:由该模型计算的污垢热阻预测值能够与实验结果很好吻合,验证了该模型的正确性,其综合预测误差为5.8%。%For studying biofouling formation in circulating cooling water, the heat and mass transfer model of biofouling formation is established in this paper. This model considers microbial mass transfer and adsorption process. This model, based on microbial growth dynamics theory, can reflect the association between fouling resistance and water quality parameters. This model also considers the microbial specific growth rate, the deposition and removal rates of fouling material. This model has been verified through the relevant parameters obtained in biofouling dynamic simulation experiments. The fouling predictive value calculated by this model can fit with the experimental results well, the error of composite prediction is 5.8%.

  18. Reviewing efficacy of alternative water treatment techniques.

    Science.gov (United States)

    Hambidge, A

    2001-06-01

    synergistic effect in the inactivation of coliphage MS-2 and poliovirus. Other techniques: There are a number of other techniques. We have conducted trials of most of these in the control of Legionella sp., but these fall out of the scope of this article, and as such less emphasis has been placed on them here. Ozonation: Ozone [O3] is an oxidising gas, generated electrically from oxygen [O2]. L. pneumophila can be killed at ozone [Edelstien et al 1982]. Muraca et al [1987] found that 1-2 mg/L of continuous ozone over a six hour contact time, produced a 5 logarithm decrease of L. pneumophila. The effectiveness of ozone treatment against a range of bacteria and coliphages has been studied Botzenhart et al [1993]. E. coli was least resistant to ozone, followed by MS 2-coliphage and PhiX 174-coliphage, with L. pneumophila and Bacillus subtilis spores being the most resistant. (ABSTRACT TRUNCATED)

  19. Monitoring biofouling communities could reduce impacts to mussel aquaculture by allowing synchronisation of husbandry techniques with peaks in settlement.

    Science.gov (United States)

    Sievers, Michael; Dempster, Tim; Fitridge, Isla; Keough, Michael J

    2014-02-01

    Fouling organisms in bivalve aquaculture cause significant economic losses for the industry. Managing biofouling is typically reactive, and involves time- and labour-intensive removal techniques. Mussel spat settlement and biofouling were documented over 20 months at three mussel farms within Port Phillip Bay (PPB), Australia to determine if knowledge of settlement patterns could assist farmers in avoiding biofouling. Mussel spat settlement was largely confined to a 2-month period at one farm. Of the problematic foulers, Ectopleura crocea settlement varied in space and time at all three farms, whilst Ciona intestinalis and Pomatoceros taeniata were present predominantly at one farm and exhibited more distinct settlement periods. Within PPB, complete avoidance of biofouling is impossible. However, diligent monitoring may help farmers avoid peaks in detrimental biofouling species and allow them to implement removal strategies such as manual cleaning, and postpone grading and re-socking practices, until after these peaks.

  20. Hydrophilic, bactericidal nanoheater-enabled reverse osmosis membranes to improve fouling resistance.

    Science.gov (United States)

    Ray, Jessica R; Tadepalli, Sirimuvva; Nergiz, Saide Z; Liu, Keng-Ku; You, Le; Tang, Yinjie; Singamaneni, Srikanth; Jun, Young-Shin

    2015-06-01

    Polyamide (PA) semipermeable membranes typically used for reverse osmosis water treatment processes are prone to fouling, which reduces the amount and quality of water produced. By synergistically coupling the photothermal and bactericidal properties of graphene oxide (GO) nanosheets, gold nanostars (AuNS), and hydrophilic polyethylene glycol (PEG) on PA reverse osmosis membrane surfaces, we have dramatically improved fouling resistance of these membranes. Batch fouling experiments from three classes of fouling are presented: mineral scaling (CaCO3 and CaSO4), organic fouling (humic acid), and biofouling (Escherichia coli). Systematic analyses and a variety of complementary techniques were used to elucidate fouling resistance mechanisms from each layer of modification on the membrane surface. Both mineral scaling and organic fouling were significantly reduced in PA-GO-AuNS-PEG membranes compared to other membranes. The PA-GO-AuNS-PEG membrane was also effective in killing all near-surface bacteria compared to PA membranes. In the PA-GO-AuNS-PEG membrane, the GO nanosheets act as templates for in situ AuNS growth, which then facilitated localized heating upon irradiation by an 808 nm laser inactivating bacteria on the membrane surface. Furthermore, AuNS in the membrane assisted PEG in preventing mineral scaling on the membrane surface. In flow-through flux and foulant rejection tests, PA-GO-AuNS-PEG membranes performed better than PA membranes in the presence of CaSO4 and humic acid model foulants. Therefore, the newly suggested membrane surface modifications will not only reduce fouling from RO feeds, but can improve overall membrane performance. Our innovative membrane design reported in this study can significantly extend the lifetime and water treatment efficacy of reverse osmosis membranes to alleviate escalating global water shortage from rising energy demands.

  1. Drinking water treatment for a rural karst region in Indonesia

    Science.gov (United States)

    Matthies, K.; Schott, C.; Anggraini, A. K.; Silva, A.; Diedel, R.; Mühlebach, H.; Fuchs, S.; Obst, U.; Brenner-Weiss, G.

    2016-09-01

    An interdisciplinary German-Indonesian joint research project on Integrated Water Resources Management (IWRM) focused on the development and exemplary implementation of adapted technologies to improve the water supply situation in a model karst region in southern Java. The project involving 19 sub-projects covers exploration of water resources, water extraction, distribution as well as water quality assurance, and waste water treatment. For the water quality assurance, an appropriate and sustainable drinking water treatment concept was developed and exemplarily implemented. Monitoring results showed that the main quality issue was the contamination with hygienically relevant bacteria. Based on the gained results, a water treatment concept was developed consisting of a central sand filtration prior to the distribution network, a semi-central hygienization where large water volumes are needed to remove bacteria deriving from water distribution and a final point-of-use water treatment. This paper focuses on the development of a central sand filtration plant and some first analysis for the development of a recipe for the local production of ceramic filters for household water treatment. The first results show that arsenic and manganese are leaching from the filters made of local raw material. Though discarding the first, filtrates should be sufficient to reduce arsenic and manganese concentration effectively. Moreover, hydraulic conductivities of filter pots made of 40 % pore-forming agents are presented and discussed.

  2. Effect of biofouling on the performance of amidoxime-based polymeric uranium adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jiyeon; Gill, Gary A.; Strivens, Jonathan E.; Kuo, Li-Jung; Jeters, Robert T.; Avila, Andrew; Wood, Jordana R.; Schlafer, Nicholas J.; Janke, Christopher J.; Miller, Erin A.; Thomas, Mathew; Addleman, Raymond S.; Bonheyo, George T.

    2016-01-27

    The Marine Science Laboratory at the Pacific Northwest National Laboratory evaluated the impact of biofouling on uranium adsorbent performance. A surface modified polyethylene adsorbent fiber provided by Oak Ridge National Laboratory, AF adsorbent, was tested either in the presence or absence of light to simulate deployment in shallow or deep marine environments. 42-day exposure tests in column and flume settings showed decreased uranium uptake by biofouling. Uranium uptake was reduced by up to 30 %, in the presence of simulated sunlight, which also increased biomass accumulation and altered the microbial community composition on the fibers. These results suggest that deployment below the photic zone would mitigate the effects of biofouling, resulting in greater yields of uranium extracted from seawater.

  3. Spatial variation in biofouling of a unionid mussel (Lampsilis siliquoidea) across the western basin of Lake Erie

    Science.gov (United States)

    Larson, James H.; Evans, Mary; Richardson, William B.; Schaeffer, Jeff; Nelson, John

    2016-01-01

    Invasion of North American waters by nonnative Dreissena polymorpha and D. rostriformis bugensishas resulted in declines of the Unionidae family of native North American mussels. Dreissenid mussels biofoul unionid mussels in large numbers and interfere with unionid movement, their acquisition of food, and the native mussels' ability to open and close their shells. Initial expectations for the Great Lakes included extirpation of unionids where they co-occurred with dreissenids, but recently adult and juvenile unionids have been found alive in several apparent refugia. These unionid populations may persist due to reduced dreissenid biofouling in these areas, and/or due to processes that remove biofoulers. For example locations inaccessible to dreissenid veligers may reduce biofouling and habitats with soft substrates may allow unionids to burrow and thus remove dreissenids. We deployed caged unionid mussels (Lampsilis siliquoidea) at 36 sites across the western basin of Lake Erie to assess spatial variation in biofouling and to identify other areas that might promote the persistence or recovery of native unionid mussels. Biofouling ranged from 0.03 – 26.33 g per mussel, reached a maximum in the immediate vicinity of the mouth of the Maumee River, and appeared to primarily consist of dreissenid mussels. A known mussel refugium in the vicinity of a power plant near the mouth of the Maumee actually exhibited very high biofouling rates, suggesting that low dreissenid colonization did not adequately explain unionid survival in this refugium. In contrast, the southern nearshore area of Lake Erie, near another refugium, had very low biofouling. A large stretch of the western basin appeared to have low biofouling rates and muddy substrates, raising the possibility that these open water areas could support remnant and returning populations of unionid mussels. Previous observations of unionid refugia and the occurrence of low biofouling rates in large areas of the western

  4. A Qualitative Survey of Five Antibiotics in a Water Treatment Plant in Central Plateau of Iran

    Directory of Open Access Journals (Sweden)

    Mohsen Heidari

    2013-01-01

    Full Text Available Introduction. This study aimed to survey a total of five common human and veterinary antibiotics based on SPE-LC-MS-MS technology in a water treatment plant at central plateau of Iran. Also two sampling techniques, passive and grab samplings, were compared in the detection of selected antibiotics. Materials and Methods. In January to March 2012, grab and passive samples were taken from the influent and effluent of a water treatment plant. The samples were prepared using solid-phase extraction (SPE, and extracts were analyzed by liquid chromatography tandem mass spectrometry (LC-MS-MS. Results. The results showed that enrofloxacin, oxytetracycline, and tylosin were not detected in none of the samples. However, ampicillin was detected in the grab and passive samples taken from the influent (source water of the plant, and ciprofloxacin was detected in passive samples taken from the influent and effluent (finished water of the plant. Conclusion. The results imply that passive sampling is a better approach than grab sampling for the investigation of antibiotics in aquatic environments. The presence of ampicillin and ciprofloxacin in source water and finished water of the water treatment plant may lead to potential emergence of resistant bacteria that should be considered in future studies.

  5. Marine bio-fouling of different alloys exposed to continuous flowing fresh seawater by electrochemical impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Khalid Al-Muhanna

    2016-07-01

    Full Text Available The petroleum industry and desalination plants suffer from marine bio-fouling problems that have a major role in the stimulation of the corrosion process. Thus, the aim of this study was to investigate the effect of the micro and the macro-organisms, on the corrosion behavior of different alloys used in Kuwait’s industries. The alloys used in this study were; sanicro 28, stainless steel 316L, Cu–Ni 70–30, and titanium. The electrochemical impedance spectroscopy was used in this study in order to determine the corrosion susceptibility of different alloys exposed to continuous fresh seawater. This was achieved by calculating the charge transfer resistance of the metal surface and the resistance of the solution. The total exposure time of the tests was about 180 days. The visual inspection of the tested samples, showed a bio-film formation on the surface of these samples. Also, it was observed that the stainless steel 316, sanicro 28, Cu–Ni 70–30, and titanium alloys exhibited good corrosion resistance.

  6. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    L. C. Rietveld

    2009-06-01

    Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.

  7. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    K. J. Borger

    2008-10-01

    Full Text Available For a drinking water treatment plant simulation, water quality models, a hydraulic model, a process-control model, an object model, data management, training and decision-support features and a graphic user interface have been integrated. The integration of a hydraulic model in the simulator is necessary to correctly determine the division of flows over the plant's lanes and, thus, the flow through the individual treatment units, based on valve positions and pump speeds. The flow through a unit is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes. Using this library, a hydraulic model was set up and validated for the drinking water treatment plant Harderbroek.

  8. Biofouling and corrosion studies. Final report, Part I, May 1, 1976-December 1977

    Energy Technology Data Exchange (ETDEWEB)

    Mahalingam, L. M.

    1978-01-01

    Three sets of biofouling experiments were conducted. Two of these sets were done in the Pacific Ocean at Keahole Point, Hawaii, and one was in the Caribbean at St. Croix, Virgin Islands. Data and results from these experiments are presented and discussed. Heat transfer, biological, and metallurgical measurements are presented. A brief account of the data analysis procedures, and an assessment of the hardware performance are given. Recommendations are made to improve the quality of the current efforts in the OTEC Biofouling, Corrosion and Materials program.

  9. In Situ Potentiometry and Ellipsometry: A Promising Tool to Study Biofouling of Potentiometric Sensors.

    Science.gov (United States)

    Lisak, Grzegorz; Arnebrant, Thomas; Lewenstam, Andrzej; Bobacka, Johan; Ruzgas, Tautgirdas

    2016-03-15

    In situ potentiometry and null ellipsometry was combined and used as a tool to follow the kinetics of biofouling of ion-selective electrodes (ISEs). The study was performed using custom-made solid-contact K(+)-ISEs consisting of a gold surface with immobilized 6-(ferrocenyl)hexanethiol as ion-to-electron transducer that was coated with a potassium-selective plasticized polymer membrane. The electrode potential and the ellipsometric signal (corresponding to the amount of adsorbed protein) were recorded simultaneously during adsorption of bovine serum albumin (BSA) at the surface of the K(+)-ISEs. This in situ method may become useful in developing sensors with minimized biofouling.

  10. Pectinatella magnifica (Leidy, 1851) (Bryozoa, Phylactolaemata), a biofouling bryozoan recently introduced to China

    Science.gov (United States)

    Wang, Baoqiang; Wang, Hongzhu; Cui, Yongde

    2016-09-01

    Freshwater biofouling threatens a variety of human activities, from the supply of water and energy to recreation. Several species of freshwater bryozoans are notorious for clogging pipes and filters but have been relatively poorly studied to date. We report, for the first time, a biofouling species of freshwater bryozoan, Pectinatella magnifica (Leidy, 1851), from several freshwater rivers, lakes and ponds in China. A complete description, national distribution and the fouling problems are provided. Exactly how Pectinatella magnifica arrived in China remains unclear, but anthropochory and zoochory are considered to be important dispersal pathways.

  11. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  12. Online Produced Water Treatment Catalog and Decision Tool

    Energy Technology Data Exchange (ETDEWEB)

    J. Arthur

    2012-03-31

    The objective of this project was to create an internet-based Water Treatment Technology Catalog and Decision Tool that will increase production, decrease costs and enhance environmental protection. This is to be accomplished by pairing an operator's water treatment cost and capacity needs to specific water treatments. This project cataloged existing and emerging produced water treatment technologies and allows operators to identify the most cost-effective approaches for managing their produced water. The tool captures the cost and capabilities of each technology and the disposal and beneficial use options for each region. The tool then takes location, chemical composition, and volumetric data for the operator's water and identifies the most cost effective treatment options for that water. Regulatory requirements or limitations for each location are also addressed. The Produced Water Treatment Catalog and Decision Tool efficiently matches industry decision makers in unconventional natural gas basins with: 1) appropriate and applicable water treatment technologies for their project, 2) relevant information on regulatory and legal issues that may impact the success of their project, and 3) potential beneficial use demands specific to their project area. To ensure the success of this project, it was segmented into seven tasks conducted in three phases over a three year period. The tasks were overseen by a Project Advisory Council (PAC) made up of stakeholders including state and federal agency representatives and industry representatives. ALL Consulting has made the catalog and decision tool available on the Internet for the final year of the project. The second quarter of the second budget period, work was halted based on the February 18, 2011 budget availability; however previous project deliverables were submitted on time and the deliverables for Task 6 and 7 were completed ahead of schedule. Thus the application and catalog were deployed to the public

  13. Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors.

    Science.gov (United States)

    Wang, Xinhua; Zhao, Yanxiao; Yuan, Bo; Wang, Zhiwei; Li, Xiufen; Ren, Yueping

    2016-02-01

    There are two types of popular forward osmosis (FO) membrane materials applied for researches on FO process, cellulose triacetate (CTA) and thin film composite (TFC) polyamide. However, performance and fouling mechanisms of commercial TFC FO membrane in osmotic membrane bioreactors (OMBRs) are still unknown. In current study, its biofouling behaviors in OMBRs were investigated and further compared to the CTA FO membrane. The results indicated that β-D-glucopyranose polysaccharides and microorganisms accounted for approximately 77% of total biovolume on the CTA FO membrane while β-D-glucopyranose polysaccharides (biovolume ratio of 81.1%) were the only dominant biofoulants on the TFC FO membrane. The analyses on the biofouling structure implied that a tighter biofouling layer with a larger biovolume was formed on the CTA FO membrane. The differences in biofouling behaviors including biofoulants composition and biofouling structure between CTA and TFC FO membranes were attributed to different membrane surface properties.

  14. Predicting the residual aluminum level in water treatment process

    OpenAIRE

    J. Tomperi; M. Pelo; K. Leiviskä

    2012-01-01

    In water treatment processes, aluminum salts are widely used as coagulation chemical. High dose of aluminum has been proved to be at least a minor health risk and some evidence points out that aluminum could increase the risk of Alzheimer's disease thus it is important to minimize the amount of residual aluminum in drinking water and water used at food industry. In this study, the data of a water treatment plant (WTP) was analyzed and the residual aluminum in drinking water was predicted usin...

  15. Predicting the residual aluminum level in water treatment process

    OpenAIRE

    J. Tomperi; M. Pelo; K. Leiviskä

    2013-01-01

    In water treatment processes, aluminum salts are widely used as coagulation chemical. High dose of aluminum has been proved to be at least a minor health risk and some evidence points out that aluminum could increase the risk of Alzheimer's disease. Thus it is important to minimize the amount of residual aluminum in drinking water and water used at food industry. In this study, the data of a water treatment plant (WTP) was analyzed and the residual aluminum in drinking water was predicted usi...

  16. Water Treatment Plants, Water Treatment Plants, Published in 2010, 1:24000 (1in=2000ft) scale, Lafayette County Land Records.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:24000 (1in=2000ft) scale as of 2010. It is described as 'Water Treatment Plants'. Data by this publisher are...

  17. COST ESTIMATION MODELS FOR DRINKING WATER TREATMENT UNIT PROCESSES

    Science.gov (United States)

    Cost models for unit processes typically utilized in a conventional water treatment plant and in package treatment plant technology are compiled in this paper. The cost curves are represented as a function of specified design parameters and are categorized into four major catego...

  18. Produced water treatment for beneficial use: emulsified oil removal

    NARCIS (Netherlands)

    Waisi, B.I.H.

    2016-01-01

    The development of novel carbon material, high accessible surface area, interconnected porosity, and stable nanofiber nonwoven media for emulsified oil droplets separation from oily wastewater, in particular for oilfields produced water treatment, is discussed in this thesis. Firstly, the quantity a

  19. Introducing Water-Treatment Subjects into Chemical Engineering Education.

    Science.gov (United States)

    Caceres, L.; And Others

    1992-01-01

    Proposes that inclusion of waste water treatment subjects within the chemical engineering curriculum can provide students with direct access to environmental issues from both a biotechnological and an ethical perspective. The descriptive details of water recycling at a copper plant and waste water stabilization ponds exemplify this approach from…

  20. Waste water treatment through public-private partnerships

    DEFF Research Database (Denmark)

    Carpintero, Samuel; Petersen, Ole Helby

    2014-01-01

    This paper analyses the experience of the regional government of Aragon (Spain) that has extensively used public-private partnerships for the construction and operation of waste water treatment plants. The paper argues that although overall the implementation of this PPP program might be considered...

  1. Investigation Of Ballast Water Treatment’s Effect On Corrosion

    Science.gov (United States)

    2013-03-01

    treatment methods on various alloys routinely encountered in ballast tanks and ballast water systems aboard both fresh water and ocean going vessels...Controlled laboratory tests were conducted using simulated chlorination, deoxygenation and chlorine dioxide disinfection. Materials were exposed to three...far as is practicable. 17. Key Words Corrosion, ballast water treatment, deoxygenation , chlorination, chlorine dioxide 18. Distribution

  2. EVALUATING A COMPOSITE CARTRIDGE FOR SMALL SYSTEM DRINKING WATER TREATMENT

    Science.gov (United States)

    A multi-layer, cartridge-based system that combines physical filtration with carbon adsorption and ultraviolet (UV) light disinfection has been developed to perform as a water treatment security device to protect homes against accidental or intentional contaminant events. A seri...

  3. Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates

    Directory of Open Access Journals (Sweden)

    Manoj A. Lazar

    2012-12-01

    Full Text Available Photocatalytic water treatment using nanocrystalline titanium dioxide (NTO is a well-known advanced oxidation process (AOP for environmental remediation. With the in situ generation of electron-hole pairs upon irradiation with light, NTO can mineralize a wide range of organic compounds into harmless end products such as carbon dioxide, water, and inorganic ions. Photocatalytic degradation kinetics of pollutants by NTO is a topic of debate and the mostly reporting Langmuir-Hinshelwood kinetics must accompanied with proper experimental evidences. Different NTO morphologies or surface treatments on NTO can increase the photocatalytic efficiency in degradation reactions. Wisely designed photocatalytic reactors can decrease energy consumption or can avoid post-separation stages in photocatalytic water treatment processes. Doping NTO with metals or non-metals can reduce the band gap of the doped catalyst, enabling light absorption in the visible region. Coupling NTO photocatalysis with other water-treatment technologies can be more beneficial, especially in large-scale treatments. This review describes recent developments in the field of photocatalytic water treatment using NTO.

  4. Selenium-Water Treatment Residual Adsorption And Characterization

    Science.gov (United States)

    Aluminum-based water treatment residuals (WTR) have the ability to adsorb tremendous quantities of soil-borne P, and have been shown to adsorb other anions, such as As (V), As (III), and ClO4-. Environmental issues associated with Se in the Western US led us to study W...

  5. Selenium Adsorption To Aluminum-Based Water Treatment Residuals

    Science.gov (United States)

    Aluminum-based water treatment residuals (WTR) can adsorb water-and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solut...

  6. An Analysis of the Waste Water Treatment Operator Occupation.

    Science.gov (United States)

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  7. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    Science.gov (United States)

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  8. Hot water treatments delay cold-induced banana peel blackening

    NARCIS (Netherlands)

    Promyou, S.; Ketsa, S.; Doorn, van W.G.

    2008-01-01

    Banana fruit of cv. Gros Michel (Musa acuminata, AAA Group, locally called cv. Hom Thong) and cv. Namwa (Musa x paradisiaca, ABB Group) were immersed for 5, 10 and 15 min in water at 42 degrees C, or in water at 25 degrees C (control), and were then stored at 4 degrees C. Hot water treatment for 15

  9. Non-Indigenous Marine Species (NIMS) in Biofouling on RAN Vessels: Threat Analysis

    Science.gov (United States)

    2015-09-01

    transects over the entire hull length, as well as still- photography of biofouling found on the hulls were taken (Figure 1), along with sample...Willan from the Museum and Art Gallery of the Northern Territory (MAGNT). These were; Saccostrea cucullata, Planostrea pestigris, Pteria cooki

  10. The impact and control of biofouling in marine aquaculture: a review.

    Science.gov (United States)

    Fitridge, Isla; Dempster, Tim; Guenther, Jana; de Nys, Rocky

    2012-01-01

    Biofouling in marine aquaculture is a specific problem where both the target culture species and/or infrastructure are exposed to a diverse array of fouling organisms, with significant production impacts. In shellfish aquaculture the key impact is the direct fouling of stock causing physical damage, mechanical interference, biological competition and environmental modification, while infrastructure is also impacted. In contrast, the key impact in finfish aquaculture is the fouling of infrastructure which restricts water exchange, increases disease risk and causes deformation of cages and structures. Consequently, the economic costs associated with biofouling control are substantial. Conservative estimates are consistently between 5-10% of production costs (equivalent to US$ 1.5 to 3 billion yr(-1)), illustrating the need for effective mitigation methods and technologies. The control of biofouling in aquaculture is achieved through the avoidance of natural recruitment, physical removal and the use of antifoulants. However, the continued rise and expansion of the aquaculture industry and the increasingly stringent legislation for biocides in food production necessitates the development of innovative antifouling strategies. These must meet environmental, societal, and economic benchmarks while effectively preventing the settlement and growth of resilient multi-species consortia of biofouling organisms.

  11. Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property.

    Science.gov (United States)

    Li, Lin; Yan, Bin; Yang, Jingqi; Chen, Lingyun; Zeng, Hongbo

    2015-02-18

    A novel mussel-inspired injectable hydrogel with self-healing and anti-biofouling capabilities is developed and it possesses great potential as a drug-delivery carrier. The hydrogel can heal autonomously from repeated structural damage and also effectively prevent non-specific cell attachment and biofilm formation.

  12. Mitigation of marine biofouling on tubes of open rack vaporizers using electromagnetic fields.

    Science.gov (United States)

    Trueba, Alfredo; Vega, Luis M; García, Sergio; Otero, Félix M; Madariaga, Ernesto

    2016-01-01

    This study quantitatively evaluates the antifouling action of the continuous physical treatment with electromagnetic fields (EMFs) of seawater used as heat exchanger fluid in an open rack vaporizer (ORV) pilot plant to reduce the growth of biofouling on external rib-tube surfaces. The results demonstrate that the biofilm adhered on the treated rib-tubes was reduced by 33% in thickness and by 44% in dissolved solids regarding the biofilm adhered on the untreated control rib-tubes. The lower conductivity and Ca(2+) and Mg(2+) ionic content in the effluent of the treated seawater confirmed that the EMFs accelerated the process of ionic calcium nucleation and precipitation as calcium carbonate. The precipitation of ions dissolved affected the inter-molecular interactions among extracellular polymers, thereby weakening the biofouling film matrix and reducing its adhesion capacity. The drag of small particles by the flow of seawater had an erosive action and decreased the biofouling film thickness. Consequently, the antifouling methods treatment with EMFs allowed reduce the negative effect that the biofouling have for the heat transfer equipment used in the regasification process and keep the highest techno-economic operating conditions.

  13. Development of a setup to enable stable and accurate flow conditions for membrane biofouling studies

    KAUST Repository

    Bucs, Szilard

    2015-07-10

    Systematic laboratory studies on membrane biofouling require experimental conditions that are well defined and representative for practice. Hydrodynamics and flow rate variations affect biofilm formation, morphology, and detachment and impacts on membrane performance parameters such as feed channel pressure drop. There is a suite of available monitors to study biofouling, but systems to operate monitors have not been well designed to achieve an accurate, constant water flow required for a reliable determination of biomass accumulation and feed channel pressure drop increase. Studies were done with membrane fouling simulators operated in parallel with manual and automated flow control, with and without dosage of a biodegradable substrate to the feedwater to enhance biofouling rate. High flow rate variations were observed for the manual water flow system (up to ≈9%) compared to the automatic flow control system (<1%). The flow rate variation in the manual system was strongly increased by biofilm accumulation, while the automatic system maintained an accurate and constant water flow in the monitor. The flow rate influences the biofilm accumulation and the impact of accumulated biofilm on membrane performance. The effect of the same amount of accumulated biomass on the pressure drop increase was related to the linear flow velocity. Stable and accurate feedwater flow rates are essential for biofouling studies in well-defined conditions in membrane systems. © 2015 Balaban Desalination Publications. All rights reserved.

  14. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    Science.gov (United States)

    Yoshida, Kento; Kanematsu, Hideyuki; Kuroda, Daisuke; Ikigai, Hajime; Kogo, Takeshi; Yokoyama, Seiji

    2012-03-01

    Nowadays, corrosion of metals brings us serious economic loss and it often reaches several percentage of GNP. Particularly the marine corrosion was serious and the counter measure was very hard to be established, since the number of factors is huge and complicated. One of the complicated factors in marine corrosion is biofouling. Biofouling was classified into two main categories, microfouling and macrofouling. The former is composed of biofilm formation mainly. Marine bacteria are attached to material surfaces, seeking for nutrition in oligotrophic environment and they excrete polysaccharide to form biofilm on metal surfaces. Then larger living matters are attached on the biofilms to develop biofouling on metal surfaces, which often lead loss and failures of metals in marine environments. From the viewpoint of corrosion protection and maintenance of marine structures, biofouling should be mitigated as much as possible. In this study, we applied spray coating to steels and investigated if chromium-nickel spray coating could mitigate the biofouling, being compared with the conventional aluminium-zinc spray coating in marine environments. The specimens used for this investigation are aluminium, zinc, aluminium-zinc, stacked chromium/nickel and those films were formed on carbon steel (JIS SS400). And the pores formed by spray coating were sealed by a commercial reagent for some specimens. All of those specimens were immersed into sea water located at Marina Kawage (854-3, Chisato, Tsu, Mie Prefecture) in Ise Bay for two weeks. The depth of the specimen was two meter from sea water surface and the distance was always kept constant, since they were suspended from the floating pier. The temperature in sea water changed from 10 to 15 degrees Celsius during the immersion test. The biofouling behavior was investigated by low vacuum SEM (Hitachi Miniscope TM1000) and X-ray fluorescent analysis. When the spray coated specimens with and without sealing agents were compared

  15. Do biological-based strategies hold promise to biofouling control in MBRs?

    KAUST Repository

    Malaeb, Lilian

    2013-10-01

    Biofouling in membrane bioreactors (MBRs) remains a primary challenge for their wider application, despite the growing acceptance of MBRs worldwide. Research studies on membrane fouling are extensive in the literature, with more than 200 publications on MBR fouling in the last 3 years; yet, improvements in practice on biofouling control and management have been remarkably slow. Commonly applied cleaning methods are only partially effective and membrane replacement often becomes frequent. The reason for the slow advancement in successful control of biofouling is largely attributed to the complex interactions of involved biological compounds and the lack of representative-for-practice experimental approaches to evaluate potential effective control strategies. Biofouling is driven by microorganisms and their associated extra-cellular polymeric substances (EPS) and microbial products. Microorganisms and their products convene together to form matrices that are commonly treated as a black box in conventional control approaches. Biological-based antifouling strategies seem to be a promising constituent of an effective integrated control approach since they target the essence of biofouling problems. However, biological-based strategies are in their developmental phase and several questions should be addressed to set a roadmap for translating existing and new information into sustainable and effective control techniques. This paper investigates membrane biofouling in MBRs from the microbiological perspective to evaluate the potential of biological-based strategies in offering viable control alternatives. Limitations of available control methods highlight the importance of an integrated anti-fouling approach including biological strategies. Successful development of these strategies requires detailed characterization of microorganisms and EPS through the proper selection of analytical tools and assembly of results. Existing microbiological/EPS studies reveal a number of

  16. Do biological-based strategies hold promise to biofouling control in MBRs?

    Science.gov (United States)

    Malaeb, Lilian; Le-Clech, Pierre; Vrouwenvelder, Johannes S; Ayoub, George M; Saikaly, Pascal E

    2013-10-01

    Biofouling in membrane bioreactors (MBRs) remains a primary challenge for their wider application, despite the growing acceptance of MBRs worldwide. Research studies on membrane fouling are extensive in the literature, with more than 200 publications on MBR fouling in the last 3 years; yet, improvements in practice on biofouling control and management have been remarkably slow. Commonly applied cleaning methods are only partially effective and membrane replacement often becomes frequent. The reason for the slow advancement in successful control of biofouling is largely attributed to the complex interactions of involved biological compounds and the lack of representative-for-practice experimental approaches to evaluate potential effective control strategies. Biofouling is driven by microorganisms and their associated extra-cellular polymeric substances (EPS) and microbial products. Microorganisms and their products convene together to form matrices that are commonly treated as a black box in conventional control approaches. Biological-based antifouling strategies seem to be a promising constituent of an effective integrated control approach since they target the essence of biofouling problems. However, biological-based strategies are in their developmental phase and several questions should be addressed to set a roadmap for translating existing and new information into sustainable and effective control techniques. This paper investigates membrane biofouling in MBRs from the microbiological perspective to evaluate the potential of biological-based strategies in offering viable control alternatives. Limitations of available control methods highlight the importance of an integrated anti-fouling approach including biological strategies. Successful development of these strategies requires detailed characterization of microorganisms and EPS through the proper selection of analytical tools and assembly of results. Existing microbiological/EPS studies reveal a number of

  17. Immobilization of silver in polypropylene membrane for anti-biofouling performance.

    Science.gov (United States)

    Zhu, Xiaoying; Tang, Lin; Wee, Kin-Ho; Zhao, Yong-Hong; Bai, Renbi

    2011-08-01

    In this study, a method was developed to immobilize silver onto polypropylene (PP) membrane surfaces for improved anti-biofouling performance. A commercial PP membrane was first grafted with the thiol functional groups, and then silver ions were immobilized onto the PP membrane surface through coordinating with the thiol groups. The immobilized silver was found to be very stable, with only ~1.1% of the immobilized silver being leached out during a leaching test. The surface of the modified membrane (PPS-Ag) was examined with ATR-FTIR and XPS analysis, which verified the successful grafting of the thiol groups and the coordination of silver ions on the membrane surface. The surface properties of the membrane were also characterized by SEM, AFM and water contact angle measurements. The PPS-Ag membrane was found to have a smoother and more hydrophilic surface than the PP membrane. Both Gram-negative bacteria, Escherichia coli, and Gram-positive bacteria, Staphylococcus aureus, were used to evaluate the antibacterial and anti-biofouling performance of the PPS-Ag membrane. From disk diffusion experiments, the PPS-Ag membrane exhibited the capability of inhibiting the growth of both the Gram-negative and Gram-positive bacteria tested. The anti-biofouling performance of the membrane was assessed by immersion in a mixed suspension of E. coli and S. aureus and filtration tests. The PPS-Ag membrane showed a stable and significantly enhanced anti-biofouling performance as compared with the PP membrane. The results in this study demonstrate that biofouling of a PP membrane can be sufficiently overcome through immobilizing silver onto the membrane surface.

  18. An Ontology-Driven Dependable Water Treatment Plant CPS

    Directory of Open Access Journals (Sweden)

    SANISLAV Teodora

    2013-05-01

    Full Text Available The paper introduces an ontology-drivenCyber-Physical System with dependability features tocontrol, monitor and diagnose a water treatment plant,with emphasis on the ontology, as a new approach forthe existing industrial control systems used in thisfield. The proposed dependability ontology is based ona fault forecasting technique, a qualitative evaluationof the water treatment plant Cyber-Physical Systembehaviour - Failure Modes and Effects Analysis. Theontology has two important parts: one is the ontologyof faults including several categories of system faultsand the other is the ontology of failures includingseveral categories of system failures. The dependabilityontology plays a central role in the Cyber-PhysicalSystem architecture and drives various aspects of thissystem, especially the ones related to system diagnosis.

  19. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    Energy Technology Data Exchange (ETDEWEB)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  20. Biofouling community composition across a range of environmental conditions and geographical locations suitable for floating marine renewable energy generation.

    Science.gov (United States)

    Macleod, Adrian K; Stanley, Michele S; Day, John G; Cook, Elizabeth J

    2016-01-01

    Knowledge of biofouling typical of marine structures is essential for engineers to define appropriate loading criteria in addition to informing other stakeholders about the ecological implications of creating novel artificial environments. There is a lack of information regarding biofouling community composition (including weight and density characteristics) on floating structures associated with future marine renewable energy generation technologies. A network of navigation buoys were identified across a range of geographical areas, environmental conditions (tidal flow speed, temperature and salinity), and deployment durations suitable for future developments. Despite the perceived importance of environmental and temporal factors, geographical location explained the greatest proportion of the observed variation in community composition, emphasising the importance of considering geography when assessing the impact of biofouling on device functioning and associated ecology. The principal taxa associated with variation in biofouling community composition were mussels (Mytilus edulis), which were also important when determining loading criteria.

  1. Evaluation of the sea anemone Anthothoe albocincta as an augmentative biocontrol agent for biofouling on artificial structures.

    Science.gov (United States)

    Atalah, Javier; Bennett, Holly; Hopkins, Grant A; Forrest, Barrie M

    2013-01-01

    Augmentative biocontrol, defined as the use of indigenous natural enemies to control pest populations, has not been explored extensively in marine systems. This study tested the potential of the anemone Anthothoe albocincta as a biocontrol agent for biofouling on submerged artificial structures. Biofouling biomass was negatively related to anemone cover. Treatments with high anemone cover (>35%) led to significant changes in biofouling assemblages compared to controls. Taxa that contributed to these changes differed among sites, but included reductions in cover of problematic fouling organisms, such as solitary ascidians and bryozoans. In laboratory trials, A. albocincta substantially prevented the settlement of larvae of the bryozoan Bugula neritina when exposed to three levels of larval dose, suggesting predation as an important biocontrol mechanism, in addition to space pre-emption. This study demonstrated that augmentative biocontrol using anemones has the potential to reduce biofouling on marine artificial structures, although considerable further work is required to refine this tool before its application.

  2. Cooling water treatment - Processes and regulations; Kuehlwasserbehandlung - Verfahren und Vorschriften

    Energy Technology Data Exchange (ETDEWEB)

    Kirsten, J. [Aquatech GmbH, Nieder-Olm (Germany)

    1998-09-01

    Determination of optimal water treatment methods is to be based on requirements set by technical specifications, economic efficiency aspects, and legal regulations. It is an important task and should be done by experts in cooperation with the responsible supervisory bodies. (orig./CB) [Deutsch] Zusammenfassend kann gesagt werden, dass bei der Auswahl des optimalen Verfahrens einer Kuehlwasserbehandlung technische Anforderungen, wirtschaftliche Vorgaben und behoerdliche Auflagen gleichermassen beruecksichtigt werden muessen. Diese Aufgabe sollte von Fachleuten wahrgenommen und mit den zustaendigen Behoerden abgestimmt werden. (orig.)

