WorldWideScience

Sample records for biofilms survival mechanisms

  1. Bacterial biofilm mechanical properties persist upon antibiotic treatment and survive cell death

    International Nuclear Information System (INIS)

    Bacteria living on surfaces form heterogeneous three-dimensional consortia known as biofilms, where they exhibit many specific properties one of which is an increased tolerance to antibiotics. Biofilms are maintained by a polymeric network and display physical properties similar to that of complex fluids. In this work, we address the question of the impact of antibiotic treatment on the physical properties of biofilms based on recently developed tools enabling the in situ mapping of biofilm local mechanical properties at the micron scale. This approach takes into account the material heterogeneity and reveals the spatial distribution of all the small changes that may occur in the structure. With an Escherichia coli biofilm, we demonstrate using in situ fluorescent labeling that the two antibiotics ofloxacin and ticarcillin—targeting DNA replication and membrane assembly, respectively—induced no detectable alteration of the biofilm mechanical properties while they killed the vast majority of the cells. In parallel, we show that a proteolytic enzyme that cleaves extracellular proteins into short peptides, but does not alter bacterial viability in the biofilm, clearly affects the mechanical properties of the biofilm structure, inducing a significant increase of the material compliance. We conclude that conventional biofilm control strategy relying on the use of biocides targeting cells is missing a key target since biofilm structural integrity is preserved. This is expected to efficiently promote biofilm resilience, especially in the presence of persister cells. In contrast, the targeting of polymer network cross-links—among which extracellular proteins emerge as major players—offers a promising route for the development of rational multi-target strategies to fight against biofilms. (paper)

  2. The metabolically active subpopulation in Pseudomonas aeruginosa biofilms survives exposure to membrane-targeting antimicrobials via distinct molecular mechanisms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Pamp, Sünje Johanna; Nilsson, Martin;

    2012-01-01

    Biofilms are reported to be inherently refractory toward antimicrobial attack and, therefore, cause problems in industrial and medical settings. Pseudomonas aeruginosa biofilms contain subpopulations that exhibit high metabolic activity and subpopulations that exhibit low metabolic activity. We...... have found that membrane-targeting antimicrobials such as colistin, EDTA, SDS, and chlorhexidine specifically kill the inactive subpopulation in P. aeruginosa biofilms, whereas the active subpopulation survives exposure to these compounds. Because treatment of P. aeruginosa biofilms with the membrane......, but does not depend on the pmr, mexAB-oprM, mexPQ-opmE, or muxABC-opmB genes. Tolerance to SDS and EDTA in P. aeruginosa biofilms is linked to metabolically active cells, but does not depend on the pmr, mexAB, mexCD, mexPQ, or muxABC genes. Our data suggest that the active subpopulation in P...

  3. Mechanical properties and disruption of dental biofilms

    OpenAIRE

    Rmaile, Amir

    2013-01-01

    A literature review of dental plaque biofilms formation, progression and detachment mechanisms is presented in this thesis. Various strategies that have been employed to reduce or eliminate dental biofilms are discussed. The focus of the thesis was on the mechanical properties and disruption of dental biofilms, especially from hard-to-access areas of the oral cavity, such as the interproximal (IP) sites between the teeth. Various methods to measure mechanical properties of dental biofilms wer...

  4. Mechanisms of Candida biofilm drug resistance

    OpenAIRE

    Taff, Heather T.; Mitchell, Kaitlin F.; Edward, Jessica A; Andes, David R.

    2013-01-01

    Candida commonly adheres to implanted medical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. As currently available antifungals have minimal activity against biofilms, new drugs to treat these recalcitrant infections are urgently needed. Recent investigations have begun to shed light on the mechanisms behind the profound resistance associated with the biofilm mode of growth. This resistance appears to be multifactorial, involvin...

  5. Mechanisms of biofilm resistance to antimicrobial agents.

    Science.gov (United States)

    Mah, T F; O'Toole, G A

    2001-01-01

    Biofilms are communities of microorganisms attached to a surface. It has become clear that biofilm-grown cells express properties distinct from planktonic cells, one of which is an increased resistance to antimicrobial agents. Recent work has indicated that slow growth and/or induction of an rpoS-mediated stress response could contribute to biocide resistance. The physical and/or chemical structure of exopolysaccharides or other aspects of biofilm architecture could also confer resistance by exclusion of biocides from the bacterial community. Finally, biofilm-grown bacteria might develop a biofilm-specific biocide-resistant phenotype. Owing to the heterogeneous nature of the biofilm, it is likely that there are multiple resistance mechanisms at work within a single community. Recent research has begun to shed light on how and why surface-attached microbial communities develop resistance to antimicrobial agents. PMID:11166241

  6. Community interactions promote Legionella pneumophila survival in drinking water biofilms

    OpenAIRE

    Gião, M. S.; Vieira, M. J.; Azevedo, N. F.; Wilks, S. A.; Keevil, C W

    2010-01-01

    Legionella pneumophila is a waterborne pathogen that can cause Pontiac Fever or Legionnaires’ disease, a type of pneumonia that can be fatal. Although L. pneumophila is not able to replicate in low nutrient environments, such as drinking water, it is known that heterotrophic biofilms have a crucial role in the survival of this pathogen in drinking water distribution systems. The aim of this work is to study the community interactions that influence the survival of L. pneumophila i...

  7. Oral biofilm models for mechanical plaque removal.

    Science.gov (United States)

    Verkaik, Martinus J; Busscher, Henk J; Rustema-Abbing, Minie; Slomp, Anje M; Abbas, Frank; van der Mei, Henny C

    2010-08-01

    In vitro plaque removal studies require biofilm models that resemble in vivo dental plaque. Here, we compare contact and non-contact removal of single and dual-species biofilms as well as of biofilms grown from human whole saliva in vitro using different biofilm models. Bacteria were adhered to a salivary pellicle for 2 h or grown after adhesion for 16 h, after which, their removal was evaluated. In a contact mode, no differences were observed between the manual, rotating, or sonic brushing; and removal was on average 39%, 84%, and 95% for Streptococcus mutans, Streptococcus oralis, and Actinomyces naeslundii, respectively, and 90% and 54% for the dual- and multi-species biofilms, respectively. However, in a non-contact mode, rotating and sonic brushes still removed considerable numbers of bacteria (24-40%), while the manual brush as a control (5-11%) did not. Single A. naeslundii and dual-species (A. naeslundii and S. oralis) biofilms were more difficult to remove after 16 h growth than after 2 h adhesion (on average, 62% and 93% for 16- and 2-h-old biofilms, respectively), while in contrast, biofilms grown from whole saliva were easier to remove (97% after 16 h and 54% after 2 h of growth). Considering the strong adhesion of dual-species biofilms and their easier more reproducible growth compared with biofilms grown from whole saliva, dual-species biofilms of A. naeslundii and S. oralis are suggested to be preferred for use in mechanical plaque removal studies in vitro. PMID:19565279

  8. Biofilms and the survival of opportunistic pathogens in recycled water

    Science.gov (United States)

    Boyle, M.; Ford, T.; Maki, J. S.; Mitchell, R.

    1991-01-01

    Microorganisms are likely to develop an organic film on pipes, water reservoirs and filters used for waste water reclamation during extended missions in space. These biofilms can serve to protect and concentrate potentially pathogenic microorganisms. Our investigation has emphasized the survival strategy of opportunistic pathogenic bacteria in distilled water. Pseudomonas aeruginosa and Staphylococcus aureus were used as test organisms. Cultures were incubated at 10 degrees, 25 degrees, and 37 degrees C. No viable Staphylococcus cells were detected after the first week of incubation. P. aeruginosa, however, survived in distilled water up to 5 months at all three temperatures tested. The starved cells were able to form a biofilm layer on stainless steel. The cells exhibited a negative surface charge. The charge may be involved in the adhesion of this bacterium to metal substrata. We are currently investigating the importance of adhesion in the survival of this and other potential human pathogens found in water recycling systems.

  9. Biofilms

    OpenAIRE

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-01-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and ...

  10. Coexistence and survival of pathogenic leptospires by formation of biofilm with Azospirillum.

    Science.gov (United States)

    Kumar, K Vinod; Lall, Chandan; Raj, R Vimal; Vedhagiri, K; Vijayachari, P

    2015-06-01

    Pathogenic Leptospira spp. represent one cause of leptospirosis worldwide and have long been regarded as solitary organisms in soil and aquatic environments. However, in the present study, Leptospira interrogans was observed to be associated with environmental biofilms with 21 bacterial isolates belonging to 10 genera. All 21 isolates were examined for their coaggregation and biofilm-forming ability with leptospires in vitro. Among these, Azospirillum brasilense RMRCPB showed maximum interspecies coaggregation with leptospiral strains (>75%, visual score of +4). Other significant coaggregating isolates belonged to the genera Sphingomonas, Micrococcus, Brevundimonas, Acinetobacter and Paracoccus. Biofilms of leptospires in combination with A. brasilense RMRCPB showed high resistance to penicillin G, ampicillin and tetracycline (minimum bactericidal concentration ≥800 μg/mL) and tolerance to UV radiation and high temperature (up to 49°C). This study hypothesized that biofilm formation with A. brasilense protects the pathogenic Leptospira from adverse environmental conditions/stress. This coexistence of pathogenic Leptospira with other bacteria may be the key factor for its persistence and survival. However, the mechanism of biofilm formation by leptospires needs to be explored to help devise an appropriate control strategy and reduce transmission of leptospires. PMID:25962762

  11. Electrochemical biofilm control: mechanism of action.

    Science.gov (United States)

    Istanbullu, Ozlem; Babauta, Jerome; Duc Nguyen, Hung; Beyenal, Haluk

    2012-01-01

    Although it has been previously demonstrated that an electrical current can be used to control biofilm growth on metal surfaces, the literature results are conflicting and there is no accepted mechanism of action. One of the suggested mechanisms is the production of hydrogen peroxide (H(2)O(2)) on metal surfaces. However, there are literature studies in which H(2)O(2) could not be detected in the bulk solution. This is most likely because H(2)O(2) was produced at a low concentration near the surface and could not be detected in the bulk solution. The goals of this research were (1) to develop a well-controlled system to explain the mechanism of action of the bioelectrochemical effect on 316L stainless steel (SS) surfaces and (2) to test whether the produced H(2)O(2) can reduce cell growth on metal surfaces. It was found that H(2)O(2) was produced near 316L SS surfaces when a negative potential was applied. The H(2)O(2) concentration increased towards the surface, while the dissolved oxygen decreased when the SS surface was polarized to -600 mV(Ag/AgCl). When polarized and non-polarized surfaces with identical Pseudomonas aeruginosa PAO1 biofilms were continuously fed with air-saturated growth medium, the polarized surfaces showed minimal biofilm growth while there was significant biofilm growth on the non-polarized surfaces. Although there was no detectable H(2)O(2) in the bulk solution, it was found that the surface concentration of H(2)O(2) was able to prevent biofilm growth. PMID:22827804

  12. Survival of biofilm-associated Legionella pneumophila exposed to various stressors.

    Science.gov (United States)

    Vatansever, Cansu; Türetgen, Irfan

    2015-03-01

    Biofilm is crucial for the multiplication and survival of Legionella pneumophila. The survival after different stressors of biofilm-associated L. pneumophila was evaluated during 150 days in this study. Mixed biofilms were allowed to develop on coupons in a biofilm reactor, which was experimentally infected with L. pneumophila. A dose of 2 ppm of monochloramine was found ineffective to kill younger (60 days) biofilm-associated L. pneumophila, whereas shock treatment (500 and 1000 ppm) was found to be significantly successful, as expected. Also, short exposure to 60 °C was insufficient to kill all young L. pneumophila within biofilms. A significant amount of young L. pneumophila bacteria also resisted pH 11 and 3 molar salt solution. No significant change was observed after exposure to 4 °C, ultra pure water and pH 5. Interestingly, L. pneumophila bacteria in biofilm became more sensitive after 90 days. PMID:25842533

  13. Oral biofilm models for mechanical plaque removal

    NARCIS (Netherlands)

    Verkaik, Martinus J.; Busscher, Henk J.; Rustema-Abbing, Minie; Slomp, Anje M.; Abbas, Frank; van der Mei, Henny C.

    2010-01-01

    In vitro plaque removal studies require biofilm models that resemble in vivo dental plaque. Here, we compare contact and non-contact removal of single and dual-species biofilms as well as of biofilms grown from human whole saliva in vitro using different biofilm models. Bacteria were adhered to a sa

  14. Electrochemical biofilm control: mechanism of action

    OpenAIRE

    Istanbullu, Ozlem; Babauta, Jerome; Nguyen, Hung Duc; Beyenal, Haluk

    2012-01-01

    Although it has been previously demonstrated that an electrical current can be used to control biofilm growth on metal surfaces, the literature results are conflicting and there is no accepted mechanism of action. One of the suggested mechanisms is the production of hydrogen peroxide (H2O2) on metal surfaces. However, there are literature studies in which H2O2 could not be detected in the bulk solution. This is most likely because H2O2 was produced at a low concentration near the surface and ...

  15. Invasion and survival of Salmonella in the environment: The role of biofilm

    Science.gov (United States)

    This chapter is a platform for the discussion of recent research findings and developments concerning the invasion and survival of Salmonella and other pathogenic bacteria which thrive within biofilms in the environment. The formation of bacterial biofilms is fundamentally related to environmental ...

  16. Effect of mechanical stress on biofilms challenged by different chemicals

    OpenAIRE

    Simões, M; Pereira, Maria Olívia; Vieira, M. J.

    2005-01-01

    In this study a methodology was applied in order to ascertain the mechanical stability of biofilms, by using a stainlesssteel (SS) rotating device immersed in a biological reactor where biofilms formed by Pseudomonas fluorescens were allowed to grow for 7 days at a Reynolds number of agitation of 2400. The biofilms developed with this system were characterised in terms of amount of total, extracellular and intracellular proteins and polysaccharides, amount of mass, metabolic activ...

  17. Mechanism and risk factors of oral biofilm formation

    Directory of Open Access Journals (Sweden)

    Ewa Pasich

    2013-08-01

    Full Text Available Recent microbiological investigations completely changed our understanding of the role of biofilm in the formation of the mucosal immune barrier and in pathogenesis of chronic inflammation of bacterial etiology. It is now clear that formation of bacterial biofilm on dental surfaces is characteristic for existence of oral microbial communities. It has also been proved that uncontrolled biofilms on dental tissues, as well as on different biomaterials (e.g. orthodontic appliances, are the main cause of dental diseases such as dental caries and periodontitis.The aim of this paper is to explain mechanisms and consequences of orthodontic biofilm formation. We will discuss current opinions on the influence of different biomaterials employed for orthodontic treatment in biofilm formation and new strategies employed in prevention and elimination of oral biofilm (“dental plaque”.

  18. Drug resistance mechanisms of fungal biofilms

    OpenAIRE

    Seneviratne, CJ; Samaranayake, LP

    2011-01-01

    Fungi are ubiquitous in nature and exist in soil, water, plants, and in animals and humans. Similar to bacteria, fungi also form confluent biofilms either singly (mono-species) or with other microbial species (mixed-species). Fungal biofilms are known to be highly resistant to the adverse environmental conditions including antimicrobials and biocide compared to its planktonic (free-floating) counterparts. Although bacterial biofilms have been studied in detail, relatively little is known of f...

  19. Electro-active bio-films: formation, characterization and mechanisms

    International Nuclear Information System (INIS)

    Some bacteria, which are able to exchange electrons with a conductive material without mediator form on conductive surfaces electro-active bio-films. This bacterial property has been recently discovered (2001). Objectives of this work are to develop electro-active bio-films in various natural environments from indigenous flora, then through complementary electrochemical techniques (chrono-amperometry and cyclic voltammetry), to evaluate electro-activity of isolates coming from so-formed bio-films and to characterize mechanisms of electron transfer between bacteria and materials. First, electro-active bio-films have been developed under chrono-amperometry in garden compost and in water coming from Guyana mangrove. These bio-films were respectively able to use an electrode as electron acceptor (oxidation) or as electron donor (reduction). In compost, results obtained in chrono-amperometry and cyclic voltammetry suggest a two-step electron transfer: slow substrate consumption, then rapid electron transfer between bacteria and the electrode. Thereafter, the ability to reduce oxygen was demonstrated with cyclic voltammetry for facultative aerobic isolates from compost bio-films (Enterobacter spp. and Pseudomonas spp.) and for aerobic isolates obtained from marine electro-active bio-films (Roseobacter spp. in majority). Finally, bio-films inducing current increase in chrono-amperometry were developed in bioreactor with synthetic medium from a pure culture of isolates. Hence, for the first time, electro-activity of several anaerobic strains of Geobacter bremensis isolated from compost bio-films was highlighted. (author)

  20. Microbial endolithic biofilms: a means of surviving the harsh conditions of the Antarctic

    Science.gov (United States)

    de Los Ríos, Asunción; Wierzchos, Jacek; Sancho, Leopoldo G.; Grube, Martín; Ascaso, Carmen

    2002-11-01

    Much of the Antarctic continent's microbiota is restricted to endolithic microecosystems which harbour distinct microbial communities as biofilms. The lithic substrate and the microorganisms comprising these films are intimately linked, giving rise to complex mineral-microbe interactions. The Antarctic biofilms analysed in this study were characterised by the presence of extracellular polymer substances. Cyanobacteria appeared as key components of these biofilms in zones where there were no nearby lichen thalli. Fungal cells were the predominant organisms in areas inhabited by epilithic lichens. The combined use of microscopy and molecular techniques enabled the identification of the different biological components of biofilms found in subsurface layers of the lighic substrate. It is proposed that in this extreme environment, the structure of the biofilm may favour the formation of microsites with specific physicochemical conditions that permit the survival of microbial communities.

  1. Genome-wide mutagenesis of Xanthomonas axonopodis pv. citri reveals novel genetic determinants and regulation mechanisms of biofilm formation.

    Directory of Open Access Journals (Sweden)

    Jinyun Li

    Full Text Available Xanthomonas axonopodis pv. citri (Xac causes citrus canker disease, a major threat to citrus production worldwide. Accumulating evidence suggests that the formation of biofilms on citrus leaves plays an important role in the epiphytic survival of this pathogen prior to the development of canker disease. However, the process of Xac biofilm formation is poorly understood. Here, we report a genome-scale study of Xac biofilm formation in which we identified 92 genes, including 33 novel genes involved in biofilm formation and 7 previously characterized genes, colR, fhaB, fliC, galU, gumD, wxacO, and rbfC, known to be important for Xac biofilm formation. In addition, 52 other genes with defined or putative functions in biofilm formation were identified, even though they had not previously reported been to be associated with biofilm formation. The 92 genes were isolated from 292 biofilm-defective mutants following a screen of a transposon insertion library containing 22,000 Xac strain 306 mutants. Further analyses indicated that 16 of the novel genes are involved in the production of extracellular polysaccharide (EPS and/or lipopolysaccharide (LPS, 7 genes are involved in signaling and regulatory pathways, and 5 genes have unknown roles in biofilm formation. Furthermore, two novel genes, XAC0482, encoding a haloacid dehalogenase-like phosphatase, and XAC0494 (designated as rbfS, encoding a two-component sensor protein, were confirmed to be biofilm-related genes through complementation assays. Our data demonstrate that the formation of mature biofilm requires EPS, LPS, both flagellum-dependent and flagellum-independent cell motility, secreted proteins and extracellular DNA. Additionally, multiple signaling pathways are involved in Xac biofilm formation. This work is the first report on a genome-wide scale of the genetic processes of biofilm formation in plant pathogenic bacteria. The report provides significant new information about the genetic

  2. Degradation Mechanisms of Colloidal Organic Matter in Biofilm Reactors

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    The degradation mechanisms of colloidal organic matter in biofilm reactors have been studied in an idealized laboratory reactor system with soluble starch as a model substrate. Batch tests and experiments with different reactor configurations have shown that for this specific substrate, bulk liquid...... hydrolysis is the mechanism for transforming non-diffusible organic matter into biofilm diffusible substrate. A simplified mathematical description has led to the identification of the degree of hydrolysis, DH, as the parameter expressing the major difference between degradation of diffusible and non......-diffusible organic matter in a biofilm reactor. DH depends on the combined volumetric and surface hydraulic loading rate, Q2/(AV). In full-scale wastewater treatment plants, the degradation mechanism presented in this paper can explain important differences between the performance of trickling filters and RBC...

  3. Degradation Mechanisms of Colloidal Organic Matter in Biofilm Reactors

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    The degradation mechanisms of colloidal organic matter in biofilm reactors have been studied in an idealized laboratory reactor system with soluble starch as a model substrate. Batch tests and experiments with different reactor configurations have shown that for this specific substrate, bulk liquid......-diffusible organic matter in a biofilm reactor. DH depends on the combined volumetric and surface hydraulic loading rate, Q2/(AV). In full-scale wastewater treatment plants, the degradation mechanism presented in this paper can explain important differences between the performance of trickling filters and RBC...... reactors....

  4. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms.

    Science.gov (United States)

    Cairns, Lynne S; Hobley, Laura; Stanley-Wall, Nicola R

    2014-08-01

    Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, function and structure of the biofilm matrix. PMID:24988880

  5. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Garry Laverty

    2014-07-01

    Full Text Available Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl, pellicle Formation (Pel and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

  6. Microbial Biofilms in Endodontic Infections: An Update Review

    OpenAIRE

    Zahed Mohammadi; Flavio Palazzi; Luciano Giardino; Sousan Shalavi

    2013-01-01

    Biofilms and microbial aggregates are the common mechanisms for the survival of bacteria in nature. In other words, the ability to form biofilms has been regarded as a virulence factor. Microbial biofilms play an essential role in several infectious diseases such as pulp and periradicular pathosis. The aim of this article was to review the adaptation mechanisms of biofilms, their roles in pulpal and periapical pathosis, factors influencing biofilm formation, mechanisms of their antimicrobial ...

  7. Microbial Biofilms in Endodontic Infections: An Update Review

    Directory of Open Access Journals (Sweden)

    Zahed Mohammadi

    2013-04-01

    Full Text Available Biofilms and microbial aggregates are the common mechanisms for the survival of bacteria in nature. In other words, the ability to form biofilms has been regarded as a virulence factor. Microbial biofilms play an essential role in several infectious diseases such as pulp and periradicular pathosis. The aim of this article was to review the adaptation mechanisms of biofilms, their roles in pulpal and periapical pathosis, factors influencing biofilm formation, mechanisms of their antimicrobial resistance, models developed to create biofilms, observation techniques of endodontic biofilms, and the effects of root canal irrigants and medicaments as well as lasers on endodontic biofilms. The search was performed from 1982 to December 2010, and was limited to papers in English language. The keywords searched on Medline were "biofilms and endodontics," "biofilms and root canal irrigation," "biofilms and intra-canal medicament," and "biofilms and lasers." The reference section of each article was manually searched to find other suitable sources of information.

  8. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges

    OpenAIRE

    Peterson, Brandon W.; He, Yan; Ren, Yijin; Zerdoum, Aidan; Libera, Matthew R.; Sharma, Prashant K.; Winkelhoff, Arie-Jan van; Neut, Danielle; Stoodley, Paul; van der Mei, Henny C; Busscher, Henk J.

    2015-01-01

    We summarize different studies describing mechanisms through which bacteria in a biofilm mode of growth resist mechanical and chemical challenges. Acknowledging previous microscopic work describing voids and channels in biofilms that govern a biofilms response to such challenges, we advocate a more quantitative approach that builds on the relation between structure and composition of materials with their viscoelastic properties. Biofilms possess features of both viscoelastic solids and liquid...

  9. Combating biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong;

    2012-01-01

    Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life is...... believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review......, strategies to control biofilms are discussed, including those of inhibition of microbial attachment, interference of biofilm structure development and differentiation, killing of biofilm cells and induction of biofilm dispersion....

  10. Beneficial biofilms in marine aquaculture? Linking points of biofilm formation mechanisms in Pseudomonas aeruginosa and Pseudoalteromonas species

    Directory of Open Access Journals (Sweden)

    Wiebke Wesseling

    2015-07-01

    Full Text Available For marine aquaculture it is suggested that a specific substrate coated with a beneficial biofilm could prevent fish egg clutches from pathogenic infestations and improve the water quality and health of adult fish while, at the same time, minimising the need for the application of antibiotics. In marine biotopes, the habitat of Pseudoalteromonas species (a strain with suggested beneficial properties, biofilms are mostly discussed in the context of fouling processes. Hence research focuses on unravelling the mechanisms of biofilm formation aiming to prevent formation or to destroy existing biofilms. Initially in this review, particular components of biofilm formation in Pseudomonas aeruginosa, a gram-negative model organism that is responsible for nosocomial infections and considered as a food spoiling agent, are described (extracellular appendages, role of matrix components, cell-cell signalling to get an advanced understanding of biofilm formation. The aim of this treatise is to seek linking points for biofilm formation of P. aeruginosa and Pseudoalteromonas sp., respectively. Furthermore, approaches are discussed for how biofilm formation can be realized to improve fish (larvae rearing by species of the genus Pseudoalteromonas.

  11. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms

    OpenAIRE

    Cairns, Lynne S; Hobley, Laura; Stanley-Wall, Nicola R.

    2014-01-01

    Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, func...

  12. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism.

    Science.gov (United States)

    Vital-Lopez, Francisco G; Reifman, Jaques; Wallqvist, Anders

    2015-10-01

    A hallmark of Pseudomonas aeruginosa is its ability to establish biofilm-based infections that are difficult to eradicate. Biofilms are less susceptible to host inflammatory and immune responses and have higher antibiotic tolerance than free-living planktonic cells. Developing treatments against biofilms requires an understanding of bacterial biofilm-specific physiological traits. Research efforts have started to elucidate the intricate mechanisms underlying biofilm development. However, many aspects of these mechanisms are still poorly understood. Here, we addressed questions regarding biofilm metabolism using a genome-scale kinetic model of the P. aeruginosa metabolic network and gene expression profiles. Specifically, we computed metabolite concentration differences between known mutants with altered biofilm formation and the wild-type strain to predict drug targets against P. aeruginosa biofilms. We also simulated the altered metabolism driven by gene expression changes between biofilm and stationary growth-phase planktonic cultures. Our analysis suggests that the synthesis of important biofilm-related molecules, such as the quorum-sensing molecule Pseudomonas quinolone signal and the exopolysaccharide Psl, is regulated not only through the expression of genes in their own synthesis pathway, but also through the biofilm-specific expression of genes in pathways competing for precursors to these molecules. Finally, we investigated why mutants defective in anthranilate degradation have an impaired ability to form biofilms. Alternative to a previous hypothesis that this biofilm reduction is caused by a decrease in energy production, we proposed that the dysregulation of the synthesis of secondary metabolites derived from anthranilate and chorismate is what impaired the biofilms of these mutants. Notably, these insights generated through our kinetic model-based approach are not accessible from previous constraint-based model analyses of P. aeruginosa biofilm

  13. Microfluidic Approaches to Bacterial Biofilm Formation

    OpenAIRE

    Hee-Deung Park; Junghyun Kim; Seok Chung

    2012-01-01

    Bacterial biofilms—aggregations of bacterial cells and extracellular polymeric substrates (EPS)—are an important subject of research in the fields of biology and medical science. Under aquatic conditions, bacterial cells form biofilms as a mechanism for improving survival and dispersion. In this review, we discuss bacterial biofilm development as a structurally and dynamically complex biological system and propose microfluidic approaches for the study of bacterial biofilms. Biofilms develop t...

  14. Micro ecosystems from feed industry surfaces: a survival and biofilm study of Salmonella versus host resident flora strains

    Directory of Open Access Journals (Sweden)

    Vestby Lene K

    2010-11-01

    Full Text Available Abstract Background The presence of Salmonella enterica serovars in feed ingredients, products and processing facilities is a well recognized problem worldwide. In Norwegian feed factories, strict control measures are implemented to avoid establishment and spreading of Salmonella throughout the processing chain. There is limited knowledge on the presence and survival of the resident microflora in feed production plants. Information on interactions between Salmonella and other bacteria in feed production plants and how they affect survival and biofilm formation of Salmonella is also limited. The aim of this study was to identify resident microbiota found in feed production environments, and to compare the survival of resident flora strains and Salmonella to stress factors typically found in feed processing environments. Moreover, the role of dominant resident flora strains in the biofilm development of Salmonella was determined. Results Surface microflora characterization from two feed productions plants, by means of 16 S rDNA sequencing, revealed a wide diversity of bacteria. Survival, disinfection and biofilm formation experiments were conducted on selected dominant resident flora strains and Salmonella. Results showed higher survival properties by resident flora isolates for desiccation, and disinfection compared to Salmonella isolates. Dual-species biofilms favored Salmonella growth compared to Salmonella in mono-species biofilms, with biovolume increases of 2.8-fold and 3.2-fold in the presence of Staphylococcus and Pseudomonas, respectively. Conclusions These results offer an overview of the microflora composition found in feed industry processing environments, their survival under relevant stresses and their potential effect on biofilm formation in the presence of Salmonella. Eliminating the establishment of resident flora isolates in feed industry surfaces is therefore of interest for impeding conditions for Salmonella colonization and

  15. Biofilm-Forming Methicillin-Resistant Staphylococcus aureus Survive in Kupffer Cells and Exhibit High Virulence in Mice

    Directory of Open Access Journals (Sweden)

    Takuto Oyama

    2016-06-01

    Full Text Available Although Staphylococcus aureus is part of the normal body flora, heavy usage of antibiotics has resulted in the emergence of methicillin-resistant strains (MRSA. MRSA can form biofilms and cause indwelling foreign body infections, bacteremia, soft tissue infections, endocarditis, and osteomyelitis. Using an in vitro assay, we screened 173 clinical blood isolates of MRSA and selected 20 high-biofilm formers (H-BF and low-biofilm formers (L-BF. These were intravenously administered to mice and the general condition of mice, the distribution of bacteria, and biofilm in the liver, lung, spleen, and kidney were investigated. MRSA count was the highest in the liver, especially within Kupffer cells, which were positive for acid polysaccharides that are associated with intracellular biofilm. After 24 h, the general condition of the mice worsened significantly in the H-BF group. In the liver, bacterial deposition and aggregation and the biofilm-forming spot number were all significantly greater for H-BF group than for L-BF. CFU analysis revealed that bacteria in the H-BF group survived for long periods in the liver. These results indicate that the biofilm-forming ability of MRSA is a crucial factor for intracellular persistence, which could lead to chronic infections.

  16. Biofilm

    Czech Academy of Sciences Publication Activity Database

    Kvíderová, Jana

    Berlin: Springer, 2015 - (Amils, R.; Gargaud, M.; Cernicharo Quintanilla, J.; James Claves, H.; Irvine, W.; Pinti, D.; Viso, M.), s. 1-3 ISBN 978-3-642-27833-4 Institutional support: RVO:67985939 Keywords : biofilm * microbial mat * astrobiology Subject RIV: EF - Botanics

  17. Dual-species biofilms formation by Escherichia coli O157:H7 and environmental bacteria isolated from fresh-cut processing plants

    Science.gov (United States)

    Biofilm formation is a mechanism adapted by many microorganisms that enhances the survival in stressful environments. In food processing facilities, bacterial strains with strong biofilm forming capacities are more likely to survive the daily cleaning and disinfection. Foodborne bacterial pathogens,...

  18. Hydrolyzed polyacrylamide biodegradation and mechanism in sequencing batch biofilm reactor.

    Science.gov (United States)

    Yan, Miao; Zhao, Lanmei; Bao, Mutai; Lu, Jinren

    2016-05-01

    An investigation was performed to study the performance of a sequencing batch biofilm reactor (SBBR) to treat hydrolyzed polyacrylamides (HPAMs) and to determine the mechanisms of HPAM biodegradation. The mechanisms for the optimized parameters that significantly improved the degradation efficiency of the HPAMs were investigated by a synergistic effect of the co-metabolism in the sludge and the enzyme activities. The HPAM and TOC removal ratio reached 54.69% and 70.14%. A significant decrease in the total nitrogen concentration was measured. The carbon backbone of the HPAMs could be degraded after the separation of the amide group according to the data analysis. The HPLC results indicated that the HPAMs could be converted to polymer fragments without the generation of the acrylamide monomer intermediate. The results from high-throughput sequencing analysis revealed proteobacterias, bacteroidetes and planctomycetes were the key microorganisms involved in the degradation. PMID:26896716

  19. Matrix polymer species have distinct effects on the mechanics of bacterial biofilms

    Science.gov (United States)

    Kovach, Kristin; Davis-Fields, Megan; Gordon, Vernita

    2015-03-01

    Biofilms are aggregates of microorganisms embedded in a self-produced extracellular polymer matrix. The matrix confers protection to these microorganisms against mechanical and chemical stresses that they may experience in their environment. The bacterium Pseudomonas aeruginosa is widely used as a model biofilm-forming organism because it is an opportunistic human pathogen common in hospital-acquired infections, in chronic wounds, and in cystic fibrosis lung disease. P. aeruginosa strain PA01 forms biofilms that are primarily structured by the extracellular polysaccharides Pel and Psl. Using bulk rheological measurements, we show that these polysaccharides each play a unique role in the mechanical robustness of the biofilm. Psl increases the elastic storage modulus while Pel increases the ductility of the biofilm. Increased expression of either Psl or Pel increases the yield stress by about the same amount. Identifying the mechanism(s) by which these polymers contribute to the mechanical toughness of the biofilm could allow new approaches to effective biofilm clearance, by revealing targets for disruption that would weaken the biofilm.

  20. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.;

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... to antibiotics. Biofilm growth is associated with an increased level of mutations as well as with quorum-sensing-regulated mechanisms. Conventional resistance mechanisms such as chromosomal beta-lactamase, upregulated efflux pumps and mutations in antibiotic target molecules in bacteria also contribute...... to the survival of biofilms. Biofilms can be prevented by early aggressive antibiotic prophylaxis or therapy and they can be treated by chronic suppressive therapy. A promising strategy may be the use of enzymes that can dissolve the biofilm matrix (e.g. DNase and alginate lyase) as well as quorum...

  1. Biofilm induced tolerance towards antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Anders Folkesson

    Full Text Available Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms.

  2. Effect of temperature and pipe material on biofilm formation and survival of Escherichia coli in used drinking water pipes

    DEFF Research Database (Denmark)

    Silhan, J.; Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    2006-01-01

    Segments of used drinking water pipes of galvanised steel (GS), cross-linked polyethylene (PEX), copper pipes (Cu) or new medium-density polyethylene (PE) were investigated for the formation of biofilm and survival of E coli in biofilm and in the water phase. Pipes were filled with water and...... 10(3) CFU/cm(2) on PE and PEX and 5 X 10(1) and 5 X 10(2) CFU/cm(2) on Cu pipes after 58 d at 15 degrees C. Biofilm HPC values were higher at 35 degrees C than at 15 degrees C, with only slightly higher values on the metals, but 100-fold higher on PE and PEX. Adenosine triphosphate (ATP) measurements...... confirmed the general trends observed by HPC. Higher temperature was seen to be an important factor reducing E coli survival in the water phase in drinking water pipes. At 1 VC E coli survived more than 4 d in GS and Cu pipes and 8 d in PE-pipes, but was not detected after 48 h at 35 degrees C. The E coli...

  3. Efflux as a Glutaraldehyde Resistance Mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa Biofilms

    OpenAIRE

    Vikram, Amit; Jennifer M Bomberger; Kyle J Bibby

    2015-01-01

    A major challenge in microbial biofilm control is biocide resistance. Phenotypic adaptations and physical protective effects have been historically thought to be the primary mechanisms for glutaraldehyde resistance in bacterial biofilms. Recent studies indicate the presence of genetic mechanisms for glutaraldehyde resistance, but very little is known about the contributory genetic factors. Here, we demonstrate that efflux pumps contribute to glutaraldehyde resistance in Pseudomonas fluorescen...

  4. From Nanowires to Biofilms: An Exploration of Novel Mechanisms of Uranium Transformation Mediated by Geobacter Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    REGUERA, GEMMA [Michigan State University

    2014-01-16

    One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilms than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.

  5. Mechanical destruction of pseudomonas aeruginosa biofilms by ultrasound exposure

    Science.gov (United States)

    Xu, Jin; Bigelow, Timothy A.; Halverson, Larry J.; Middendorf, Jill; Rusk, Ben

    2012-10-01

    Medical implants are prone to colonization by bacterial biofilms, which are highly resistant to antibiotics. Normally, surgery is required to replace the infected implant. One promising non-invasive treatment option is to destroy the biofilm with high-intensity focused ultrasound (HIFU) exposure. In our study, Pseudomonas aeruginosa bacterial biofilms were grown on graphite disks in a flow chamber for three days prior to exposing them to ultrasound pulses of varying duration or burst period. The pulses were 20 cycles in duration at a frequency of 1.1 MHz from a spherically focused transducer (f/1, 63 mm focal length), creating peak compressional and rarefactional pressures at the disk surface of 30 and 13 MPa, respectively. P. aeruginosa were tagged with GFP and cells killed by HIFU were visualized using propidium iodide, which permeates membranes of dead cells, to aid determining the extent of biofilm destruction and whether cells are alive or dead. Our results indicate that a 30-s exposure and 6-ms pulse period or those combinations with the same number of pulses, were sufficient to destroy the biofilm and to kill the remaining cells. Reducing the number of pulses decreased biofilm destruction, leaving more dead and live bacteria on the surface.

  6. Effects of temperature on the morphological, polymeric, and mechanical properties of Staphylococcus epidermidis bacterial biofilms.

    Science.gov (United States)

    Pavlovsky, Leonid; Sturtevant, Rachael A; Younger, John G; Solomon, Michael J

    2015-02-17

    Changes in temperature were found to affect the morphology, cell viability, and mechanical properties of Staphylococcus epidermidis bacterial biofilms. S. epidermidis biofilms are commonly associated with hospital-acquired medical device infections. We observed the effect of heat treatment on three physical properties of the biofilms: the bacterial cell morphology and viability, the polymeric properties of the extracellular polymeric substance (EPS), and the rheological properties of the bulk biofilm. After application of a 1 h heat treatment at 45 °C, cell reproduction had ceased, and at 60 °C, cell viability was significantly reduced. Size exclusion chromatography was used to fractionate the extracellular polymeric substance (EPS) based on size. Chemical analysis of each fraction showed that the relative concentrations of the polysaccharide, protein, and DNA components of the EPS were unchanged by the heat treatment at 45 and 60 °C. The results suggest that the EPS molecular constituents are not significantly degraded by the temperature treatment. However, some aggregation on the scale of 100 nm was found by dynamic light scattering at 60 °C. Finally, relative to control biofilms maintained at 37 °C, we observed an order of magnitude reduction in the biofilm yield stress after 60 °C temperature treatment. No such difference was found for treatment at 45 °C. From these results, we conclude that the yield stress of bacterial biofilms is temperature-sensitive and that this sensitivity is correlated with cell viability. The observed significant decrease in yield stress with temperature suggests a means to weaken the mechanical integrity of S. epidermidis biofilms with applications in areas such as the treatment of biofilm-infected medical devices. PMID:25602470

  7. Efflux as a glutaraldehyde resistance mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Vikram, Amit; Bomberger, Jennifer M; Bibby, Kyle J

    2015-01-01

    A major challenge in microbial biofilm control is biocide resistance. Phenotypic adaptations and physical protective effects have been historically thought to be the primary mechanisms for glutaraldehyde resistance in bacterial biofilms. Recent studies indicate the presence of genetic mechanisms for glutaraldehyde resistance, but very little is known about the contributory genetic factors. Here, we demonstrate that efflux pumps contribute to glutaraldehyde resistance in Pseudomonas fluorescens and Pseudomonas aeruginosa biofilms. The RNA-seq data show that efflux pumps and phosphonate degradation, lipid biosynthesis, and polyamine biosynthesis metabolic pathways were induced upon glutaraldehyde exposure. Furthermore, chemical inhibition of efflux pumps potentiates glutaraldehyde activity, suggesting that efflux activity contributes to glutaraldehyde resistance. Additionally, induction of known modulators of biofilm formation, including phosphonate degradation, lipid biosynthesis, and polyamine biosynthesis, may contribute to biofilm resistance and resilience. Fundamental understanding of the genetic mechanism of biocide resistance is critical for the optimization of biocide use and development of novel disinfection strategies. Our results reveal genetic components involved in glutaraldehyde resistance and a potential strategy for improved control of biofilms. PMID:25824217

  8. Biofilm forming and leaching mechanism during bioleaching chalcopyrite by Thiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    傅建华; 胡岳华; 邱冠周; 柳建设; 徐竞

    2004-01-01

    The mechanism of attachment and leaching of thiobacillus ferrooxcidans (T. f. ) on chalcopyrite were studied. The shaking flasks with bacteria were observed by SEM. The process of T. f attached to the surface of the mineral sample and the biofilm forming were described. The promoting role of the biofilm for bioleaching was discussed. The existence of Fe2+ in the exopolysaccharide layer of T. f was demonstrated by EM(electronic microscope)cell-chemistry analysis. These results show that under the proper growth condition of bacteria, bioleaching of chalcopyrite results in the formation of complete biofilm after 2 - 3 weeks. There are iron ions in the outer layer polymer of T. f. , which provides the micro-environment for themselves, and can guaruntee the energy needed for the bacteria growth in the biofilm. At the same time, Fe3+ ions produced oxidize sulfide which brings about the increase of both growth rate of the bacterial and leaching rate of sulfide minerals.

  9. In situ activity recovery of aging biofilm in biological aerated filter: Surfactants treatment and mechanisms study.

    Science.gov (United States)

    Yu, Qisheng; Huang, Hui; Ren, Hongqiang; Ding, Lili; Geng, Jinju

    2016-11-01

    In situ activity recovery of aging biofilm in the biological aerated filter (BAF) is an important but underappreciated problem. Lab-scaled BAFs were established in this study and three kinds of surfactants containing sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS) and rhamnolipid were employed. Multiple indicators including effluent qualities, dissolved organic matters, biofilm physiology and morphology characteristics were investigated to explore the mechanisms. Results showed that removal rates of effluent COD in test groups significantly recovered to the level before aging. Compared with the control, effluent in SDBS and rhamnolipid-treated groups obtained more protein-like and humic-like substances, respectively. Furthermore, great live cell ratio, smooth surface and low adhesion force of biofilm were observed after rhamnolipid treatment, which was in consistent with good effluent qualities in the same group. This is the first report of applying rhamnolipid for in situ activity recovery of aging biofilm in bioreactors. PMID:27513646

  10. Mechanics governs single-cell signaling and multi-cell robustness in biofilm infections

    Science.gov (United States)

    Gordon, Vernita

    In biofilms, bacteria and other microbes are embedded in extracellular polymers (EPS). Multiple types of EPS can be produced by a single bacterial strain - the reasons for this redundancy are not well-understood. Our work suggests that different polymers may confer distinct mechanical benefits. Our model organism is Pseudomonas aeruginosa, an opportunistic human pathogen that forms chronic biofilm infections associated with increased antibiotic resistance and evasion of the immune defense. Biofilms initiate when bacteria attach to a surface, sense the surface, and change their gene expression. Changes in gene expression are regulated by a chemical signal, cyclic-di-GMP. We find that one EPS material, called ``PEL,'' enhances surface sensing by increasing mechanical coupling of single bacteria to the surface. Measurements of bacterial motility suggest that PEL may increase frictional interactions between the surface and the bacteria. Consistent with this, we show that bacteria increase cyclic-di-GMP signaling in response to mechanical shear stress. Mechanosensing has long been known to be important to the function of cells in higher eukaryotes, but this is one of only a handful of studies showing that bacteria can sense and respond to mechanical forces. For the mature biofilm, the embedding polymer matrix can protect bacteria both chemically and mechanically. P. aeruginosa infections in the cystic fibrosis (CF) lung often last for decades, ample time for the infecting strain(s) to evolve. Production of another EPS material, alginate, is well-known to tend to increase over time in CF infections. Alginate chemically protects biofilms, but also makes them softer and weaker. Recently, it is being increasingly recognized that bacteria in chronic CF infections also evolve to increase PSL production. We use oscillatory bulk rheology to determine the unique contributions of EPS materials to biofilm mechanics. Unlike alginate, increased PSL stiffens biofilms. Increasing both

  11. Transmission Electron Microscopic Study of Antibiotic Action on Klebsiella pneumoniae Biofilm

    OpenAIRE

    Zahller, Jeff; Philip S. Stewart

    2002-01-01

    The penetration of ampicillin and ciprofloxacin through biofilms formed by Klebsiella pneumoniae was confirmed by transmission electron microscopic observation of antibiotic-affected cells at the distal edge of the biofilm. Because the bacteria nevertheless survived antibiotic treatment, some protective mechanism other than inadequate penetration must have been at work in the biofilm.

  12. Role of initial contamination levels, biofilm maturity and presence of salt and fat on desiccation survival of Listeria monocytogenes on stainless steel surfaces.

    Science.gov (United States)

    Hingston, Patricia A; Stea, Emma C; Knøchel, Susanne; Hansen, Truelstrup

    2013-10-01

    This study investigated the effect of initial contamination levels, biofilm maturity and presence of salt and fatty food soils on desiccation survival of Listeria monocytogenes on stainless steel (SS) coupons. L. monocytogenes cultures grown (at 15 °C for 48 h) in Tryptic Soy Broth with 1% glucose (TSB-glu) containing either 0.5 or 5% (w/v) NaCl were re-suspended in TSB-glu containing either 0.5 or 5% NaCl and used to contaminate SS coupons at levels of 3.5, 5.5, and 7.5 log CFU/cm². Desiccation (at 15 °C for 20 days, 43% RH) commenced immediately (non-biofilm) or following biofilm formation (at 15 °C for 48 h, 100% RH). To study the impact of food lipids, non-biofilm L. monocytogenes cells were suspended in TSB-glu containing either canola oil (5-10%) or lard (20-60%) and desiccated as above on SS coupons. Following desiccation for 20 days, survivors decreased by 1.4-3.7 log CFU/cm² for non-biofilm L. monocytogenes cells. The contamination level had no significant (p > 0.05) effect on survival kinetics. SEM micrographs showed mature biofilms on coupons initially contaminated with 5.5 and 7.5 log CFU/cm². Mature biofilm cells were significantly (p salt (5%) during desiccation significantly (p monocytogenes desiccation survival can be greatly reduced by preventing presence of mature biofilms and salty or fatty soils on food contact surfaces. PMID:23764219

  13. Possible inhibitory molecular mechanism of farnesol on the development of fluconazole resistance in Candida albicans biofilm.

    Science.gov (United States)

    Yu, Li-Hua; Wei, Xin; Ma, Ming; Chen, Xiao-Jun; Xu, Shuang-Bo

    2012-02-01

    Candida albicans biofilm infections are usually treated with azole antifungals such as fluconazole. However, the development of resistance to this drug in C. albicans biofilms is very common, especially in immunocompromised individuals. The upregulation of the sterol biosynthetic pathway gene ERG and the efflux pump genes CDR and MDR may contribute to this azole tolerance in Candida species. We hypothesize that farnesol, an endogenous quorum sensing molecule with possible antimicrobial properties which is also the precursor of ergosterols in C. albicans, may interfere with the development of fluconazole resistance in C. albicans biofilms. To test this hypothesis, MICs were compared and morphology changes were observed by confocal laser scanning microscopy (CLSM) for farnesol-treated and -untreated and fluconazole-resistant groups. The expression of possible target genes (ERG11, ERG25, ERG6, ERG5, ERG3, ERG1, MDR1, CDR1, and CDR2) in biofilms was analyzed by reverse transcription-PCR (RT-PCR) and quantitative PCR (qPCR) to investigate the molecular mechanisms of the inhibitory effects of farnesol. The results showed a decreased MIC of fluconazole and thinner biofilms for the farnesol-treated group, indicating that farnesol inhibited the development of fluconazole resistance. The sterol biosynthetic pathway may contribute to the inhibitory effects of farnesol, as the transcription levels of the ERG11, ERG25, ERG6, ERG3, and ERG1 genes decreased in the farnesol-treated group. PMID:22106223

  14. Feasibility of treating partially soluble wastewater in anaerobic sequencing batch biofilm reactor (ASBBR) with mechanical stirring.