  3. Automatic devices for electrochemical water treatment with cooling of electrolyte

    Directory of Open Access Journals (Sweden)

    Trišović Tomislav Lj.

    2016-01-01

    Full Text Available The most common disinfectants for water treatment are based on chlorine and its compounds. Practically, water treatments with chlorine compounds have no alternative, since they provide, in comparison to other effective processes such as ozonization or ultraviolet irradiation, high residual disinfection capacity. Unfortunately, all of chlorine-based compounds for disinfection tend to degrade during storage, thus reducing the concentration of active chlorine. Apart from degradation, additional problems are transportation, storage and handling of such hazardous compounds. Nowadays, a lot of attention is paid to the development of electrochemical devices for in situ production of chlorine dioxide or sodium hypochlorite as efficient disinfectants for water treatment. The most important part of such a device is the electrochemical reactor. Electrochemical reactor uses external source of direct current in order to produce disinfectants in electrochemical reactions occurring at the electrodes. Construction of an electrochemical device for water treatment is based on evaluation of optimal conditions for electrochemical reactions during continues production of disinfectants. The aim of this study was to develop a low-cost electrochemical device for the production of disinfectant, active chlorine, at the place of its usage, based on newly developed technical solutions and newest commercial components. The projected electrochemical device was constructed and mounted, and its operation was investigated. Investigations involved both functionality of individual components and device in general. The major goal of these investigations was to achieve maximal efficiency in extreme condition of elevated room temperature and humidity with a novel device construction involving coaxial heat exchanger at the solution inlet. Room operation of the proposed device was investigated when relative humidity was set to 90% and the ambient temperature of 38°C. The obtained

  4. A Prototype of Industrial Waste Water Treatment Using Electrocoagulation

    OpenAIRE

    Boriboonsuksri Phonnipha; Jun-krob Natth

    2017-01-01

    This paper proposes a construct of electrocoagulation waste water treatment system. The system consists of reactor tank, skimmer, cyclone tank and sediment tank. Waste water is feed into reactor tank. The electrochemical reaction is made emulsification to waste water. The contaminants are removed from waste water and can be divided to two kinds: light weight suspensions be floating up and another be sediment. The flocculants are skim out and the sediments are pumped out to sludge container. A...

  5. Hydraulic modelling of drinking water treatment plant operations

    OpenAIRE

    L. C. Rietveld; Borger, K.J.; Van Schagen, K.M.; Mesman, G.A.M.; G. I. M. Worm

    2008-01-01

    For a drinking water treatment plant simulation, water quality models, a hydraulic model, a process-control model, an object model, data management, training and decision-support features and a graphic user interface have been integrated. The integration of a hydraulic model in the simulator is necessary to correctly determine the division of flows over the plant's lanes and, thus, the flow through the individual treatment units, based on valve positions and pump speeds. The flow through a un...

  6. Studies on water treatment by adsorption. Kyuchaku ni yoru mizushori

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, M. (The University of Tokyo, Tokyo (Japan). Institute of Industrial Science)

    1994-06-05

    This paper summarizes studies on the water treatment by adsorption, as for the adsorption during water treatment, reactivation of activated charcoal, and clarification of heating process. Reactivation of activated charcoal for the water treatment is carried out through drying in the heating furnace. Basic problems are the recovery degree of adsorption performance of reactivated activated charcoal and the recovery yield. Behavior of the activated charcoal in the heating reactivation furnace is divided into three stages including drying process, heating process, and gasification process. Among these processes, behaviors of organic matters during heating process are described. Thermogravimetric analyses (TGA) were conducted for activated charcoals adsorbing various organic matters in aqueous solutions. Three types of organic matters were classified from the TGA pattern, i.e., organic matters with relatively low boiling point (type-I), organic matters with higher boiling point (type-II), and phenol and lignin (type-III). Organic matters belonging to type-I and type-II are desorbed or decomposed, to be disappeared. Effectiveness of alkali cleaning is suggested for the type-III organic matters. 3 refs., 5 figs.

  7. Aluminum-Based Water Treatment Residue Reuse for Phosphorus Removal

    Directory of Open Access Journals (Sweden)

    Lai Yoke Lee

    2015-04-01

    Full Text Available Aluminum-based water treatment residue (Al-WTR generated during the drinking water treatment process is a readily available recycled material with high phosphorus (P adsorption capacity. The P adsorption capacity of Al-WTR generated from Singapore’s water treatment plant was evaluated with reference to particle size range, adsorption pH and temperature. Column tests, with WTR amendments in sand with and without compost, were used to simulate the bioretention systems. The adsorption rate decreased with increasing WTR sizes. Highest P adsorption capacity, 15.57 mg PO43−-P/g WTR, was achieved using fine WTR particles (>50% particles at less than 0.30 mm. At pH 4, the contact time required to reduce effluent P concentration to below the detectable range was half compared with pH 7 and 9. The adsorption rate observed at 40 ± 2 °C was 21% higher compared with that at 30 ± 2 °C. Soil mixes amended with 10% WTR and compost were able to maintain consistently high (90% total phosphorus (TP removal efficiency at a TP load up to 6.45 g/m3. In contrast, TP removal efficiencies associated with columns without WTR amendment decreased to less than 45% as the TP load increased beyond 4.5 g/m3. The results showed that WTR application is beneficial for enhanced TP removal in bioretention systems.

  8. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  9. Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of lysine.

    Science.gov (United States)

    Zhi, Xuelian; Li, Pengfei; Gan, Xucheng; Zhang, Weiwei; Shen, Tianjiao; Yuan, Jiang; Shen, Jian

    2014-01-01

    Inspired by the composition of adhesive proteins in mussels, we used self-polymerized dopamine to form a thin and surface-adherent polydopamine layer onto poly(ethylene terephthalate) (PET) sheet, followed by covalently grafting lysine (Lys) to improve hemocompatibility and anti-biofouling property. The obtained surfaces were characterized by water contact angle measurements, attenuated total reflectance Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis. The results of platelet adhesion and protein adsorption tests showed that Lys-immobilized PET was endowed with improved resistance to nonspecific protein adsorption and platelet adhesion. Cell assay results showed that PET-g-Lys surface could greatly inhibit NIH 3T3 cell adhesion. These works provide a facile hemocompatible and anti-fouling surface for biomedical applications.

  10. On biofouling of microplastic particles of different shapes - some mathematics

    Science.gov (United States)

    Bagaeva, Margarita; Chubarenko, Irina

    2016-04-01

    Transport of microplastic particles in marine environment is difficult to quantify because their physical properties may vary with time. We made an attempt to analyse the behaviour of slightly buoyant particles (e.g., polyethylene, polypropylene), most critical process for which is their fouling: it leads to an increase in the mean particle density and its sinking. Fouling covers the surface of a relatively light particle by a denser growing film; thus, the rate of increase in the total mass is directly proportional to the surface area, and the faster the fouling process is - the sooner the mean particle density reaches the water density; the particle begins sinking, leaves the surface layer with stronger currents and can no longer be transported too far. A simplified model of biofouling in marine environment of a slightly buoyant microplastics (ρp ρw) increases with time at constant rate, and thus it can be considered as time. Geometrical considerations link surface area of particles of different shapes with time rate of increase in its mass due to fouling up to the water density. Geometrical calculations demonstrate that, for the same mass of plastic material, many small particles have larger surface area than one single large particle, and this way - macroplastics will stay longer at the water surface than microplastics. For spherical particles, the time of fouling up to the water density is directly proportional to the radius of a sphere: τsink ˜ R0/ 3n, where n = R0/ R, i.e., if the particle of radius R0reaches the water density in time τsink, the particle of radius R0/3 requires only τsink/9. Spherical shape has (for the given mass m0) the minimum surface area among all other possible shapes in 3-d space. The calculations performed for the same mass m0 have shown that the ratio of surface areas of a sphere (diameter 5 mm), a film (thickness of 15-30 microns) and a fibre (diameter of 30-100 microns) is about 1 / (50- 100) / (30-110) and thus, fibres

  11. Control of marine biofouling and medical biofilm formation with engineered topography

    Science.gov (United States)

    Schumacher, James Frederick

    Biofouling is the unwanted accumulation and growth of cells and organisms on clean surfaces. This process occurs readily on unprotected surfaces in both the marine and physiological environments. Surface protection in both systems has typically relied upon toxic materials and biocides. Metallic paints, based on tin and copper, have been extremely successful as antifouling coatings for the hulls of ships by killing the majority of fouling species. Similarly, antibacterial medical coatings incorporate metal-containing compounds such as silver or antibiotics that kill the bacteria. The environmental concerns over the use of toxic paints and biocides in the ocean, the developed antibiotic resistance of bacterial biofilms, and the toxicity concerns with silver suggest the need for non-toxic and non-kill solutions for these systems. The manipulation of surface topography on non-toxic materials at the size scale of the fouling species or bacteria is one approach for the development of alternative coatings. These surfaces would function simply as a physical deterrent of settlement of fouling organisms or a physical obstacle for the adequate formation of a bacterial biofilm without the need to kill the targeted microorganisms. Species-specific topographical designs called engineered topographies have been designed, fabricated and evaluated for potential applications as antifouling marine coatings and material surfaces capable of reducing biofilm formation. Engineered topographies fabricated on the surface of a non-toxic, polydimethylsiloxane elastomer, or silicone, were shown to significantly reduce the attachment of zoospores of a common ship fouling green algae (Ulva) in standard bioassays versus a smooth substrate. Other engineered topographies were effective at significantly deterring the settlement of the cyprids of barnacles (Balanus amphitrite). These results indicate the potential use of engineered topography applied to non-toxic materials as an environmentally

  12. Evaluation of fouling formation and evolution on hollow fibre membrane: effects of ageing and chemical exposure on biofoulant.

    Science.gov (United States)

    Xu, Qianhui; Ye, Yun; Chen, Vicki; Wen, Xianghua

    2015-01-01

    Bio-deposition and biofouling, a major challenge for membrane filtration, is still not fully understood due to its complex structure and intricate evolution with time and chemical environment. In this work, diluted sludge from an anaerobic bioreactor with low mixed liquor suspended solid (MLSS) concentration was filtered for 3.5 h to form initial fouling layers which were then exposed to various solution environments for 17 h. Apart from monitoring the hydraulic resistance of membrane fouling, a real time direct observation (DO) technique was applied to monitor the change of thickness in the fouling layer. The cohesion and adhesion of different fouling layer were investigated by monitoring the transmembrane pressure (TMP) and thickness change after applying relaxation (cessation of filtration) and backwash. It was found that TMPs and resistances of the aged fouling layers increased significantly after 17 h filtration. All the aged fouling layers exhibited lower compressibility as a result of more soluble microbial products (SMP) and extracellular polymeric substances (EPS) excretion, biofilm growth. From in situ imaging, the fouling on the membrane surface appeared to be inhomogeneous from the inner (lumen) surface outwards. During long term filtration of fouling layer with Milli-Q water, direct observation (DO) results indicated the reorganization of the fouling layer in terms of peeling, rolling over and re-depositing on the membrane surface, resulting into more compressed fouling layers with higher resistances. Confocal Laser Scanning Microscopy (CLSM) analysis of aged fouling layers also indicated that the dead/total ratio of microorganisms was not uniform and increased gradually from the bottom to the top of the fouling layers.

  13. 3D imaging provides a high-resolution, volumetric approach for analyzing biofouling.

    Science.gov (United States)

    First, Matthew R; Policastro, Steven A; Strom, Matthew J; Riley, Scott C; Robbins-Wamsley, Stephanie H; Drake, Lisa A

    2014-01-01

    A volumetric approach for determining the fouling burden on surfaces is presented, consisting of a 3D camera imaging system with fine (5 μm) resolution. Panels immersed in an estuary on the southwest coast of Florida, USA were imaged and the data were used to quantify seasonal changes in the biofouling community. Test panels, which were submerged in seawater for up to one year, were analyzed before and after gentle scrubbing to quantify the biovolume of the total fouling community (ie soft and hard organisms) and the hard fouling community. Total biofouling ranged from 0.01 to 1.16 cm(3) cm(-2) throughout the immersion period; soft fouling constituted 22-87% of the total biovolume. In the future, this approach may be used to inform numerical models of fluid-surface interfaces and to evaluate, with high resolution, the morphology of fouling organisms in response to antifouling technologies.

  14. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling.

    Science.gov (United States)

    Leslie, Daniel C; Waterhouse, Anna; Berthet, Julia B; Valentin, Thomas M; Watters, Alexander L; Jain, Abhishek; Kim, Philseok; Hatton, Benjamin D; Nedder, Arthur; Donovan, Kathryn; Super, Elana H; Howell, Caitlin; Johnson, Christopher P; Vu, Thy L; Bolgen, Dana E; Rifai, Sami; Hansen, Anne R; Aizenberg, Michael; Super, Michael; Aizenberg, Joanna; Ingber, Donald E

    2014-11-01

    Thrombosis and biofouling of extracorporeal circuits and indwelling medical devices cause significant morbidity and mortality worldwide. We apply a bioinspired, omniphobic coating to tubing and catheters and show that it completely repels blood and suppresses biofilm formation. The coating is a covalently tethered, flexible molecular layer of perfluorocarbon, which holds a thin liquid film of medical-grade perfluorocarbon on the surface. This coating prevents fibrin attachment, reduces platelet adhesion and activation, suppresses biofilm formation and is stable under blood flow in vitro. Surface-coated medical-grade tubing and catheters, assembled into arteriovenous shunts and implanted in pigs, remain patent for at least 8 h without anticoagulation. This surface-coating technology could reduce the use of anticoagulants in patients and help to prevent thrombotic occlusion and biofouling of medical devices.

  15. Light as a key driver of freshwater biofouling surface roughness in an experimental hydrocanal pipe rig.

    Science.gov (United States)

    Ravizza, Matilde; Giosio, Dean; Henderson, Alan; Hovenden, Mark; Hudson, Monica; Salleh, Sazlina; Sargison, Jane; Shaw, Jennifer L; Walker, Jessica; Hallegraeff, Gustaaf

    2016-07-01

    Biofouling in canals and pipelines used for hydroelectric power generation decreases the flow capacity of conduits. A pipeline rig was designed consisting of test sections of varying substrata (PVC, painted steel) and light levels (transparent, frosted, opaque). Stalk-forming diatoms were abundant in both the frosted and transparent PVC pipes but negligible in the painted steel and opaque PVC pipes. Fungi were slightly more abundant in the painted steel pipe but equally present in all the other pipes while bacterial diversity was similar in all pipes. Photosynthetically functional biofouling (mainly diatoms) was able to develop in near darkness. Different biological fouling compositions generated differing friction factors. The highest friction factor was observed in the transparent pipe (densest diatom fouling), the lowest peak friction for the opaque PVC pipe (lowest fouling biomass), and with the painted steel pipe (high fouling biomass, but composed of fungal and bacterial crusts) being intermediate between the opaque and frosted PVC pipes.

  16. A simple approach to constructing antibacterial and anti-biofouling nanofibrous membranes.

    Science.gov (United States)

    Mei, Yan; Yao, Chen; Li, Xinsong

    2014-01-01

    In this work, antibacterial and anti-adhesive polymeric thin films were constructed on polyacrylonitrile (PAN) nanofibrous membranes in order to extend their applications. Polyhexamethylene guanidine hydrochloride (PHGH) as an antibacterial agent and heparin (HP) as an anti-adhesive agent have been successfully coated onto the membranes via a layer-by-layer (LBL) assembly technique confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), energy-dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The antibacterial properties of LBL-functionalized PAN nanofibrous membranes were evaluated using the Gram-positive bacterium Staphylococcus aureus and the Gram-negative Escherichia coli. Furthermore, the dependence of the antibacterial activity and anti-biofouling performance on the number of layers in the LBL films was investigated quantitatively. It was found that these LBL-modified nanofibrous membranes possessed high antibacterial activities, easy-cleaning properties and stability under physiological conditions, thus qualifying them as candidates for anti-biofouling coatings.

  17. Study on interactions between suspended matter and biofouling formed by treated sewage.

    Science.gov (United States)

    Yang, Qianpeng; Chang, Siyuan; Shi, Lin

    2015-01-01

    Heat exchangers used for treated sewage energy recovery usually suffer from the composite fouling problem, which seriously impairs the heat transfer efficiency. Treated sewage heat exchanger composite fouling is mostly composed of biofouling and is notably affected by interactions between the biofouling and suspended matter. Experiments were performed using simulated treated sewage and two kinds of simulated suspended matter, silicon dioxide particles and polyamide filaments, to model the interactions. Different flow velocities, particle sizes and concentrations were tested with their influences presented by the fouling wet weight changes. Empirical equation and threshold were developed based on the results to predict whether the suspended matter promotes or impedes fouling growth. The results indicate that proper control of the flow velocities, particle sizes and concentrations of suspended matter using empirical equation and threshold can inhibit fouling by reducing unwanted positive interactions and promoting beneficial negative interactions. The filament interactions were analysed and the unique attachment mechanisms of filaments were discussed for the first time.

  18. Vessel generator noise as a settlement cue for marine biofouling species.

    Science.gov (United States)

    McDonald, J I; Wilkens, S L; Stanley, J A; Jeffs, A G

    2014-01-01

    Underwater noise is increasing globally, largely due to increased vessel numbers and international ocean trade. Vessels are also a major vector for translocation of non-indigenous marine species which can have serious implications for biosecurity. The possibility that underwater noise from fishing vessels may promote settlement of biofouling on hulls was investigated for the ascidian Ciona intestinalis. Spatial differences in biofouling appear to be correlated with spatial differences in the intensity and frequency of the noise emitted by the vessel's generator. This correlation was confirmed in laboratory experiments where C. intestinalis larvae showed significantly faster settlement and metamorphosis when exposed to the underwater noise produced by the vessel generator. Larval survival rates were also significantly higher in treatments exposed to vessel generator noise. Enhanced settlement attributable to vessel generator noise may indicate that vessels not only provide a suitable fouling substratum, but vessels running generators may be attracting larvae and enhancing their survival and growth.

  19. Anti-Biofouling Effect of PEG-Grafted Block Copolymer Synthesized by RAFT Polymerization.

    Science.gov (United States)

    Kim, Seon-Mi; Han, Sang Suk; Kim, A Young; Choi, Beom-Jin; Paik, Hyun-Jong; Lee, Inwon; Park, Hyun; Chun, Ho Hwan; Cho, Youngjin; Hwang, Do-Hoon

    2015-10-01

    Poly(glycidyl methadrylate-block-styrene) (PGMA-b-PS), a block copolymer consisting of glycidyl methacrylate and styrene, was synthesized via reversible addition-fragmentation chain transfer living polymerization. The synthesized PGMA-b-PS was then grafted with low-molecular-weight polyethylene glycol (PEG) via epoxy ring opening to give PGMA-g-PEG-b-PS, which was evaluated as an anti-biofouling coating material. As a preliminary test for the anti-biofouling effect, a protein adsorption experiment was performed on the synthesized block copolymer surface. The block copolymers were spin-coated onto silicon wafers, and protein adsorption experiments were carried out using fluorescein isothiocyanate conjugate-labeled bovine serum albumin. The fluorescence intensity of the protein adsorbed on the block copolymer surface was compared with that of a polystyrene film as a reference. The synthesized PGMA-g-PEG-b-PS film showed much lower fluorescence intensity than that of the PS film.

  20. Biofouling control by quorum sensing inhibition and its dependence on membrane surface.

    Science.gov (United States)

    Kim, Mijin; Lee, Sangyoup; Park, Hee-Deung; Choi, Suing-Il; Hong, Seungkwan

    2012-01-01

    Biofouling control by quorum sensing (QS) inhibition and the influence of membrane surface characteristics on biofilm formation and QS inhibition were investigated. Pseudomonas putida isolated from the bio-fouled reverse osmosis (RO) membranes in a real plant was used. Acylase was chosen as a model QS inhibitor. Bacteria on the membrane coupons were quantified with the heterotrophic plate count method. Cell distribution was imaged by a confocal laser scanning microscope. Results showed that biofilm formation on the membrane was reduced by acylase as it inhibits the activity of N-acylhomoserine lactone (AHL) which is a signal molecule of QS. It was also shown that membrane surface characteristics were influential factors affecting bacterial adhesion, biofilm formation, and QS inhibition.

  1. Towards new membrane-based technologies for water treatment and reuse in the textile industry

    DEFF Research Database (Denmark)

    Petrinić, Irena; Hélix-Nielsen, Claus

    2014-01-01

    Textile wastewater represents challenging feed streams to be treated by membrane separation due to the complex composition and presence of reactive components. Here we first briefly present some characteristics of textile wastewater remediation where a key issue is (bio)fouling. We then present...

  2. Prevention and protection of the effects of biocorrosion and biofouling minimizing the environmental impact

    OpenAIRE

    Gómez de Saravia, S. G.; Guiamet, P. S.; Videla, H. A.

    2003-01-01

    Biocorrosion and biofouling processes are mediated by microorganisms adhered to the metal surfaces or embedded in a gelatinous matrix called biofilm. Biofilms affect the interaction between metals and the environment not only in deleterious processes like corrosion but also in several biological processes applied to materials recovery and handling. The growth of the microorganisms capable to induce biocorrosion is conditioned by favorable environmental conditions. However, the chemical agents...

  3. Composition and Variability of Biofouling Organisms in Seawater Reverse Osmosis Desalination Plants ▿ †

    OpenAIRE

    Zhang, Minglu; Jiang, Sunny; Tanuwidjaja, Dian; Voutchkov, Nikolay; Hoek, Eric M. V.; Cai, Baoli

    2011-01-01

    Seawater reverse osmosis (SWRO) membrane biofouling remains a common challenge in the desalination industry, but the marine bacterial community that causes membrane fouling is poorly understood. Microbial communities at different stages of treatment processes (intake, cartridge filtration, and SWRO) of a desalination pilot plant were examined by both culture-based and culture-independent approaches. Bacterial isolates were identified to match the genera Shewanella, Alteromonas, Vibrio, and Ce...

  4. Evaluation of appropriate technologies for grey water treatments and reuses.

    Science.gov (United States)

    Li, Fangyue; Wichmann, Knut; Otterpohl, Ralf

    2009-01-01

    As water is becoming a rare resource, the onsite reuse and recycling of grey water is practiced in many countries as a sustainable solution to reduce the overall urban water demand. However, the lack of appropriate water quality standards or guidelines has hampered the appropriate grey water reuses. Based on literature review, a non-potable urban grey water treatment and reuse scheme is proposed and the treatment alternatives for grey water reuse are evaluated according to the grey water characteristics, the proposed standards and economical feasibility.

  5. Phosphorus limitation in biofiltration for drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Bacterial growth potential(BGP) method and two parallel pilot-scale biofilters were used to investigate phosphorus limitation and itseffect on the removal of organic matters in biofiltration for drinking water treatment. Addition of phosphorus can substantially increase the BGPsof the samples. Its effect was equivalent to that of addition of a mixture of various inorganic nutrients including phosphorus. The biofilter withphosphate added into its influent performed a higher biological stability of the effluent and a higher CODMn removal than the control filter. Theseresults suggested that phosphorus was the limiting nutrient in the biofiltration and the removal efficiency of organic matters could be improved byadding phosphate into the influent.

  6. Life cycle assessment of advanced waste water treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e....... In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the advanced treatment technologies, i...

  7. Waste Water Treatment Plants and the Smart Grid

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Tychsen, Peter; Munk-Nielsen, Thomas

    2014-01-01

    power production. The energy-heavy processes for waste water transport and treatment could potentially provide a flexible operation with storage capabilities and be a valuable asset to a Smart Grid. In order to enable Waste Water Treatment Plants (WWTPs) as flexible prosumers in the future Smart Grid...... energy markets and prices. We are in the process of upgrading the current control system to prepare a flexible operation and Smart Grid market integration. The prototype system will be tested online at a plant in Denmark, that in the current market could save up to 300.000 DKK/year in electricity costs...

  8. Inhibition of biofouling by modification of forward osmosis membrane using quaternary ammonium cation.

    Science.gov (United States)

    Park, Kang-Hee; Yu, Sang-Hyun; Kim, Han-Shin; Park, Hee-Deung

    2015-01-01

    In the operation of the forward osmosis (FO) process, biofouling of the membrane is a potentially serious problem. Development of an FO membrane with antibacterial properties could contribute to a reduction in biofouling. In this study, quaternary ammonium cation (QAC), a widely used biocidal material, was conjugated with a silane coupling agent (3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride) and used to modify an FO membrane to confer antibacterial properties. Fourier transform infrared spectroscopy (FT-IR) demonstrated that the conjugated QAC was successfully immobilized on the FO membrane via covalent bonding. Bacterial viability on the QAC-modified membrane was confirmed via colony count method and visualized via bacterial viability assay. The QAC membrane decreased the viability of Escherichia coli to 62% and Staphylococcus aureus to 77% versus the control membrane. Inhibition of biofilm formation on the QAC modified membrane was confirmed via anti-biofilm tests using the drip-flow reactor and FO unit, resulting in 64% and 68% inhibition in the QAC-modified membrane against the control membrane, respectively. The results demonstrate the effectiveness of the modified membrane in reducing bacterial viability and inhibiting biofilm formation, indicating the potential of QAC-modified membranes to decrease operation costs incurred by biofouling.

  9. Effect of water temperature on biofouling development in reverse osmosis membrane systems.

    Science.gov (United States)

    Farhat, N M; Vrouwenvelder, J S; Van Loosdrecht, M C M; Bucs, Sz S; Staal, M

    2016-10-15

    Understanding the factors that determine the spatial and temporal biofilm development is a key to formulate effective control strategies in reverse osmosis membrane systems for desalination and wastewater reuse. In this study, biofilm development was investigated at different water temperatures (10, 20, and 30 °C) inside a membrane fouling simulator (MFS) flow cell. The MFS studies were done at the same crossflow velocity with the same type of membrane and spacer materials, and the same feed water type and nutrient concentration, differing only in water temperature. Spatially resolved biofilm parameters such as oxygen decrease rate, biovolume, biofilm spatial distribution, thickness and composition were measured using in-situ imaging techniques. Pressure drop (PD) increase in time was used as a benchmark as to when to stop the experiments. Biofilm measurements were performed daily, and experiments were stopped once the average PD increased to 40 mbar/cm. The results of the biofouling study showed that with increasing feed water temperature (i) the biofilm activity developed faster, (ii) the pressure drop increased faster, while (iii) the biofilm thickness decreased. At an average pressure drop increase of 40 mbar/cm over the MFS for the different feed water temperatures, different biofilm activities, structures, and quantities were found, indicating that diagnosis of biofouling of membranes operated at different or varying (seasonal) feed water temperatures may be challenging. Membrane installations with a high temperature feed water are more susceptible to biofouling than installations fed with low temperature feed water.

  10. Anti-biofouling property of vanillin on Aeromonas hydrophila initial biofilm on various membrane surfaces.

    Science.gov (United States)

    Ponnusamy, K; Kappachery, S; Thekeettle, M; Song, J H; Kweon, J H

    2013-09-01

    Biofouling is a serious problem on filter membranes of water purification systems due to formation of bacterial biofilms, which can be detrimental to the membrane performance. Biofouling occurs on membrane surface and therefore greatly influences the physical and chemical aspects of the surface. Several membranes including microfiltration, ultrafiltration, and reverse osmosis (RO) membranes were used to learn about the anti-biofouling properties of vanillin affecting the membrane performances. Vanillin has been recognized as a potential quorum quenching compound for Aeromonas hydrophila biofilms. The initial attachment and dynamics of biofilm growth were monitored using scanning electron microscopy and confocal laser scanning microscopy. Biofilm quantities were measured using a plate count method and total protein determinations. Vanillin addition was effective in the prevention of biofilm formation on the tested membrane surfaces. Among the membranes, RO membranes made with cellulose acetate showed the most substantial reduction of biofilm formation by addition of vanillin. The biofilm reduction was confirmed by the results of surface coverage, biomass and protein accumulation. The HPLC spectrum of the spent culture with vanillin addition showed that vanillin may interfere with quorum sensing molecules and thus prevent the formation of the biofilms.

  11. Effect of water temperature on biofouling development in reverse osmosis membrane systems

    KAUST Repository

    Farhat, N.M.

    2016-07-14

    Understanding the factors that determine the spatial and temporal biofilm development is a key to formulate effective control strategies in reverse osmosis membrane systems for desalination and wastewater reuse. In this study, biofilm development was investigated at different water temperatures (10, 20, and 30 °C) inside a membrane fouling simulator (MFS) flow cell. The MFS studies were done at the same crossflow velocity with the same type of membrane and spacer materials, and the same feed water type and nutrient concentration, differing only in water temperature. Spatially resolved biofilm parameters such as oxygen decrease rate, biovolume, biofilm spatial distribution, thickness and composition were measured using in-situ imaging techniques. Pressure drop (PD) increase in time was used as a benchmark as to when to stop the experiments. Biofilm measurements were performed daily, and experiments were stopped once the average PD increased to 40 mbar/cm. The results of the biofouling study showed that with increasing feed water temperature (i) the biofilm activity developed faster, (ii) the pressure drop increased faster, while (iii) the biofilm thickness decreased. At an average pressure drop increase of 40 mbar/cm over the MFS for the different feed water temperatures, different biofilm activities, structures, and quantities were found, indicating that diagnosis of biofouling of membranes operated at different or varying (seasonal) feed water temperatures may be challenging. Membrane installations with a high temperature feed water are more susceptible to biofouling than installations fed with low temperature feed water.

  12. Biofouling Prevention of Ancient Brick Surfaces by TiO2-Based Nano-Coatings

    Directory of Open Access Journals (Sweden)

    Lorenzo Graziani

    2015-07-01

    Full Text Available Brick constitutes a significant part of the construction materials used in historic buildings around the world. This material was used in Architectural Heritage for structural scope, and even for building envelopes. Thus, components made of clay brick were subjected to weathering for a long time, and this causes their deterioration. One of the most important causes for deterioration is biodeterioration caused by algae and cyanobacteria. It compromises the aesthetical properties, and, at a later stage, the integrity of the elements. In fact, traditional products used for the remediation/prevention of biofouling do not ensure long-term protection, and they need re-application over time. The use of nanotechnology, especially the use of photocatalytic products for the prevention of organic contamination of building façades is increasing. In this study, TiO2-based photocatalytic nano-coatings were applied to ancient brick, and its efficiency towards biofouling was studied. A composed suspension of algae and cyanobacteria was sprinkled on the bricks’ surface for a duration of twelve weeks. Digital Image Analysis and colorimetric measurements were carried out to evaluate algal growth on specimens’ surfaces. Results show that photocatalytic nano-coating was able to inhibit biofouling on bricks’ surfaces. In addition, substrata (their porosity and roughness clearly influences the adhesion of algal cells.

  13. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Science.gov (United States)

    2010-07-01

    ... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when...

  14. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems.

    NARCIS (Netherlands)

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.In this the

  15. Optofluidic planar reactors for photocatalytic water treatment using solar energy

    Science.gov (United States)

    Lei, Lei; Wang, Ning; Zhang, X. M.; Tai, Qidong; Tsai, Din Ping; Chan, Helen L. W.

    2010-01-01

    Optofluidics may hold the key to greater success of photocatalytic water treatment. This is evidenced by our findings in this paper that the planar microfluidic reactor can overcome the limitations of mass transfer and photon transfer in the previous photocatalytic reactors and improve the photoreaction efficiency by more than 100 times. The microreactor has a planar chamber (5 cm×1.8 cm×100 μm) enclosed by two TiO2-coated glass slides as the top cover and bottom substrate and a microstructured UV-cured NOA81 layer as the sealant and flow input∕output. In experiment, the microreactor achieves 30% degradation of 3 ml 3×10−5M methylene blue within 5 min and shows a reaction rate constant two orders higher than the bulk reactor. Under optimized conditions, a reaction rate of 8% s−1 is achieved under solar irradiation. The average apparent quantum efficiency is found to be only 0.25%, but the effective apparent quantum efficiency reaches as high as 25%. Optofluidic reactors inherit the merits of microfluidics, such as large surface∕volume ratio, easy flow control, and rapid fabrication and offer a promising prospect for large-volume photocatalytic water treatment. PMID:21267436

  16. Biological waste-water treatment of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Shaul, G.M.; Dempsey, C.R.; Dostal, K.A.

    1988-05-01

    The U.S. Environmental Protection Agency's (EPA) Office of Toxic Substances evaluates existing chemicals under Section 4 of the Toxic Substances Control Act (TSCA) and Premanufacture Notification (PMN) submissions under Section 5 of TSCA. Azo dyes constitute a significant portion of these PMN submissions and specific azo dyes have recently been added to the priority list for considerations in the development of test rules under Section 4. Azo dyes are of concern because some of the dyes, dye precurors, and/or their degradation products such as aromatic amines (which are also dye precurors) have been shown to be, or are suspected to be, carcinogenic. The fate of azo dyes in biological waste-water treatment systems was studied to aid in the review of PMN submissions and to assist in the possible development of test rules. Results from extensive pilot-scale activated-sludge process testing for 18 azo dyes are presented. Results from fate studies of C.I. Disperse Blue 79 in aerobic and anaerobic waste-water treatment will also be presented.

  17. Clear well physical water treatment technology for the oil field

    Energy Technology Data Exchange (ETDEWEB)

    Troncoso y Troncoso, Joao Ricardo [Weatherford Brazil, Rio de Janeiro, RJ (Brazil); Rzeznik, Lawrence; Parker, Wiley L. [Weatherford International, Houston, TX (United States)

    2008-07-01

    Deposits of various types are common problems associated with oil and gas production. Deposits of scale, paraffin can block tubing, cause pumps to stick and clog valves and chokes. The expense and widespread occurrence of deposition problems have resulted in the development of a variety of treatment options which have been marginally successful at best. This paper discusses a new and novel approach for controlling scale, paraffin using an electronic physical water treating device and results that have been achieved. This physical water treatment technology has been applied to oil and gas production wells which incorporate all forms of product lift. Units are now also being installed in several South American locations. This paper will discuss the results obtained from the use of these physical water treatment devices and discuss the criteria which are used to ascertain whether a particular well site's problems can be eased by use of these devices. These criteria will be discussed for both land based and offshore oil wells. (author)

  18. Removal of coagulant aluminum from water treatment residuals by acid.

    Science.gov (United States)

    Okuda, Tetsuji; Nishijima, Wataru; Sugimoto, Mayo; Saka, Naoyuki; Nakai, Satoshi; Tanabe, Kazuyasu; Ito, Junki; Takenaka, Kenji; Okada, Mitsumasa

    2014-09-01

    Sediment sludge during coagulation and sedimentation in drinking water treatment is called "water treatment residuals (WTR)". Polyaluminum chloride (PAC) is mainly used as a coagulant in Japan. The recycling of WTR has been desired; one method for its reuse is as plowed soil. However, WTR reuse in this way is inhibited by the aluminum from the added PAC, because of its high adsorption capacity for phosphate and other fertilizer components. The removal of such aluminum from WTR would therefore be advantageous for its reuse as plowed soil; this research clarified the effect of acid washing on aluminum removal from WTR and on plant growth in the treated soil. The percentage of aluminum removal from raw WTR by sulphuric acid solution was around 90% at pH 3, the percentage decreasing to 40% in the case of a sun-dried sample. The maximum phosphate adsorption capacity was decreased and the available phosphorus was increased by acid washing, with 90% of aluminum removal. The enhancement of Japanese mustard spinach growth and the increased in plant uptake of phosphates following acid washing were observed.

  19. The artificial water cycle: emergy analysis of waste water treatment.

    Science.gov (United States)

    Bastianoni, Simone; Fugaro, Laura; Principi, Ilaria; Rosini, Marco

    2003-04-01

    The artificial water cycle can be divided into the phases of water capture from the environment, potabilisation, distribution, waste water collection, waste water treatment and discharge back into the environment. The terminal phase of this cycle, from waste water collection to discharge into the environment, was assessed by emergy analysis. Emergy is the quantity of solar energy needed directly or indirectly to provide a product or energy flow in a given process. The emergy flow attributed to a process is therefore an index of the past and present environmental cost to support it. Six municipalities on the western side of the province of Bologna were analysed. Waste water collection is managed by the municipal councils and treatment is carried out in plants managed by a service company. Waste water collection was analysed by compiling a mass balance of the sewer system serving the six municipalities, including construction materials and sand for laying the pipelines. Emergy analysis of the water treatment plants was also carried out. The results show that the great quantity of emergy required to treat a gram of water is largely due to input of non renewable fossil fuels. As found in our previous analysis of the first part of the cycle, treatment is likewise characterised by high expenditure of non renewable resources, indicating a correlation with energy flows.

  20. Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: linking biofouling layer morphology with flux stabilization.

    Science.gov (United States)

    Akhondi, Ebrahim; Wu, Bing; Sun, Shuyang; Marxer, Brigit; Lim, Weikang; Gu, Jun; Liu, Linbo; Burkhardt, Michael; McDougald, Diane; Pronk, Wouter; Fane, Anthony G

    2015-03-01

    In this study gravity-driven membrane (GDM) ultrafiltration is investigated for the pretreatment of seawater before reverse osmosis (RO). The impacts of temperature (21 ± 1 and 29 ± 1 °C) and hydrostatic pressure (40 and 100 mbar) on dynamic flux development and biofouling layer structure were studied. The data suggested pore constriction fouling was predominant at the early stage of filtration, during which the hydrostatic pressure and temperature had negligible effects on permeate flux. With extended filtration time, cake layer fouling played a major role, during which higher hydrostatic pressure and temperature improved permeate flux. The permeate flux stabilized in a range of 3.6 L/m(2) h (21 ± 1 °C, 40 mbar) to 7.3 L/m(2) h (29 ± 1 °C, 100 mbar) after slight fluctuations and remained constant for the duration of the experiments (almost 3 months). An increase in biofouling layer thickness and a variable biofouling layer structure were observed over time by optical coherence tomography and confocal laser scanning microscopy. The presence of eukaryotic organisms in the biofouling layer was observed by light microscopy and the microbial community structure of the biofouling layer was analyzed by sequences of 16S rRNA genes. The magnitude of permeate flux was associated with the combined effect of the biofouling layer thickness and structure. Changes in the biofouling layer structure were attributed to (1) the movement and predation behaviour of the eukaryotic organisms which increased the heterogeneous nature of the biofouling layer; (2) the bacterial debris generated by eukaryotic predation activity which reduced porosity; (3) significant shifts of the dominant bacterial species over time that may have influenced the biofouling layer structure. As expected, most of the particles and colloids in the feed seawater were removed by the GDM process, which led to a lower RO fouling potential. However, the dissolved organic carbon in the

  1. Adsorption of Roxarsone onto Drinking Water Treatment Residuals: Preliminary Studies

    Science.gov (United States)

    Salazar, J.; Sarkar, D.; Datta, R.; Sharma, S.

    2006-05-01

    Roxarsone (3-nitro-4-hydroxyphenyl-arsonic acid) is an organo-arsenical compound, commonly used as a feed additive in the broiler poultry industry to control coccidial intestinal parasites. Roxarsone is not toxic to the birds not only because of the low dose, and also because it most likely does not convert to toxic inorganic arsenic (As) in their systems. However, upon excretion, roxarsone may undergo transformation to inorganic As, posing a serious risk of contaminating the agricultural land and water bodies via surface runoff or leaching. The use of poultry litter as fertilizer results in As accumulation rates of up to 50 metric tons per year in agricultural lands. The immediate challenge, as identified by the various regulatory bodies in recent years is to develop an efficient, yet cost-effective and environmentally sound approach to cleaning up such As- contaminated soils. Recent studies conducted by our group have suggested that the drinking water treatment residuals (WTRs) can effectively retain As, thereby decreasing its mobility in the environment. The WTRs are byproducts of drinking water treatment processes and are typically composed of amorphous Fe/Al oxides, activated C and cationic polymers. They can be obtained free-of-cost from water treatment plants. It is well demonstrated that the environmental mobility of As is controlled by adsorption/desorption reactions onto mineral surfaces. Hence, knowledge of adsorption and desorption of As onto the WTRs is of environmental relevance. The reported study examined the adsorption and desorption characteristics of As using two types of WTRs, namely the Fe-WTRs (byproduct of Fe salt treatment), and the Al-WTRs (byproduct of Al salt treatment). All adsorption experiments were carried out in batch and As retention on the WTRs was investigated as a function of solid/solution ratio (1:5, 1:10, 1:25 and 1:50), equilibration time (10 min - 48 hr), pH (2 - 10) and initial As load (100, 500, 1000 and 2000 mg As/L). The

  2. Application of fluorescently labelled lectins for the study of polysaccharides in biofilms with a focus on biofouling of nanofiltration membranes

    Directory of Open Access Journals (Sweden)

    Patrick Di Martino

    2016-07-01

    Full Text Available The biofilm state is the dominant microbial lifestyle in nature. A biofilm can be defined as cells organised as microcolonies embedded in an organic polymer matrix of microbial origin living at an interface between two different liquids, air and liquid, or solid and liquid. The biofilm matrix is made of extracellular polymeric substances, polysaccharides being considered as the major structural components of the matrix. Fluorescently labelled lectins have been widely used to stain microbial extracellular glycoconjugates in natural and artificial environments, and to study specific bacterial species or highly complex environments. Biofilm development at the membrane surface conducting to biofouling is one of the major problems encountered during drinking water production by filtration. Biofouling affects the durability and effectiveness of filtration membranes. Biofouling can be reduced by pretreatments in order to control two key parameters of water, the bioavailable organic matter concentration and the concentration of live bacteria. Nanofiltration (NF is a high technology process particularly suited to the treatment of surface waters to produce drinking water that is highly sensitive to biofouling. The development of strategies for fouling prevention and control requires characterizing the fouling material composition and organisation before and after NF membrane cleaning. The aim of this review is to present basics of biofilm analyses after staining with fluorescently labelled lectins and to focus on the use of fluorescent lectins and confocal laser scanning microscopy to analyse NF membrane biofouling.

  3. Effect of anti-biofouling potential of multi-walled carbon nanotubes-filled polydimethylsiloxane composites on pioneer microbial colonization.

    Science.gov (United States)

    Sun, Yuan; Lang, Yanhe; Sun, Qian; Liang, Shuang; Liu, Yongkang; Zhang, Zhizhou

    2016-09-01

    In this paper, two carbon nanotube (CNT) nanofillers, namely the multi-walled carbon nanotubes (MWCNTs) and the carboxyl-modified MWCNTs (cMWCNTs), were introduced into the polydimethylsiloxane (PDMS) matrix respectively, in order to produce the PDMS composites with reinforced anti-biofouling properties. The anti-biofouling capacity of the silicone-based coatings, including the unfilled PDMS (P0), the MWCNTs-filled PDMS (PM) and the cMWCNTs-filled PDMS (PC), was examined via the field assays conducted in Weihai, China. The effect of different silicone-based coatings on the dynamic variations of the pioneer microbial-community diversity was analyzed using the single-strand conformation polymorphism (SSCP) technique. The PM and PC surfaces have exhibited excellent anti-biofouling properties in contrast to that of the PDMS surface, with extremely low attachment of the early colonizers, such as juvenile invertebrates, seaweeds and algae sporelings. The PM and PC surfaces can effectively prevent biofouling for more than 12 weeks. These combined results suggest that the incorporation of MWCNTs or cMWCNTs into the PDMS matrix can dramatically reinforce its anti-biofouling properties. The SSCP analysis reveals that compared with the PDMS surfaces, the PM and PC surfaces have strong modulating effect on the pioneer prokaryotic and eukaryotic communities, particularly on the colonization of pioneer eukaryotic microbes. The significantly reduced pioneer eukaryotic-community diversity may contribute to the weakening of the subsequent colonization of macrofoulers.

  4. Early non-destructive biofouling detection in spiral wound RO Membranes using a mobile earth's field NMR

    KAUST Repository

    Fridjonsson, E.O.

    2015-04-20

    We demonstrate the use of Earth\\'s field (EF) Nuclear Magnetic Resonance (NMR) to provide early non-destructive detection of active biofouling of a commercial spiral wound reverse osmosis (RO) membrane module. The RO membrane module was actively biofouled to different extents, by the addition of biodegradable nutrients to the feed stream, as revealed by a subtle feed-channel pressure drop increase. Easily accessible EF NMR parameters (signal relaxation parameters T1, T2 and the total NMR signal modified to be sensitive to stagnant fluid only) were measured and analysed in terms of their ability to detect the onset of biofouling. The EF NMR showed that fouling near the membrane module entrance significantly distorted the flow field through the whole membrane module. The total NMR signal is shown to be suitable for non-destructive early biofouling detection of spiral wound membrane modules, it was readily deployed at high (operational) flow rates, was particularly sensitive to flow field changes due to biofouling and could be deployed at any position along the membrane module axis. In addition to providing early fouling detection, the mobile EF NMR apparatus could also be used to (i) evaluate the production process of spiral wound membrane modules, and (ii) provide an in-situ determination of module cleaning process efficiency.

  5. Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: A novel platform for eco-friendly biofouling mitigation

    NARCIS (Netherlands)

    Wibisono, Yusuf; Yandi, Wetra; Golabi, Mohsen; Nugraha, Roni; Cornelissen, Emile R.; Kemperman, Antoine J.B.; Ederth, Thomas; Nijmeijer, Kitty

    2015-01-01

    Biofouling is still a major challenge in the application of nanofiltration and reverse osmosis membranes. Here we present a platform approach for environmentally friendly biofouling control using a combination of a hydrogel-coated feed spacer and two-phase flow cleaning. Neutral (polyHEMA-co-PEG10MA

  6. Underwater plasma discharge and its water treatment applications

    Science.gov (United States)

    Ma, Sukhwal; Huh, Jin Young; Kim, Kangil; Hong, Yong Cheol; National Fusion Research Institute Team; Chonbuk National University Team; Kwangwoon University Team; NPAC Team

    2016-09-01

    In recent, the quality of water has been exacerbated by the influx of wastewater and water pollutants. There have been frequent occurrences of water blooms due to the eutrophication of river. Therefore, the needs for water treatment are increased through effective and environment-friendly method. In this work, we propose the plasma system to overcome the problems mentioned above using underwater discharge plasma. The underwater discharges are generated by capillary electrode, and have the advantages of low cost, high efficiency and eco-friendly processing. The proposed technologies can be suitable for eliminating cyanobacteria, decreasing the concentration of oil dissolved in water, and purifying wastewater. Cyanobacteria is killed directly by the underwater discharge and water-dissolved oil and heavy-metal wastewater are purified by coagulation effect, which may result from the chemical reactions of underwater plasma. Consequently, these technologies using underwater discharge can be alternative methods to replace the existing technologies.

  7. Drinking water treatment in solar reactors with immobilized photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sichel, C.; Fernandez, P.; Blanco, J.; Lorenz, K.

    2005-07-01

    This work has been performed at the Plataforma Solar de Almeria. As in our daily consumption of any other good, it is important to take an interest in sustainable treatment methods for purifying a vital water supply. Primary water treatment has no need for energy consuming techniques as any suspended particles can usually be removed by sand traps and sedimentation basin. Organic matter and biodegradable chemical contaminants ca be decomposed by activated sludge plants, bacteria beds, or in the case of highly organically loaded sewage by methanisation.In the recent years, another photocatalysts a photo sensitizer has been used in desinfection experiments. Ruthenium appears to have good potential for inactivation of bacteria in chelating coordination compounds. The SOLWATER project attempts to provide remote areas of such developing countries as Mexico, Peru and Argentina with drinking water disinfected by solar photocatalysis with immobilized TiO2 and Ru(II). (Author)

  8. Modelling of Water Turbidity Parameters in a Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    A. S. KOVO

    2005-01-01

    Full Text Available The high cost of chemical analysis of water has necessitated various researches into finding alternative method of determining portable water quality. This paper is aimed at modelling the turbidity value as a water quality parameter. Mathematical models for turbidity removal were developed based on the relationships between water turbidity and other water criteria. Results showed that the turbidity of water is the cumulative effect of the individual parameters/factors affecting the system. A model equation for the evaluation and prediction of a clarifier’s performance was developed:Model: T = T0(-1.36729 + 0.037101∙10λpH + 0.048928t + 0.00741387∙alkThe developed model will aid the predictive assessment of water treatment plant performance. The limitations of the models are as a result of insufficient variable considered during the conceptualization.

  9. Selenium adsorption to aluminum-based water treatment residuals

    Energy Technology Data Exchange (ETDEWEB)

    Ippolito, James A.; Scheckel, Kirk G.; Barbarick, Ken A.; (US-Agriculture); (EPA); (CSU)

    2009-09-02

    Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 h in selenate or selenite solutions at pH values of 5-9, and then analyzed for selenium content. Selenate and selenite adsorption edges were unaffected across the pH range studied. Selenate adsorbed on to WTR, reference mineral phases, and amorphous aluminum hydroxide occurred as outer sphere complexes (relatively loosely bound), while selenite adsorption was identified as inner-sphere complexation (relatively tightly bound). Selenite sorption to WTR in an anoxic environment reduced Se(IV) to Se(0), and oxidation of Se(0) or Se(IV) appeared irreversible once sorbed to WTR. Al-based WTR could play a favorable role in sequestering excess Se in affected water sources.

  10. Home water treatment by direct filtration with natural coagulant.

    Science.gov (United States)

    Babu, Raveendra; Chaudhuri, Malay

    2005-03-01

    Seeds of the plant species Strychnos potatorum and Moringa oleifera contain natural polyelectrolytes which can be used as coagulants to clarify turbid waters. In laboratory tests, direct filtration of a turbid surface water (turbidity 15-25 NTU, heterotrophic bacteria 280-500 cfu ml(-1), and fecal coliforms 280-500 MPN 100 ml(-1)), with seeds of S. potatorum or M. oleifera as coagulant, produced a substantial improvement in its aesthetic and microbiological quality (turbidity 0.3-1.5 NTU, heterotrophic bacteria 5-20 cfu ml(-1) and fecal coliforms 5-10 MPN 100 ml(-1)). The method appears suitable for home water treatment in rural areas of developing countries. These natural coagulants produce a 'low risk' water; however, additional disinfection or boiling should be practised during localised outbreaks/epidemics of enteric infections.

  11. REVIEW OF EXISTING LCA STUDIES ON WASTE WATER TREATMENT TECHNOLOGIES

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hauschild, Michael Zwicky

    The EU research project “NEPTUNE” is related to the EU Water Framework Directive and focused on the development of new waste water treatment technologies (WWTT) for municipal waste water. The sustainability of these WWTTs is going to be assessed by the use of life cycle assessment (LCA). New life...... cycle impact assessment methods on pathogens, whole effluent toxicity and micropollutants will be developed within the project. As part of this work a review of more than 20 previous LCA studies on WWTTs has been done and the findings are summarised on this poster. The review is focused on the relative...... even more treatment trains/scenarios) have already been the subject of more or less detailed LCAs. All life cycle stages may be important and all impact categories (except stratospheric ozone depletion) typically included in LCAs may show significance depending on the actual scenario. Potential impacts...

  12. Advanced water treatment as a tool in water scarcity management

    DEFF Research Database (Denmark)

    Harremoes, Poul

    2000-01-01

    until recently. This paper sets the stage with respect to perspective and management options related to implementation of water reuse. Water treatment has to be interpreted as the means by which to purify the water from any degree of impurity to any degree of purity that fits the desired use, including......The water resource is under increasing pressure, both from the increase in population and from the wish to improve the living standards of the individual. Water scarcity is defined as the situation where demand is greater than the resource. Water scarcity has two distinctly different dimensions......: water availability and water applicability. The availability is a question of quantitative demand relative to resource. The applicability is a question of quality suitability for the intended use of the water. There is a significant difference in this regard with respect to rural versus urban use...

  13. Water treatment technologies for CBM water, including cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Makysmentz, B.; Lyon, F.L. [Newpark Resources Inc., Calgary, AB (Canada). Newpark Environmental Water Solutions

    2006-07-01

    The reasons for treating CBM water, end uses, reverse osmosis, pretreatment for reverse osmosis, and Newpark case studies are described. CBM water can be treated to make it suitable for injection, re-use, irrigation, or surface discharge. Usually the total dissolved solids (TDS) must be reduced by ion exchange or reverse osmosis with pretreatment. The concept of reverse osmosis and three types of applicable membrane processes are described: microfiltration and ultrafiltration, nanofiltration, and electrodialysis. The technologies used for pretreatment depend on the water quality and treatment goals, e.g. coagulation, flocculation and sand media filtration, softening, ion exchange, and nanofiltration. A Newpark case study is described for a water treatment plant at Boulder, Wyoming where evaporation was replaced by cavitation technology. The suitability of various treatment methods for Alberta CBM water is discussed. 21 figs., 1 tab.

  14. Progress and challenges of carbon nanotube membrane in water treatment

    KAUST Repository

    Lee, Jieun

    2016-05-25

    The potential of the carbon nanotube (CNT) membrane has been highly strengthened in water treatment during the last decade. According to works published up to now, the unique and excellent characteristics of CNT outperformed conventional polymer membranes. Such achievements of CNT membranes are greatly dependent on their fabrication methods. Further, the intrinsic properties of CNT could be a critical factor of applicability to membrane processes. This article provides an explicit and systematic review of the progress of CNT membranes addressing the current epidemic—whether (i) the CNT membranes could tackle current challenges in the pressure- or thermally driven membrane processes and (ii) CNT hybrid nanocomposite as a new generation of materials could complement current CNT-enhanced membrane. © 2016 Taylor & Francis Group, LLC.

  15. Water treatment plant site location using rough set theory.

    Science.gov (United States)

    Arabani, M; Pirouz, M

    2015-10-01

    Currently, advanced methods have been developed to select an appropriate site for an engineering project. The ability to make a good decision in site selection can help the engineers to reduce the expensive costs, which are very important in large construction projects. In this paper, a new approach for site selection is presented. This method is based on rough set theory which is a mathematical theory presented by professor Pawlak. In this study, the results of the rough set decision-making are compared with the results of the regression method in a practical case study for the site location of a water treatment plant in Ardabil Province in the northwest of Iran, to demonstrate that the rough set theory provides a useful method for site selection. The results of practical studies indicate that using this method for site selection decision-making can reduce costs and prevent hazards that may happen due to civil engineering uncertainties.

  16. Predicting the residual aluminum level in water treatment process

    Directory of Open Access Journals (Sweden)

    J. Tomperi

    2012-06-01

    Full Text Available In water treatment processes, aluminum salts are widely used as coagulation chemical. High dose of aluminum has been proved to be at least a minor health risk and some evidence points out that aluminum could increase the risk of Alzheimer's disease thus it is important to minimize the amount of residual aluminum in drinking water and water used at food industry. In this study, the data of a water treatment plant (WTP was analyzed and the residual aluminum in drinking water was predicted using Multiple Linear Regression (MLR and Artificial Neural Network (ANN models. The purpose was to find out which variables affect the amount of residual aluminum and create simple and reliable prediction models which can be used in an early warning system (EWS. Accuracy of ANN and MLR models were compared. The new nonlinear scaling method based on generalized norms and skewness was used to scale all measurement variables to range [−2...+2] before data-analysis and modeling. The effect of data pre-processing was studied by comparing prediction results to ones achieved in an earlier study. Results showed that it is possible to predict the baseline level of residual aluminum in drinking water with a simple model. Variables that affected the most the amount of residual aluminum were among others: raw water temperature, raw water KMnO4 and PAC / KMnO4-ratio. The accuracies of MLR and ANN models were found to be almost equal. Study also showed that data pre-processing affects to the final prediction result.

  17. Predicting the residual aluminum level in water treatment process

    Directory of Open Access Journals (Sweden)

    J. Tomperi

    2013-06-01

    Full Text Available In water treatment processes, aluminum salts are widely used as coagulation chemical. High dose of aluminum has been proved to be at least a minor health risk and some evidence points out that aluminum could increase the risk of Alzheimer's disease. Thus it is important to minimize the amount of residual aluminum in drinking water and water used at food industry. In this study, the data of a water treatment plant (WTP was analyzed and the residual aluminum in drinking water was predicted using Multiple Linear Regression (MLR and Artificial Neural Network (ANN models. The purpose was to find out which variables affect the amount of residual aluminum and create simple and reliable prediction models which can be used in an early warning system (EWS. Accuracy of ANN and MLR models were compared. The new nonlinear scaling method based on generalized norms and skewness was used to scale all measurement variables to range [−2...+2] before data-analysis and modeling. The effect of data pre-processing was studied by comparing prediction results to ones achieved in an earlier study. Results showed that it is possible to predict the baseline level of residual aluminum in drinking water with a simple model. Variables that affected the most the amount of residual aluminum were among others: raw water temperature, raw water KMnO4 and PAC/KMnO4 (Poly-Aluminum Chloride/Potassium permanganate-ratio. The accuracies of MLR and ANN models were found to be almost the same. Study also showed that data pre-processing affects to the final prediction result.

  18. Evaluation of Water Treatment Methods for Endocrine Disrupting Compounds

    Science.gov (United States)

    Thomas, S. M.; Murray, K. E.

    2006-05-01

    Endocrine disrupting compounds (EDCs) have caught recent attention as one of the major concerns in the environment. They are known to interfere with the activity of growth-related hormones and usually, as a result, cause disruption in normal functioning of the body. The compounds currently classified as EDCs range from a variety of both natural and synthetic organic compounds and also some heavy metals. Most of these compounds are used in household, pharmaceutical, industrial, agricultural activities, the consumption or usage of which increases with population. There is a lack of detailed chemical and biological analysis as to what concentrations each of these EDCs pose harmless to the environment because of the large number of the suspected compounds. However, several published reports have established that endocrine disruption is observed in aquatic species due to chronic exposure to concentrations of some EDCs as low as a few ng/l. Conventional water treatment facilities do not usually suffice to remove EDCs in concentrations below 1 ng/l. Available technologies for removal of EDCs include adsorption, degradation and membrane treatment. The removal rates, however, are dependant on the properties of the compound, such as molecular weight, water- octanol partition coefficient and vapor pressure; physiochemical conditions of the matrix such as, redox and temperature conditions; type and dose of degrading agent and the concentration of the EDCs. Since, EDCs comprise a vast variety of compounds, their response to each of these treatment methods will be different and hence it is plausible that a single treatment technique will not be sufficient to remove the EDCs to very low concentrations. Based on our review of existing water treatment methods, we believe that a sequential treatment technique that consists of an adsorption, a degradation and finally a fine membrane treatment, each optimized for favorable, efficient and inexpensive removal may be required to remove

  19. A fine balance : water treatment enabling CBM production

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, L.

    2008-11-15

    Wyoming is the third largest producer of coalbed methane (CBM) in the United States, following New Mexico and Colorado. Large quantities of salty water seep naturally from the coal seams when CBM is produced. Surface discharge has long been the primary method for dealing with CBM-produced water in the Powder River Basin (PRB). Today, operators use managed irrigation, impoundments, injection and subsurface irrigation and water treatment. Although treating the water is the most expensive option, several companies are conducting pilot projects to test at least 10 different water treatment methods. This article highlighted 5 of the methods currently used in the PRB, including Drake Water Technologies' continuous ion exchange system that produces clean water and no waste; EMIT Water Discharge Technology's countercurrent ion exchange technology which is used to treat about 10 per cent of all water produced in the PRB and 18 per cent of the water produced in the Upper Powder River watershed; Ontario-based Eco-Tec's portable RecoPur ion exchange system in which water is first filtered, followed by calcium, magnesium and sodium removal and replacement with hydrogen using acid generation, and then followed by carbon dioxide removal via a gasifier to leave a slightly acid solution that is neutralized with lime; Big Cat Energy's new Aquifer Recharge Injection Device (ARID) which eliminates the need for a separate injection well since produced water is redirected into nearby shallower, depleted aquifers; and, Bene Terra's subsurface drip irrigation technique which provides year-round water dispersal of CBM-produced water and puts it to use growing forage crops. 5 refs., 3 figs.

  20. Phosphorus retention mechanisms of a water treatment residual.

    Science.gov (United States)

    Ippolito, J A; Barbarick, K A; Heil, D M; Chandler, J P; Redente, E F

    2003-01-01

    Water treatment residuals (WTRs) are a by-product of municipal drinking water treatment plants and can have the capacity to adsorb tremendous amounts of P. Understanding the WTR phosphorus adsorption process is important for discerning the mechanism and tenacity of P retention. We studied P adsorbing mechanism(s) of an aluminum-based [Al2(SO4)3 x 14H2O] WTR from Englewood, CO. In a laboratory study, we shook mixtures of P-loaded WTR for 1 to 211 d followed by solution pH analysis, and solution Ca, Al, and P analysis via inductively coupled plasma atomic emission spectroscopy. After shaking periods, we also examined the solids fraction by X-ray diffraction (XRD) and electron microprobe analysis using wavelength dispersive spectroscopy (EMPA-WDS). The shaking results indicated an increase in pH from 7.2 to 8.2, an increase in desorbed Ca and Al concentrations, and a decrease in desorbed P concentration. The pH and desorbed Ca concentration increases suggested that CaCO3 controlled Ca solubility. Increased desorbed Al concentration may have been due to Al(OH)4 formation. Decreased P content, in conjunction with the pH increase, was consistent with calcium phosphate formation or precipitation. The system appeared to be undersaturated with respect to dicalcium phosphate (DCP; CaHPO4) and supersaturated with respect to octacalcium phosphate [OCP; Ca4H(PO4)3 x 2.5H2O]. The Ca and Al increases, as well as OCP formation, were supported by MINTEQA2 modeling. The XRD and EMPA-WDS results for all shaking times, however, suggested surface P chemisorption as an amorphous Al-P mineral phase.

  1. Real-time monitoring of biofoulants in a membrane bioreactor during saline wastewater treatment for anti-fouling strategies.

    Science.gov (United States)

    Tan, Songwen; Hou, Yang; Cui, Chunzhi; Chen, Xuncai; Li, Weiguo

    2017-01-01

    This work presents a novel, fast and simple monitoring-responding method at the very early stages of membrane bio-fouling in a membrane bioreactor (MBR) during saline wastewater treatment. The impacts of multiple environmental shocks on membrane fouling were studied. The transmembrane pressure exceeded the critical fouling pressure within 8days in the case of salinity shock or temperature shock. In the case of DO shock, the transmembrane pressure exceeded the critical fouling pressure after 16days, showing the lower impact of DO shock on the MBR. In another study, the membrane fouling was observed within 4days responding to mixed environmental shocks. To decrease the potential of membrane bio-fouling, another bioreactor was integrated immediately with the MBR as a quickly-responded countermeasure, when an early warning of membrane bio-fouling was provided. After the bioreactor enhancement, the time required for membrane fouling increased from 4 to 10days.

  2. Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants.

    Science.gov (United States)

    Kot-Wasik, A; Jakimska, A; Śliwka-Kaszyńska, M

    2016-12-01

    Thousands of tons of pharmaceuticals are introduced into the aqueous environment due to their incomplete elimination during treatment process in wastewater treatment plants (WWTPs) and water treatment plants (WTPs). The presence of pharmacologically active compounds in the environment is of a great interest because of their potential to cause negative effects. Furthermore, drugs can undergo different processes leading to the formation of new transformation products, which may be more toxic than the parent compound. In light of these concerns, within the research a new, rapid and sensitive analytical procedure for the determination of a wide range of pharmaceuticals from different classes using solid phase extraction (SPE) and high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) technique in different water samples was developed. This methodology was applied to investigate the occurrence, removal efficiency of 25 pharmaceuticals during wastewater and drinking water treatment, and seasonal variability in the amount of selected pharmaceuticals in WWTP and WTP over a year. The most often detected analytes in water samples were carbamazepine (100 % of samples) and ibuprofen (98 % of samples), concluding that they may be considered as pollution indicators of the aqueous environment in tested area. Highly polar compound, metformin, was determined at very high concentration level of up to 8100 ng/L in analyzed water samples. Drugs concentrations were much higher in winter season, especially for non-steroidal inflammatory drugs (NSAIDs) and caffeine, probably due to the inhibited degradation related to lower temperatures and limited sunlight. Carbamazepine was found to be the most resistant drug to environmental degradation and its concentrations were at similar levels during four seasons.

  3. Membrane biofouling in a wastewater nitrification reactor: microbial succession from autotrophic colonization to heterotrophic domination

    KAUST Repository

    Lu, Huijie

    2015-10-22

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles.

  4. Bacterial communities associated with biofouling materials used in bench-scale hydrocarbon bioremediation.

    Science.gov (United States)

    Al-Mailem, Dina; Kansour, Mayada; Radwan, Samir

    2015-03-01

    Biofouling material samples from the Arabian (Persian) Gulf, used as inocula in batch cultures, brought about crude oil and pure-hydrocarbon removal in a mineral medium. Without any added nitrogen fertilizers, the hydrocarbon-removal values were between about 10 and 50 %. Fertilization with NaNO3 alone or together with a mixture of the vitamins thiamine, pyridoxine, vitamin B12, biotin, riboflavin, and folic acid increased the hydrocarbon-removal values, to reach 90 %. Biofouling material samples harbored total bacteria in the magnitude of 10(7) cells g(-1), about 25 % of which were hydrocarbonoclastic. These numbers were enhanced by NaNO3 and vitamin amendment. The culture-independent analysis of the total bacterioflora revealed the predominance of the gammaproteobacterial genera Marinobacter, Acinetobacter, and Alcanivorax, the Flavobacteriia, Flavobacterium, Gaetbulibacter, and Owenweeksia, and the Alphaproteobacteria Tistrella, Zavarzinia, and others. Most of those bacteria are hydrocarbonoclastic. Culture-dependent analysis of hydrocarbonoclastic bacteria revealed that Marinobacter hydrocarbonoclasticus, Dietzia maris, and Gordonia bronchialis predominated in the fouling materials. In addition, each material had several more-specific hydrocarbonoclastic species, whose frequencies were enhanced by NaNO3 and vitamin fertilization. The same samples of fouling materials were used in four successive crude-oil-removal cycles without any dramatic loss of their hydrocarbon-removal potential nor of their associated hydrocarbonoclastic bacteria. In the fifth cycle, the oil-removal value was reduced by about 50 % in only one of the studied samples. This highlights how firmly biofouling materials were immobilizing the hydrocarbonoclastic bacteria.

  5. Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination.

    Science.gov (United States)

    Lu, Huijie; Xue, Zheng; Saikaly, Pascal; Nunes, Suzana P; Bluver, Ted R; Liu, Wen-Tso

    2016-01-01

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles.

  6. Impaired Performance of Pressure-Retarded Osmosis due to Irreversible Biofouling.

    Science.gov (United States)

    Bar-Zeev, Edo; Perreault, François; Straub, Anthony P; Elimelech, Menachem

    2015-11-01

    Next-generation pressure-retarded osmosis (PRO) approaches aim to harness the energy potential of streams with high salinity differences, such as wastewater effluent and seawater desalination plant brine. In this study, we evaluated biofouling propensity in PRO. Bench-scale experiments were carried out for 24 h using a model wastewater effluent feed solution and simulated seawater desalination brine pressurized to 24 bar. For biofouling tests, wastewater effluent was inoculated with Pseudomonas aeruginosa and artificial seawater desalination plant brine draw solution was seeded with Pseudoalteromonas atlantica. Our results indicate that biological growth in the feed wastewater stream channel severely fouled both the membrane support layer and feed spacer, resulting in ∼50% water flux decline. We also observed an increase in the pumping pressure required to force water through the spacer-filled feed channel, with pressure drop increasing from 6.4±0.8 bar m(-1) to 15.1±2.6 bar m(-1) due to spacer blockage from the developing biofilm. Neither the water flux decline nor the increased pressure drop in the feed channel could be reversed using a pressure-aided osmotic backwash. In contrast, biofouling in the seawater brine draw channel was negligible. Overall, the reduced performance due to water flux decline and increased pumping energy requirements from spacer blockage highlight the serious challenges of using high fouling potential feed sources in PRO, such as secondary wastewater effluent. We conclude that PRO power generation using wastewater effluent and seawater desalination plant brine may become possible only with rigorous pretreatment or new spacer and membrane designs.

  7. Modeling the effect of spacers and biofouling on forward osmosis performance

    KAUST Repository

    Mosqueira Santillán, María José

    2014-11-01

    Currently, the most utilized desalination technology is reverse osmosis (RO), where a membrane is used as a physical barrier to separate the salts from the seawater, using high hydraulic pressure as driving force. A major problem in RO systems is biofouling, caused by severe growth of bacterial biofilms. Both, the need of an external energy input, as well as biofouling, impose a high cost on RO operation. Forward osmosis (FO) is an alternative membrane process that uses an osmotic pressure difference as driving force. FO uses a concentrated draw solution to generate high osmotic pressure, which extracts water across a semi permeable membrane from a feed solution. One of the main advantages of FO is the limited amount of external energy required to extract water from the feed solution. The objective of this research is the assessment of the impact of spacers, separating the membrane sheets, and biofouling on the FO system performance. This type of studies allow the optimization of membrane devices and operational conditions. For this, a two dimensional numerical model for FO systems was developed using computational fluid dynamics (CFD). This model allowed the evaluation of the impact of (i) spacers and (ii) biofilm, and (iii) the combined impact of spacers and biofilm on the performance of FO systems. The results obtained showed that the presence of spacers improved the performance of FO systems. Cavity configuration spacer gave the higher water flux across the membrane in clean systems; whereas for biofouled systems, the submerged configuration showed a better performance. In absence of spacers, the thickness or amount of biofilm is inversely proportional with the water flux. Furthermore, membrane surface coverage of the biofilm is more important than the amount of biofilm in terms of the impact on the performance. The numerical model can be adapted with other parameters (e.g. membrane and spacer thickness, feed and draw solution, solution concentration, etc.) to

  8. Biofouling of reverse-osmosis membranes during tertiary wastewater desalination: microbial community composition.

    Science.gov (United States)

    Al Ashhab, Ashraf; Herzberg, Moshe; Gillor, Osnat

    2014-03-01

    Reverse-osmosis (RO) desalination is frequently used for the production of high-quality water from tertiary treated wastewater (TTWW). However, the RO desalination process is often hampered by biofouling, including membrane conditioning, microbial adhesion, and biofilm growth. The vast majority of biofilm exploration concentrated on the role of bacteria in biofouling neglecting additional microbial contributors, i.e., fungi and archaea. To better understand the RO biofouling process, bacterial, archaeal and fungal diversity was characterized in a laboratory-scale RO desalination plant exploring the TTWW (RO feed), the RO membrane and the RO feed tube biofilms. We sequenced 77,400 fragments of the ribosome small subunit-encoding gene (16S and 18S rRNA) to identify the microbial community members in these matrices. Our results suggest that the bacterial, archaeal but not fungal community significantly differ from the RO membrane biofouling layer to the feedwater and tube biofilm (P < 0.01). Moreover, the RO membrane supported a more diverse community compared to the communities monitored in the feedwater and the biofilm attached to the RO feedwater tube. The tube biofilm was dominated by Actinobacteria (91.2 ± 4.6%), while the Proteobacteria phylum dominated the feedwater and RO membrane (at relative abundance of 92.3 ± 4.4% and 71.5 ± 8.3%, respectively), albeit comprising different members. The archaea communities were dominated by Crenarchaeota (53.0 ± 6.9%, 32.5 ± 7.2% and 69%, respectively) and Euryarchaeota (43.3 ± 6.3%, 23.2 ± 4.8% and 24%, respectively) in all three matrices, though the communities' composition differed. But the fungal communities composition was similar in all matrices, dominated by Ascomycota (97.6 ± 2.7%). Our results suggest that the RO membrane is a selective surface, supporting unique bacterial, and to a lesser extent archaeal communities, yet it does not select for a fungal community.

  9. Surface modification strategies on mesoporous silica nanoparticles for anti-biofouling zwitterionic film grafting.

    Science.gov (United States)

    Khung, Yit Lung; Narducci, Dario

    2015-12-01

    In the past decade, zwitterionic-based anti-biofouling layers had gained much focus as a serious alternative to traditional polyhydrophilic films such as PEG. In the area of assembling silica nanoparticles with stealth properties, the incorporation of zwitterionic surface film remains fairly new but considering that silica nanoparticles had been widely demonstrated as useful biointerfacing nanodevice, zwitterionic film grafting on silica nanoparticle holds much potential in the future. This review will discuss on the conceivable functional chemistry approaches, some of which are potentially suitable for the assembly of such stealth systems.

  10. Biofouling-Resistant Impedimetric Sensor for Array High-Resolution Extracellular Potassium Monitoring in the Brain

    Directory of Open Access Journals (Sweden)

    Ruben Machado

    2016-10-01

    Full Text Available Extracellular potassium concentration, [K+]o, plays a fundamental role in the physiological functions of the brain. Studies investigating changes in [K+]o have predominantly relied upon glass capillary electrodes with K+-sensitive solution gradients for their measurements. However, such electrodes are unsuitable for taking spatio-temporal measurements and are limited by the surface area of their tips. We illustrate seizures invoked chemically and in optogenetically modified mice using blue light exposure while impedimetrically measuring the response. A sharp decrease of 1–2 mM in [K+]o before each spike has shown new physiological events not witnessed previously when measuring extracellular potassium concentrations during seizures in mice. We propose a novel approach that uses multichannel monolayer coated gold microelectrodes for in vivo spatio-temporal measurements of [K+]o in a mouse brain as an improvement to the conventional glass capillary electrode.

  11. Biofouling-Resistant Impedimetric Sensor for Array High-Resolution Extracellular Potassium Monitoring in the Brain

    Science.gov (United States)

    Machado, Ruben; Soltani, Nima; Dufour, Suzie; Salam, Muhammad Tariqus; Carlen, Peter L.; Genov, Roman; Thompson, Michael

    2016-01-01

    Extracellular potassium concentration, [K+]o, plays a fundamental role in the physiological functions of the brain. Studies investigating changes in [K+]o have predominantly relied upon glass capillary electrodes with K+-sensitive solution gradients for their measurements. However, such electrodes are unsuitable for taking spatio-temporal measurements and are limited by the surface area of their tips. We illustrate seizures invoked chemically and in optogenetically modified mice using blue light exposure while impedimetrically measuring the response. A sharp decrease of 1–2 mM in [K+]o before each spike has shown new physiological events not witnessed previously when measuring extracellular potassium concentrations during seizures in mice. We propose a novel approach that uses multichannel monolayer coated gold microelectrodes for in vivo spatio-temporal measurements of [K+]o in a mouse brain as an improvement to the conventional glass capillary electrode. PMID:27754393

  12. Spatial and Temporal Control of Chemical Structure for Biofouling Resistant, High Fouling Release Surfaces

    Science.gov (United States)

    2014-06-02

    microscopy (AFM) and neutron reflection (NR) as well as water and/or bubble contact angle studies. Such measurements provide essential feedback to...DVJ6Snm UVMfi ph«W tn» h T\\<& « Efl **«-**»" Scheme 3. General method for production of patterned surfaces. between two APTMS coated silicon wafers

  13. Efficiency Research on Meat Industry Waste Water Treatment Applying the Method of Dissolved Air Flotation

    OpenAIRE

    Valentinas Gerasimovas; Robertas Urbanavičius

    2012-01-01

    To protect environment from industrial pollution, strict requirements for waste water treatment are imposed. The purpose of research is to establish an optimal ratio of saturated liquid and meat industry waste water. Research included JCC “Traidenis” waste water treatment system installed in JSC “BHJ Baltic”. Investigations into treated waste water indicated that an optimal ratio of waste water and saturated liquid was 2/1 under duration time of 8 minutes. Efficient waste water treatment made...