    Science.gov (United States)

    Pinho, Samantha Cristina; Ratusznei, Suzana Maria; Rodrigues, José Alberto Domingues; Foresti, Eugenio; Zaiat, Marcelo

    2005-03-01

    This work reports on the treatment of partially soluble wastewater in an anaerobic sequencing batch biofilm reactor, containing biomass immobilized on polyurethane matrices and stirred mechanically. The results showed that agitation provided optimal mixing and improved the overall organic matter consumption rates. The system showed to be feasible to enhance the treatment of partially soluble wastewaters. PMID:15491835

  15. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms.

    Science.gov (United States)

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K; Osvath, Sarah R; Cárcamo-Oyarce, Gerardo; Gloag, Erin S; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G; Cavaliere, Rosalia; Ahrens, Christian H; Charles, Ian G; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B

    2016-01-01

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs. PMID:27075392

  16. Ureolytic Biomineralization Reduces Proteus mirabilis Biofilm Susceptibility to Ciprofloxacin.

    Science.gov (United States)

    Li, Xiaobao; Lu, Nanxi; Brady, Hannah R; Packman, Aaron I

    2016-05-01

    Ureolytic biomineralization induced by urease-producing bacteria, particularly Proteus mirabilis, is responsible for the formation of urinary tract calculi and the encrustation of indwelling urinary catheters. Such microbial biofilms are challenging to eradicate and contribute to the persistence of catheter-associated urinary tract infections, but the mechanisms responsible for this recalcitrance remain obscure. In this study, we characterized the susceptibility of wild-type (ure+) and urease-negative (ure-) P. mirabilis biofilms to killing by ciprofloxacin. Ure+ biofilms produced fine biomineral precipitates that were homogeneously distributed within the biofilm biomass in artificial urine, while ure- biofilms did not produce biomineral deposits under identical growth conditions. Following exposure to ciprofloxacin, ure+ biofilms showed greater survival (less killing) than ure- biofilms, indicating that biomineralization protected biofilm-resident cells against the antimicrobial. To evaluate the mechanism responsible for this recalcitrance, we observed and quantified the transport of Cy5-conjugated ciprofloxacin into the biofilm by video confocal microscopy. These observations revealed that the reduced susceptibility of ure+ biofilms resulted from hindered delivery of ciprofloxacin into biomineralized regions of the biofilm. Further, biomineralization enhanced retention of viable cells on the surface following antimicrobial exposure. These findings together show that ureolytic biomineralization induced by P. mirabilis metabolism strongly regulates antimicrobial susceptibility by reducing internal solute transport and increasing biofilm stability. PMID:26953206

  17. Mechanical properties of DNA biofilms adsorbed on microcantilevers in label-free biodetections.

    Science.gov (United States)

    Zhang, Neng-Hui; Chen, Jian-Zhong; Li, Jing-Jing; Tan, Zou-Qing

    2010-09-01

    Biomolecule adsorption is a fundamental process in the design of biosensors. Mechanical/electrical/thermal properties of biofilms have great influences on biodetection signals. The double-stranded DNA (dsDNA) biofilm adhered on microcantilever is treated as a bending beam with a macroscopic elastic modulus in the viewpoint of continuum mechanics. Accounting for hydration force, electrostatic repulsion and conformational entropy, moment-angle diagrams of dsDNA biofilm in pure bending state are depicted with the help of the energy conservation law and a mesoscopic liquid crystal theory presented by Strey et al. An analytical model is provided to predict macroscopic elastic modulus of dsDNA biofilm as a function of nanoscopic properties of dsDNA, packing density, buffer salt concentration and etc. The parameters for microcantilever-DNA system are obtained by curve fitting with Stachowiak's experimental data based on a modified Stoney's formula. Elastic modulus grows exponentially with the enhancement of packaging density, but diminishes with the increase of buffer salt concentration, and its order is about 1 approximately 10 MPa. Conformational entropy is one of predominant factors considered in near-surface system whether in high or low salt consternation. PMID:20541798

  18. Antimicrobial agents used in the control of periodontal biofilms: effective adjuncts to mechanical plaque control?

    Directory of Open Access Journals (Sweden)

    Ricardo Palmier Teles

    2009-06-01

    Full Text Available The control of biofilm accumulation on teeth has been the cornerstone of periodontal disease prevention for decades. However, the widespread prevalence of gingivitis suggests the inefficiency of self-performed mechanical plaque control in preventing gingival inflammation. This is particularly relevant in light of recent evidence suggesting that long standing gingivitis increases the risk of loss of attachment and that prevention of gingival inflammation might reduce the prevalence of mild to moderate periodontitis. Several antimicrobials have been tested as adjuncts to mechanical plaque control in order to improve the results obtained with oral home care. Recent studies, including meta-analyses, have indicated that home care products containing chemical antimicrobials can provide gingivitis reduction beyond what can be accomplished with brushing and flossing. Particularly, formulations containing chlorhexidine, mouthrinses containing essential oils and triclosan/copolymer dentifrices have well documented clinical antiplaque and antigingivitis effects. In vivo microbiological tests have demonstrated the ability of these antimicrobial agents to penetrate the biofilm mass and to kill bacteria growing within biofilms. In addition, chemical antimicrobials can reach difficult-to-clean areas such as interproximal surfaces and can also impact the growth of biofilms on soft tissue. These agents have a positive track record of safety and their use does not seem to increase the levels of resistant species. Further, no study has been able to establish a correlation between mouthrinses containing alcohol and oral cancer. In summary, the adjunct use of chemical plaque control should be recommended to subjects with well documented difficulties in achieving proper biofilm control using only mechanical means.

  19. The Formation of Biofilms by Pseudomonas aeruginosa: A Review of the Natural and Synthetic Compounds Interfering with Control Mechanisms

    Directory of Open Access Journals (Sweden)

    Tsiry Rasamiravaka

    2015-01-01

    Full Text Available P. aeruginosa is an opportunistic pathogenic bacterium responsible for both acute and chronic infections. Beyond its natural resistance to many drugs, its ability to form biofilm, a complex biological system, renders ineffective the clearance by immune defense systems and antibiotherapy. The objective of this report is to provide an overview (i on P. aeruginosa biofilm lifestyle cycle, (ii on the main key actors relevant in the regulation of biofilm formation by P. aeruginosa including QS systems, GacS/GacA and RetS/LadS two-component systems and C-di-GMP-dependent polysaccharides biosynthesis, and (iii finally on reported natural and synthetic products that interfere with control mechanisms of biofilm formation by P. aeruginosa without affecting directly bacterial viability. Concluding remarks focus on perspectives to consider biofilm lifestyle as a target for eradication of resistant infections caused by P. aeruginosa.

  20. Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: Survival and transfer to salmon products

    DEFF Research Database (Denmark)

    Hansen, Lisbeth Truelstrup; Vogel, Birte Fonnesbech

    2011-01-01

    The foodborne bacterial pathogen, Listeria monocytogenes, commonly contaminates foods during processing, where the microorganisms are potentially subjected to low relative humidity (RH) conditions for extended periods of time. The objective of this study was to examine survival during desiccation...

  1. Biophysics of biofilm infection.

    Science.gov (United States)

    Stewart, Philip S

    2014-04-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could (1) allow prevailing hydrodynamic shear to remove biofilm, (2) increase the efficacy of designed interventions for removing biofilms, (3) enable phagocytic engulfment of softened biofilm aggregates, and (4) improve phagocyte mobility and access to biofilm. PMID:24376149

  2. Biophysics of Biofilm Infection

    OpenAIRE

    Stewart, Philip S.

    2014-01-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofi...

  3. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis

    Science.gov (United States)

    Trivedi, Abhishek; Mavi, Parminder Singh; Bhatt, Deepak; Kumar, Ashwani

    2016-01-01

    Mycobacterium tuberculosis (Mtb) forms biofilms harbouring antibiotic-tolerant bacilli in vitro, but the factors that induce biofilm formation and the nature of the extracellular material that holds the cells together are poorly understood. Here we show that intracellular thiol reductive stress (TRS) induces formation of Mtb biofilms in vitro, which harbour drug-tolerant but metabolically active bacteria with unchanged levels of ATP/ADP, NAD+/NADH and NADP+/NADPH. The development of these biofilms requires DNA, RNA and protein synthesis. Transcriptional analysis suggests that Mtb modulates only ∼7% of its genes for survival in biofilms. In addition to proteins, lipids and DNA, the extracellular material in these biofilms is primarily composed of polysaccharides, with cellulose being a key component. Our results contribute to a better understanding of the mechanisms underlying Mtb biofilm formation, although the clinical relevance of Mtb biofilms in human tuberculosis remains unclear. PMID:27109928

  4. Rheology of biofilms

    OpenAIRE

    Winston, M.; Rupp, C.J.; Vinogradov, A.; Towler, B.W.; Adams, H; Stoodley, P

    2003-01-01

    The paper describes an experimental study concerning the mechanical properties of bacterial biofilms formed from the early dental plaque colonizer Streptoccocus mutans and pond water biofilms. Experiments reported in this paper demonstrate that both types of biofilms exhibit mechanical behavior similar to that of rheological fluids. The time-dependent properties of both biofilms have been modeled using the principles of viscoelasticity theory. The Burger model has been found to accurately re...

  5. Relationship between Antibiotic Resistance, Biofilm Formation, and Biofilm-Specific Resistance in Acinetobacter baumannii.

    Science.gov (United States)

    Qi, Lihua; Li, Hao; Zhang, Chuanfu; Liang, Beibei; Li, Jie; Wang, Ligui; Du, Xinying; Liu, Xuelin; Qiu, Shaofu; Song, Hongbin

    2016-01-01

    In this study, we aimed to examine the relationships between antibiotic resistance, biofilm formation, and biofilm-specific resistance in clinical isolates of Acinetobacter baumannii. The tested 272 isolates were collected from several hospitals in China during 2010-2013. Biofilm-forming capacities were evaluated using the crystal violet staining method. Antibiotic resistance/susceptibility profiles to 21 antibiotics were assessed using VITEK 2 system, broth microdilution method or the Kirby-Bauer disc diffusion method. The minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) to cefotaxime, imipenem, and ciprofloxacin were evaluated using micro dilution assays. Genetic relatedness of the isolates was also analyzed by pulsed-field gel electrophoresis (PFGE) and plasmid profile. Among all the 272 isolates, 31 were multidrug-resistant (MDR), and 166 were extensively drug-resistant (XDR). PFGE typing revealed 167 pattern types and 103 clusters with a similarity of 80%. MDR and XDR isolates built up the main prevalent genotypes. Most of the non-MDR isolates were distributed in a scattered pattern. Additionally, 249 isolates exhibited biofilm formation, among which 63 were stronger biofilm formers than type strain ATCC19606. Population that exhibited more robust biofilm formation likely contained larger proportion of non-MDR isolates. Isolates with higher level of resistance tended to form weaker biofilms. The MBECs for cefotaxime, imipenem, and ciprofloxacin showed a positive correlation with corresponding MICs, while the enhancement in resistance occurred independent of the quantity of biofilm biomass produced. Results from this study imply that biofilm acts as a mechanism for bacteria to get a better survival, especially in isolates with resistance level not high enough. Moreover, even though biofilms formed by isolates with high level of resistance are always weak, they could still provide similar level of protection for the

  6. Regulation of biofilm formation in Salmonella typhimurium and Escherichia coli Nissle 1917

    OpenAIRE

    Monteiro, Cláudia

    2011-01-01

    Bacteria have the ability to grow in cell communities designated biofilms. This mode of growth is widespread and offers numerous advantages to the bacteria in terms of survival, persistence and propagation. Bacteria have developed different ways of building up a biofilm. Complex regulatory mechanisms control this sophisticated mode of growth in response to environmental conditions. This thesis focuses on the regulation of biofilm formation by the food-borne pathogen Salmonel...

  7. A New SDH-Based ATM Network Survivability Escalation Mechanism

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper investigates survivability escalation strategies in multi-layers transport networks such as ATM/SDH/WDM networks, and presents oriented-failures and oriented-traffic escalation mechanisms. Furthermore, We present a new survivability Escalation strategy for SDH-Based ATM transport networks, which addresses difficult problem for resources sharing pool(RSP) among different layers restoration mechanisms. In this paper, we also present integer programming (IP) model for the resources sharing pool (RSP) design problem and the node simulation model for escalation Node. The simulation results show that the proposed ESP is very efficient. The proposed model can be easily extended for other types of multi-layer networks, such as WDM-based ATM networks or WDM-based SDH networks.

  8. Biofilms: A microbial home

    OpenAIRE

    Chandki, Rita; Banthia, Priyank; Banthia, Ruchi

    2011-01-01

    Microbial biofilms are mainly implicated in etiopathogenesis of caries and periodontal disease. Owing to its properties, these pose great challenges. Continuous and regular disruption of these biofilms is imperative for prevention and management of oral diseases. This essay provides a detailed insight into properties, mechanisms of etiopathogenesis, detection and removal of these microbial biofilms.

  9. On the determining role of network structure titania in silicone against bacterial colonization: Mechanism and disruption of biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Depan, D.; Misra, R.D.K., E-mail: dmisra@louisiana.edu

    2014-01-01

    Silicone-based biomedical devices are prone to microbial adhesion, which is the primary cause of concern in the functioning of the artificial device. Silicone exhibiting long-term and effective antibacterial ability is highly desirable to prevent implant related infections. In this regard, nanophase titania was incorporated in silicone as an integral part of the silicone network structure through cross-link mechanism, with the objective to reduce bacterial adhesion to a minimum. The bacterial adhesion was studied using crystal violet assay, while the mechanism of inhibition of biofilm formation was studied via electron microscopy. The incorporation of nanophase titania in silicone dramatically reduced the viability of Staphylococcus aureus (S. aureus) and the capability to adhere on the surface of hybrid silicone by ∼ 93% in relation to stand alone silicone. The conclusion of dramatic reduction in the viability of S. aureus is corroborated by different experimental approaches including biofilm inhibition assay, zone of inhibition, and through a novel experiment that involved incubation of biofilm with titania nanoparticles. It is proposed that the mechanism of disruption of bacterial film in the presence of titania involves puncturing of the bacterial cell membrane. - Highlights: • Network structure titania in silicone imparts antimicrobial activity. • Ability to microbial adhesion is significantly reduced. • Antimicrobial mechanism involves rupture of biofilm.

  10. On the determining role of network structure titania in silicone against bacterial colonization: Mechanism and disruption of biofilm

    International Nuclear Information System (INIS)

    Silicone-based biomedical devices are prone to microbial adhesion, which is the primary cause of concern in the functioning of the artificial device. Silicone exhibiting long-term and effective antibacterial ability is highly desirable to prevent implant related infections. In this regard, nanophase titania was incorporated in silicone as an integral part of the silicone network structure through cross-link mechanism, with the objective to reduce bacterial adhesion to a minimum. The bacterial adhesion was studied using crystal violet assay, while the mechanism of inhibition of biofilm formation was studied via electron microscopy. The incorporation of nanophase titania in silicone dramatically reduced the viability of Staphylococcus aureus (S. aureus) and the capability to adhere on the surface of hybrid silicone by ∼ 93% in relation to stand alone silicone. The conclusion of dramatic reduction in the viability of S. aureus is corroborated by different experimental approaches including biofilm inhibition assay, zone of inhibition, and through a novel experiment that involved incubation of biofilm with titania nanoparticles. It is proposed that the mechanism of disruption of bacterial film in the presence of titania involves puncturing of the bacterial cell membrane. - Highlights: • Network structure titania in silicone imparts antimicrobial activity. • Ability to microbial adhesion is significantly reduced. • Antimicrobial mechanism involves rupture of biofilm

  11. Mechanism and kinetics of biofilm growth process influenced by shear stress in sewers.

    Science.gov (United States)

    Ai, Hainan; Xu, Jingwei; Huang, Wei; He, Qiang; Ni, Bingjie; Wang, Yinliang

    2016-01-01

    Sewer biofilms play an important role in the biotransformation of substances for methane and sulfide emission in sewer networks. The dynamic flows and the particular shear stress in sewers are the key factors determining the growth of the sewer biofilm. In this work, the development of sewer biofilm with varying shear stress is specifically investigated to gain a comprehensive understanding of the sewer biofilm dynamics. Sewer biofilms were cultivated in laboratory-scale gravity sewers under different hydraulic conditions with the corresponding shell stresses are 1.12 Pa, 1.29 Pa and 1.45 Pa, respectively. The evolution of the biofilm thickness were monitored using microelectrodes, and the variation in total solids (TS) and extracellular polymer substance (EPS) levels in the biofilm were also measured. The results showed that the steady-state biofilm thickness were highly related to the corresponding shear stresses with the biofilm thickness of 2.4 ± 0.1 mm, 2.7 ± 0.1 mm and 2.2 ± 0.1 mm at shear stresses of 1.12 Pa, 1.29 Pa and 1.45 Pa, respectively, which the chemical oxygen demand concentration is 400 mg/L approximately. Based on these observations, a kinetic model for describing the development of sewer biofilms was developed and demonstrated to be capable of reproducing all the experimental data. PMID:27054728

  12. Political Mechanisms for Long-Range Survival and Development

    Science.gov (United States)

    Marshall, W.

    As the first species aware of extinction and capable of proactively ensuring our long-term survival and development, it is striking that we do not do so with the rigor, formality, and foresight it requires. Only from a reactive posture have we responded to the challenges of global warfare, human rights, environmental concerns, and sustainable development. Despite our awareness of the possibility for extinction and apocalyptic set-backs to our evolution, and despite the existence of long-range studies-which must still be dramatically increased-proactive global policy implementation regarding our long-term survival and development is arguably non-existent. This lack of long-term policy making can be attributed in part to the lack of formal political mechanisms to facilitate longer-range policy making that extends 30 years or more into the future. Political mechanisms for infusing long-range thinking, research, and strategic planning into the policy-making process can help correct this shortcoming and provide the motivation needed to adequately address long-term challenges with the political rigor required to effectively establish and implement long-term policies. There are some efforts that attempt to address longer-range issues, but those efforts often do not connect to the political process, do not extend 30 or more years into the future, are not well-funded, and are not sufficiently systemic. Political mechanisms for long-range survival and prosperity could correct these inadequacies by raising awareness, providing funding, and most importantly, leveraging political rigor to establish and enforce long-range strategic planning and policies. The feasibility of such mechanisms should first be rigorously studied and assessed in a feasibility study, which could then inform implementation. This paper will present the case for such a study and suggest some possible political mechanisms that should be investigated further in the proposed study. This work is being further

  13. Molecular Mechanisms of Survival Strategies in Extreme Conditions

    Directory of Open Access Journals (Sweden)

    Federica Migliardo

    2012-12-01

    Full Text Available Today, one of the major challenges in biophysics is to disclose the molecular mechanisms underlying biological processes. In such a frame, the understanding of the survival strategies in extreme conditions received a lot of attention both from the scientific and applicative points of view. Since nature provides precious suggestions to be applied for improving the quality of life, extremophiles are considered as useful model-systems. The main goal of this review is to present an overview of some systems, with a particular emphasis on trehalose playing a key role in several extremophile organisms. The attention is focused on the relation among the structural and dynamic properties of biomolecules and bioprotective mechanisms, as investigated by complementary spectroscopic techniques at low- and high-temperature values.

  14. Cold atmospheric plasma in combination with mechanical treatment improves osteoblast growth on biofilm covered titanium discs.

    Science.gov (United States)

    Duske, Kathrin; Jablonowski, Lukasz; Koban, Ina; Matthes, Rutger; Holtfreter, Birte; Sckell, Axel; Nebe, J Barbara; von Woedtke, Thomas; Weltmann, Klaus Dieter; Kocher, Thomas

    2015-06-01

    Treatment of implants with peri-implantitis is often unsuccessful, because an instrumented implant surface and residual microbial biofilm impedes re-osseointegration. The application of cold atmospheric plasma (CAP) could be a simple and effective strategy to overcome the inherent problems of peri-implantitis treatment. CAP is able to destroy and eliminate bacterial biofilms. Additionally, it increases the wettability of titanium, which supports cellular attachment. In this study, the behaviour of osteoblasts on titanium discs was analysed after treatment of bacterial biofilms with CAP, brushing, or a combination of both. A human plaque biofilm was cultured on titanium discs. Treatment with a brush (BR), 1% oxygen/argon CAP (PL), or brushing combined with CAP (BR+PL) was used to eliminate the biofilm. Discs without biofilm (C), autoclaved biofilm (AUTO) and untreated biofilm (BIO) served as controls. Subsequently, human osteoblastic cell growth (MG-63) was observed after 1 and 24 h. Biofilm remnants on BR and PL impaired osteoblastic cell development, whereas the BR+PL provided an increased area of osteoblastic cells. A five-day cell growth was only detectable on BR+PL treated discs. The combination of established brushing and CAP application may be a promising strategy to treat peri-implantitis. PMID:25818439

  15. Behaviour of biofilms formed by Pseudomonas fluorescens under different flow regimes when exposed to surfactants : role of the biofilm mechanical stability

    OpenAIRE

    Simões, M; Pereira, M. O.; Vieira, M. J.

    2005-01-01

    The effectiveness of cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) to control biofilms formed by Pseudomonas fluorescens on stainless steel slides under laminar and turbulent conditions, using a flow cell reactor, is compared in this study. The antimicrobial action of the surfactants was evaluated in terms of the activity of the biofilm, the biofilm mass that remained on the surface after treatment and the biofilm morphological characteristics. The mec...

  16. Host Responses to Biofilm.

    Science.gov (United States)

    Watters, C; Fleming, D; Bishop, D; Rumbaugh, K P

    2016-01-01

    From birth to death the human host immune system interacts with bacterial cells. Biofilms are communities of microbes embedded in matrices composed of extracellular polymeric substance (EPS), and have been implicated in both the healthy microbiome and disease states. The immune system recognizes many different bacterial patterns, molecules, and antigens, but these components can be camouflaged in the biofilm mode of growth. Instead, immune cells come into contact with components of the EPS matrix, a diverse, hydrated mixture of extracellular DNA (bacterial and host), proteins, polysaccharides, and lipids. As bacterial cells transition from planktonic to biofilm-associated they produce small molecules, which can increase inflammation, induce cell death, and even cause necrosis. To survive, invading bacteria must overcome the epithelial barrier, host microbiome, complement, and a variety of leukocytes. If bacteria can evade these initial cell populations they have an increased chance at surviving and causing ongoing disease in the host. Planktonic cells are readily cleared, but biofilms reduce the effectiveness of both polymorphonuclear neutrophils and macrophages. In addition, in the presence of these cells, biofilm formation is actively enhanced, and components of host immune cells are assimilated into the EPS matrix. While pathogenic biofilms contribute to states of chronic inflammation, probiotic Lactobacillus biofilms cause a negligible immune response and, in states of inflammation, exhibit robust antiinflammatory properties. These probiotic biofilms colonize and protect the gut and vagina, and have been implicated in improved healing of damaged skin. Overall, biofilms stimulate a unique immune response that we are only beginning to understand. PMID:27571696

  17. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms

    DEFF Research Database (Denmark)

    Gjermansen, M.; Nilsson, M.; Yang, Liang; Tolker-Nielsen, T.

    2010-01-01

    adhesion and were deficient in subsequent biofilm formation, suggesting that LapG affects LapA, and that the LapA protein functions both as a surface adhesin and as a biofilm matrix component. Lowering of the intracellular c-di-GMP level via induction of an EAL domain protein led to dispersal of P. putida...

  18. Biofilms: An Underappreciated Mechanism of Treatment Failure and Recurrence in Vaginal Infections.

    Science.gov (United States)

    Muzny, Christina A; Schwebke, Jane R

    2015-08-15

    Biofilms are microbial communities of surface-attached cells embedded in a self-produced extracellular matrix. They are of major medical significance because they decrease susceptibility to antimicrobial agents and enhance the spread of antimicrobial resistance. Biofilm-associated bacterial and fungal microorganisms have increasingly been recognized to play a role in multiple infectious diseases, particularly in their persistence and recurrence. More recently, biofilms have also been implicated in vaginal infections, notably bacterial vaginosis (BV) and vulvovaginal candidiasis (VVC), particularly in the setting of treatment failure and recurrence. The purpose of this review is to discuss the impact of biofilms on the management and treatment of BV and recurrent VVC and highlight the need for additional research and development of novel therapeutics targeting pathogenic vaginal biofilms. PMID:25935553

  19. Strategies for combating bacterial biofilm infections

    OpenAIRE

    Wu,Hong; Moser, Claus; Wang, Heng-Zhuang; Høiby, Niels; Zhi-jun SONG

    2014-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwe...

  20. Microbial interactions in biofilms : role of siderophores and iron-dependent mechanisms as biocontrol strategies

    OpenAIRE

    Simões, M; Cleto, S.; Simões, Lúcia C; Pereira, Maria Olívia; Vieira, M. J.

    2007-01-01

    Biofilms are ubiquitous in nature and can cause significant problems in public health, medicine and industry. Antimicrobial approaches to treat bacterial proliferation and biofilm formation constitute a focal point of modern research. We are entering a post-chemical antimicrobial era, not only due to the need to delivering of environmentally- friendly products, but also due to the increasing resistance of some pathogens against the most common antimicrobials, and the recalcitra...

  1. Mechanism studies on nitrogen removal when treating ammonium-rich leachate by sequencing batch biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    XU Zhengyong; YANG Zhaohui; ZENG Guangming; XIAO Yong; DENG Jiuhua

    2007-01-01

    The nitrogen removal mechanism was studied and analyzed when treating the ammonium-rich landfill leachate by a set of sequencing batch biofilm reactors(SBBRs),which was designed independently.At the liquid temperature of(32±0.4)℃,and after a 58-days domestication period and a 33-days stabilization period.the efficiency of ammonium removal in the SBBR went up to 95%.Highly frequent intermittent aeration suppressed the activity of nitratebacteria.and also eliminated the influence on the activity of anaerobic ammonium oxidation(ANAMMOX)bacteria and nitritebacteria.This influence was caused by the accumulation of nitrous acid and the undulation of pH.During the aeration stage,the concentration of dissolved oxygen was controlled at 1.2-1.4 mg/L.The nitritebacteria became dominant and nitrite accumulated gradually.During the anoxic stage,along with the concentration debasement of the dissolved oxygen,ANAMMOX bacteria became dominant;then,the nitrite that was accumulated in the aeration stage was wiped off with ammonium simultaneously.

  2. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    Science.gov (United States)

    Epstein, A. K.; Hochbaum, A. I.; Kim, Philseok; Aizenberg, J.

    2011-12-01

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  3. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    International Nuclear Information System (INIS)

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  4. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms

    OpenAIRE

    Hamilton, Shea; Bongaerts, Roy JM; Mulholland, Francis; Cochrane, Brett; Porter, Jonathan; Lucchini, Sacha; Lappin-Scott, Hilary M.; Hinton, Jay CD

    2009-01-01

    Background Biofilm formation enhances the capacity of pathogenic Salmonella bacteria to survive stresses that are commonly encountered within food processing and during host infection. The persistence of Salmonella within the food chain has become a major health concern, as biofilms can serve as a reservoir for the contamination of food products. While the molecular mechanisms required for the survival of bacteria on surfaces are not fully understood, transcriptional studies of other bacteria...

  5. Existence of two groups of Staphylococcus aureus strains isolated from bovine mastitis based on biofilm formation, intracellular survival, capsular profile and agr-typing.

    Science.gov (United States)

    Bardiau, Marjorie; Caplin, Jonathan; Detilleux, Johann; Graber, Hans; Moroni, Paolo; Taminiau, Bernard; Mainil, Jacques G

    2016-03-15

    Staphylococcus (S.) aureus is recognised worldwide as an important pathogen causing contagious acute and chronic bovine mastitis. Chronic mastitis account for a significant part of all bovine cases and represent an important economic problem for dairy producers. Several properties (biofilm formation, intracellular survival, capsular expression and group agr) are thought to be associated with this chronic status. In a previous study, we found the existence of two groups of strains based on the association of these features. The aim of the present work was to confirm on a large international and non-related collection of strains the existence of these clusters and to associate them with case history records. In addition, the genomes of eight strains were sequenced to study the genomic differences between strains of each cluster. The results confirmed the existence of both groups based on capsular typing, intracellular survival and agr-typing: strains cap8-positive, belonging to agr group II, showing a low invasion rate and strains cap5-positive, belonging to agr group I, showing a high invasion rate. None of the two clusters were associated with the chronic status of the cow. When comparing the genomes of strains belonging to both clusters, the genes specific to the group "cap5-agrI" would suggest that these strains are better adapted to live in hostile environment. The existence of these two groups is highly important as they may represent two clusters that are adapted differently to the host and/or the surrounding environment. PMID:26931384

  6. Biofilm dispersion in Pseudomonas aeruginosa.

    Science.gov (United States)

    Kim, Soo-Kyoung; Lee, Joon-Hee

    2016-02-01

    In recent decades, many researchers have written numerous articles about microbial biofilms. Biofilm is a complex community of microorganisms and an example of bacterial group behavior. Biofilm is usually considered a sessile mode of life derived from the attached growth of microbes to surfaces, and most biofilms are embedded in self-produced extracellular matrix composed of extracellular polymeric substances (EPSs), such as polysaccharides, extracellular DNAs (eDNA), and proteins. Dispersal, a mode of biofilm detachment indicates active mechanisms that cause individual cells to separate from the biofilm and return to planktonic life. Since biofilm cells are cemented and surrounded by EPSs, dispersal is not simple to do and many researchers are now paying more attention to this active detachment process. Unlike other modes of biofilm detachment such as erosion or sloughing, which are generally considered passive processes, dispersal occurs as a result of complex spatial differentiation and molecular events in biofilm cells in response to various environmental cues, and there are many biological reasons that force bacterial cells to disperse from the biofilms. In this review, we mainly focus on the spatial differentiation of biofilm that is a prerequisite for dispersal, as well as environmental cues and molecular events related to the biofilm dispersal. More specifically, we discuss the dispersal-related phenomena and mechanisms observed in Pseudomonas aeruginosa, an important opportunistic human pathogen and representative model organism for biofilm study. PMID:26832663

  7. Impact of Hydrodynamics on Oral Biofilm Strength

    NARCIS (Netherlands)

    Paramonova, E.; Kalmykowa, O. J.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K.

    2009-01-01

    Mechanical removal of oral biofilms is ubiquitously accepted as the best way to prevent caries and periodontal diseases. Removal effectiveness strongly depends on biofilm strength. To investigate the influence of hydrodynamics on oral biofilm strength, we grew single- and multi-species biofilms of S

  8. Biopelículas como expresión del mecanismo de quorum sensing: Una revisión Biofilms like expression of quorum sensing mechanism: A revision

    Directory of Open Access Journals (Sweden)

    A.J. Díaz Caballero

    2011-12-01

    Full Text Available En la periodoncia moderna, el concepto de biopelículas viene en un progreso tan abrumador que la capacidad de discusión se hace necesaria y completamente indispensable, de forma que se pueda actualizar y cambiar de una idea de placa bacteriana a un concepto mucho más complejo, dinámico y de intercambio génico que lo que se viene estableciendo. Las biopelículas muestran una organización no al azar, con una forma de crecimiento y de sostenibilidad muy avanzada y estructurada que facilita la supervivencia de los patógenos incluidos dentro de estas formas de asociación. El presente artículo es una revisión narrativa de los mecanismos de como el quórum sensing y las biopelículas se relacionan con las enfermedades periodontales que afectan a tantas personas en todas las latitudes a nivel mundial. Se exploran diversos conceptos y campos de investigación biomédicas con posibles aplicaciones a nivel experimental.In modern periodontics, we must check continuously many concepts that are driving some time, which does not allow the progress and development of many structures of thinking in solving problems such as periodontal disease in all its various forms presentation. The concept of biofilms is in progress so overwhelming that the ability of discussion is completely necessary and indispensable, so that you can update and change a plaque idea to a concept much more complex, dynamic, and that genetic exchange what has been established to date. Biofilms are a non-random, is a form of growth and sustainability quite advanced and structured to facilitate the survival of the pathogens included in these partnerships. This article is a narrative review, mechanisms such as quorum sensing, biofilms and the relationship of these with periodontal diseases that affect many people at all latitudes worldwide. It explores various concepts and research areas with potential application in biomedical experimentation level.

  9. Strategies for combating bacterial biofilm infections

    DEFF Research Database (Denmark)

    Wu, Hong; Moser, Claus Ernst; Wang, Heng-Zhuang;

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the...

  10. Comparative study of chemical and physical methods for distinguishing between passive and metabolically active mechanisms of water contaminant removal by biofilms.

    Science.gov (United States)

    Adapa, L M; Azimi, Y; Singh, S; Porcelli, D; Thompson, I P

    2016-09-15

    In this study, physical and chemical approaches were employed to distinguish between passive and active mechanisms in biofilms removing contaminants in waste waters and their relative merits were assessed. Respiration, post-exposure recovery and scanning electron microscopic analysis demonstrated that both ultraviolet (UV) treatment (300 mJ/cm(2)) and sodium azide (10 mM) completely inhibited metabolic activity at 5 and 24 h exposure, respectively, whilst not damaging the integrity of the biofilms. Amongst the commonly used chemical inhibitors, only sodium azide showed complete inhibition after 24 h incubation with only about 10% (±4%) of biofilm carbon released into the bulk solution, compared to 33-41% (±8%) when exposed to 5 mM and 10 mM 2,4-dinitrophenol (DNP) and 69-80% (±5%) when exposed to 2% and 5% w/v formalin, respectively. Biofilm inhibition with UV and sodium azide was found to be equally effective at inhibiting biofilms for treatment of triethanolamine (TEA) and benzotriazole (BTA): the results confirming that the dominant removal mechanism was biodegradation. However, the rates of glucose removal by sodium azide-inhibited biofilms were similar to controls, suggesting that chemical inhibitors were not effective for distinguishing the removal mechanisms of simple sugars. Statistically similar amounts of metal were removed by biofilms treated with UV and sodium azide in zinc, copper and cadmium single-systems: the results indicated that the removal mechanism is predominantly a passive biosorption process. PMID:27314554

  11. Biofilm Formation Derived from Ambient Air and the Characteristics of Apparatus

    International Nuclear Information System (INIS)

    Biofilm is a kind of thin film on solidified matters, being derived from bacteria. Generally, planktonic bacteria float in aqueous environments, soil or air, most of which can be regarded as oligotrophic environments. Since they have to survive by instinct, they seek for nutrients that would exist on materials surfaces as organic matters. Therefore, bacteria attach materials surfaces reversibly. The attachment and detachment repeat for a while and finally, they attach on them irreversibly and the number of bacteria on them increases. At a threshold number, bacteria produce polymeric matters at the same time by quorum sensing mechanism and the biofilm produces on material surfaces. The biofilm produced in that way generally contains water (more than 80%), EPS (Exopolymeric Substance) and bacteria themselves. And they might bring about many industrial problems, fouling, corrosion etc. Therefore, it is very important for us to control and prevent the biofilm formation properly. However, it is generally very hard to produce biofilm experimentally and constantly in ambient atmosphere on labo scale. The authors invented an apparatus where biofilm could form on specimen's surfaces from house germs in the ambient air. In this experiment, we investigated the basic characteristics of the apparatus, reproducibility, the change of biofilm with experimental time, the quality change of water for biofilm formation and their significance for biofilm research.

  12. Listeria monocytogenes survival of UV-C radiation is enhanced by presence of sodium chloride, organic food material and by bacterial biofilm formation

    DEFF Research Database (Denmark)

    Bernbom, Nete; Vogel, Birte Fonnesbech; Gram, Lone

    2011-01-01

    biofilm for 7days before exposure. It is not known if this enhanced survival is due to physiological changes in the attached bacterial cells, a physical protection of the cells in the food matrix or a combination. In conclusion, we demonstrate that UV-C light is a useful extra bacteriocidal step and that......The bactericidal effect on food processing surfaces of ceiling-mounted UV-C light (wavelength 254nm) was determined in a fish smoke house after the routine cleaning and disinfection procedure. The total aerobic counts were reduced during UV-C light exposure (48h) and the number of Listeria...... numbers declined with 4–5log units during exposure of 8–10min. Bacteria grown in juice prepared from cold-smoked salmon were protected and numbers were reduced with 2–3log when UV-C light was used immediately after attachment whereas numbers did not change at all if bacteria had been allowed to form a...

  13. Platelets increase survival of adenocarcinoma cells challenged with anticancer drugs: mechanisms and implications for chemoresistance.

    OpenAIRE

    Radomski, Marek; MEDINA MARTIN, CARLOS; O'Driscoll, Lorraine

    2012-01-01

    PUBLISHED BACKGROUND AND PURPOSE: Cancer cells grow without the restraints of feedback control mechanisms, leading to increased cancer cell survival. The treatment of cancer is often complicated by the lack of response to chemotherapy leading to chemoresistance and persistent survival of tumour cells. In this work we studied the role of platelets in chemotherapy-induced cancer cell death and survival. EXPERIMENTAL APPROACH: Human adenocarcinoma cells, colonic (Caco-2) and ovaria...

  14. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms

    OpenAIRE

    Cochrane Brett; Mulholland Francis; Bongaerts Roy JM; Hamilton Shea; Porter Jonathan; Lucchini Sacha; Lappin-Scott Hilary M; Hinton Jay CD

    2009-01-01

    Abstract Background Biofilm formation enhances the capacity of pathogenic Salmonella bacteria to survive stresses that are commonly encountered within food processing and during host infection. The persistence of Salmonella within the food chain has become a major health concern, as biofilms can serve as a reservoir for the contamination of food products. While the molecular mechanisms required for the survival of bacteria on surfaces are not fully understood, transcriptional studies of other...

  15. Biofilm in endodontics: A review

    Science.gov (United States)

    Jhajharia, Kapil; Parolia, Abhishek; Shetty, K Vikram; Mehta, Lata Kiran

    2015-01-01

    Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilms’ formation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to

  16. Tumor cell survival and immune escape mechanisms in classical Hodgkin lymphoma

    NARCIS (Netherlands)

    Liang, Zheng

    2015-01-01

    Tumor cell survival and immune escape mechanisms in classical Hodgkin lymphoma The nature of classical Hodgkin lymphoma (HL), a minority of tumor cells in a reactive background and loss of B cell phenotype, decides its dependence on the microenvironment for signals to contribute to survival and prol

  17. High-density lipoprotein, mitochondrial dysfunction and cell survival mechanisms.

    Science.gov (United States)

    White, C Roger; Giordano, Samantha; Anantharamaiah, G M

    2016-09-01

    Ischemic injury is associated with acute myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting and open heart surgery. The timely re-establishment of blood flow is critical in order to minimize cardiac complications. Reperfusion after a prolonged ischemic period, however, can induce severe cardiomyocyte dysfunction with mitochondria serving as a major target of ischemia/reperfusion (I/R) injury. An increase in the formation of reactive oxygen species (ROS) induces damage to mitochondrial respiratory complexes leading to uncoupling of oxidative phosphorylation. Mitochondrial membrane perturbations also contribute to calcium overload, opening of the mitochondrial permeability transition pore (mPTP) and the release of apoptotic mediators into the cytoplasm. Clinical and experimental studies show that ischemic preconditioning (ICPRE) and postconditioning (ICPOST) attenuate mitochondrial injury and improve cardiac function in the context of I/R injury. This is achieved by the activation of two principal cell survival cascades: 1) the Reperfusion Injury Salvage Kinase (RISK) pathway; and 2) the Survivor Activating Factor Enhancement (SAFE) pathway. Recent data suggest that high density lipoprotein (HDL) mimics the effects of conditioning protocols and attenuates myocardial I/R injury via activation of the RISK and SAFE signaling cascades. In this review, we discuss the roles of apolipoproteinA-I (apoA-I), the major protein constituent of HDL, and sphingosine 1-phosphate (S1P), a lysosphingolipid associated with small, dense HDL particles as mediators of cardiomyocyte survival. Both apoA-I and S1P exert an infarct-sparing effect by preventing ROS-dependent injury and inhibiting the opening of the mPTP. PMID:27150975

  18. Biofilm matrix composition affects the susceptibility of food associated staphylococci to cleaning and disinfection agents

    Directory of Open Access Journals (Sweden)

    Annette eFagerlund

    2016-06-01

    Full Text Available Staphylococci are frequently isolated from food processing environments, and it has been speculated whether survival after cleaning and disinfection with benzalkonium chloride-containing disinfectants is due to biofilm formation, matrix composition or benzalkonium chloride efflux mechanisms. Out of 35 food associated staphylococci, eight produced biofilm in a microtiter plate assay and were identified as Staphylococcus capitis (2, S. cohnii, S. epidermidis, S. lentus (2, and S. saprophyticus (2. The eight biofilm producing strains were characterized using whole genome sequencing. Three of these strains contained the ica operon responsible for production of a polysaccharide matrix, and formed a biofilm which was detached upon exposure to the polysaccharide degrading enzyme Dispersin B, but not Proteinase K or trypsin. These strains were more tolerant to the lethal effect of benzalkonium chloride both in suspension and biofilm than the remaining five biofilm producing strains. The five benzalkonium chloride susceptible strains were characterized by lack of the ica operon, and their biofilms were detached by Proteinase K or trypsin, but not Dispersin B, indicating that proteins were major structural components of their biofilm matrix. Several novel cell wall anchored repeat domain proteins with domain structures similar to that of MSCRAMM adhesins were identified in the genomes of these strains, potentially representing novel mechanisms of ica-independent biofilm accumulation. Biofilms from all strains showed similar levels of detachment after exposure to alkaline chlorine, which is used for cleaning in the food industry. Strains with qac genes encoding benzalkonium chloride efflux pumps could grow at higher concentrations of benzalkonium chloride than strains without these genes, but no differences were observed at biocidal concentrations. In conclusion, the biofilm matrix of food associated staphylococci varies with respect to protein or

  19. Biofilm Matrix Composition Affects the Susceptibility of Food Associated Staphylococci to Cleaning and Disinfection Agents.

    Science.gov (United States)

    Fagerlund, Annette; Langsrud, Solveig; Heir, Even; Mikkelsen, Maria I; Møretrø, Trond

    2016-01-01

    Staphylococci are frequently isolated from food processing environments, and it has been speculated whether survival after cleaning and disinfection with benzalkonium chloride (BC)-containing disinfectants is due to biofilm formation, matrix composition, or BC efflux mechanisms. Out of 35 food associated staphylococci, eight produced biofilm in a microtiter plate assay and were identified as Staphylococcus capitis (2), S. cohnii, S. epidermidis, S. lentus (2), and S. saprophyticus (2). The eight biofilm producing strains were characterized using whole genome sequencing. Three of these strains contained the ica operon responsible for production of a polysaccharide matrix, and formed a biofilm which was detached upon exposure to the polysaccharide degrading enzyme Dispersin B, but not Proteinase K or trypsin. These strains were more tolerant to the lethal effect of BC both in suspension and biofilm than the remaining five biofilm producing strains. The five BC susceptible strains were characterized by lack of the ica operon, and their biofilms were detached by Proteinase K or trypsin, but not Dispersin B, indicating that proteins were major structural components of their biofilm matrix. Several novel cell wall anchored repeat domain proteins with domain structures similar to that of MSCRAMM adhesins were identified in the genomes of these strains, potentially representing novel mechanisms of ica-independent biofilm accumulation. Biofilms from all strains showed similar levels of detachment after exposure to alkaline chlorine, which is used for cleaning in the food industry. Strains with qac genes encoding BC efflux pumps could grow at higher concentrations of BC than strains without these genes, but no differences were observed at biocidal concentrations. In conclusion, the biofilm matrix of food associated staphylococci varies with respect to protein or polysaccharide nature, and this may affect the sensitivity toward a commonly used disinfectant. PMID:27375578

  20. Permeabilizing biofilms

    Science.gov (United States)

    Soukos, Nikolaos S.; Lee, Shun; Doukas, Apostolos G.

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  1. Biofilm enhanced subsurface sequestration of supercritical CO2

    Science.gov (United States)

    Mitchell, A. C.; Phillips, A.; Hiebert, R.; Gerlach, R.; Kaszuba, J.; Cunningham, A.

    2007-12-01

    In order to develop subsurface CO2 storage as a viable engineered mechanism to reduce concentrations of atmospheric CO2, any potential ¡°leakage¡± of injected supercritical CO2 (scCO2) from the ground to the atmosphere must be reduced. Here, we investigate the utility of biofilms, which are microorganism assemblages firmly attached to a surface, as a means of reducing scCO2 leakage. Firstly, experiments were performed to test whether biofilms were more resilient than planctonic cells to scCO2. Bacillus mojavensis biofilms were grown on a sand support matrix in scCO2 extractor cartridges at 30°C. B. mojavensis was also grown under suspended planctonic conditions in the same media overnight and aliquots were decanted into scCO2 extractor cartridges. Biofilm and suspended B. mojavensis samples were processed on a Supercritical Fluid Extractor with pressurization to 2000 psi at 35°C, and a 20 minute flow of scCO2. Suspended growth samples revealed a 3 log reduction in cell viability while biofilm only showed a 1 log reduction, demonstrating that B. mojavensis biofilms are more resilient than planctonic cells to scCO2. Protective extra cellular polymeric substances which make up the biofilm matrix likely provide a protective barrier against scCO2. Secondly, the ability of biofilms to grow under high pressure and reduce the permeability of porous geological matrices was investigated using a unique high pressure (8.9MPa), moderate temperature (¡Ý 32°C) flow reactor containing 40 millidarcy Berea sandstone cores. The flow reactor was inoculated with the biofilm forming organism Shewanella fridgidimarina. Electron microscopy of the rock core revealed substantial biofilm accumulation in rock pores which resulted in core permeability. Permeability did not increase in response to starvation and scCO2 challenges. Viable population assays of organisms in the effluent indicated survival of the microorganisms following scCO2 challenges of <71h and starvation for <363h

  2. Interactions in multispecies biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Ren, Dawei; Bjarnsholt, Thomas;

    2014-01-01

    The recent focus on complex bacterial communities has led to the recognition of interactions across species boundaries. This is particularly pronounced in multispecies biofilms, where synergistic interactions impact the bacterial distribution and overall biomass produced. Importantly, in a number...... of settings, the interactions in a multispecies biofilm affect its overall function, physiology, or surroundings, by resulting in enhanced resistance, virulence, or degradation of pollutants, which is of significant importance to human health and activities. The underlying mechanisms causing these...

  3. How Staphylococcus aureus biofilms develop their characteristic structure

    OpenAIRE

    Periasamy, Saravanan; Joo, Hwang-Soo; Duong, Anthony C.; Bach, Thanh-Huy L.; Tan, Vee Y.; Chatterjee, Som S.; Cheung, Gordon Y. C.; Otto, Michael

    2012-01-01

    Biofilms cause significant problems in the environment and during the treatment of infections. However, the molecular mechanisms underlying biofilm formation are poorly understood. There is a particular lack of knowledge about biofilm maturation processes, such as biofilm structuring and detachment, which are deemed crucial for the maintenance of biofilm viability and the dissemination of cells from a biofilm. Here, we identify the phenol-soluble modulin (PSM) surfactant peptides as key biofi...

  4. Strategies for combating bacterial biofilm infections

    Institute of Scientific and Technical Information of China (English)

    Hong Wu; Claus Moser; Heng-Zhuang Wang; Niels Hiby; Zhi-Jun Song

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwelling devices. Clinical observations and experimental studies indicated clearly that antibiotic treatment alone is in most cases insufficient to eradicate biofilm infections. Therefore, to effectively treat biofilm infections with currently available antibiotics and evaluate the outcomes become important and urgent for clinicians. The review summarizes the latest progress in treatment of clinical biofilm infections and scientific investigations, discusses the diagnosis and treatment of different biofilm infections and introduces the promising laboratory progress, which may contribute to prevention or cure of biofilm infections. We conclude that, an efficient treatment of biofilm infections needs a well-established multidisciplinary collaboration, which includes removal of the infected foreign bodies, selection of biofilm-active, sensitive and well-penetrating antibiotics, systemic or topical antibiotic administration in high dosage and combinations, and administration of anti-quorum sensing or biofilm dispersal agents.

  5. Pattern formation in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Parsek, Matthew R.; Tolker-Nielsen, Tim

    2008-01-01

    Bacteria are capable of forming elaborate multicellular communities called biofilms. Pattern formation in biofilms depends on cell proliferation and cellular migration in response to the available nutrients and other external cues, as well as on self-generated intercellular signal molecules and the...... production of an extracellular matrix that serves as a structural 'scaffolding' for the biofilm cells. Pattern formation in biofilms allows cells to position themselves favorably within nutrient gradients and enables buildup and maintenance of physiologically distinct subpopulations, which facilitates...... survival of one or more subpopulations upon environmental insult, and therefore plays an important role in the innate tolerance displayed by biofilms toward adverse conditions....