  14. Testing large volume water treatment and crude oil ...

    Science.gov (United States)

    Report EPA’s Homeland Security Research Program (HSRP) partnered with the Idaho National Laboratory (INL) to build the Water Security Test Bed (WSTB) at the INL test site outside of Idaho Falls, Idaho. The WSTB was built using an 8-inch (20 cm) diameter cement-mortar lined drinking water pipe that was previously taken out of service. The pipe was exhumed from the INL grounds and oriented in the shape of a small drinking water distribution system. Effluent from the pipe is captured in a lagoon. The WSTB can support drinking water distribution system research on a variety of drinking water treatment topics including biofilms, water quality, sensors, and homeland security related contaminants. Because the WSTB is constructed of real drinking water distribution system pipes, research can be conducted under conditions similar to those in a real drinking water system. In 2014, WSTB pipe was experimentally contaminated with Bacillus globigii spores, a non-pathogenic surrogate for the pathogenic B. anthracis, and then decontaminated using chlorine dioxide. In 2015, the WSTB was used to perform the following experiments: • Four mobile disinfection technologies were tested for their ability to disinfect large volumes of biologically contaminated “dirty” water from the WSTB. B. globigii spores acted as the biological contaminant. The four technologies evaluated included: (1) Hayward Saline C™ 6.0 Chlorination System, (2) Advanced Oxidation Process (A

  15. Clinoptilolite in Drinking Water Treatment for Ammonia Removal

    Directory of Open Access Journals (Sweden)

    H. M. Abd El-Hady

    2001-01-01

    Full Text Available In most countries today the removal of ammonium ions from drinking water has become almost a necessity. The natural zeolite clinoptiloliteis mined commercially in many parts of the world. It is a selective exchanger for the ammonium cation, and this has prompted its use in water treatment, wastewater treatment, swimming pools and fish farming. The work described in this paper provides dynamic data on cation exchange processes in clinoptilolite involving the NH4 +, Ca+2 and Mg+2 cations. We used material of natural origin – clinoptilolite from Nižný Hrabovec in Slovakia (particle-size 3–5 mm. The breakthrough capacity was determined by dynamic laboratory investigations, and we investigated the influence of thermal pretreatment of clinoptilolite and the concentration of regenerant solution (2, 5, and 10% NaCl. The concentrations of ammonium ion inputs in the tap water that we used were 10, 5, and 2 mg NH4 + l_1 and down to levels below 0.5 mg NH4 + l_1. The experimental results show that repeated pretreatment sufficiently improves the zeolite’s properties, and the structure of clinoptilolite remains unchanged during the loading and regeneration cycles. Ammonium removal capacities were increased by approximately 40 % and 20 % for heat-treated zeolite samples. There was no difference between the regenerates for 10% and 5% NaCl. We conclude that the use of zeolite is an attractive and promising method for ammonium removal.

  16. Characterization of drinking water treatment sludge after ultrasound treatment.

    Science.gov (United States)

    Zhou, Zhiwei; Yang, Yanling; Li, Xing; Zhang, Yang; Guo, Xuan

    2015-05-01

    Ultrasonic technology alone or the combination of ultrasound with alkaline or thermal hydrolysis as pretreatment for anaerobic digestion of activated sludge has been extensively documented. However, there are few reports on ultrasound as pretreatment of drinking water treatment sludge (DWTS), and thereby the characteristic variability of sonicated DWTS has not been fully examined. This research presents a lab-scale study on physical, chemical and biological characteristics of a DWTS sample collected from a water plant after ultrasonic treatment via a bath/probe sonoreactor. By doing this work, we provide implications for using ultrasound as pretreatment of enhanced coagulation of recycling sludge, and for the conditioning of water and wastewater mixed sludge by ultrasound combined with polymers. Our results indicate that the most vigorous DWTS disintegration quantified by particles' size reduction and organic solubilization is achieved with 5 W/ml for 30 min ultra-sonication (specific energy of 1590 kWh/kg TS). The Brunauer, Emmett and Teller (BET) specific surface area of sonicated DWTS flocs increase as ultra-sonication prolongs at lower energy densities (0.03 and 1 W/ml), while decrease as ultra-sonication prolongs at higher energy densities (3 and 5 W/ml). Additionally, the pH and zeta potential of sonicated DWTS slightly varies under all conditions observed. A shorter sonication with higher energy density plays a more effective role in restraining microbial activity than longer sonication with lower energy density.

  17. Kinetics and mechanism of dimethoate chlorination during drinking water treatment.

    Science.gov (United States)

    Tian, Fang; Liu, Wenjun; Guo, Guang; Qiang, Zhimin; Zhang, Can

    2014-05-01

    Dimethoate (DMT), a commonly used organophosphorus pesticide, is of great concern because of its toxicity and potentially harmful effects on water sources. The elimination of DMT as well as the toxicity and persistence of the byproducts formed during DMT degradation is most important for the safety of drinking water. This study first determined the reaction kinetics of DMT with free chlorine (FC) under typical water treatment conditions. The reaction between DMT and FC proceeded rapidly, exhibiting first-order with respect to each reactant. The degradation of DMT by FC was highly pH dependent, and the pseudo-first-order rate constant decreased obviously from 0.13 to 0.02 s(-1) with an increase in pH from 7.0 to 8.3. Bromide ion accelerated the reaction by acting as a catalyst, and the accelerated reaction rate was linearly proportional to the bromide concentration. As a ubiquitous component in natural waters, humic acid also increased the reaction rate. However, the presence of ammonium inhibited the degradation of DMT due to its rapid converting FC to chloramines. Omethoate (OMT) was identified as an important byproduct of DMT chlorination, but only accounted for ca. 28% of the DMT degraded; and other two organic byproducts were also identified. The acute toxicity of DMT solution increased after treatment with FC due to the formation of more toxic byproducts (e.g. OMT).

  18. Continuous water treatment by adsorption and electrochemical regeneration.

    Science.gov (United States)

    Mohammed, F M; Roberts, E P L; Hill, A; Campen, A K; Brown, N W

    2011-05-01

    This study describes a process for water treatment by continuous adsorption and electrochemical regeneration using an air-lift reactor. The process is based on the adsorption of dissolved organic pollutants onto an adsorbent material (a graphite intercalation compound, Nyex(®)1000) and subsequent electrochemical regeneration of the adsorbent leading to oxidation of the adsorbed pollutant. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for adsorption of a sample contaminant, the organic dye Acid Violet 17. The adsorbent circulation rate, the residence time distribution (RTD) of the reactor, and treatment by continuous adsorption and electrochemical regeneration were studied to investigate the process performance. The RTD behaviour could be approximated as a continuously stirred tank. It was found that greater than 98% removal could be achieved for continuous treatment by adsorption and electrochemical regeneration for feed concentrations of up to 300 mg L(-1). A steady state model has been developed for the process performance, assuming full regeneration of the adsorbent in the electrochemical cell. Experimental data and modelled predictions (using parameters for the adsorbent circulation rate, adsorption kinetics and isotherm obtained experimentally) of the dye removal achieved were found to be in good agreement.

  19. Immobilization biological activated carbon used in advanced drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Bacteria separated from a mature filter bed of groundwater treatment plants were incubated in a culture media containing iron and manganese. A consortium of 5 strains of bacteria removing iron and manganese were obtained by repeated enrichment culturing. It was shown from the experiments of effect factors that ironmanganese removal bacteria in the culture media containing both Fe and Mn grew better than in that containing only Fe, however, they were unable to grow in the culture media containing only Mn. When comparing the bacteria biomass in the case ofρ (DO) =2.8 mg/L andρ (DO) =9.0 mg/L, no significant difference was found.The engineering bacteria removing the organic and the bacteria removing iron and manganese were simultaneously inoculated into activated carbon reactor to treat the effluent of distribution network. The experimental results showed that by using IBAC ( Immobilization Biological Activated Carbon) treatment, the removal efficiency of iron, manganese and permanganate index was more than 98% , 96% and 55% , respectively. After the influent with turbidity of 1.5 NTU, color of 25 degree and offensive odor was treated, the turbidity and color of effluence were less than 0.5 NTU and 15 degree, respectively, and it was odorless. It is determined that the cooperation function of engineering bacteria and activated carbon achieved advanced drinking water treatment.

  20. Oil sand process-affected water treatment using coke adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Gamal El-Din, M.; Pourrezaei, P.; Chelme-Ayala, P.; Zubot, W. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2010-07-01

    Oil sands operations generate an array of oil sands process-affected water (OSPW) that will eventually be released to the environment. This water must be evaluated within conventional and advanced water treatment technologies. Water management strategies propose options for increased reuse and recycling of water from settling ponds, as well as safe discharge. This presentation outlined the typical composition of OSPW. Constituents of concern in OSPW include suspended solids, hydrocarbons, salts, ammonia, trace metals, and dissolved organics such as naphthenic acids (NAs). Petroleum coke is one of the by-products generated from bitumen extraction in the oil sands industry and can be used as one of the possible treatment processes for the removal of organic compounds found in OSPW. Activated carbon adsorption is an effective process, able to adsorb organic substances such as oils, radioactive compounds, petroleum hydrocarbons, poly aromatic hydrocarbons and various halogenated compounds. The objectives of this study were to evaluate the production of activated carbon from petroleum coke using steam as the activation media; to determine the factors affecting the absorption of NAs; and to evaluate the activated coke adsorption capacity for the reduction of NAs and dissolved organic carbons present in OSPW. It was concluded that petroleum non-activated coke has the ability to decrease COD, alkalinity, and NA concentration. tabs., figs.

  1. Costs of water treatment due to diminished water quality: A case study in Texas

    Science.gov (United States)

    Dearmont, David; McCarl, Bruce A.; Tolman, Deborah A.

    1998-04-01

    The cost of municipal water treatment due to diminished water quality represents an important component of the societal costs of water pollution. Here the chemical costs of municipal water treatment are expressed as a function of raw surface water quality. Data are used for a 3-year period for 12 water treatment plants in Texas. Results show that when regional raw water contamination is present, the chemical cost of water treatment is increased by 95 per million gallons (per 3785 m3) from a base of 75. A 1% increase in turbidity is shown to increase chemical costs by 0.25%.

  2. Water Treatment Plants, Water Treatment Plants, Published in 2007, 1:1200 (1in=100ft) scale, Town of Cary NC.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Field Survey/GPS information as of 2007. It is described...

  3. Water Treatment Plants, Water Treatment Plants in 9 county region in South Georgia, Published in 1999, 1:2400 (1in=200ft) scale, Southern Georgia Regional Commission.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Field Survey/GPS information as of 1999. It is described...

  4. Water Treatment Plants, Location of Waste Water Treatment Plants via orthophotography and field verification., Published in 2011, 1:2400 (1in=200ft) scale, Howard County Government.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Field Survey/GPS information as of 2011. It is described...

  5. Water Treatment Plants, City of Morganton Water Treatment Plants, Published in 2007, 1:63360 (1in=1mile) scale, City of Morganton.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:63360 (1in=1mile) scale, was produced all or in part from Other information as of 2007. It is described as 'City...

  6. Water Treatment Plants, Water Treatment Plants derived from parcel polygons, Published in 2010, 1:1200 (1in=100ft) scale, Columbia County Board of Commissioners.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Published Reports/Deeds information as of 2010. It is...

  7. Anti-biofouling properties of amphiphilic phosphorylcholine polymer films.

    Science.gov (United States)

    Li, Yan; Liu, Cheng-Mei; Yang, Jin-Ying; Gao, Ya-Hui; Li, Xue-Song; Que, Guo-He; Lu, J R

    2011-07-01

    Surfaces of amphiphilic phosphorylcholine polymer (PC1036) prepared by spin-coating were characterized by spectroscopic ellipsometry, water contact angle and atomic force microscopy. The antifouling properties of the PC1036 films to marine benthic diatom Nitzschia closterium MMDL533 were also investigated. The results showed that the dry PC1036 film promoted the adhesion of N. closterium MMDL533 because the hydrophobic lauryl groups were present in the film surface. The 2 h-swelled PC1036 films had excellent anti-fouling properties with extremely low attachment densities and retention densities no matter what the annealing temperature was. The thickness of the coated films lower than 147 Å had a profound effect on the film anti-fouling properties. Otherwise, when the film thickness was higher than that value, there was no more improvement of diatom cell reduction observed. The annealing temperature had only a little effect on the film resistant to diatom adhesion, which might be attributed to two factors including the PC group packing densities in the outer PC layer and the equilibrated water volume fraction in the 2 h-swelled PC1036 films.

  8. Interrogating chemical variation via layer-by-layer SERS during biofouling and cleaning of nanofiltration membranes with further investigations into cleaning efficiency.

    Science.gov (United States)

    Cui, Li; Chen, Pengyu; Zhang, Bifeng; Zhang, Dayi; Li, Junyi; Martin, Francis L; Zhang, Kaisong

    2015-12-15

    Periodic chemical cleaning is an essential step to maintain nanofiltration (NF) membrane performance and mitigate biofouling, a major impediment in high-quality water reclamation from wastewater effluent. To target the important issue of how to clean and control biofouling more efficiently, this study developed surface-enhanced Raman spectroscopy (SERS) as a layer-by-layer tool to interrogate the chemical variations during both biofouling and cleaning processes. The fact that SERS only reveals information on the surface composition of biofouling directly exposed to cleaning reagents makes it ideal for evaluating cleaning processes and efficiency. SERS features were highly distinct and consistent with different biofouling stages (bacterial adhesion, rapid growth, mature and aged biofilm). Cleaning was performed on two levels of biofouling after 18 h (rapid growth of biofilm) and 48 h (aged biofilm) development. An opposing profile of SERS bands between biofouling and cleaning was observed and this suggests a layer-by-layer cleaning mode. In addition, further dynamic biochemical and infrastructural changes were demonstrated to occur in the more severe 48-h biofouling, resulting in the easier removal of sessile cells from the NF membrane. Biofouling substance-dependent cleaning efficiency was also evaluated using the surfactant sodium dodecyl sulfate (SDS). SDS appeared more efficient in cleaning lipid than polysaccharide and DNA. Protein and DNA were the predominant residual substances (irreversible fouling) on NF membrane leading to permanent flux loss. The chemical information revealed by layer-by-layer SERS will lend new insights into the optimization of cleaning reagents and protocols for practical membrane processes.

  9. Characterization of biofouling in a lab-scale forward osmosis membrane bioreactor (FOMBR).

    Science.gov (United States)

    Zhang, Qiaoyun; Jie, Yap Wei; Loong, Winson Lay Chee; Zhang, Jinsong; Fane, Anthony G; Kjelleberg, Staffan; Rice, Scott A; McDougald, Diane

    2014-07-01

    Forward osmosis membrane bioreactors (FOMBR) provide high quality permeate, however the propensity for membrane biofouling in FOMBRs is unknown. Here, FOMBRs were operated under high and low aeration and the membrane-associated biofilms were characterized by confocal laser scanning microscopy (CLSM) and rRNA gene-tagged pyrosequencing. CLSM images revealed that there was little biofilm formed under high aeration, while thick biofilms were observed on the membranes operated under low aeration. The diversity and richness of bacterial and archaeal communities as assessed by pyrosequencing varied under high and low aeration. The composition of the bacterial suspended sludge communities and the sessile biomass on the membrane surface, as assessed by non-metric multidimensional scaling, was significantly different under high aeration, but was more similar under low aeration. SIMPER analysis indicated that Pseudomonas, Aeromonas and Fluviicola preferentially attached to the membrane. The results presented here provide a comprehensive understanding of membrane biofouling in FOMBRs, which is essential for the development of effective control strategies.

  10. Biofouling on Coated Carbon Steel in Cooling Water Cycles Using Brackish Seawater

    Directory of Open Access Journals (Sweden)

    Pauliina Rajala

    2016-11-01

    Full Text Available Water cooling utilizing natural waters is typically used for cooling large industrial facilities such as power plants. The cooling water cycles are susceptible to biofouling and scaling, which may reduce heat transfer capacity and enhance corrosion. The performance of two fouling-release coatings combined with hypochlorite treatment were studied in a power plant utilizing brackish sea water from the Baltic Sea for cooling. The effect of hypochlorite as an antifouling biocide on material performance and species composition of microfouling formed on coated surfaces was studied during the summer and autumn. Microfouling on surfaces of the studied fouling-release coatings was intensive in the cooling water cycle during the warm summer months. As in most cases in a natural water environment the fouling consisted of both inorganic fouling and biofouling. Chlorination decreased the bacterial number on the surfaces by 10–1000 fold, but the efficacy depended on the coating. In addition to decreasing the bacterial number, the chlorination also changed the microbial species composition, forming the biofilm on the surfaces of two fouling-release coatings. TeknoTar coating was proven to be more efficient in combination with the hypochlorite treatment against microfouling under these experimental conditions.

  11. Biofouling on mortar mixed with steel slags in a laboratory biofilm reactor

    Science.gov (United States)

    Sano, K.; Masuda, T.; Kanematsu, H.; Yokoyama, S.; Hirai, N.; Ogawa, A.; Kougo, T.; Yamazaki, K.; Tanaka, T.

    2017-01-01

    The slag produced as by-product in steel-making processes is utilized for various purpose due to its special qualities. Bacteria or other microorganisms generally form the biofilm. They are formed at the interface between materials and water environment by the action of bacteria. Biofilm can cause various problems. Therefore, the control of biofilm formation is needed. In this study, we focused on the application of slag to marine environments and carried out a research on biofouling of mortars mixed with various iron/steel slags through marine immersion and laboratory scale experiments. In this research, we dealt with various mortars. In some cases, iron/steel slags were mixed into mortars. In the laboratory scale research, we observed biofilm formation at the surfaces of sample specimens. As for marine immersion, we carried out the field experiments in summer and winter. Both results were compared. As for laboratory scale experiment, the tap water and artificial sea-water were used. And after the immersion, the specimens were measured and observed by a low vacuum SEM-EDX and the anti-fouling properties were analyzed and discussed. From these results, we confirmed that the biofouling became remarkable with the dissolved iron. Therefore, biofilm formation can be controlled by the concentration of iron/steel slags.

  12. Biofouling and the continuous monitoring of underwater light from a seagrass perspective

    Science.gov (United States)

    Onuf, C.P.

    2006-01-01

    For more than a decade, inexpensive electronic instruments have made continuous underwater light monitoring an integral part of many seagrass studies. Although biofouling, if not controlled, compromises the utility of the record. A year-long assessment of the time course of sensor fouling, in the Laguna Madre of Texas established that light transmitted through the fouling layer after 2 wk of exposure exceeded 90% except for a 6-8 wk period in May and June. On that basis, a 2-wk interval was chosen for routine servicing. Subsequent monitoring proved this choice to be grossly in error. The period of sub-90% transmittance after 2 wk extended to 4-6 mo annually over the next 3 yr. Fouling was strongly correlated with temperature, ambient light, and year. Since an algal bloom of 7-yr duration finally waned during this study, increased ambient light seemed most likely to explain increased fouling later in the study. The explanatory value of light was less than temperature or year in multiple regression, requiring some other explanation of the date effect than change in ambient light. Allelopathic and suspension-feeding depressant effects of the brown tide are offered as the most likely cause of unusually low fouling in the first year. Biofouling was so unpredictable and rapid in this study that at least weekly maintenance would be required to assure reliability of the light monitoring record. ?? 2006 Estuarine Research Federation.

  13. Combined biofouling and scaling in membrane feed channels: a new modeling approach.

    Science.gov (United States)

    Radu, A I; Bergwerff, L; van Loosdrecht, M C M; Picioreanu, C

    2015-01-01

    A mathematical model was developed for combined fouling due to biofilms and mineral precipitates in membrane feed channels with spacers. Finite element simulation of flow and solute transport in two-dimensional geometries was coupled with a particle-based approach for the development of a composite (cells and crystals) foulant layer. Three fouling scenarios were compared: biofouling only, scaling only and combined fouling. Combined fouling causes a quicker flux decline than the summed flux deterioration when scaling and biofouling act independently. The model results indicate that the presence of biofilms leads to more mineral formation due to: (1) an enhanced degree of saturation for salts next to the membrane and within the biofilm; and (2) more available surface for nucleation to occur. The impact of biofilm in accelerating gypsum precipitation depends on the composition of the feed water (eg the presence of NaCl) and the kinetics of crystal nucleation and growth. Interactions between flow, solute transport and biofilm-induced mineralization are discussed.

  14. It's a wrap: encapsulation as a management tool for marine biofouling.

    Science.gov (United States)

    Atalah, Javier; Brook, Rosemary; Cahill, Patrick; Fletcher, Lauren M; Hopkins, Grant A

    2016-01-01

    Encapsulation of fouled structures is an effective tool for countering incursions by non-indigenous biofoulers. However, guidelines for the implementation of encapsulation treatments are yet to be established. This study evaluated the effects of temperature, biomass, community composition, treatment duration and the biocide acetic acid on biofoulers. In laboratory trials using the model organisms Ciona spp. and Mytilus galloprovincialis, increasing the temperature or biomass speeded up the development of a toxic environment. Total mortality for Ciona spp. occurred within 72 and 24 h at 10 and 19°C, respectively. M. galloprovincialis survived up to 18 days, with high biomass increasing mortality at 10°C only. In a field study, three-month-old and four-year-old communities were encapsulated with and without acetic acid. Mortality took up to 10 days for communities encapsulated without acetic acid, compared to 48 h with acetic acid. The insights gained from this study will be useful in developing standardised encapsulation protocols.

  15. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface

    Directory of Open Access Journals (Sweden)

    Xia Pu

    2016-04-01

    Full Text Available Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS-embedded elastomeric stamping (PEES method. Scanning electron microscopy (SEM was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface.

  16. The antibacterial and anti-biofouling performance of biogenic silver nanoparticles by Lactobacillus fermentum.

    Science.gov (United States)

    Zhang, Manying; Zhang, Kaisong; De Gusseme, Bart; Verstraete, Willy; Field, Robert

    2014-01-01

    Biofouling is a major challenge in the water industry and public health. Silver nanoparticles (AgNPs) have excellent antimicrobial properties and are considered to be a promising anti-biofouling agent. A modified method was used to produce small sized and well-dispersed biogenic silver nanoparticles with a mean size of ~6 nm (Bio-Ag0-6) using Lactobacillus fermentum. The morphology, size distribution, zeta potential and oxidation state of the silver were systematically characterized. Determination of minimal inhibitory and bactericidal concentration results revealed that biogenic silver Bio-Ag(0-6) can effectively suppress the growth of the test bacteria. Additionally, the inhibition effects of Bio-Ag(0-6) on biofilm formation and on established biofilms were evaluated using P. aeruginosa (ATCC 27853) as the model bacterium. The results from microtiter plates and confocal laser scanning microscopy demonstrated that Bio-Ag(0-6) not only exhibited excellent antibacterial performance but also could control biofilm formation and induce detachment of the bulk of P. aeruginosa biofilms leaving a small residual matrix.

  17. Effects of poly-ether B on proteome and phosphoproteome expression in biofouling Balanus amphitrite cyprids

    KAUST Repository

    Dash, Swagatika

    2012-04-01

    Biofouling is ubiquitous in marine environments, and the barnacle Balanus amphitrite is one of the most recalcitrant and aggressive biofoulers in tropical waters. Several natural antifoulants that were claimed to be non-toxic have been isolated in recent years, although the mechanism by which they inhibit fouling is yet to be investigated. Poly-ether B has shown promise in the non-toxic inhibition of larval barnacle attachment. Hence, in this study, multiplex two-dimensional electrophoresis (2-DE) was applied in conjunction with mass spectrometry to investigate the effects of poly-ether B on barnacle larvae at the molecular level. The cyprid proteome response to poly-ether B treatment was analyzed at the total proteome and phosphoproteome levels, with 65 protein and 19 phosphoprotein spots found to be up- or down-regulated. The proteins were found to be related to energy-metabolism, oxidative stress, and molecular chaperones, thus indicating that poly-ether B may interfere with the redox-regulatory mechanisms governing the settlement of barnacle larvae. The results of this study demonstrate the usefulness of the proteomic technique in revealing the working mechanisms of antifouling compounds. © 2012 Copyright Taylor and Francis Group, LLC.

  18. Impact of microfiltration treatment of secondary wastewater effluent on biofouling of reverse osmosis membranes.

    Science.gov (United States)

    Herzberg, Moshe; Berry, David; Raskin, Lutgarde

    2010-01-01

    The effects of microfiltration (MF) as pretreatment for reverse osmosis (RO) on biofouling of RO membranes were analyzed with secondary wastewater effluents. MF pretreatment reduced permeate flux decline two- to three-fold, while increasing salt rejection. Additionally, the oxygen uptake rate (OUR) in the biofouling layer of the RO membrane was higher for an RO system that received pretreated secondary wastewater effluent compared to a control RO system that received untreated secondary effluent, likely due to the removal of inert particulate/colloidal matter during MF. A higher cell viability in the RO biofilm was observed close to the membrane surface irrespective of pretreatment, which is consistent with the biofilm-enhanced concentration polarization effect. Bacterial 16S rRNA gene clone library analysis revealed dominant biofilm communities of Proteobacteria and Bacteroidetes under all conditions. The Cramer-von Mises test statistic showed that MF pretreatment did not significantly change the bacterial community structure of RO membrane biofilms, though it affected bacterial community structure of non-membrane-associated biofilms (collected from the feed tank wall). The finding that the biofilm community developed on the RO membrane was not influenced by MF pretreatment may imply that RO membranes select for a conserved biofilm community.

  19. Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes

    KAUST Repository

    Rahaman, Md. Saifur

    2014-01-01

    Thin-film composite (TFC) polyamide reverse osmosis (RO) membranes are prone to biofouling due to their inherent physicochemical surface properties. In order to address the biofouling problem, we have developed novel surface coatings functionalized with biocidal silver nanoparticles (AgNPs) and antifouling polymer brushes via polyelectrolyte layer-by-layer (LBL) self-assembly. The novel surface coating was prepared with polyelectrolyte LBL films containing poly(acrylic acid) (PAA) and poly(ethylene imine) (PEI), with the latter being either pure PEI or silver nanoparticles coated with PEI (Ag-PEI). The coatings were further functionalized by grafting of polymer brushes, using either hydrophilic poly(sulfobetaine) or low surface energy poly(dimethylsiloxane) (PDMS). The presence of both LBL films and sulfobetaine polymer brushes at the interface significantly increased the hydrophilicity of the membrane surface, while PDMS brushes lowered the membrane surface energy. Overall, all surface modifications resulted in significant reduction of irreversible bacterial cell adhesion. In microbial adhesion tests with E. coli bacteria, a normalized cell adhesion in the range of only 4 to 16% on the modified membrane surfaces was observed. Modified surfaces containing silver nanoparticles also exhibited strong antimicrobial activity. Membranes coated with LBL films of PAA/Ag-PEI achieved over 95% inactivation of bacteria attached to the surface within 1 hour of contact time. Both the antifouling and antimicrobial results suggest the potential of using these novel surface coatings in controlling the fouling of RO membranes. © The Royal Society of Chemistry 2014.

  20. Characterization of NORM material produced in a water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Suursoo, S.; Kiisk, M.; Jantsikene, A.; Koch, R.; Isakar, K.; Realo, E. [University of Tartu, Institute of Physics (Estonia); Lumiste, L. [Tallinn University of Technology (Estonia)

    2014-07-01

    In February 2012 a water treatment plant was opened in Viimsi, Estonia. The plant is designed for removal of iron, manganese, and radium from groundwater. The first 2 years of operation have shown that the purification process generates significant amounts of materials with elevated radium levels. The treatment plant is fed by nine wells, which open to radium-rich aquifers. Purification is achieved by aeration and filtration processes. Aerated water is led through two successive filter columns, first of them is filled with MnO{sub 2} coated material FMH and filtration sand, the second one with zeolite. The plant has five parallel treatment lines with a total of 95 tons of FMH + filtration sand, and 45 tons of zeolite. The average capacity of the facility has been 2400 m{sup 3}/day. Yearly input of radium to the plant is estimated to be 325 MBq for Ra-226, and 420 MBq for Ra-228. Most of the radium (about 90%) accumulates in the filter columns. Some 8-9% of it is removed by backwash water during regular filter backwash cycles. To characterize radium accumulation and its removal by backwash in detail, treatment line no. 5 is sampled monthly for filter materials and backwash water. A steady growth of radium activity concentrations is apparent in both filter materials. In the top layer of the first stage filter (FMH+sand), Ra-226 and Ra-228 activity concentrations (per unit dry weight) reached (1540 ± 60) Bq/kg and (2510 ± 50) Bq/kg (k=2), respectively, by April 2013. At the same time, radium content in the top layer of the second stage filter (zeolite) was an order of magnitude higher: (19 600 ± 130) Bq/kg for Ra-226, and (22 260 ± 170) Bq/kg for Ra-228 (k=2). Radium is not evenly distributed throughout the filter columns. A rough estimate can be given that after 1.25 years of operation (by April 2013) the accumulated activities in treatment line no. 5 reached 1000 MBq for Ra-226 and 1200 MBq for Ra-228. Although filters are the most important type of NORM

  1. Amplified recruitment pressure of biofouling organisms in commercial salmon farms: potential causes and implications for farm management.

    Science.gov (United States)

    Bloecher, Nina; Floerl, Oliver; Sunde, Leif Magne

    2015-01-01

    The development of biofouling on finfish aquaculture farms presents challenges for the industry, but the factors underlying nuisance growths are still not well understood. Artificial settlement surfaces were used to examine two possible explanations for high rates of biofouling in Norwegian salmon farms: (1) increased propagule release during net cleaning operations, resulting in elevated recruitment rates; and (2) potential reservoir effects of farm surfaces. The presence of salmon farms was associated with consistently and substantially (up to 49-fold) elevated recruitment rates. Temporal patterns of recruitment were not driven by net cleaning. Resident populations of biofouling organisms were encountered on all submerged farm surfaces. Calculations indicate that a resident population of the hydroid Ectopleura larynx, a major biofouling species, could release between 0.3 × 10(9) and 4.7 × 10(9) larvae per farm annually. Such resident populations could form propagule reservoirs and be one explanation for the elevated recruitment pressure at salmon farms.

  2. Coagulant recovery and reuse for drinking water treatment.

    Science.gov (United States)

    Keeley, James; Jarvis, Peter; Smith, Andrea D; Judd, Simon J

    2016-01-01

    Coagulant recovery and reuse from waterworks sludge has the potential to significantly reduce waste disposal and chemicals usage for water treatment. Drinking water regulations demand purification of recovered coagulant before they can be safely reused, due to the risk of disinfection by-product precursors being recovered from waterworks sludge alongside coagulant metals. While several full-scale separation technologies have proven effective for coagulant purification, none have matched virgin coagulant treatment performance. This study examines the individual and successive separation performance of several novel and existing ferric coagulant recovery purification technologies to attain virgin coagulant purity levels. The new suggested approach of alkali extraction of dissolved organic compounds (DOC) from waterworks sludge prior to acidic solubilisation of ferric coagulants provided the same 14:1 selectivity ratio (874 mg/L Fe vs. 61 mg/L DOC) to the more established size separation using ultrafiltration (1285 mg/L Fe vs. 91 mg/L DOC). Cation exchange Donnan membranes were also examined: while highly selective (2555 mg/L Fe vs. 29 mg/L DOC, 88:1 selectivity), the low pH of the recovered ferric solution impaired subsequent treatment performance. The application of powdered activated carbon (PAC) to ultrafiltration or alkali pre-treated sludge, dosed at 80 mg/mg DOC, reduced recovered ferric DOC contamination to water quality parameters. Several PAC-polished recovered coagulants provided the same or improved DOC and turbidity removal as virgin coagulant, as well as demonstrating the potential to reduce disinfection byproducts and regulated metals to levels comparable to that attained from virgin material.

  3. Problems of drinking water treatment along Ismailia Canal Province, Egypt.

    Science.gov (United States)

    Geriesh, Mohamed H; Balke, Klaus-Dieter; El-Rayes, Ahmed E

    2008-03-01

    The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process. On the other hand, chlorine gas is added as a disinfectant agent in two steps, pre- and post-chlorination. Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane (THM) species as a chlorination by-product. The Ismailia Canal represents the most distal downstream of the main Nile River. Thus its water contains all the proceeded pollutants discharged into the Nile. In addition, the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year. Moreover, the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals. The obtained results indicate that the canal gains up to 24.06x10(6) m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates, while during the rest of the year, the canal acts as an influent stream losing about 99.6x10(6) m3 of its water budget. The reduction of total organic carbon (TOC) and suspended particulate matters (SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products. The combination of sedimentation basins, gravel pre-filtration and slow sand filtration, and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC, SPM and heavy metals. Moreover, it reduces the use of disinfectants chemicals and lowers the treatment costs. However, this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application.

  4. Characterization of ballasted flocs in water treatment using microscopy.

    Science.gov (United States)

    Lapointe, Mathieu; Barbeau, Benoit

    2016-03-01

    Ballasted flocculation is widely used in the water industry for drinking water, municipal wastewater, storm water and industrial water treatment. This gravity-based physicochemical separation process involves the injection of a ballasting agent, typically microsand, to increase the floc density and size. However, the physical characteristics of the final ballasted flocs are still ill-defined. A microscopic method was specifically developed to characterize floc 1) density, 2) size and 3) shape factor. Using this information, probability density functions (PDFs) of the floc settling velocity were calculated. The impacts of the mixing intensity, polymer dosage, microsand size and contact time during the floc maturation phase were assessed. No correlation was identified between the floc diameter, form and density PDFs. The floc equivalent diameter mainly controls the settling velocity (r = 0.94), with the floc density (r = 0.26) and shape factor (r = 0.25) having lower impacts. A velocity gradient of 165 s(-1) was optimal to maintain the microsand in suspension while simultaneously maximizing the floc diameter. An anionic high molecular weight polyacrylamide formed 1.5-fold larger aggregates compared with the starch-based polymer tested, but both polymers produced flocs of similar density (relative density = 1.53 ± 0.03). Generally, the floc mean settling velocity is a good predictor of the turbidity removal. An in-depth analysis of the floc characteristics indicates a correlation between the floc size and the largest microsand grain potentially embeddable in the floc structure.

  5. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Science.gov (United States)

    2012-02-29

    ... AGENCY 40 CFR Parts 141 and 142 Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of public... requirement in the Long Term 2 Enhanced Surface Water Treatment Rule (LT2 rule). At this meeting, EPA...

  6. Development of a Water Treatment Plant Operation Manual Using an Algorithmic Approach.

    Science.gov (United States)

    Counts, Cary A.

    This document describes the steps to be followed in the development of a prescription manual for training of water treatment plant operators. Suggestions on how to prepare both flow and narrative prescriptions are provided for a variety of water treatment systems, including: raw water, flocculation, rapid sand filter, caustic soda feed, alum feed,…

  7. Water Treatment Plant Operation. Volume I. A Field Study Training Program.

    Science.gov (United States)

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  8. Water Treatment Plant Operation. Volume II. A Field Study Training Program.

    Science.gov (United States)

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  9. Water Treatment Plant Operation Volume 2. A Field Study Training Program. Revised.

    Science.gov (United States)

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  10. Effects of Vermicompost and Water Treatment Residuals on Soil Physical Properties and Wheat Yield

    Science.gov (United States)

    Ibrahim, Mahmoud M.; Mahmoud, Essawy K.; Ibrahim, Doaa A.

    2015-04-01

    The application of vermicompost and water treatment residuals to improve the physical properties in the salt affected soils is a promising technology to meet the requirements of high plant growth and cost-effective reclamation. Therefore, the aim of this study was to investigate the effect of vermicompost and its mixtures with water treatment residuals on selected physical properties of saline sodic soil and on wheat yield. The treatments were vermicompost, water treatment residuals, vermicompost + water treatment residuals (1:1 and 2:1 wet weight ratio) at levels of 5 and 10 g dry weight kg-1 dry soil. The considered physical properties included aggregate stability, mean weight diameter, pore size distribution and dry bulk density. The addition of vermicompost and water treatment residuals had significant positive effects on the studied soil physical properties, and improved the grain yield of wheat. The treatment of (2 vermicompost + 1 water treatment residuals) at level of 5 g kg-1 soil gave the best grain yield. Combination of vermicompost and water treatment residuals improved the water treatment residuals efficiency in ameliorating the soil physical properties, and could be considered as an ameliorating material for the reclamation of salt affected soils.

  11. Operation of passive membrane systems for drinking water treatment.

    Science.gov (United States)

    Oka, P A; Khadem, N; Bérubé, P R

    2017-02-28

    The widespread adoption of submerged hollow fibre ultrafiltration (UF) for drinking water treatment is currently hindered by the complexity and cost of these membrane systems, especially in small/remote communities. Most of the complexity is associated with auxiliary fouling control measures, which include backwashing, air sparging and chemical cleaning. Recent studies have demonstrated that sustained operation without fouling control measures is possible, but little is known regarding the conditions under which extended operation can be sustained with minimal to no fouling control measures. The present study investigated the contribution of different auxiliary fouling control measures to the permeability that can be sustained, with the intent of minimizing the mechanical and operational complexity of submerged hollow fiber UF membrane systems while maximizing their throughput capacity. Sustained conditions could be achieved without backwashing, air sparging or chemical cleaning (i.e. passive operation), indicating that these fouling control measures can be eliminated, substantially simplifying the mechanical and operational complexity of submerged hollow fiber UF systems. The adoption of hydrostatic pressure (i.e. gravity) to provide the driving force for permeation further reduced the system complexity. Approximately 50% of the organic material in the raw water was removed during treatment. The sustained passive operation and effective removal of organic material was likely due to the microbial community that established itself on the membrane surface. The permeability that could be sustained was however only approximately 20% of that which can be maintained with fouling control measures. Retaining a small amount of air sparging (i.e. a few minutes daily) and incorporating a daily 1-h relaxation (i.e. permeate flux interruption) period prior to sparging more than doubled the permeability that could be sustained. Neither the approach used to interrupt the permeate

  12. Arsenite Sorption by Drinking-Water Treatment Residuals: Redox Effects

    Science.gov (United States)

    Makris, K. C.; Sarkar, D.; Datta, R.

    2005-05-01

    Arsenic (As) is a major human carcinogen and could pose a serious human health risk at concentrations as low as 50 ppb in drinking water. Elevated As concentrations in soils currently used for residential purposes (located on former agricultural lands amended with arsenical pesticides) have increased the possibility of human contact with soil-As. Studies have shown that As bioavailability in the environment is primarily a function of its chemical speciation, which depends upon the redox potential. Arsenic toxicity and carcinogenicity to living organisms is primarily due to exposure to the reduced species of As - arsenite, i.e., As(III), rather than the oxidized species - arsenate, i.e., As(V); the mobility of As(III) is much higher than As(V). One of the most promising methods to decrease the mobility of arsenite in the soil-water system is promoting its retention onto amorphous Fe/Al hydroxides. Drinking-Water Treatment Residuals (WTRs) are an inexpensive source of such Fe/Al hydroxides, which can be land-applied following the USEPA-regulated biosolids application rules. The WTRs are byproducts of drinking-water purification processes and generally contain sediment, organic carbon, and Al/Fe hydroxides. The hydroxides are typically amorphous and have tremendous affinity for oxyanions (e.g., arsenate). Preliminary work showed that WTRs are characterized by large internal surface area and porosity that partly explains their high affinity for As(V). The current study examines the potential of two WTRs (Fe-based and Al-based) to adsorb arsenite from solution. We hypothesize that As(III) adsorption onto the Fe-based WTR (whose stability is highly redox-sensitive) would be vastly different from the adsorption of As(III) onto the redox-insensitive Al-based WTR. Our main objective is to characterize As(III) sorption by both Fe- and Al-based WTRs by changing critical factors, such as the solid:solution ratio, contact time, and initial As(III) load. Results from this study

  13. Upgrading coagulation with hollow-fibre nanofiltration for improved organic matter removal during surface water treatment.

    Science.gov (United States)

    Köhler, Stephan J; Lavonen, Elin; Keucken, Alexander; Schmitt-Kopplin, Philippe; Spanjer, Tom; Persson, Kenneth

    2016-02-01

    Rising organic matter concentrations in surface waters in many Nordic countries require current drinking water treatment processes to be adapted. Accordingly, the use of a novel nanofiltration (NF) membrane was studied during a nine month period in pilot scale at a large drinking water treatment plant in Stockholm, Sweden. A chemically resistant hollow-fibre NF membrane was fed with full scale process water from a rapid sand filter after aluminum sulfate coagulation. The combined coagulation and NF process removed more than 90% of the incoming lake water dissolved organic carbon (DOC) (8.7 mg C L(-1)), and 96% of the absorbance at 254 nm (A254) (0.28 cm(-1) incoming absorbance). Including granulated active carbon GAC) filter, the complete pilot plant treatment process we observed decreases in DOC concentration (8.7-0.5 mg C L(-1)), SUVA (3.1-1.7 mg(-1) L m(-1)), and the average nominal molecular mass (670-440 Da). Meanwhile, water hardness was practically unaffected (treatment was somewhat less selective but still preferentially targeted humic-like FDOM (83 ± 1%) to a larger extent than protein-like material (66 ± 3%). The high selectivity of organic matter during coagulation compared to NF separation was confirmed from analyses with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), and liquid chromatography with organic carbon detection (LC-OCD), as coagulation exclusively targeted oxidized organic matter components while NF removed both chemically reduced and oxidized components. DOC removal and change in DOC character in the GAC filters showed marked differences with slower saturation and more pronounced shifts in DOC character using NF as pre-treatment. Fluorescence derived parameters showed a similar decrease over time of GAC performance for the first 150 days but also indicated ongoing change of DOM character in the post NF GAC filtrate over time even after LC-OCD indicated steady state with respect to outgoing carbon

  14. Disinfection of Water by Ultrasound: Application to Ballast Water Treatment

    Science.gov (United States)

    2006-10-01

    Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa, fungus and viruses (Scherba et al., 1991). Mortality increased with both exposure time...at 20 kHz, 150 W reduced the heat resistance of Bacillus subtilis spores (Garcia et al., 1989). While sonication followed by thermal treatment...and protected the surviving cells from Cl2 exposure. Thus, combining ultrasound and Cl2 can be antagonistic. There may be a hint of this antagonism

  15. Biocorrosion and biofouling of metals and alloys of industrial usage. Present state of the art at the beginning of the new millennium

    OpenAIRE

    Videla, H. A.

    2003-01-01

    An overview on the present state of the art on Biocorrosion and Biofouling of metals and alloys of industrial usage is offered on the basis of the experience gathered in our laboratory over 25 years of research. The key concepts to understand the main effects of microorganisms on metal decay are briefly discussed. New trends in monitoring and control strategies to mitigate biocorrosion and biofouling deleterious effects are also described. Several relevant cases of biocorrosion studied by our...

  16. Membrane technologies for water treatment and reuse in the textile industry

    DEFF Research Database (Denmark)

    Petrinić, I.; Bajraktari, Niada; Hélix-Nielsen, Claus

    2015-01-01

    technology for textile wastewater remediation. However, for all of these approaches the general issue of (bio)fouling represents a major obstacle for full-scale industrial implementation. Forward osmosis (FO) membranes have recently attracted considerable interest because the low fouling propensity of FO......Textile wastewater is a challenging feed stream for treatment by membrane separation because of its complex composition and the presence of reactive components. Here we briefly present examples of reverse osmosis-, nanofiltration- and ultrafiltration-based systems as well as membrane bioreactor...

  17. Nutrient abatement potential and abatement costs of waste water treatment plants in the Baltic Sea region.

    Science.gov (United States)

    Hautakangas, Sami; Ollikainen, Markku; Aarnos, Kari; Rantanen, Pirjo

    2014-04-01

    We assess the physical potential to reduce nutrient loads from waste water treatment plants in the Baltic Sea region and determine the costs of abating nutrients based on the estimated potential. We take a sample of waste water treatment plants of different size classes and generalize its properties to the whole population of waste water treatment plants. Based on a detailed investment and operational cost data on actual plants, we develop the total and marginal abatement cost functions for both nutrients. To our knowledge, our study is the first of its kind; there is no other study on this issue which would take advantage of detailed data on waste water treatment plants at this extent. We demonstrate that the reduction potential of nutrients is huge in waste water treatment plants. Increasing the abatement in waste water treatment plants can result in 70 % of the Baltic Sea Action Plan nitrogen reduction target and 80 % of the Baltic Sea Action Plan phosphorus reduction target. Another good finding is that the costs of reducing both nutrients are much lower than previously thought. The large reduction of nitrogen would cost 670 million euros and of phosphorus 150 million euros. We show that especially for phosphorus the abatement costs in agriculture would be much higher than in waste water treatment plants.

  18. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community

    KAUST Repository

    Xue, Zheng

    2014-07-15

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community. © 2014 © 2014 Taylor & Francis.

  19. Metabarcoding improves detection of eukaryotes from early biofouling communities: implications for pest monitoring and pathway management.

    Science.gov (United States)

    Zaiko, Anastasija; Schimanski, Kate; Pochon, Xavier; Hopkins, Grant A; Goldstien, Sharyn; Floerl, Oliver; Wood, Susanna A

    2016-07-01

    In this experimental study the patterns in early marine biofouling communities and possible implications for surveillance and environmental management were explored using metabarcoding, viz. 18S ribosomal RNA gene barcoding in combination with high-throughput sequencing. The community structure of eukaryotic assemblages and the patterns of initial succession were assessed from settlement plates deployed in a busy port for one, five and 15 days. The metabarcoding results were verified with traditional morphological identification of taxa from selected experimental plates. Metabarcoding analysis identified > 400 taxa at a comparatively low taxonomic level and morphological analysis resulted in the detection of 25 taxa at varying levels of resolution. Despite the differences in resolution, data from both methods were consistent at high taxonomic levels and similar patterns in community shifts were observed. A high percentage of sequences belonging to genera known to contain non-indigenous species (NIS) were detected after exposure for only one day.

  20. Biofouling on polymeric heat exchanger surfaces with E. coli and native biofilms.

    Science.gov (United States)

    Pohl, S; Madzgalla, M; Manz, W; Bart, H J

    2015-01-01

    The biofouling affinity of different polymeric surfaces (polypropylene, polysulfone, polyethylene terephthalate, and polyether ether ketone) in comparison to stainless steel (SS) was studied for the model bacterium Escherichia coli K12 DSM 498 and native biofilms originating from Rhine water. The biofilm mass deposited on the polymer surfaces was minimized by several magnitudes compared to SS. The cell count and the accumulated biomass of E. coli on the polymer surfaces showed an opposing linear trend. The promising low biofilm formation on the polymers is attributed to the combination of inherent surface properties (roughness, surface energy and hydrophobicity) when compared to SS. The fouling characteristics of E. coli biofilms show good conformity with the more complex native biofilms investigated. The results can be utilized for the development of new polymer heat exchangers when using untreated river water as coolant or for other processes needing antifouling materials.

  1. Mitigation of biofouling using electromagnetic fields in tubular heat exchangers-condensers cooled by seawater.

    Science.gov (United States)

    Trueba, Alfredo; García, Sergio; Otero, Félix M

    2014-01-01

    Electromagnetic field (EMF) treatment is presented as an alternative physical treatment for the mitigation of biofouling adhered to the tubes of a heat exchanger-condenser cooled by seawater. During an experimental phase, a fouling biofilm was allowed to grow until experimental variables indicated that its growth had stabilised. Subsequently, EMF treatment was applied to seawater to eliminate the biofilm and to maintain the achieved cleanliness. The results showed that EMFs precipitated ions dissolved in the seawater. As a consequence of the application of EMFs, erosion altered the intermolecular bonding of extracellular polymers, causing the destruction of the biofilm matrix and its detachment from the inner surface of the heat exchanger-condenser tubes. This detachment led to the partial removal of a mature biofilm and a partial recovery of the efficiency lost in the heat transfer process by using a physical treatment that is harmless to the marine environment.

  2. Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor.

    Science.gov (United States)

    Li, Fang; Cheng, Qianxun; Tian, Qing; Yang, Bo; Chen, Qianyuan

    2016-07-01

    Forward osmosis (FO) has received considerable interest for water and energy related applications in recent years. Biofouling behavior and performance of cellulose triacetate (CTA) forward osmosis membranes with bioinspired surface modification via polydopamine (PD) coating and poly (ethylene glycol) (PEG) grafting (PD-g-PEG) in a submerged osmotic membrane bioreactor (OMBR) were investigated in this work. The modified membranes exhibited lower flux decline than the pristine one in OMBR, confirming that the bioinspired surface modification improved the antifouling ability of the CTA FO membrane. The result showed that the decline of membrane flux related to the increase of the salinity and MLSS concentration of the mixed liquid. It was concluded that the antifouling ability of modified membranes ascribed to the change of surface morphology in addition to the improvement of membrane hydrophilicity. The bioinspired surface modifications might improve the anti-adhesion for the biopolymers and biocake.

  3. Cleaning efficacy of hydroxypropyl-beta-cyclodextrin for biofouling reduction on reverse osmosis membranes.

    Science.gov (United States)

    Alayande, Abayomi Babatunde; Kim, Lan Hee; Kim, In S

    2016-01-01

    In this study, an environmentally friendly compound, hydroxypropyl-beta-cyclodextrin (HP-β-CD) was applied to clean reverse osmosis (RO) membranes fouled by microorganisms. The cleaning with HP-β-CD removed the biofilm and resulted in a flux recovery ratio (FRR) of 102%. As cleaning efficiency is sometimes difficult to determine using flux recovery data alone, attached bacterial cells and extracellular polymeric substances (EPS) were quantified after cleaning the biofouled membrane with HP-β-CD. Membrane surface characterization using scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and atomic force microscopy (AFM) confirmed the effectiveness of HP-β-CD in removal of biofilm from the RO membrane surface. Finally, a comparative study was performed to investigate the competitiveness of HP-β-CD with other known cleaning agents such as sodium dodecyl sulfate (SDS), ethylenediaminetetraacetic acid (EDTA), Tween 20, rhamnolipid, nisin, and surfactin. In all cases, HP-β-CD was superior.

  4. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community.

    Science.gov (United States)

    Xue, Zheng; Lu, Huijie; Liu, Wen-Tso

    2014-01-01

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community.

  5. MARINE BIOFOULING IN OFFSHORE AREAS SOUTH OF HAINAN ISLAND, NORTHERN SOUTH CHINA SEA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This study on the characteristics of fouling communities in offshore areas south of Hainan Island, northern South China Sea, was conducted at four sites there. At each station, test panels on iron frames were hung on the mooring system at different depths. Data on biofouling were mainly obtained by examination of the fouled test panels. Organisms attached to buoys and anchors were scraped off and examined also. The results showed that the thickness and biomass of marine growth that increased the fluid loading on offshore installations depended to a large extent on hard foulers, i.e. mollusks and acorn barnacles. Algae, hydroids, stalked barnacles and bryozoans were important fouling species. The occurrence frequency and biomass of acorn barnacles decreased with increasing distance from the shore.

  6. Membrane bioreactor wastewater treatment plants reveal diverse yeast and protist communities of potential significance in biofouling.

    Science.gov (United States)

    Liébana, Raquel; Arregui, Lucía; Belda, Ignacio; Gamella, Luis; Santos, Antonio; Marquina, Domingo; Serrano, Susana

    2015-01-01

    The yeast community was studied in a municipal full-scale membrane bioreactor wastewater treatment plant (MBR-WWTP). The unexpectedly high diversity of yeasts indicated that the activated sludge formed a suitable environment for them to proliferate, with cellular concentrations of 2.2 ± 0.8 × 10(3) CFU ml(-1). Sixteen species of seven genera were present in the biological reactor, with Ascomycetes being the most prevalent group (93%). Most isolates were able to grow in a synthetic wastewater medium, adhere to polyethylene surfaces, and develop biofilms of variable complexity. The relationship between yeast populations and the protists in the MBR-WWTP was also studied, revealing that some protist species preyed on and ingested yeasts. These results suggest that yeast populations may play a role in the food web of a WWTP and, to some extent, contribute to membrane biofouling in MBR systems.

  7. The effect of feed salinity on the biofouling dynamics of seawater desalination.

    Science.gov (United States)

    Yang, Hui-Ling; Pan, Jill R; Huang, Chihpin; Lin, Justin Chun-Te

    2011-05-01

    A persistent cell labeling dye and a novel microbial counting method were used to explore the effects of salinity on a microbial population in a reverse osmosis (RO) desalination system, and these clearly distinguished microbial cell multiplication from cell adherence. The results indicated that microbial multiplication is more active at the front of a seawater RO pressure vessel, while adhesion dominates the back of the vessel. A severe reduction in RO permeate flux and total dissolved solid (TDS) rejection were detected at low salinity, attributed to marked cell multiplication and release of extracellular polymeric substances, whilst a relatively stable flux was observed at medium and high salinity. The results from PCR-DGGE revealed the variation in microbial species distribution on the membrane with salinity. The results imply the critical role of membrane modification in biofouling mitigation in the desalination process.

  8. Superhydrophobic PVDF and PVDF-HFP nanofibrous mats with antibacterial and anti-biofouling properties

    Science.gov (United States)

    Spasova, M.; Manolova, N.; Markova, N.; Rashkov, I.

    2016-02-01

    Superhydrophobic nanofibrous materials of poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) were prepared by one-pot electrospinning technique. The mats were decorated with ZnO nanoparticles with silanized surface and a model drug - 5-chloro-8-hydroxyquinolinol (5Cl8HQ). The obtained hybrid nanofibrous materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), contact angle measurements, mechanical and microbiological tests. The results showed that the incorporation of ZnO nanoparticles into PVDF and PVDF-HFP nanofibers increased the hydrophobicity (contact angle 152°), improved the thermal stability and imparted to the nanofibrous materials anti-adhesive and antimicrobial properties. The mats containing the model drug possessed antibacterial activity against Escherichia coli and Staphylococcus aureus. The results suggested that the obtained hybrid mats could find potential biomedical applications requiring antibacterial and anti-biofouling properties.

  9. Evaluation of cationic micropeptides derived from the innate immune system as inhibitors of marine biofouling.

    Science.gov (United States)

    Trepos, Rozenn; Cervin, Gunnar; Pile, Claire; Pavia, Henrik; Hellio, Claire; Svenson, Johan

    2015-01-01

    A series of 13 short synthetic amphiphilic cationic micropeptides, derived from the antimicrobial iron-binding innate defence protein lactoferrin, have been evaluated for their capacity to inhibit the marine fouling process. The whole biofouling process was studied and microfouling organisms such as marine bacteria and microalgae were included as well as the macrofouling barnacle Balanus improvisus. In total 19 different marine fouling organisms (18 microfoulers and one macrofouler) were included and both the adhesion and growth of the microfoulers were investigated. It was shown that the majority of the peptides inhibited barnacle cyprid settlement via a reversible nontoxic mechanism, with IC50 values as low as 0.5 μg ml(-1). Six peptides inhibited adhesion and growth of microorganisms. Two of these were particularly active against the microfoulers with MIC-values ranging between 0.01 and 1 μg ml(-1), which is comparable with the commercial reference antifoulant SeaNine.

  10. Non-biofouling property of well-defined concentrated polymer brushes.

    Science.gov (United States)

    Yoshikawa, Chiaki; Qiu, Jun; Huang, Chih-Feng; Shimizu, Yoshihisa; Suzuki, Junji; van den Bosch, Edith

    2015-03-01

    The non-biofouling properties of polymer brushes of poly(2-hydroxyethyl methacrylate) (PHEMA), poly(2-hydroxyethyl acrylate) (PHEA), and poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMA) were comprehensively studied by varying graft densities (i.e., semi-dilute and concentrated regimes) and the thicknesses at the dry state of 2 and 10 nm. Semi-dilute polymer brushes (SDPBs) were prepared by grafting-to method and concentrated polymer brushes (CPBs) were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP). The adsorptions of proteins with different sizes were investigated on the brushes by quartz crystal microbalance (QCM) from a view point of size-exclusion effect specific to the CPBs. We confirmed that due to the size exclusion effect, the CPBs of all the three much suppressed proteins adsorption and human umbilical vein endothelial cell (HUVEC) adhesion compared with the corresponding SDPBs. In order to investigate what type of proteins adsorbed on the brushes to trigger cell adhesion, we identified adsorbed proteins from fetal bovine serum on the brushes using a high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Proteins were only detected on the SDPBs. Interestingly, the number and type of identified proteins were different on the SDPBs, indicating that chemical composition of the SDPBs affects protein adsorption, hence the cell adhesion. The adsorption mechanism on the SDPBs could be due to the combination of protein-polymer interaction and physical inclusion, whereas CPBs exhibit size exclusion effect combined with neutral hydrophilic nature of polymer, thereby, that provides excellent non-biofouling property.

  11. The influence of antiscalants on biofouling of RO membranes in seawater desalination.

    Science.gov (United States)

    Sweity, Amer; Oren, Yoram; Ronen, Zeev; Herzberg, Moshe

    2013-06-15

    Antiscalants are surface active polyelectrolyte compounds commonly used in reverse osmosis (RO) desalination processes to avoid membrane scaling. In spite of the significant roles of antiscalants in preventing membrane scaling, they are prone to enhance biofilm growth on RO membranes by either altering membrane surface properties or by serving as nutritional source for microorganisms. In this study, the contribution of antiscalants to membrane biofouling in seawater desalination was investigated. The effects of two commonly used antiscalants, polyphosphonate- and polyacrylate-based, were tested. The effects of RO membrane (DOW-Filmtec SW30 HRLE-400) exposure to antiscalants on its physico-chemical properties were studied, including the consequent effects on initial deposition and growth of the sessile microorganisms on the RO membrane surface. The effects of antiscalants on membrane physico-chemical properties were investigated by filtration of seawater supplemented with the antiscalants through flat-sheet RO membrane and changes in surface zeta potential and hydrophobicity were delineated. Adsorption of antiscalants to polyamide surfaces simulating RO membrane's polyamide layer and their effects on the consequent bacterial adhesion was tested using a quartz crystal microbalance with dissipation monitoring technology (QCM-D) and direct fluorescent microscopy. A significant increase in biofilm formation rate on RO membranes surface was observed in the presence of both types of antiscalants. Polyacrylate-based antiscalant was shown to enhance initial cell attachment as observed with the QCM-D and a parallel plate flow cell, due to rendering the polyamide surface more hydrophobic. Polyphosphonate-based antiscalants also increased biofilm formation rate, most likely by serving as an additional source of phosphorous to the seawater microbial population. A thicker biofilm layer was formed on the RO membrane when the polyacrylate-based antiscalant was used. Following

  12. Adsorption onto fibrous activated carbon: applications to water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Le Cloirec, P.; Brasquet, C.; Subrenat, E. [Ecole des Mines de Nantes, Nantes (France)

    1997-03-01

    The adsorption of polluted waters is performed by activated carbon fibers (ACF). This new material is characterized by scanning electron microscopy. BET surface areas and pore volumes are determined. Adsorption of natural organics (humic substances) and micropollutants (aromatic compounds such as benzene and toluene) is carried out in a batch or dynamic reactor. Classical models are applied and kinetic constants calculated. The results show that the performance of ACF is significantly higher than that of granular activated carbon (GAC) in terms of adsorption velocity and selectivity for micropollutants. These higher performances are due to some ACF physical properties, such as their high BET surface area and micropore volume. Moreover, the micropores are directly connected on the external surface area of fibers, which allows smaller mass transfer resistance. In a dynamic reactor, the breakthrough curves obtained with ACF beds are particularly steep, suggesting a smaller mass transfer resistance than that of GAC. The adsorption zone in an ACF bed is about 3.5 mm and is not really dependent on the water flow rate within the studied range. 25 refs., 14 figs., 6 tabs.

  13. Biofouling management by the BiosS-Treat {sup registered} -process for purification of surface water by reverse osmosis; Biofouling-Management mit dem BiosS-Treat {sup registered} -Verfahren fuer die Aufbereitung von Oberflaechenwaessern mittels Umkehrosmose-Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Keil, U.; Brueggendick, H. [STEAG encotec GmbH, Essen (Germany)

    2007-07-01

    In most plants biofouling problems are causing frequent membrane blocking with the consequences of degradation of plant performance and finally in many cases of unavoidable replacement of RO elements. In contrast to existing technologies the new biofouling management called BiosS-Treat {sup registered}, focuses on a preventive concept which is based on microbiological aspects. CEK engineering and STE-AG encotec have developed this new design of pre-treatment for the river water RO plant of the STEAG refinery power plant in Leuna, Germany. By BioS-Treat {sup registered} the availability of the RO plant was optimised significantly and the operating costs have been reduced to more then 60% in five years of operation. (orig.)

  14. Granular filters for water treatment: heterogeneity and diagnostic tools

    DEFF Research Database (Denmark)

    Lopato, Laure Rose

    the last barrier against disinfection resistant protozoan pathogens and this has led to increased regulation of the filtration process. To be able to produce high-quality filtrate in a constant and reliable manner while meeting stricter drinking water guideline values, it is important to be able...... the soil and groundwater field such as the hand penetrometer, time domain reflectometry and ground penetrating radar are suggested. The heterogeneity of rapid filters has not been previously studied at full scale. Filter heterogeneity is not desirable because it makes it difficult to achieve constant...... values or design criteria, and to specific filter failures. Moreover, further research is necessary to develop promising tools such as the hand penetrometer, time domain reflectometry and ground penetrating radar....

  15. Notification: Hotline Complaint – Drinking Water Treatment Plant at the Fort Belknap Indian Community

    Science.gov (United States)

    Project #OA-FY13-0076, November 13, 2012. On March 22, 2012, the Office of Inspector General (OIG) received a hotline complaint on the construction of the Drinking Water Treatment Plant (DWTP) at the Fort Belknap Indian Community.

  16. Water Treatment Plant Sludges--An Update of the State of the Art: Part 2.

    Science.gov (United States)

    American Water Works Association Journal, 1978

    1978-01-01

    This report outlines the state of the art with respect to nonmechanical and mechanical methods of dewatering water treatment plant sludge, ultimate solids disposal, and research and development needs. (CS)

  17. Fluorescence spectroscopy as a tool for determination of organic matter removal efficiency at water treatment works

    Directory of Open Access Journals (Sweden)

    M. Z. Bieroza

    2009-12-01

    Full Text Available Organic matter (OM in drinking water treatment is a common impediment responsible for increased coagulant and disinfectant dosages, formation of carcinogenic disinfection-by products, and microbial re-growth in distribution system. The inherent heterogeneity of OM implies the utilization of advanced analytical techniques for its characterization and assessment of removal efficiency. Here, the application of simple fluorescence excitation-emission technique to OM characterization in drinking water treatment is presented. The fluorescence data of raw and clarified water was obtained from 16 drinking water treatment works. The reduction in fulvic-like fluorescence was found to significantly correlate with OM removal measured with total organic carbon (TOC. Fluorescence properties, fulvic- and tryptophan-like regions, were found to discriminate OM fractions of different removal efficiencies.

    The results obtained in the study show that fluorescence spectroscopy provides a rapid and accurate characterization and quantification of OM fractions and indication of their treatability in conventional water treatment.

  18. Fluorescence spectroscopy as a tool for determination of organic matter removal efficiency at water treatment works

    Directory of Open Access Journals (Sweden)

    M. Z. Bieroza

    2010-04-01

    Full Text Available Organic matter (OM in drinking water treatment is a common impediment responsible for increased coagulant and disinfectant dosages, formation of carcinogenic disinfection-by products, and microbial re-growth in distribution system. The inherent heterogeneity of OM implies the utilization of advanced analytical techniques for its characterization and assessment of removal efficiency. Here, the application of simple fluorescence excitation-emission technique to OM characterization in drinking water treatment is presented. The fluorescence data of raw and clarified water was obtained from 16 drinking water treatment works. The reduction in fulvic-like fluorescence was found to significantly correlate with OM removal measured with total organic carbon (TOC. Fluorescence properties, fulvic- and tryptophan-like regions, were found to discriminate OM fractions of different removal efficiencies. The results obtained in the study show that fluorescence spectroscopy provides a rapid and accurate characterization and quantification of OM fractions and indication of their treatability in conventional water treatment.

  19. Impact of harmful algal blooms on several Lake Erie drinking water treatment facilities; methodology considerations

    Science.gov (United States)

    The propagation of cyanbacterial cells and their toxins were investigated at seven drinking water treatment plants (DWTPs) on Lake Erie were investigated with regards to harmful algal bloom (HAB) toxin concentrations, water quality variations in treatment plant influents, and pr...

  20. Nanostructured Titanium Oxide Film- And Membrane-Based Photocatalysis For Water Treatment

    Science.gov (United States)

    Titanium Oxide (TiO2) photocatalysis, one of the ultraviolet (UV)-based advanced oxidation technologies (AOTs) and nanotechnologies (AONs), has attracted great attention for the development of efficient water treatment and purification systems due to the effectiveness ...

  1. PVC-piping promotes growth of Ralstonia pickettii in dialysis water treatment facilities.

    Science.gov (United States)

    Dombrowsky, Matthias; Kirschner, Alexander; Sommer, Regina

    2013-01-01

    Biofilms forming inside dialysis water treatment systems are one of the main sources of microbiological contamination. Among the bacteria found in biofilms, Ralstonia pickettii is frequently encountered in dialysis water treatment systems and has been shown to develop extreme oligotrophic talents. In Austria, R. pickettii was exclusively detected in high numbers in dialysis water treatment facilities equipped with chlorinated polyvinyl chloride (PVC-C) piping. In this laboratory study it was shown that PVC-C effectively promotes growth of R. pickettii biofilms, while residual organic carbon in purified dialysis water is sufficient for promoting substantial growth of planktic R. pickettii. This provides evidence that PVC-C is an unsuitable material for piping in dialysis water treatment systems.

  2. Integrated Chemical and Toxicological Investigation of UV-Chlorine/Chloramine Drinking Water Treatment

    Science.gov (United States)

    As the use of alternative drinking water treatment increases, it is important to understand potential public health•implications associated with these processes. The objective of this study was to evaluate the formation of disinfection byproducts (DBPs) and cytotoxicity of ...

  3. Radiation processing applications in the Czechoslovak water treatment technologies

    Science.gov (United States)

    Vacek, K.; Pastuszek, F.; Sedláček, M.

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone- or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation.

  4. Characterization and electrical properties of chitosan for waste water treatment

    Science.gov (United States)

    Saengkaew, Phannee; Chantanachai, Kanittha; Cheewajaroen, Kulthawat; Nimsiri, Woraporn

    2016-05-01

    Chitosan extracted from shrimp shell waste was characterized in order to use for the industrial wastewater treatment. By XRF technique, the qualitative and semi-quantitative analyses of pure chitosan were performed with the relative compositions of Ca, Mg, Si, Fe, Al, and Na of 0.321%, 0.738%, 0.713%, 0.363%, 0.338%, and 3.858%, respectively. In the case of two types of the contaminated chitosan from the wastewater treatment before and after a process of a primary H2O2-treatment, the relative compositions of Ca, Mg, Si and Fe were obtained with an increasing of 0.356%, 1.321%, 1.536%, 0.451% and 0.406%, 1.105%, 1.178%, 0.591%, respectively. This shows that the suspended materials in the wastewater were absorbed by chitosan. By I-V Measurements, the across-through voltage of the pure chitosan disc was 0.245V±0.053 at the applied voltage of 17V, and resistance of 53.9MΩ ±10.3 at the applied voltage of 590V. After the utilization for the wastewater treatment, the across voltage of chitosan discs from two cases were 0.133V±0.047 and 0.223V±0.063, and the resistance of 122.8MΩ ±16.1 and 24.8MΩ ±5.1. The used chitosan has a lower conductivity because of a decreasing in the chitosan's electrical dipoles by combining with the suspended ions in the wastewater. Moreover, the adsorption efficiencies of chitosan for formaldehyde in the wastewater of two cases were 31.08% and 25.40%. In summary, chitosan is efficiently utilized in the wastewater treatment by absorption of the suspended materials and formaldehyde due to its molecular structure providing a good electrical property.

  5. Evolution of biofouling on a vertical stainless steel surface caused by bacillus subtilis under heat pump conditions%热泵工况下竖直不锈钢表面微生物污垢动态生长行为

    Institute of Scientific and Technical Information of China (English)

    田磊; 杨倩鹏; 史琳; 陈金春

    2012-01-01

    Treated sewage is an important carrier of urban waste energy, which can be used as a suitable heat source in heat pump systems. A treated sewage source heat pump system was designed and used at Beijing Olympic Village in 2008 to provide heating and cooling, which is a green approach to recovering urban heat. However, treated sewage contains components that can cause fouling, such as heterotrophic bacteria, microbial nutrients and suspended substances. These could not be completely removed during treatments conducted by the wastewater treatment plants, and biofouling inevitably occurs in the plate heat exchangers of the treated sewage used in the heat pump systems. In order to understand the characteristics of the biofouling, an experimental system, which mimicked the treated sewage water and simulated the relevant fouling formation process, was developed in our laboratory. The flow cell in the system, which was used to imitate plate heat exchangers, allowed sample surfaces properly retrieved and analyzed. Extensive experimentations including process monitoring and microstructure development in biofilm were conducted and the results presented in this paper showed the possibility of reducing thebiofouling in the future. Under typical heating and cooling conditions of heat pump, the growth curves of biofouling were generated from different weight values, the micromorphic evolution of biofouling was characterized by using Environmental Scanning Electron Microscopy. A series of quantitative information was obtained and discussed. In particular, the effects of flow velocity and bacterial concentration were investigated, which clearly influenced the biofilm development, thus impacting the thermal resistance created. It was found that the biofouling growth rate changed synchronously with the micromorphic evolution, and the effect of flow velocity on biofouling formation was non-monotonic. Biofouling would be neglected when the bacterial concentration decreased to 103 CFU

  6. Waste water treatment of slaughterhouse through water treatment plants of stainless steel; Tratamiento de aguas residuales de mataderos mediante depuradoras compactas modulares de acero inoxidable

    Energy Technology Data Exchange (ETDEWEB)

    BaNales Sirvent, P.

    1997-06-01

    The object of this project was to develop an integral waste water treatment concept, based on compact module made of stainless steel, with a combination that allows to get performances according to given requirements stablished in the Community Directive 91/271/CEE (1991). The industrial pilot tests have been made in a slaughterhouse with a capacity of 20 tons per day. (Author)

  7. A novel approach to determine the efficacy of patterned surfaces for biofouling control in relation to its microfluidic environment.

    Science.gov (United States)

    Halder, Partha; Nasabi, Mahyar; Lopez, Francisco Javier Tovar; Jayasuriya, Niranjali; Bhattacharya, Satinath; Deighton, Margaret; Mitchell, Arnan; Bhuiyan, Muhammed Ali

    2013-01-01

    Biofouling, the unwanted growth of sessile microorganisms on submerged surfaces, presents a serious problem for underwater structures. While biofouling can be controlled to various degrees with different microstructure-based patterned surfaces, understanding of the underlying mechanism is still imprecise. Researchers have long speculated that microtopographies might influence near-surface microfluidic conditions, thus microhydrodynamically preventing the settlement of microorganisms. It is therefore very important to identify the microfluidic environment developed on patterned surfaces and its relation with the antifouling behaviour of those surfaces. This study considered the wall shear stress distribution pattern as a significant aspect of this microfluidic environment. In this study, patterned surfaces with microwell arrays were assessed experimentally with a real-time biofilm development monitoring system using a novel microchannel-based flow cell reactor. Finally, computational fluid dynamics simulations were carried out to show how the microfluidic conditions were affecting the initial settlement of microorganisms.

  8. Dynamic surface deformation of silicone elastomers for management of marine biofouling: laboratory and field studies using pneumatic actuation.

    Science.gov (United States)

    Shivapooja, Phanindhar; Wang, Qiming; Szott, Lizzy M; Orihuela, Beatriz; Rittschof, Daniel; Zhao, Xuanhe; López, Gabriel P

    2015-01-01

    Many strategies have been developed to improve the fouling release (FR) performance of silicone coatings. However, biofilms inevitably build on these surfaces over time. Previous studies have shown that intentional deformation of silicone elastomers can be employed to detach biofouling species. In this study, inspired by the methods used in soft-robotic systems, controlled deformation of silicone elastomers via pneumatic actuation was employed to detach adherent biofilms. Using programmed surface deformation, it was possible to release > 90% of biofilm from surfaces in both laboratory and field environments. A higher substratum strain was required to remove biofilms accumulated in the field environment as compared with laboratory-grown biofilms. Further, the study indicated that substratum modulus influences the strain needed to de-bond biofilms. Surface deformation-based approaches have potential for use in the management of biofouling in a number of technological areas, including in niche applications where pneumatic actuation of surface deformation is feasible.

  9. Water Quality Impacts of Pure Chlorine Dioxide Pretreatment at the Roanoke County (Virginia) Water Treatment Plant

    OpenAIRE

    Ellenberger, Christine Spada

    1999-01-01

    WATER QUALITY IMPACTS OF PURE CHLORINE DIOXIDE PRETREATMENT AT THE ROANOKE COUNTY (VIRGINIA) WATER TREATMENT PLANT by Christine S. Ellenberger Dr. Robert C. Hoehn, Chairman (ABSTRACT) Chlorine dioxide (ClO2) was included in the Spring Hollow Water Treatment Plant (Roanoke County, Virginia) to oxidize manganese and iron, prevent tastes and odors, and avoid the formation of excessive halogenated disinfection by-products. A state-of-the-art, gas:solid ClO2 generation system ...

  10. Perceptions of Health Communication, Water Treatment and Sanitation in Artibonite Department, Haiti, March-April 2012.

    Directory of Open Access Journals (Sweden)

    Holly Ann Williams

    Full Text Available The international response to Haiti's ongoing cholera outbreak has been multifaceted, including health education efforts by community health workers and the distribution of free water treatment products. Artibonite Department was the first region affected by the outbreak. Numerous organizations have been involved in cholera response efforts in Haiti with many focusing on efforts to improve water, sanitation, and hygiene (WASH. Multiple types of water treatment products have been distributed, creating the potential for confusion over correct dosage and water treatment methods. We utilized qualitative methods in Artibonite to determine the population's response to WASH messages, use and acceptability of water treatment products, and water treatment and sanitation knowledge, attitudes and practices at the household level. We conducted eighteen focus group discussions (FGDs: 17 FGDs were held with community members (nine among females, eight among males; one FGD was held with community health workers. Health messages related to WASH were well-retained, with reported improvements in hand-washing. Community health workers were identified as valued sources of health information. Most participants noted a paucity of water-treatment products. Sanitation, specifically the construction of latrines, was the most commonly identified need. Lack of funds was the primary reason given for not constructing a latrine. The construction and maintenance of potable water and sanitation services is needed to ensure a sustainable change.

  11. Whole-house arsenic water treatment provided more effective arsenic exposure reduction than point-of-use water treatment at New Jersey homes with arsenic in well water

    Science.gov (United States)

    Spayd, Steven E.; Robson, Mark G.; Buckley, Brian T.