  6. Beneficial biofilms

    Directory of Open Access Journals (Sweden)

    Sara R Robertson

    2015-10-01

    Full Text Available Surface-adherent biofilm growth is a common trait of bacteria and other microorganisms in nature. Within biofilms, organisms are present in high density and are enmeshed in an organic matrix containing polysaccharides and other molecules. The close proximity of organisms within biofilms facilitates microbial interactions and signaling, including many metabolic processes in which consortia rather than individual organisms participate. Biofilm growth also enables microorganisms to withstand chemical and biological stresses. Here, we review some current literature and document representative beneficial aspects of biofilms using examples from wastewater treatment, microbial fuel cells, biological repair (biocementation of stonework, and biofilm protection against Candida albicans infections. Finally, we address a chemical ecology strategy whereby desired microbial succession and beneficial biofilm formation can be encouraged via manipulation of culture conditions and bacterial signaling.

  7. 口腔中生物膜分散机制的研究进展%Review of the mechanisms of oral biofilm dispersal

    Institute of Scientific and Technical Information of China (English)

    刘冠琪; 张恺; 艾虹

    2016-01-01

    Bacterial biofilm is a structure that makes bacteria adhere to a medium surface and this kind of colonies allows bacteria to adapt to the surrounding environment more easily. The final stage of biofilm development is the detachment of cells from the biofilm colony and their dispersal into the environment,which is called as biofilm dispersal. Biofilm dispersal can be mediated by the mechanisms such as enzymatic degradation,seeding dispersal,and the production of rhamnolipids. It can be regulated by the factors inside or outside the biofilm colony. Biofilm dispersal plays an important role in the exacerbation and spread of infection within a host. On the other side,the dispersal bacteria will lose the protection of the biofilm and making itself more easily to be wiped out. Biofilm dispersal is a promising area of research that may lead to find a way to promote biofilm dispersal and to provide a new idea for solving the intractable bacterial infection. This review describes the current status of research on biofilm formation,the mechanisms of the dispersal,the regulation of the dispersal process and the clinical implications of biofilm dispersal. The potential therapeutic applications will also be discussed.%细菌生物膜是细菌在介质表面黏附生存的细菌群体,生物膜菌落的形成使得细菌更容易适应周围环境.在生物膜发展的最后一个阶段,细菌从生物膜菌落中分离出来然后分散到周围环境中,这个过程称为生物膜的分散.生物膜分散由酶促降解、种植传播、鼠李糖脂的产生等机制介导,并受到自身以及外界多种物理化学因素等调控.口腔中生物膜分散一方面使细菌得以从病灶扩散到新的部位导致感染性疾病的加重,而另一方面,分散开的细菌由于失去生物膜的保护而变得容易去除和杀灭.通过对生物膜分散机制的研究,找到促进生物膜分散的途径,解决治疗难治性细菌感染的难题,是近年来的研究热

  8. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics.

    Science.gov (United States)

    Klein, Marlise I; Xiao, Jin; Lu, Bingwen; Delahunty, Claire M; Yates, John R; Koo, Hyun

    2012-01-01

    Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the

  9. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics.

    Directory of Open Access Journals (Sweden)

    Marlise I Klein

    Full Text Available Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA and glucan-binding (gbpB during this transition (P<0.05. Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism, and molecular chaperones (GroEL. Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms demonstrating fundamental differences in the matrix assembly, survival and biofilm

  10. Impact of hydrodynamics on oral biofilm strength.

    Science.gov (United States)

    Paramonova, E; Kalmykowa, O J; van der Mei, H C; Busscher, H J; Sharma, P K

    2009-10-01

    Mechanical removal of oral biofilms is ubiquitously accepted as the best way to prevent caries and periodontal diseases. Removal effectiveness strongly depends on biofilm strength. To investigate the influence of hydrodynamics on oral biofilm strength, we grew single- and multi-species biofilms of Streptococcus oralis J22, Actinomyces naeslundii TV14-J1, and full dental plaque at shear rates ranging from 0.1 to 50 1/sec and measured their compressive strength. Subsequently, biofilm architecture was evaluated by confocal laser scanning microscopy. Multi-species biofilms were stronger than single-species biofilms, with strength values ranging from 6 to 51 Pa and from 5 to 17 Pa, respectively. In response to increased hydrodynamic shear, biofilm strength decreased, and architecture changed from uniform carpet-like to more "fluffy" with higher thickness. S. oralis biofilms grown under variable shear of 7 and 50 1/sec possessed properties intermediate of those measured at the respective single shears. PMID:19783800

  11. Biofilm formation on abiotic surfaces

    DEFF Research Database (Denmark)

    Tang, Lone

    2011-01-01

    Bacteria can attach to any surface in contact with water and proliferate into complex communities enclosed in an adhesive matrix, these communities are called biofilms. The matrix makes the biofilm difficult to remove by physical means, and bacteria in biofilm can survive treatment with many...... antibiotics, disinfectants and cleaning agents. Biofilms are therefore very difficult to eradicate, and an attractive approach to limit biofilm formation is to reduce bacterial adhesion. In this thesis it was shown that lowering the surface roughness had a greater effect on bacterial retention compared to...... changing the surface hydrophobicity. The influence of surface topography in the <100 nanometer range was less clear and its effect on bacterial retention depended on the strain used in the experiment. Extracellular DNA (eDNA) is an the ubiquitous biomolecule of great importance for bacterial adhesion. The...

  12. Biofilm Formation by Cryptococcus neoformans.

    Science.gov (United States)

    Martinez, Luis R; Casadevall, Arturo

    2015-06-01

    The fungus Cryptococcus neoformans possesses a polysaccharide capsule and can form biofilms on medical devices. The increasing use of ventriculoperitoneal shunts to manage intracranial hypertension associated with cryptococcal meningoencephalitis highlights the importance of investigating the biofilm-forming properties of this organism. Like other microbe-forming biofilms, C. neoformans biofilms are resistant to antimicrobial agents and host defense mechanisms, causing significant morbidity and mortality. This chapter discusses the recent advances in the understanding of cryptococcal biofilms, including the role of its polysaccharide capsule in adherence, gene expression, and quorum sensing in biofilm formation. We describe novel strategies for the prevention or eradication of cryptococcal colonization of medical prosthetic devices. Finally, we provide fresh thoughts on the diverse but interesting directions of research in this field that may result in new insights into C. neoformans biology. PMID:26185073

  13. Biofilm formation and microbial corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.; Porcella, D.

    1992-07-01

    Biofilms-colonies of microorganisms growing on surfaces - can greatly accelerate the corrosion rates of metals and alloys in utility water systems. Fundamental EPRI research is showing how mechanisms of biofilm formation, interactions between bacterial species, and metabolic activities control such biofilm properties as corrosive potential This research is identifying methods to control biofilm development and prevent microbially influenced corrosion. The results should also apply to the control of other processes involving biological consortia, including the bioremediation of contaminated groundwater and soil and the biodesulfurization of coal.

  14. Biofilm Infections

    DEFF Research Database (Denmark)

    A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized as...... being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections such as...... diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well as...

  15. Biofilm Infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Jensen, Peter Østrup; Moser, Claus Ernst; Høiby, Niels

    being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections such as......A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized as...... diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well as...

  16. Experimental evolution in biofilm populations.

    Science.gov (United States)

    Steenackers, Hans P; Parijs, Ilse; Foster, Kevin R; Vanderleyden, Jozef

    2016-05-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  17. Biofilms: an emergent form of bacterial life.

    Science.gov (United States)

    Flemming, Hans-Curt; Wingender, Jost; Szewzyk, Ulrich; Steinberg, Peter; Rice, Scott A; Kjelleberg, Staffan

    2016-08-11

    Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle. PMID:27510863

  18. Impact of oxidative and osmotic stresses on Candida albicans biofilm formation.

    Science.gov (United States)

    Pemmaraju, Suma C; Padmapriya, Kumar; Pruthi, Parul A; Prasad, R; Pruthi, Vikas

    2016-09-01

    Candida albicans possesses an ability to grow under different host-driven stress conditions by developing robust protective mechanisms. In this investigation the focus was on the impact of osmotic (2M NaCl) and oxidative (5 mM H2O2) stress conditions during C. albicans biofilm formation. Oxidative stress enhanced extracellular DNA secretion into the biofilm matrix, increased the chitin level, and reduced virulence factors, namely phospholipase and proteinase activity, while osmotic stress mainly increased extracellular proteinase and decreased phospholipase activity. Fourier transform infrared and nuclear magnetic resonance spectroscopy analysis of mannan isolated from the C. albicans biofilm cell wall revealed a decrease in mannan content and reduced β-linked mannose moieties under stress conditions. The results demonstrate that C. albicans adapts to oxidative and osmotic stress conditions by inducing biofilm formation with a rich exopolymeric matrix, modulating virulence factors as well as the cell wall composition for its survival in different host niches. PMID:27472386

  19. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms

    Directory of Open Access Journals (Sweden)

    Cochrane Brett

    2009-12-01

    Full Text Available Abstract Background Biofilm formation enhances the capacity of pathogenic Salmonella bacteria to survive stresses that are commonly encountered within food processing and during host infection. The persistence of Salmonella within the food chain has become a major health concern, as biofilms can serve as a reservoir for the contamination of food products. While the molecular mechanisms required for the survival of bacteria on surfaces are not fully understood, transcriptional studies of other bacteria have demonstrated that biofilm growth triggers the expression of specific sets of genes, compared with planktonic cells. Until now, most gene expression studies of Salmonella have focused on the effect of infection-relevant stressors on virulence or the comparison of mutant and wild-type bacteria. However little is known about the physiological responses taking place inside a Salmonella biofilm. Results We have determined the transcriptomic and proteomic profiles of biofilms of Salmonella enterica serovar Typhimurium. We discovered that 124 detectable proteins were differentially expressed in the biofilm compared with planktonic cells, and that 10% of the S. Typhimurium genome (433 genes showed a 2-fold or more change in the biofilm compared with planktonic cells. The genes that were significantly up-regulated implicated certain cellular processes in biofilm development including amino acid metabolism, cell motility, global regulation and tolerance to stress. We found that the most highly down-regulated genes in the biofilm were located on Salmonella Pathogenicity Island 2 (SPI2, and that a functional SPI2 secretion system regulator (ssrA was required for S. Typhimurium biofilm formation. We identified STM0341 as a gene of unknown function that was needed for biofilm growth. Genes involved in tryptophan (trp biosynthesis and transport were up-regulated in the biofilm. Deletion of trpE led to decreased bacterial attachment and this biofilm defect

  20. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms.

    LENUS (Irish Health Repository)

    Hamilton, Shea

    2009-12-11

    Abstract Background Biofilm formation enhances the capacity of pathogenic Salmonella bacteria to survive stresses that are commonly encountered within food processing and during host infection. The persistence of Salmonella within the food chain has become a major health concern, as biofilms can serve as a reservoir for the contamination of food products. While the molecular mechanisms required for the survival of bacteria on surfaces are not fully understood, transcriptional studies of other bacteria have demonstrated that biofilm growth triggers the expression of specific sets of genes, compared with planktonic cells. Until now, most gene expression studies of Salmonella have focused on the effect of infection-relevant stressors on virulence or the comparison of mutant and wild-type bacteria. However little is known about the physiological responses taking place inside a Salmonella biofilm. Results We have determined the transcriptomic and proteomic profiles of biofilms of Salmonella enterica serovar Typhimurium. We discovered that 124 detectable proteins were differentially expressed in the biofilm compared with planktonic cells, and that 10% of the S. Typhimurium genome (433 genes) showed a 2-fold or more change in the biofilm compared with planktonic cells. The genes that were significantly up-regulated implicated certain cellular processes in biofilm development including amino acid metabolism, cell motility, global regulation and tolerance to stress. We found that the most highly down-regulated genes in the biofilm were located on Salmonella Pathogenicity Island 2 (SPI2), and that a functional SPI2 secretion system regulator (ssrA) was required for S. Typhimurium biofilm formation. We identified STM0341 as a gene of unknown function that was needed for biofilm growth. Genes involved in tryptophan (trp) biosynthesis and transport were up-regulated in the biofilm. Deletion of trpE led to decreased bacterial attachment and this biofilm defect was restored by

  1. Mechanism of alkaline detergent to remove biofilm%碱性清洗剂去除生物膜机制探讨

    Institute of Scientific and Technical Information of China (English)

    柴海荣; 黎晓晖; 杨丽雅; 张建辉; 陈彦丽; 孙称心; 郭杰河; 丁志平

    2012-01-01

    OBJECTIVE To explore the mechanism of alkaline detergent to remove the biofilm and its effect. METHODS The Hucker's soil model and the biofilm PCV button model were established, both were immersed in the alkaline and enzymatic detergents to remove the simulated pollutants. The contaminants clearance by the Husker s soil model was observed by the visual inspection, and the clearance of biofilm on the PCV button was observed by electron microscope. The effects of different detergents on removing the biofilm were evaluated by the bacterial colony counts method. RESULTS It could concluded from the Hucker's soil model that the mechanism of the alkaline detergent to remove the biofilm is to reduce the adhesive force between biofilm and substrate, which was different from the enzyme-containing detergent. Compared with results of PVC button and the electron microscope, it demonstrated the significant stripping effect by the alkaline detergent. The results of the bacterial colony counts showed that the effect of alkaline detergent was as same as the NaOH of the positive control group on the reducing the biofilm, with the clearance rate almost reaching up to 100%, while the clearance rate of the common enzyme-containing detergent was only 40%, there was an significant difference. CONCLUSION The alkaline detergent can utterly remove the biofilm by reducing the adhesive force between biofilm and substrate,the decontamination effect of which is far better than that of the common enzyme-containing detergent. As compared with the common enzyme-containing detergent, it can significantly remove the biofilm in the simulation test.%目的 探讨碱性清洗剂对去除生物膜机制和效果.方法 建立模拟污染物胡克污染物模型和生物膜负载片,使用生物膜清洗剂和酶洗剂在其工作条件下去浸润模拟污染物,肉眼观察胡克污染物模型的污染物去除情况,显微电镜观察生物膜负载片生物膜去除情况,并细菌计数法评价

  2. Cranberry Flavonoids Modulate Cariogenic Properties of Mixed-Species Biofilm through Exopolysaccharides-Matrix Disruption.

    Directory of Open Access Journals (Sweden)

    Dongyeop Kim

    Full Text Available The exopolysaccharides (EPS produced by Streptococcus mutans-derived glucosyltransferases (Gtfs are essential virulence factors associated with the initiation of cariogenic biofilms. EPS forms the core of the biofilm matrix-scaffold, providing mechanical stability while facilitating the creation of localized acidic microenvironments. Cranberry flavonoids, such as A-type proanthocyanidins (PACs and myricetin, have been shown to inhibit the activity of Gtfs and EPS-mediated bacterial adhesion without killing the organisms. Here, we investigated whether a combination of cranberry flavonoids disrupts EPS accumulation and S. mutans survival using a mixed-species biofilm model under cariogenic conditions. We also assessed the impact of cranberry flavonoids on mechanical stability and the in situ pH at the biofilm-apatite interface. Topical application of an optimized combination of PACs oligomers (100-300 μM with myricetin (2 mM twice daily was used to simulate treatment regimen experienced clinically. Treatments with cranberry flavonoids effectively reduced the insoluble EPS content (>80% reduction vs. vehicle-control; p<0.001, while hindering S. mutans outgrowth within mixed-species biofilms. As a result, the 3D architecture of cranberry-treated biofilms was severely compromised, showing a defective EPS-matrix and failure to develop microcolonies on the saliva-coated hydroxyapatite (sHA surface. Furthermore, topical applications of cranberry flavonoids significantly weaken the mechanical stability of the biofilms; nearly 90% of the biofilm was removed from sHA surface after exposure to a shear stress of 0.449 N/m2 (vs. 36% removal in vehicle-treated biofilms. Importantly, in situ pH measurements in cranberry-treated biofilms showed significantly higher pH values (5.2 ± 0.1 at the biofilm-apatite interface vs. vehicle-treated biofilms (4.6 ± 0.1. Altogether, the data provide important insights on how cranberry flavonoids treatments modulate

  3. Berberine Antifungal Activity in Fluconazole-Resistant Pathogenic Yeasts: Action Mechanism Evaluated by Flow Cytometry and Biofilm Growth Inhibition in Candida spp.

    Science.gov (United States)

    da Silva, Anderson Ramos; de Andrade Neto, João Batista; da Silva, Cecília Rocha; Campos, Rosana de Sousa; Costa Silva, Rose Anny; Freitas, Daniel Domingues; do Nascimento, Francisca Bruna Stefany Aires; de Andrade, Larissa Nara Dantas; Sampaio, Letícia Serpa; Grangeiro, Thalles Barbosa; Magalhães, Hemerson Iury Ferreira; Cavalcanti, Bruno Coêlho; de Moraes, Manoel Odorico; Nobre Júnior, Hélio Vitoriano

    2016-06-01

    The incidence of fungal infections and, in particular, the incidence of fungal antibiotic resistance, which is associated with biofilm formation, have significantly increased, contributing to morbidity and mortality. Thus, new therapeutic strategies need to be developed. In this context, natural products have emerged as a major source of possible antifungal agents. Berberine is a protoberberine-type isoquinoline alkaloid isolated from the roots, rhizomes, and stem bark of natural herbs, such as Berberis aquifolium, Berberis vulgaris, Berberis aristata, and Hydrastis canadensis, and of Phellodendron amurense Berberine has been proven to have broad antibacterial and antifungal activity. In the present study, the potential antifungal effect of berberine against fluconazole-resistant Candida and Cryptococcus neoformans strains, as well as against the biofilm form of Candida spp., was assessed. The antifungal effect of berberine was determined by a broth microdilution method (the M27-A3 method of the Clinical and Laboratory Standards Institute) and flow cytometry techniques, in which the probable mechanism of action of the compound was also assessed. For biofilm assessment, a colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine the susceptibility of sessile cells. The isolates used in the study belonged to the Laboratory of Bioprospection and Experiments in Yeast (LABEL) of the Federal University of Ceará. After 24 and 72 h, fluconazole-resistant Candida and Cryptococcus neoformans strains showed berberine MICs equal to 8 μg/ml and 16 μg/ml, respectively. Cytometric analysis showed that treatment with berberine caused alterations to the integrity of the plasma and mitochondrial membranes and DNA damage, which led to cell death, probably by apoptosis. Assessment of biofilm-forming isolates after treatment showed statistically significant reductions in biofilm cell activity (P < 0.001). PMID:27021328

  4. Medical Biofilms

    OpenAIRE

    Bryers, James D.

    2008-01-01

    For more than two decades, Biotechnology and Bioengineering has documented research focused on natural and engineered microbial biofilms within aquatic and subterranean ecosystems, wastewater and waste-gas treatment systems, marine vessels and structures, and industrial bioprocesses. Compared to suspended culture systems, intentionally engineered biofilms are heterogeneous reaction systems that can increase reactor productivity, system stability, and provide inherent cell: product separation....

  5. Salmonella biofilms

    NARCIS (Netherlands)

    Castelijn, G.A.A.

    2013-01-01

    Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm formation. A collectio

  6. Biofilm Development

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2015-01-01

    , and not by specific genetic programs. It appears that biofilm formation can occur through multiple pathways and that the spatial structure of the biofilms is species dependent as well as dependent on environmental conditions. Bacterial subpopulations, e.g., motile and nonmotile subpopulations, can develop...

  7. The effects of stainless steel finish on Salmonella Typhimurium attachment, biofilm formation and sensitivity to chlorine.

    Science.gov (United States)

    Schlisselberg, Dov B; Yaron, Sima

    2013-08-01

    Bacterial colonization and biofilm formation on stainless steel (SS) surfaces can be sources for cross contamination in food processing facilities, possessing a great threat to public health and food quality. Here the aim was to demonstrate the influence of surface finish of AISI 316 SS on colonization, biofilm formation and susceptibility of Salmonella Typhimurium to disinfection. Initial attachment of S. Typhimurium on surfaces of SS was four times lower, when surface was polished by Bright-Alum (BA) or Electropolishing (EP), as compared to Mechanical Sanded (MS) or the untreated surface (NT). The correlation between roughness and initial bacterial attachment couldn't account on its own to explain differences seen. Biofilms with similar thickness (15-18 μm) were developed on all surfaces 1-day post inoculation, whereas EP was the least covered surface (23%). Following 5-days, biofilm thickness was lowest on EP and MS (30 μm) and highest on NT (62 μm) surfaces. An analysis of surface composition suggested a link between surface chemistry and biofilm development, where the higher concentrations of metal ions in EP and MS surfaces correlated with limited biofilm formation. Interestingly, disinfection of biofilms with chlorine was up to 130 times more effective on the EP surface (0.005% surviving) than on the other surfaces. Overall these results suggest that surface finish should be considered carefully in a food processing plant. PMID:23628616

  8. Bacterial biofilm formation, pathogenicity, diagnostics and control: An overview

    Directory of Open Access Journals (Sweden)

    Sawhney Rajesh

    2009-07-01

    Full Text Available Bacterial biofilms are complex, mono- or poly-microbialn communities adhering to biotic or abiotic surfaces. This adaptation has been implicated as a survival strategy. The formation of biofilms is mediated by mechanical, biochemical and genetical factors. The biofilms enhance the virulence of the pathogen and have their potential role in various infections, such as dental caries, cystic fibrosis, osteonecrosis, urinary tract infection and eye infections. A number of diagnostic techniques, viz., bright-field microscopy, epifluorescence microscopy, scanning electron microscopy, confocal laser scanning microscopy and amplicon length heterogeneity polymerase chain reaction, have been employed for detection of these communities. Researchers have worked on applications of catheter lock solutions, a fish protein coating, acid shock treatment, susceptibility to bacteriophages, etc., for biofilm control. However, we need to rearrange our strategies to have thorough insight and concentrate on priority basis to develop new accurate, precise and rapid diagnostic protocols for detection and evaluation of biofilm. Above all, the strict compliance to these techniques is required for accurate diagnosis and control.

  9. Bioelectrochemical Reduction of Fe(II)EDTA-NO in a Biofilm Electrode Reactor: Performance, Mechanism, and Kinetics.

    Science.gov (United States)

    Xia, Yinfeng; Zhao, Jingkai; Li, Meifang; Zhang, Shihan; Li, Sujing; Li, Wei

    2016-04-01

    A biofilm electrode reactor (BER) is proposed to effectively regenerate Fe(II)EDTA, a solvent for NOx removal from flue gas, from Fe(II)EDTA-NO, a spent solution. In this study, the performance, mechanism, and kinetics of the bioelectrochemical reduction of Fe(II)EDTA-NO were investigated. The pathways of Fe(II)EDTA-NO reduction were investigated via determination of nitrogen element balance in the BER and an abiotic electrode reactor. The experimental results indicate that the chelated NO (Fe(II)EDTA-NO) is reduced to N2 with N2O as an intermediate. However, the oxidation of NO occurred in the absence of Fe(II)EDTA in abiotic reactors. Furthermore, the accumulation of N2O was suppressed with the help of electricity. The preponderant electron donor for reduction of Fe(II)EDTA-NO was also confirmed via analysis of the electron conservation. About 87% of Fe(II)EDTA-NO was reduced using Fe(II)EDTA as the electron donor in the presence of both glucose and cathode electrons while the cathode electrons were utilized for the reduction of Fe(III)EDTA to Fe(II)EDTA. Michaelis-Menten kinetic constants of bioelectrochemical reduction of Fe(II)EDTA-NO were also calculated. The maximum reduction rate of Fe(II)EDTA-NO was 13.04 mol m(-3) h(-1), which is 50% higher than that in a conventional biofilter. PMID:26900881

  10. Intrigues of biofilm: A perspective in veterinary medicine

    Science.gov (United States)

    Abdullahi, Umar Faruk; Igwenagu, Ephraim; Mu’azu, Anas; Aliyu, Sani; Umar, Maryam Ibrahim

    2016-01-01

    Biofilm has a tremendous impact in the field of veterinary medicine, especially the livestock industry, leading to a serious economic loss. Over the years, little attention has been given to biofilm in animals with most of the research geared toward human biofilm diseases. The greatest challenge posed by biofilm is in its incredible ability to resist most of the currently existing antibiotics. This mystery can best be demystified through understanding the mechanism of the quorum sensing which regulate the pathophysiology of biofilm. Ability of biofilm formation in a variety of inanimate surfaces such as animal food contact surfaces is responsible for a host of biofilm diseases affecting animals and humans. In this review, we highlighted some of the challenges of biofilm in livestock and food industries. Also highlighted are; mechanisms of biofilm development, best diagnostic approach and possible novel therapeutic measures needed to combat the menace of biofilm in veterinary medicine. PMID:27051178

  11. Intrigues of biofilm: A perspective in veterinary medicine

    Directory of Open Access Journals (Sweden)

    Umar Faruk Abdullahi

    2016-01-01

    Full Text Available Biofilm has a tremendous impact in the field of veterinary medicine, especially the livestock industry, leading to a serious economic loss. Over the years, little attention has been given to biofilm in animals with most of the research geared toward human biofilm diseases. The greatest challenge posed by biofilm is in its incredible ability to resist most of the currently existing antibiotics. This mystery can best be demystified through understanding the mechanism of the quorum sensing which regulate the pathophysiology of biofilm. Ability of biofilm formation in a variety of inanimate surfaces such as animal food contact surfaces is responsible for a host of biofilm diseases affecting animals and umans. In this review, we highlighted some of the challenges of biofilm in livestock and food industries. Also highlighted are; mechanisms of biofilm development, best diagnostic approach and possible novel therapeutic measures needed to combat the menace of biofilm in veterinary medicine.

  12. Role of biofilm in catheter-associated urinary tract infection

    OpenAIRE

    Trautner, Barbara W.; Darouiche, Rabih O.

    2004-01-01

    The predominant form of life for the majority of microorganisms in any hydrated biologic system is a cooperative community termed a “biofilm.” A biofilm on an indwelling urinary catheter consists of adherent microorganisms, their extracellular products, and host components deposited on the catheter. The biofilm mode of life conveys a survival advantage to the microorganisms associated with it and, thus, biofilm on urinary catheters results in persistent infections that are resistant to antimi...

  13. Efficacy of different carrier gases for barrier discharge plasma generation compared to chlorhexidine on the survival of Pseudomonas aeruginosa embedded in biofilm in vitro.

    Science.gov (United States)

    Matthes, R; Hübner, N-O; Bender, C; Koban, I; Horn, S; Bekeschus, S; Weltmann, K-D; Kocher, T; Kramer, A; Assadian, O

    2014-01-01

    Because of its antimicrobial properties, nonthermal plasma could serve as an alternative to chemical antisepsis in wound treatment. Therefore, this study investigated the inactivation of biofilm-embedded Pseudomonas aeruginosa SG81 by a surface barrier-discharged (SBD) plasma for 30, 60, 150 and 300 s. In order to optimize the efficacy of the plasma, different carrier gases (argon, argon admixed with 1% oxygen, and argon with increased humidity up to approx. 80%) were tested and compared against 0.1% chlorhexidine digluconate (CHG) exposure for 600 s. The antimicrobial efficacy was determined by calculating the difference between the numbers of colony-forming units (CFU) of treated and untreated biofilms. Living bacteria were distinguished from dead by fluorescent staining and confocal laser scanning microscopy. Both SBD plasmas and CHG showed significant antimicrobial effects compared to the untreated control. However, plasma treatment led to a higher antimicrobial reduction (argon plasma 4.9 log10 CFU/cm(2), argon with admixed oxygen 3 log10 CFU/cm(2), and with increased gas humidity 2.7 log10 CFU/cm(2) after 300 s) compared to CHG. In conclusion, SBD plasma is suitable as an alternative to CHG for inactivation of Pseudomonas aeruginosa embedded in biofilm. Further development of SBD plasma sources and research on the role of carrier gases and humidity may allow their clinical application for wound management in the future. PMID:24434726

  14. Impacto da remoção de biofilme lingual em pacientes sob ventilação mecânica Impact of tongue biofilm removal on mechanically ventilated patients

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio da Silva Santos

    2013-03-01

    Full Text Available OBJETIVO: Avaliar a eficiência de limpador de língua para remoção do biofilme lingual em pacientes sob ventilação mecânica. MÉTODOS: Foram coletadas amostras de biofilme lingual e de secreção traqueal de 50 pacientes intubados ou traqueostomizados sob ventilação assistida em grupo de estudo (GE - uso de limpador lingual e grupo controle (GC - sem higienização da língua. Foi realizada cultura de secreção oral e traqueal do GE (inicialmente e após 5 dias e do GC (em momento único para avaliar as modificações na flora bacteriana. RESULTADOS: Os pacientes do GE tinham mediana de idade de 77 (45-99 anos, e os do GC de 79 (21-94 anos. O período de internação dos pacientes do GE oscilou entre 17 e 1.370 dias, com mediana de 425 dias, e do GC, entre 4 e 240 dias, com mediana de 120 dias. Na comparação do índice de placa bacteriana bucal entre os grupos de estudo e controle, não foram encontradas diferenças significantes. Não houve correlação entre esse índice e o tempo de internação. A mesma flora bacteriana foi encontrada na placa bacteriana bucal antes e após 5 dias de uso do raspador lingual no GE, somente em 9 dos 27 casos em relação ao encontrado no GC (p=0,683. Em 7 dos 27 pacientes do GE houve positividade de culturas bacterianas com as mesmas cepas tanto para biofilme lingual quanto para secreção traqueal (p=0,003 em relação ao GC. A similaridade na resistência e na sensibilidade das cepas dos micro-organismos encontrados, com o objetivo de associar a flora do biofilme lingual com a da secreção traqueal, mostrou significância em 6/23 casos somente no GC (p=0,006. CONCLUSÃO: O uso do limpador de língua é um mecanismo efetivo na redução do biofilme lingual em pacientes sob ventilação mecânica, além de facilitar a ação dos cuidadores para ações de higiene bucal.OBJECTIVE: To evaluate the effectiveness of a tongue cleaner in the removal of tongue biofilm in mechanically ventilated patients

  15. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly

    OpenAIRE

    Stewart, Elizabeth J.; Mahesh Ganesan; Younger, John G.; Solomon, Michael J.

    2015-01-01

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) co...

  16. Resilient Voting Mechanisms for Mission Survivability in Cyberspace: Combining Replication and Diversity

    Directory of Open Access Journals (Sweden)

    Charles A. Kamhoua

    2012-08-01

    Full Text Available While information systems became ever more complex and the interdependence of these systems increased, mission-critical services should be survivable even in the presence of cyber attacks or internal failures. Node replication can be used to protect a mission-critical system against faults that may occur naturally or be caused by malicious attackers. The overall reliability increases by the number of replicas. However, when the replicas are a perfect copy of each other, a successful attack or failure in any node can be instantaneously repeated in all the other nodes. Eventually, the service of those nodes will discontinue, which may affect the system’s mission. Therefore, it becomes evident that there must be more survivable approach with diversity among the replicas in mission-critical systems. In particular, thisresearch investigates the best binary voting mechanism among replicas. Furthermore, with experimental results, we compare the simple majority mechanism with hierarchical decision process and discuss theirtrade-offs.

  17. Mechanisms of Sensorineural Cell Damage, Death and Survival in the Cochlea

    Directory of Open Access Journals (Sweden)

    Allen Frederic Ryan

    2015-04-01

    Full Text Available The majority of acquired hearing loss, including presbycusis, is caused by irreversible damage to the sensorineural tissues of the cochlea. This article reviews the intracellular mechanisms that contribute to sensorineural damage in the cochlea, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. These data have primarily been generated in hearing loss not directly related to age. However, there is evidence that similar mechanisms operate in presbycusis. Moreover, accumulation of damage from other causes can contribute to age-related hearing loss. Potential therapeutic interventions to balance opposing but interconnected cell damage and survival pathways, such as antioxidants, anti-apoptotics, and pro-inflammatory cytokine inhibitors, are also discussed.

  18. Bacterial interactions in dental biofilm.

    Science.gov (United States)

    Huang, Ruijie; Li, Mingyun; Gregory, Richard L

    2011-01-01

    Biofilms are masses of microorganisms that bind to and multiply on a solid surface, typically with a fluid bathing the microbes. The microorganisms that are not attached but are free floating in an aqueous environment are termed planktonic cells. Traditionally, microbiology research has addressed results from planktonic bacterial cells. However, many recent studies have indicated that biofilms are the preferred form of growth of most microbes and particularly those of a pathogenic nature. Biofilms on animal hosts have significantly increased resistance to various antimicrobials compared to planktonic cells. These microbial communities form microcolonies that interact with each other using very sophisticated communication methods (i.e., quorum-sensing). The development of unique microbiological tools to detect and assess the various biofilms around us is a tremendously important focus of research in many laboratories. In the present review, we discuss the major biofilm mechanisms and the interactions among oral bacteria. PMID:21778817

  19. Antibiotic tolerance and microbial biofilms

    DEFF Research Database (Denmark)

    Folkesson, Anders

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We study the dynamics of antibiotic action within hydrodynamic flow chamber biofilms of Escherichia coli and Pseudomonas aeruginosa using isogenic mutants and fluorescent gene...... expression reporters and we address the question of how biofilm organization affects antibiotic susceptibility. The dynamics of microbial killing is monitored by viable count determination, and confocal laser microscopy. Our work shows that the apparent increased antibiotic tolerance is due to the formation...... of antibiotic tolerant subpopulations within the biofilm. The formation of these subpopulations is highly variable and dependent on the antibiotic used, the biofilm structural organization and the induction of specific tolerance mechanisms....

  20. Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Alhede, Maria; Bjarnsholt, Thomas; Givskov, Michael;

    2014-01-01

    biofilms, which protect the aggregated, biopolymer-embedded bacteria from the detrimental actions of antibiotic treatments and host immunity. A key component in the protection against innate immunity is rhamnolipid, which is a quorum sensing (QS)-regulated virulence factor. QS is a cell-to-cell signaling...... mechanism used to coordinate expression of virulence and protection of aggregated biofilm cells. Rhamnolipids are known for their ability to cause hemolysis and have been shown to cause lysis of several cellular components of the human immune system, for example, macrophages and polymorphonuclear leukocytes...

  1. The Root Canal Biofilm

    NARCIS (Netherlands)

    Sluis, van der L.W.M.; Boutsioukis, C.; Jiang, L.M.; Macedo, R.; Verhaagen, B.; Versluis, M.; Chávez de Paz, E.; Sedgley, C.M.; Kishen, A.

    2015-01-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products from the root canal wall, their removal out of the root cana

  2. The Challenging World of Biofilm Physiology.

    Science.gov (United States)

    Donné, Joke; Dewilde, Sylvia

    2015-01-01

    Worldwide, infectious diseases are one of the leading causes of death among children. At least 65% of all infections are caused by the biofilm mode of bacterial growth. Bacteria colonise surfaces and grow as multicellular biofilm communities surrounded by a polymeric matrix as a common survival strategy. These sessile communities endow bacteria with high tolerance to antimicrobial agents and hence cause persistent and chronic bacterial infections, such as dental caries, periodontitis, otitis media, cystic fibrosis and pneumonia. The highly complex nature and the rapid adaptability of the biofilm population impede our understanding of the process of biofilm formation, but an important role for oxygen-binding proteins herein is clear. Much research on this bacterial lifestyle is already performed, from genome/proteome analysis to in vivo antibiotic susceptibility testing, but without significant progress in biofilm treatment or eradication. This review will present the multiple challenges of biofilm research and discuss possibilities to cross these barriers in future experimental studies. PMID:26616519

  3. Wound biofilms: lessons learned from oral biofilms

    OpenAIRE

    Mancl, Kimberly A.; Kirsner, Robert S.; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque,are a primary cause of oral diseases including caries, gingivitis and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible, thus biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well-elucidated. In contrast, wound research has relati...

  4. Differential growth of wrinkled biofilms

    CERN Document Server

    Espeso, D R; Einarsson, B

    2015-01-01

    Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Foppl-Von Karman equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to repr...

  5. tPA promotes cortical neuron survival via mTOR-dependent mechanisms.

    Science.gov (United States)

    Grummisch, Julia A; Jadavji, Nafisa M; Smith, Patrice D

    2016-07-01

    Tissue plasminogen activator (tPA) is a thrombolytic agent commonly used in the treatment of ischemic stroke. While the thrombolytic effects of tPA have been well established, the impact of this blood-brain barrier (BBB) crossing drug on neurons is not known. Given the widespread use of tPA in the clinical setting and the strict therapeutic window established for effective use of the drug, we examined the molecular mechanisms mediating the impact of tPA on postnatal cortical neurons isolated from the mouse brain. Dissociated postnatal primary cortical neurons were treated with tPA and the effects on neuron survival were evaluated. Pharmacological inhibitors of several signaling pathways previously implicated in neuroprotection (mTOR, JAK/STAT, MAPK and PKA-dependent mechanisms) were used to pinpoint the mechanistic effectors of tPA on neuron survival in vitro. We report here that tPA treatment results in a time-dependent neuroprotective effect on postnatal cortical neurons that relies predominantly on Janus kinase (JAK) and mammalian target of rapamycin (mTOR) signaling mechanisms. Taken together, these data suggest that tPA promotes neuroprotection in a temporally-regulated manner and that both JAK and mTOR signaling effectors are critical mediators of this neuroprotective effect. The results suggest the possibility of targeting these defined mechanisms to potentially expand the therapeutic window for tPA. PMID:26995507

  6. Nanoindentation of Pseudomonas aeruginosa bacterial biofilm using atomic force microscopy

    Science.gov (United States)

    Baniasadi, Mahmoud; Xu, Zhe; Gandee, Leah; Du, Yingjie; Lu, Hongbing; Zimmern, Philippe; Minary-Jolandan, Majid

    2014-12-01

    Bacterial biofilms are a source of many chronic infections. Biofilms and their inherent resistance to antibiotics are attributable to a range of health issues including affecting prosthetic implants, hospital-acquired infections, and wound infection. Mechanical properties of biofilm, in particular, at micro- and nano-scales, are governed by microstructures and porosity of the biofilm, which in turn may contribute to their inherent antibiotic resistance. We utilize atomic force microscopy (AFM)-based nanoindentation and finite element simulation to investigate the nanoscale mechanical properties of Pseudomonas aeruginosa bacterial biofilm. This biofilm was derived from human samples and represents a medically relevant model.

  7. Nanoindentation of Pseudomonas aeruginosa bacterial biofilm using atomic force microscopy

    International Nuclear Information System (INIS)

    Bacterial biofilms are a source of many chronic infections. Biofilms and their inherent resistance to antibiotics are attributable to a range of health issues including affecting prosthetic implants, hospital-acquired infections, and wound infection. Mechanical properties of biofilm, in particular, at micro- and nano-scales, are governed by microstructures and porosity of the biofilm, which in turn may contribute to their inherent antibiotic resistance. We utilize atomic force microscopy (AFM)-based nanoindentation and finite element simulation to investigate the nanoscale mechanical properties of Pseudomonas aeruginosa bacterial biofilm. This biofilm was derived from human samples and represents a medically relevant model. (paper)

  8. Survival of Salmonella serovars on beef carcasses and molecular mechanisms to survive low temperature stress and desiccation

    DEFF Research Database (Denmark)

    Knudsen, Gitte Maegaard; Thomsen, Line Elnif; Aabo, Søren;

    2006-01-01

    P genes of the S. Typhimurium C5 wildtype are under investigation. The mutants and the wildtype have been tested for growth and survival at low temperature and desiccation. No differences were observed between wildtype and mutants after 20 days at fridge temperature (~4°C) on LB agar plates. However, both...

  9. 3D Chlorine and Monochloramine Penetration and Nitrifying Biofilm Activity and Viability: Periodic Chlorine Switch Implications

    Science.gov (United States)

    Biofilm formation in drinking water distribution systems has been associated with water quality degradation and may result in non-compliance with existing regulations. United States water utilities report biofilm survival and regrowth despite disinfectant presence, and systems t...

  10. Exploiting social evolution in biofilms

    OpenAIRE

    Boyle, Kerry E.; Heilmann, Silja; van Ditmarsch, Dave; Xavier, Joao B.

    2013-01-01

    Bacteria are highly social organisms that communicate via signaling molecules, move collectively over surfaces and make biofilm communities. Nonetheless, our main line of defense against pathogenic bacteria consists of antibiotics – drugs that target individual-level traits of bacterial cells and thus, regrettably, select for resistance against their own action. A possible solution lies in targeting the mechanisms by which bacteria interact with each other within biofilms. The emerging field ...

  11. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    Directory of Open Access Journals (Sweden)

    E. S. Vorobey

    2012-03-01

    Full Text Available Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molecules of the Quorum sensing system. Coordination of bacterial cells activity in the biofilms gives them significant advantages: in the biofilms bacteria are protected from the influence of the host protective factors and the antibacterial drugs.

  12. Molecular basis of in-vivo biofilm formation by bacterial pathogens

    OpenAIRE

    Joo, Hwang-Soo; Otto, Michael

    2012-01-01

    Bacterial biofilms are involved in a multitude of serious chronic infections. In recent years, modeling biofilm infection in vitro led to the identification of microbial determinants governing biofilm development. However, we lack information as to whether biofilm formation mechanisms identified in vitro have relevance for biofilm-associated infection. Here, we discuss the molecular basis of biofilm formation using staphylococci and Pseudomonas aeruginosa to illustrate key points, as their bi...

  13. Pathway analysis reveals common pro-survival mechanisms of metyrapone and carbenoxolone after traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Helen L Hellmich

    Full Text Available Developing new pharmacotherapies for traumatic brain injury (TBI requires elucidation of the neuroprotective mechanisms of many structurally and functionally diverse compounds. To test our hypothesis that diverse neuroprotective drugs similarly affect common gene targets after TBI, we compared the effects of two drugs, metyrapone (MT and carbenoxolone (CB, which, though used clinically for noncognitive conditions, improved learning and memory in rats and humans. Although structurally different, both MT and CB inhibit a common molecular target, 11β hydroxysteroid dehydrogenase type 1, which converts inactive cortisone to cortisol, thereby effectively reducing glucocorticoid levels. We examined injury-induced signaling pathways to determine how the effects of these two compounds correlate with pro-survival effects in surviving neurons of the injured rat hippocampus. We found that treatment of TBI rats with MT or CB acutely induced in hippocampal neurons transcriptional profiles that were remarkably similar (i.e., a coordinated attenuation of gene expression across multiple injury-induced cell signaling networks. We also found, to a lesser extent, a coordinated increase in cell survival signals. Analysis of injury-induced gene expression altered by MT and CB provided additional insight into the protective effects of each. Both drugs attenuated expression of genes in the apoptosis, death receptor and stress signaling pathways, as well as multiple genes in the oxidative phosphorylation pathway such as subunits of NADH dehydrogenase (Complex1, cytochrome c oxidase (Complex IV and ATP synthase (Complex V. This suggests an overall inhibition of mitochondrial function. Complex 1 is the primary source of reactive oxygen species in the mitochondrial oxidative phosphorylation pathway, thus linking the protective effects of these drugs to a reduction in oxidative stress. The net effect of the drug-induced transcriptional changes observed here indicates that

  14. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    OpenAIRE

    E. S. Vorobey; O. S. Voronkova; A. I. Vinnikov

    2012-01-01

    Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molec...

  15. Biofilm accumulation model that predicts antibiotic resistance of Pseudomonas aeruginosa biofilms.

    OpenAIRE

    Stewart, P.S.

    1994-01-01

    A computer model of biofilm dynamics was adapted to incorporate the activity of an antimicrobial agent on bacterial biofilm. The model was used to evaluate the plausibility of two mechanisms of biofilm antibiotic resistance by qualitative comparison with data from a well-characterized experimental system (H. Anwar, J. L. Strap, and J. W. Costerton, Antimicrob. Agents Chemother. 36:1208-1214, 1992). The two mechanisms involved either depletion of the antibiotic by reaction with biomass or phys...

  16. Osteopontin reduces biofilm formation in a multi-species model of dental biofilm.

    Directory of Open Access Journals (Sweden)

    Sebastian Schlafer

    Full Text Available BACKGROUND: Combating dental biofilm formation is the most effective means for the prevention of caries, one of the most widespread human diseases. Among the chemical supplements to mechanical tooth cleaning procedures, non-bactericidal adjuncts that target the mechanisms of bacterial biofilm formation have gained increasing interest in recent years. Milk proteins, such as lactoferrin, have been shown to interfere with bacterial colonization of saliva-coated surfaces. We here study the effect of bovine milk osteopontin (OPN, a highly phosphorylated whey glycoprotein, on a multispecies in vitro model of dental biofilm. While considerable research effort focuses on the interaction of OPN with mammalian cells, there are no data investigating the influence of OPN on bacterial biofilms. METHODOLOGY/PRINCIPAL FINDINGS: Biofilms consisting of Streptococcus oralis, Actinomyces naeslundii, Streptococcus mitis, Streptococcus downei and Streptococcus sanguinis were grown in a flow cell system that permitted in situ microscopic analysis. Crystal violet staining showed significantly less biofilm formation in the presence of OPN, as compared to biofilms grown without OPN or biofilms grown in the presence of caseinoglycomacropeptide, another phosphorylated milk protein. Confocal microscopy revealed that OPN bound to the surface of bacterial cells and reduced mechanical stability of the biofilms without affecting cell viability. The bacterial composition of the biofilms, determined by fluorescence in situ hybridization, changed considerably in the presence of OPN. In particular, colonization of S. mitis, the best biofilm former in the model, was reduced dramatically. CONCLUSIONS/SIGNIFICANCE: OPN strongly reduces the amount of biofilm formed in a well-defined laboratory model of acidogenic dental biofilm. If a similar effect can be observed in vivo, OPN might serve as a valuable adjunct to mechanical tooth cleaning procedures.

  17. Biofilm Matrix Proteins

    OpenAIRE

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enz...

  18. Current understanding of multi-species biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong;

    2011-01-01

    Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually...... formed by multiple bacterial species. Conventional methods for bacterial cleaning, such as applications of antibiotics and/or disinfectants are often ineffective for biofilm populations due to their special physiology and physical matrix barrier. It has been estimated that billions of dollars are spent...... every year worldwide to deal with damage to equipment, contaminations of products, energy losses, and infections in human beings resulted from microbial biofilms. Microorganisms compete, cooperate, and communicate with each other in multi-species biofilms. Understanding the mechanisms of multi...

  19. Silver-Palladium Surfaces Inhibit Biofilm Formation

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Schroll, Casper; Hilbert, Lisbeth Rischel;

    2009-01-01

    Undesired biofilm formation is a major concern in many areas. In the present study, we investigated biofilm-inhibiting properties of a silver-palladium surface that kills bacteria by generating microelectric fields and electrochemical redox processes. For evaluation of the biofilm inhibition...... efficacy and study of the biofilm inhibition mechanism, the silver-sensitive Escherichia coli J53 and the silver-resistant E. coli J53[pMG101] strains were used as model organisms, and batch and flow chamber setups were used as model systems. In the case of the silver-sensitive strain, the silver...

  20. Survival mechanisms of vertebrate ectotherms at subfreezing temperatures: applications in cryomedicine.

    Science.gov (United States)

    Costanzo, J P; Lee, R E; DeVries, A L; Wang, T; Layne, J R

    1995-03-01

    Various marine fishes, amphibians, and reptiles survive at temperatures several degrees below the freezing point of their body fluids by virtue of adaptive mechanisms that promote freeze avoidance or freeze tolerance. Freezing is avoided by a colligative depression of the blood freezing point, supercooling of the body fluids, or the biosynthesis of unique antifreeze proteins that inhibit the propagation of ice within body fluids. Conversely, freeze tolerance is an adaptation for the survival of tissue freezing under ecologically relevant thermal and temporal conditions that is conferred by the biosynthesis of permeating carbohydrate cryoprotectants and an extensive dehydration of tissues and organs. Such cryoprotective responses, invoked by the onset of freezing, mitigate the osmotic stress associated with freeze-concentration of cytoplasm, attendant metabolic perturbations, and physical damage. Cryomedical research has historically relied on mammalian models for experimentation even though endotherms do not naturally experience subfreezing temperatures. Some vertebrate ectotherms have "solved" not only the problem of freezing individual tissues and organs, but also that of simultaneously freezing all organ systems. An emerging paradigm in cryomedicine is the application of principles governing natural cold hardiness to the development of protocols for the cryopreservation of mammalian tissues and organs. PMID:7896003

  1. Role of Biofilm Roughness and Hydrodynamic Conditions in Legionella pneumophila Adhesion to and Detachment from Simulated Drinking Water Biofilms

    Science.gov (United States)

    Shen, Yun; Monroy, Guillermo L.; Derlon, Nicolas; Janjaroen, Dao; Huang, Conghui; Morgenroth, Eberhard; Boppart, Stephen A.; Ashbolt, Nicholas J.; Liu, Wen-Tso; Nguyen, Thanh H.

    2015-01-01

    Biofilms in drinking water distribution systems (DWDS) could exacerbate the persistence and associated risks of pathogenic Legionella pneumophila (L. pneumophila), thus raising human health concerns. However, mechanisms controlling adhesion and subsequent detachment of L. pneumophila associated with biofilms remain unclear. We determined the connection between L. pneumophila adhesion and subsequent detachment with biofilm physical structure characterization using optical coherence tomography (OCT) imaging technique. Analysis of the OCT images of multispecies biofilms grown under low nutrient condition up to 34 weeks revealed the lack of biofilm deformation even when these biofilms were exposed to flow velocity of 0.7 m/s, typical flow for DWDS. L. pneumophila adhesion on these biofilm under low flow velocity (0.007 m/s) positively correlated with biofilm roughness due to enlarged biofilm surface area and local flow conditions created by roughness asperities. The preadhered L. pneumophila on selected rough and smooth biofilms were found to detach when these biofilms were subjected to higher flow velocity. At the flow velocity of 0.1 and 0.3 m/s, the ratio of detached cell from the smooth biofilm surface was from 1.3 to 1.4 times higher than that from the rough biofilm surface, presumably because of the low shear stress zones near roughness asperities. This study determined that physical structure and local hydrodynamics control adhesion and detachment from simulated drinking water biofilm, thus it is the first step toward reducing the risk of L. pneumophila exposure and subsequent infections. PMID:25699403

  2. Mutant p53 - heat shock response oncogenic cooperation: a new mechanism of cancer cell survival

    Directory of Open Access Journals (Sweden)

    Evguenia eAlexandrova

    2015-04-01

    Full Text Available The main tumor suppressor function of p53 as a ‘guardian of the genome’ is to respond to cellular stress by transcriptional activation of apoptosis, growth arrest or senescence in damaged cells. Not surprisingly, mutations in the p53 gene are the most frequent genetic alteration in human cancers. Importantly, mutant p53 (mutp53 proteins not only lose their wild-type tumor suppressor activity, but also can actively promote tumor development. Two main mechanisms accounting for mutp53 proto-oncogenic activity are inhibition of the wild-type p53 in a dominant-negative fashion and gain of additional oncogenic activities known as gain-of-function (GOF. Here we discuss a novel mechanism of mutp53 GOF, which relies on its oncogenic cooperation with the heat shock machinery. This coordinated adaptive mechanism renders cancer cells more resistant to proteotoxic stress and provides both, a strong survival advantage to cancer cells and a promising means for therapeutic intervention.

  3. Biofilm delays wound healing: A review of the evidence

    OpenAIRE

    Metcalf, Daniel G.; Philip G Bowler

    2014-01-01

    Biofilm is the predominant mode of life for bacteria and today it is implicated in numerous human diseases. A growing body of scientific and clinical evidence now exists regarding the presence of biofilm in wounds. This review summarizes the clinical experiences and in vivo evidence that implicate biofilm in delayed wound healing. The various mechanisms by which biofilm may impede healing are highlighted, including impaired epithelialization and granulation tissue formation, and reduced susce...

  4. Intrigues of biofilm: A perspective in veterinary medicine

    OpenAIRE

    Umar Faruk Abdullahi; Ephraim Igwenagu; Anas Mu’azu; Sani Aliyu; Maryam Ibrahim Umar

    2016-01-01

    Biofilm has a tremendous impact in the field of veterinary medicine, especially the livestock industry, leading to a serious economic loss. Over the years, little attention has been given to biofilm in animals with most of the research geared toward human biofilm diseases. The greatest challenge posed by biofilm is in its incredible ability to resist most of the currently existing antibiotics. This mystery can best be demystified through understanding the mechanism of the quorum sensing which...

  5. Orthopedics and biofilm – what do we know? A review

    OpenAIRE

    Zoubos, Aristides B.; Galanakos, Spyridon P.; Soucacos, Panayotis N.

    2012-01-01

    Summary Bacteria have been found to grow predominantly in biofilms. The initial stage includes the attachment of bacteria to the substratum. Bacterial growth and division then leads to the colonization of the surrounding area and the formation of the biofilm. The environment in a biofilm is not homogeneous; the bacteria in a multispecies biofilm are not randomly distributed, but rather are organized to best meet their needs. Although there is an initial understanding on the mechanisms of biof...

  6. The Pseudomonas Quinolone Signal Inhibits Biofilm Development of Streptococcus mutans

    OpenAIRE

    Inaba, Tomohiro; Oura, Hiromu; Morinaga, Kana; Toyofuku, Masanori; Nomura, Nobuhiko

    2015-01-01

    Bacteria often thrive in natural environments through a sessile mode of growth, known as the biofilm. Biofilms are well-structured communities and their formation is tightly regulated. However, the mechanisms by which interspecies interactions alter the formation of biofilms have not yet been elucidated in detail. We herein demonstrated that a quorum-sensing signal in Pseudomonas aeruginosa (the Pseudomonas quinolone signal; PQS) inhibited biofilm formation by Streptococcus mutans. Although t...

  7. Role of Biofilm Roughness and Hydrodynamic Conditions in Legionella pneumophila Adhesion to and Detachment from Simulated Drinking Water Biofilms

    OpenAIRE

    Shen, Yun; Monroy, Guillermo L.; Derlon, Nicolas; Janjaroen, Dao; Huang, Conghui; Morgenroth, Eberhard; Boppart, Stephen A.; Ashbolt, Nicholas J.; Liu, Wen-Tso; Nguyen, Thanh H.

    2015-01-01

    Biofilms in drinking water distribution systems (DWDS) could exacerbate the persistence and associated risks of pathogenic Legionella pneumophila (L. pneumophila), thus raising human health concerns. However, mechanisms controlling adhesion and subsequent detachment of L. pneumophila associated with biofilms remain unclear. We determined the connection between L. pneumophila adhesion and subsequent detachment with biofilm physical structure characterization using optical coherence tomography ...

  8. Lucilia sericata Chymotrypsin Disrupts Protein Adhesin-Mediated Staphylococcal Biofilm Formation

    OpenAIRE

    Harris, Llinos G.; Nigam, Yamni; Sawyer, James; Mack, Dietrich; Pritchard, David I.

    2013-01-01

    Staphylococcus aureus and Staphylococcus epidermidis biofilms cause chronic infections due to their ability to form biofilms. The excretions/secretions of Lucilia sericata larvae (maggots) have effective activity for debridement and disruption of bacterial biofilms. In this paper, we demonstrate how chymotrypsin derived from maggot excretions/secretions disrupts protein-dependent bacterial biofilm formation mechanisms.

  9. Differential growth of wrinkled biofilms

    Science.gov (United States)

    Espeso, D. R.; Carpio, A.; Einarsson, B.

    2015-02-01

    Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste, and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Föppl-Von Kármán equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to reproduce wrinkled structures often formed by biofilms on air-agar interfaces, as well as spatial distributions of differentiated cells commonly observed with B. subtilis.

  10. Specific Monoclonal Antibody Overcomes the Salmonella enterica Serovar Typhimurium's Adaptive Mechanisms of Intramacrophage Survival and Replication.

    Directory of Open Access Journals (Sweden)

    Swarmistha Devi Aribam

    Full Text Available Salmonella-specific antibodies play an important role in host immunity; however, the mechanisms of Salmonella clearance by pathogen-specific antibodies remain to be completely elucidated since previous studies on antibody-mediated protection have yielded inconsistent results. These inconsistencies are at least partially attributable to the use of polyclonal antibodies against Salmonella antigens. Here, we developed a new monoclonal antibody (mAb-449 and identified its related immunogen that protected BALB/c mice from infection with Salmonella enterica serovar Typhimurium. In addition, these data indicate that the mAb-449 immunogen is likely a major protective antigen. Using in vitro infection studies, we also analyzed the mechanism by which mAb-449 conferred host protection. Notably, macrophages infected with mAb-449-treated S. Typhimurium showed enhanced pathogen uptake compared to counterparts infected with control IgG-treated bacteria. Moreover, these macrophages produced elevated levels of pro-inflammatory cytokine TNFα and nitric oxide, indicating that mAb-449 enhanced macrophage activation. Finally, the number of intracellular bacteria in mAb-449-activated macrophages decreased considerably, while the opposite was found in IgG-treated controls. Based on these findings, we suggest that, although S. Typhimurium has the potential to survive and replicate within macrophages, host production of a specific antibody can effectively mediate macrophage activation for clearance of intracellular bacteria.

  11. Aspartate inhibits Staphylococcus aureus biofilm formation.

    Science.gov (United States)

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp. PMID:25687923

  12. Automatic quantification of early transition points in biofilm formation

    Science.gov (United States)

    Thatcher, Travis; Bienvenu, Samuel; Strain, Shinji; Gordon, Vernita

    2010-10-01

    Biofilms are multicellular, dynamic communities of interacting single-cell organisms, like bacteria. Biofilms are responsible for many infectious diseases as well as for significant damage in industrial settings, yet many aspects of biofilm formation are not well understood. Identifying and quantifying the interactions leading to biofilm formation will not only be important for understanding the basic science of these and other multicellular systems, but it will also be essential for designing targeted strategies to prevent or disrupt biofilms. In particular, it is not clear what physical interactions, and corresponding biological mechanisms, are responsible for the early steps in biofilm formation. Because of this, we are developing high-throughput software techniques to analyze micrograph movies of biofilm formation, from attachment to surfaces through the development of microcolonies. This work will focus on developing software tools to identify and quantify key steps in biofilm formation, first in non-chemotacting systems and later in chemotacting (and autotacting) systems.

  13. Nanocomposite biofilms obtained from Whitemouth croaker (Micropogonias furnieri) protein isolate and Montmorillonite: evaluation of the physical, mechanical and barrier properties; Biofilmes nanocompositos obtidos de isolado proteico de corvina (Micropogonias furnieri) e Montmorilonita: avaliacao das propriedades fisicas, meanicas e de barreira

    Energy Technology Data Exchange (ETDEWEB)

    Cortez-Vega, William Renzo, E-mail: williamvega@ufgd.edu.br [Universidade Federal da Grande Dourados (UFGD), MS (Brazil). Fac. de Engenharia; Bagatini, Daniela Cardozo; Souza, Juliana Tais Andreghetto de; Prentice, Carlos, E-mail: danielabagatini@hotmail.com, E-mail: ju.andreghetto@hotmail.com, E-mail: dqmprent@furg.b [Universidade Federal do Rio Grande (FURG), RS (Brazil). Escola de Quimica e Alimentos

    2013-06-15

    The objective of this study was to evaluate the properties of nanocomposite biofilms based on Whitemouth croaker (Micropogonias furnieri) protein isolate with organophilic clays. Initially the croaker protein isolate (CPI) was obtained using the pH shifting process from by-products of croaker industrialization. A Box and Behnken experimental design was used to develop the films, with three levels of CPI (2, 3.5 and 5 g.100 g{sup -1} solution), montmorillonite MMT clay (0.3, 0.5 and 0.7 g.100 g{sup -1} solution) and glycerol (25, 30 and 35 g.100g{sup -1} CPI). The polymeric films were produced by the 'casting technique'. The tensile strength values ranged from 7.2 to 10.7 MPa and the elongation values from 39.6 to 45.8 %. The water vapor permeability (WVP) values ranged from 3.2 to 5.5 (g.mm.m{sup -2}.d{sup -1}) and the CPI had an average protein content of 97.87 % protein (d. b.). It was concluded that the nanocomposite films produced from CPI with MMT were promising from the standpoint of their mechanical properties, visual appearance and easy handling, as well as for their low water vapor permeability and low water solubility. With respect to their mechanical properties, the concentrations of CPI and MMT were the main factors influencing the development of the nanocomposite films. The results obtained from the experimental design indicated that 3.5 g of CPI.100 g{sup -1}solution, 0.5 g of MMT.100 g{sup -1} solution and 30 g of glycerol.100 g{sup -1} CPI would be the ideal parameters for the development of nanocomposite films by 'casting'. (author)

  14. Expression of UME6, a Key Regulator of Candida albicans Hyphal Development, Enhances Biofilm Formation via Hgc1- and Sun41-Dependent Mechanisms

    OpenAIRE

    Banerjee, Mohua; Uppuluri, Priya; Zhao, Xiang R.; Carlisle, Patricia L.; Vipulanandan, Geethanjali; Villar, Cristina C.; López-Ribot, José L.; Kadosh, David

    2013-01-01

    Biofilm formation is associated with the ability of Candida albicans, the major human fungal pathogen, to resist antifungal therapies and grow on tissues, catheters, and medical devices. In order to better understand the relationship between C. albicans morphology and biofilm formation, we examined biofilms generated in response to expression of UME6, a key filament-specific transcriptional regulator. As UME6 levels rise, C. albicans cells are known to transition from yeast to hyphae, and we ...

  15. Performance and enhanced mechanism of a novel bio-diatomite biofilm pretreatment process treating polluted raw water.

    Science.gov (United States)

    Yang, Guang-feng; Feng, Li-juan; Wang, Sha-fei; Yang, Qi; Xu, Xiang-yang; Zhu, Liang

    2015-09-01

    A lab-scale novel bio-diatomite biofilm process (BDBP) was established for the polluted raw water pretreatment in this study. Results showed that a shorter startup period of BDBP system was achieved under the completely circulated operation mode, and the removal efficiencies of nitrogen and disinfection by-product precursor were effective at low hydraulic retention time of 2-4 h due to high biomass attached to the carrier and diatomite. A maximum NH4(+)-N oxidation potential predicted by modified Stover-Kincannon model was 333.3 mg L(-1) d(-1) in the BDBP system, which was 4.7 times of that in the control reactor. Results demonstrated that the present of bio-diatomite favors the accumulation of functional microbes in the oligotrophic niche, and the pollutants removal performance of this novel process was enhanced for polluted raw water pretreatment. PMID:26000837

  16. The Biofilm Challenge

    DEFF Research Database (Denmark)

    Alhede, Maria; Alhede, Morten

    2014-01-01

    The concept of biofilms has emerged in the clinical setting during the last decade. Infections involving biofilms have been documented in all parts of the human body, and it is currently believed that the presence of biofilm-forming bacteria is equivalent to chronic infection. A quick Pubmed search...... reveals the significance of biofilms, as evidenced by a dramatic increase in scientific publications on the topic, as well as in publications concerning wounds with biofilms, which reached 600 publications in 2013. Judged from the number of publications, it appears that biofilms play a significant role in...... wounds. However, the impact of biofilms is often debated, because infected wounds were also treated before the concept of biofilms was coined. In this short review, we will address the significance of biofilms and their role in wounds, and discuss the future tasks of the biofilm challenge....

  17. Biofilm growth on rugose surfaces

    Science.gov (United States)

    Rodriguez, D.; Einarsson, B.; Carpio, A.

    2012-12-01

    A stochastic model is used to assess the effect of external parameters on the development of submerged biofilms on smooth and rough surfaces. The model includes basic cellular mechanisms, such as division and spreading, together with an elementary description of the interaction with the surrounding flow and probabilistic rules for extracellular polymeric substance matrix generation, cell decay, and adhesion. Insight into the interplay of competing mechanisms such as the flow or the nutrient concentration change is gained. Erosion and growth processes combined produce biofilm structures moving downstream. A rich variety of patterns are generated: shrinking biofilms, patches, ripplelike structures traveling downstream, fingers, mounds, streamerlike patterns, flat layers, and porous and dendritic structures. The observed regimes depend on the carbon source and the type of bacteria.

  18. In-Situ Survival Mechanisms of U and Tc Reducing Bacteria in Contaminated Sediments. Final Report

    International Nuclear Information System (INIS)

    The proposed effort will identify genes and ultimately physiological mechanisms and pathways that are expressed under in situ conditions and are critical to functioning of aquifer dwelling anaerobic bacteria living in contaminated systems. The main objectives are: (1) Determine which Metal-reducer specific genes are important for activities in normal and contaminated subsurface sediment. To achieve these goals, we have generated a library of chromosomal mutants. These are introduced into contaminated sediments, incubated, allowed to grow, and then reisolated. A negative selection process allows us to determine which mutants have been selected against in sediments and thereby identify genes required for survival in subsurface sediments. (2) Delineate the function of these genes through GeneBank and Clusters of Orthologous Groups (COGs) comparisons and analyze other sediment microorganisms to determine if similar genes are present in these populations. After determining the sequence of the genes identified through the previous objectives, we delineate the role of those specific genes in the physiology of G20, MR-1 and perhaps other microorganisms. (3) Determine the loss in function of a select group of mutants. Cells with mutations in known genes with testable functions are assayed for the loss of that function if specific assays are available. Mutants with unknown loss of function and other mutants are run through a series of tests including motility, attachment, and rate of sulfate or iron reduction. These tests allow us to categorize mutants for subsequent more detailed study

  19. A prognostic index for survival among mechanically ventilated hematopoietic cell transplant recipients.

    Science.gov (United States)

    Solh, Melhem; Oommen, Sanjay; Vogel, Rachel Isaksson; Shanley, Ryan; Majhail, Navneet S; Burns, Linda J

    2012-09-01

    The prognosis of recipients of allogeneic hematopoietic cell transplantation (HCT) who require mechanical ventilation (MV) has historically been poor. Of 883 adults undergoing allogeneic HCT at the University of Minnesota between 1998 and 2009, 179 (20%) required MV before day 100 posttransplantation. We evaluated the outcomes of these patients to develop a prognostic index to predict the 100-day post-MV overall survival (OS) based on factors present at the time of MV. The 179 patients were divided at random into a training set (n = 119) and a validation set (n = 60). The 100-day postventilation OS was 17% for the total population. Multivariate Cox regression on the training set identified creatinine 20 × 10(9)/L as significant predictors of better OS. Recursive partitioning classified patients with these good prognostic criteria into class A (n = 76); all other patients were classified as class B (n = 103). Among class A patients, 100-day OS was 29% in the training set and 30% in the validation set. Corresponding OS in class B patients was 5% and 15%, respectively. This prognostic index should help guide physicians in counseling HCT patients and their families regarding the use of MV and potential outcomes. PMID:22387348

  20. The action of Pseudomonas aeruginosa biofilms in intrinsic drug resistance

    Institute of Scientific and Technical Information of China (English)

    XIE Yi; JIA Wen-xiang; ZENG Wei; YANG Wei-qing; CHENG Xi; LI Xue-ru; WANG Lan-lan; KANG Mei; ZHANG Zai-rong

    2005-01-01

    Background There is a growing interest in studying the relationship between intrinsic resistance and biofilms resistance to drugs. However, the relationship still remains unclear in the macroscopic bacterial growth. Our study is to illuminate the change of bacterial drug resistance of gyrA mutant and active efflux pump during the development of Pseudomonas aeruginosa (P. aeruginosa) biofilms. Methods The strains of type Ⅱ topoisomerase gene mutant (gyrA mutant) and multidrug resistance (MDR) efflux pump were clinical isolates and detected by polymerase chain reaction (PCR). The process of bacterial biofilms development was observed by scanning electron microscope. Triparental mating experiments were performed to transfer report gene of green fluorescent protein (GFP) into P. aeruginosa biofilms strains and followed by analysis of bacterial survival rate between intrinsic resistance and biofilms resistance.Results The fluorescent strains with pGFPuv could develop mature biofilms on Teflon surface. Before a period of 72 hours, the survival rate of biofilms bacteria and intrinsic resistance strains in ciprofloxacin solution was significantly different (P0.05). The carbonyl cyanide m-chlorophenylhydrazone and azithromycin could significantly reduce the drug resistance of biofilm strains and efflux pump strains.Conclusions In the development of P. aeruginosa biofilms, the strains of gyrA mutation and MDR efflux could be conferred with new level of drug resistance. When co-cultured mutated strains with biofilm strains, biofilms may play a major role in bacterial resistance. But after 72 hours incubation (a mature biofilms had been developed), there was no clearly difference between the number of mutant strains and biofilm strains.

  1. Biofilm removal technique using sands as a research tool for accessing microbial attachment on surface

    OpenAIRE

    Nathanon Trachoo

    2004-01-01

    Biofilms have profound impacts on improved survival of the constituent microorganisms in nature. Biofilms were believed to protect constituent microorganisms from sanitizer treatment, provide a more suitable habitat for microorganisms, and become a site for genetic material exchanges between microorganisms. As we realize more about the significance of biofilm, methods used for biofilm study should be consistently developed and evaluated. To determine microbial attachment on surfaces, usually ...

  2. Mechanisms of spinal motoneurons survival in rats under simulated hypogravity on earth

    Science.gov (United States)

    Islamov, R. R.; Mishagina, E. A.; Tyapkina, O. V.; Shajmardanova, G. F.; Eremeev, A. A.; Kozlovskaya, I. B.; Nikolskij, E. E.; Grigorjev, A. I.

    2011-05-01

    It was previously shown that different cell types in vivo and in vitro may die via apoptosis under weightlessness conditions in space as well as in simulated hypogravity on the Earth. We assessed survivability of spinal motoneurons of rats after 35-day antiorthostatic hind limb suspension. Following weight bearing, unloading the total protein content in lumbar spinal cord is dropped by 21%. The electrophysiological studies of m. gastrocnemius revealed an elevated motoneurons' reflex excitability and conduction disturbances in the sciatic nerve axons. The number of myelinated fibers in the ventral root of experimental animals was insignificantly increased by 35-day of antiorthostatic hind limb suspension, although the retrograde axonal transport was significantly decreased during the first week of simulated hypogravity. The results of the immunohistochemical assay with antibodies against proapoptotic protein caspase 9 and cytotoxicity marker neuron specific nitric oxide synthase (nNOS) and the TUNEL staining did not reveal any signs of apoptosis in motoneurons of suspended and control animals. To examine the possible adaptation mechanisms activated in motoneurons in response to simulated hypogravity we investigated immunoexpression of Hsp25 and Hsp70 in lumbar spinal cord of the rats after 35-day antiorthostatic hind limb suspension. Comparative analysis of the immunohistochemical reaction with anti-Hsp25 antibodies revealed differential staining of motoneurons in intact and experimental animals. The density of immunoprecipitate with anti-Hsp25 antibodies was substantially higher in motoneurons of the 35-day suspended than control rats and the more intensive precipitate in this reaction was observed in motoneuron neuritis. Quantitative analysis of Hsp25 expression demonstrated an increase in the Hsp25 level by 95% in experimental rats compared to the control. The immunoexpression of Hsp70 found no qualitative and quantitative differences in control and experimental

  3. Pseudomonas aeruginosa forms Biofilms in Acute InfectionIndependent of Cell-to-Cell Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N.; Rumbaugh, Kendra P.

    2006-09-20

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 hours of infection in thermally-injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections. P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild type and QS-deficient P. aeruginosa formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independent of QS.

  4. STAPHYLOCOCCUS AUREUS BIOFILM FORMATION ON POLYPYRROLE: AN ELECTRICAL OVERVIEW

    Directory of Open Access Journals (Sweden)

    Erlon R. Cordeiro

    2015-09-01

    Full Text Available The development of organic devices based on conducting polymers for biofilm detection requires the combination of superior electrical response and high surface area for biofilm incorporation. Polypyrrole is a potential candidate for application in biofilm detection and control due to its characteristic superior electrical response and strong interaction with bacteria, which enables the use of the bioelectric effect in resulting devices. In this study, chemically synthesized polypyrrole was applied as a support for biofilm growth of S. aureus. Modifications in the electrical response of the polymeric template were explored to identify general mechanisms established during the deposition of the biofilm.

  5. Streptococcus gordonii glucosyltransferase promotes biofilm interactions with Candida albicans

    Directory of Open Access Journals (Sweden)

    Austin Ricker

    2014-01-01

    Full Text Available Background: Candida albicans co-aggregates with Streptococcus gordonii to form biofilms and their interactions in mucosal biofilms may lead to pathogenic synergy. Although the functions of glucosyltransferases (Gtf of Mutans streptococci have been well characterized, the biological roles of these enzymes in commensal oral streptococci, such as S. gordonii, in oral biofilm communities are less clear. Objective: The objective of this work was to explore the role of GtfG, the single Gtf enzyme of S. gordonii, in biofilm interactions with C. albicans. Design: Biofilms were grown under salivary flow in flow cells in vitro, or under static conditions in 96 well plates. A panel of isogenic S. gordonii CH1 gtfG mutants and complemented strains were co-inoculated with C. albicans strain SC5314 to form mixed biofilms. Biofilm accretion and binding interactions between the two organisms were tested. Biofilms were quantified using confocal microscopy or the crystal violet assay. Results: The presence of GtfG enhanced dual biofilm accretion, and sucrose supplementation further augmented dual biofilm formation, pointing to a role of newly synthesized glucans. GtfG also promoted binding to C. albicans preformed biofilms. Soluble α-1,6-glucans played a role in these interactions since: 1 a strain producing only soluble glucans (CH107 formed robust dual biofilms under conditions of salivary flow; and 2 the dual biofilm was susceptible to enzymatic breakdown by dextranase which specifically degrades soluble α-1,6-glucans. Conclusion: Our work identified a novel molecular mechanism for C. albicans and S. gordonii biofilm interactions, mediated by GtfG. This protein promotes early biofilm binding of S. gordonii to C. albicans which leads to increased accretion of streptococcal cells in mixed biofilms. We also showed that soluble glucans, with α-1,6-linkages, promoted inter-generic adhesive interactions.

  6. The Physics of Biofilms -- An Introduction

    CERN Document Server

    Mazza, Marco G

    2016-01-01

    Biofilms are complex, self-organized consortia of microorganisms that produce a functional, protective matrix of biomolecules. Physically, the structure of a biofilm can be described as an entangled polymer network which grows and changes under the effect of gradients of nutrients, cell differentiation, quorum sensing, bacterial motion, and interaction with the environment. Its development is complex, and constantly adapting to environmental stimuli. Here, we review the fundamental physical processes the govern the inception, growth and development of a biofilm. Two important mechanisms guide the initial phase in a biofilm life cycle: (\\emph{i}) the cell motility near or at a solid interface, and (\\emph{ii}) the cellular adhesion. Both processes are crucial for initiating the colony and for ensuring its stability. A mature biofilm behaves as a viscoelastic fluid with a complex, history-dependent dynamics. We discuss progress and challenges in the determination of its physical properties. Experimental and theo...

  7. Introduction to Biofilms Thematic Minireview Series.

    Science.gov (United States)

    Allewell, Norma M

    2016-06-10

    The biofilms that many bacteria and fungi produce enable them to form communities, adhere tightly to surfaces, evade host immunity, and resist antibiotics. Pathogenic microorganisms that form biofilms are very difficult to eradicate and thus are a frequent source of life-threatening, hospital-acquired infections. This series of five minireviews from the Journal of Biological Chemistry provides a broad overview of our current understanding of biofilms and the challenges that remain. The structure, biosynthesis, and biological function of the biofilms produced by pathogenic fungi are the subject of the first article, by Sheppard and Howell. Gunn, Bakaletz, and Wozniak focus on the biochemistry and structure of bacterial biofilms, how these structures enable bacteria to evade host immunity, and current and developing strategies for overcoming this resistance. The third and fourth articles present two of the best understood cell signaling pathways involved in biofilm formation. Valentini and Filloux focus on cyclic di-GMP, while Kavanaugh and Horswill discuss the quorum-sensing (agr) system and the relationship between quorum sensing and biofilm formation. Mechanisms of antibiotic resistance, particularly the role of efflux pumps and the development of persister cells, are the topics of the final article by Van Acker and Coenye. The advances described in this series guarantee that ongoing interdisciplinary and international efforts will lead to new insights into the basic biology of biofilm formation, as well as new strategies for therapeutic interventions. PMID:27129220

  8. Biofilms: The Stronghold of Legionella pneumophila

    Directory of Open Access Journals (Sweden)

    Mena Abdel-Nour

    2013-10-01

    Full Text Available Legionellosis is mostly caused by Legionella pneumophila and is defined as a severe respiratory illness with a case fatality rate ranging from 5% to 80%. L. pneumophila is ubiquitous in natural and anthropogenic water systems. L. pneumophila is transmitted by inhalation of contaminated aerosols produced by a variety of devices. While L. pneumophila replicates within environmental protozoa, colonization and persistence in its natural environment are also mediated by biofilm formation and colonization within multispecies microbial communities. There is now evidence that some legionellosis outbreaks are correlated with the presence of biofilms. Thus, preventing biofilm formation appears as one of the strategies to reduce water system contamination. However, we lack information about the chemical and biophysical conditions, as well as the molecular mechanisms that allow the production of biofilms by L. pneumophila. Here, we discuss the molecular basis of biofilm formation by L. pneumophila and the roles of other microbial species in L. pneumophila biofilm colonization. In addition, we discuss the protective roles of biofilms against current L. pneumophila sanitation strategies along with the initial data available on the regulation of L. pneumophila biofilm formation.

  9. Biofilm Fixed Film Systems

    Directory of Open Access Journals (Sweden)

    Dipesh Das

    2011-09-01

    Full Text Available The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, rotating biological contactors, fluidized bed bioreactors, submerged bed biofilm reactors, biological granular activated carbon, membrane bioreactors, and immobilized cell reactors. Innovative reactors, not easily classified, are then presented, followed by a section on biofilms on sand, soil and sediment.

  10. Implications of Biofilm Formation on Urological Devices

    Science.gov (United States)

    Cadieux, Peter A.; Wignall, Geoffrey R.; Carriveau, Rupp; Denstedt, John D.

    2008-09-01

    Despite millions of dollars and several decades of research targeted at their prevention and eradication, biofilm-associated infections remain the major cause of urological device failure. Numerous strategies have been aimed at improving device design, biomaterial composition, surface properties and drug delivery, but have been largely circumvented by microbes and their plethora of attachment, host evasion, antimicrobial resistance, and dissemination strategies. This is not entirely surprising since natural biofilm formation has been going on for millions of years and remains a major part of microorganism survival and evolution. Thus, the fact that biofilms develop on and in the biomaterials and tissues of humans is really an extension of this natural tendency and greatly explains why they are so difficult for us to combat. Firstly, biofilm structure and composition inherently provide a protective environment for microorganisms, shielding them from the shear stress of urine flow, immune cell attack and some antimicrobials. Secondly, many biofilm organisms enter a metabolically dormant state that renders them tolerant to those antibiotics and host factors able to penetrate the biofilm matrix. Lastly, the majority of organisms that cause biofilm-associated urinary tract infections originate from our own oral cavity, skin, gastrointestinal and urogenital tracts and therefore have already adapted to many of our host defenses. Ultimately, while biofilms continue to hold an advantage with respect to recurrent infections and biomaterial usage within the urinary tract, significant progress has been made in understanding these dynamic microbial communities and novel approaches offer promise for their prevention and eradication. These include novel device designs, antimicrobials, anti-adhesive coatings, biodegradable polymers and biofilm-disrupting compounds and therapies.

  11. Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A

    Directory of Open Access Journals (Sweden)

    Neubauer Peter

    2008-10-01

    Full Text Available Abstract Background Pseudomonas fluorescens is an important food spoilage organism, usually found in the form of biofilms. Bacterial biofilms are inherently resistant to a variety of antimicrobial agents, therefore alternative methods to biofilm control, such as bacteriophages (phages have been suggested. Phage behavior on biofilms is still poorly investigated and needs further understanding. Here we describe the application of phage ϕIBB-PF7, a newly isolated phage, to control P. fluorescens biofilms. The biofilms were formed under static or dynamic conditions and with or without renewal of medium. Results Conditions for biofilm formation influenced the feature of the biofilm and the morphology of P. fluorescens. Biomass removal due to phage activity varied between 63 and 91% depending on the biofilm age and the conditions under which the biofilm had been formed and phages applied. Removal of the biofilm by phage treatment was faster in younger biofilms, but the same number of surviving cells was detected in all tested biofilms, after only 4 h of treatment, even in older biofilms. Under static conditions, a 3 log higher number of phage progeny remained either inside the biofilm matrix or attached to the substratum surface than under dynamic conditions, pointing to the importance of experimental conditions for the efficacy of phage entrapment into the biofilm. Conclusion Phage ϕIBB-PF7A is highly efficient in removing P. fluorescens biofilms within a short time interval. The conditions of biofilm formation and applied during phage infection are critical for the efficacy of the sanitation process. The integration of phages into the biofilm matrix and their entrapment to the surface may be further beneficial factors when phage treatment is considered alone or in addition to chemical biocides in industrial environments where P. fluorescens causes serious spoilage.

  12. Biofilm-based central line-associated bloodstream infections.

    Science.gov (United States)

    Yousif, Ammar; Jamal, Mohamed A; Raad, Issam

    2015-01-01

    Different types of central venous catheters (CVCs) have been used in clinical practice to improve the quality of life of chronically and critically ill patients. Unfortunately, indwelling devices are usually associated with microbial biofilms and eventually lead to catheter-related bloodstream infections (CLABSIs).An estimated 250,000-400,000 CLABSIs occur every year in the United States, at a rate of 1.5 per 1,000 CVC days and a mortality rate of 12-25 %. The annual cost of caring for patients with CLABSIs ranges from 296 million to 2.3 billion dollars.Biofilm formation occurs on biotic and abiotic surfaces in the clinical setting. Extensive studies have been conducted to understand biofilm formation, including different biofilm developmental stages, biofilm matrix compositions, quorum-sensing regulated biofilm formation, biofilm dispersal (and its clinical implications), and multi-species biofilms that are relevant to polymicrobial infections.When microbes form a matured biofilm within human hosts through medical devices such as CVCs, the infection becomes resistant to antibiotic treatment and can develop into a chronic condition. For that reason, many techniques have been used to prevent the formation of biofilm by targeting different stages of biofilm maturation. Other methods have been used to diagnose and treat established cases of CLABSI.Catheter removal is the conventional management of catheter associated bacteremia; however, the procedure itself carries a relatively high risk of mechanical complications. Salvaging the catheter can help to minimize these complications.In this article, we provide an overview of microbial biofilm formation; describe the involvement of various genetic determinants, adhesion proteins, organelles, mechanism(s) of biofilm formation, polymicrobial infections, and biofilm-associated infections on indwelling intravascular catheters; and describe the diagnosis, management, and prevention of catheter-related bloodstream infections

  13. Influence and mechanism of N-(3-oxooxtanoyl)-L-homoserine lactone (C8-oxo-HSL) on biofilm behaviors at early stage

    Institute of Scientific and Technical Information of China (English)

    Siqing Xia; Lijie Zhou; Zhiqiang Zhang; Jixiang Li

    2012-01-01

    N-acyl-homoserines quenching,enzymatic quenching of bacterial quorum sensing,has recently applied to mitigate biofilm in membrane bioreactor.However,the effect of AHLs on the behavior of biofilm formation is still sparse.In this study,Pseudomonas aeruginosa biofilm was formed on ultra-filtration membrane under a series of N-(3-oxooxtanoyl)-L-homoserine lactone (Cs-oxo-HSL)concentrations.Diffusing Cs-oxo-HSL increased the growth rate of cells on biofilm where the concentration of Cs-oxo-HSL was over 10-7 g/L.The C8-oxo-HSL gradient had no observable influence on cell density and extracellular polymeric substances of biofilm with over 10-7 g/L Cs-oxo-HSL.Surprisingly,10-11-10-8 g/L of Cs-oxo-HSL had no effect on cell growth in liquid culture.The cell analysis demonstrated that the quorum sensing system might enhance the growth of neighboring cells in contact with surfaces into biofilm and may influence the structure and organization of biofilm.

  14. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    to various persistent infections in humans and animals, and to a variety of complications in industry, where solid–water interfaces occur. Knowledge about the molecular mechanisms involved in biofilm formation is necessary for creating strategies to control biofilms. Recent studies have shown that......Bacteria in nature primarily live in surface-associated communities commonly known as biofilms. Because bacteria in biofilms, in many cases, display tolerance to host immune systems, antibiotics, and biocides, they are often difficult or impossible to eradicate. Biofilm formation, therefore, leads...... extracellular DNA is an important component of the extracellular matrix of microbial biofilms. The present chapter is focussed on extracellular DNA as matrix component in biofilms formed by Pseudomonas aeruginosa as an example from the Gram-negative bacteria, and Streptococcus and Staphylococcus as examples...

  15. Biofilm Fixed Film Systems

    OpenAIRE

    Dipesh Das; Yung-Tse Hung; Charles Moretti; Hasibul Hasan; Harvey Gullicks

    2011-01-01

    The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, r...

  16. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  17. Macrolides decrease the minimal inhibitory concentration of anti-pseudomonal agents against Pseudomonas aeruginosa from cystic fibrosis patients in biofilm

    Directory of Open Access Journals (Sweden)

    Lutz Larissa

    2012-09-01

    Full Text Available Abstract Background Biofilm production is an important mechanism for bacterial survival and its association with antimicrobial resistance represents a challenge for the patient treatment. In this study we evaluated the in vitro action of macrolides in combination with anti-pseudomonal agents on biofilm-grown Pseudomonas aeruginosa recovered from cystic fibrosis (CF patients. Results A total of 64 isolates were analysed. The biofilm inhibitory concentration (BIC results were consistently higher than those obtained by the conventional method, minimal inhibitory concentration, (MIC for most anti-pseudomonal agents tested (ceftazidime: P = 0.001, tobramycin: P = 0.001, imipenem: P P = 0.005. When macrolides were associated with the anti-pseudomonal agents, the BIC values were reduced significantly for ceftazidime (P  0.001 and tobramycin (P  0.001, regardless the concentration of macrolides. Strong inhibitory quotient was observed when azithromycin at 8 mg/L was associated with all anti-pseudomonal agents tested in biofilm conditions. Conclusions P. aeruginosa from CF patients within biofilms are highly resistant to antibiotics but macrolides proved to augment the in vitro activity of anti-pseudomonal agents.

  18. The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms

    DEFF Research Database (Denmark)

    Nilsson, Martin; Rybtke, Morten; Givskov, Michael;

    2016-01-01

    Microbial biofilms are tolerant to antibiotic treatment and therefore cause problematic infections. Knowledge about the molecular mechanisms underlying biofilm-associated antimicrobial tolerance will aid the development of antibiofilm drugs. Screening of a Streptococcus mutans transposon mutant...

  19. Bacterial metabolism in biofilm consortia: Consequences for potential ennoblement

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekaran, P.; Dexter, S.C. [Univ. of Delaware, Lewes, DE (United States). Graduate College of Marine Studies

    1994-12-31

    Platinum metal coupons were used in studying the mechanism of ennoblement in the presence of mature seawater biofilms. Presence of a bacterial consortia, rather than any single organism is determined to be necessary for ennoblement. Millimolar concentrations of iron and manganese were measured in biofilms formed over platinum. EDAX and ICP techniques were used for measuring the chemistry of particles in a biofilm. Utilization of various electron acceptors like oxygen, iron, manganese, etc. are thought to be important for ennoblement to take place over platinum. Heavy metal accumulation is hypothesized to favor the low pH mechanism of ennoblement due to heavy metal hydrolysis. Monoculture biofilms cannot support ennoblement on platinum.

  20. The immune system vs. Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jensen, Peter Østrup; Givskov, Michael; Bjarnsholt, Thomas;

    2010-01-01

    Ilya Metchnikoff and Paul Ehrlich were awarded the Nobel price in 1908. Since then, numerous studies have unraveled a multitude of mechanistically different immune responses to intruding microorganisms. However, in the vast majority of these studies, the underlying infectious agents have appeared....... Although the present review on the immune system vs. biofilm bacteria is focused on Pseudomonas aeruginosa (mainly because this is the most thoroughly studied), many of the same mechanisms are also seen with biofilm infections generated by other microorganisms....

  1. Bacterial biofilms in patients with indwelling urinary catheters.

    Science.gov (United States)

    Stickler, David J

    2008-11-01

    Bacteria have a basic survival strategy: to colonize surfaces and grow as biofilm communities embedded in a gel-like polysaccharide matrix. The catheterized urinary tract provides ideal conditions for the development of enormous biofilm populations. Many bacterial species colonize indwelling catheters as biofilms, inducing complications in patients' care. The most troublesome complications are the crystalline biofilms that can occlude the catheter lumen and trigger episodes of pyelonephritis and septicemia. The crystalline biofilms result from infection by urease-producing bacteria, particularly Proteus mirabilis. Urease raises the urinary pH and drives the formation of calcium phosphate and magnesium phosphate crystals in the biofilm. All types of catheter are vulnerable to encrustation by these biofilms, and clinical prevention strategies are clearly needed, as bacteria growing in the biofilm mode are resistant to antibiotics. Evidence indicates that treatment of symptomatic, catheter-associated urinary tract infection is more effective if biofilm-laden catheters are changed before antibiotic treatment is initiated. Infection with P. mirabilis exposes the many faults of currently available catheters, and plenty of scope exists for improvement in both their design and production; manufacturers should take up the challenge to improve patient outcomes. PMID:18852707

  2. Hydrophobic nature and effects of culture conditions on biofilm formation by the cellulolytic actinomycete Thermobifida fusca

    Directory of Open Access Journals (Sweden)

    Almaris N. Alonso

    2015-09-01

    Full Text Available Thermobifida fusca produces a firmly attached biofilm on nutritive and non-nutritive surfaces, such as cellulose, glass, plastic, metal and Teflon®. The ability to bind to surfaces has been suggested as a competitive advantage for microbes in soil environments. Results of previous investigations indicated that a Gram-positive cellulolytic soil bacteria, Cellulomonas uda, a facultative aerobe, specifically adhered to nutritive surfaces forming biofilms, but cells did not colonize non-nutritive surfaces. Cell surface hydrophobicity has been implicated in the interactions between bacteria and the adhesion to surfaces. It was recently described that the cellulolytic actinomycete T. fusca cells hydrophobicity was measured and compared to the cellulolytic soil bacteria C. uda. Also, T. fusca biofilm formation on non-nutritive surface, such as polyvinyl chloride, was examined by testing various culture ingredients to determine a possible trigger mechanism for biofilm formation. Experimental results showed that partitioning of bacterial cells to various hydrocarbons was higher in T. fusca cells than in C. uda. The results of this study suggest that the attachment to multiple surfaces by T. fusca could depend on nutrient availability, pH, salt concentrations, and the higher hydrophobic nature of bacterial cells. Possibly, these characteristics may confer T. fusca a selective advantage to compete and survive among the many environments it thrives.

  3. Role of biofilm in protection of the replicative form of Legionella pneumophila.

    Science.gov (United States)

    Andreozzi, Elisa; Di Cesare, Andrea; Sabatini, Luigia; Chessa, Elisa; Sisti, Davide; Rocchi, Marco; Citterio, Barbara

    2014-12-01

    The dual nature of Legionella pneumophila enables its survival in free and intracellular environments and underpins its infection and spread mechanisms. Experiments using bacterial cultures and improved RTqPCR protocols were devised to gain fresh insights into the role of biofilm in protecting the replicative form of L. pneumophila. mip gene expression was used as a marker of virulence in sessile (biofilm-bound) and planktonic (free-floating) cells of L. pneumophila serotype 1 ATCC 33152. The ratio of mip gene expression to transcriptionally active Legionella cells increased both in sessile and free-floating cells demonstrating an up-regulation of mip gene under nutrient depletion. However, a different trend was observed between the two forms, in planktonic cells the mip gene expression/transcriptionally active Legionella cells increased until the end of the experiment, while in the biofilm such increase was observed at the end of the experiment. These findings suggest a possible association between the switch to the transmissive phase of Legionella and a mip up-regulation and a role for biofilm in preserving Legionella cells in replicative form. Moreover, it has been shown that improved RTqPCR protocols are valuable tools to explore bacterial virulence. PMID:25023637

  4. Mechanisms of post-myocardial infarction healing : from acute survival to chronic remodeling

    OpenAIRE

    Hunt, Darlene L.

    2009-01-01

    Acute survival and chronic healing after myocardial infarction (MI) depend on a myriad of processes that begin within hours of the injury and can continue in the form of remodeling even years thereafter. The myocardium has very little self-renewal capability, and tissue lost to MI is replaced with a collagenous scar. There are currently no clinical therapies that directly target myocardial healing, due in part to the pleiotropic effects and redundancy of signaling factors released after injur...

  5. Early palliative care and metastatic non-small cell lung cancer: potential mechanisms of prolonged survival.

    Science.gov (United States)

    Irwin, Kelly E; Greer, Joseph A; Khatib, Jude; Temel, Jennifer S; Pirl, William F

    2013-02-01

    Patients with advanced cancer experience a significant burden of physical symptoms and psychological distress at the end of life, and many elect to receive aggressive cancer-directed therapy. The goal of palliative care is to relieve suffering and promote quality of life (QOL) for patients and families. Traditionally, both the public and medical community have conceptualized the need for patients to make a choice between pursuing curative therapy or receiving palliative care. However, practice guidelines from the World Health Organization and leadership from the oncology and palliative care communities advocate a different model of palliative care that is introduced from the point of diagnosis of life-threatening illness. Early palliative care has been shown to provide benefits in QOL, mood, and health care utilization. Additionally, preliminary research has suggested that in contrast to fears about palliative care hastening death, referral to palliative care earlier in the course of illness may have the potential to lengthen survival, particularly in patients with advanced nonsmall-cell lung cancer. This review summarizes the literature on potential survival benefits of palliative care and presents a model of how early integrated palliative care could potentially influence survival in patients with advanced cancer. PMID:23355404

  6. Role of biofilm roughness and hydrodynamic conditions in Legionella pneumophila adhesion to and detachment from simulated drinking water biofilms.

    Science.gov (United States)

    Shen, Yun; Monroy, Guillermo L; Derlon, Nicolas; Janjaroen, Dao; Huang, Conghui; Morgenroth, Eberhard; Boppart, Stephen A; Ashbolt, Nicholas J; Liu, Wen-Tso; Nguyen, Thanh H

    2015-04-01

    Biofilms in drinking water distribution systems (DWDS) could exacerbate the persistence and associated risks of pathogenic Legionella pneumophila (L. pneumophila), thus raising human health concerns. However, mechanisms controlling adhesion and subsequent detachment of L. pneumophila associated with biofilms remain unclear. We determined the connection between L. pneumophila adhesion and subsequent detachment with biofilm physical structure characterization using optical coherence tomography (OCT) imaging technique. Analysis of the OCT images of multispecies biofilms grown under low nutrient condition up to 34 weeks revealed the lack of biofilm deformation even when these biofilms were exposed to flow velocity of 0.7 m/s, typical flow for DWDS. L. pneumophila adhesion on these biofilm under low flow velocity (0.007 m/s) positively correlated with biofilm roughness due to enlarged biofilm surface area and local flow conditions created by roughness asperities. The preadhered L. pneumophila on selected rough and smooth biofilms were found to detach when these biofilms were subjected to higher flow velocity. At the flow velocity of 0.1 and 0.3 m/s, the ratio of detached cell from the smooth biofilm surface was from 1.3 to 1.4 times higher than that from the rough biofilm surface, presumably because of the low shear stress zones near roughness asperities. This study determined that physical structure and local hydrodynamics control L. pneumophila adhesion to and detachment from simulated drinking water biofilm, thus it is the first step toward reducing the risk of L. pneumophila exposure and subsequent infections. PMID:25699403

  7. Synergistic effects in mixed Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Holler, B.M.; Molin, Søren;

    2006-01-01

    pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from...... the cocultivation of 403 undomesticated E. coli strains with a characterized E. coli K-12 strain was detected at a significant frequency. The survey suggests that different mechanisms underlie the observed stimulation, yet synergistic development of biofilm within the subset of E. coli isolates (n...... = 56) exhibiting the strongest effects was most often linked to conjugative transmission of natural plasmids carried by the E. coli isolates (70%). Thus, the capacity of an isolate to promote the biofilm through cocultivation was (i) transferable to the K-12 strain, (ii) was linked with the acquisition...