    2014-01-01

    A comparison of the effectiveness of whole house (point-of-entry) and point-of-use arsenic water treatment systems in reducing arsenic exposure from well water was conducted. The non-randomized observational study recruited 49 subjects having elevated arsenic in their residential home well water in New Jersey. The subjects obtained either point-of-entry or point-of-use arsenic water treatment. Prior ingestion exposure to arsenic in well water was calculated by measuring arsenic concentrations in the well water and obtaining water-use histories for each subject, including years of residence with the current well and amount of water consumed from the well per day. A series of urine samples were collected from the subjects, some starting before water treatment was installed and continuing for at least nine months after treatment had begun. Urine samples were analyzed and speciated for inorganic-related arsenic concentrations. A two-phase clearance of inorganic-related arsenic from urine and the likelihood of a significant body burden from chronic exposure to arsenic in drinking water were identified. After nine months of water treatment the adjusted mean of the urinary inorganic-related arsenic concentrations were significantly lower (p < 0.0005) in the point-of-entry treatment group (2.5 μg/g creatinine) than in the point-of-use treatment group (7.2 μg/g creatinine). The results suggest that whole house arsenic water treatment systems provide a more effective reduction of arsenic exposure from well water than that obtained by point-of-use treatment. PMID:24975493

  12. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    Science.gov (United States)

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  13. Fabrication of Slippery Lubricant-Infused Porous Surface with High Underwater Transparency for the Control of Marine Biofouling.

    Science.gov (United States)

    Wang, Peng; Zhang, Dun; Sun, Shimei; Li, Tianping; Sun, Yan

    2017-01-11

    Marine optical instruments are bearing serious biofouling problem, which affects the accuracy of data collected. To solve the biofouling problem of marine optical instruments, a novel instance of slippery lubricant-infused porous surface (SLIPS) with high underwater-transparency was designed over glass substrate via infusing lubricant into its porous microstructure fabricated with hydrothermal method. The advantage of SLIPS as antibiofouling strategy to marine optical instruments was proven by comparing its underwater optical and antibiofouling performances with three kinds of samples (hydrophilic glass sample, textured hydrophilic glass sample, and superhydrophobic glass sample). The modification of SLIPS enhances the underwater-transparency of glass sample within the wavelength of 500-800 nm, for the infusion of lubricant with lower refractive index than glass substrate. In contrast with hydrophilic surface, textured hydrophilic surface and superhydrophobic surface, SLIPS can significantly inhibit bacterial and algal settlements, thereby maintaining high underwater-transparency in both dynamic and static seawater. The inhibition of bacterial and algal settlements over SLIPS results from its liquid-like property. The contact angle hysteresis of water over SLIPS increases with immersion time in seawater under different conditions (static, dynamic, and vibration conditions). Both dynamic and vibration conditions accelerate the failure of SLIPS exposed in seawater. This research provides valuable information for solving biofouling problem of marine optical instruments with SLIPS.

  14. Effect of microbial community structure on organic removal and biofouling in membrane adsorption bioreactor used in seawater pretreatment

    KAUST Repository

    Jeong, Sanghyun

    2016-03-03

    Membrane bioreactors (MBRs) were operated on-site for 56 d with different powdered activated carbon (PAC) dosages of 0, 1.5 and 5.0 g/L to pretreat seawater for reverse osmosis desalination. It was hypothesized that PAC would stimulate adsorption and biological degradation of organic compounds. The microbial communities responsible for biofouling on microfiltration (MF) membranes and biological organic removal in MBR were assessed using terminal restriction fragment length polymorphism fingerprinting and 454-pyrosequencing. The PAC addition improved assimilable organic carbon removal (53-59%), and resulted in reduced biofouling development on MF (> 50%) with only a marginal development in trans-membrane pressure. Interestingly, the bacterial community composition was significantly differentiated by the PAC addition. Cyanobacterium, Pelagibaca and Maricoccus were dominant in the PAC-free conditions, while Thiothrix and Sphingomonas were presumably responsible for the better reactor performances in PAC-added conditions. In contrast, the archaeal communities were consistent with predominance of Candidatus Nitrosopumilus. These data therefore show that the addition of PAC can improve MBR performance by developing different bacterial species, controlling AOC and associated biofouling on the membranes.

  15. Effect of sludge retention time on membrane bio-fouling using different type and pore size of membranes in a submerged membrane bioreactor.

    Science.gov (United States)

    Dizge, Nadir; Koseoglu-Imer, Derya Y; Karagunduz, Ahmet; Keskinler, Bulent

    2013-01-01

    The objective of this study was to investigate the influence of sludge retention time (SRT) on membrane bio-fouling. An activated sludge reactor was operated at three different SRTs (10, 30, and 50 days). Submerged membrane experiments were performed when the mixed liquor suspended solids (MLSS) concentration reached the steady state conditions. MLSS concentrations reached the steady state at 3,109 ± 194, 6,209 ± 123 and 6,609 ± 280 mg/L for SRTs of 10, 30 and 50 days, respectively. The total soluble microbial products (SMP) were 20.1 ± 3.7, 16.2 ± 7.2 and 28.2 ± 8.4 mg/L at SRTs of 10, 30, and 50 days, respectively. The carbohydrate concentration in the supernatant was about two times more for SRT of 10 days than that for 50 days. The total amount of extracellular polymeric substances (EPS) extracted from the flocs were approximately 74.9 ± 11.9, 67.8 ± 15.0 and 67.5 ± 17.4 mg/g MLSS at three SRTs (10, 30, and 50 days) under the same organic loading rate. The viscosity of the biomass increased with the increasing SRT. The results of flux stepping tests showed that the membrane fouling at SRT 10 days was always higher than that of 30 and 50 days. Four different microfiltration membranes (cellulose acetate, polyethersulfone, mixed ester, and polycarbonate) with three different pore sizes (0.45, 0.22, 0.10 μm) were tested. Filtration resistances were determined for each membrane. Cake resistance was observed to be the most significant fouling mechanism for all membranes.

  16. Prevention and protection of the effects of biocorrosion and biofouling minimizing the environmental impact

    Directory of Open Access Journals (Sweden)

    Gómez de Saravia, S. G.

    2003-12-01

    Full Text Available Biocorrosion and biofouling processes are mediated by microorganisms adhered to the metal surfaces or embedded in a gelatinous matrix called biofilm. Biofilms affect the interaction between metals and the environment not only in deleterious processes like corrosion but also in several biological processes applied to materials recovery and handling. The growth of the microorganisms capable to induce biocorrosion is conditioned by favorable environmental conditions. However, the chemical agents generally used to prevent or protect metallic structures from biocorrosion are highly toxic and after use can have a negative impact on the environment. Four different approaches developed in our laboratory to prevent and control biocorrosion but minimizing the environmental impact, are successively presented in this paper: a the use of ozone as an environmentally friend biocide for cooling water systems; b the assay of the effectiveness of natural biocides on planktonic and sessile bacteria; c the potential use of film forming corrosion inhibitors; d the use of innovative preventing substances.

    Los procesos de biocorrosión y biofouling están mediados por microorganismos que adhieren a las superficies metálicas embebidos en una matriz gelatinosa llamada biofilm. Los biofilms afectan a la interacción entre metales y el medio ambiente, no solo a través de procesos deletéreos tales como la corrosión sino, también, en el manipuleo de diversos materiales. El crecimiento de los microorganismos capaces de inducir biocorrosión esta condicionado por un medio ambiente favorable. Sin embargo, generalmente, los agentes químicos usados para prevenir o proteger las estructuras metálicas de la biocorrosión son altamente tóxicos y su uso puede tener un impacto negativo para el ambiente. En este trabajo se presentan cuatro vías diferentes, desarrolladas en nuestro laboratorio, para prevenir y controlar la biocorrosión minimizando el impacto

  17. N-acyl homoserine lactone-mediated quorum sensing with special reference to use of quorum quenching bacteria in membrane biofouling control.

    Science.gov (United States)

    Lade, Harshad; Paul, Diby; Kweon, Ji Hyang

    2014-01-01

    Membrane biofouling remains a severe problem to be addressed in wastewater treatment systems affecting reactor performance and economy. The finding that many wastewater bacteria rely on N-acyl homoserine lactone-mediated quorum sensing to synchronize their activities essential for biofilm formations; the quenching bacterial quorum sensing suggests a promising approach for control of membrane biofouling. A variety of quorum quenching compounds of both synthetic and natural origin have been identified and found effective in inhibition of membrane biofouling with much less environmental impact than traditional antimicrobials. Work over the past few years has demonstrated that enzymatic quorum quenching mechanisms are widely conserved in several prokaryotic organisms and can be utilized as a potent tool for inhibition of membrane biofouling. Such naturally occurring bacterial quorum quenching mechanisms also play important roles in microbe-microbe interactions and have been used to develop sustainable nonantibiotic antifouling strategies. Advances in membrane fabrication and bacteria entrapment techniques have allowed the implication of such quorum quenching bacteria for better design of membrane bioreactor with improved antibiofouling efficacies. In view of this, the present paper is designed to review and discuss the recent developments in control of membrane biofouling with special emphasis on quorum quenching bacteria that are applied in membrane bioreactors.

  18. N-Acyl Homoserine Lactone-Mediated Quorum Sensing with Special Reference to Use of Quorum Quenching Bacteria in Membrane Biofouling Control

    Directory of Open Access Journals (Sweden)

    Harshad Lade

    2014-01-01

    Full Text Available Membrane biofouling remains a severe problem to be addressed in wastewater treatment systems affecting reactor performance and economy. The finding that many wastewater bacteria rely on N-acyl homoserine lactone-mediated quorum sensing to synchronize their activities essential for biofilm formations; the quenching bacterial quorum sensing suggests a promising approach for control of membrane biofouling. A variety of quorum quenching compounds of both synthetic and natural origin have been identified and found effective in inhibition of membrane biofouling with much less environmental impact than traditional antimicrobials. Work over the past few years has demonstrated that enzymatic quorum quenching mechanisms are widely conserved in several prokaryotic organisms and can be utilized as a potent tool for inhibition of membrane biofouling. Such naturally occurring bacterial quorum quenching mechanisms also play important roles in microbe-microbe interactions and have been used to develop sustainable nonantibiotic antifouling strategies. Advances in membrane fabrication and bacteria entrapment techniques have allowed the implication of such quorum quenching bacteria for better design of membrane bioreactor with improved antibiofouling efficacies. In view of this, the present paper is designed to review and discuss the recent developments in control of membrane biofouling with special emphasis on quorum quenching bacteria that are applied in membrane bioreactors.

  19. Influence of water quality on the embodied energy of drinking water treatment.

    Science.gov (United States)

    Santana, Mark V E; Zhang, Qiong; Mihelcic, James R

    2014-01-01

    Urban water treatment plants rely on energy intensive processes to provide safe, reliable water to users. Changes in influent water quality may alter the operation of a water treatment plant and its associated energy use or embodied energy. Therefore the objective of this study is to estimate the effect of influent water quality on the operational embodied energy of drinking water, using the city of Tampa, Florida as a case study. Water quality and water treatment data were obtained from the David L Tippin Water Treatment Facility (Tippin WTF). Life cycle energy analysis (LCEA) was conducted to calculate treatment chemical embodied energy values. Statistical methods including Pearson's correlation, linear regression, and relative importance were used to determine the influence of water quality on treatment plant operation and subsequently, embodied energy. Results showed that influent water quality was responsible for about 14.5% of the total operational embodied energy, mainly due to changes in treatment chemical dosages. The method used in this study can be applied to other urban drinking water contexts to determine if drinking water source quality control or modification of treatment processes will significantly minimize drinking water treatment embodied energy.

  20. Framework for feasibility assessment and performance analysis of riverbank filtration systems for water treatment

    KAUST Repository

    Sharma, Saroj K.

    2012-03-01

    Bank filtration (BF) is an attractive, robust and reliable water treatment technology. It has been used in Europe and USA for a long time; however experience with this technology so far is site specific. There are no guidelines or tools for transfer of this technology to other locations, specifically to developing countries. A four-step methodology was developed at UNESCO-IHE to analyse feasibility and to predict the performance of BF for water treatment. This included (i) hydraulic simulation using MODFLOW; (ii) determination of share of bank filtrate using NASRI BF simulator; (iii) prediction of water quality from a BF system using the water quality guidelines developed and (iv) comparison of the costs of BF systems and existing conventional surface water treatment systems for water treatment. The methodology was then applied to assess feasibility of BF in five cities in Africa. It was found that in most of the cities studied BF is a feasible and attractive option from hydraulic, water quality as well as operational cost considerations. Considerable operational and maintenance costs saving can be achieved and water quality can be further improved by switching from conventional chemical-based surface water treatment to BF or at least by replacing some of the treatment units with BF systems. © IWA Publishing 2012.

  1. Acetylcholinesterase in Biofouling Species: Characterization and Mode of Action of Cyanobacteria-Derived Antifouling Agents.

    Science.gov (United States)

    Almeida, Joana R; Freitas, Micaela; Cruz, Susana; Leão, Pedro N; Vasconcelos, Vitor; Cunha, Isabel

    2015-07-24

    Effective and ecofriendly antifouling (AF) compounds have been arising from naturally produced chemicals. The objective of this study is to use cyanobacteria-derived agents to investigate the role of acetylcholinesterase (AChE) activity as an effect and/or mode of action of promising AF compounds, since AChE inhibitors were found to inhibit invertebrate larval settlement. To pursue this objective, in vitro quantification of AChE activity under the effect of several cyanobacterial strain extracts as potential AF agents was performed along with in vivo AF (anti-settlement) screening tests. Pre-characterization of different cholinesterases (ChEs) forms present in selected tissues of important biofouling species was performed to confirm the predominance of AChE, and an in vitro AF test using pure AChE activity was developed. Eighteen cyanobacteria strains were tested as source of potential AF and AChE inhibitor agents. Results showed effectiveness in selecting promising eco-friendly AF agents, allowing the understanding of the AF biochemical mode of action induced by different compounds. This study also highlights the potential of cyanobacteria as source of AF agents towards invertebrate macrofouling species.

  2. Composition and variability of biofouling organisms in seawater reverse osmosis desalination plants.

    Science.gov (United States)

    Zhang, Minglu; Jiang, Sunny; Tanuwidjaja, Dian; Voutchkov, Nikolay; Hoek, Eric M V; Cai, Baoli

    2011-07-01

    Seawater reverse osmosis (SWRO) membrane biofouling remains a common challenge in the desalination industry, but the marine bacterial community that causes membrane fouling is poorly understood. Microbial communities at different stages of treatment processes (intake, cartridge filtration, and SWRO) of a desalination pilot plant were examined by both culture-based and culture-independent approaches. Bacterial isolates were identified to match the genera Shewanella, Alteromonas, Vibrio, and Cellulophaga based on 16S rRNA gene sequencing analysis. The 16S rRNA gene clone library of the SWRO membrane biofilm showed that a filamentous bacterium, Leucothrix mucor, which belongs to the gammaproteobacteria, accounted for nearly 30% of the clone library, while the rest of the microorganisms (61.2% of the total clones) were related to the alphaproteobacteria. 16S rRNA gene terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that bacteria colonizing the SWRO membrane represented a subportion of microbes in the source seawater; however, they were quite different from those colonizing the cartridge filter. The examination of five SWRO membranes from desalination plants located in different parts of the world showed that although the bacterial communities from the membranes were not identical to each other, some dominant bacteria were commonly observed. In contrast, bacterial communities in source seawater were significantly different based on location and season. Microbial profiles from 14 cartridge filters collected from different plants also revealed spatial trends.

  3. Composition and Variability of Biofouling Organisms in Seawater Reverse Osmosis Desalination Plants ▿ †

    Science.gov (United States)

    Zhang, Minglu; Jiang, Sunny; Tanuwidjaja, Dian; Voutchkov, Nikolay; Hoek, Eric M. V.; Cai, Baoli

    2011-01-01

    Seawater reverse osmosis (SWRO) membrane biofouling remains a common challenge in the desalination industry, but the marine bacterial community that causes membrane fouling is poorly understood. Microbial communities at different stages of treatment processes (intake, cartridge filtration, and SWRO) of a desalination pilot plant were examined by both culture-based and culture-independent approaches. Bacterial isolates were identified to match the genera Shewanella, Alteromonas, Vibrio, and Cellulophaga based on 16S rRNA gene sequencing analysis. The 16S rRNA gene clone library of the SWRO membrane biofilm showed that a filamentous bacterium, Leucothrix mucor, which belongs to the gammaproteobacteria, accounted for nearly 30% of the clone library, while the rest of the microorganisms (61.2% of the total clones) were related to the alphaproteobacteria. 16S rRNA gene terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that bacteria colonizing the SWRO membrane represented a subportion of microbes in the source seawater; however, they were quite different from those colonizing the cartridge filter. The examination of five SWRO membranes from desalination plants located in different parts of the world showed that although the bacterial communities from the membranes were not identical to each other, some dominant bacteria were commonly observed. In contrast, bacterial communities in source seawater were significantly different based on location and season. Microbial profiles from 14 cartridge filters collected from different plants also revealed spatial trends. PMID:21551282

  4. Superhydrophobic PVDF and PVDF-HFP nanofibrous mats with antibacterial and anti-biofouling properties

    Energy Technology Data Exchange (ETDEWEB)

    Spasova, M.; Manolova, N. [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia (Bulgaria); Markova, N. [Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 26, BG-1113 Sofia (Bulgaria); Rashkov, I., E-mail: rashkov@polymer.bas.bg [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia (Bulgaria)

    2016-02-15

    Graphical abstract: - Highlights: • New PVDF and PVDF-HFP nanofibers decorated with ZnO nanoparticles and a model drug. • The nanofibrous materials were fabricated by one-pot electrospinning. • The obtained materials are superhybrophobic and possess antibacterial properties. - Abstract: Superhydrophobic nanofibrous materials of poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) were prepared by one-pot electrospinning technique. The mats were decorated with ZnO nanoparticles with silanized surface and a model drug – 5-chloro-8-hydroxyquinolinol (5Cl8HQ). The obtained hybrid nanofibrous materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), contact angle measurements, mechanical and microbiological tests. The results showed that the incorporation of ZnO nanoparticles into PVDF and PVDF-HFP nanofibers increased the hydrophobicity (contact angle 152°), improved the thermal stability and imparted to the nanofibrous materials anti-adhesive and antimicrobial properties. The mats containing the model drug possessed antibacterial activity against Escherichia coli and Staphylococcus aureus. The results suggested that the obtained hybrid mats could find potential biomedical applications requiring antibacterial and anti-biofouling properties.

  5. Minding your R and Q's. Improving water treatment plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Weir, Judy [Thermal Chemistry Limited, Hamilton (New Zealand); Addison, David

    2012-09-15

    Water treatment plants need to reliably produce water with the correct quality and required quantity for boiler and heat recovery steam generator feedwater, gas turbine water injection, or co-generation plant feedwater. Without the quality guarantees, the process that utilises the water will suffer from corrosion and/or deposition issues, and if the quantity is not produced reliably, then the process which uses the final water product cannot operate correctly. This paper discusses the practical tools to ensure ''Reliability'', ''Quality'' and ''Quantity'' - the ''R and Q's'' of a water treatment plant, in the form of a performance management plan and two water treatment plant case studies.

  6. Study on the TOC concentration in raw water and HAAs in Tehran's water treatment plant outlet.

    Science.gov (United States)

    Ghoochani, Mahboobeh; Rastkari, Noushin; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Nazmara, Shahrokh

    2013-11-12

    A sampling has been undertaken to investigate the variation of haloacetic acids formation and nature organic matter through 81 samples were collected from three water treatment plant and three major rivers of Tehran Iran. Changes in the total organic matter (TOC), ultraviolet absorbance (UV254), specific ultraviolet absorbance (SUVA) were measured in raw water samples. Haloacetic acids concentrations were monitored using a new static headspace GC-ECD method without a manual pre-concentration in three water treatment plants. The average concentration of TOC and HAAs in three rivers and three water treatment plants in spring, summer and fall, were 4, 2.41 and 4.03 mg/L and 48.75, 43.79 and 51.07 μg/L respectively. Seasonal variation indicated that HAAs levels were much higher in spring and fall.

  7. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    Science.gov (United States)

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  8. Potential for polyhydroxyalkanoate production on German or European municipal waste water treatment plants.

    Science.gov (United States)

    Pittmann, T; Steinmetz, H

    2016-08-01

    Biopolymers, which are made of renewable raw materials and/or biodegradable residual materials present a possible alternative to common plastic. A potential analysis, based on experimental results in laboratory scale and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 20% of the 2015 worldwide biopolymer production. In addition a profound estimation regarding all European Union member states showed that theoretically about 115% of the actual worldwide biopolymer production could be produced on European waste water treatment plants. With an upgraded biopolymer production and a theoretically reachable biopolymer proportion of around 60% of the cell dry weight a total of 1,794,656tPHAa or approximately 236% of today's biopolymer production could be produced on waste water treatment plants in the European Union, using primary sludge as raw material only.

  9. Impact of chlorine dioxide and ozone on the oxidation of NTA during drinking water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hrubec, J.; ' t Hart, M.J.; Marsman, P.; Luijten, J.A.

    1984-11-01

    The use, as it is proposed, of nitrilotriacetic acid (NTA) for phosphate replacement in detergents will lead to its discharge in surface water at relatively high concentrations. Questions have been raised about potential health hazards related to the uptake and treatment of the NTA containing riverwater for drinking water supply. Degradation of NTA by biological oxidation in waste water treatment systems, soil and surface water under aerobic conditions has been demonstrated many times. However reports on degradation of NTA by chemical oxidation applied in water treatment processes are scarce. The aim of the present investigation was to determine removal of nitrilotriacetic acid upon chlorine, chlorine dioxide and ozone treatment under conditions characteristic for drinking water treatment practice; possible formation of mutagenic substances from the reaction of NTA with these oxidants; and formation of halogenated reaction products of NTA with chlorine and chlorine dioxide.

  10. Water treatment in public swimming pools - reduction of energy consumption; Vandbehandling i svoemmebade - reduktion af energiforbrug

    Energy Technology Data Exchange (ETDEWEB)

    Hammerich, H.; Radisch, N. (Ramboell, Koege (Denmark)); Olesen, Jens Christian (Gladsaxe Sportscenter, Gladsaxe (Denmark)) (and others)

    2010-04-15

    Measurements were made in five public swimming baths, and energy savings were achieved using new filters, pumps, water treatment control depending on bather load, etc. In a 50 metre pool, electricity consumption for water treatment decreased by 50%, and in a hot-water/paddling pool, electricity consumption decreased by 30-40% while still maintaining satisfactory water quality - even during periods of heavy bather load. In another swimming bath, ventilation electricity consumption was reduced by 15%. The results will e.g. be used to revise the Danish executive order on swimming pools and water quality to allow bather load-dependent water circulation. (ln)

  11. Characterization of aluminium-based water treatment residual for potential phosphorus removal in engineered wetlands

    OpenAIRE

    Babatunde, A.O.; Zhao, Y.Q.; Burke, A. M.; Morris, M. A.; HANRAHAN, J.P.

    2009-01-01

    Aluminium-based water treatment residual (Al-WTR) is the most widely generated residual from water treatment facilities worldwide. It is regarded as a by-product of no reuse potential and landfilled. This study assessed Al-WTR as a potential phosphate-removing substrate in engineered wetlands for wastewater treatment. Results indicate the specific surface area ranged from 28.0 m2 g-1 to 41.4 m2 g-1 and this increased with increasing particle size. X-ray Diffraction (XRD), Fourier transform in...

  12. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    Science.gov (United States)

    Andolina, Vincent L.

    The scientific hypothesis of this work is that modulation of the properties of hard materials to exhibit abrasion-reducing and low-energy surfaces will extend the functional lifetimes of elastomeric seals pressed against them in abrasive underwater systems. The initial motivation of this work was to correct a problem noted in the leaking of seals at major hydropower generating facilities subject to fouling by abrasive zebra mussel shells and extensive corrosion. Similar biofouling-influenced problems can develop at seals in medical devices and appliances from regulators in anesthetic machines and SCUBA diving oxygen supply units to autoclave door seals, injection syringe gaskets, medical pumps, drug delivery components, and feeding devices, as well as in food handling equipment like pasteurizers and transfer lines. Maritime and many other heavy industrial seal interfaces could also benefit from this coating system. Little prior work has been done to elucidate the relationship of seal plate surface properties to the friction and wear of elastomeric seals during sliding contacts of these articulating materials, or to examine the secondary influence of mineralized debris within the contacting interfaces. This investigation utilized the seal materials relevant to the hydropower application---neoprene elastomer against carbon steel---with and without the application of a silicone-epoxy coating (WearlonRTM 2020.98) selected for its wear-resistance, hydrophobicity, and "easy-release" capabilities against biological fouling debris present in actual field use. Analytical techniques applied to these materials before and after wear-producing processes included comprehensive Contact Angle measurements for Critical Surface Tension (CA-CST) determination, Scanning Electron Microscopic inspections, together with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF) measurements for determination of surface texture and inorganic composition, Multiple

  13. Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: a novel platform for eco-friendly biofouling mitigation.

    Science.gov (United States)

    Wibisono, Yusuf; Yandi, Wetra; Golabi, Mohsen; Nugraha, Roni; Cornelissen, Emile R; Kemperman, Antoine J B; Ederth, Thomas; Nijmeijer, Kitty

    2015-03-15

    Biofouling is still a major challenge in the application of nanofiltration and reverse osmosis membranes. Here we present a platform approach for environmentally friendly biofouling control using a combination of a hydrogel-coated feed spacer and two-phase flow cleaning. Neutral (polyHEMA-co-PEG10MA), cationic (polyDMAEMA) and anionic (polySPMA) hydrogels have been successfully grafted onto polypropylene (PP) feed spacers via plasma-mediated UV-polymerization. These coatings maintained their chemical stability after 7 days incubation in neutral (pH 7), acidic (pH 5) and basic (pH 9) environments. Anti-biofouling properties of these coatings were evaluated by Escherichia coli attachment assay and nanofiltration experiments at a TMP of 600 kPag using tap water with additional nutrients as feed and by using optical coherence tomography. Especially the anionic polySPMA-coated PP feed spacer shows reduced attachment of E. coli and biofouling in the spacer-filled narrow channels resulting in delayed biofilm growth. Employing this highly hydrophilic coating during removal of biofouling by two-phase flow cleaning also showed enhanced cleaning efficiency, feed channel pressure drop and flux recoveries. The strong hydrophilic nature and the presence of negative charge on polySPMA are most probably responsible for the improved antifouling behavior. A combination of polySPMA-coated PP feed spacers and two-phase flow cleaning therefore is promising and an environmentally friendly approach to control biofouling in NF/RO systems employing spiral-wound membrane modules.

  14. In situ observation of the growth of biofouling layer in osmotic membrane bioreactors by multiple fluorescence labeling and confocal laser scanning microscopy.

    Science.gov (United States)

    Yuan, Bo; Wang, Xinhua; Tang, Chuyang; Li, Xiufen; Yu, Guanghui

    2015-05-15

    Since the concept of the osmotic membrane bioreactor (OMBR) was introduced in 2008, it has attracted growing interests for its potential applications in wastewater treatment and reclamation; however, the fouling mechanisms of forward osmosis (FO) membrane especially the development of biofouling layer in the OMBR are not yet clear. Here, the fouled FO membranes were obtained from the OMBRs on days 3, 8 and 25 in sequence, and then the structure and growing rule of the biofouling layer formed on the FO membrane samples were in-situ characterized by multiple fluorescence labeling and confocal laser scanning microscopy (CLSM). CLSM images indicated that the variations in abundance and distribution of polysaccharides, proteins and microorganisms in the biofouling layer during the operation of OMBRs were significantly different. Before the 8th day, their biovolume dramatically increased. Subsequently, the biovolumes of β-d-glucopyranose polysaccharides and proteins continued increasing and leveled off after 8 days, respectively, while the biovolumes of α-d-glucopyranose polysaccharides and microorganisms decreased. Extracellular polymeric substances (EPS) played a significant role in the formation and growth of biofouling layer, while the microorganisms were seldom detected on the upper fouling layer after 3 days. Based on the results obtained in this study, the growth of biofouling layer on the FO membrane surface in the OMBR could be divided into three stages. Initially, EPS was firstly deposited on the FO membrane surface, and then microorganisms associated with EPS located in the initial depositing layer to form clusters. After that, the dramatic increase of the clusters of EPS and microorganisms resulted in the quick growth of biofouling layer during the flux decline of the OMBR. However, when the water flux became stable in the OMBR, some microorganisms and EPS would be detached from the FO membrane surface.

  15. The biocompatibility and anti-biofouling properties of magnetic core-multishell Fe@C NWs-AAO nanocomposites.

    Science.gov (United States)

    Lindo, André M; Pellicer, Eva; Zeeshan, Muhammad A; Grisch, Roman; Qiu, Famin; Sort, Jordi; Sakar, Mahmut S; Nelson, Bradley J; Pané, Salvador

    2015-05-28

    Soft-magnetic core-multishell Fe@C NWs-AAO nanocomposites were synthesized using anodization, electrodeposition and low-pressure chemical vapour deposition (CVD) at 900 °C. High chemical and mechanical stability is achieved by the conversion from amorphous to θ- and δ-Al2O3 phases above 600 °C. Moreover, the surface properties of the material evolve from bioactive, for porous AAO, to bioinert, for Fe@C NW filled AAO nanocomposite. Although the latter is not cytotoxic, cells do not adhere onto the surface of the magnetic nanocomposite, thus proving its anti-biofouling character.

  16. The Assessment of Water Treatment Plant Sludge Properties and the Feasibility of Its Re-use according to Environmental Standards: Shahid Beheshti Water Treatment Plant Case Study, Hamadan

    Directory of Open Access Journals (Sweden)

    H. Pourmand

    2016-04-01

    Full Text Available Introduction & Objectives: Water treatment leads to produce large volumes of sludges in water treatment plants which are considered as solid waste, and should be managed appropriately and logically to avoid bioenvironmental effects. Materials & Methods: In this cross-sectional study, the required samples were taken from the sludge of Shahid Beheshti water treatment plant to assay physical and chemical characteristics during one year from summer, autumn and winter 93 until spring 94. Sampling and testing procedures were full fit according to standard methods. Results: The average concentration of total solids parameters (TSS, total suspended solids (TSS, and total dissolved solids (TDS were 22346, 21350 and 1005 mg/L, respectively. Among the heavy metals, aluminum, iron, manganese and zinc have the highest concentrations with the values of 1400, 956, 588 and 100 mg per kg of dry solids, respectively. The measured concentrations for cadmium were also higher than the permissible limits for agricultural purposes and discharges into the environment. The average concentrations of nickel were more than the recommended standard for industrial, agricultural and parkland application purposes. The concentrations were also slurry higher than the dry sludge. Conclusion: According to the past studies and results of this study, it could be concluded that contamination of heavy metals in sludge and slurry samples are more than dried sludge, .Therefore, if they are discharged into the environment, it is better to be disposed as dry sludges. Furthermore, because these types of waste sludges are routinely disposed in the environment, it is recommended to take the routine samples in order to measure the heavy metals and other relevant parameters contents of sludge before discharging it. (Sci J Hamadan Univ Med Sci 2016; 23 (1:57-64

  17. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jaseem, Q.Kh., E-mail: qjassem@kacst.edu.sa [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Almasoud, Fahad I. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Ababneh, Anas M. [Physics Dept., Faculty of Science, Islamic University in Madinah, Al-Madinah, P.O. Box 170 (Saudi Arabia); Al-Hobaib, A.S. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia)

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23 Bq/L, which exceeds the international limit of 0.185 Bq/L (5 pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750 Bq/kg, respectively, which exceed the national limit of 1000 Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2–18 Bq/m{sup 3} and 70–1000 nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3 mSv which is below the 1 mSv limit. - Highlights: • Radiological assessment of groundwater treatment plant was performed. • Radium Removal efficiency was calculated for different stages during water treatment. • Radium concentrations in sludge were measured and found to exceed the national limit for radioactive waste. • Air radon concentrations and dose rates were monitored in the water treatment plant. • The Reverse Osmosis (RO) unit was found to record the highest air radon concentrations and dose rates.

  18. Plant wide chemical water stability modelling with PHREEQC for drinking water treatment

    NARCIS (Netherlands)

    Van der Helm, A.W.C.; Kramer, O.J.I.; Hooft, J.F.M.; De Moel, P.J.

    2015-01-01

    In practice, drinking water technologists use simplified calculation methods for aquatic chemistry calculations. Recently, the database stimela.dat is developed especially for aquatic chemistry for drinking water treatment processes. The database is used in PHREEQC, the standard in geohydrology for

  19. Naturally occurring radionuclides in materials derived from urban water treatment plants in southeast Queensland, Australia.

    Science.gov (United States)

    Kleinschmidt, Ross; Akber, Riaz

    2008-04-01

    An assessment of radiologically enhanced residual materials generated during treatment of domestic water supplies in southeast Queensland, Australia, was conducted. Radioactivity concentrations of U-238, Th-232, Ra-226, Rn-222, and Po-210 in water, sourced from both surface water catchments and groundwater resources were examined both pre- and post-treatment under typical water treatment operations. Surface water treatment processes included sedimentation, coagulation, flocculation and filtration, while the groundwater was treated using cation exchange, reverse osmosis, activated charcoal or methods similar to surface water treatment. Waste products generated as a result of treatment included sediments and sludges, filtration media, exhausted ion exchange resin, backwash and wastewaters. Elevated residual concentrations of radionuclides were identified in these waste products. The waste product activity concentrations were used to model the radiological impact of the materials when either utilised for beneficial purposes, or upon disposal. The results indicate that, under current water resource exploitation programs, reuse or disposal of the treatment wastes from large scale urban water treatment plants in Australia do not pose a significant radiological risk.

  20. QSAR enabled predictions in water treatment: from data to mechanisms and vice-versa

    NARCIS (Netherlands)

    Vries, D.; Wols, B.A.; de Voogt, P.

    2012-01-01

    The efficiency of water treatment systems to remove emerging (chemical) substances is often unknown. Consequently, the prediction of the removal of contaminants in the treatment and supply chain of drinking water is of great interest. By collecting and processing existing chemical properties of cont

  1. Removal of two antibacterial compounds triclocarban and triclosan in a waste water treatment plant

    Science.gov (United States)

    This study investigates the fate of Triclocarban (TCC) and Triclosan (TCS) in a waste water treatment plant (WWTP). Our goal was to identify the most effective removal step and to determine the amount on the solid phase versus degraded. Our influent contained higher TCS than TCC concentrations (8....

  2. Impact of Harmful Algal Blooms on Several Lake Erie Drinking Water Treatment Plants

    Science.gov (United States)

    Recent events in Ohio have demonstrated the challenge treatment facilities face in providing safe drinking water when encountering extreme harmful algal bloom (HAB) events. Over the last two years the impact of HAB-related microcystins on several drinking water treatment facilit...

  3. Bacterial Community Structure Shifted by Geosmin in Granular Activated Carbon System of Water Treatment Plants.

    Science.gov (United States)

    Pham, Ngoc Dung; Lee, Eun-Hee; Chae, Seon-Ha; Cho, Yongdeok; Shin, Hyejin; Son, Ahjeong

    2016-01-01

    We investigated the relation between the presence of geosmin in water and the bacterial community structure within the granular activated carbon (GAC) system of water treatment plants in South Korea. GAC samples were collected in May and August of 2014 at three water treatment plants (Sungnam, Koyang, and Yeoncho in Korea). Dissolved organic carbon and geosmin were analyzed before and after GAC treatment. Geosmin was found in raw water from Sungnam and Koyang water treatment plants but not in that from Yeoncho water treatment plant. Interestingly, but not surprisingly, the 16S rRNA clone library indicated that the bacterial communities from the Sungnam and Koyang GAC systems were closely related to geosmin-degrading bacteria. Based on the phylogenetic tree and multidimensional scaling plot, bacterial clones from GAC under the influence of geosmin were clustered with Variovorax paradoxus strain DB 9b and Comamonas sp. DB mg. In other words, the presence of geosmin in water might have inevitably contributed to the growth of geosmin degraders within the respective GAC system.

  4. Safety of water treatment by chlorine dioxide oxidation of aromatic hydrocarbons commonly found in water

    Energy Technology Data Exchange (ETDEWEB)

    Taymaz, K.; Williams, D.T.; Benoit, F.M.

    1979-01-01

    The safety of water treatment by chlorine dioxide oxidation of aromatic hydrocarbons commonly found in water and industrial wastewaters in the US was studied by observing the reactions of naphthalene and methylnaphthalenes in essentially chlorine-free, aqueous chlorine dioxide solutions. Naphthalene and methylnaphthalenes yielded chlorinated derivatives and oxidation products. Further research is recommended.

  5. Integration of drinking water treatment plant process models and emulated process automation software

    NARCIS (Netherlands)

    Worm, G.I.M.

    2012-01-01

    The objective of this research is to limit the risks of fully automated operation of drinking water treatment plants and to improve their operation by using an integrated system of process models and emulated process automation software. This thesis contains the design of such an integrated system.

  6. K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations

    Energy Technology Data Exchange (ETDEWEB)

    PIEPHO, M.G.

    2000-01-10

    Four bounding accidents postulated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing a hydrogen explosion, and a fire breaching filter vessel and enclosure. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

  7. Mango fruit aroma volatile production following quarantine hot water treatment and subsequent ripening

    Science.gov (United States)

    Mangos are an important tropical fruit crop worldwide that are appreciated for their attractive peel and flesh colors, juicy texture, sweetness, and unique aroma. Mangos exported to the U.S. receive quarantine hot water treatment (QHWT) at 46.1 °C for 65 to 110 min (depending on fruit shape and size...

  8. EFFECTS OF PRESSURE AND TEMPERATURE ON ULTRAFILTRATION HOLLOW FIBER MEMBRANE IN MOBILE WATER TREATMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    ROSDIANAH RAMLI

    2016-07-01

    Full Text Available In Sabah, Malaysia, there are still high probability of limited clean water access in rural area and disaster site. Few villages had been affected in Pitas due to improper road access, thus building a water treatment plant there might not be feasible. Recently, Kundasang area had been affected by earthquake that caused water disruption to its people due to the damage in the underground pipes and water tanks. It has been known that membrane technology brought ease in making mobile water treatment system that can be transported to rural or disaster area. In this study, hollow fiber membrane used in a mobile water treatment system due to compact and ease setup. Hollow fiber membrane was fabricated into small module at 15 and 30 fibers to suit the mobile water treatment system for potable water production of at least 80 L/day per operation. The effects of transmembrane pressure (TMP and feed water temperature were investigated. It was found that permeate flux increases by more than 96% for both 15 and 30 fiber bundles with increasing pressure in the range of 0.25 to 3.0 bar but dropped when the pressure reached maximum. Lower temperature of 17 to 18˚C increase the water viscosity by 15% from normal temperature of water at 24˚C, making the permeate flux decreases. The fabricated modules effectively removed 96% turbidity of the surface water sample tested.

  9. K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations

    Energy Technology Data Exchange (ETDEWEB)

    RITTMANN, P.D.

    1999-10-07

    Three bounding accidents postdated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing, and a hydrogen explosion. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

  10. Bacterial Colonization of Pellet Softening Reactors Used during Drinking Water Treatment

    NARCIS (Netherlands)

    Hammes, F.; Boon, N.; Vital, M.; Ross, P.; Magic-Knezev, A.; Dignum, M.

    2010-01-01

    Pellet softening reactors are used in centralized and decentralized drinking water treatment plants for the removal of calcium (hardness) through chemically induced precipitation of calcite. This is accomplished in fluidized pellet reactors, where a strong base is added to the influent to increase t

  11. REMOVAL OF ARSENIC IN DRINKING WATER: ARS CFU-50 APC ELECTROFLOCCULATION AND FILTRATION WATER TREATMENT SYSTEM

    Science.gov (United States)

    ETV testing of the ARS CFU-50 APC Electroflocculation and Filtration Water Treatment System (ARS CFU-50 APC) for arsenic removal was conducted at the Town of Bernalillo Well #3 site from April 18 through May 2, 2006. The source water was chlorinated groundwater from two supply w...

  12. Preliminary design report for the K basins integrated water treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, T.R., Westinghouse Hanford

    1996-08-12

    This Preliminary Design Report (PDR) provides a revised concept for the K Basins Integrated Water Treatment Systems (IWTS). This PDR incorporates the 11 recommendations made in a May 1996 Value Engineering session into the Conceptual Design, and provides new flow diagrams, hazard category assessment, cost estimate, and schedule for the IWTS Subproject.

  13. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen (Final)

    Science.gov (United States)

    EPA announced the availability of the final report, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. This report is a starting point to determine what is known and what needs to be known about selected nanomaterials as par...

  14. Ecofriendly hot water treatment reduces postharvest decay and elicits defense response in kiwifruit

    Science.gov (United States)

    Hot water treatment (HWT) of fruit is an effective approach for managing postharvest decay of fruits and vegetables. In the present study, the effects of HWT (45 degrees C for 10 min) on the growth of Botrytis cinerea and Penicillium expansum in vitro, and gray (B. cinerea) and blue mold (P. expans...

  15. Controlling tulip stem nematodes in tulip bulbs by a hot water treatment

    NARCIS (Netherlands)

    Dam, van M.F.N.

    2013-01-01

    A hot water treatment (HWT) protocol is needed to control tulip stem nematode (TSN) in tulip bulbs. A HWT above approximately 45°C in tulips is assumed to be harmful to the bulbs. Experience with HWT to destroy stem nematodes in daffodils shows that the required temperature for this is 4 hours at 47

  16. Alternative, indirect measures of ballast water treatment efficacy during a shipboard trial: a case study

    NARCIS (Netherlands)

    Wright, D.A.; Welschmeyer, N.A.; Peperzak, L.

    2015-01-01

    A shipboard study was conducted aboard the cruise ship Coral Princess during a scheduled cruise from San Pedro, CA, USA to Vancouver, British Columbia, Canada. The investigation involved three members of the global TestNet group, with experience in certification testing of ballast water treatment sy

  17. Application of Hydrocyclone and UV Radiation as a Ballast Water Treatment Method

    Directory of Open Access Journals (Sweden)

    Željko Kurtela

    2010-05-01

    Full Text Available The ballast water exchange methods in open sea are, for the time being, the prevailing procedures accepted by shipowners. However, such methods do not guarantee full efficacy in elimination of allochthonous organisms. Besides, in some navigation zones, in particular in the closed seas, not even the criteria prescribed by international regulations can be fulfilled, i.e. the position of a ship exchanging ballast must be farther than 200Nm from the shore (alternatively 50Nm at the sea depth exceeding 200m. Numerous research attempts on various treatment methods lead to the conclusion that there is still no scientific opinion on the final choice of methods for wide application on board. The treatment methods, such as hydrocyclone separation in the first stage and UV radiation in the second stage, stand a good chance for application on board. Advantages of such a combined method are in the very application of treatment that can be performed during all stages of ballast water treatment, i.e. loading ballast, voyage in ballast and discharging ballast. In closed seas and on shorter routes the operational advantages of hydrocyclone and UV radiation could be the prevailing factor for application. Within the research on the possible application of ballast water treatment by hydrocyclone and UV radiation, a pilot plant with hydrocyclone cluster and UV device was constructed. The research carried out on the pilot plant installed on board the m/v ‘’Naše more’’ proved the effectiveness of such ballast water treatment method and offered a new approach in using hydrocyclone for the inactivation of organisms by hydrodynamic forces. This approach has largely increased the efficacy of the device and a new method for utilization of hydrocyclone in ballast water treatment on board has been discovered. KEY WORDS: ballast water treatment, hydrocyclone, UV radiation, application of method, pilot plant, hydrodynamic forces

  18. Removal of cyclops in pre-oxidizing cooperation water treatment process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Zooplankton cyclops propagates profusely in waterbody, cannot be effectively inactivated by conventional disinfection process, and becomes a troublesome drinking water treatment problem. In this work, the qualitative and quantitative experimental studies were carried out on inactivation of zooplankton cyclops using oxidants, such as chlorine (Cl2), chlorine dioxide (ClO2), ozone (O3), hydrogen peroxide (H2O2), ozone/hydrogen peroxide (O3/H2O2), chloramines (Cl2-NH3) and potassium permanganate (KMnO4). The influences of various factors include different oxidant dosages, organic substance contents and pH values. The results showed that currently available oxidants used all might inactivate cyclops in some extent. According to the experimental results, chlorine dioxide, ozone, ozone/hydrogen peroxide and chloramines can be selected as effective oxidants for inactivating cyclops because of their strong inactivation abilities. Then the synergic removal effects on cyclops with ozone,ozone/hydrogen peroxide pre-oxidation followed by conventional water treatment processes were investigated. The results showed that ozone and ozone/hydrogen peroxide pre-oxidation can inactivate cyclops effectively, which then can be removed thoroughly by conventional water treatment processes. Cyclops cannot appear in water after filtration with 1.65 mg/L of ozone and 6 mg/L of hydrogen peroxide, with the inactivation rate being 62% before conventional water treatment processes. Cyclops cannot appear in water after filtration with 1.8 mg/L of ozone, with the inactivation rate being 50% before conventional water treatment processes. For different oxidants, when removal rate was the best, the inactivation rate was not the same. These results may provide reference and model for actual waterworks.

  19. Adsorption of arsenic from a Nova Scotia groundwater onto water treatment residual solids.

    Science.gov (United States)

    Gibbons, Meaghan K; Gagnon, Graham A

    2010-11-01

    Water treatment residual solids were examined in batch adsorption and column adsorption experiments using a groundwater from Halifax Regional Municipality that had an average arsenic concentration of 43 μg/L (±4.2 μg/L) and a pH of 8.1. The residual solids studied in this paper were from five water treatment plants, four surface water treatment plants that utilized either alum, ferric, or lime in their treatment systems, and one iron removal plant. In batch adsorption experiments, iron-based residual solids and lime-based residual solids pre-formed similarly to GFH, a commercially-available adsorbent, while alum-based residual solids performed poorly. Langmuir isotherm modeling showed that ferric residuals had the highest adsorptive capacity for arsenic (Q(max) = 2230 mg/kg and 42,910 mg/kg), followed by GFH (Q(max) = 640 mg/kg), lime (Q(max) = 160 mg/kg) and alum (Q(max) = 93% for the ferric and lime residuals and GFH, while the maximum arsenic removal was residuals under the same conditions. In a column adsorption experiment, ferric residual solids achieved arsenic removal of >26,000 bed volumes before breakthrough past 10 μg As/L, whereas the effluent arsenic concentration from the GFH column was under the method detection limit at 28,000 bed volumes. Overall, ferric and lime water treatment residuals were promising adsorbents for arsenic adsorption from the groundwater, and alum water treatment residuals did not achieve high levels of arsenic adsorption.

  20. Adapting water treatment design and operations to the impacts of global climate change

    Science.gov (United States)

    Clark, Robert M.; Li, Zhiwei; Buchberger, Steven G.

    2011-12-01

    It is anticipated that global climate change will adversely impact source water quality in many areas of the United States and will therefore, potentially, impact the design and operation of current and future water treatment systems. The USEPA has initiated an effort called the Water Resources Adaptation Program (WRAP) which is intended to develop tools and techniques that can assess the impact of global climate change on urban drinking water and wastewater infrastructure. A three step approach for assessing climate change impacts on water treatment operation and design is being persude in this effort. The first step is the stochastic characterization of source water quality, the second step is the application of the USEPA Water Treatment Plant model and the third step is the application of cost algorithms to provide a metric that can be used to assess the coat impact of climate change. A model has been validated using data collected from Cincinnati's Richard Miller Water Treatment Plant for the USEPA Information Collection Rule (ICR) database. An analysis of the water treatment processes in response to assumed perturbations in raw water quality identified TOC, pH, and bromide as the three most important parameters affecting performance of the Miller WTP. The Miller Plant was simulated using the EPA WTP model to examine the impact of these parameters on selected regulated water quality parameters. Uncertainty in influent water quality was analyzed to estimate the risk of violating drinking water maximum contaminant levels (MCLs).Water quality changes in the Ohio River were projected for 2050 using Monte Carlo simulation and the WTP model was used to evaluate the effects of water quality changes on design and operation. Results indicate that the existing Miller WTP might not meet Safe Drinking Water Act MCL requirements for certain extreme future conditions. However, it was found that the risk of MCL violations under future conditions could be controlled by

  1. Study of Water Treatment Residue Used as a Profile Control Agent%水处理残渣调剖剂室内研究及现场应用

    Institute of Scientific and Technical Information of China (English)

    侯天江; 赵化廷; 李宗田; 赵普春; 肖利平

    2005-01-01

    A large amount of residue from the water treatment process has gradually accumulated and thus caused serious environmental pollution in waterflood oilfields. The water treatment residue is a grey suspension, with a density of 1.08 g/cm3, and mainly contains over 65% of light CaCO3, MgCO3, CaSO4, Fe2S3 and Ca(OH)2. This paper ascertains the effect of water treatment residue on core permeability and its application in oilfields. Coreflooding tests in laboratory were conducted in two artificial cores and one natural core. Core changes were evaluated by cast model image analysis, mercury injection method and scanning electron microscopy (SEM). Fresh water was injected into another natural core, which was plugged with water treatment residue, to determine the effective life.The results indicate that the water treatment residue has a strongly plugging capability, a resistance to erosion and a long effective life, and thus it can be used as a cheap raw material for profile control.In the past 8 years, a total of 60,164 m3 of water treatment residue has been used for profile control of 151 well treatments, with a success ratio of 98% and an effective ratio of 83.2%. In the field tests, the profile control agent increased both starting pressure and injection pressure of injectors, and decreased the apparent water injectivity coefficient, significantly improving intake profiles and lengthening average service life of injectors. 28,381 tons of additional oil were recovered from these corresponding oil wells, with economic benefits of ¥3,069.55×104 (RMB) and a remarkable input-output ratio of 8.6:1.

  2. Desiccation as a mitigation tool to manage biofouling risks: trials on temperate taxa to elucidate factors influencing mortality rates.

    Science.gov (United States)

    Hopkins, Grant A; Prince, Madeleine; Cahill, Patrick L; Fletcher, Lauren M; Atalah, Javier

    2016-01-01

    The desiccation tolerance of biofouling taxa (adults and early life-stages) was determined under both controlled and 'realistic' field conditions. Adults of the ascidian Ciona spp. died within 24 h. Mortality in the adult blue mussel Mytilus galloprovincialis occurred within 11 d under controlled conditions, compared with 7 d when held outside. The Pacific oyster Crassostrea gigas was the most desiccation-tolerant taxon tested (up to 34 d under controlled conditions). Biofouling orientated to direct sunlight showed faster mortality rates for all the taxa tested. Mortality in Mytilus juveniles took up to 24 h, compared with 8 h for Ciona, with greater survival at the higher temperature (18.5°C) and humidity (~95% RH) treatment combination. This study demonstrated that desiccation can be an effective mitigation method for a broad range of fouling taxa, especially their early life-stages. Further work is necessary to assess risks from other high-risk species such as algae and cyst forming species.

  3. Evidence of compositional and ultrastructural shifts during the development of calcareous tubes in the biofouling tubeworm, Hydroides elegans.

    Science.gov (United States)

    Chan, Vera Bin San; Vinn, Olev; Li, Chaoyi; Lu, Xingwen; Kudryavtsev, Anatoliy B; Schopf, J William; Shih, Kaimin; Zhang, Tong; Thiyagarajan, Vengatesen

    2015-03-01

    The serpulid tubeworm, Hydroides elegans, is an ecologically and economically important species whose biology has been fairly well studied, especially in the context of larval development and settlement on man-made objects (biofouling). Nevertheless, ontogenetic changes associated with calcareous tube composition and structures have not yet been studied. Here, the ultrastructure and composition of the calcareous tubes built by H. elegans was examined in the three early calcifying juvenile stages and in the adult using XRD, FTIR, ICP-OES, SEM and Raman spectroscopy. Ontogenetic shifts in carbonate mineralogy were observed, for example, juvenile tubes contained more amorphous calcium carbonate and were predominantly aragonitic whereas adult tubes were bimineralic with considerably more calcite. The mineral composition gradually shifted during the tube development as shown by a decrease in Sr/Ca and an increase of Mg/Ca ratios with the tubeworm's age. The inner tube layer contained calcite, whereas the outer layer contained aragonite. Similarly, the tube complexity in terms of ultrastructure was associated with development. The sequential appearance of unoriented ultrastructures followed by oriented ultrastructures may reflect the evolutionary history of serpulid tube biominerals. As aragonitic structures are more susceptible to dissolution under ocean acidification (OA) conditions but are more difficult to be removed by anti-fouling treatments, the early developmental stages of the tubeworms may be vulnerable to OA but act as the important target for biofouling control.

  4. Surface Functionalization of Polyethersulfone Membrane with Quaternary Ammonium Salts for Contact-Active Antibacterial and Anti-Biofouling Properties

    Directory of Open Access Journals (Sweden)

    Xiao Hu

    2016-05-01

    Full Text Available Biofilm is a significant cause for membrane fouling. Antibacterial-coated surfaces can inhibit biofilm formation by killing bacteria. In this study, polyethersulfone (PES microfiltration membrane was photografted by four antibiotic quaternary ammonium compounds (QACs separately, which were synthesized from dimethylaminoethyl methacrylate (DMAEMA by quaternization with butyl bromide (BB, octyl bromide (OB, dodecyl bromide (DB, or hexadecyl bromide (HB. XPS, ATR-FTIR, and SEM were used to confirm the surfaces’ composition and morphology. After modification, the pores on PES-g-DMAEMA-BB and PES-g-DMAEMA-OB were blocked, while PES-g-DMAEMA-DB and PES-g-DMAEMA-HB were retained. We supposed that DMAEMA-BB and DMAEMA-OB aggregated on the membrane surface due to the activities of intermolecular or intramolecular hydrogen bonds. Bacteria testing found the antibacterial activities of the membranes increased with the length of the substituted alkyl chain. Correspondingly, little bacteria were observed on PES-g-DMAEMA-DB and PES-g-DMAEMA-HB by SEM. The antifouling properties were investigated by filtration of a solution of Escherichia coli. Compared with the initial membrane, PES-g-DMAEMA-DB and PES-g-DMAEMA-HB showed excellent anti-biofouling performance with higher relative flux recovery (RFR of 88.3% and 92.7%, respectively. Thus, surface functionalization of the PES membrane with QACs can prevent bacteria adhesion and improve the anti-biofouling activity by the contact-active antibacterial property.

  5. Compositional Similarities and Differences between Transparent Exopolymer Particles (TEP) from two Marine Bacteria and two Marine Algae: Significance to Surface Biofouling

    KAUST Repository

    Li, Sheng

    2015-06-12

    Transparent-exopolymer-particles (TEP) have been recently identified as a significant contributor to surface biofouling, such as on reverse osmosis (RO) membranes. TEP research has mainly focused on algal TEP/TEP precursors while limited investigations have been conducted on those released by bacteria. In this study, TEP/TEP precursors derived from both algae and bacteria were isolated and then characterized to investigate their similarities and/or differences using various advanced analytical techniques, thus providing a better understanding of their potential effect on biofouling. Bacterial TEP/TEP precursors were isolated from two species of marine bacteria (Pseudidiomarina homiensis and Pseudoalteromonas atlantica) while algal TEP/TEP precursors were isolated from two marine algae species (Alexandrium tamarense and Chaetoceros affinis). Results indicated that both isolated bacterial and algal TEP/TEP precursors were associated with protein-like materials, and most TEP precursors were high-molecular-weight biopolymers. Furthermore all investigated algal and bacterial TEP/TEP precursors showed a lectin-like property, which can enable them to act as a chemical conditioning layer and to agglutinate bacteria. This property may enhance surface biofouling. However, both proton nuclear magnetic resonance (NMR) spectra and the nitrogen/carbon (N/C) ratios suggested that the algal TEP/TEP precursors contained much less protein content than the bacterial TEP/TEP precursors. This difference may influence their initial deposition and further development of surface biofouling.

  6. 2(5H-Furanone: a prospective strategy for biofouling-control in membrane biofilm bacteria by quorum sensing inhibition

    Directory of Open Access Journals (Sweden)

    Kannan Ponnusamy

    2010-03-01

    Full Text Available Biofouling of membranes demands costly periodic cleaning and membrane replacement. A sustainable and environmentally friendly solution for maintenance is not available and would be of great interest for many purposes including economical. As complex biofilm formation by environmental strains is the major cause of biofouling and biofilm formation in most cases are controlled by N-Acylhomoserine lactone (AHLmediated Quorum Sensing (QS. An effort was made to understand the appropriateness of 2(5H-furanone, to use against biofouling of membranes. QS inhibition activity by 2(5H-furanone was studied using bioindicator strains and known AHLs of different acyl chain lengths. The biofilm inhibition was studied by growth analysis on polystyrene plate of Aeromonas hyrdrophila, an environmental biofilm strain isolated from a bio-fouled reverse osmosis (RO membrane. Results showed a QS inhibition activity against a wide range of AHLs and also biofilm formation by 2(5H-furanone, which is believed to act as a potential quorum inhibition agent in a bacterial biofilm community.

  7. 76 FR 71560 - Notice of a Public Meeting on Long Term 2 Enhanced Surface Water Treatment Rule: Initiate...

    Science.gov (United States)

    2011-11-18

    ... AGENCY Notice of a Public Meeting on Long Term 2 Enhanced Surface Water Treatment Rule: Initiate Regulatory Review--Cryptosporidium Analytical Method Improvements and Update on Source Water Monitoring... Water Treatment Rule (LT2 rule). This is the first of at least two meetings on the LT2 rule that...

  8. 77 FR 57545 - Long Term 2 Enhanced Surface Water Treatment Rule: Public Meeting on Monitoring Data Analysis...

    Science.gov (United States)

    2012-09-18

    ... AGENCY 40 CFR Parts 141 and 142 Long Term 2 Enhanced Surface Water Treatment Rule: Public Meeting on... toolbox information as part of the regulatory review of the Long Term 2 Enhanced Surface Water Treatment... monitoring that are used to determine which one of the four categories (i.e., bins) a public drinking...

  9. Use of radionuclides at small water purification plants and in industrial waste water treatment by radiation adsorption method

    Energy Technology Data Exchange (ETDEWEB)

    Brusentseva, S.A.; Egorov, G.F.; Shubin, V.N. [and others

    1993-12-31

    An irradiation technique for potable water treatment is described. Use of radionuclides as a source of radiation allows for the automation of the process. The treatment is considered to be effective in waste water treatment to remove phenols, pesticides, and other toxic compounds.

  10. Effect of Hot Water Treatment on Postharvest Shelf Life and Quality of Broccoli

    Institute of Scientific and Technical Information of China (English)

    WU Ping; LI Wu

    2003-01-01

    Broccoli was stored at 0, 10, or 20℃ after immersion in hot water (38 -52℃ ) for 10 or 30min. Yellowing of broccoli was significantly slowed and shelf life significantly increased when broccoli wastreated with hot water at 42 -46℃ and then stored at 10 or 20℃. Heat injury occurred when treatment washigher than 46℃ in some varieties. Broccoli lasted 2 -3 days longer when stored at 10℃ and 1 -2 days longerwhen stored at 20℃ after hot water treatment at 46℃. There was no significant effect of treatment on shelflife after long time storage at 0℃. Weight loss was reduced by hot water treatment and the respiration behav-ior of the broccoli was also changed.

  11. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment.

    Science.gov (United States)

    Postigo, Cristina; Richardson, Susan D

    2014-08-30

    Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment.

  12. Stabilization of arsenic and chromium polluted soils using water treatment residues

    DEFF Research Database (Denmark)

    Nielsen, Sanne Skov

    water and can be used as a soil amendment to decrease the mobility of CCA in contaminated soil. Stabilization with Fe-WTR was tested at the Collstrop site in Hillerød, Denmark. The site has been polluted with a wide range of wood impregnation agents including CCA during 40 years of wood impregnating...... of contaminants. Arsenic, chromium and copper cannot be degraded and existing methods for cleaning the soil are rarely used as they are expensive and technically demanding. Chemical stabilization of polluted soil is an alternative method for soil remediation, especially metal contamination, and consists in adding...... or other sorbents. Iron water treatment residues mainly consist of ferrihydrite, an oxidized iron oxy-hydroxide with a high reactivity and a large specific surface area with a high capacity for adsorption. Iron water treatment residues (Fe-WTR) are a by-product from treatment of groundwater to drinking...

  13. Vacuum-UV radiation at 185 nm in water treatment--a review.

    Science.gov (United States)

    Zoschke, Kristin; Börnick, Hilmar; Worch, Eckhard

    2014-04-01

    The vacuum-UV radiation of water results in the in situ generation of hydroxyl radicals. Low-pressure mercury vapor lamps which emit at 185 nm are potential sources of VUV radiation. The scope of this article is to give an overview of the application of VUV radiation at 185 nm for water treatment including the transformation of inorganic and organic water constituents, and the disinfection efficiency. Another focus is on the generation of ozone by VUV radiation from oxygen or air and the application of the produced ozone in combination with VUV irradiation of water in the VUV/O3 process. The advantages and limitation of the VUV process at 185 nm as well as possible applications in water treatment are outlined.

  14. Advancement in Electrospun Nanofibrous Membranes Modification and Their Application in Water Treatment

    Directory of Open Access Journals (Sweden)

    Ramalingam Balamurugan

    2013-09-01

    Full Text Available Water, among the most valuable natural resources available on earth, is under serious threat as a result of undesirable human activities: for example, marine dumping, atmospheric deposition, domestic, industrial and agricultural practices. Optimizing current methodologies and developing new and effective techniques to remove contaminants from water is the current focus of interest, in order to renew the available water resources. Materials like nanoparticles, polymers, and simple organic compounds, inorganic clay materials in the form of thin film, membrane or powder have been employed for water treatment. Among these materials, membrane technology plays a vital role in removal of contaminants due to its easy handling and high efficiency. Though many materials are under investigation, nanofibers driven membrane are more valuable and reliable. Synthetic methodologies applied over the modification of membrane and its applications in water treatment have been reviewed in this article.

  15. Chemical and ecotoxicological assessments of water samples before and after being processed by a Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    Regina Teresa Rosim Monteiro

    2014-01-01

    Full Text Available Physicochemical and ecotoxicological measurements were employed to appraise the water quality of the Corumbataí River raw water (RW intake, and that of its filtered (FW and treated (TW waters, processed by the Water Treatment Plant (WTP of Piracicaba (SP, Brazil during 2010. Some herbicides: ametrine, atrazine, simazine and tebuthiuron, were measured, with levels ranging from 0.01 to 10.3 µg L-1 . These were lower than those required to produce ecotoxicological effects to aquatic life based on published literature. Similarly, trihalomethanes, such as chloroform and bromodichloromethane produced as a result of the WTP process were also shown to be present in concentrations that would neither harm environmental nor human health. Elevated free chlorine concentrations found in FW and TW were credibly responsible for toxicity effects observed in algae and daphnids. (Pseudokirchneriella subcapitata and Daphnia magna. In contrast, results of toxicity testing conducted with Hydra attenuata suggested that this organism is resistant to free chorine and could be used for drinking water evaluations. Coupling bioassays with chemical analyses proved valuable to uncover putative cause-effect relationships existing between physical, chemical and toxic results, as well as in optimizing data interpretation of water quality.

  16. Immobilization of tetracyclines in manure and manure-amended soils using aluminum-based drinking water treatment residuals.

    Science.gov (United States)

    Punamiya, Pravin; Sarkar, Dibyendu; Rakshit, Sudipta; Elzinga, Evert J; Datta, Rupali

    2016-02-01

    Veterinary antibiotics (VAs) are emerging contaminants of concern in the environment, mainly due to the potential for development of antibiotic-resistant bacteria and effect on microbiota that could interfere with crucial ecosystem functions such as nutrient cycling and decomposition. High levels of VAs such as tetracyclines (TCs) have been reported in agricultural soils amended with manure, which also has the potential to cause surface and groundwater contamination. Several recent studies have focused on developing methods to immobilize VAs such as composting with straw, hardwood chips, commercial biochar, aeration, mixing, heat treatment, etc. The major shortcomings of these methods include high cost and limited effectiveness. In the current study, we assessed the effectiveness of aluminum-based drinking water treatment residuals (Al-WTR) as a "green" sorbent to immobilize TCs in manure and manure-applied soils with varying physicochemical properties by laboratory incubation study. Results show that Al-WTR is very effective in immobilizing tetracycline (TTC) and oxytetracycline (OTC). The presence of phosphate resulted in significant (p soils, manure, and manure-applied soils amended with Al-WTR.

  17. Construction of a new waste-water treatment plant, building 676, route Maxwell

    CERN Multimedia

    TS Department

    2008-01-01

    A new waste-water treatment plant is being constructed on Route Maxwell to treat the effluents from the TS/MME/CCS surface treatment workshops. For this purpose, excavation work is being performed in two separate locations along Route Maxwell, causing a slight disruption to traffic in these areas. Site access through Gate C should, however, be maintained. The work is scheduled to continue until February 2009.

  18. Two proposals for pumping calculations of non–newtonian fluids, water treatment plants disposal sludges case

    OpenAIRE

    H. Gardea–Villegas

    2008-01-01

    This paper presents two ways to calculate the pumping power of non Newtonian fluids and especially yield pseudoplastics which are the kind of disposal fluids from Water Treatment Plants. Fluids called sludges. The proposals included here, are based in methods suggested by Levenspiel (1986) applicable to determine the performance of Bingham plastics and pseudoplastic fluids using a graphical approximation of the rheological behavior of these materials. This approach has the advantage that is a...

  19. Numerical Investigation of a Liquid-Gas Ejector Used for Shipping Ballast Water Treatment

    OpenAIRE

    Xueguan Song; Maosen Cao; Wonhyup Shin; Wenping Cao; Sanghoon Kang; Youngchul Park

    2014-01-01

    Shipping ballast water can have significant ecological and economic impacts on aquatic ecosystems. Currently, water ejectors are widely used in marine applications for ballast water treatment owing to their high suction capability and reliability. In this communication, an improved ballast treatment system employing a liquid-gas ejector is introduced to clear the ballast water to reduce environmental risks. Commonly, the liquid-gas ejector uses ballast water as the primary fluid and chemical ...

  20. Effects of Suspended Particles in Water of Terkuza River on Drinking Water Treatments

    OpenAIRE

    , A. Shkurti; , I. Beqiraj; , M. Kodra

    2016-01-01

    The content of suspended matter in Tercuza water has varied significantly during the study period 2004-2010, depending on atmosphere conditions, especially during winter, when values up to 1000 NTU were occurred, consequently worsening the process of turbidity removal. In Tirana’s water supply plant is required a special water treatment process in order to meet the drinking water standard parameters. The pre hydrolysed poly-aluminium chloride sulphate (PACS) was used as coagulant in Jar tests...

  1. Greenhouse and laboratory study for the land application of water treatment residual

    OpenAIRE

    Lucas, Jay B.

    1991-01-01

    The disposal of water treatment residual has received little attention due to a lack of regulation, funding, and concern about their environmental impacts. Many treatment plants discharge alum residual directly into nearby water courses or dewater them for landfilling. If suitable land is available, land application of residual is cost effective and has the potential for negligible effects on the environment and may prove to be a long-term solution to the disposal problem. This...

  2. A Comparative Analysis of Three Water Treatment Programs for Cooling Tower Systems

    Science.gov (United States)

    1991-09-01

    Gallic Acid Powder (item 2063) METHOD: It is necessary to follow the instructions furnished with the conductivity meter that is being used . The...the location and costs of AFLC towers. 2 Definition of Terms Terms commonly used in cooling tower water treatment. Acid : A substance that dissolves...the sulfuric acid program. This program is still indorsed by Air Force Regulation 91-40. System operators use sulfuric acid to lower the pH and

  3. Disinfection by-products in ballast water treatment: an evaluation of regulatory data.

    Science.gov (United States)

    Werschkun, Barbara; Sommer, Yasmin; Banerji, Sangeeta

    2012-10-15

    To reduce the global spread of invasive aquatic species, international regulations will soon require reductions of the number of organisms in ballast water discharged by ships. For this purpose, ballast water treatment systems were developed and approved by an international procedure. These systems rely on established water treatment principles which, to different degrees, have been proven to generate disinfection by-products with hazardous properties but have only scarcely been investigated in marine environments. Our study evaluates the publicly available documentation about approved ballast water treatment systems with regard to by-product formation. The most commonly employed methods are chlorination, ozonation, and ultraviolet (UV) irradiation. Chlorination systems generate trihalomethanes, halogenated acetic acids, and bromate in substantially larger quantities than reported for other areas of application. Levels are highest in brackish water, and brominated species predominate, in particular bromoform and dibromoacetic acid. Ozonation, which is less frequently utilized, produces bromoform in lower concentrations but forms higher levels of bromate, both of which were effectively reduced by active carbon treatment. In systems based on UV radiation, medium pressure lamps are employed as well as UV-induced advanced oxidation. For all UV systems, by-product formation is reported only occasionally. The most notable observations were small increases in nitrite, hydrogen peroxide, halogenated methanes and acetic acids. The assessment of by-product formation during ballast water treatment is limited by the lacking completeness and quality of available information. This concerns the extent and statistical characterisation of chemical analysis as well as the documentation of the test water parameters.

  4. Results of Shipboard Approval Tests of Ballast Water Treatment Systems in Freshwater

    Science.gov (United States)

    2014-11-01

    Results of Shipboard Approval Tests of Ballast Water Treatment Systems in Freshwater Distribution Statement A: Approved for public release...distribution is unlimited. November 2014 Report No. CG-D-05-15 Results of Shipboard Approval Tests of BWT Systems in Freshwater ii...London, CT 06320 Results of Shipboard Approval Tests of BWT Systems in Freshwater iii UNCLAS//Public | CG-926 R&DC | Cangelosi, et al

  5. Estrogen-related receptor γ disruption of source water and drinking water treatment processes extracts

    Institute of Scientific and Technical Information of China (English)

    Na Li; Weiwei Jiang; Kaifeng Rao; Mei Ma; Zijian Wang; Satyanarayanan Senthik Kumaran

    2011-01-01

    Environmental chemicals in drinking water can impact human health through nuclear receptors.Additionally, estrogen-related receptors (ERRs) are vulnerable to endocrine-disrupting effects.To date, however, ERR disruption of drinking water potency has not been reported.We used ERRγtwo-hybrid yeast assay to screen ERRγ disrupting activities in a drinking water treatment plant (DWTP) located in north China and in source water from a reservoir, focusing on agonistic, antagonistic, and inverse agonisfic activity to 4-hydroxytamoxifen (4-OHT).Water treatment processes in the DWTP consisted of pre-chlorination, coagulation, coal and sand filtration, activated carbon filtration, and secondary chlorination processes.Samples were extracted by solid phase extraction.Results showed that ERRγ antagonistic activities were found in all sample extracts, but agonistic and inverse agonistic activity to 4-OHT was not found.When calibrated with the toxic equivalent of 4-OHT, antagonistic effluent effects ranged from 3.4 to 33.1 μg/L.In the treatment processes, secondary chlorination was effective in removing ERRγ antagonists, but the coagulation process led to significantly increased ERRγ antagonistic activity.The drinking water treatment processes removed 73.5% of ERRγ antagonists.To our knowledge,the occurrence of ERRγ disruption activities on source and drinking water in vitro had not been reported previously.It is vital, therefore,to increase our understanding of ERRγdisrupting activities in drinking water.

  6. Coconut-based biosorbents for water treatment--a review of the recent literature.

    Science.gov (United States)

    Bhatnagar, Amit; Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2010-10-15

    Biosorption is an emerging technique for water treatment utilizing abundantly available biomaterials (especially agricultural wastes). Among several agricultural wastes studied as biosorbents for water treatment, coconut has been of great importance as various parts of this tree (e.g. coir, shell, etc.) have been extensively studied as biosorbents for the removal of diverse type of pollutants from water. Coconut-based agricultural wastes have gained wide attention as effective biosorbents due to low-cost and significant adsorption potential for the removal of various aquatic pollutants. In this review, an extensive list of coconut-based biosorbents from vast literature has been compiled and their adsorption capacities for various aquatic pollutants as available in the literature are presented. Available abundantly, high biosorption capacity, cost-effectiveness and renewability are the important factors making these materials as economical alternatives for water treatment and waste remediation. This paper presents a state of the art review of coconut-based biosorbents used for water pollution control, highlighting and discussing key advancement on the preparation of novel adsorbents utilizing coconut wastes, its major challenges together with the future prospective. It is evident from the literature survey that coconut-based biosorbents have shown good potential for the removal of various aquatic pollutants. However, still there is a need to find out the practical utility of such developed adsorbents on commercial scale, leading to the superior improvement of pollution control and environmental preservation.

  7. Presence of radionuclides in sludge from conventional drinking water treatment plants. A review.

    Science.gov (United States)

    Fonollosa, E; Nieto, A; Peñalver, A; Aguilar, C; Borrull, F

    2015-03-01

    The analysis of sludge samples generated during water treatment processes show that different radioisotopes of uranium, thorium and radium, among others can accumulate in that kind of samples, even the good removal rates obtained in the aqueous phase (by comparison of influent and effluent water concentrations). Inconsequence, drinking water treatment plants are included in the group of Naturally Occurring Radioactive Material (NORM) industries. The accumulation of radionuclides can be a serious problem especially when this sludge is going to be reused, so more exhaustive information is required to prevent the possible radiological impact of these samples in the environment and also on the people. The main aim of this review is to outline the current situation regarding the different studies reported in the literature up to date focused on the analysis of the radiological content of these sludge samples from drinking water treatment plants. In this sense, special attention is given to the recent approaches for their determination. Another important aim is to discuss about the final disposal of these samples and in this regard, sludge reuse (including for example direct agricultural application or also as building materials) are together with landfilling the main reported strategies.

  8. Transformations of particles, metal elements and natural organic matter in different water treatment processes

    Institute of Scientific and Technical Information of China (English)

    YAN Ming-quan; WANG Dong-sheng; SHI Bao-you; WEI Qun-shan; QU Jiu-hui; TANG Hong-xiao

    2007-01-01

    Characterizing namral organic matter(NOM),particles and elements in different water treatment processes Can give a useful information to optimize water treatment operations.In this article,transformations of particles,metal elements and NOM in a pilot-scale water treatment plant were investigated by laser light granularity system,particle counter,glass-fiber membrane filtration,inductively coupled plasma-optical emission spectroscopy,ultra filtration and resin absorbents fractionation.The results showed that particles,NOM and trihalomethane formation precursors were removed synergistically by sequential treamaent of different processes. Preozonation markedly changed the polarity and molecular weight of NOM.and it could be conducive to the following coagulation processthrough destabilizing particles and colloids;mid-ozonation enhanced the subsequent granular activated carbon(GAC)filtration process by decreasing molecular weight of organic matters.Coagulation-flotation and GAC were more efficient in removing fixed suspended solids and larger particles;while sand-filtration was more effcient in removing volatile suspended solids and smaller particles.Flotation performed better than sedimentation in terms of particle and NOM removal.The type of coagulant could greatly affect the performance of coagulation-flotation.Pre-hydrolyzed composite coagulant(HPAC)was superior to FeCl3 concerning the removals of hydrophobic dissolved organic carbon and volatile suspended solids.The leakages of flocs from sand-filtration and microorganisms from GAC should be mitigated to ensure the reliability of the whole treatment system.