  8. Multiple Roles of Biosurfactants in Biofilms.

    Science.gov (United States)

    Satputea, Surekha K; Banpurkar, Arun G; Banat, Ibrahim M; Sangshetti, Jaiprakash N; Patil, Rajendra H; Gade, Wasudev N

    2016-01-01

    Microbial growth and biofilms formation are a continuous source of contamination on most surfaces with biological, inanimate, natural or man-made. The use of chemical surfactants in daily practice to control growth, presence or adhesion of microorganisms and ultimately the formation of biofilms and biofouling is therefore becoming essential. Synthetic surfactants are, however, not preferred or ideal and biologically derived surface active biosurfactants (BSs) molecules produced mainly by microorganisms are therefore becoming attractive and sought by many industries. The search for innovative and interesting BS molecules that have effective antimicrobial activities and to use as innovative alternatives to chemical surfactants with added antimicrobial value among many other advantages has been ongoing for some time. This review discusses the various roles of BS molecules in association with biofilm formation. Recent updates on several mechanisms involved in biofilm development and control are presented vide this article. PMID:26786675

  9. Anti-Biofilm Compounds Derived from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Christian Melander

    2011-10-01

    Full Text Available Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues—including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds.

  10. Multi-depth valved microfluidics for biofilm segmentation

    Science.gov (United States)

    Meyer, M. T.; Subramanian, S.; Kim, Y. W.; Ben-Yoav, H.; Gnerlich, M.; Gerasopoulos, K.; Bentley, W. E.; Ghodssi, R.

    2015-09-01

    Bacterial biofilms present a societal challenge, as they occur in the majority of infections but are highly resistant to both immune mechanisms and traditional antibiotics. In the pursuit of better understanding biofilm biology for developing new treatments, there is a need for streamlined, controlled platforms for biofilm growth and evaluation. We leverage advantages of microfluidics to develop a system in which biofilms are formed and sectioned, allowing parallel assays on multiple sections of one biofilm. A microfluidic testbed with multiple depth profiles was developed to accommodate biofilm growth and sectioning by hydraulically actuated valves. In realization of the platform, a novel fabrication technique was developed for creating multi-depth microfluidic molds using sequentially patterned photoresist separated and passivated by conformal coatings using atomic layer deposition. Biofilm thickness variation within three separately tested devices was less than 13% of the average thickness in each device, while variation between devices was 23% of the average thickness. In a demonstration of parallel experiments performed on one biofilm within one device, integrated valves were used to trisect the uniform biofilms with one section maintained as a control, and two sections exposed to different concentrations of sodium dodecyl sulfate. The technology presented here for multi-depth microchannel fabrication can be used to create a host of microfluidic devices with diverse architectures. While this work focuses on one application of such a device in biofilm sectioning for parallel experimentation, the tailored architectures enabled by the fabrication technology can be used to create devices that provide new biological information.

  11. Biofilms and Helicobacter pylori: Dissemination and persistence within the environment and host

    Institute of Scientific and Technical Information of China (English)

    Steven; L; Percival; Louise; Suleman

    2014-01-01

    The presence of viable Helicobacter pylori(H. pylori) in the environment is considered to contribute to the levels of H. pylori found in the human population, which also aids to increase its genetic variability and its environment adaptability and persistence. H. pylori form biofilms both within the in vitro and in vivo envi-ronment. This represents an important attribute that assists the survival of this bacterium within environ-ments that are both hostile and adverse to prolifera-tion. It is the aim of this paper to review the ability of H. pylori to form biofilms in vivo and in vitro and to address the inherent mechanisms considered to sig-nificantly enhance its persistence within the host and in external environments. Furthermore, the dissemi-nation of H. pylori in the external environment and within in the human body and its impact upon infec-tion control shall be discussed.

  12. Report on the FY 1999 research survey on the industrial utilization/development of the biofilm formation mechanism and antifouling substances; 1999 nendo bio film keisei kiko oyobi sogai busshitsu no sangyoteki riyo kaihatsu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper described the results of the FY 1999 research on the fouling by marine aufwuchs. The survey is aimed at searching the nature world for active substances for biological antifouling. The fouling mechanism in the ocean is as follows. The adsorption of organisms called the conditioning film first occurs on the surface, and next, bacteria and diatom around the surface form biofilm and cover. After that, biological fouling by large aufwuchs occurs. Therefore, the control of biofilm formation was regarded as most important, and with this as a guidepost, the search was conducted. Using biofilm anti-formation activity and periphytic bacteria anti-growth activity as guideposts, some compounds were searched for. Being aimed at Porifera, in particular, new compounds were isolated from it. Since few of other organisms attaches on the surface of sponge, there is a great possibility of Porifera's producing any anti-fouling substances. Further, it is thought that symbiotic microorganisms of sponge (40% of the total weight) produce various biologically active substances. Synthetic phenethyl amine derivatives were also studied. (NEDO)

  13. Study on Biofilm Inhibit Mechanism of Streptococcus Sanguis Bacteriocin on Candida Albicans.%血链球菌细菌素对白色念珠菌生物膜抑制作用的研究

    Institute of Scientific and Technical Information of China (English)

    马晟利; 王琪波; 李旭明

    2011-01-01

    Objective: To extract bacteriocin effective antimicrobial substances the standard strains of Streptococcus sanguis ATCC10556 and to study the action mechanism of Streptococcus sanguis bacteriocin on Candida albicans biofilms. Methods.. By ultrasonic, salt precipitation and sephadex G-25 column desalting through dialysis, sanguicin of the streptococcus bacteria isolated elements, the Candida albicans biofilms. After 2h, 6h, 12h, 24h, 48h, 72h,changes observed in BF. Results: After 24h, Candida albicans biofilms changed significantly, then was 12h. Conclusion: Streptococcus sanguis bacteriocin biofilms of Candida albicans strains were significantly inhibited.%目的:提取血链球菌标准株ATCC10556的有效抗菌物质细菌素,进一步研究血链球菌细菌素对白色念珠菌生物膜的作用机理.方法:通过超声破碎、盐析、sephadex G-25过柱脱盐、透析、浓缩的方法分离血链球菌细菌素,使之作用于白色念珠菌生物膜,并在2 h、6 h、12 h、24 h、48 h、72 h观察白色念珠菌生物膜厚度的变化.结果:24 h内白色念珠菌生物膜厚度有明显改变,12 h效果最为显著.结论:血链球菌细菌素对白色念株菌生物膜具有显著的抑制作用.

  14. Electrical spiking in bacterial biofilms

    OpenAIRE

    Masi, Elisa; Ciszak, Marzena; Santopolo, Luisa; Frascella, Arcangela; Giovannetti, Luciana; Marchi, Emmanuela; Viti, Carlo; Mancuso, Stefano

    2015-01-01

    In nature, biofilms are the most common form of bacterial growth. In biofilms, bacteria display coordinated behaviour to perform specific functions. Here, we investigated electrical signalling as a possible driver in biofilm sociobiology. Using a multi-electrode array system that enables high spatio-temporal resolution, we studied the electrical activity in two biofilm-forming strains and one non-biofilm-forming strain. The action potential rates monitored during biofilm-forming bacterial gro...

  15. NEW METHODOLOGIES FOR BIOFILMS CONTROL IN FOOD INDUSTRY

    Directory of Open Access Journals (Sweden)

    Pavol Bajzík

    2010-07-01

    Full Text Available The complete removal of biofilms on food  equipment surfaces  is essential to ensure food safety and quality. However, cells in biofilms exhibit greater resistance against the action of sanitizers and other antimicrobial agents compared to their free living counterparts, making them much more difficult to remove. They can be a significant source of post - processing contamination and could potentially harbor pathogens in food processing platns. The biotechnology sector is just beginning to tackle the problem of biofilms by developing antimicrobial agents with novel mechanisms of action. Some studies seek to prevent biofilm formation, others aim to develop antimicrobial agents to treat existing biofilms, and still others are trying to disrupt the polymeric ties that bind the biofilms together. doi:10.5219/17

  16. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display a...... remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because the...... use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  17. Effects of substrates on biofilm formation observed by atomic force microscopy

    International Nuclear Information System (INIS)

    Formation of biofilm is known to be strongly dependent on substrates including topography, materials, and chemical treatment. In this study, a variety of substrates are tested for understanding biofilm formation. Sheets of aluminum, steel, rubber, and polypropylene have been used to examine their effects on formation of Pseudomonas aeruginosa biofilm. In particular, the morphological variation, transition, and adhesiveness of biofilm were investigated through local measurement by atomic force microscopy (AFM). Mechanism of removing biofilm from adhering to substrate is also analyzed, thus the understanding of the mechanism can be potentially useful to prevent the biofilm formation. The results reveal that formation of biofilm can remain on rough surface regardless of substrates in hot water, which may easily induce extra-polymeric substances detachment from bacterial surface. By probing using AFM, local force-distance characterization of extra-cellular materials extracted from the bacteria can exhibit the progress of the biofilm formation and functional complexities.

  18. Bacteriophages and Biofilms

    OpenAIRE

    Harper, David R; Helena M. R. T. Parracho; James Walker; Richard Sharp; Gavin Hughes; Maria Werthén; Susan Lehman; Sandra Morales

    2014-01-01

    Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this commo...

  19. Redox Conductivity of Current-Producing Mixed Species Biofilms

    Science.gov (United States)

    Fan, Yanzhen; Liu, Hong

    2016-01-01

    While most biological materials are insulating in nature, efficient extracellular electron transfer is a critical property of biofilms associated with microbial electrochemical systems and several microorganisms are capable of establishing conductive aggregates and biofilms. Though construction of these conductive microbial networks is an intriguing and important phenomenon in both natural and engineered systems, few studies have been published related to conductive biofilms/aggregates and their conduction mechanisms, especially in mixed-species environments. In the present study, current-producing mixed species biofilms exhibited high conductivity across non-conductive gaps. Biofilm growth observed on the inactive electrode contributed to overall power outputs, suggesting that an electrical connection was established throughout the biofilm assembly. Electrochemical gating analysis of the biofilms over a range of potentials (-600–200 mV, vs. Ag/AgCl) resulted in a peak-manner response with maximum conductance of 3437 ± 271 μS at a gate potential of -360 mV. Following removal of the electron donor (acetate), a 96.6% decrease in peak conductivity was observed. Differential responses observed in the absence of an electron donor and over varying potentials suggest a redox driven conductivity mechanism in mixed-species biofilms. These results demonstrated significant differences in biofilm development and conductivity compared to previous studies using pure cultures. PMID:27159497

  20. Light therapy: complementary antibacterial treatment of oral biofilm.

    Science.gov (United States)

    Feuerstein, O

    2012-09-01

    Conventional antibacterial treatment fails to eradicate biofilms associated with common infections of the oral cavity. Unlike chemical agents, which are less effective than anticipated, owing to diffusion limitations in biofilms, light is more effective on bacteria in biofilm than in suspension. Effectiveness depends also on the type and parameters of the light. We tested the phototoxic effects of non-coherent blue light (wavelengths, 400-500 nm) and CO(2) laser (wavelength, 10.6 μm), which have different mechanisms of action on the oral bacterium Streptoccocus mutans, in biofilm and on tooth enamel. Exposure of S. mutans in biofilm to blue light had a delayed effect on bacterial viability throughout the biofilm and a sustained antibacterial effect on biofilm newly formed by previously irradiated bacteria. A synergistic antibacterial effect between blue light and H(2)O(2) may enhance the phototoxic effect, which involves a photochemical mechanism mediated by reactive oxygen species (ROS) formation. The effect of CO(2) laser irradiation on the viability of S. mutans in biofilm on enamel samples appeared to be higher in the deep layers, due to heating of the enamel surface by the absorbed energy. Biofilms do not interfere with the chemical changes resulting from irradiation, which may increase the enamel's resistance to acid attack. PMID:22899690

  1. Redox Conductivity of Current-Producing Mixed Species Biofilms.

    Science.gov (United States)

    Li, Cheng; Lesnik, Keaton Larson; Fan, Yanzhen; Liu, Hong

    2016-01-01

    While most biological materials are insulating in nature, efficient extracellular electron transfer is a critical property of biofilms associated with microbial electrochemical systems and several microorganisms are capable of establishing conductive aggregates and biofilms. Though construction of these conductive microbial networks is an intriguing and important phenomenon in both natural and engineered systems, few studies have been published related to conductive biofilms/aggregates and their conduction mechanisms, especially in mixed-species environments. In the present study, current-producing mixed species biofilms exhibited high conductivity across non-conductive gaps. Biofilm growth observed on the inactive electrode contributed to overall power outputs, suggesting that an electrical connection was established throughout the biofilm assembly. Electrochemical gating analysis of the biofilms over a range of potentials (-600-200 mV, vs. Ag/AgCl) resulted in a peak-manner response with maximum conductance of 3437 ± 271 μS at a gate potential of -360 mV. Following removal of the electron donor (acetate), a 96.6% decrease in peak conductivity was observed. Differential responses observed in the absence of an electron donor and over varying potentials suggest a redox driven conductivity mechanism in mixed-species biofilms. These results demonstrated significant differences in biofilm development and conductivity compared to previous studies using pure cultures. PMID:27159497

  2. Pseudomonas aeruginosa Cystic Fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro

    Directory of Open Access Journals (Sweden)

    Elborn Stuart J

    2010-02-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is considered to grow in a biofilm in cystic fibrosis (CF chronic lung infections. Bacterial cell motility is one of the main factors that have been connected with P. aeruginosa adherence to both biotic and abiotic surfaces. In this investigation, we employed molecular and microscopic methods to determine the presence or absence of motility in P. aeruginosa CF isolates, and statistically correlated this with their biofilm forming ability in vitro. Results Our investigations revealed a wide diversity in the production, architecture and control of biofilm formation. Of 96 isolates, 49% possessed swimming motility, 27% twitching and 52% swarming motility, while 47% were non-motile. Microtitre plate assays for biofilm formation showed a range of biofilm formation ability from biofilm deficient phenotypes to those that formed very thick biofilms. A comparison of the motility and adherence properties of individual strains demonstrated that the presence of swimming and twitching motility positively affected biofilm biomass. Crucially, however, motility was not an absolute requirement for biofilm formation, as 30 non-motile isolates actually formed thick biofilms, and three motile isolates that had both flagella and type IV pili attached only weakly. In addition, CLSM analysis showed that biofilm-forming strains of P. aeruginosa were in fact capable of entrapping non-biofilm forming strains, such that these 'non-biofilm forming' cells could be observed as part of the mature biofilm architecture. Conclusions Clinical isolates that do not produce biofilms in the laboratory must have the ability to survive in the patient lung. We propose that a synergy exists between isolates in vivo, which allows "non biofilm-forming" isolates to be incorporated into the biofilm. Therefore, there is the potential for strains that are apparently non-biofilm forming in vitro to participate in biofilm-mediated pathogenesis in the CF

  3. Saccharomyces cerevisiae biofilm tolerance towards systemic antifungals depends on growth phase

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth; Regenberg, Birgitte; Folkesson, Sven Anders

    2014-01-01

    Background : Biofilm-forming Candida species cause infections that can be difficult to eradicate, possibly because of antifungal drug tolerance mechanisms specific to biofilms. In spite of decades of research, the connection between biofilm and drug tolerance is not fully understood. Results : We...

  4. Microbiology of equine wounds and evidence of bacterial biofilms

    OpenAIRE

    Westgate, S.J.; Percival, S. L.; Knottenbelt, D.C.; Clegg, P. D.; Cochrane, C.A.

    2011-01-01

    Abstract Horse wounds have a high risk of becoming infected due to their environment. Infected wounds harbour diverse populations of microorganisms, however in some cases these microorganisms can be difficult to identify and fail to respond to antibiotic treatment, resulting in chronic non-healing wounds. In human wounds this has been attributed to the ability of bacteria to survive in a biofilm phenotypic state. Biofilms are known to delay wound healing, principally due to their r...

  5. Use of biocides and surfactants to control Pseudomonas fluorescens biofilms : role of the hydrodynamic conditions

    OpenAIRE

    Simões, M

    2005-01-01

    Tese de doutoramento em Química e Engenharia Biológica. Biofilms constitute a protected growth modality that allows the bacteria to survive in hostile environments. The most common practice to eliminate unwanted biofilms is the application of antimicrobial agents. However, current disinfection practices show often inefficacy in the control of biofilms. The main goals of this work were the development of effective strategies, based on the application of chemical agents, in order to co...

  6. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment

    OpenAIRE

    Brown, Helen L.; Hanman, Kate; Reuter, Mark; Betts, Roy P.; van Vliet, Arnoud H. M.

    2015-01-01

    Biofilms make an important contribution to survival and transmission of bacterial pathogens in the food chain. The human pathogen Campylobacter jejuni is known to form biofilms in vitro in food chain-relevant conditions, but the exact roles and composition of the extracellular matrix are still not clear. Extracellular DNA has been found in many bacterial biofilms and can be a major component of the extracellular matrix. Here we show that extracellular DNA is also an important component of the...

  7. Development and Validation of an In Vivo Candida albicans Biofilm Denture Model▿

    OpenAIRE

    Nett, Jeniel E.; Marchillo, Karen; Spiegel, Carol A.; Andes, David R.

    2010-01-01

    The most common form of oral candidiasis, denture-associated stomatitis, involves biofilm growth on an oral prosthetic surface. Cells in this unique environment are equipped to withstand host defenses and survive antifungal therapy. Studies of the biofilm process on dentures have primarily been limited to in vitro models. We developed a rodent acrylic denture model and characterized the Candida albicans and mixed oral bacterial flora biofilm formation, architecture, and drug resistance in viv...

  8. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  9. Analysis of the biofilm proteome of Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Labate Carlos A

    2011-09-01

    Full Text Available Abstract Background Xylella fastidiosa is limited to the xylem of the plant host and the foregut of insect vectors (sharpshooters. The mechanism of pathogenicity of this bacterium differs from other plant pathogens, since it does not present typical genes that confer specific interactions between plant and pathogens (avr and/or hrp. The bacterium is injected directly into the xylem vessels where it adheres and colonizes. The whole process leads to the formation of biofilms, which are considered the main mechanism of pathogenicity. Cells in biofilms are metabolically and phenotypically different from their planktonic condition. The mature biofilm stage (phase of higher cell density presents high virulence and resistance to toxic substances such as antibiotics and detergents. Here we performed proteomic analysis of proteins expressed exclusively in the mature biofilm of X. fastidiosa strain 9a5c, in comparison to planktonic growth condition. Results We found a total of 456 proteins expressed in the biofilm condition, which correspond to approximately 10% of total protein in the genome. The biofilm showed 37% (or 144 proteins different protein than we found in the planktonic growth condition. The large difference in protein pattern in the biofilm condition may be responsible for the physiological changes of the cells in the biofilm of X. fastidiosa. Mass spectrometry was used to identify these proteins, while real-time quantitative polymerase chain reaction monitored expression of genes encoding them. Most of proteins expressed in the mature biofilm growth were associated with metabolism, adhesion, pathogenicity and stress conditions. Even though the biofilm cells in this work were not submitted to any stress condition, some stress related proteins were expressed only in the biofilm condition, suggesting that the biofilm cells would constitutively express proteins in different adverse environments. Conclusions We observed overexpression of proteins

  10. Characterization of mechanisms underlying neuronal survival and plasticity in Huntington's disease

    OpenAIRE

    Anglada Huguet, Marta

    2013-01-01

    [eng]Huntington’s disease is a progressive neurodegenerative disorder caused by the expansion of a CAG tract in the exon-1 of the huntingtin gene. Mutant huntingtin induces a large amount of toxic effects that trigger cell dysfunction and consequently, behavioral alterations such as motor dysfunction, cognitive decline and psychological disturbances. However, before the onset of symptoms individuals are healthy. Thus, it is plausible that compensatory mechanisms may be activated to regulate a...

  11. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease

    Directory of Open Access Journals (Sweden)

    Yashuan eChao

    2015-01-01

    Full Text Available Streptococcus pneumoniae (the pneumococcus is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over 1 million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo.In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of

  12. Haemophilus responses to nutritional immunity: epigenetic and morphological contribution to biofilm architecture, invasion, persistence and disease severity.

    Directory of Open Access Journals (Sweden)

    Blake R Szelestey

    Full Text Available In an effort to suppress microbial outgrowth, the host sequesters essential nutrients in a process termed nutritional immunity. However, inflammatory responses to bacterial insult can restore nutritional resources. Given that nutrient availability modulates virulence factor production and biofilm formation by other bacterial species, we hypothesized that fluctuations in heme-iron availability, particularly at privileged sites, would similarly influence Haemophilus biofilm formation and pathogenesis. Thus, we cultured Haemophilus through sequential heme-iron deplete and heme-iron replete media to determine the effect of transient depletion of internal stores of heme-iron on multiple pathogenic phenotypes. We observed that prior heme-iron restriction potentiates biofilm changes for at least 72 hours that include increased peak height and architectural complexity as compared to biofilms initiated from heme-iron replete bacteria, suggesting a mechanism for epigenetic responses that participate in the changes observed. Additionally, in a co-infection model for human otitis media, heme-iron restricted Haemophilus, although accounting for only 10% of the inoculum (90% heme-iron replete, represented up to 99% of the organisms recovered at 4 days. These data indicate that fluctuations in heme-iron availability promote a survival advantage during disease. Filamentation mediated by a SulA-related ortholog was required for optimal biofilm peak height and persistence during experimental otitis media. Moreover, severity of disease in response to heme-iron restricted Haemophilus was reduced as evidenced by lack of mucosal destruction, decreased erythema, hemorrhagic foci and vasodilatation. Transient restriction of heme-iron also promoted productive invasion events leading to the development of intracellular bacterial communities. Taken together, these data suggest that nutritional immunity, may, in fact, foster long-term phenotypic changes that better equip

  13. Off the hook - how bacteria survive protozoan grazing

    DEFF Research Database (Denmark)

    Matz, Carsten; Kjelleberg, S.

    2005-01-01

    Bacterial growth and survival in numerous environments are constrained by the action of bacteria-consuming protozoa. Recent findings suggest that bacterial adaptations against protozoan predation might have a significant role in bacterial persistence and diversification. We argue that selective...... predation has given rise to diverse routes of bacterial defense, including adaptive mechanisms in bacterial biofilms, and has promoted major transitions in bacterial evolution, such as multicellularity and pathogenesis. We propose that studying predation-driven adaptations will provide an exciting frontier...... for microbial ecology and evolution at the interface of prokaryotes and eukaryotes....

  14. The effect of berberine hydrochloride on Enterococcus faecalis biofilm formation and dispersion in vitro.

    Science.gov (United States)

    Chen, Lihua; Bu, Qianqian; Xu, Huan; Liu, Yuan; She, Pengfei; Tan, Ruichen; Wu, Yong

    2016-01-01

    Enterococcus faecalis (E. faecalis) is one of the major causes of biofilm infections. Berberine hydrochloride (BBH) has diverse pharmacological effects; however, the effects and mechanisms of BBH on E. faecalis biofilm formation and dispersion have not been reported. In this study, 99 clinical isolates from the urine samples of patients with urinary tract infections (UTIs) were collected and identified. Ten strains of E. faecalis with biofilm formation ability were studied. BBH inhibited E. faecalis biofilm formation and promoted the biofilm dispersion of E. faecalis. In addition, sortase A and esp expression levels were elevated during early E. faecalis biofilm development, whereas BBH significantly reduced their expression levels. The results of this study indicated that BBH effectively prevents biofilm formation and promotes biofilm dispersion in E. faecalis, most likely by inhibiting the expressions of sortase A and esp. PMID:27242142

  15. Meningococcal biofilm formation

    DEFF Research Database (Denmark)

    Lappann, M.; Haagensen, Janus Anders Juul; Claus, H.;

    2006-01-01

    We show that in a standardized in vitro flow system unencapsulated variants of genetically diverse lineages of Neisseria meningitidis formed biofilms, that could be maintained for more than 96 h. Biofilm cells were resistant to penicillin, but not to rifampin or ciprofloxacin. For some strains......, microcolony formation within biofilms was observed. Microcolony formation in strain MC58 depended on a functional copy of the pilE gene encoding the pilus subunit pilin, and was associated with twitching of cells. Nevertheless, unpiliated pilE mutants formed biofilms showing that attachment and accumulation...... PilX alleles was identified among genetically diverse meningococcal strains. PilX alleles differed in their propensity to support autoaggregation of cells in suspension, but not in their ability to support microcolony formation within biofilms in the continuous flow system....

  16. Strategies for antimicrobial drug delivery to biofilm.

    Science.gov (United States)

    Martin, Claire; Low, Wan Li; Gupta, Abhishek; Amin, Mohd Cairul Iqbal Mohd; Radecka, Iza; Britland, Stephen T; Raj, Prem; Kenward, Ken M A

    2015-01-01

    Biofilms are formed by the attachment of single or mixed microbial communities to a variety of biological and/or synthetic surfaces. Biofilm micro-organisms benefit from many advantages of the polymicrobial environment including increased resistance against antimicrobials and protection against the host organism's defence mechanisms. These benefits stem from a number of structural and physiological differences between planktonic and biofilm-resident microbes, but two main factors are the presence of extracellular polymeric substances (EPS) and quorum sensing communication. Once formed, biofilms begin to synthesise EPS, a complex viscous matrix composed of a variety of macromolecules including proteins, lipids and polysaccharides. In terms of drug delivery strategies, it is the EPS that presents the greatest barrier to diffusion for drug delivery systems and free antimicrobial agents alike. In addition to EPS synthesis, biofilm-based micro-organisms can also produce small, diffusible signalling molecules involved in cell density-dependent intercellular communication, or quorum sensing. Not only does quorum sensing allow microbes to detect critical cell density numbers, but it also permits co-ordinated behaviour within the biofilm, such as iron chelation and defensive antibiotic activities. Against this backdrop of microbial defence and cell density-specific communication, a variety of drug delivery systems have been developed to deliver antimicrobial agents and antibiotics to extracellular and/or intracellular targets, or more recently, to interfere with the specific mechanisms of quorum sensing. Successful delivery strategies have employed lipidic and polymeric-based formulations such as liposomes and cyclodextrins respectively, in addition to inorganic carriers e.g. metal nanoparticles. This review will examine a range of drug delivery systems and their application to biofilm delivery, as well as pharmaceutical formulations with innate antimicrobial properties

  17. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    International Nuclear Information System (INIS)

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: ► Endothelial cells mount a stress response under conditions of low serum. ► Endothelial VEGFR levels are

  18. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    Energy Technology Data Exchange (ETDEWEB)

    Latham, Antony M.; Odell, Adam F. [Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom); Mughal, Nadeem A. [Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom); Issitt, Theo; Ulyatt, Clare; Walker, John H. [Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom); Homer-Vanniasinkam, Shervanthi [Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom); Ponnambalam, Sreenivasan, E-mail: s.ponnambalam@leeds.ac.uk [Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2012-11-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black

  19. Tolerance of yeast biofilm cells towards systemic antifungals

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth

    of this thesis has been to explore the tolerance mechanisms of yeast biofilms to systemic antifungal agents and to identify the molecular target of a novel peptidomimetic with anti-biofilm activity. The genetic tractable S. cerevisiae was used as biofilm model system for the pathogenic Candida...... species in an attempt to take advantage of the molecular tools available for S. cerevisiae. Mature biofilms containing mainly growth arrested cells were shown to be tolerant to three out of four tested antifungals, while all drugs had inhibitory activity against proliferating biofilm cells, demonstrating...... physiological state of the cell and the mechanism of action of the drug, and this is independent of mode of growth. Based on these results, it can be suggested that future drug treatment strategies should focus on targeting growth arrested cells, rather than distinguishing between modes of growth. At last, we...

  20. Calcium transcriptionally regulates the biofilm machinery of Xylella fastidiosa to promote continued biofilm development in batch cultures.

    Science.gov (United States)

    Parker, Jennifer K; Chen, Hongyu; McCarty, Sara E; Liu, Lawrence Y; De La Fuente, Leonardo

    2016-05-01

    The functions of calcium (Ca) in bacteria are less characterized than in eukaryotes, where its role has been studied extensively. The plant-pathogenic bacterium Xylella fastidiosa has several virulence features that are enhanced by increased Ca concentrations, including biofilm formation. However, the specific mechanisms driving modulation of this feature are unclear. Characterization of biofilm formation over time showed that 4 mM Ca supplementation produced denser biofilms that were still developing at 96 h, while biofilm in non-supplemented media had reached the dispersal stage by 72 h. To identify changes in global gene expression in X. fastidiosa grown in supplemental Ca, RNA-Seq of batch culture biofilm cells was conducted at three 24-h time intervals. Results indicate that a variety of genes are differentially expressed in response to Ca, including genes related to attachment, motility, exopolysaccharide synthesis, biofilm formation, peptidoglycan synthesis, regulatory functions, iron homeostasis, and phages. Collectively, results demonstrate that Ca supplementation induces a transcriptional response that promotes continued biofilm development, while biofilm cells in nonsupplemented media are driven towards dispersion of cells from the biofilm structure. These results have important implications for disease progression in planta, where xylem sap is the source of Ca and other nutrients for X. fastidiosa. PMID:26913481

  1. Genome-Wide Transposon Mutagenesis Indicates that Mycobacterium marinum Customizes Its Virulence Mechanisms for Survival and Replication in Different Hosts

    KAUST Repository

    Weerdenburg, Eveline M.

    2015-02-17

    The interaction of environmental bacteria with unicellular eukaryotes is generally considered a major driving force for the evolution of intracellular pathogens, allowing them to survive and replicate in phagocytic cells of vertebrate hosts. To test this hypothesis on a genome-wide level, we determined for the intracellular pathogen Mycobacterium marinum whether it uses conserved strategies to exploit host cells from both protozoan and vertebrate origin. Using transposon-directed insertion site sequencing (TraDIS), we determined differences in genetic requirements for survival and replication in phagocytic cells of organisms from different kingdoms. In line with the general hypothesis, we identified a number of general virulence mechanisms, including the type VII protein secretion system ESX-1, biosynthesis of polyketide lipids, and utilization of sterols. However, we were also able to show that M. marinum contains an even larger set of host-specific virulence determinants, including proteins involved in the modification of surface glycolipids and, surprisingly, the auxiliary proteins of the ESX-1 system. Several of these factors were in fact counterproductive in other hosts. Therefore, M. marinum contains different sets of virulence factors that are tailored for specific hosts. Our data imply that although amoebae could function as a training ground for intracellular pathogens, they do not fully prepare pathogens for crossing species barriers.

  2. Harboring oil-degrading bacteria: a potential mechanism of adaptation and survival in corals inhabiting oil-contaminated reefs.

    Science.gov (United States)

    Al-Dahash, Lulwa M; Mahmoud, Huda M

    2013-07-30

    Certain coral reef systems north of the Arabian Gulf are characterized by corals with a unique ability to thrive and flourish despite the presence of crude oil continuously seeping from natural cracks in the seabed. Harboring oil-degrading bacteria as a part of the holobiont has been investigated as a potential mechanism of adaptation and survival for corals in such systems. The use of conventional and molecular techniques verified a predominance of bacteria affiliated with Gammaproteobacteria, Actinobacteria and Firmicutes in the mucus and tissues of Acropora clathrata and Porites compressa. These bacteria were capable of degrading a wide range of aliphatic (C9-C28) aromatic hydrocarbons (Phenanthrene, Biphenyl, Naphthalene) and crude oil. In addition, microcosms supplied with coral samples and various concentrations of crude oil shifted their bacterial population toward the more advantageous types of oil degraders as oil concentrations increased. PMID:23014479

  3. Quantitative Proteomic Analysis of Mitochondrial Proteins Reveals Pro-Survival Mechanisms in the Perpetuation of Radiation-Induced Genomic Instability

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Stefani N.; Waters, Katrina M.; Morgan, William F.; Yang, Austin; Baulch, Janet E.

    2012-07-26

    Radiation induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear, however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation induced genomic instability we have evaluated the mitochondrial sub-proteome and performed quantitative mass spectrometry (MS) analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and up-regulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under sub-optimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.

  4. Caracterização de propriedades mecânicas e óticas de biofilmes a base de proteínas miofibrilares de tilápia do nilo usando uma metodologia de superfície-resposta Characterization of mechanical and optical properties of tilapia myofibrillar proteins-based biofilms using a surface-response method

    Directory of Open Access Journals (Sweden)

    Ednelí S. MONTERREY

    1999-05-01

    Full Text Available Biopolímeros como polissacarídeos e proteínas, têm despertado interesse recentemente, como matérias primas para embalagens comestíveis e/ou biodegradáveis. Os materiais a serem desenvolvidos devem possuir boas propriedades mecânicas e aparência, para proteger e apresentar o produto embalado. Este trabalho teve como objetivo a caracterização das propriedades mecânicas e óticas de biofilmes à base de proteínas miofibrilares de tilápia-do-nilo, em função do pH (2,0-3,0, da concentração de proteína (Cp= 0,5-2,0g/100g solução e do teor de glicerol (Cg= 30-70g/100g proteína da solução filmogênica (SF. Foram determinadas a força e a deformação na ruptura por teste de perfuração e a opacidade aparente através de espectrofotometria, à 22ºC e umidade relativa ambiente. Os biofilmes obtidos nessas condições de ensaio apresentaram-se manuseáveis e transparentes. A força e a deformação na ruptura apresentaram comportamentos opostos em função da Cg (pH= 2,5 e Cp= 1,25 g/100g solução: a variação da Cg de 30 a 70% provocou uma variação na força e na deformação na ruptura entre 6,67N e 2,94N e 2,71% e 7,5%, respectivamente. A Cg e o pH exercem influência significativa sobre a força na ruptura (pDuring the last couple of years, biopolymers such as polysaccharides and proteins have been arousing scientists’ interest as raw materials for biodegradable and/or edible packaging. Packaging materials to be developed should have good mechanical and visual properties, to protect and to offer the packed product a presentable look. This work was aimed at characterization of the mechanical and optical properties of nile tilapia myofibrillar proteins-based biofilms, as a function of filmogenic solution (fs [composition: ph (2 to 3, protein (cp = 0.5 to 2.0g/100g solution and glycerol concentration (cg = 30 to 70g/100g protein]. Force and percentage deformation at break were determined by a puncture test and the apparent

  5. Bioinspired, dynamic, structured surfaces for biofilm prevention

    Science.gov (United States)

    Epstein, Alexander K.

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even low surface tension commercial antimicrobials. Our study shows multiple contributing factors, including biochemical components and multiscale reentrant topography. Reliant on surface chemistry, conventional strategies for preventing biofilm only transiently affect attachment and/or are environmentally toxic. In this work, we look to Nature's antifouling solutions, such as the dynamic spiny skin of the echinoderm, and we develop a versatile surface nanofabrication platform. Our benchtop approach unites soft lithography, electrodeposition, mold deformation, and material selection to enable many degrees of freedom—material, geometric, mechanical, dynamic—that can be programmed starting from a single master structure. The mechanical properties of the bio-inspired nanostructures, verified by AFM, are precisely and rationally tunable. We examine how synthetic dynamic nanostructured surfaces control the attachment of pathogenic biofilms. The parameters governing long-range patterning of bacteria on high-aspect-ratio (HAR) nanoarrays are combinatorially elucidated, and we discover that sufficiently low effective stiffness of these HAR arrays mechanoselectively inhibits ˜40% of Pseudomonas aeruginosa biofilm attachment. Inspired by the active echinoderm skin, we design and fabricate externally actuated dynamic elastomer surfaces with active surface microtopography. We extract from a large parameter space the critical topographic length scales and actuation time scales for achieving

  6. In Situ Biomineralization and Particle Deposition Distinctively Mediate Biofilm Susceptibility to Chlorine.

    Science.gov (United States)

    Li, Xiaobao; Chopp, David L; Russin, William A; Brannon, Paul T; Parsek, Matthew R; Packman, Aaron I

    2016-05-15

    Microbial biofilms and mineral precipitation commonly co-occur in engineered water systems, such as cooling towers and water purification systems, and both decrease process performance. Microbial biofilms are extremely challenging to control and eradicate. We previously showed that in situ biomineralization and the precipitation and deposition of abiotic particles occur simultaneously in biofilms under oversaturated conditions. Both processes could potentially alter the essential properties of biofilms, including susceptibility to biocides. However, the specific interactions between mineral formation and biofilm processes remain poorly understood. Here we show that the susceptibility of biofilms to chlorination depends specifically on internal transport processes mediated by biomineralization and the accumulation of abiotic mineral deposits. Using injections of the fluorescent tracer Cy5, we show that Pseudomonas aeruginosa biofilms are more permeable to solutes after in situ calcite biomineralization and are less permeable after the deposition of abiotically precipitated calcite particles. We further show that biofilms are more susceptible to chlorine killing after biomineralization and less susceptible after particle deposition. Based on these observations, we found a strong correlation between enhanced solute transport and chlorine killing in biofilms, indicating that biomineralization and particle deposition regulate biofilm susceptibility by altering biocide penetration into the biofilm. The distinct effects of in situ biomineralization and particle deposition on biocide killing highlight the importance of understanding the mechanisms and patterns of biomineralization and scale formation to achieve successful biofilm control. PMID:26944848

  7. Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation

    DEFF Research Database (Denmark)

    Wu, Hong; Lee, Baoleri; Yang, Liang;

    2011-01-01

    Biofilm-associated chronic Pseudomonas aeruginosa lung infections in patients with cystic fibrosis are virtually impossible to eradicate with antibiotics because biofilm-growing bacteria are highly tolerant to antibiotics and host defense mechanisms. Previously, we found that ginseng treatments....... aeruginosa, but significantly prevented P. aeruginosa from forming biofilm. Exposure to 0.5% ginseng aqueous extract for 24 h destroyed most 7-day-old mature biofilms formed by both mucoid and nonmucoid P. aeruginosa strains. Ginseng treatment enhanced swimming and twitching motility, but reduced swarming of...... P. aeruginosa at concentrations as low as 0.25%. Oral administration of ginseng extracts in mice promoted phagocytosis of P. aeruginosa PAO1 by airway phagocytes, but did not affect phagocytosis of a PAO1-filM mutant. Our study suggests that ginseng treatment may help to eradicate the biofilm...

  8. Nanoparticles for Control of Biofilms of Acinetobacter Species

    Directory of Open Access Journals (Sweden)

    Richa Singh

    2016-05-01

    Full Text Available Biofilms are the cause of 80% of microbial infections. Acinetobacter species have emerged as multi- and pan-drug-resistant bacteria and pose a great threat to human health. These act as nosocomial pathogens and form excellent biofilms, both on biotic and abiotic surfaces, leading to severe infections and diseases. Various methods have been developed for treatment and control of Acinetobacter biofilm including photodynamic therapy, radioimmunotherapy, prophylactic vaccines and antimicrobial peptides. Nanotechnology, in the present scenario, offers a promising alternative. Nanomaterials possess unique properties, and multiple bactericidal mechanisms render them more effective than conventional drugs. This review intends to provide an overview of Acinetobacter biofilm and the significant role of various nanoparticles as anti-biofouling agents, surface-coating materials and drug-delivery vehicles for biofilm control and treatment of Acinetobacter infections.

  9. Delving through electrogenic biofilms: from anodes to cathodes to microbes

    Directory of Open Access Journals (Sweden)

    Lucie Semenec

    2015-08-01

    Full Text Available The study of electromicrobiology has grown into its own field over the last decades and involves microbially driven redox reactions at electrodes as part of a microbial electrochemical system (MES. The microorganisms known to use electrodes as either electron acceptors; electricigens, or electron donors; electrotrophs, drive the redox reactions within these systems through extracellular electron transfer (EET processes. These exoelectrogenic microorganisms form biofilms, referred to as electroactive biofilms (EAB, in order to maximize adherence and contact with electrode surfaces and with one another. In this review, we will discuss the key differences between biofilms that utilize the electrode as an electron acceptor or donor, including their mechanisms for electron transfer, structural and functional compositions as well as which species are enriched for in each microenvironment. Lastly, we will discuss the intricacies of interspecies and intraspecies biofilm formation in electrode biofilms and considerations required for future bioengineering efforts.

  10. Long-term survival in elderly patients with a do-not-intubate order treated with noninvasive mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Riario-Sforza GG

    2011-04-01

    Full Text Available Paolo Scarpazza1, Cristoforo Incorvaia2, Paolo Amboni3, Giuseppe di Franco1, Stefania Raschi1, Pierfranco Usai1, Monica Bernareggi1, Cristiano Bonacina1, Chiara Melacini1, Roberta Cattaneo1, Serena Bencini1, Chiara Pravettoni2, Gian Galeazzo Riario-Sforza2, Gianni Passalacqua4, Walter Casali11Divisione di Broncopneumotisiologia, Ospedale Civile, Vimercate, Italy; 2Pulmonary Rehabilitation, Istituti Clinici di Perfezionamento, Milan, Italy; 3Clinical Chemistry Laboratory, Ospedali Riuniti, Bergamo, Italy; 4Allergy and Respiratory Diseases, University Of Genoa, Genoa, ItalyBackground: Noninvasive mechanical ventilation (NIMV is an effective tool in treating patients with acute respiratory failure (ARF, since it reduces both the need for endotracheal intubation and the mortality in comparison with nonventilated patients. A particular issue is represented by the outcome of NIMV in patients referred to the emergency department for ARF and with a do-not-intubate (DNI status because of advanced age or excessively critical conditions. This study evaluated long-term survival in a group of elderly patients with acute hypercapnic ARF who had a DNI order and who were successfully treated by NIMV.Methods: The population consisted of 54 patients with a favorable outcome after NIMV for ARF. They were followed up for 3 years by regular control visits, with at least one visit every 4 months, or as needed according to the patient’s condition. Of these, 31 continued NIMV at home and 23 were on long-term oxygen therapy (LTOT alone.Results: A total of 16 of the 52 patients had not survived at the 1-year follow-up, and another eight patients died during the 3-year observation, with an overall mortality rate of 30.8% after 1 year and 46.2% after 3 years. Comparing patients who continued NIMV at home with those who were on LTOT alone, 9 of the 29 patients on home NIMV died (6 after 1 year and 3 after 3 years and 15 of the 23 patients on LTOT alone died (10 after 1

  11. Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand.

    Science.gov (United States)

    Mitzel, Michael R; Sand, Stefanie; Whalen, Joann K; Tufenkji, Nathalie

    2016-04-01

    Engineered nanoparticles (ENPs) are used in the manufacture of over 2000 industrial and consumer products to enhance their material properties and functions or to enable new nanoparticle-dependent functions. The widespread use of ENPs will result in their release to the subsurface and aquatic environments, where they will interact with indigenous biota. Laboratory column experiments were designed to understand the influence of two different Pseudomonas aeruginosa biofilms on the mobility of polystyrene latex nanoparticles in granular porous media representative of groundwater aquifers or riverbank filtration settings. The transport behavior of 20 nm carboxylate-modified (CLPs) and sulfate (SLPs) polystyrene latex ENPs suspended in NaCl or CaCl2 (1 and 10 mM ionic strength, pH 7) was studied in columns packed with quartz sand coated with biofilms formed by two P. aeruginosa strains that differed in cell surface hydrophobicity (P. aeruginosa 9027™, relatively hydrophilic and P. aeruginosa PAO1, relatively hydrophobic). Biofilm-coated quartz sand retained more of the electrostatically-stabilized latex ENPs than clean, uncoated sand, regardless of the serotype. As IS increased, clear differences in the shape of the ENP breakthrough curves were observed for each type of biofilm coating. ENP breakthrough in the P. aeruginosa PAO1 biofilm-coated sand was generally constant with time whereby breakthrough in the P. aeruginosa 9027 biofilm-coated sand showed dynamic behavior. This indicates a fundamental difference in the mechanisms of ENP deposition onto hydrophilic or hydrophobic biofilm coatings due to the hydration properties of these biofilms. The results of this study demonstrate the importance of considering the surface properties of aquifer grain coatings when evaluating ENP fate in natural subsurface environments. PMID:26845456

  12. Compaction and relaxation of biofilms

    KAUST Repository

    Valladares Linares, R.

    2015-06-18

    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  13. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the...... benefits and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial...

  14. BpsR Modulates Bordetella Biofilm Formation by Negatively Regulating the Expression of the Bps Polysaccharide

    OpenAIRE

    Conover, Matt S.; Redfern, Crystal J.; Ganguly, Tridib; Sukumar, Neelima; Sloan, Gina; Mishra, Meenu; Deora, Rajendar

    2012-01-01

    Bordetella bacteria are Gram-negative respiratory pathogens of animals, birds, and humans. A hallmark feature of some Bordetella species is their ability to efficiently survive in the respiratory tract even after vaccination. Bordetella bronchiseptica and Bordetella pertussis form biofilms on abiotic surfaces and in the mouse respiratory tract. The Bps exopolysaccharide is one of the critical determinants for biofilm formation and the survival of Bordetella in the murine respiratory tract. In...

  15. Intra-amoeba multiplication induces chemotaxis and biofilm colonization and formation for Legionella.

    Directory of Open Access Journals (Sweden)

    Renaud Bigot

    Full Text Available Legionella pneumophila, a facultative intracellular bacterium, is the causative agent of legionellosis. In the environment this pathogenic bacterium colonizes the biofilms as well as amoebae, which provide a rich environment for the replication of Legionella. When seeded on pre-formed biofilms, L. pneumophila was able to establish and survive and was only found at the surface of the biofilms. Different phenotypes were observed when the L. pneumophila, used to implement pre-formed biofilms or to form mono-species biofilms, were cultivated in a laboratory culture broth or had grown intracellulary within the amoeba. Indeed, the bacteria, which developed within the amoeba, formed clusters when deposited on a solid surface. Moreover, our results demonstrate that multiplication inside the amoeba increased the capacity of L. pneumophila to produce polysaccharides and therefore enhanced its capacity to establish biofilms. Finally, it was shown that the clusters formed by L. pneumophila were probably related to the secretion of a chemotaxis molecular agent.

  16. Intra-amoeba multiplication induces chemotaxis and biofilm colonization and formation for Legionella.

    Science.gov (United States)

    Bigot, Renaud; Bertaux, Joanne; Frere, Jacques; Berjeaud, Jean-Marc

    2013-01-01

    Legionella pneumophila, a facultative intracellular bacterium, is the causative agent of legionellosis. In the environment this pathogenic bacterium colonizes the biofilms as well as amoebae, which provide a rich environment for the replication of Legionella. When seeded on pre-formed biofilms, L. pneumophila was able to establish and survive and was only found at the surface of the biofilms. Different phenotypes were observed when the L. pneumophila, used to implement pre-formed biofilms or to form mono-species biofilms, were cultivated in a laboratory culture broth or had grown intracellulary within the amoeba. Indeed, the bacteria, which developed within the amoeba, formed clusters when deposited on a solid surface. Moreover, our results demonstrate that multiplication inside the amoeba increased the capacity of L. pneumophila to produce polysaccharides and therefore enhanced its capacity to establish biofilms. Finally, it was shown that the clusters formed by L. pneumophila were probably related to the secretion of a chemotaxis molecular agent. PMID:24205008

  17. Copper affects biofilm inductiveness to larval settlement of the serpulid polychaete Hydroides elegans (Haswell)

    KAUST Repository

    Bao, Wei Yang

    2010-01-01

    Copper (Cu) contamination is a potential threat to the marine environment due to the use of Cu-based antifouling paints. Cu stress on larval settlement of the polychaete Hydroides elegans was investigated, and this was linked to Cu stress on biofilms and on the biofilm development process. The inductiveness of young biofilms was more easily altered by Cu stress than that of old biofilms, indicating the relative vulnerability of young biofilms. This might result from changes in bacterial survival, the bacterial community composition and the chemical profiles of young biofilms. Cu also affected biofilm development and the chemical high performance liquid chromatograph fingerprint profile. The results indicate that Cu affected larval settlement mainly through its effect on the process of biofilm development in the marine environment, and the chemical profile was crucial to biofilm inductiveness. It is strongly recommended that the effects of environmentally toxic substances on biofilms are evaluated in ecotoxicity bioassays using larval settlement of invertebrates as the end point. © 2010 Taylor & Francis.

  18. Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater

    KAUST Repository

    Ling, Fangqiong

    2013-01-01

    This study evaluated the continuous impact of monochloramine disinfection on laboratory-grown biofilms through the characterization of biofilm architecture and microbial community structure. Biofilm development and disinfection were achieved using CDC (Centers for Disease Control and Prevention) biofilm reactor systems with polyvinyl chloride (PVC) coupons as the substratum and sand filter-pretreated groundwater as the source of microbial seeding and growth nutrient. After 2 weeks of growth, the biofilms were subjected to chloramination for 8 more weeks at concentrations of 7.5±1.4 to 9.1±0.4 mg Cl2 L-1. Control reactors received no disinfection during the development of biofilms. Confocal laser scanning microscopy and image analysis indicated that chloramination could lead to 81.4-83.5% and 86.3-95.6% reduction in biofilm biomass and thickness, respectively, but could not eliminate biofilm growth. 16S rRNA gene terminal restriction fragment length polymorphism analysis indicated that microbial community structures between chloraminated and non-chloraminated biofilms exhibited different successional trends. 16S rRNA gene pyrosequencing analysis further revealed that chloramination could select members of Actinobacteria and Acidobacteria as the dominant populations, whereas natural development leads to the selection of members of Nitrospira and Bacteroidetes as dominant biofilm populations. Overall, chloramination treatment could alter the growth of multi-species biofilms on the PVC surface, shape the biofilm architecture, and select a certain microbial community that can survive or proliferate under chloramination.

  19. Pathogens protection against the action of disinfectants in multispecies biofilms

    Directory of Open Access Journals (Sweden)

    Pilar eSanchez-Vizuete

    2015-07-01

    Full Text Available Biofilms constitute the prevalent way of life for microorganisms in both natural and man-made environments. Biofilm-dwelling cells display greater tolerance to antimicrobial agents than those that are free-living, and the mechanisms by which this occurs have been investigated extensively using single-strain axenic models. However, there is growing evidence that interspecies interactions may profoundly alter the response of the community to such toxic exposure. In this paper, we propose an overview of the studies dealing with multispecies biofilms resistance to biocides, with particular reference to the protection of pathogenic species by resident surface flora when subjected to disinfectants treatments. The mechanisms involved in such protection include interspecies signaling, interference between biocides molecules and public goods in the matrix or the physiology and genetic plasticity associated with a structural spatial arrangement. After describing these different mechanisms, we will discuss the experimental methods available for their analysis in the context of complex multispecies biofilms.

  20. The enhancement of biofilm formation in Group B streptococcal isolates at vaginal pH.

    Science.gov (United States)

    Ho, Yueh-Ren; Li, Chien-Ming; Yu, Chen-Hsiang; Lin, Yuh-Jyh; Wu, Ching-Ming; Harn, I-Chen; Tang, Ming-Jer; Chen, Yi-Ting; Shen, Fang-Chi; Lu, Chien-Yi; Tsai, Tai-Chun; Wu, Jiunn-Jong

    2013-04-01

    Group B streptococcus (GBS) is a common asymptomatic colonizer in acidic vagina of pregnant women and can transmit to newborns, causing neonatal pneumonia and meningitis. Biofilm formation is often associated with bacterial colonization and pathogenesis. Little is known about GBS biofilm and the effect of environmental stimuli on their growth along with biofilm formation. The objective of this study was to investigate the survival and biofilm formation of GBS, isolated from pregnant women, in nutrient-limited medium under various pH conditions. Growth and survival experiments were determined by optical density and viable counts. Crystal violet staining, scanning electron microscopy, and atomic force microscopy (AFM) were used to analyze the capacity of biofilm production. Our results showed that GBS isolates proliferated with increasing pH with highest maximum specific growth rate (μmax) at pH 6.5, but survived at pH 4.5 for longer than 48 h. Biofilm formation of the 80 GBS isolates at pH 4.5 was significantly higher than at pH 7.0. This difference was confirmed by two other methods. The low elastic modulus obtained from samples at pH 4.5 by AFM revealed the softness of biofilm; in contrast, little or no biofilm was measured at pH 7.0. Under acidic pH, the capability of biofilm formation of serotypes III and V showed statistically significant difference from serotypes Ia and Ib. Our finding suggested that survival and enhanced biofilm formation at vaginal pH are potentially advantageous for GBS in colonizing vagina and increase the risk of vaginosis and neonatal infection. PMID:22797522

  1. COMBINED USE OF FOURIER TRANSFORM INFRARED AND RAMAN SPECTROSCOPY TO STUDY PLANKTONIC AND BIOFILM CELLS OF CRONOBACTER SAKAZAKII

    Directory of Open Access Journals (Sweden)

    Garima Sharma

    2014-02-01

    Full Text Available Cronobacter sakazakii is an opportunistic pathogen, which causes necrotizing enterocolitis, bacteriaemia and infant meningitis. It has the ability to form biofilm on food contact surfaces, creating food safety risks. In this work, the phenotypic expression of planktonic and biofilm was studied by Fourier transform infrared (FTIR and Raman spectroscopy. FTIR spectra of the biofilm cells exhibited higher intensity in the absorption bands assigned to polysaccharides, amide I, amide II vibrational mode of ester and carboxylate group. Raman spectra of the biofilm cells showed higher intensity in the absorption band assigned to tyrosine, amide III, carbohydrates, carotenoids, DNA and lipids. Understanding the chemical properties of planktonic and biofilm cells employing the two techniques helped to decipher the differences in the chemical composition between planktonic and biofilm cells. This can promote a better understanding of the persistence, survival and resistance of the biofilm cells.

  2. Biofilm Formation and Dispersal under the Influence of the Global Regulator CsrA of Escherichia coli

    OpenAIRE

    Jackson, Debra W.; Suzuki, Kazushi; Oakford, Lawrence; Simecka, Jerry W.; Hart, Mark E.; Romeo, Tony

    2002-01-01

    The predominant mode of growth of bacteria in the environment is within sessile, matrix-enclosed communities known as biofilms. Biofilms often complicate chronic and difficult-to-treat infections by protecting bacteria from the immune system, decreasing antibiotic efficacy, and dispersing planktonic cells to distant body sites. While the biology of bacterial biofilms has become a major focus of microbial research, the regulatory mechanisms of biofilm development remain poorly defined and thos...

  3. BigR, a Transcriptional Repressor from Plant-Associated Bacteria, Regulates an Operon Implicated in Biofilm Growth▿

    OpenAIRE

    Barbosa, Rosicler L.; Benedetti, Celso E.

    2007-01-01

    Xylella fastidiosa is a plant pathogen that colonizes the xylem vessels, causing vascular occlusion due to bacterial biofilm growth. However, little is known about the molecular mechanisms driving biofilm formation in Xylella-plant interactions. Here we show that BigR (for “biofilm growth-associated repressor”) is a novel helix-turn-helix repressor that controls the transcription of an operon implicated in biofilm growth. This operon, which encodes BigR, membrane proteins, and an unusual beta...

  4. Macrophage-Associated Osteoactivin/GPNMB Mediates Mesenchymal Stem Cell Survival, Proliferation, and Migration Via a CD44-Dependent Mechanism.

    Science.gov (United States)

    Yu, Bing; Sondag, Gregory R; Malcuit, Christopher; Kim, Min-Ho; Safadi, Fayez F

    2016-07-01

    Although MSCs have been widely recognized to have therapeutic potential in the repair of injured or diseased tissues, it remains unclear how functional activities of mesenchymal stem cells (MSCs) are influenced by the surrounding inflammatory milieu at the site of tissue injury. Macrophages constitute an essential component of innate immunity and have been shown to exhibit a phenotypic plasticity in response to various stimuli, which play a central role in both acute inflammation and wound repair. Osteoactivin (OA)/Glycoprotein non-metastatic melanoma protein B (GPNMB), a transmembrane glycoprotein that plays a role in cell differentiation, survival, and angiogenesis. The objective of this study was to investigate the potential role of OA/GPNMB in macrophage-induced MSC function. We found that reparative M2 macrophages express significantly greater levels of OA/GPNMB than pro-inflammatory M1 macrophages. Furthermore, using loss of function and rescue studies, we demonstrated that M2 macrophages-secreted OA/GPNMB positively regulates the viability, proliferation, and migration of MSCs. More importantly, we demonstrated that OA/GPNMB acts through ERK and AKT signaling pathways in MSCs via CD44, to induce these effects. Taken together, our results provide pivotal insight into the mechanism by which OA/GPNMB contributes to the tissue reparative phenotype of M2 macrophages and positively regulates functional activities of MSCs. J. Cell. Biochem. 117: 1511-1521, 2016. © 2015 Wiley Periodicals, Inc. PMID:26442636

  5. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties.

    Science.gov (United States)

    Han, Hyo Mi; Gopal, Ramamourthy; Park, Yoonkyung

    2016-02-01

    Cationic antimicrobial peptides (AMPs) are essential components of the innate immune system, offering protection against invading pathogenic bacteria. In nature, AMPs serve as antibiotics with broad-spectrum antimicrobial and anti-biofilm properties. However, low effective stability in high-salt environments and physiological instability in biological membranes limit the applicability of naturally occurring AMPs as novel therapeutics. We therefore designed short synthetic cationic peptides by substituting key residues in myxinidin, an AMP derived from the epidermal mucus of hagfish, with lysine (Lys, K), arginine (Arg, R), and tryptophan (Trp, W). The resultant myxinidin analogs exhibited strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains, even under high-salt conditions. Moreover, these peptides showed high binding affinity for both lipopolysaccharides and lipoteichoic acids and inhibited biofilm formation by most bacteria, but did not cause significant lysis of human red blood cells and were not cytotoxic to normal human keratinocytes. Circular dichroism analysis revealed that myxinidin and its analogs assumed α-helical or β-sheet structures within artificial liposomes and bacterial membranes. In addition, bacterial killing and membrane permeation experiments demonstrated that the myxinidin analogs permeated through bacterial membranes, leading to cytoplasmic disruption and cell death. Taken together, these findings suggest myxinidin analogs may be promising candidate antibiotic agents for therapeutic application against antibiotic-resistant bacteria. PMID:26450121

  6. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community

    KAUST Repository

    Xue, Zheng

    2014-07-15

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community. © 2014 © 2014 Taylor & Francis.

  7. The Effect of Predators on Cholera Biofilms: If it Lyses, We Can Smash It

    Science.gov (United States)

    Kalziqi, Arben; Bernardy, Eryn; Thomas, Jacob; Ratcliff, Will; Hammer, Brian; Yunker, Peter

    Many microbes form biofilms--dense clumps of cells and proteins--on surfaces. Biofilms are complex communities that facilitate the study of biological competition (e.g., two types of microbes may compete to form a biofilm in the same location) and interesting physics (e.g., the source of a biofilm's rigidity). Vibrio cholerae can produce biofilms which have a network-like structure--however, cholera can be genetically engineered to kill other cholera with different genotypes, which leaves behind a structureless ``slime'' rather than such a biofilm. Through mechanical creep testing of both predator-prey and non-predator populations, we found that the predator-prey population responds viscously and decreases in height with repeated compression, whereas the non-predator population responds elastically and maintains its original height. The current work suggests that cell lysis after killing disrupts biofilm formation, preventing microbial colonies from forming rigid networks.

  8. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community.

    Science.gov (United States)

    Xue, Zheng; Lu, Huijie; Liu, Wen-Tso

    2014-01-01

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community. PMID:25115516

  9. From a thin film model for passive suspensions towards the description of osmotic biofilm spreading

    CERN Document Server

    Trinschek, Sarah; Thiele, Uwe

    2016-01-01

    Biofilms are ubiquitous macro-colonies of bacteria that develop at various interfaces (solid-liquid, solid-gas or liquid-gas). The formation of biofilms starts with the attachment of individual bacteria to an interface, where they proliferate and produce a slimy polymeric matrix - two processes that result in colony growth and spreading. Recent experiments on the growth of biofilms on agar substrates under air have shown that for certain bacterial strains, the production of the extracellular matrix and the resulting osmotic influx of nutrient-rich water from the agar into the biofilm are more crucial for the spreading behaviour of a biofilm than the motility of individual bacteria. We present a model which describes the biofilm evolution and the advancing biofilm edge for this spreading mechanism. The model is based on a gradient dynamics formulation for thin films of biologically passive liquid mixtures and suspensions, supplemented by bioactive processes which play a decisive role in the osmotic spreading o...

  10. Biofilms and the food industry

    Directory of Open Access Journals (Sweden)

    Nathanon Trachoo

    2003-11-01

    Full Text Available In the past, interest in biofilms was limited to research related to water distribution systems, waste water treatment and dental plaques. Biofilm has become a more popular research topic in many other areas in recent years including food safety. Biofilm formation can compromise the sanitation of food surfaces and environmental surfaces by spreading detached organisms to other areas of processing plants. Unfortunately, these detached organisms are not similar to normal microorganisms suspended in an aquatic environment but are more resistant to several stresses or microbial inactivation including some food preservation methods. Microstructures of biofilms as revealed by different types of microscopic techniques showed that biofilms are highly complex and consist of many symbiotic organisms, some of which are human pathogens. This article reviewed the process of biofilm formation, the significance of biofilms on food or food contact surfaces, their ability to protect foodborne pathogens from environmental stresses and recent methods for the study of biofilms on food contact surfaces.

  11. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.

    Directory of Open Access Journals (Sweden)

    Luyan Ma

    2009-03-01

    Full Text Available Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell-cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications.

  12. Biofilm development in membrane bioreactors

    OpenAIRE

    Savnik, Veronika

    2010-01-01

    Prevention of biofilm development and its removal has crucial meaning in membrane reactor. Biofilm causes pore blocking on membranes, which causes a drop in efficiency of mixed liquor filtration and consequently deteriorates the efficiency of whole membrane bioreactor. This thesis deals with factors that affect biofilm development in membrane bioreactors. Structure and growth of biofilm are presented from its initial attachment of individual particles, their parameters of adhesion, hydrodynam...

  13. Mucosal biofilms of Candida albicans

    OpenAIRE

    Ganguly, Shantanu; Mitchell, Aaron P.

    2011-01-01

    Biofilms are microbial communities that form on surfaces and are embedded in an extracellular matrix. C. albicans forms pathogenic mucosal biofilms that are evoked by changes in host immunity or mucosal ecology. Mucosal surfaces are inhabited by many microbial species; hence these biofilms are polymicrobial. Several recent studies have applied paradigms of biofilm analysis to study mucosal C. albicans infections. These studies reveal that the Bcr1 transcription factor is a master regulator of...

  14. Microalgal biofilms for wastewater treatment

    OpenAIRE

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scenario analysis. Then biofilms were grown on wastewater treatment plant effluent in horizontal flow cells under different nutrient loads to determine the maximum uptake capacity of the biofilms for N...

  15. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements.

    Science.gov (United States)

    Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier

    2016-10-01

    Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity within biofilms considering the influence of hydrodynamics and biofilm density. PMID

  16. Adhesion, Biofilm Formation, and Genomic Features of Campylobacter jejuni Bf, an Atypical Strain Able to Grow under Aerobic Conditions.

    Science.gov (United States)

    Bronnec, Vicky; Turoňová, Hana; Bouju, Agnès; Cruveiller, Stéphane; Rodrigues, Ramila; Demnerova, Katerina; Tresse, Odile; Haddad, Nabila; Zagorec, Monique

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial enteritis in Europe. Human campylobacteriosis cases are frequently associated to the consumption of contaminated poultry meat. To survive under environmental conditions encountered along the food chain, i.e., from poultry digestive tract its natural reservoir to the consumer's plate, this pathogen has developed adaptation mechanisms. Among those, biofilm lifestyle has been suggested as a strategy to survive in the food environment and under atmospheric conditions. Recently, the clinical isolate C. jejuni Bf has been shown to survive and grow under aerobic conditions, a property that may help this strain to better survive along the food chain. The aim of this study was to evaluate the adhesion capacity of C. jejuni Bf and its ability to develop a biofilm. C. jejuni Bf can adhere to abiotic surfaces and to human epithelial cells, and can develop biofilm under both microaerobiosis and aerobiosis. These two conditions have no influence on this strain, unlike results obtained with the reference strain C. jejuni 81-176, which harbors only planktonic cells under aerobic conditions. Compared to 81-176, the biofilm of C. jejuni Bf is more homogenous and cell motility at the bottom of biofilm was not modified whatever the atmosphere used. C. jejuni Bf whole genome sequence did not reveal any gene unique to this strain, suggesting that its unusual property does not result from acquisition of new genetic material. Nevertheless some genetic particularities seem to be shared only between Bf and few others strains. Among the main features of C. jejuni Bf genome we noticed (i) a complete type VI secretion system important in pathogenicity and environmental adaptation; (ii) a mutation in the oorD gene involved in oxygen metabolism; and (iii) the presence of an uncommon insertion of a 72 amino acid coding sequence upstream from dnaK, which is involved in stress resistance. Therefore, the atypical behavior of this strain under

  17. Adhesion, Biofilm Formation, and Genomic Features of Campylobacter jejuni Bf, an Atypical Strain Able to Grow under Aerobic Conditions

    Science.gov (United States)

    Bronnec, Vicky; Turoňová, Hana; Bouju, Agnès; Cruveiller, Stéphane; Rodrigues, Ramila; Demnerova, Katerina; Tresse, Odile; Haddad, Nabila; Zagorec, Monique

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial enteritis in Europe. Human campylobacteriosis cases are frequently associated to the consumption of contaminated poultry meat. To survive under environmental conditions encountered along the food chain, i.e., from poultry digestive tract its natural reservoir to the consumer’s plate, this pathogen has developed adaptation mechanisms. Among those, biofilm lifestyle has been suggested as a strategy to survive in the food environment and under atmospheric conditions. Recently, the clinical isolate C. jejuni Bf has been shown to survive and grow under aerobic conditions, a property that may help this strain to better survive along the food chain. The aim of this study was to evaluate the adhesion capacity of C. jejuni Bf and its ability to develop a biofilm. C. jejuni Bf can adhere to abiotic surfaces and to human epithelial cells, and can develop biofilm under both microaerobiosis and aerobiosis. These two conditions have no influence on this strain, unlike results obtained with the reference strain C. jejuni 81-176, which harbors only planktonic cells under aerobic conditions. Compared to 81-176, the biofilm of C. jejuni Bf is more homogenous and cell motility at the bottom of biofilm was not modified whatever the atmosphere used. C. jejuni Bf whole genome sequence did not reveal any gene unique to this strain, suggesting that its unusual property does not result from acquisition of new genetic material. Nevertheless some genetic particularities seem to be shared only between Bf and few others strains. Among the main features of C. jejuni Bf genome we noticed (i) a complete type VI secretion system important in pathogenicity and environmental adaptation; (ii) a mutation in the oorD gene involved in oxygen metabolism; and (iii) the presence of an uncommon insertion of a 72 amino acid coding sequence upstream from dnaK, which is involved in stress resistance. Therefore, the atypical behavior of this strain under

  18. Histamine reverses IL-5-Afforded human eosinophil survival by inducing apoptosis: Pharmacological evidence for a novel mechanism of action of histamine

    OpenAIRE

    Hasala, Hannele; Giembycz, Mark A.; Janka-Junttila, Mirkka; Moilanen, Eeva; Kankaanranta, Hannu

    2008-01-01

    Histamine reverses IL-5-Afforded human eosinophil survival by inducing apoptosis: Pharmacological evidence for a novel mechanism of action of histamine correspondence: Corresponding author. Tel.: +358335517318; fax: +358335518082. (Kankaanranta, Hannu) (Kankaanranta, Hannu) The Immunopharmacology Research Group--> , Medical School--> , University of Tampere--> , Tampere--> - FINLAND (Hasala, H...

  19. [Multi-Species Biofilms in Ecology, Medicine, and Biotechnology].

    Science.gov (United States)

    Nozhevnikova, A N; Botchkova, E A; Plakunov, V K

    2015-01-01

    The structure, composition, and developmental patterns of multi-species biofilms are analyzed, as well as the mechanisms of interaction of their microbial components. The main methodological approaches used for analysis of multi-species biofilms, including omics technologies, are characterized. Environmental communities (cyanobacterial mats and methanotrophic communities), as well as typical multi-species communities of medical importance (oral cavity, skin, and gut microbiomes) are described. A special section deals with the role of multi-species biofilms in such biotechnological processes as wastewater treatment, heavy metal removal, corrosion control, and environmental bioremediation. PMID:26964353

  20. Streptococcus mutans biofilm transient viscoelastic fluid behaviour during high-velocity microsprays.

    Science.gov (United States)

    Fabbri, S; Johnston, D A; Rmaile, A; Gottenbos, B; De Jager, M; Aspiras, M; Starke, E M; Ward, M T; Stoodley, P

    2016-06-01

    Using high-speed imaging we assessed Streptococcus mutans biofilm-fluid interactions during exposure to a 60-ms microspray burst with a maximum exit velocity of 51m/s. S. mutans UA159 biofilms were grown for 72h on 10mm-length glass slides pre-conditioned with porcine gastric mucin. Biofilm stiffness was measured by performing uniaxial-compression tests. We developed an in-vitro interproximal model which allowed the parallel insertion of two biofilm-colonized slides separated by a distance of 1mm and enabled high-speed imaging of the removal process at the surface. S. mutans biofilms were exposed to either a water microspray or an air-only microburst. High-speed videos provided further insight into the mechanical behaviour of biofilms as complex liquids and into high-shear fluid-biofilm interaction. We documented biofilms extremely transient fluid behaviour when exposed to the high-velocity microsprays. The presence of time-dependent recoil and residual deformation confirmed the pivotal role of viscoelasticity in biofilm removal. The air-only microburst was effective enough to remove some of the biofilm but created a smaller clearance zone underlying the importance of water and the air-water interface of drops moving over the solid surface in the removal process. Confocal and COMSTAT analysis showed the high-velocity water microspray caused up to a 99.9% reduction in biofilm thickness, biomass and area coverage, within the impact area. PMID:26771168

  1. Nutrient transitions are a source of persisters in Escherichia coli biofilms.

    Directory of Open Access Journals (Sweden)

    Stephanie M Amato

    Full Text Available Chronic and recurrent infections have been attributed to persisters in biofilms, and despite this importance, the mechanisms of persister formation in biofilms remain unclear. The plethora of biofilm characteristics that could give rise to persisters, including slower growth, quorum signaling, oxidative stress, and nutrient heterogeneity, have complicated efforts to delineate formation pathways that generate persisters during biofilm development. Here we sought to specifically determine whether nutrient transitions, which are a common metabolic stress encountered within surface-attached communities, stimulate persister formation in biofilms and if so, to then identify the pathway. To accomplish this, we established an experimental methodology where nutrient availability to biofilm cells could be controlled exogenously, and then used that method to discover that diauxic carbon source transitions stimulated persister formation in Escherichia coli biofilms. Previously, we found that carbon source transitions stimulate persister formation in planktonic E. coli cultures, through a pathway that involved ppGpp and nucleoid-associated proteins, and therefore, tested the functionality of that pathway in biofilms. Biofilm persister formation was also found to be dependent on ppGpp and nucleoid-associated proteins, but the importance of specific proteins and enzymes between biofilm and planktonic lifestyles was significantly different. Data presented here support the increasingly appreciated role of ppGpp as a central mediator of bacterial persistence and demonstrate that nutrient transitions can be a source of persisters in biofilms.

  2. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    Energy Technology Data Exchange (ETDEWEB)

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.; Mehta, Hardeep S.; Ewing, R James; Ewing, Thomas; Mueller, Karl T.; Beyenal, Haluk

    2014-03-01

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.

  3. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    International Nuclear Information System (INIS)

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms

  4. Differential effects of antifungal agents on expression of genes related to formation of Candida albicans biofilms.

    Science.gov (United States)

    Chatzimoschou, Athanasios; Simitsopoulou, Maria; Antachopoulos, Charalampos; Walsh, Thomas J; Roilides, Emmanuel

    2016-01-01

    The purpose of this study was to analyse specific molecular mechanisms involved in the intrinsic resistance of C. albicans biofilms to antifungals. We investigated the transcriptional profile of three genes (BGL2, SUN41, ECE1) involved in Candida cell wall formation in response to voriconazole or anidulafungin after the production of intermediate and mature biofilms. C. albicans M61, a well-documented biofilm producer strain, was used for the development of intermediate (12 h and 18 h) and completely mature biofilms (48 h). After exposure of cells from each biofilm growth mode to voriconazole (128 and 512 mg l(-1)) or anidulafungin (0.25 and 1 mg l(-1)) for 12-24 h, total RNA samples extracted from biofilm cells were analysed by RT-PCR. The voriconazole and anidulafungin biofilm MIC was 512 and 0.5 mg l(-1) respectively. Anidulafungin caused significant up-regulation of SUN41 (3.7-9.3-fold) and BGL2 (2.2-2.8 fold) in intermediately mature biofilms; whereas, voriconazole increased gene expression in completely mature biofilms (SUN41 2.3-fold, BGL2 2.1-fold). Gene expression was primarily down-regulated by voriconazole in intermediately, but not completely mature biofilms. Both antifungals caused down-regulation of ECE1 in intermediately mature biofilms. PMID:26593284

  5. Biofilm Cohesive Strength as a Basis for Biofilm Recalcitrance: Are Bacterial Biofilms Overdesigned?

    OpenAIRE

    Srijan Aggarwal; Philip S. Stewart; Hozalski, Raymond M.

    2016-01-01

    Bacterial biofilms are highly resistant to common antibacterial treatments, and several physiological explanations have been offered to explain the recalcitrant nature of bacterial biofilms. Herein, a biophysical aspect of biofilm recalcitrance is being reported on. While engineering structures are often overdesigned with a factor of safety (FOS) usually under 10, experimental measurements of biofilm cohesive strength suggest that the FOS is on the order of thousands. In other words, bacteria...

  6. Cohesiveness and hydrodynamic properties of young drinking water biofilms.

    Science.gov (United States)

    Abe, Yumiko; Skali-Lami, Salaheddine; Block, Jean-Claude; Francius, Grégory

    2012-03-15

    Drinking water biofilms are complex microbial systems mainly composed of clusters of different size and age. Atomic force microscopy (AFM) measurements were performed on 4, 8 and 12 weeks old biofilms in order to quantify the mechanical detachment shear stress of the clusters, to estimate the biofilm entanglement rate ξ. This AFM approach showed that the removal of the clusters occurred generally for mechanical shear stress of about 100 kPa only for clusters volumes greater than 200 μm3. This value appears 1000 times higher than hydrodynamic shear stress technically available meaning that the cleaning of pipe surfaces by water flushing remains always incomplete. To predict hydrodynamic detachment of biofilm clusters, a theoretical model has been developed regarding the averaging of elastic and viscous stresses in the cluster and by including the entanglement rate ξ. The results highlighted a slight increase of the detachment shear stress with age and also the dependence between the posting of clusters and their volume. Indeed, the experimental values of ξ allow predicting biofilm hydrodynamic detachment with same order of magnitude than was what reported in the literature. The apparent discrepancy between the mechanical and the hydrodynamic detachment is mainly due to the fact that AFM mechanical experiments are related to the clusters local properties whereas hydrodynamic measurements reflected the global properties of the whole biofilm. PMID:22221338

  7. Effect of ionizing radiation dose, temperature, and atmosphere on the survival of Salmonella typhimurium in sterile, mechanically deboned chicken meat

    International Nuclear Information System (INIS)

    The response to gamma radiation (0 to 3.60 kGy; 100 krad = 1 kGy) of Salmonella typhimurium was tested in otherwise sterile, mechanically deboned chicken meat (MDCM) in the absence of competing microflora. Response was determined at temperatures of -20 to +20 C and when the MDCM was packaged in vacuum or in the presence of air. A central composite response-surface design was used to test the response of the pathogen to the treatments in a single experiment. Predictive equations were developed from the analyses of variances of the resulting data. The accuracy of each predictive equation was tested by further studies of the effects of gamma radiation on S. typhimurium in the presence or absence of air at -20, 0, and +20 C. All data were then analyzed to refine the predictive equations further. Both the original and the refined equations adequately predicted the response of S. typhimurium in MDCM to gamma radiation doses up to 3.60 kGy in the presence of air or in vacuo. Gamma irradiation was significantly more lethal for S. typhimurium in the presence of air and at higher temperatures. The final equations predict a reduction in the number of surviving Salmonella in MDCM irradiated to 1.50 kGy at -20 C of 2.53 logs in air or 2.12 logs if irradiated in vacuum. If the contaminated MDCM were to receive a dose of 3.0 kGy at -20 C in air, the number of Salmonella would be decreased by 4.78 logs, and if irradiated in vacuum, by 4.29 logs

  8. Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection.

    Science.gov (United States)

    Otter, J A; Vickery, K; Walker, J T; deLancey Pulcini, E; Stoodley, P; Goldenberg, S D; Salkeld, J A G; Chewins, J; Yezli, S; Edgeworth, J D

    2015-01-01

    Microbes tend to attach to available surfaces and readily form biofilms, which is problematic in healthcare settings. Biofilms are traditionally associated with wet or damp surfaces such as indwelling medical devices and tubing on medical equipment. However, microbes can survive for extended periods in a desiccated state on dry hospital surfaces, and biofilms have recently been discovered on dry hospital surfaces. Microbes attached to surfaces and in biofilms are less susceptible to biocides, antibiotics and physical stress. Thus, surface attachment and/or biofilm formation may explain how vegetative bacteria can survive on surfaces for weeks to months (or more), interfere with attempts to recover microbes through environmental sampling, and provide a mixed bacterial population for the horizontal transfer of resistance genes. The capacity of existing detergent formulations and disinfectants to disrupt biofilms may have an important and previously unrecognized role in determining their effectiveness in the field, which should be reflected in testing standards. There is a need for further research to elucidate the nature and physiology of microbes on dry hospital surfaces, specifically the prevalence and composition of biofilms. This will inform new approaches to hospital cleaning and disinfection, including novel surfaces that reduce microbial attachment and improve microbial detachment, and methods to augment the activity of biocides against surface-attached microbes such as bacteriophages and antimicrobial peptides. Future strategies to address environmental contamination on hospital surfaces should consider the presence of microbes attached to surfaces, including biofilms. PMID:25447198

  9. Biofilms in wounds

    DEFF Research Database (Denmark)

    Cooper, R A; Bjarnsholt, Thomas; Alhede, M

    2014-01-01

    Following confirmation of the presence of biofilms in chronic wounds, the term biofilm became a buzzword within the wound healing community. For more than a century pathogens have been successfully isolated and identified from wound specimens using techniques that were devised in the nineteenth...... century by Louis Pasteur and Robert Koch. Although this approach still provides valuable information with which to help diagnose acute infections and to select appropriate antibiotic therapies, it is evident that those organisms isolated from clinical specimens with the conditions normally used in...... extracellular polymeric substances (EPS). Cells within such aggregations (or biofilms) display varying physiological and metabolic properties that are distinct from those of planktonic cells, and which contribute to their persistence. There are many factors that influence healing in wounds and the discovery of...

  10. Persister cells in a biofilm treated with a biocide.

    Science.gov (United States)

    Simões, Lúcia C; Lemos, Madalena; Pereira, Ana M; Abreu, Ana C; Saavedra, Maria J; Simões, Manuel

    2011-04-01

    This study investigated the physiology and behaviour following treatment with ortho-phthalaldehyde (OPA), of Pseudomonas fluorescens in both the planktonic and sessile states. Steady-state biofilms and planktonic cells were collected from a bioreactor and their extracellular polymeric substances (EPS) were extracted using a method that did not destroy the cells. Cell structure and physiology after EPS extraction were compared in terms of respiratory activity, morphology, cell protein and polysaccharide content, and expression of the outer membrane proteins (OMP). Significant differences were found between the physiological parameters analysed. Planktonic cells were more metabolically active, and contained greater amounts of proteins and polysaccharides than biofilm cells. Moreover, biofilm formation promoted the expression of distinct OMP. Additional experiments were performed with cells after EPS extraction in order to compare the susceptibility of planktonic and biofilm cells to OPA. Cells were completely inactivated after exposure to the biocide (minimum bactericidal concentration, MBC = 0.55 ± 0.20 mM for planktonic cells; MBC = 1.7 ± 0.30 mM for biofilm cells). After treatment, the potential of inactivated cells to recover from antimicrobial exposure was evaluated over time. Planktonic cells remained inactive over 48 h while cells from biofilms recovered 24 h after exposure to OPA, and the number of viable and culturable cells increased over time. The MBC of the recovered biofilm cells after a second exposure to OPA was 0.58 ± 0.40 mM, a concentration similar to the MBC of planktonic cells. This study demonstrates that persister cells may survive in biocide-treated biofilms, even in the absence of EPS. PMID:21547756

  11. Biofilm formation in geometries with different surface curvature and oxygen availability

    Science.gov (United States)

    Chang, Ya-Wen; Fragkopoulos, Alexandros A.; Marquez, Samantha M.; Kim, Harold D.; Angelini, Thomas E.; Fernández-Nieves, Alberto

    2015-03-01

    Bacteria in the natural environment exist as interface-associated colonies known as biofilms . Complex mechanisms are often involved in biofilm formation and development. Despite the understanding of the molecular mechanisms involved in biofilm formation, it remains unclear how physical effects in standing cultures influence biofilm development. The topology of the solid interface has been suggested as one of the physical cues influencing bacteria-surface interactions and biofilm development. Using the model organism Bacillus subtilis, we study the transformation of swimming bacteria in liquid culture into robust biofilms in a range of confinement geometries (planar, spherical and toroidal) and interfaces (air/water, silicone/water, and silicone elastomer/water). We find that B. subtilis form submerged biofilms at both solid and liquid interfaces in addition to air-water pellicles. When confined, bacteria grow on curved surfaces of both positive and negative Gaussian curvature. However, the confinement geometry does affect the resulting biofilm roughness and relative coverage. We also find that the biofilm location is governed by oxygen availability as well as by gravitational effects; these compete with each other in some situations. Overall, our results demonstrate that confinement geometry is an effective way to control oxygen availability and subsequently biofilm growth.

  12. Nanoparticle-Encapsulated Chlorhexidine against Oral Bacterial Biofilms

    OpenAIRE

    Seneviratne, Chaminda Jayampath; Leung, Ken Cham-Fai; Wong, Chi-Hin; Lee, Siu-Fung; Li, Xuan; Leung, Ping Chung; LAU, CLARA BIK SAN; Wat, Elaine; Jin, Lijian

    2014-01-01

    Background Chlorhexidine (CHX) is a widely used antimicrobial agent in dentistry. Herein, we report the synthesis of a novel mesoporous silica nanoparticle-encapsulated pure CHX (Nano-CHX), and its mechanical profile and antimicrobial properties against oral biofilms. Methodology/Principal Findings The release of CHX from the Nano-CHX was characterized by UV/visible absorption spectroscopy. The antimicrobial properties of Nano-CHX were evaluated in both planktonic and biofilm modes of represe...

  13. Bacterial Biofilm: Its Composition, Formation and Role in Human Infections

    Directory of Open Access Journals (Sweden)

    Muhsin Jama

    2015-07-01

    Full Text Available Biofilm is an association of micro-organisms in which microbial cells adhere to each other on a living or non-living surfaces within a self-produced matrix of extracellular polymeric substance. Bacterial biofilm is infectious in nature and can results in nosocomial infections. According to National Institutes of Health (NIH about about 65% of all microbial infections, and 80% of all chronic infections are associated with biofilms. Biofilm formation is a multi-step process starting with attachment to a surface then formation of micro-colony that leads to the formation of three dimensional structure and finally ending with maturation followed by detachment. During biofilm formation many species of bacteria are able to communicate with one an-other through specific mechanism called quorum sensing. It is a system of stimulus to co-ordinate different gene expression. Bacterial biofilm is less accessible to antibiotics and human immune system and thus poses a big threat to public health because of its involvement in variety of infectious diseases. A greater understanding of bacterial biofilm is required for the de-velopment of novel, effective control strategies thus resulting improvement in patient management.

  14. Ambroxol influences voriconazole resistance of Candida parapsilosis biofilm.

    Science.gov (United States)

    Pulcrano, Giovanna; Panellis, Dimitrios; De Domenico, Giovanni; Rossano, Fabio; Catania, Maria Rosaria

    2012-06-01

    The ability to form biofilm on different surfaces is typical of most Candida species. Microscopic structure and genetic aspects of fungal biofilms have been the object of many studies because of very high resistance to antimycotic agents because of the scarce permeability of the external matrix and to the alterations in cell metabolism. In our study, 31 isolates of Candida parapsilosis, isolated from bloodstream infections, were tested for their ability to produce biofilm and were found to be good producers. The susceptibility to voriconazole, assayed by colorimetrical XTT assay, revealed a very elevated minimum inhibitory concentrations for sessile cells in comparison with planktonic ones. The addition of ambroxol, a mucolytic agent, increased the susceptibility of biofilm forming cells to voriconazole. Expression of the efflux pump genes CDR and MDR was analyzed in biofilms alone or treated with ambroxol, evidencing a role of ambroxol in the expression of genes involved in azole resistance mechanisms of C. parapsilosis biofilms. In conclusion, our data seem to encourage the use of different substances in combination with classical antimycotics, with the aim of finding a solution to the increasing problem of the resistance of biofilms formed on medical devices by nonalbicans Candida species. PMID:22315984

  15. Effect of carbon on whole-biofilm metabolic response to high doses of streptomycin.

    Science.gov (United States)

    Jackson, Lindsay M D; Kroukamp, Otini; Wolfaardt, Gideon M

    2015-01-01

    Biofilms typically exist as complex communities comprising multiple species with the ability to adapt to a variety of harsh conditions. In clinical settings, antibiotic treatments based on planktonic susceptibility tests are often ineffective against biofilm infections. Using a CO2 evolution measurement system we delineated the real-time metabolic response in continuous flow biofilms to streptomycin doses much greater than their planktonic susceptibilities. Stable biofilms from a multispecies culture (containing mainly Pseudomonas aeruginosa and Stenotrophomonas maltophilia), Gram-negative environmental isolates, and biofilms formed by pure culture P. aeruginosa strains PAO1 and PAO1 ΔMexXY (minimum planktonic inhibitory concentrations between 1.5 and 3.5 mg/l), were exposed in separate experiments to 4000 mg/l streptomycin for 4 h after which growth medium resumed. In complex medium, early steady state multispecies biofilms were susceptible to streptomycin exposure, inferred by a cessation of CO2 production. However, multispecies biofilms survived high dose exposures when there was extra carbon in the antibiotic medium, or when they were grown in defined citrate medium. The environmental isolates and PAO1 biofilms showed similar metabolic profiles in response to streptomycin; ceasing CO2 production after initial exposure, with CO2 levels dropping toward baseline levels prior to recovery back to steady state levels, while subsequent antibiotic exposure elicited increased CO2 output. Monitoring biofilm metabolic response in real-time allowed exploration of conditions resulting in vulnerability after antibiotic exposure compared to the resistance displayed following subsequent exposures. PMID:26441887

  16. Effects of operating conditions on the adhesive strength of Pseudomonas fluorescens biofilms in tubes.

    Science.gov (United States)

    Chen, M J; Zhang, Z; Bott, T R

    2005-06-25

    Understanding the mechanical properties of biofilms, especially the force required to disrupt them and remove them from substrata is very important to development of antibiofouling strategies. In this work, a novel micromanipulation technique with a specially designed T-shaped probe has been developed to serve as an experimental means to measure directly the adhesive strength of biofouling deposits on the surface of a glass test stud. The basic principle of this novel technique is to pull away a whole biofilm accumulated on the surface of a glass test stud with T-shaped probe, and to measure simultaneously the force imposed on the biofilm. The adhesive strength between the biofilms and the surface to which they are attached, is defined as the work per unit area required to remove the biofilms from the surface. The biofouling experiments were performed on an elaborate design of a simulated heat exchanger system. A monoculture of Pseudomonas fluorescens was chosen as the fouling microorganism for the laboratory studies. Results indicate that the adhesive strength of the biofilm was affected by the conditions of operation, such as biofilm age, nutrient concentration, suspended cell concentration, pH, surface roughness of the substratum and fluid velocity. As noted, the effect of fluid velocity on the biofilm adhesive strength seemed to overwhelm other factors. At the same operating conditions, the biofilm adhesive strength increased as the fluid velocity increased within the range of 0.6-1.6m/s. In addition, the flow-related biofilm structures were observed that biofilms generally grew as a more compact pattern at the higher fluid velocity. Apparently, the fluid velocity can affect the biofilm structure, which in turn determines the biofilm adhesive strength. The knowledge of the biofilm adhesive strength with associated influences of the operating conditions may be used to define better cleaning procedures. PMID:15913966

  17. Effects of Low-Dose Amoxicillin on Staphylococcus aureus USA300 Biofilms.

    Science.gov (United States)

    Mlynek, Kevin D; Callahan, Mary T; Shimkevitch, Anton V; Farmer, Jackson T; Endres, Jennifer L; Marchand, Mélodie; Bayles, Kenneth W; Horswill, Alexander R; Kaplan, Jeffrey B

    2016-05-01

    Previous studies showed that sub-MIC levels of β-lactam antibiotics stimulate biofilm formation in most methicillin-resistant Staphylococcus aureus (MRSA) strains. Here, we investigated this process by measuring the effects of sub-MIC amoxicillin on biofilm formation by the epidemic community-associated MRSA strain USA300. We found that sub-MIC amoxicillin increased the ability of USA300 cells to attach to surfaces and form biofilms under both static and flow conditions. We also found that USA300 biofilms cultured in sub-MIC amoxicillin were thicker, contained more pillar and channel structures, and were less porous than biofilms cultured without antibiotic. Biofilm formation in sub-MIC amoxicillin correlated with the production of extracellular DNA (eDNA). However, eDNA released by amoxicillin-induced cell lysis alone was evidently not sufficient to stimulate biofilm. Sub-MIC levels of two other cell wall-active agents with different mechanisms of action-d-cycloserine and fosfomycin-also stimulated eDNA-dependent biofilm, suggesting that biofilm formation may be a mechanistic adaptation to cell wall stress. Screening a USA300 mariner transposon library for mutants deficient in biofilm formation in sub-MIC amoxicillin identified numerous known mediators of S. aureus β-lactam resistance and biofilm formation, as well as novel genes not previously associated with these phenotypes. Our results link cell wall stress and biofilm formation in MRSA and suggest that eDNA-dependent biofilm formation by strain USA300 in low-dose amoxicillin is an inducible phenotype that can be used to identify novel genes impacting MRSA β-lactam resistance and biofilm formation. PMID:26856828

  18. Manipulation of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  19. Manipulatiaon of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Burkhalter, R.; Macnaughton, S.J.; Palmer, R.J.; Smith, C.A.; Whitaker, K.W.; White, D.C.; Zinn, M.; kirkegaard, R.

    1998-08-09

    The Biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms by generated. The most effective monitoring of biofilm formation, succession and desquamation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in the distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  20. Biofilm growth: a lattice Monte Carlo model

    Science.gov (United States)

    Tao, Yuguo; Slater, Gary

    2011-03-01

    Biofilms are complex colonies of bacteria that grow in contact with a wall, often in the presence of a flow. In the current work, biofilm growth is investigated using a new two-dimensional lattice Monte Carlo algorithm based on the Bond-Fluctuation Algorithm (BFA). One of the distinguishing characteristics of biofilms, the synthesis and physical properties of the extracellular polymeric substance (EPS) in which the cells are embedded, is explicitly taken into account. Cells are modelled as autonomous closed loops with well-defined mechanical and thermodynamic properties, while the EPS is modelled as flexible polymeric chains. This BFA model allows us to add biologically relevant features such as: the uptake of nutrients; cell growth, division and death; the production of EPS; cell maintenance and hibernation; the generation of waste and the impact of toxic molecules; cell mutation and evolution; cell motility. By tuning the structural, interactional and morphologic parameters of the model, the cell shapes as well as the growth and maturation of various types of biofilm colonies can be controlled.

  1. Effects of submergence on growth and survival of saplings of three wetland trees differing in adaptive mechanisms for flood tolerance

    Directory of Open Access Journals (Sweden)

    Fumiko Iwanaga

    2015-04-01

    Full Text Available Aim of study: Withstanding total submergence and reaeration following submergence is essential for the survival and establishment of wetland species. We focused on “LOES–low oxygen escape syndrome” and “LOQS–low oxygen quiescence syndrome” and compared tolerances to total submergence among wetland woody species differing in morphological adaptation to soil flooding. Area of study, materials and methods: This study examined the survival of 2-year-old saplings of Taxodium distichum and Metasequioia glyptostroboides (LOQS species, and Alnus japonica (LOES species, during and after total submergence. Saplings were completely submerged, then de-submerged to determine trends in survival and growth Main results: The M. glyptostroboides and A. japonica saplings could not survive prolonged submergence for more than 8 weeks, whereas saplings of T. distichum survived for over 2 years. Submerged saplings of all species showed no significant growth or modifications in morphology and anatomy under water, such as shoot elongation, adventitious root formation, and/or aerenchyma development. All T. distichum saplings that were de-submerged in the second year had the same pattern of shoot growth regardless of differences in timing and seasonality of de-submergence. Wood formation in T. distichum saplings ceased during submergence and resumed after de-submergence in spring and summer, but not in autumn. Research highlights: T. distichum saplings, which survived longer submergence periods than A. japonica and M. glyptostroboides, had physiological characteristics, such as suspension of growth and metabolism, which allowed survival of protracted total submergence (at least 2 years when saplings were immersed during the dormant stage before leaf flushing.

  2. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids

    OpenAIRE

    Sanchez, Laura M.; Cheng, Andrew T.; Warner, Christopher J. A.; Loni Townsley; Peach, Kelly C.; Gabriel Navarro; Nicholas J Shikuma; Bray, Walter M.; Riener, Romina M.; Yildiz, Fitnat H.; Linington, Roger G.

    2016-01-01

    Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition,...

  3. Contribution of Autolysin and Sortase A during Enterococcus faecalis DNA-Dependent Biofilm Development▿ †

    OpenAIRE

    Guiton, Pascale S.; Hung, Chia S.; Kline, Kimberly A.; Roth, Robyn; Kau, Andrew L.; Hayes, Ericka; Heuser, John; Dodson, Karen W.; Caparon, Michael G.; Hultgren, Scott J.

    2009-01-01

    Biofilm production is a major attribute of Enterococcus faecalis clinical isolates. Although some factors, such as sortases, autolysin, and extracellular DNA (eDNA), have been associated with E. faecalis biofilm production, the mechanisms underlying the contributions of these factors to this process have not been completely elucidated yet. In this study we define important roles for the major E. faecalis autolysin (Atn), eDNA, and sortase A (SrtA) during the developmental stages of biofilm fo...

  4. Growing Burkholderia pseudomallei in Biofilm Stimulating Conditions Significantly Induces Antimicrobial Resistance

    OpenAIRE

    Sawasdidoln, Chakrit; Taweechaisupapong, Suwimol; Sermswan, Rasana W.; Tattawasart, Unchalee; Tungpradabkul, Sumalee; Wongratanacheewin, Surasakdi

    2010-01-01

    Background Burkholderia pseudomallei, a Gram-negative bacterium that causes melioidosis, was reported to produce biofilm. As the disease causes high relapse rate when compared to other bacterial infections, it therefore might be due to the reactivation of the biofilm forming bacteria which also provided resistance to antimicrobial agents. However, the mechanism on how biofilm can provide tolerance to antimicrobials is still unclear. Methodology/Principal Findings The change in resistance of B...

  5. Proanthocyanidins polymeric tannin from Stryphnodendron adstringens are active against Candida albicans biofilms

    OpenAIRE

    Luiz, Raul Leal Faria; Vila, Taissa Vieira Machado; de Mello, João Carlos Palazzo; Nakamura, Celso Vataru; Rozental, Sonia; Ishida, Kelly

    2015-01-01

    Background Biofilm formation is important in Candida albicans pathogenesis and constitutes a mechanism of antifungal resistance. Thus, we evaluated the effect of proanthocyanidins polymer-rich fractions from Stryphnodendron adstringens (fraction F2 and subfraction F2.4) against C. albicans biofilms. Methods Firstly, the antifungal activity of F2 and F2.4 against planktonic cells of Candida albicans (ATCC 10231) was determined using broth microdilution method. Anti-biofilm effect of F2 and F2....