  9. Evaluation of leached metals in recovered aluminum coagulants from water treatment slurry.

    Science.gov (United States)

    Fouad, Mahmoud M; El-Gendy, Ahmed S; Razek, Taha M A

    2017-02-01

    The water treatment industry consumes large quantities of coagulant and produces huge amounts of slurry. The cost of alum used in water treatment, stringent regulations and negative impacts of sludge disposal are the motive to do integrated research studies on the technical feasibility of aluminum coagulant recovery from sludge using acidification. This work studied the leaching of iron, manganese, and chromium as the most extracted metals with aluminum during sludge acidification; furthermore, these metals have a great impact on the recovered coagulants' efficiency and treated water quality. The sludge used was collected from El-Sheikh Zayd water treatment plant in Egypt, then dried and ground; afterward, the effect of acid concentration, sludge mass, temperature, mixing speed and mixing time was studied. In addition, it was noticeable that the efficiency of sulfuric acid in leaching iron, manganese and chromium is higher than that of hydrochloric acid. Also, higher leaching for the three metals was obtained in all the experiments using higher acid concentration, elevated temperature, and rotational speed. Finally, the leached metals in recovered aluminum coagulants will not limit its application to water and wastewater treatment, as their concentrations are still very low if compared with aluminum, even with the highest leaching efficiency.

  10. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Aryanti, N., E-mail: nita.aryanti@gmail.com; Firdaus, M. M. H.; Sukmawati, H. [Chemical Engineering, Faculty of Engineering, Diponegoro University Prof. Soedarto Street, Tembalang, Semarang, 50239, Phone/Fax : (024)7460058 (Indonesia)

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  11. [Occurrence and distribution of volatile organic compounds in conventional and advanced drinking water treatment processes].

    Science.gov (United States)

    Chen, Xi-Chao; Luo, Qian; Chen, Hu; Wei, Zi; Wang, Zi-Jian; Xu, Ke-Wen

    2013-12-01

    A series of experiments were conducted to study the occurrence and distribution of volatile organic compounds (VOCs) in conventional and advanced drinking water treatment processes of 3 water treatment plants in Lianyungang City. Results showed that 30 compounds of 3 classes were detected from 67 kinds of VOCs in all the samples collected. The concentrations of carbonyl compounds, halogenated hydrocarbons and benzenes detected were in the ranges of 0.04-61.27, 0.02-35.61 and 0.07-2.33 microg x L(-1) respectively. Comparing the changes of different VOCs in three drinking water treatment plants, conventional chlorination process could effectively remove benzenes but meanwhile produced trihalomethanes (THMs). Additional advanced treatment ozonation-biological activated carbon process could decrease the formation of THMs during pre-chlorination but produced new risky contaminants like carbonyl compounds. The changes of VOCs in tap water were also investigated. It was found that carbonyl compounds produced by ozonation could be further transformed to THMs with residual chlorine. However, the health risks of all detected compounds in tap water were at a low level, except that the carcinogenic risk of crotonaldehydes (9.3 x 10(-5)-2.2 x 10(-4)) was slightly higher than the US EPA threshold (10(-6)-10(-4)).

  12. Presence of Naturally Occurring Radioactive Materials in sludge samples from several Spanish water treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, M.; Penalver, A.; Aguilar, C. [Unitat de Radioquimica Ambiental i Sanitaria, Universitat Rovira i Virgili, Consorci d' Aigues de Tarragona (CAT), Ctra. Nacional 340 Km. 1094, Ap. correus n.7, 43895 L' Ampolla, Tarragona (Spain); Borrull, F., E-mail: francesc.borrull@urv.cat [Unitat de Radioquimica Ambiental i Sanitaria, Universitat Rovira i Virgili, Consorci d' Aigues de Tarragona (CAT), Ctra. Nacional 340 Km. 1094, Ap. correus n.7, 43895 L' Ampolla, Tarragona (Spain)

    2010-09-15

    Sludge samples from eleven potable water treatment plants (PWTP), three waste water treatment plants (WWTP) and an industrial water treatment plant (IWTP), located in different areas of Spain, mainly in Catalonia, were analyzed for their radiological content in order to determine whether they could be considered as industries affected by naturally occurring radioactive material (NORM). In general, samples from the PWTPs showed higher activity values for the alpha and gamma emitting isotopes than the WWTPs and the IWTP. For example, samples from the area located in the north of Catalonia show values of {sup 234}U, {sup 235}U and {sup 238}U in the range of 84.4-792.1 Bq/kg, 3.3-26.8 Bq/kg and 63.8-585.9 Bq/kg, respectively. In general, for PWTP, the values obtained for the gamma emitter and alpha emitter isotopes showed that both the geology and the industrial activities correlate with the values measured. The magnitude of these results demonstrates the need to measure the radionuclide content of these samples before reaching a decision about their final disposal.

  13. Evaluating the sustainability of ceramic filters for point-of-use drinking water treatment.

    Science.gov (United States)

    Ren, Dianjun; Colosi, Lisa M; Smith, James A

    2013-10-01

    This study evaluates the social, economic, and environmental sustainability of ceramic filters impregnated with silver nanoparticles for point-of-use (POU) drinking water treatment in developing countries. The functional unit for this analysis was the amount of water consumed by a typical household over ten years (37,960 L), as delivered by either the POU technology or a centralized water treatment and distribution system. Results indicate that the ceramic filters are 3-6 times more cost-effective than the centralized water system for reduction of waterborne diarrheal illness among the general population and children under five. The ceramic filters also exhibit better environmental performance for four of five evaluated life cycle impacts: energy use, water use, global warming potential, and particulate matter emissions (PM10). For smog formation potential, the centralized system is preferable to the ceramic filter POU technology. This convergence of social, economic, and environmental criteria offers clear indication that the ceramic filter POU technology is a more sustainable choice for drinking water treatment in developing countries than the centralized treatment systems that have been widely adopted in industrialized countries.

  14. Design of Simple Water Treatment System for Cleaning Dirty Water in the Rural Area

    Science.gov (United States)

    Nandiyanto, A. B. D.; Haristiani, N.

    2017-03-01

    The purpose of this study was to introduce our simple home-made water treatment system for solving the clean water supply problem in rural area. We designed a water system using several materials: activated sand, activated carbon, manganese, and zeolite. As a model, we investigated the water treatment system on two wells that placed in one of the rural area (far from the main city) in West Java, Indonesia. Experimental results showed that our designed water treatment system succeeded to purify dirty water and the properties and the chemical composition of the purified water is fit with the minimum standard requirement of clean water. Analysis and discussion about the way for the cleaning water process were also presented in the paper. Finally, since the wells are installed in the elementary school and the water is typically used for daily life activity for the neighbour people, this water system can be used for educational purposes and the school can become a center of life in this rural area.

  15. A novel point-of-use water treatment method by antimicrobial nanosilver textile material.

    Science.gov (United States)

    Liu, Hongjun; Tang, Xiaosheng; Liu, Qishan

    2014-12-01

    Pathogenic bacteria are one of the main reasons for worldwide water-borne disease causing a big threat to public health, hence there is an urgent need to develop cost-effective water treatment technologies. Nano-materials in point-of-use systems have recently attracted considerable research and commercial interests as they can overcome the drawbacks of traditional water treatment techniques. We have developed a new point-of-use water disinfection kit with nanosilver textile material. The silver nanoparticles were in-situ generated and immobilized onto cotton textile, followed by fixing to a plastic tube to make a water disinfection kit. By soaking and stirring the kit in water, pathogenic bacteria have been killed within minutes. The silver leaching from the kit was insignificant, with values silver level in drinking water. Herein, the nanosilver textile water disinfection kit could be a new, efficient and cost-effective point-of-use water treatment method for rural areas and emergency preparedness.

  16. Effect of magnetic iron oxide nanoparticles in surface water treatment: trace minerals and microbes.

    Science.gov (United States)

    Lakshmanan, Ramnath; Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao, Gunaratna K

    2013-02-01

    The existing water treatment process often uses chemicals, which is of high health and environmental concern. The present study focused on the efficiency of microemulsion prepared magnetic iron oxide nanoparticles (ME-MIONs) and protein-functionalized nanoparticles (MOCP+ME-MIONs) in water treatment. Their influence on mineral ions and microorganisms present in the surface water from lake Brunnsviken and Örlången, Sweden were investigated. Ion analysis of water samples before and after treatment with nanoparticles was performed. Microbial content was analyzed by colony forming units (CFU/ml). The results impart that ME-MIONs could reduce the water turbidity even in low turbid water samples. Reduction of microbial content (98%) was observed at 37°C and more than 90% reduction was seen at RT and 30 °C when compared to untreated samples from lake Örlången. The investigated surface water treatment method with ME-MIONs was not significantly affecting the mineral ion composition, which implies their potential complement in the existing treatment process.

  17. Reduction of Chilling Injury and Ultrastructural Damage in Cherry Tomato Fruits After Hot Water Treatment

    Institute of Scientific and Technical Information of China (English)

    YANG Jing; FU Mao-run; ZHAO Yu-ying; MAO Lin-chun

    2009-01-01

    The effects of hot water treatment in alleviating chilling injury and reducing ultrastructural damage of mature-green cherry tomatoes (Lycopersicun esculentum cv. cerasiform Alef) were investigated. Mature-green cherry tomato fruits were treated in water at 40℃ or 45℃ for 5 rain or 15 rain, and then stored at 5℃ for 19 days followed by ripening at 20℃. Water treatment at 40℃ for 15 rain increased tolerance of cherry tomato fruits to chilling stress, indicating as low outbreak of skin lesion, high color a* value, and low electrolyte leakage. Treated fi'uits showed typical climacteric respiration and developed normal red color with chlorophyll degradation and lyeopene accumulation during ripening, while fruits without treatment failed to develop red color and suffered skin lesion. After 19 days of chilling, heated fruits showed the conversion of chloroplast to ehromoplast with the disappearance of thylakoids. Mitochondria and other cell organelles were not adversely affected in treated fruits. However, ultrastruetures in periearp cells in control fruits severely damaged with extensive disorganization of cytoplasm, swelled chloroplasts, distorted and unstacked thylakoids. Chloroplast was the first and most severely impacted organelle by chilling stress. Hot water treatment (40℃ for 15 min) before storage alleviated chilling injury in cherry tomato fruits. The results suggest that chilling injury is related with the damage of cell structure under chilling stress.

  18. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment.

    Science.gov (United States)

    Peng, Shengjie; Jin, Guorui; Li, Linlin; Li, Kai; Srinivasan, Madhavi; Ramakrishna, Seeram; Chen, Jun

    2016-03-07

    Tissue regeneration, energy conversion & storage, and water treatment are some of the most critical challenges facing humanity in the 21st century. In order to address such challenges, one-dimensional (1D) materials are projected to play a key role in developing emerging solutions for the increasingly complex problems. Eletrospinning technology has been demonstrated to be a simple, versatile, and cost-effective method in fabricating a rich variety of materials with 1D nanostructures. These include polymers, composites, and inorganic materials with unique chemical and physical properties. In this tutorial review, we first give a brief introduction to electrospun materials with a special emphasis on the design, fabrication, and modification of 1D functional materials. Adopting the perspective of chemists and materials scientists, we then focus on the recent significant progress made in the domains of tissue regeneration (e.g., skin, nerve, heart and bone) and conversion & storage of clean energy (e.g., solar cells, fuel cells, batteries, and supercapacitors), where nanofibres have been used as active nanomaterials. Furthermore, this review's scope also includes the advances in the use of electrospun materials for the removal of heavy metal ions, organic pollutants, gas and bacteria in water treatment applications. Finally a conclusion and perspective is provided, in which we discuss the remaining challenges for 1D electrospun nanomaterials in tissue regeneration, energy conversion & storage, and water treatment.

  19. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration.

    Science.gov (United States)

    Rigobello, Eliane Sloboda; Dantas, Angela Di Bernardo; Di Bernardo, Luiz; Vieira, Eny Maria

    2013-06-01

    This study was carried out to evaluate the efficiency of conventional drinking water treatment processes with and without pre-oxidation with chlorine and chlorine dioxide and the use of granular activated carbon (GAC) filtration for the removal of diclofenac (DCF). Water treatment was performed using the Jar test with filters on a lab scale, employing nonchlorinated artesian well water prepared with aquatic humic substances to yield 20HU true color, kaolin turbidity of 70 NTU and 1mgL(-1) DCF. For the quantification of DCF in water samples, solid phase extraction and HPLC-DAD methods were developed and validated. There was no removal of DCF in coagulation with aluminum sulfate (3.47mgAlL(-1) and pH=6.5), flocculation, sedimentation and sand filtration. In the treatment with pre-oxidation and disinfection, DCF was partially removed, but the concentration of dissolved organic carbon (DOC) was unchanged and byproducts of DCF were observed. Chlorine dioxide was more effective than chorine in oxidizing DCF. In conclusion, the identification of DCF and DOC in finished water indicated the incomplete elimination of DCF through conventional treatments. Nevertheless, conventional drinking water treatment followed by GAC filtration was effective in removing DCF (⩾99.7%). In the oxidation with chlorine, three byproducts were tentatively identified, corresponding to a hydroxylation, aromatic substitution of one hydrogen by chlorine and a decarboxylation/hydroxylation. Oxidation with chlorine dioxide resulted in only one byproduct (hydroxylation).

  20. New chlorinated amphetamine-type-stimulants disinfection-by-products formed during drinking water treatment.

    Science.gov (United States)

    Huerta-Fontela, Maria; Pineda, Oriol; Ventura, Francesc; Galceran, Maria Teresa

    2012-06-15

    Previous studies have demonstrated high removal rates of amphetamine-type-stimulants (ATSs) through conventional drinking water treatments; however the behaviour of these compounds through disinfection steps and their transformation into disinfection-by-products (DBPs) is still unknown. In this work, for the first time, the reactivity of some ATSs such as amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyethylamphetamine (MDEA) with chlorine has been investigated under simulated and real drinking water treatment conditions in order to evaluate their ability to give rise to transformation products. Two new DBPs from these illicit drugs have been found. A common chlorinated-by-product (3-chlorobenzo)-1,3-dioxole, was identified for both MDA and MDEA while for MDMA, 3-chlorocatechol was found. The presence of these DBPs in water samples collected through drinking water treatment was studied in order to evaluate their formation under real conditions. Both compounds were generated through treatment from raw river water samples containing ATSs at concentration levels ranging from 1 to 15 ng/L for MDA and from 2.3 to 78 ng/L for MDMA. One of them, (3-chlorobenzo)-1,3-dioxole, found after the first chlorination step, was eliminated after ozone and GAC treatment while the MDMA DBP mainly generated after the postchlorination step, showed to be recalcitrant and it was found in final treated waters at concentrations ranging from 0.5 to 5.8 ng/L.

  1. In-situ biofouling assessment in spacer filled channels using optical coherence tomography (OCT): 3D biofilm thickness mapping

    KAUST Repository

    Fortunato, Luca

    2017-01-13

    Membrane systems for water purification can be seriously hampered by biofouling. The use of optical coherence tomography (OCT) to investigate biofilms in membrane systems has recently increased due to the ability to do the characterization in-situ and non-destructively The OCT biofilm thickness map is presented for the first time as a tool to assess biofilm spatial distribution on a surface. The map allows the visualization and evaluation of the biofilm formation and growth in membrane filtration systems through the use of a false color scale. The biofilm development was monitored with OCT to evaluate the suitability of the proposed approach. A 3D time series analysis of biofilm development in a spacer filled channel representative of a spiral-wound membrane element was performed. The biofilm thickness map enables the time-resolved and spatial-resolved evaluation and visualization of the biofilm deposition pattern in-situ non-destructively.

  2. Water Treatment Plants, Water Treatment Plant FC of Water Utility Map of City of Ashland, WI, Published in 2007, 1:600 (1in=50ft) scale, City of Ashland.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from Other information as of 2007. It is described as 'Water...

  3. Biofouling potential reductions using a membrane hybrid system as a pre-treatment to seawater reverse osmosis.

    Science.gov (United States)

    Jeong, Sanghyun; Kim, Lan Hee; Kim, Sung-Jo; Nguyen, Tien Vinh; Vigneswaran, Saravanamuthu; Kim, In S

    2012-07-01

    Biofouling on reverse osmosis (RO) membranes is the most serious problem which affects desalination process efficiency and increases operation cost. The biofouling cannot be effectively removed by the conventional pre-treatment traditionally used in desalination plants. Hybrid membrane systems coupling the adsorption and/or coagulation with low-pressure membranes can be a sustainable pre-treatment in reducing membrane fouling and at the same time improving the feed water quality to the seawater reverse osmosis. The addition of powder activated carbon (PAC) of 1.5 g/L into submerged membrane system could help to remove significant amount of both hydrophobic compounds (81.4%) and hydrophilic compounds (73.3%). When this submerged membrane adsorption hybrid system (SMAHS) was combined with FeCl(3) coagulation of 0.5 mg of Fe(3+)/L, dissolved organic carbon removal efficiency was excellent even with lower dose of PAC (0.5 g/L). Detailed microbial studies conducted with the SMAHS and the submerged membrane coagulation-adsorption hybrid system (SMCAHS) showed that these hybrid systems can significantly remove the total bacteria which contain also live cells. As a result, microbial adenosine triphosphate (ATP) as well as total ATP concentrations in treated seawater and foulants was considerably decreased. The bacteria number in feed water prior to RO reduced from 5.10E(+06) cells/mL to 3.10E(+03) cells/mL and 9.30E(+03) cells/mL after SMAHS and SMCAHS were applied as pre-treatment, respectively. These led to a significant reduction of assimilable organic carbon (AOC) by 10.1 μg/L acetate-C when SMCAHS was used as a pre-treatment after 45-h RO operation. In this study, AOC method was modified to measure the growth of bacteria in seawater by using the Pseudomonas P.60 strain.

  4. 2D Gel-Based Multiplexed Proteomic Analysis during Larval Development and Metamorphosis of the Biofouling Polychaete Tubeworm Hydroides elegans

    KAUST Repository

    Zhang, Yu

    2010-09-03

    Larval settlement and metamorphosis of a common biofouling polychaete worm, Hydroides elegans, involve remarkable structural and physiological changes during this pelagic to sessile habitat shift. The endogenous protein molecules and post-translational modifications that drive this larval transition process are not only of interest to ecologists but also to the antifouling paint industry, which aims to control the settlement of this biofouling species on man-made structures (e.g., ship hulls). On the basis of our recent proteomic studies, we hypothesize that rapid larval settlement of H. elegans could be mediated through changes in phosphorylation status of proteins rather than extensive de novo synthesis of proteins. To test this hypothesis, 2D gel-based multiplexed proteomics technology was used to monitor the changes in protein expression and phosphorylation status during larval development and metamorphosis of H. elegans. The protein expression profiles of larvae before and after they reached competency to attach and metamorphose were similar in terms of major proteins, but the percentage of phosphorylated proteins increased from 41% to 49% after competency. Notably, both the protein and phosphoprotein profiles of the metamorphosed individuals (adult) were distinctly different from that of the larvae, with only 40% of the proteins phosphorylated in the adult stage. The intensity ratio of all phosphoprotein spots to all total protein spots was also the highest in the competent larval stage. Overall, our results indicated that the level of protein phosphorylation might play a crucial role in the initiation of larval settlement and metamorphosis. © 2010 American Chemical Society.

  5. Biofouling of reverse-osmosis membranes under different shear rates during tertiary wastewater desalination: microbial community composition.

    Science.gov (United States)

    Al Ashhab, Ashraf; Gillor, Osnat; Herzberg, Moshe

    2014-12-15

    We investigated the influence of feed-water shear rate during reverse-osmosis (RO) desalination on biofouling with respect to microbial community composition developed on the membrane surface. The RO membrane biofilm's microbial community profile was elucidated during desalination of tertiary wastewater effluent in a flat-sheet lab-scale system operated under high (555.6 s(-1)), medium (370.4 s(-1)), or low (185.2 s(-1)) shear rates, corresponding to average velocities of 27.8, 18.5, and 9.3 cm s(-1), respectively. Bacterial diversity was highest when medium shear was applied (Shannon-Weaver diversity index H' = 4.30 ± 0.04) compared to RO-membrane biofilm developed under lower and higher shear rates (H' = 3.80 ± 0.26 and H' = 3.42 ± 0.38, respectively). At the medium shear rate, RO-membrane biofilms were dominated by Betaproteobacteria, whereas under lower and higher shear rates, the biofilms were dominated by Alpha- and Gamma- Proteobacteria, and the latter biofilms also contained Deltaproteobacteria. Bacterial abundance on the RO membrane was higher at low and medium shear rates compared to the high shear rate: 8.97 × 10(8) ± 1.03 × 10(3), 4.70 × 10(8) ± 1.70 × 10(3) and 5.72 × 10(6) ± 2.09 × 10(3) copy number per cm(2), respectively. Interestingly, at the high shear rate, the RO-membrane biofilm's bacterial community consisted mainly of populations known to excrete high amounts of extracellular polymeric substances. Our results suggest that the RO-membrane biofilm's community composition, structure and abundance differ in accordance with applied shear rate. These results shed new light on the biofouling phenomenon and are important for further development of antibiofouling strategies for RO membranes.

  6. Economic impacts of zebra mussels on drinking water treatment and electric power generation facilities.

    Science.gov (United States)

    Connelly, Nancy A; O'Neill, Charles R; Knuth, Barbara A; Brown, Tommy L

    2007-07-01

    Invasions of nonnative species such as zebra mussels can have both ecological and economic consequences. The economic impacts of zebra mussels have not been examined in detail since the mid-1990s. The purpose of this study was to quantify the annual and cumulative economic impact of zebra mussels on surface water-dependent drinking water treatment and electric power generation facilities (where previous research indicated the greatest impacts). The study time frame was from the first full year after discovery in North America (Lake St. Clair, 1989) to the present (2004); the study area was throughout the mussels' North American range. A mail survey resulted in a response rate of 31% for electric power companies and 41% for drinking water treatment plants. Telephone interviews with a sample of nonrespondents assessed nonresponse bias; only one difference was found and adjusted for. Over one-third (37%) of surveyed facilities reported finding zebra mussels in the facility and almost half (45%) have initiated preventive measures to prevent zebra mussels from entering the facility operations. Almost all surveyed facilities (91%) with zebra mussels have used control or mitigation alternatives to remove or control zebra mussels. We estimated that 36% of surveyed facilities experienced an economic impact. Expanding the sample to the population of the study area, we estimated 267 million dollars (BCa 95% CI = 161 million dollars - 467 million dollars) in total economic costs for electric generation and water treatment facilities through late 2004, since 1989. Annual costs were greater (44,000 dollars/facility) during the early years of zebra mussel infestation than in recent years (30,000 dollars). As a result of this and other factors, early predictions of the ultimate costs of the zebra mussel invasion may have been excessive.

  7. Bioanalytical assessment of the formation of disinfection byproducts in a drinking water treatment plant.

    Science.gov (United States)

    Neale, Peta A; Antony, Alice; Bartkow, Michael E; Farré, Maria José; Heitz, Anna; Kristiana, Ina; Tang, Janet Y M; Escher, Beate I

    2012-09-18

    Disinfection of drinking water is the most successful measure to reduce water-borne diseases and protect health. However, disinfection byproducts (DBPs) formed from the reaction of disinfectants such as chlorine and monochloramine with organic matter may cause bladder cancer and other adverse health effects. In this study the formation of DBPs through a full-scale water treatment plant serving a metropolitan area in Australia was assessed using in vitro bioanalytical tools, as well as through quantification of halogen-specific adsorbable organic halogens (AOXs), characterization of organic matter, and analytical quantification of selected regulated and emerging DBPs. The water treatment train consisted of coagulation, sand filtration, chlorination, addition of lime and fluoride, storage, and chloramination. Nonspecific toxicity peaked midway through the treatment train after the chlorination and storage steps. The dissolved organic matter concentration decreased after the coagulation step and then essentially remained constant during the treatment train. Concentrations of AOXs increased upon initial chlorination and continued to increase through the plant, probably due to increased chlorine contact time. Most of the quantified DBPs followed a trend similar to that of AOXs, with maximum concentrations observed in the final treated water after chloramination. The mostly chlorinated and brominated DBPs formed during treatment also caused reactive toxicity to increase after chlorination. Both genotoxicity with and without metabolic activation and the induction of the oxidative stress response pathway showed the same pattern as the nonspecific toxicity, with a maximum activity midway through the treatment train. Although measured effects cannot be directly translated to adverse health outcomes, this study demonstrates the applicability of bioanalytical tools to investigate DBP formation in a drinking water treatment plant, despite bioassays and sample preparation not

  8. Establishing solar water disinfection as a water treatment method at household level

    Directory of Open Access Journals (Sweden)

    Regula Meierhofer

    2006-12-01

    Full Text Available 1.1 billion People worldwide do not have access to safe drinking water and therefore are exposed to a high risk for diarrhoeal diseases. As a consequence, about 6,000 children die each day of dehydration due to diarrhoea. Adequate water treatment methods and safe storage of drinking water, combined with hygiene promotion, are required to prevent the population without access to safe drinking water from illness and death. Solar water disinfection (SODIS is a new water treatment to be applied at household level with a great potential to reduce diarrhoea incidence of users. The method is very simple and the only resources required for its application are transparent PET plastic bottles (or glass bottles and sufficient sunlight: microbiologically contaminated water is filled into the bottles and exposed to the full sunlight for 6 hours. During solar exposure, the diarrhoea causing pathogens are killed by the UV-A radiation of the sunlight. At present, SODIS is used by about 2 Million users in more than 20 countries of the South. Diarrhoea incidence of users significantly has been reduced by 30 to 70 %. A careful and long-term community education process that involves creating awareness on the importance of treating drinking water and initiates behaviour change is required to establish the sustainable practice of SODIS at community level. In Madagascar, more than 160 children younger than 5 years die each day from malaria, diarrhoea and acute respiratory illnesses. The application of household water treatment methods such as SODIS significantly could contribute to improve their health.

  9. The fate and importance of organics in drinking water treatment: a review.

    Science.gov (United States)

    Ivančev-Tumbas, Ivana

    2014-10-01

    In the pioneer days, the main driving forces for research of organics in drinking water treatment (DWT) were human health risks and optimisation of technology. The focus was on natural organic matter (NOM) structure, disinfection by-products (DBPs) formation, NOM removal by means of coagulation, adsorption, and oxidation, and development of the most efficient water treatment trains. Surprisingly, after decades of research, rapid development of analytical techniques and progress in risk assessment, the same driving forces are still in the limelight - although the topics have changed slightly. The attention switched from trihalomethanes to a new generation of DBPs. The definition of hydrophilic/hydrophobic NOM depends on the technique used for characterisation. It has become evident that numerous organic compounds can threaten water supply sources. Some of them had been ignored or overlooked in the past, but have recently been detected by advanced analytical tools even in drinking water. Prioritisation becomes priority per se. As far as processes are concerned, mainstream research has been following three lines: fouling mechanisms, application of hybrid processes and interactions between synthetic organic chemicals, other water constituents and materials used in DWT. Significant development has been made in membrane technology. This paper presents a broad overview of the recent organics research. Although the state-of-the-art technologies seem to have an answer to each and every question raised, it is still necessary to deal with specific problems on a case-by-case basis mainly due to the unique nature of NOM and different xenobiotics that may appear in various types of waters. In the end, human health risk, which derives from the presence/absence of organics, is only the tip of the iceberg - underneath lies a whole new universe - the socio-economic aspect of water treatment and quality that deserves much more attention.

  10. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale.

    Science.gov (United States)

    Boudaud, Nicolas; Machinal, Claire; David, Fabienne; Fréval-Le Bourdonnec, Armelle; Jossent, Jérôme; Bakanga, Fanny; Arnal, Charlotte; Jaffrezic, Marie Pierre; Oberti, Sandrine; Gantzer, Christophe

    2012-05-15

    The removal of MS2, Qβ and GA, F-specific RNA bacteriophages, potential surrogates for pathogenic waterborne viruses, was investigated during a conventional drinking water treatment at pilot scale by using river water, artificially and independently spiked with these bacteriophages. The objective of this work is to develop a standard system for assessing the effectiveness of drinking water plants with respect to the removal of MS2, Qβ and GA bacteriophages by a conventional pre-treatment process (coagulation-flocculation-settling-sand filtration) followed or not by an ultrafiltration (UF) membrane (complete treatment process). The specific performances of three UF membranes alone were assessed by using (i) pre-treated water and (ii) 0.1 mM sterile phosphate buffer solution (PBS), spiked with bacteriophages. These UF membranes tested in this work were designed for drinking water treatment market and were also selected for research purpose. The hypothesis serving as base for this study was that the interfacial properties for these three bacteriophages, in terms of electrostatic charge and the degree of hydrophobicity, could induce variations in the removal performances achieved by drinking water treatments. The comparison of the results showed a similar behaviour for both MS2 and Qβ surrogates whereas it was particularly atypical for the GA surrogate. The infectious character of MS2 and Qβ bacteriophages was mostly removed after clarification followed by sand filtration processes (more than a 4.8-log reduction) while genomic copies were removed at more than a 4.0-log after the complete treatment process. On the contrary, GA bacteriophage was only slightly removed by clarification followed by sand filtration, with less than 1.7-log and 1.2-log reduction, respectively. After the complete treatment process achieved, GA bacteriophage was removed with less than 2.2-log and 1.6-log reduction, respectively. The effectiveness of the three UF membranes tested in terms of

  11. IMPROVEMENT OF COAGULATION PROCESS FOR THE PRUT RIVER WATER TREATMENT USING ALUMINUM SULPHATE

    Directory of Open Access Journals (Sweden)

    Larisa Postolachi

    2015-06-01

    Full Text Available The aim of presented research was to optimize the treatment process of the Prut River water. In order to realize the proposed goal, there were studied the following factors which can improve the process of coagulation: (i the influence of stirring speed during coagulation and (ii the influence of the concentration of the coagulant solution added in the process of coagulation. The optimal conditions of coagulation were established using the Jar-test method. Application of the recommended procedure contribute to the reduction of the coagulant dose, the contact time, the aluminum concentration in water and the expenses for water treatment.

  12. Challenges of Membrane Filtration for Produced Water Treatment in Offshore Oil & Gas Production

    DEFF Research Database (Denmark)

    Jepsen, Kasper Lund; Hansen, Leif; Mai, Christian;

    2016-01-01

    the Water Flooding Technology (WFT) is employed. The quality requirements for WFT and the increasing environmental concerns for produced water discharge lead to increased interest in zero-pollutant discharge. Traditional Produced Water Treatment (PWT) technologies(such as hydrocyclones) are already...... struggling to their fundamental limit, therefore the membrane filtration technology turns to be a potential candidate for zero pollutant discharge. Membrane filtration technology suffers from the notorious fouling problem, where many methods for fouling prevention and removal are explored, the general idea...

  13. Comparison of laboratory and field observations: Ozone water treatment for cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, K.P. [Marley Cooling Tower Co., Mission, KS (United States)

    1996-11-01

    This evaluation, comparing laboratory- and field-generated data, explains the functional results of ozone water treatment use for operating heating, ventilating, and air-conditioning (HVAC) cooling water systems. These effects are classified in the areas of biological growth control, corrosion rate control, and scale control or retardation. Limitations on the application of ozone are discussed. Field results from multiple sites are examined and compared to laboratory-generated data. Theories as to mechanisms are discussed based on the accumulated information. Specific situations such as under-ozonation, and soft and hard water are discussed.

  14. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment.

    Science.gov (United States)

    Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2016-09-14

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

  15. Biochemical composition of organic matter in UK Midlands catchments: implications for drinking water treatment

    Science.gov (United States)

    Bieroza, M.; Bridgeman, J.; Baker, A.

    2007-12-01

    Insufficient removal of natural organic matter at treatment works can lead to the formation of potentially carcinogenic disinfection by-products (mainly trihalomethanes and haloacetic acids, THMs and HAAs) due to reactions of residual organic matter with chlorine added at the disinfection stage of water treatment process. However, the total organic carbon (TOC) removal efficiency is controlled by the content and character of organic matter in treated water, spatially and temporally dependent (e.g. the ratio of hydrophylic and hydrophobic fractions). Thus, a better understanding of organic matter composition can affect the treatment process strategies, improving the THM formation prediction and the quantification of coagulant and disinfection dosages. Fluorescence analysis of organic matter composition and treatment efficiency has been carried out on raw and partially-treated water samples from catchments in the Midlands region of the UK. The catchments cover an area of different water sources, ranging from upland, peaty-rich subcatchments with coloured, young waters, to agriculturally transformed lowland subcatchments. From the spectrophotometric analysis of raw water it was found that, the abstraction from river with water storage in reservoirs corresponds with a hydrophilic character of organic matter, rather high microbial fraction and high TOC. Opposite properties (hydrophobic, low microbial and variable TOC) are specific for sites with abstraction and storage processes within reservoirs. For direct abstraction from rivers, without water storing in reservoir, a common pattern is intermediate character of organic matter. The fluorescence excitation-emission matrix (EEM) technique was used for the assessment of water treatment works performance (TOC removal) and organic matter characterization. The freshwater organic matter exhibits specific fluorescence properties, with increased intensities of fluorescence in some regions of the EEM, resulting from the water

  16. Methods for attaching polymerizable ceragenins to water treatment membranes using silane linkages

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael; Altman, Susan J.; Jones, Howland D. T.; Savage, Paul B.

    2013-09-10

    This invention relates to methods for chemically grafting and attaching ceragenin molecules to polymer substrates; methods for synthesizing ceragenin-containing copolymers; methods for making ceragenin-modified water treatment membranes and spacers; and methods of treating contaminated water using ceragenin-modified treatment membranes and spacers. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. Alkene-functionalized ceragenins (e.g., acrylamide-functionalized ceragenins) can be attached to polyamide reverse osmosis membranes using amine-linking, amide-linking, UV-grafting, or silane-coating methods. In addition, silane-functionalized ceragenins can be directly attached to polymer surfaces that have free hydroxyls.

  17. Synergy of sewage water treatment plants and processing of manure; Synergie RWZI en mestverwerking

    Energy Technology Data Exchange (ETDEWEB)

    Bisschops, I.; Weijma, J.; Van Eekert, M.; Spanjers, H. [Lettinga Associates Foundation LeAF, Wageningen (Netherlands); Timmerman, M.; Fe Buisonje, F. [Wageningen UR Livestock Research WLR, Wageningen (Netherlands)

    2011-05-15

    The goal of this study is to explore profitable ways of processing manure in sewage water treatment plants. Technological options are explored for processing manure, the availability of manure in the surroundings, the space taken up by manure digestion and annual costs and benefits [Dutch] Het doel van deze studie is te verkennen hoe mest op rendabele wijze in rwzi's (rioolwaterzuiveringsinstallaties) verwerkt kunnen worden. Er is gekeken naar de technologische mogelijkheden om mest te kunnen verwerken, de beschikbaarheid van mest in de omgeving, ruimtebeslag van mestvergisting, en jaarlijkse kosten en opbrengsten.

  18. Adapting water treatment design and operations to the impacts of global climate change

    Institute of Scientific and Technical Information of China (English)

    Robert M. Clark; Zhiwei LI; Steven G. Buchberger

    2011-01-01

    It is anticipated that global climate change will adversely impact source water quality in many areas of the United States and will therefore,potentially,impact the design and operation of current and future water treatment systems.The USEPA has initiated an effort called the Water Resources Adaptation Program (WRAP) which is intended to develop tools and techniques that can assess the impact of global climate change on urban drinking water and wastewater infrastructure.A three step approach for assessing climate change impacts on water treatment operation and design is being persude in this effort.The first step is the stochastic characterization of source water quality,the second step is the application of the USEPA Water Treatment Plant model and the third step is the application of cost algorithms to provide a metric that can be used to assess the coat impact of climate change.A model has been validated using data collected from Cincinnati's Richard Miller Water Treatment Plant for the USEPA Information Collection Rule (ICR) database.An analysis of the water trentment processes in response to assumed perturbations in raw water quality identified TOC,pH,and bromide as the three most important parameters affecting performance of the Miller WTE The Miller Plant was simulated using the EPA WTP model to examine the impact of these parameters on selected regulated water quality parameters.Uncertainty in influent water quality was analyzed to estimate the risk of violating drinking water maximum contaminant levels (MCLs).Water quality changes in the Ohio River were projected for 2050 using Monte Carlo simulation and the WTP model was used to evaluate the effects of water quality changes on design and operation.Results indicate that the existing Miller WTP might not meet Safe Drinking Water Act MCL requirements for certain extreme future conditions.However,it was found that the risk of MCL violations under future conditions could be controlled by enhancing existing WTP

  19. Waste Water Treatment after Removal of Thermic Oxides from Stainless Steel Welding Joints

    OpenAIRE

    2010-01-01

    This work describes chemical methods of removal of thermic oxides from stainless steel welding joints, as well as waste water treatment. Thermal oxides were removed from the stainless steel surface using chemical and electrochemical procedures. A pickling paste that contains HNO3 and HF in different ratios was used for chemical cleansing of thermal oxides (A, B, and C). Electrochemical removal was done using an apparatus Magic Cleaner, and as electrolyte a solution H2SO4+H3PO4 was used. Conce...

  20. Methods for attaching polymerizable ceragenins to water treatment membranes using amine and amide linkages

    Science.gov (United States)

    Hibbs, Michael; Altman, Susan J.; Jones, Howland D.T.; Savage, Paul B.

    2013-10-15

    This invention relates to methods for chemically grafting and attaching ceragenin molecules to polymer substrates; methods for synthesizing ceragenin-containing copolymers; methods for making ceragenin-modified water treatment membranes and spacers; and methods of treating contaminated water using ceragenin-modified treatment membranes and spacers. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. Alkene-functionalized ceragenins (e.g., acrylamide-functionalized ceragenins) can be attached to polyamide reverse osmosis membranes using amine-linking, amide-linking, UV-grafting, or silane-coating methods. In addition, silane-functionalized ceragenins can be directly attached to polymer surfaces that have free hydroxyls.