  6. Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Maria José Alves

    2014-08-01

    Full Text Available Microorganisms can colonize a wide variety of medical devices, putting patients in risk for local and systemic infectious complications, including local-site infections, catheter-related bloodstream infections, and endocarditis. These microorganisms are able to grow adhered to almost every surface, forming architecturally complex communities termed biofilms. The use of natural products has been extremely successful in the discovery of new medicine, and mushrooms could be a source of natural antimicrobials. The present study reports the capacity of wild mushroom extracts to inhibit in vitro biofilm formation by multi-resistant bacteria. Four Gram-negative bacteria biofilm producers (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Acinetobacter baumannii isolated from urine were used to verify the activity of Russula delica, Fistulina hepatica, Mycena rosea, Leucopaxilus giganteus, and Lepista nuda extracts. The results obtained showed that all tested mushroom extracts presented some extent of inhibition of biofilm production. Pseudomonas aeruginosa was the microorganism with the highest capacity of biofilm production, being also the most susceptible to the extracts inhibition capacity (equal or higher than 50%. Among the five tested extracts against E. coli, Leucopaxillus giganteus (47.8% and Mycenas rosea (44.8% presented the highest inhibition of biofilm formation. The extracts exhibiting the highest inhibitory effect upon P. mirabilis biofilm formation were Sarcodon imbricatus (45.4% and Russula delica (53.1%. Acinetobacter baumannii was the microorganism with the lowest susceptibility to mushroom extracts inhibitory effect on biofilm production (highest inhibition—almost 29%, by Russula delica extract. This is a pioneer study since, as far as we know, there are no reports on the inhibition of biofilm production by the studied mushroom extracts and in particular against multi-resistant clinical isolates; nevertheless, other

  7. Growth of Mycobacterium tuberculosis Biofilms

    OpenAIRE

    Kulka, Kathleen; Hatfull, Graham; Ojha, Anil K.

    2012-01-01

    Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, has an extraordinary ability to survive against environmental stresses including antibiotics. Although stress tolerance of M. tuberculosis is one of the likely contributors to the 6-month long chemotherapy of tuberculosis 1, the molecular mechanisms underlying this characteristic phenotype of the pathogen remain unclear. Many microbial species have evolved to survive in stressful environments by self-assembling in highly o...

  8. Effects of Chlorine Stress on Pseudomonas aeruginosa Biofilm and Analysis of Related Gene Expressions.

    Science.gov (United States)

    Kekeç, Özge; Gökalsın, Barış; Karaltı, İskender; Kayhan, Figen Esin; Sesal, Nüzhet Cenk

    2016-08-01

    Chlorine is deployed worldwide to clean waters and prevent water-originated illnesses. However, chlorine has a limited disinfection capacity against biofilms. Microorganisms form biofilms to protect themselves from biological threats such as disinfectant chemicals. Pseudomonas aeruginosa is an opportunistic pathogen and its biofilm form attaches to surfaces, living buried into exopolysaccharides, can be present in all watery environments including tap water and drinking water. This research aimed to study the biofilm trigger mechanism of the opportunistic pathogen P. aeruginosa PAO1 strain, which is known to form biofilm in water supply systems and human body, under chlorine stress levels. In addition to biofilm staining, certain genes that are relevant to the stress condition were selected for gene expression analysis. The bacteria cultures were grown under chlorine stress with concentrations of 0.5, 0.7 and 1 mg/l. Six gene regions were determined related to biofilm and stress response: rpoS, bifA, migA, katB, soxR, and algC. Biofilm formation was analyzed by basic fuchsin staining, and gene expressions were quantified by quantitative real-time PCR. According to the results, highest biofilm production was observed in P. aeruginosa PAO1 wild strain under no stress conditions. Higher biofilm amounts were observed for bacteria under 0.5 and 0.7 mg/l chlorine stress compared to 1 mg/l chlorine stress. PMID:27146505

  9. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution.

    Science.gov (United States)

    Drescher, Knut; Dunkel, Jörn; Nadell, Carey D; van Teeffelen, Sven; Grnja, Ivan; Wingreen, Ned S; Stone, Howard A; Bassler, Bonnie L

    2016-04-01

    Many bacterial species colonize surfaces and form dense 3D structures, known as biofilms, which are highly tolerant to antibiotics and constitute one of the major forms of bacterial biomass on Earth. Bacterial biofilms display remarkable changes during their development from initial attachment to maturity, yet the cellular architecture that gives rise to collective biofilm morphology during growth is largely unknown. Here, we use high-resolution optical microscopy to image all individual cells in Vibrio cholerae biofilms at different stages of development, including colonies that range in size from 2 to 4,500 cells. From these data, we extracted the precise 3D cellular arrangements, cell shapes, sizes, and global morphological features during biofilm growth on submerged glass substrates under flow. We discovered several critical transitions of the internal and external biofilm architectures that separate the major phases of V. cholerae biofilm growth. Optical imaging of biofilms with single-cell resolution provides a new window into biofilm formation that will prove invaluable to understanding the mechanics underlying biofilm development. PMID:26933214

  10. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.

    Science.gov (United States)

    Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu

    2015-02-01

    Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system. PMID:25555820

  11. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment

    KAUST Repository

    Duddu, Ravindra

    2009-05-01

    We present a two-dimensional biofilm growth model in a continuum framework using an Eulerian description. A computational technique based on the eXtended Finite Element Method (XFEM) and the level set method is used to simulate the growth of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions of the model and the governing equations of transport, biofilm kinetics and biofilm mechanics are presented. Our 2D biofilm growth results are in good agreement with those obtained by Picioreanu et al. (Biotechnol Bioeng 69(5):504-515, 2000). Detachment due to erosion is modeled using two continuous speed functions based on: (a) interfacial shear stress and (b) biofilm height. A relation between the two detachment models in the case of a 1D biofilm is established and simulated biofilm results with detachment in 2D are presented. The stress in the biofilm due to fluid flow is evaluated and higher stresses are observed close to the substratum where the biofilm is attached. © 2008 Wiley Periodicals, Inc.

  12. Growth of Streptococcus mutans in Biofilms Alters Peptide Signaling at the Sub-population Level

    Science.gov (United States)

    Shields, Robert C.; Burne, Robert A.

    2016-01-01

    Streptococcus mutans activates multiple cellular processes in response to the formation of a complex between comX-inducing peptide (XIP) and the ComR transcriptional regulator. Bulk phase and microfluidic experiments previously revealed that ComR-dependent activation of comX is altered by pH and by carbohydrate source. Biofilm formation is a major factor in bacterial survival and virulence in the oral cavity. Here, we sought to determine the response of S. mutans biofilm cells to XIP during different stages of biofilm maturation. Using flow cytometry and confocal microscopy, we showed that exogenous addition of XIP to early biofilms resulted in robust comX activation. However, as the biofilms matured, increasing amounts of XIP were required to activate comX expression. Single-cell analysis demonstrated that the entire population was responding to XIP with activation of comX in early biofilms, but only a sub-population was responding in mature biofilms. The sub-population response of mature biofilms was retained when the cells were dispersed and then treated with XIP. The proportion and intensity of the bi-modal response of mature biofilm cells was altered in mutants lacking the Type II toxins MazF and RelE, or in a strain lacking the (p)ppGpp synthase/hydrolase RelA. Thus, competence signaling is markedly altered in cells growing in mature biofilms, and pathways that control cell death and growth/survival decisions modulate activation of comX expression in these sessile populations. PMID:27471495

  13. Role of biofilms in sorptive removal of steroidal hormones and 4-nonylphenol compounds from streams

    Science.gov (United States)

    Writer, J.H.; Ryan, J.N.; Barber, L.B.

    2011-01-01

    Stream biofilms play an important role in geochemical processing of organic matter and nutrients, however, the significance of this matrix in sorbing trace organic contaminants is less understood. This study focused on the role of stream biofilms in sorbing steroidal hormones and 4-nonylphenol compounds from surface waters using biofilms colonized in situ on artificial substrata and subsequently transferred to the laboratory for controlled batch sorption experiments. Steroidal hormones and 4-nonylphenol compounds readily sorb to stream biofilms as indicated by organic matter partition coefficients (K om, L kg-1) for 17??-estradiol (102.5-2.8 L kg-1), 17??-ethynylestradiol (102.5-2.9 L kg -1), 4-nonylphenol (103.4-4.6 L kg-1), 4-nonylphenolmonoethoxylate (103.5-4.0 L kg-1), and 4-nonylphenoldiethoxylate (103.9-4.3 L kg-1). Experiments using water quality differences to induce changes in the relative composition of periphyton and heterotrophic bacteria in the stream biofilm did not significantly affect the sorptive properties of the stream biofilm, providing additional evidence that stream biofilms will sorb trace organic compounds under of variety of environmental conditions. Because sorption of the target compounds to stream biofilms was linearly correlated with organic matter content, hydrophobic partition into organic matter appears to be the dominant mechanism. An analysis of 17??-estradiol and 4-nonylphenol hydrophobic partition into water, biofilm, sediment, and dissolved organic matter matrices at mass/volume ratios typical of smaller rivers showed that the relative importance of the stream biofilm as a sorptive matrix was comparable to bed sediments. Therefore, stream biofilms play a primary role in attenuating these compounds in surface waters. Because the stream biofilm represents the base of the stream ecosystem, accumulation of steroidal hormones and 4-nonylphenol compounds in the stream biofilm may be an exposure pathway for organisms in higher trophic

  14. Identification of the genes involved in Riemerella anatipestifer biofilm formation by random transposon mutagenesis.

    Directory of Open Access Journals (Sweden)

    Qinghai Hu

    Full Text Available Riemerella anatipestifer causes epizootics of infectious disease in poultry that result in serious economic losses to the duck industry. Our previous studies have shown that some strains of R. anatipestifer can form a biofilm, and this may explain the intriguing persistence of R. anatipestifer on duck farms post infection. In this study we used strain CH3, a strong producer of biofilm, to construct a library of random Tn4351 transposon mutants in order to investigate the genetic basis of biofilm formation by R. anatipestifer on abiotic surfaces. A total of 2,520 mutants were obtained and 39 of them showed a reduction in biofilm formation of 47%-98% using crystal violet staining. Genetic characterization of the mutants led to the identification of 33 genes. Of these, 29 genes are associated with information storage and processing, as well as basic cellular processes and metabolism; the function of the other four genes is currently unknown. In addition, a mutant strain BF19, in which biofilm formation was reduced by 98% following insertion of the Tn4351 transposon at the dihydrodipicolinate synthase (dhdps gene, was complemented with a shuttle plasmid pCP-dhdps. The complemented mutant strain was restored to give 92.6% of the biofilm formation of the wild-type strain CH3, which indicates that the dhdp gene is associated with biofilm formation. It is inferred that such complementation applies also to other mutant strains. Furthermore, some biological characteristics of biofilm-defective mutants were investigated, indicating that the genes deleted in the mutant strains function in the biofilm formation of R. anatipestifer. Deletion of either gene will stall the biofilm formation at a specific stage thus preventing further biofilm development. In addition, the tested biofilm-defective mutants had different adherence capacity to Vero cells. This study will help us to understand the molecular mechanisms of biofilm development by R. anatipestifer and to

  15. Penetration of Candida Biofilms by Antifungal Agents

    OpenAIRE

    Al-Fattani, Mohammed A.; Douglas, L. Julia

    2004-01-01

    A filter disk assay was used to investigate the penetration of antifungal agents through biofilms containing single and mixed-species biofilms containing Candida. Fluconazole permeated all single-species Candida biofilms more rapidly than flucytosine. The rates of diffusion of either drug through biofilms of three strains of Candida albicans were similar. However, the rates of drug diffusion through biofilms of C. glabrata or C. krusei were faster than those through biofilms of C. parapsilosi...

  16. SarA is a negative regulator of Staphylococcus epidermidis biofilm formation

    DEFF Research Database (Denmark)

    Martin, Christer; Heinze, C.; Busch, M.; Franke, G.; Hentschke, M.; Dühring, Sara Bayard; Buettner, H.; Kotasinska, M.; Wischnewski, V.; Buck, F.; Molin, Søren; Otto, Michael; Rohde, Henning

    2012-01-01

    the existence of superimposed regulatory systems suppressing a multi-cellular biofilm life style in vitro. Transposon mutagenesis of clinical significant but biofilm-negative S. epidermidis 1585 was used to isolate a biofilm positive mutant carrying a Tn917 insertion in sarA,chief regulator of...... contributed to biofilm formation in mutant 1585ΔsarA. Increased eDNA amounts indirectly resulted from up-regulation of metalloprotease SepA, leading to boosted processing of major autolysin AtlE, in turn inducing augmented autolysis and release of chromosomal DNA. Hence, this study identifies sarA as a...... negative regulator of Embp- and eDNA dependent biofilm formation. Given the importance of SarA as a positive regulator of polysaccharide mediated cell aggregation, the regulator enables S. epidermidis to switch between mechanisms of biofilm formation, ensuring S. epidermidis adaptation to hostile...

  17. Synergistic activity between an antimicrobial polyacrylamide and daptomycin versus Staphylococcus aureus biofilm.

    Science.gov (United States)

    Siala, Wafi; Van Bambeke, Françoise; Taresco, Vincenzo; Piozzi, Antonella; Francolini, Iolanda

    2016-07-01

    Antibiotic resistance of bacteria growing in biofilms compared to their planktonic counterparts enhances the difficulty to eradicate biofilm-associated infections. In the last decade, combination antibiotic therapy has emerged as an attractive strategy for treating biofilm infections, even if in most of tolerant biofilms the optimal combinations are still unknown. In this study, an antimicrobial cationic polyacrylamide was used in combination with daptomycin or moxifloxacin against mature biofilms of Staphylococcus aureus clinical isolates to examine a possible improvement of the antibiofilm activity of the two antibiotics. The polymer did not have an effect on moxifloxacin but significantly increased the antibiofilm efficacy of daptomycin. These findings are presumably related to the different mechanism of action of the two drugs. In summary, our data highlighted the ability of polycations to increase daptomycin antibiofilm activity providing a potential strategy to eradicate biofilms in industrial or medical settings. PMID:27154750

  18. Extracellular DNA contributes to dental biofilm formation: an ex vivo study

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke Louise; Dige, Irene;

    The extracellular matrix of dental biofilms plays an important role during caries development. It increases the mechanical stability of the biofilm, it prevents desiccation, it serves as a reservoir for nutrients and it contributes to the long-term preservation of acidic microenvironments. Research...... stability, and that the enzymatic removal of extracellular DNA might be used as a therapeutic approach to biofilm diseases. Here, we investigate the effect of treatment with DNase I (100 Kunitz) on in vivo grown young dental biofilms. A total of 300 biofilm samples were grown on glass slabs placed on...... acrylic splints for 2.5, 5, 7.5, 16.5 and 24 h and subsequently treated with DNase I or heat-inactivated DNase I for 1 h. Biovolumes were quantified by confocal microscopy and digital analysis of 16200 images. All samples taken together, DNase-treatment led to a strong reduction of the biofilm biovolume...

  19. Silver against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Kirketerp-Møller, K.; Kristiansen, S.;

    2007-01-01

    bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa, but that the...... silver concentration is important. A concentration of 5-10 ig/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 ig/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate...... planktonic bacteria. These observations strongly indicate that the concentration of silver in currently available wound dressings is much too low for treatment of chronic biofilm wounds. It is suggested that clinicians and manufacturers of the said wound dressings consider whether they are treating wounds...

  20. Biofilms: a developing microscopic community

    Directory of Open Access Journals (Sweden)

    Rivera Sandra Patricia

    2004-09-01

    Full Text Available Biofilms are microbial communities composed by different microbiota embebbed in a special adaptive environment. These communities show different characteristics such as heterogeneity, diversity in microenvironments, capacity to resist antimicrobial therapy and ability to allow bacterial communication. These characteristics convert them in complex organizations that are difficult to eradicate in their own environment. In the man, biofilms are associated to a great number of slow-development infectious processes which greatly difficulties their eradication. In the industry and environment, biofilms are centered in processes known as biofouling and bioremediation. The former is the contamination of a system due to the microbial activity of a biofilm. The latter uses biofilms to improve the conditions of a contaminated system. The study of biofilms is a new and exciting field which is constantly evolving and whose implications in medicine and industry would have important repercussions for the humankind.

  1. Efficacy of dental unit waterlines disinfectants on a polymicrobial biofilm.

    Science.gov (United States)

    Costa, Damien; Girardot, Marion; Bertaux, Joanne; Verdon, Julien; Imbert, Christine

    2016-03-15

    Due to their high surface-volume ratio, their laminar flow and frequent stagnation periods, dental unit waterlines (DUWL) foster the attachment of microorganisms and the development of biofilm, resulting in the continuous contamination of the outlet water from dental units; this contamination may be responsible for a potential risk of infection due to the exposure of patients and medical staff to droplet inhalation or splashed water. In this study, the anti-biofilm activity of three disinfectants recommended by dental unit manufacturers -Calbenium(©), Oxygenal 6(©) and Sterispray(©) - was evaluated. A dynamic model simulating DUWL conditions was developed and polymicrobial biofilms containing bacteria (Pseudomonas aeruginosa), fungi (Candida albicans) and Free Living Amoeba (FLA: Vermamoeba vermiformis) were allowed to form. The ability of disinfectants to reduce biofilm formation or to eradicate an already formed biofilm was evaluated. Results showed the various effects of the tested disinfectants according to their composition, concentration and the targeted species. V. vermiformis was resistant to disinfectants, regardless of the tested concentrations and the concentrations recommended by manufacturers were not the most appropriate. Results also showed that Calbenium(©) was the most effective disinfectant to reduce already formed biofilms; its maximum efficiency was observed from 0.5% on both P. aeruginosa and C. albicans compared to 2 and 3% respectively for Sterispray(©). The maximum efficiency of Oxygenal(©) was observed from 3% on P. aeruginosa but Oxygenal(©) was unable to totally eliminate C. albicans in the tested conditions, contrary to other disinfectants. Calbenium(©) was able to prevent biofilm formation efficiently even if it displayed no prophylactic activity against V. vermiformis. Overall, the FLA survival may contribute to maintaining other species. Finally the tested disinfectants were partially active against sessile microorganisms

  2. Adherence and biofilm production of invasive and non-invasive isolates of Streptococcus pyogenes after hyaluronidase treatment

    Directory of Open Access Journals (Sweden)

    Šmitran Aleksandra

    2013-01-01

    Full Text Available Biofilm represents a protected mode, which allows bacteria to survive and proliferate in a hostile environment. Little is known whether the ability to form biofilms is a characteristic of all groups of A streptococcal (GAS strains and whether there is a relationship between biofilm formation and a clinical source of isolates. A capsule physically covers superficial adhesins and other proteins, essential in bacterial attachment, as the first step in biofilm formation. It is also possible that hyaluronic acid could form part of the complex extracellular polymer matrix of biofilms and contribute to the three-dimensional architecture of the biofilm. The aim of this study was to investigate if there are differences in adherence and biofilm production between GAS strains with different pathogenic potential, and the possible role of the capsule in this process. A total of 122 isolates were divided into three groups: noninvasive (NI, low invasive (LI and highly invasive (HI. Adherence, SpeB and biofilm production were tested before and after hyaluronidase treatment. There was no difference in adherence between untreated GAS strains, but after capsule removal, NI and HI isolates adhered significantly better than the LI group. Before treatment, isolates of the HI group were the worst biofilm producers, but after capsule removal, they became the best biofilm producers. There was no difference in SpeB production among GAS isolates, regardless of the hyaluronidase treatment.

  3. Liquid Flow in Biofilm Systems

    OpenAIRE

    Stoodley, Paul; deBeer, Dirk; Lewandowski, Zbigniew

    1994-01-01

    A model biofilm consisting of Pseudomonas aeruginosa, Pseudomonas fluorescens, and Klebsiella pneumoniae was developed to study the relationships between structural heterogeneity and hydrodynamics. Local fluid velocity in the biofilm system was measured by a noninvasive method of particle image velocimetry, using confocal scanning laser microscopy. Velocity profiles were measured in conduit and porous medium reactors in the presence and absence of biofilm. Liquid flow was observed within biof...

  4. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Alexander K.; Pokroy, Boaz; Seminara, Agnese; Aizenberg, Joanna (Harvard)

    2011-09-28

    Most of the world's bacteria exist in robust, sessile communities known as biofilms, ubiquitously adherent to environmental surfaces from ocean floors to human teeth and notoriously resistant to antimicrobial agents. We report the surprising observation that Bacillus subtilis biofilm colonies and pellicles are extremely nonwetting, greatly surpassing the repellency of Teflon toward water and lower surface tension liquids. The biofilm surface remains nonwetting against up to 80% ethanol as well as other organic solvents and commercial biocides across a large and clinically important concentration range. We show that this property limits the penetration of antimicrobial liquids into the biofilm, severely compromising their efficacy. To highlight the mechanisms of this phenomenon, we performed experiments with mutant biofilms lacking ECM components and with functionalized polymeric replicas of biofilm microstructure. We show that the nonwetting properties are a synergistic result of ECM composition, multiscale roughness, reentrant topography, and possibly yet other factors related to the dynamic nature of the biofilm surface. Finally, we report the impenetrability of the biofilm surface by gases, implying defense capability against vapor-phase antimicrobials as well. These remarkable properties of B. subtilis biofilm, which may have evolved as a protection mechanism against native environmental threats, provide a new direction in both antimicrobial research and bioinspired liquid-repellent surface paradigms.

  5. HrcA and DnaK are important for static and continuous flow biofilm formation and disinfectant resistance in Listeria monocytogenes

    NARCIS (Netherlands)

    Veen, van der S.; Abee, T.

    2010-01-01

    The food-borne pathogen Listeria monocytogenes is able to form biofilms in food processing environments. Since biofilms are generally difficult to eradicate during clean-up procedures, they pose a major risk for the food industry. Stress resistance mechanisms involved in L. monocytogenes biofilm for

  6. Oral Streptococci Biofilm Formation on Different Implant Surface Topographies

    Directory of Open Access Journals (Sweden)

    Pedro Paulo Cardoso Pita

    2015-01-01

    Full Text Available The establishment of the subgingival microbiota is dependent on successive colonization of the implant surface by bacterial species. Different implant surface topographies could influence the bacterial adsorption and therefore jeopardize the implant survival. This study evaluated the biofilm formation capacity of five oral streptococci species on two titanium surface topographies. In vitro biofilm formation was induced on 30 titanium discs divided in two groups: sandblasted acid-etched (SAE- n=15 and as-machined (M- n=15 surface. The specimens were immersed in sterilized whole human unstimulated saliva and then in fresh bacterial culture with five oral streptococci species: Streptococcus sanguinis, Streptococcus salivarius, Streptococcus mutans, Streptococcus sobrinus, and Streptococcus cricetus. The specimens were fixed and stained and the adsorbed dye was measured. Surface characterization was performed by atomic force and scanning electron microscopy. Surface and microbiologic data were analyzed by Student’s t-test and two-way ANOVA, respectively (P0.05. S. sanguinis exhibited similar behavior to form biofilm on both implant surface topographies, while S. salivarius showed the lowest ability to form biofilm. It was concluded that biofilm formation on titanium surfaces depends on surface topography and species involved.

  7. Sensitivity of planktonic and biofilm-associated Aeromonas spp. to ionizing radiation

    International Nuclear Information System (INIS)

    Genus Aeromonas has emerged as an important human pathogen because it causes a variety of diseases including gastroenteritis and extra-intestinal infections. Aeromonas have the ability to adhere and form biofilms on food surfaces and food contact surfaces. Biofilm formation on foods and food contact surfaces is the major reason for contamination, cross contamination and post-processing contamination of the final food product leading to food spoilage, product rejection, economic losses and food-borne diseases. Biofilms have shown high resistance to heat, desiccation, acidic condition, high salt concentration, antibiotics and other food preservatives. Earlier studies in our laboratory have shown that ionizing radiation effectively inactivates Aeromonas in different food products. However, the relative efficacy of this process against biofilm associated cells versus free-living planktonic cells of Aeromonas is not well documented. Therefore, the dose of gamma radiation required to reduce the population by 90% (D10) was calculated for planktonic and biofilm-associated A. salmonicida Y567 and A. hydrophila A331 cells. Both A. hydrophila A331 and A. salmonicida Y567 expressed significant ability to attach and grow on glass surface following incubation at 30℃ in TSB. Ionizing radiation effectively reduced the populations of both planktonic and biofilm-associated cells for both the strains. Mean cell counts of survivors and surviving fraction of planktonic and biofilm-associated cells decreased with increased irradiation doses. The D10 values of planktonic cells and biofilm cells for A. salmonicida (Y567) were 232.65 Gy and 248.41 Gy, respectively; whereas, the D10 values of planktonic cells and biofilm cells for A. hydrophila (A331) were 249.2 Gy and 240.2 Gy respectively. No significant difference in the D10 values of planktonic and biofilm associated Aeromonas was observed. The influence of the cultured state of the organism, i.e., planktonic versus biofilm associated

  8. Quorum sensing-regulated chitin metabolism provides grazing resistance to Vibrio cholerae biofilms.

    Science.gov (United States)

    Sun, Shuyang; Tay, Qi Xiang Martin; Kjelleberg, Staffan; Rice, Scott A; McDougald, Diane

    2015-08-01

    Association of Vibrio cholerae with chitinous surfaces of zooplankton is important for its persistence in marine environments, as it provides accessibility to nutrients and resistance to stresses. Predation by heterotrophic protists has a major impact on the survival of V. cholerae. V. cholerae forms biofilms as its main defensive strategy, and quorum sensing (QS) additionally regulates the production of antiprotozoal factors. The role of chitin and QS regulation in V. cholerae grazing resistance was investigated by exposing V. cholerae wild-type (WT) and QS mutant biofilms grown on chitin flakes to the bacteriotrophic, surface-feeding flagellate Rhynchomonas nasuta. V. cholerae formed more biofilm biomass on chitin flakes compared with nonchitinous surfaces. The growth of R. nasuta was inhibited by WT biofilms grown on chitin flakes, whereas the inhibition was attenuated in QS mutant biofilms. The chitin-dependent toxicity was also observed when the V. cholerae biofilms were developed under continuous flow or grown on a natural chitin source, the exoskeleton of Artemia. In addition, the antiprotozoal activity and ammonium concentration of V. cholerae biofilm supernatants were quantified. The ammonium levels (3.5 mM) detected in the supernatants of V. cholerae WT biofilms grown on chitin flakes were estimated to reduce the number of R. nasuta by >80% in add-back experiments, and the supernatant of QS mutant biofilms was less toxic owing to a decrease in ammonium production. Transcriptomic analysis revealed that the majority of genes involved in chitin metabolism and chemotaxis were significantly downregulated in QS mutant biofilms when grown on chitin compared with the WT biofilms. PMID:25615438

  9. Contributions of tropodithietic acid and biofilm formation to the probiotic activity of Phaeobacter inhibens

    OpenAIRE

    Zhao, Wenjing; Dao, Christine; Karim, Murni; Gomez-Chiarri, Marta; Rowley, David; Nelson, David R.

    2016-01-01

    Background: The probiotic bacterium Phaeobacter inhibens strain S4Sm, isolated from the inner shell surface of a healthy oyster, secretes the antibiotic tropodithietic acid (TDA), is an excellent biofilm former, and increases oyster larvae survival when challenged with bacterial pathogens. In this study, we investigated the specific roles of TDA secretion and biofilm formation in the probiotic activity of S4Sm. Results: Mutations in clpX (ATP-dependent ATPase) and exoP (an exopolysaccharide b...

  10. Contributions of tropodithietic acid and biofilm formation to the probiotic activity of Phaeobacter inhibens

    OpenAIRE

    Zhao, Wenjing; Dao, Christine; Karim, Murni; Gomez-Chiarri, Marta; Rowley, David; Nelson, David R.

    2016-01-01

    Background The probiotic bacterium Phaeobacter inhibens strain S4Sm, isolated from the inner shell surface of a healthy oyster, secretes the antibiotic tropodithietic acid (TDA), is an excellent biofilm former, and increases oyster larvae survival when challenged with bacterial pathogens. In this study, we investigated the specific roles of TDA secretion and biofilm formation in the probiotic activity of S4Sm. Results Mutations in clpX (ATP-dependent ATPase) and exoP (an exopolysaccharide bio...

  11. msaABCR operon positively regulates biofilm development by repressing proteases and autolysis in Staphylococcus aureus

    OpenAIRE

    Sahukhal, Gyan S; Batte, Justin L.; Elasri, Mohamed O.

    2015-01-01

    Staphylococcus aureus is an important human pathogen that causes nosocomial and community-acquired infections. One of the most important aspects of staphylococcal infections is biofilm development within the host, which renders the bacterium resistant to the host’s immune response and antimicrobial agents. Biofilm development is very complex and involves several regulators that ensure cell survival on surfaces within the extracellular polymeric matrix. Previously, we identified the msaABCR op...

  12. Understanding Biofilms in Chronic Sinusitis.

    Science.gov (United States)

    Tajudeen, Bobby A; Schwartz, Joseph S; Palmer, James N

    2016-02-01

    Chronic sinusitis is a burdensome disease that has substantial individual and societal impact. Although great advances in medical and surgical therapies have been made, some patients continue to have recalcitrant infections. Microbial biofilms have been implicated as a cause of recalcitrant chronic sinusitis, and recent studies have tried to better understand the pathogenesis of chronic sinusitis as it relates to microbial biofilms. Here, we provide an overview of biofilms in chronic sinusitis with emphasis on pathogenesis, treatment, and future directions. In addition, recent evidence is presented, elucidating the role of bitter taste receptors as a possible key factor leading to biofilm formation. PMID:26758863

  13. Biofilm removal technique using sands as a research tool for accessing microbial attachment on surface

    Directory of Open Access Journals (Sweden)

    Nathanon Trachoo

    2004-01-01

    Full Text Available Biofilms have profound impacts on improved survival of the constituent microorganisms in nature. Biofilms were believed to protect constituent microorganisms from sanitizer treatment, provide a more suitable habitat for microorganisms, and become a site for genetic material exchanges between microorganisms. As we realize more about the significance of biofilm, methods used for biofilm study should be consistently developed and evaluated. To determine microbial attachment on surfaces, usually biofilms are grown on substratum surfaces and removed by vortexing with glass beads or scraping. However, scraping is not as effective as vortexing with glass beads. Another approach is direct-agar overlaying which cannot be used with high density biofilm. In this experiment, we compared effectiveness of glass beads (298±28 μm in diameter and sands (width: 221±55 μm and length: 329±118 μm in removing biofilm of Pseudomonas aeruginosa by vortexing method. The results suggested that acid-washed sands, which are significantly less inexpensive than glass beads, were as effective as (P>0.05 analytical grade glass beads in Pseudomonas aeruginosa biofilm removal without inhibiting growth of the organism.

  14. Effects of green tea compound epigallocatechin-3-gallate against Stenotrophomonas maltophilia infection and biofilm.

    Directory of Open Access Journals (Sweden)

    Pedrina G Vidigal

    Full Text Available We investigated the in vitro and in vivo activities of epigallocatechin-3-gallate (EGCg, a green tea component, against Stenotrophomonas maltophilia (Sm isolates from cystic fibrosis (CF patients. In vitro effects of EGCg and the antibiotic colistin (COL on growth inhibition, survival, and also against young and mature biofilms of S. maltophilia were determined. Qualitative and quantitative changes on the biofilms were assessed by confocal laser scanning microscopy (CLSM. Further, in vivo effects of nebulized EGCg in C57BL/6 and Cftr mutant mice during acute Sm lung infection were evaluated. Subinhibitory concentrations of EGCg significantly reduced not only biofilm formation, but also the quantity of viable cells in young and mature biofilms. CLSM showed that EGCg-exposed biofilms exhibited either a change in total biofilm biovolume or an increase of the fraction of dead cells contained within the biofilm in a dose depended manner. Sm infected wild-type and Cftr mutant mice treated with 1,024 mg/L EGCg by inhalation exhibited significantly lower bacterial counts than those undergoing no treatment or treated with COL. EGCg displayed promising inhibitory and anti-biofilm properties against CF Sm isolates in vitro and significantly reduced Sm bacterial counts in an acute infection model with wild type and CF mice. This natural compound may represent a novel therapeutic agent against Sm infection in CF.

  15. Review and hypothesis: syndromes with severe intrauterine growth restriction and very short stature--are they related to the epigenetic mechanism(s) of fetal survival involved in the developmental origins of adult health and disease?

    Science.gov (United States)

    Hall, Judith G

    2010-02-01

    Diagnosing the specific type of severe intrauterine growth restriction (IUGR) that also has post-birth growth restriction is often difficult. Eight relatively common syndromes are discussed identifying their unique distinguishing features, overlapping features, and those features common to all eight syndromes. Many of these signs take a few years to develop and the lifetime natural history of the disorders has not yet been completely clarified. The theory behind developmental origins of adult health and disease suggests that there are mammalian epigenetic fetal survival mechanisms that downregulate fetal growth, both in order for the fetus to survive until birth and to prepare it for a restricted extra-uterine environment, and that these mechanisms have long lasting effects on the adult health of the individual. Silver-Russell syndrome phenotype has recently been recognized to be related to imprinting/methylation defects. Perhaps all eight syndromes, including those with single gene mutation origin, involve the mammalian mechanism(s) of fetal survival downsizing. Insights into those mechanisms should provide avenues to understanding the natural history, the heterogeneity and possible therapy not only for these eight syndromes, but for the common adult diseases with which IUGR is associated. PMID:20101705

  16. Biofilm and Dental Biomaterials

    OpenAIRE

    Marit Øilo; Vidar Bakken

    2015-01-01

    All treatment involving the use of biomaterials in the body can affect the host in positive or negative ways. The microbiological environment in the oral cavity is affected by the composition and shape of the biomaterials used for oral restorations. This may impair the patients’ oral health and sometimes their general health as well. Many factors determine the composition of the microbiota and the formation of biofilm in relation to biomaterials such as, surface roughness, surface energy and ...

  17. Spatio-Temporal Evolution of Sporulation in Bacillus thuringiensis Biofilm

    Science.gov (United States)

    El-Khoury, Nay; Majed, Racha; Perchat, Stéphane; Kallassy, Mireille; Lereclus, Didier; Gohar, Michel

    2016-01-01

    Bacillus thuringiensis can produce a floating biofilm which includes two parts: a ring and a pellicle. The ring is a thick structure which sticks to the culture container, while the pellicle extends over the whole liquid surface and joins the ring. We have followed over time, from 16 to 96 h, sporulation in the two biofilm parts. Sporulation was followed in situ in 48-wells polystyrene microtiterplates with a fluorescence binocular stereomicroscope and a spoIID-yfp transcriptional fusion. Sporulation took place much earlier in the ring than in the pellicle. In 20 h-aged biofilms, spoIID was expressed only in the ring, which could be seen as a green fluorescent circle surrounding the non-fluorescent pellicle. However, after 48 h of culture, the pellicle started to express spoIID in specific area corresponding to protrusions, and after 96 h both the ring and the whole pellicle expressed spoIID. Spore counts and microscopy observations of the ring and the pellicle harvested separately confirmed these results and revealed that sporulation occured 24 h-later in the pellicle comparatively to the ring, although both structures contained nearly 100% spores after 96 h of culture. We hypothesize that two mechanisms, due to microenvironments in the biofilm, can explain this difference. First, the ring experiences a decreased concentration of nutrients earlier than the pellicle, because of a lower exchange area with the culture medium. An second, the ring is exposed to partial dryness. Both reasons could speed up sporulation in this biofilm structure. Our results also suggest that spores in the biofilm display a phenotypic heterogeneity. These observations might be of particular significance for the food industry, since the biofilm part sticking to container walls – the ring – is likely to contain spores and will therefore resist both to washing and to cleaning procedures, and will be able to restart a new biofilm when food production has resumed. PMID:27536298

  18. Spatio-Temporal Evolution of Sporulation in Bacillus thuringiensis Biofilm.

    Science.gov (United States)

    El-Khoury, Nay; Majed, Racha; Perchat, Stéphane; Kallassy, Mireille; Lereclus, Didier; Gohar, Michel

    2016-01-01

    Bacillus thuringiensis can produce a floating biofilm which includes two parts: a ring and a pellicle. The ring is a thick structure which sticks to the culture container, while the pellicle extends over the whole liquid surface and joins the ring. We have followed over time, from 16 to 96 h, sporulation in the two biofilm parts. Sporulation was followed in situ in 48-wells polystyrene microtiterplates with a fluorescence binocular stereomicroscope and a spoIID-yfp transcriptional fusion. Sporulation took place much earlier in the ring than in the pellicle. In 20 h-aged biofilms, spoIID was expressed only in the ring, which could be seen as a green fluorescent circle surrounding the non-fluorescent pellicle. However, after 48 h of culture, the pellicle started to express spoIID in specific area corresponding to protrusions, and after 96 h both the ring and the whole pellicle expressed spoIID. Spore counts and microscopy observations of the ring and the pellicle harvested separately confirmed these results and revealed that sporulation occured 24 h-later in the pellicle comparatively to the ring, although both structures contained nearly 100% spores after 96 h of culture. We hypothesize that two mechanisms, due to microenvironments in the biofilm, can explain this difference. First, the ring experiences a decreased concentration of nutrients earlier than the pellicle, because of a lower exchange area with the culture medium. An second, the ring is exposed to partial dryness. Both reasons could speed up sporulation in this biofilm structure. Our results also suggest that spores in the biofilm display a phenotypic heterogeneity. These observations might be of particular significance for the food industry, since the biofilm part sticking to container walls - the ring - is likely to contain spores and will therefore resist both to washing and to cleaning procedures, and will be able to restart a new biofilm when food production has resumed. PMID:27536298

  19. F1C Fimbriae Play an Important Role in Biofilm Formation and Intestinal Colonization by the Escherichia coli Commensal Strain Nissle 1917▿

    OpenAIRE

    Lasaro, Melissa A.; Salinger, Nina; Jing ZHANG; Wang, Yantao; Zhong, Zhengtao; Goulian, Mark; Zhu, Jun

    2008-01-01

    Bacterial biofilm formation is thought to enhance survival in natural environments and during interaction with hosts. A robust colonizer of the human gastrointestinal tract, Escherichia coli Nissle 1917, is widely employed in probiotic therapy. In this study, we performed a genetic screen to identify genes that are involved in Nissle biofilm formation. We found that F1C fimbriae are required for biofilm formation on an inert surface. In addition, these structures are also important for adhere...

  20. The CDKN2A G500 allele is more frequent in GBM patients with no defined telomere maintenance mechanism tumors and is associated with poorer survival.

    Directory of Open Access Journals (Sweden)

    Janice A Royds

    Full Text Available Prognostic markers for glioblastoma multiforme (GBM are important for patient management. Recent advances have identified prognostic markers for GBMs that use telomerase or the alternative lengthening of telomeres (ALT mechanism for telomere maintenance. Approximately 40% of GBMs have no defined telomere maintenance mechanism (NDTMM, with a mixed survival for affected individuals. This study examined genetic variants in the cyclin-dependent kinase inhibitor 2A (CDKN2A gene that encodes the p16(INK4a and p14(ARF tumor suppressors, and the isocitrate dehydrogenase 1 (IDH1 gene as potential markers of survival for 40 individuals with NDTMM GBMs (telomerase negative and ALT negative by standard assays, 50 individuals with telomerase, and 17 individuals with ALT positive tumors. The analysis of CDKN2A showed NDTMM GBMs had an increased minor allele frequency for the C500G (rs11515 polymorphism compared to those with telomerase and ALT positive GBMs (p = 0.002. Patients with the G500 allele had reduced survival that was independent of age, extent of surgery, and treatment. In the NDTMM group G500 allele carriers had increased loss of CDKN2A gene dosage compared to C500 homozygotes. An analysis of IDH1 mutations showed the R132H mutation was associated with ALT positive tumors, and was largely absent in NDTMM and telomerase positive tumors. In the ALT positive tumors cohort, IDH1 mutations were associated with a younger age for the affected individual. In conclusion, the G500 CDKN2A allele was associated with NDTMM GBMs from older individuals with poorer survival. Mutations in IDH1 were not associated with NDTMM GBMs, and instead were a marker for ALT positive tumors in younger individuals.

  1. Chemically Specific Cellular Imaging of Biofilm Formation

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J L; Schaldach, C; Horn, J; Gjersing, E; Maxwell, R

    2006-02-09

    This document and the accompanying manuscripts summarize the technical accomplishments for our one-year LDRD-ER effort. Biofilm forming microbes have existed on this planet for billions of years and make up 60% of the biological mass on earth. Such microbes exhibit unique biochemical pathways during biofilm formation and play important roles in human health and the environment. Microbial biofilms have been directly implicated in, for example, product contamination, energy losses, and medical infection that cost the loss of human lives and billions of dollars. In no small part due to the lack of detailed understanding, biofilms unfortunately are resistant to control, inhibition, and destruction, either through treatment with antimicrobials or immunological defense mechanisms of the body. Current biofilm research has concentrated on the study of biofilms in the bulk. This is primarily due to the lack of analytical and physical tools to study biofilms non-destructively, in three dimensions, and on the micron or sub-micron scale. This has hindered the development of a clear understanding of either the early stage mechanisms of biofilm growth or the interactions of biofilms with their environment. Enzymatic studies have deduced a biochemical reaction that results in the oxidation of reduced sulfur species with the concomitant reduction of nitrate, a common groundwater pollutant, to dinitrogen gas by the bacterium, Thiobacillus denitrificans (TD). Because of its unique involvement in biologically relevant environmental pathways, TD is scheduled for genome sequencing in the near future by the DOE's Joint Genome Institute and is of interest to DOE's Genomes to Life Program. As our ecosystem is exposed to more and more nitrate contamination large scale livestock and agricultural practices, a further understanding of biofilm formation by organisms that could alleviate these problems is necessary in order to protect out biosphere. However, in order to study this

  2. Comparison of biofilm formation in clinical isolates of Candida species in a tertiary care center, North India

    Directory of Open Access Journals (Sweden)

    Vivek Agwan

    2015-01-01

    Full Text Available Background and Objectives: Biofilms are colonies of microbial cells encased in a self-produced organic polymeric matrix. The biofilm production is more important for nonalbicans Candida (NAC; as C. albicans possess many other mechanisms to establish infections. Correct identification of Candida species has gained importance due to persistent rise in infections caused by NAC. We sought to isolate, identify Candida species in clinical isolates and study biofilm formation. Materials and Methods: Modified microtiter plate method was performed to study biofilm formation by isolates in Sabouraud's dextrose broth. It was then quantitatively assessed using a spectrophotometer. Biofilm formation was graded as negative, +1, +2, +3 and + 4 on the basis of percentage absorbance. Results: Biofilm formation was observed in 16 of 40 (40.0% isolates of C. albicans as compared to 39 of 78 (50.0% of isolates of NAC. Strong (+4 biofilm production was seen in maximum biofilm producers in C. tropicalis (12 of 27 followed by C. albicans (8 of 16. Total biofilm producers were significantly more among high vaginal swab isolates 63.2% (12 of 19 and urine isolates 59.2% (29 of 49, when compared to blood isolates 34.2% (13 of 38 as well as other isolates 27.5% (11 of 40. Interpretation and Conclusions: NAC species are qualitatively and quantitatively superior biofilm producers than C. albicans. Biofilm production is the most important virulence factor of NAC species and compared to other lesions, it is more significantly associated with luminal infections.

  3. Molecular Techniques Revealed Highly Diverse Microbial Communities in Natural Marine Biofilms on Polystyrene Dishes for Invertebrate Larval Settlement

    KAUST Repository

    Lee, On On

    2014-01-09

    Biofilm microbial communities play an important role in the larval settlement response of marine invertebrates. However, the underlying mechanism has yet to be resolved, mainly because of the uncertainties in characterizing members in the communities using traditional 16S rRNA gene-based molecular methods and in identifying the chemical signals involved. In this study, pyrosequencing was used to characterize the bacterial communities in intertidal and subtidal marine biofilms developed during two seasons. We revealed highly diverse biofilm bacterial communities that varied with season and tidal level. Over 3,000 operational taxonomic units with estimates of up to 8,000 species were recovered in a biofilm sample, which is by far the highest number recorded in subtropical marine biofilms. Nineteen phyla were found, of which Cyanobacteria and Proteobacteria were the most dominant one in the intertidal and subtidal biofilms, respectively. Apart from these, Actinobacteria, Bacteroidetes, and Planctomycetes were the major groups recovered in both intertidal and subtidal biofilms, although their relative abundance varied among samples. Full-length 16S rRNA gene clone libraries were constructed for the four biofilm samples and showed similar bacterial compositions at the phylum level to those revealed by pyrosequencing. Laboratory assays confirmed that cyrids of the barnacle Balanus amphitrite preferred to settle on the intertidal rather than subtidal biofilms. This preference was independent of the biofilm bacterial density or biomass but was probably related to the biofilm community structure, particularly, the Proteobacterial and Cyanobacterial groups. © 2014 Springer Science+Business Media New York.

  4. Candida albicans biofilm development in vitro for photodynamic therapy study

    International Nuclear Information System (INIS)

    Photodynamic therapy (PDT) is a phototherapy based on the use of a photo sensitizer (PS) in the presence of low intensity light with resonant wavelength of absorption of the PS and biological systems that can raise awareness, generating reactive oxygen species. Studies show that PDT has a lethal effect on Candida albicans. The biofilm formed by C. albicans is the cause of infections associated with medical devices such as catheters, with a proven resistance to antifungal agents, and the removal of the catheter colonized almost always is necessary. However, few studies in literature report the behavior and response of biofilm organized by C. albicans against PDT. The aims of this study were to develop a methodology for in vitro biofilm formation of C. albicans, evaluate the sensitivity of the biofilm of C. albicans to antimicrobial photodynamic therapy using PS as the methylene blue (MB) and hypocrellin B: La+3 (HBLa+3) and analyze the biofilm by Optical Coherence Tomography (OCT). For biofilm formation, discs were made from elastomeric silicone catheters. The PS were dissolved in solution of PBS, and the MB had two different concentrations tested in the biofilm: 100μM and 1mM; HBLa+3 only one of 10μM. The irradiation of both dyes with the microorganism was done by two different LEDs, one with red emission at λ = 630nm ± 20nm and the other one blue emission at λ = 460nm ± 30nm. We performed a curve of survival fraction versus time of irradiation of each sample with biofilm and suspension of the microorganism in the yeast form to verify the susceptibility of the front PDT. The yeast showed 100% reduction using both PS, but at different times of irradiation (30s to HBLa+3 and 6 min for the MB at 100μM). When the therapy was applied in biofilm, the MB 100μM did not show any significant reduction, while at concentration of 1mM was reduced by 100% after 6 min of irradiation. The HBLa+3 biofilm group showed a lower reduction in the concentration of 10μM in

  5. Single particle tracking reveals spatial and dynamic organization of the Escherichia coli biofilm matrix

    International Nuclear Information System (INIS)

    Biofilms are communities of surface-adherent bacteria surrounded by secreted polymers known as the extracellular polymeric substance. Biofilms are harmful in many industries, and thus it is of great interest to understand their mechanical properties and structure to determine ways to destabilize them. By performing single particle tracking with beads of varying surface functionalization it was found that charge interactions play a key role in mediating mobility within biofilms. With a combination of single particle tracking and microrheological concepts, it was found that Escherichia coli biofilms display height dependent charge density that evolves over time. Statistical analyses of bead trajectories and confocal microscopy showed inter-connecting micron scale channels that penetrate throughout the biofilm, which may be important for nutrient transfer through the system. This methodology provides significant insight into a particular biofilm system and can be applied to many others to provide comparisons of biofilm structure. The elucidation of structure provides evidence for the permeability of biofilms to microscale objects, and the ability of a biofilm to mature and change properties over time. (paper)

  6. Bioremediation of hydrocarbons contaminating sewage effluent using man-made biofilms: effects of some variables.

    Science.gov (United States)

    Al-Mailem, D M; Kansour, M K; Radwan, S S

    2014-11-01

    Biofilm samples were established on glass slides by submerging them in oil-free and oil-containing sewage effluent for a month. In batch cultures, such biofilms were effective in removing crude oil, pure n-hexadecane, and pure phenanthrene contaminating sewage effluent. The amounts of the removed hydrocarbons increased with increasing biofilm surface area exposed to the effluent. On the other hand, addition of the reducing agent thioglycollate dramatically inhibited the hydrocarbon bioremediation potential of the biofilms. The same biofilm samples removed contaminating hydrocarbons effectively in three successive batch bioremediation cycles but started to become less effective in the cycles thereafter, apparently due to mechanical biofilm loss during successive transfers. As major hydrocarbonoclastic bacteria, the biofilms harbored species belonging to the genera Pseudomonas, Microvirga, Zavarzinia, Mycobacterium, Microbacterium, Stenotrophomonas, Gordonia, Bosea, Sphingobium, Brachybacterium, and others. The nitrogen fixer Azospirillum brasilense and the microalga Ochromonas distigma were also present; they seemed to enrich the biofilms, with nitrogenous compounds and molecular oxygen, respectively, which are known to enhance microbiological hydrocarbon degradation. It was concluded that man-made biofilms based upon sewage microflora are promising tools for bioremediation of hydrocarbons contaminating sewage effluent. PMID:25146193

  7. Anti-biofilm efficacy of low temperature processed AgCl–TiO2 nanocomposite coating

    International Nuclear Information System (INIS)

    Biofilms are a major concern in the medical settings and food industries due to their high tolerance to antibiotics, biocides and mechanical stress. Currently, the development of novel methods to control biofilm formation is being actively pursued. In the present study, sol–gel coatings of AgCl–TiO2 nanoparticles are presented as potential anti-biofilm agents, wherein TiO2 acts as a good supporting matrix to prevent aggregation of silver and facilitates its controlled release. Low-temperature processed AgCl–TiO2 nanocomposite coatings inhibit biofilm formation by Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa. In vitro biofilm assay experiments demonstrated that AgCl–TiO2 nanocomposite coated surfaces, inhibited the development of biofilms over a period of 10 days as confirmed by scanning electron microscopy. The silver release kinetics exhibited an initial high release, followed by a slow and sustained release. The anti-biofilm efficacy of the coatings could be attributed to the release of silver, which prevents the initial bacterial adhesion required for biofilm formation. - Highlights: • Potential of AgCl–TiO2 nanocomposite coating to inhibit biofilm formation is exhibited. • Initial rapid release followed by later slow and sustained release of silver obtained. • TiO2 being porous and inorganic in nature acts as a good supporting matrix

  8. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scen

  9. Characterization of Acinetobacter baumannii biofilm associated components

    Science.gov (United States)

    Brossard, Kari A.

    Acinetobacter baumannii is a Gram-negative aerobic coccobaccillus that is a major cause of nosocomial infections worldwide. Infected individuals may develop pneumonia, urinary tract, wound, and other infections that are associated with the use of indwelling medical devices such as catheters and mechanical ventilation. Treatment is difficult because many A. baumannii isolates have developed multi-drug resistance and the bacterium can persist on abiotic surfaces. Persistence and resistance may be due to formation of biofilms, which leads to long-term colonization, evasion of the host immune system and resistance to treatment with antibiotics and disinfectants. While biofilms are complex multifaceted structures, two bacterial components that have been shown to be important in formation and stability are exopolysaccharides (EPS) and the biofilm-associated protein (Bap). An EPS, poly-beta-1,6-N-acetylglucosamine, PNAG, has been described for E. coli and S. epidermidis. PNAG acts as an intercellular adhesin. Production of this adhesin is dependent on the pga/icaABCD locus. We have identified a homologous locus in A. baumannii 307-0294 that is involved in production of an exopolysaccharide, recognized by an anti-PNAG antibody. We hypothesized that the A. baumannii pgaABCD locus plays a role in biofilm formation, and protection against host innate defenses and disinfectants suggesting that PNAG is a possible virulence factor for the organism. The first aim of this thesis will define the pgaABCD locus. We have previously identified Bap, a protein with similarity to those described for S. aureus and we have demonstrated that this protein is involved in maintaining the stability of biofilms on glass. We hypothesized that A. baumannii Bap plays a role in persistence and pathogenesis and is regulated by quorum sensing. In our second aim we will examine the role of Bap in attachment and biofilm formation on medically relevant surfaces and also determine if Bap is involved in

  10. Raffinose, a plant galactoside, inhibits Pseudomonas aeruginosa biofilm formation via binding to LecA and decreasing cellular cyclic diguanylate levels.

    Science.gov (United States)

    Kim, Han-Shin; Cha, Eunji; Kim, YunHye; Jeon, Young Ho; Olson, Betty H; Byun, Youngjoo; Park, Hee-Deung

    2016-01-01

    Biofilm formation on biotic or abiotic surfaces has unwanted consequences in medical, clinical, and industrial settings. Treatments with antibiotics or biocides are often ineffective in eradicating biofilms. Promising alternatives to conventional agents are biofilm-inhibiting compounds regulating biofilm development without toxicity to growth. Here, we screened a biofilm inhibitor, raffinose, derived from ginger. Raffinose, a galactotrisaccharide, showed efficient biofilm inhibition of Pseudomonas aeruginosa without impairing its growth. Raffinose also affected various phenotypes such as colony morphology, matrix formation, and swarming motility. Binding of raffinose to a carbohydrate-binding protein called LecA was the cause of biofilm inhibition and altered phenotypes. Furthermore, raffinose reduced the concentration of the second messenger, cyclic diguanylate (c-di-GMP), by increased activity of a c-di-GMP specific phosphodiesterase. The ability of raffinose to inhibit P. aeruginosa biofilm formation and its molecular mechanism opens new possibilities for pharmacological and industrial applications. PMID:27141909

  11. Oral Biofilm Architecture on Natural Teeth

    NARCIS (Netherlands)

    Zijnge, Vincent; van Leeuwen, M. Barbara M.; Degener, John E.; Abbas, Frank; Thurnheer, Thomas; Gmuer, Rudolf; Harmsen, Hermie J. M.; Jonsson, Ing-Marie; Juuti, Jarmo T.; François, Patrice; AlMajidi, Rana; Pietiäinen, Milla; Girard, Myriam; Lindholm, Catharina; Saller, Manfred J.; Driessen, Arnold J.M.; Kuusela, Pentti; Bokarewa, Maria; Schrenzel, Jacques; Kontinen, Vesa P.; Neyrolles, Olivier

    2010-01-01

    Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and acces

  12. Bacterial biofilms: prokaryotic adventures in multicellularity

    DEFF Research Database (Denmark)

    Webb, J.S.; Givskov, Michael Christian; Kjelleberg, S.

    2003-01-01

    The development of bacterial biofilms includes both the initial social behavior of undifferentiated cells, as well as cell death and differentiation in the mature biofilm, and displays several striking similarities with higher organisms. Recent advances in the field provide new insight into...... differentiation and cell death events in bacterial biofilm development and propose that biofilms have an unexpected level of multicellularity....

  13. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces

    International Nuclear Information System (INIS)

    Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1–100 mm s−1), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to ∼ 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and ∼ 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than ∼ 5 min between strain cycles and a topography length scale corresponding to the cell dimension of ∼ 1 μm. Divergent effects on the attachment of P. aeruginosa, Staphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments. (paper)

  14. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces

    Science.gov (United States)

    Epstein, Alexander K.; Hong, Donggyoon; Kim, Philseok; Aizenberg, Joanna

    2013-09-01

    Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1-100 mm s-1), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to ˜ 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and ˜ 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than ˜ 5 min between strain cycles and a topography length scale corresponding to the cell dimension of ˜ 1 μm. Divergent effects on the attachment of P. aeruginosa, Staphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments.

  15. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    Science.gov (United States)

    Zhang, Haiya; Tian, Yimei; Wan, Jianmei; Zhao, Peng

    2015-12-01

    Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  16. Mechanical dyssynchrony evaluated by tissue Doppler cross-correlation analysis is associated with long-term survival in patients after cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Risum, Niels; Williams, Eric S; Khouri, Michel G;

    2013-01-01

    acceleration curves. Outcome was a composite of all-cause mortality, cardiac transplantation, or implantation of a ventricular assist device (left ventricular assist device) and modelled using the Cox proportional hazards regression. Follow-up was truncated at 1460 days. Dyssynchrony by AD-max was......Aims Pre-implant assessment of longitudinal mechanical dyssynchrony using cross-correlation analysis (XCA) was tested for association with long-term survival and compared with other tissue Doppler imaging (TDI)-derived indices. Methods and results In 131 patients referred for cardiac...

  17. IL-1RAcPb signaling regulates adaptive mechanisms in neurons that promote their long-term survival following excitotoxic insults.

    Directory of Open Access Journals (Sweden)

    David eGosselin

    2013-02-01

    Full Text Available Excitotoxicity is a major component of neurodegenerative diseases and is typically accompanied by an inflammatory response. Cytokines IL-1alpha and IL-1beta are key regulators of this inflammatory response and modulate the activity of numerous cell types, including neurons. IL-1RAcPb is an isoform of IL-1RAcP expressed specifically in neurons and promotes their survival during acute inflammation. Here, we investigated in vivo whether IL-1RAcPb also promotes neuronal survival in a model of excitotoxicity. Intrastriatal injection of kainic acid in mice caused a strong induction of IL-1 cytokines mRNA in the brain. The stress response of cortical neurons at 12 hours post-injection, as measured by expression of Atf3, FoxO3a and Bdnf mRNAs, was similar in WT and AcPb-deficient mice. Importantly however, a delayed upregulation in the transcription calpastatin was significantly higher in WT than in AcPb-deficient mice. Finally, although absence of AcPb signaling had no effects on neuronal damage in the cortex at early time points, it significantly impaired their long-term survival. These data suggest that in a context of excitotoxicity, stimulation of IL-1RAcPb signaling may promote the activity of a key neuroprotective mechanism.

  18. Effects of short-chain fatty acids on Actinomyces naeslundii biofilm formation.

    Science.gov (United States)

    Yoneda, S; Kawarai, T; Narisawa, N; Tuna, E B; Sato, N; Tsugane, T; Saeki, Y; Ochiai, K; Senpuku, H

    2013-10-01

    Actinomyces naeslundii is an early colonizer and has important roles in the development of the oral biofilm. Short-chain fatty acids (SCFA) are secreted extracellularly as a product of metabolism by gram-negative anaerobes, e.g. Porphyromonas gingivalis and Fusobacterium nucleatum; and the SCFA may affect biofilm development with interaction between A. naeslundii and gram-negative bacteria. Our aim was to investigate the effects of SCFA on biofilm formation by A. naeslundii and to determine the mechanism. We used the biofilm formation assay in 96-well microtiter plates in tryptic soy broth without dextrose and with 0.25% sucrose using safranin stain of the biofilm monitoring 492 nm absorbance. To determine the mechanism by SCFA, the production of chaperones and stress-response proteins (GrpE and GroEL) in biofilm formation was examined using Western blot fluorescence activity with GrpE and GroEL antibodies. Adding butyric acid (6.25 mm) 0, 6 and 10 h after beginning culture significantly increased biofilm formation by A. naeslundii, and upregulation was observed at 16 h. Upregulation was also observed using appropriate concentrations of other SCFA. In the upregulated biofilm, production of GrpE and GroEL was higher where membrane-damaged or dead cells were also observed. The upregulated biofilm was significantly reduced by addition of anti-GroEL antibody. The data suggest biofilm formation by A. naeslundii was upregulated dependent on the production of stress proteins, and addition of SCFA increased membrane-damaged or dead cells. Production of GroEL may physically play an important role in biofilm development. PMID:23731652

  19. The cabABC Operon Essential for Biofilm and Rugose Colony Development in Vibrio vulnificus.

    Directory of Open Access Journals (Sweden)

    Jin Hwan Park

    2015-09-01

    Full Text Available A transcriptome analysis identified Vibrio vulnificus cabABC genes which were preferentially expressed in biofilms. The cabABC genes were transcribed as a single operon. The cabA gene was induced by elevated 3',5'-cyclic diguanylic acid (c-di-GMP and encoded a calcium-binding protein CabA. Comparison of the biofilms produced by the cabA mutant and its parent strain JN111 in microtiter plates using crystal-violet staining demonstrated that CabA contributed to biofilm formation in a calcium-dependent manner under elevated c-di-GMP conditions. Genetic and biochemical analyses revealed that CabA was secreted to the cell exterior through functional CabB and CabC, distributed throughout the biofilm matrix, and produced as the biofilm matured. These results, together with the observation that CabA also contributes to the development of rugose colony morphology, indicated that CabA is a matrix-associated protein required for maturation, rather than adhesion involved in the initial attachment, of biofilms. Microscopic comparison of the structure of biofilms produced by JN111 and the cabA mutant demonstrated that CabA is an extracellular matrix component essential for the development of the mature biofilm structures in flow cells and on oyster shells. Exogenously providing purified CabA restored the biofilm- and rugose colony-forming abilities of the cabA mutant when calcium was available. Circular dichroism and size exclusion analyses revealed that calcium binding induces CabA conformational changes which may lead to multimerization. Extracellular complementation experiments revealed that CabA can assemble a functional matrix only when exopolysaccharides coexist. Consequently, the combined results suggested that CabA is a structural protein of the extracellular matrix and multimerizes to a conformation functional in building robust biofilms, which may render V. vulnificus to survive in hostile environments and reach a concentrated infective dose.

  20. Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms.

    Science.gov (United States)

    Liu, Yong; Busscher, Henk J; Zhao, Bingran; Li, Yuanfeng; Zhang, Zhenkun; van der Mei, Henny C; Ren, Yijin; Shi, Linqi

    2016-04-26

    Biofilms cause persistent bacterial infections and are extremely recalcitrant to antimicrobials, due in part to reduced penetration of antimicrobials into biofilms that allows bacteria residing in the depth of a biofilm to survive antimicrobial treatment. Here, we describe the preparation of surface-adaptive, Triclosan-loaded micellar nanocarriers showing (1) enhanced biofilm penetration and accumulation, (2) electrostatic targeting at acidic pH toward negatively charged bacterial cell surfaces in a biofilm, and (3) antimicrobial release due to degradation of the micelle core by bacterial lipases. First, it was established that mixed-shell-polymeric-micelles (MSPM) consisting of a hydrophilic poly(ethylene glycol) (PEG)-shell and pH-responsive poly(β-amino ester) become positively charged at pH 5.0, while being negatively charged at physiological pH. This is opposite to single-shell-polymeric-micelles (SSPM) possessing only a PEG-shell and remaining negatively charged at pH 5.0. The stealth properties of the PEG-shell combined with its surface-adaptive charge allow MSPMs to penetrate and accumulate in staphylococcal biofilms, as demonstrated for fluorescent Nile red loaded micelles using confocal-laser-scanning-microscopy. SSPMs, not adapting a positive charge at pH 5.0, could not be demonstrated to penetrate and accumulate in a biofilm. Once micellar nanocarriers are bound to a staphylococcal cell surface, bacterial enzymes degrade the MSPM core to release its antimicrobial content and kill bacteria over the depth of a biofilm. This constitutes a highly effective pathway to control blood-accessible staphylococcal biofilms using antimicrobials, bypassing biofilm recalcitrance to antimicrobial penetration. PMID:26998731

  1. Modern Technologies of Bacterial Biofilm Study

    Directory of Open Access Journals (Sweden)

    Chebotar I.V.

    2013-03-01

    Full Text Available The aim of the investigation was to estimate the availability of new biomedical technologies to identify bacterial biofilms and evaluate them on a staphylococcal biofilm model. Materials and Methods. We studied staphylococcal biofilms by mass spectrometry, laser scanning (confocal microscopy, scanning electron microscopy, enzymatic and oxidative destruction of extracellular biofilm matrix. Results. We demonstrated the capabilities of new biomedical technologies in identification of generic specificity of biofilm-forming staphylococcus, and in detection of the necessary characteristics of staphylococcal biofilm. Mass spectrometry enabled to identify the type of biofilm-forming staphylococcus (Staphylococcus aureus. Microscopic study using laser scanning confocal microscopic technique revealed 3-demensional organization typical of S. aureus biofilms. Scanning electron microscopy enabled to visualize the structures of extracellular S. aureus biofilm matrix. The extracellular matrix of the test biofilm was found to be formed of DNA-protein complexes.

  2. Biofilms and planktonic cells of Deinococcus geothermalis in extreme environments

    Science.gov (United States)

    Panitz, Corinna; Reitz, Guenther; Rabbow, Elke; Rettberg, Petra; Flemming, Hans-Curt; Wingender, Jost; Froesler, Jan

    In addition to the several extreme environments on Earth, Space can be considered as just another exceptional environment with a unique mixture of stress factors comprising UV radiation, vacuum, desiccation, temperature, ionizing radiation and microgravity. Life that processes in these environments can depend on the life forms and their state of living. The question is whether there are different strategies for individual microorganisms compared to communities of the same organisms to cope with the different factors of their surroundings. Comparative studies of the survi-val of these communities called biofilms and planktonic cell samples of Deinococcus geothermalis stand at the focal point of the presented investigations. A biofilm is a structured community of microorganisms that live encapsulated in a matrix of extracellular polymeric substances on a surface. Microorganisms living in a biofilm usually have significantly different properties to cooperate than individually living microorganisms of the same species. An advantage of the biofilm is increased resistance to various chemical and physical effects, while the dense extracellular matrix and the outer layer of the cells protect the interior of the microbial consortium. The space experiment BOSS (Biofilm organisms surfing Space) as part the ESA experimental unit EXPOSE R-2 with a planned launch date in July 2014 will be subsequently mounted on the Russian Svesda module outside the ISS. An international team of scientists coordinated by Dr. P. Rettberg will investigate the hypothesis whether microorganisms organized as biofilm outmatch the same microorganisms exposed individually in the long-term survival of the harsh environmental conditions as they occur in space and on Mars. Another protective function in the samples could be dust par-ticles for instance Mars regolith simulant contained inside the biofilms or mixed with the planktonic cells, as additional shelter especially against the extraterrestrial UV

  3. Global transcriptional analysis of Burkholderia pseudomallei high and low biofilm producers reveals insights into biofilm production and virulence

    OpenAIRE

    Chin, Chui-Yoke; Hara, Yuka; Ghazali, Ahmad-Kamal; Yap, Soon-Joo; Kong, Cin; Wong, Yee-Chin; Rozali, Naufal; Koh, Seng-Fook; Hoh, Chee-Choong; Puthucheary, Savithri D.; Nathan, Sheila

    2015-01-01

    Background Chronic bacterial infections occur as a result of the infecting pathogen’s ability to live within a biofilm, hence escaping the detrimental effects of antibiotics and the immune defense system. Burkholderia pseudomallei, a gram-negative facultative pathogen, is distinctive in its ability to survive within phagocytic and non-phagocytic cells, to persist in vivo for many years and subsequently leading to relapse as well as the development of chronic disease. The capacity to persist h...

  4. Growing and analyzing biofilms in flow chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic......, and disassembly and cleaning of the system. In addition, embedding and fluorescent in situ hybridization of flow chamber-grown biofilms are addressed....

  5. Phenotypic Characterization of Streptococcus pneumoniae Biofilm Development

    OpenAIRE

    Allegrucci, Magee; Hu, F.Z.; Shen, K.; J. Hayes; Ehrlich, Garth D.; Post, J Christopher; Sauer, Karin

    2006-01-01

    Streptococcus pneumoniae is among the most common pathogens associated with chronic otitis media with effusion, which has been hypothesized to be a biofilm disease. S. pneumoniae has been shown to form biofilms, however, little is known about the developmental process, the architecture, and the changes that occur upon biofilm development. In the current study we made use of a continuous-culture biofilm system to characterize biofilm development of 14 different S. pneumoniae strains representi...

  6. Characterization of Mucosal Candida albicans Biofilms

    OpenAIRE

    Dongari-Bagtzoglou, Anna; Kashleva, Helena; Dwivedi, Prabhat; Diaz, Patricia; Vasilakos, John

    2009-01-01

    C. albicans triggers recurrent infections of the alimentary tract mucosa that result from biofilm growth. Although the ability of C. albicans to form a biofilm on abiotic surfaces has been well documented in recent years, no information exists on biofilms that form directly on mucosal surfaces. The objectives of this study were to characterize the structure and composition of Candida biofilms forming on the oral mucosa. We found that oral Candida biofilms consist of yeast, hyphae, and commens...

  7. 单增李斯特菌生物膜及其形成机制的研究进展%Research on the biofilm and its mechanism of Listeria monocytogenes

    Institute of Scientific and Technical Information of China (English)

    柯春林; 方维焕

    2011-01-01

    单增李斯特菌(Lm)是重要的人兽共患食源性病原菌.Lm生物膜与其致病性和耐药性密切相关.影响Lm生物膜形成的关键因子有鞭毛糖蛋白、胞外基质和群体感应系统等.鞭毛糖蛋白能促进菌体聚集,从而直接影响生物膜的形成.胞外DNA参与Lm粘附和生物膜早期的形成,并与胞外多糖和胞外结合蛋白一起构成生物膜胞外基质.Lm的Agr群体感应系统正调控生物膜形成,是一种集合毒力因子、耐药因子和生物膜的整体水平调控网络体系.%Listeria monocytogenes is a Gram-positive pathogen involved in numerous foodborne disease outbreaks.The biofilm of Listeria monocytogenes is closely related to its pathogenicity and drug resistance.The key factors that have effects on biofilm formation are flagella glycoprotein, extracellular matrix and quorum sensing.Biofilm formation by Listeria monocytogenes is dependent on flagellar motility to propel the cells towards a surface prior to attachment.The biofilm matrix of Listeria monocytogenes contains extracellular DNA, exopolysaccharides and biofilm-associated protein, and the extracellular DNA plays an important role in initial adhesion and the early stage of biofilm formation.The Agr system is a peptide-mediated quorum sensing system in Listeria monocytogenes, which is regulatory network system that involved in the virulence factors, resistance factors and the biofilm formation.

  8. Clinical Implications of Power Toothbrushing on Fluoride Delivery: Effects on Biofilm Plaque Metabolism and Physiology

    Directory of Open Access Journals (Sweden)

    M. Aspiras

    2010-01-01

    Full Text Available Dental biofilms are implicated in the formation of caries and periodontal disease. A major constituent of the supragingival biofilm is Streptococcus mutans, which produces lactic acid from sucrose fermentation, enhancing enamel demineralization and eventual caries development. Caries prevention through F inhibits enamel demineralization and promotes remineralization. Fluoride also exerts effects on metabolic activities in the supragingival biofilm such as aerobic respiration, acid fermentation and dentrification. In experimental S. mutans biofilms, adding 1000 ppm F to an acidogenic biofilm resulting from 10% sucrose addition increased pH to pre-sucrose levels, suggesting inhibition of acid fermentation. F effects on metabolic activity and sucrose utilization in interproximal plaque biofilms were also recorded. Addition of 10% sucrose reduced pH from neutral to 4.2, but subsequent addition of 1000 ppm F increased pH by 1 unit, inhibiting acid fermentation. 10% Sucrose addition also stimulated denitrification, increasing production of nitrous oxide (N2O. Addition of 1000 ppm F suppressed denitrification, indicating an additional mechanism by which F exerts effects in the active interproximal biofilm. Finally, fluid dynamic activity by power tooth brushing enhanced F delivery and retention in an experimental S. mutans biofilm, suggesting a potential novel benefit for this intervention beyond mechanical plaque removal.

  9. Importance of SigB for Listeria monocytogenes static and continuous flow biofilm formation and disinfectant resistance

    OpenAIRE

    Veen, van der, W.A.; Abee, T

    2010-01-01

    Listeria monocytogenes is a food-borne pathogen that is able to form biofilms in food processing facilities. Biofilms are generally more resistant to antimicrobial agents, making it difficult to eradicate them during cleanup procedures. So far, little is known about the function of stress resistance mechanisms in biofilm formation and their resistance to disinfectants. In this study, we investigated the role of sigB, which encodes a major transcriptional regulator of stress response genes, in...

  10. Fungal biofilm reactor improves the quality of a fusion protein GLA::GFP produced by Aspergillus oryzae

    OpenAIRE

    Zune, Quentin; Delepierre, Anissa; Bauwens, Julien; Francis, Frédéric; Toye, Dominique; Punt, Peter; Thonart, Philippe; Delvigne, Frank

    2015-01-01

    Fungal biofilm is known to promote the excretion of secondary metabolites, in accordance with solid-state related physiological mechanisms. In this work, the potentialities of fungal biofilm will be investigated in the context of the production of a Gla::GFP fusion protein by Aspergillus oryzae. Since the production of this protein is under the control of the promoter glaB, specifically induced in solid-state fermentation, biofilm mode of culture is expected to enhance the global productivity...

  11. Diffusion Retardation by Binding of Tobramycin in an Alginate Biofilm Model

    Science.gov (United States)

    Cao, Bao; Christophersen, Lars; Jensen, Peter Østrup; Sneppen, Kim; Høiby, Niels; Moser, Claus

    2016-01-01

    Microbial cells embedded in a self-produced extracellular biofilm matrix cause chronic infections, e. g. by Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. The antibiotic killing of bacteria in biofilms is generally known to be reduced by 100–1000 times relative to planktonic bacteria. This makes such infections difficult to treat. We have therefore proposed that biofilms can be regarded as an independent compartment with distinct pharmacokinetics. To elucidate this pharmacokinetics we have measured the penetration of the tobramycin into seaweed alginate beads which serve as a model of the extracellular polysaccharide matrix in P. aeruginosa biofilm. We find that, rather than a normal first order saturation curve, the concentration of tobramycin in the alginate beads follows a power-law as a function of the external concentration. Further, the tobramycin is observed to be uniformly distributed throughout the volume of the alginate bead. The power-law appears to be a consequence of binding to a multitude of different binding sites. In a diffusion model these results are shown to produce pronounced retardation of the penetration of tobramycin into the biofilm. This filtering of the free tobramycin concentration inside biofilm beads is expected to aid in augmenting the survival probability of bacteria residing in the biofilm. PMID:27100887

  12. Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting

    KAUST Repository

    Zhang, Weipeng

    2015-11-28

    The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep sea environments. Using artificial surface-based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of the present study sheds new light on microbial community assembly in special habitats and bridges a gap in species sorting theory.

  13. BIOFILM FORMATION OF Vibrio cholerae ON STAINLESS STEEL USED IN FOOD PROCESSING

    Science.gov (United States)

    FERNÁNDEZ-DELGADO, Milagro; ROJAS, Héctor; DUQUE, Zoilabet; SUÁREZ, Paula; CONTRERAS, Monica; GARCÍA-AMADO, M. Alexandra; ALCIATURI, Carlos

    2016-01-01

    Vibrio cholerae represents a significant threat to human health in developing countries. This pathogen forms biofilms which favors its attachment to surfaces and its survival and transmission by water or food. This work evaluated the in vitro biofilm formation of V. cholerae isolated from clinical and environmental sources on stainless steel of the type used in food processing by using the environmental scanning electron microscopy (ESEM). Results showed no cell adhesion at 4 h and scarce surface colonization at 24 h. Biofilms from the environmental strain were observed at 48 h with high cellular aggregations embedded in Vibrio exopolysaccharide (VPS), while less confluence and VPS production with microcolonies of elongated cells were observed in biofilms produced by the clinical strain. At 96 h the biofilms of the environmental strain were released from the surface leaving coccoid cells and residual structures, whereas biofilms of the clinical strain formed highly organized structures such as channels, mushroom-like and pillars. This is the first study that has shown the in vitro ability of V. cholerae to colonize and form biofilms on stainless steel used in food processing. PMID:27253749

  14. BIOFILM FORMATION OF Vibrio cholerae ON STAINLESS STEEL USED IN FOOD PROCESSING.

    Science.gov (United States)

    Fernández-Delgado, Milagro; Rojas, Héctor; Duque, Zoilabet; Suárez, Paula; Contreras, Monica; García-Amado, M Alexandra; Alciaturi, Carlos

    2016-01-01

    Vibrio cholerae represents a significant threat to human health in developing countries. This pathogen forms biofilms which favors its attachment to surfaces and its survival and transmission by water or food. This work evaluated the in vitro biofilm formation of V. cholerae isolated from clinical and environmental sources on stainless steel of the type used in food processing by using the environmental scanning electron microscopy (ESEM). Results showed no cell adhesion at 4 h and scarce surface colonization at 24 h. Biofilms from the environmental strain were observed at 48 h with high cellular aggregations embedded in Vibrio exopolysaccharide (VPS), while less confluence and VPS production with microcolonies of elongated cells were observed in biofilms produced by the clinical strain. At 96 h the biofilms of the environmental strain were released from the surface leaving coccoid cells and residual structures, whereas biofilms of the clinical strain formed highly organized structures such as channels, mushroom-like and pillars. This is the first study that has shown the in vitro ability of V. cholerae to colonize and form biofilms on stainless steel used in food processing. PMID:27253749

  15. Diffusion Retardation by Binding of Tobramycin in an Alginate Biofilm Model.

    Science.gov (United States)

    Cao, Bao; Christophersen, Lars; Kolpen, Mette; Jensen, Peter Østrup; Sneppen, Kim; Høiby, Niels; Moser, Claus; Sams, Thomas

    2016-01-01

    Microbial cells embedded in a self-produced extracellular biofilm matrix cause chronic infections, e. g. by Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. The antibiotic killing of bacteria in biofilms is generally known to be reduced by 100-1000 times relative to planktonic bacteria. This makes such infections difficult to treat. We have therefore proposed that biofilms can be regarded as an independent compartment with distinct pharmacokinetics. To elucidate this pharmacokinetics we have measured the penetration of the tobramycin into seaweed alginate beads which serve as a model of the extracellular polysaccharide matrix in P. aeruginosa biofilm. We find that, rather than a normal first order saturation curve, the concentration of tobramycin in the alginate beads follows a power-law as a function of the external concentration. Further, the tobramycin is observed to be uniformly distributed throughout the volume of the alginate bead. The power-law appears to be a consequence of binding to a multitude of different binding sites. In a diffusion model these results are shown to produce pronounced retardation of the penetration of tobramycin into the biofilm. This filtering of the free tobramycin concentration inside biofilm beads is expected to aid in augmenting the survival probability of bacteria residing in the biofilm. PMID:27100887

  16. Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting.

    Science.gov (United States)

    Zhang, Weipeng; Tian, Renmao; Bo, Yang; Cao, Huiluo; Cai, Lin; Chen, Lianguo; Zhou, Guowei; Sun, Jin; Zhang, Xixiang; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2016-05-01

    The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep-sea environments. Using artificial surface-based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of this study shed new light on microbial community assembly in special habitats and bridge a gap in species sorting theory. PMID:26614914

  17. Influence of copper surfaces on biofilm formation by Legionella pneumophila in potable water.

    Science.gov (United States)

    Gião, M S; Wilks, S A; Keevil, C W

    2015-04-01

    Legionella pneumophila is a waterborne pathogen that can cause Legionnaires' disease, a fatal pneumonia, or Pontiac fever, a mild form of disease. Copper is an antimicrobial material used for thousands of years. Its incorporation in several surface materials to control the transmission of pathogens has been gaining importance in the past decade. In this work, the ability of copper to control the survival of L. pneumophila in biofilms was studied. For that, the incorporation of L. pneumophila in polymicrobial drinking water biofilms formed on copper, PVC and PEX, and L. pneumophila mono-species biofilms formed on copper and uPVC were studied by comparing cultivable and total numbers (quantified by peptide nucleic acid (PNA) hybridisation). L. pneumophila was never recovered by culture from heterotrophic biofilms; however, PNA-positive numbers were slightly higher in biofilms formed on copper (5.9 × 10(5) cells cm(-2)) than on PVC (2.8 × 10(5) cells cm(-2)) and PEX (1.7 × 10(5) cells cm(-2)). L. pneumophila mono-species biofilms grown on copper gave 6.9 × 10(5) cells cm(-2) for PNA-positive cells and 4.8 × 10(5) CFU cm(-2) for cultivable numbers, showing that copper is not directly effective in killing L. pneumophila. Therefore previous published studies showing inactivation of L. pneumophila by copper surfaces in potable water polymicrobial species biofilms must be carefully interpreted. PMID:25686789

  18. Experimental study of cadmium interaction with periphytic biofilms

    International Nuclear Information System (INIS)

    This study addresses the interaction of Cd with natural biofilms of periphytic diatoms grown during different seasons in metal-contaminated and metal-non-contaminated streams, along a tributary of the Lot River, France. Specifically, it aims to test whether the biofilms from contaminated sites have developed a protective mechanism due to high Cd exposure. Towards this goal, reversible adsorption experiments on untreated biofilms were performed in 0.01 M NaNO3 with a pH ranging from 2 to 8, Cd concentration from 0.5 to 10,000 μg/L and exposure time from 1 to 24 h. Two types of experiments, pH-dependent adsorption edge and constant-pH 'Langmuirian'-type isotherms were conducted. Results were adequately modeled using a Linear Programming Model. It was found that the adsorption capacities of natural biofilm consortia with respect to Cd do not depend on season and are not directly linked to the growth environment. The biofilms grown in non-contaminated (4.6 ppb Cd in solid) and contaminated (570 ppb Cd in solid) settings exhibit similar adsorption capacities in the Cd concentration range in solution of 100-10,000 μg/L but quite different capacities at low Cd concentration (0.5-100 μg/L); unexpectedly, the non-contaminated biofilm adsorbs approximately 10 times more Cd than the contaminated one. It is therefore possible that the strong low-abundant ligands (for example, phosphoryl or sulfhydryls) are already metal-saturated on surfaces of biofilm grown in the contaminated site whereas these sites are still available for metal adsorption in samples grown in non-contaminated sites.

  19. Experimental study of cadmium interaction with periphytic biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, O.S., E-mail: oleg@lmtg.obs-mip.fr [Geochimie et Biogeochimie Experimentale, UMR 5563, CNRS-OMP-Universite Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse (France); Feurtet-Mazel, A. [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France); Martinez, R.E. [Center for Applied Geosciences, Universitat Tuebingen, Sigwartstrasse 10, Tuebingen 72076 (Germany); Morin, S. [Unite de Recherche Reseaux, Epuration et Qualite des Eaux REQE, Cemagref, 50 Avenue de Verdun, F-33612 Cestas Cedex (France); Baudrimont, M. [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France); Duong, T. [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)] [Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi (Viet Nam); Coste, M. [Unite de Recherche Reseaux, Epuration et Qualite des Eaux REQE, Cemagref, 50 Avenue de Verdun, F-33612 Cestas Cedex (France)

    2010-03-15

    This study addresses the interaction of Cd with natural biofilms of periphytic diatoms grown during different seasons in metal-contaminated and metal-non-contaminated streams, along a tributary of the Lot River, France. Specifically, it aims to test whether the biofilms from contaminated sites have developed a protective mechanism due to high Cd exposure. Towards this goal, reversible adsorption experiments on untreated biofilms were performed in 0.01 M NaNO{sub 3} with a pH ranging from 2 to 8, Cd concentration from 0.5 to 10,000 {mu}g/L and exposure time from 1 to 24 h. Two types of experiments, pH-dependent adsorption edge and constant-pH 'Langmuirian'-type isotherms were conducted. Results were adequately modeled using a Linear Programming Model. It was found that the adsorption capacities of natural biofilm consortia with respect to Cd do not depend on season and are not directly linked to the growth environment. The biofilms grown in non-contaminated (4.6 ppb Cd in solid) and contaminated (570 ppb Cd in solid) settings exhibit similar adsorption capacities in the Cd concentration range in solution of 100-10,000 {mu}g/L but quite different capacities at low Cd concentration (0.5-100 {mu}g/L); unexpectedly, the non-contaminated biofilm adsorbs approximately 10 times more Cd than the contaminated one. It is therefore possible that the strong low-abundant ligands (for example, phosphoryl or sulfhydryls) are already metal-saturated on surfaces of biofilm grown in the contaminated site whereas these sites are still available for metal adsorption in samples grown in non-contaminated sites.

  20. Biofilm models for the practitioner

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; van Loosdrecht, M. C. M.; Wanner, O.

    Even though mathematical biofilm models are extensively used in biofilm research, there has been very little application of these models in the engineering practice so far. However, practitioners would be interested in models that can be used as tools to control plant operation under dynamic...... conditions or to help them handle complex interactions between particle removal, carbon oxidation, nitrification, denitrification and biological phosphorus removal. But even though there is a whole range of biofilm models available, it is difficult for the practitioner to select the appropriate modeling...

  1. Biofilm models for the practitioner

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; van Loosdrecht, M. C. M.; Wanner, O.

    2000-01-01

    Even though mathematical biofilm models are extensively used in biofilm research, there has been very little application of these models in the engineering practice so far. However, practitioners would be interested in models that can be used as tools to control plant operation under dynamic...... conditions or to help them handle complex interactions between particle removal, carbon oxidation, nitrification, denitrification and biological phosphorus removal. But even though there is a whole range of biofilm models available, it is difficult for the practitioner to select the appropriate modeling...

  2. Microbial pathogenesis and biofilm development

    DEFF Research Database (Denmark)

    Reisner, A.; Høiby, N.; Tolker-Nielsen, Tim;

    2004-01-01

    cycles of different microorganisms will eventually lead to improved treatments. Several bacteria have evolved specific strategies for virulent colonization of humans in addition to their otherwise harmless establishment as environmental inhabitants. In many such cases biofilm development seems to play a...... of polysaccharides. A recent striking finding is that DNA released from biofilm cells may be important as an initial matrix former [3]. At later times other EPS molecules may add to the shape and quality of the mature biofilm structure. Figure 1 summarizes the principle stepsinvolved in the...

  3. Hydroxychalcone inhibitors of Streptococcus mutans glucosyl transferases and biofilms as potential anticaries agents.

    Science.gov (United States)

    Nijampatnam, Bhavitavya; Casals, Luke; Zheng, Ruowen; Wu, Hui; Velu, Sadanandan E

    2016-08-01

    Streptococcus mutans has been implicated as the major etiological agent in the initiation and the development of dental caries due to its robust capacity to form tenacious biofilms. Ideal therapeutics for this disease will aim to selectively inhibit the biofilm formation process while preserving the natural bacterial flora of the mouth. Several studies have demonstrated the efficacies of flavonols on S. mutans biofilms and have suggested the mechanism of action through their effect on S. mutans glucosyltransferases (Gtfs). These enzymes metabolize sucrose into water insoluble and soluble glucans, which are an integral measure of the dental caries pathogenesis. Numerous studies have shown that flavonols and polyphenols can inhibit Gtf and biofilm formation at millimolar concentrations. We have screened a group of 14 hydroxychalcones, synthetic precursors of flavonols, in an S. mutans biofilm assay. Several of these compounds emerged to be biofilm inhibitors at low micro-molar concentrations. Chalcones that contained a 3-OH group on ring A exhibited selectivity for biofilm inhibition. Moreover, we synthesized 6 additional analogs of the lead compound and evaluated their potential activity and selectivity against S. mutans biofilms. The most active compound identified from these studies had an IC50 value of 44μM against biofilm and MIC50 value of 468μM against growth displaying >10-fold selectivity inhibition towards biofilm. The lead compound displayed a dose dependent inhibition of S. mutans Gtfs. The lead compound also did not affect the growth of two commensal species (Streptococcus sanguinis and Streptococcus gordonii) at least up to 200μM, indicating that it can selectively inhibit cariogenic biofilms, while leaving commensal and/or beneficial microbes intact. Thus non-toxic compounds have the potential utility in public oral health regimes. PMID:27371109

  4. Characterization of biofilm formation by Borrelia burgdorferi in vitro.

    Directory of Open Access Journals (Sweden)

    Eva Sapi

    Full Text Available Borrelia burgdorferi, the causative agent of Lyme disease, has long been known to be capable of forming aggregates and colonies. It was recently demonstrated that Borrelia burgdorferi aggregate formation dramatically changes the in vitro response to hostile environments by this pathogen. In this study, we investigated the hypothesis that these aggregates are indeed biofilms, structures whose resistance to unfavorable conditions are well documented. We studied Borrelia burgdorferi for several known hallmark features of biofilm, including structural rearrangements in the aggregates, variations in development on various substrate matrices and secretion of a protective extracellular polymeric substance (EPS matrix using several modes of microscopic, cell and molecular biology techniques. The atomic force microscopic results provided evidence that multilevel rearrangements take place at different stages of aggregate development, producing a complex, continuously rearranging structure. Our results also demonstrated that Borrelia burgdorferi is capable of developing aggregates on different abiotic and biotic substrates, and is also capable of forming floating aggregates. Analyzing the extracellular substance of the aggregates for potential exopolysaccharides revealed the existence of both sulfated and non-sulfated/carboxylated substrates, predominately composed of an alginate with calcium and extracellular DNA present. In summary, we have found substantial evidence that Borrelia burgdorferi is capable of forming biofilm in vitro. Biofilm formation by Borrelia species might play an important role in their survival in diverse environmental conditions by providing refuge to individual cells.

  5. New insights on molecular regulation of biofilm formation in plant-associated bacteria

    Institute of Scientific and Technical Information of China (English)

    Luisa F. Castiblanco; George W. Sundin

    2016-01-01

    Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extrac-ellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems, vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multi-cellular behavior.

  6. Pulse-based non-thermal plasma (NTP) disrupts the structural characteristics of bacterial biofilms.

    Science.gov (United States)

    Ferrell, James R; Shen, Fan; Grey, Scott F; Woolverton, Christopher J

    2013-01-01

    Bacterial biofilms were constructed in vitro with two pathogenic strains of Pseudomonas aeruginosa and Staphylococcus aureus using a modified, novel sequential bioreactor system. The structure and stability of bacterial biofilms were evaluated following exposure to non-thermal plasma (NTP) discharge. Mathematical software was used to determine structural changes as biofilms grew over the course of 7 days. Statistical modeling was also performed to assess the ability of NTP to affect the development of the biofilms over different periods of time. Several structural characteristics were significantly affected by NTP discharge whereas others were unaffected. Changes in the three-dimensional structure of the biofilm following introduction of NTP was not limited to one period of development. The mechanism for this phenomenon is not understood but is likely to be a dual, synergistic effect due to the composition of the reactive species and other plasma-associated molecules isolated previously in the NTP discharge used in this study. PMID:23682750

  7. EVALUATION OF THE ANTIMICROBIAL EFFECTS OF NEW HETEROCYCLIC BIS-QUATERNARY AMMONIUM COMPOUNDS ON BIOFILMS

    Directory of Open Access Journals (Sweden)

    OANA E. CONSTANTIN

    2016-07-01

    Full Text Available Considering the well-known mechanism of adaptable resistance of microorganisms to chemical compounds through biofilms formation and the widespread use of N-heterocyclic quaternary ammonium salts (QAC as disinfectants, in this study we have evaluate the effect of 8 newly synthesized symmetrical and unsymmetrical diquaternary ammonium salts of 1,2-bis-(4-pyridil-ethane on bacterial biofilms produced by three different bacterial strains. The effect of the exposure to quaternary ammonium salts on biofilm communities was investigated within biofilms obtained in a conventional testing system, on stainless steel and glass surfaces. Differential plate counts were used to characterize the developed communities and the effects of QAC exposure and the results were correlated with epifluorescence microphotographs. The data obtained revealed a significant reduction of bacterial cells in the biofilms tested with 4-7 log CFU for all the QAC.

  8. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang;

    2016-01-01

    acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a 'last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm...... subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance...... development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates...

  9. Morphological evidence of biofilm formation in Greenlanders with chronic suppurative otitis media

    DEFF Research Database (Denmark)

    Homøe, Preben; Bjarnsholt, Thomas; Wessman, Marcus;

    2009-01-01

    Biofilm may explain the recurrences and recalcitrant episodes of otorrhea in chronic suppurative otitis media (CSOM). This study investigates bacterial biofilm in Greenlanders with CSOM and chronic otitis media with effusion (COME). The study is partly blinded, prospective and retrospective. Six...... were analyzed with microscopy and peptide nucleic acid fluorescence in situ hybridization (PNA-FISH). Biofilm was confirmed in 83% of CSOM smears but in none of the COME smears. Mucosal biofilm was confirmed in 80% of the biopsies from adults with CSOM. This study provides direct morphological evidence...... of biofilm in samples from human CSOM. This may help to explain the microbiological mechanisms of the disease and alter the treatment strategy in the future....

  10. New insights on molecular regulation of biofilm formation in plant-associated bacteria.

    Science.gov (United States)

    Castiblanco, Luisa F; Sundin, George W

    2016-04-01

    Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extracellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems, vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multicellular behavior. PMID:26377849

  11. Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Bagge, N.; Hentzer, Morten; Andersen, Jens Bo; Ciofu, O.; Givskov, Michael Christian; Høiby, N.

    2004-01-01

    The development of resistance to beta-lactam antibiotics is a problem in the treatment of chronic Pseudomonas aeruginosa infection in the lungs of patients with cystic fibrosis. The main resistance mechanism is high-level expression of the chromosomally encoded AmpC beta-lactamase of P. aeruginosa...... cells growing in biofilms. Several genes have been shown to influence the level of ampC expression, but little is known about the regulation of ampC expression in P. aeruginosa biofilms. To study the expression of ampC in P. aeruginosa biofilms, we constructed a reporter that consisted of the fusion of...... the ampC promoter to gfp(ASV) encoding an unstable version of the green fluorescent protein. In vitro biofilms of P. aeruginosa were exposed to the beta-lactam antibiotics imipenem and ceftazidime. Sub-MICs of imipenem significantly induced the monitor system of the biofilm bacteria in the peripheries...

  12. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    KAUST Repository

    Zhang, Weipeng

    2013-11-11

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  13. Stratified growth in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Werner, E.; Roe, F.; Bugnicourt, A.;

    2004-01-01

    In this study, stratified patterns of protein synthesis and growth were demonstrated in Pseudomonas aeruginosa biofilms. Spatial patterns of protein synthetic activity inside biofilms were characterized by the use of two green fluorescent protein (GFP) reporter gene constructs. One construct...... synthesis was restricted to a narrow band in the part of the biofilm adjacent to the source of oxygen. The zone of active GFP expression was approximately 60 Am wide in colony biofilms and 30 Am wide in flow cell biofilms. The region of the biofilm in which cells were capable of elongation was mapped by...... treating colony biofilms with carbenicillin, which blocks cell division, and then measuring individual cell lengths by transmission electron microscopy. Cell elongation was localized at the air interface of the biofilm. The heterogeneous anabolic patterns measured inside these biofilms were likely a result...

  14. The ``Swiss cheese'' instability of bacterial biofilms

    Science.gov (United States)

    Jang, Hongchul; Rusconi, Roberto; Stocker, Roman

    2012-11-01

    Bacteria often adhere to surfaces, where they develop polymer-encased communities (biofilms) that display dramatic resistance to antibiotic treatment. A better understanding of cell detachment from biofilms may lead to novel strategies for biofilm disruption. Here we describe a new detachment mode, whereby a biofilm develops a nearly regular array of ~50-100 μm holes. Using surface-treated microfluidic devices, we create biofilms of controlled shape and size. After the passage of an air plug, the break-up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a ``Swiss cheese'' pattern is left in the residual biofilm. Fluorescent staining of the polymeric matrix (EPS) reveals that resistance to cell dislodgement correlates with local biofilm age, early settlers having had more time to hunker down. Because few survivors suffice to regrow a biofilm, these results point at the importance of considering microscale heterogeneity in assessing the effectiveness of biofilm removal strategies.

  15. Survivability of Escherichia coli O157:H7 in mechanically tenderized beef steaks subjected to lactic acid application and cooking under simulated industry conditions.

    Science.gov (United States)

    Chancey, C C; Brooks, J C; Martin, J N; Echeverry, A; Jackson, S P; Thompson, L D; Brashears, M M

    2013-10-01

    Mechanical tenderization improves the palatability of beef; however, it increases the risk of translocating pathogenic bacteria to the interior of beef cuts. This study investigated the efficacies of lactic acid spray (LA; 5 % ), storage, and cooking on the survivability of Escherichia coli O157:H7 in mechanically tenderized beef steaks managed under simulated industry conditions. Beef subprimals inoculated with either high (10(5) CFU/ml) or low (10(3) CFU/ml) levels of E. coli O157:H7 were treated (LA or control) and stored for 21 days prior to mechanical tenderization, steak portioning (2.54 cm), and additional storage for 7 days. Steaks were then cooked to an internal temperature of 55, 60, 65, 70, or 75°C. Samples were enumerated and analyzed using DNA-based methods. Treatment with LA immediately reduced E. coli O157:H7 on the lean and fat surfaces of high- and low-inoculum-treated subprimals by more than 1.0 log CFU/cm(2) (P 0.05). E. coli O157:H7 was detected in core samples from high-inoculum-treated steaks cooked to 55, 60, or 70°C. Conversely, E. coli O157:H7 was not detected in core samples from low-inoculum-treated steaks, regardless of the internal cooking temperature. These data suggest that LA- and storage-mediated reduction of pathogens on subprimals exposed to typical industry contamination levels (10(1) CFU/cm(2)) reduces the risk of pathogen translocation and subsequent survival after cooking. PMID:24112580

  16. In vivo Models for Candida Albicans Biofilms Study

    Directory of Open Access Journals (Sweden)

    Wenrui Gu

    2016-03-01

    Full Text Available Biofilm is a common mode of fungal growth in clinical infection. In the mode of biofilm, Candida albicans tends to display high resistance to body immunity and antimicrobial agents, which has a significant impact on mortality. Biofilm models are essential tools to better understand the mechanisms of formation and resistance. Compared to in vitro models, in vivo models can better take into account the host immune system and are indispensable for the study of medical device related infection. The aim of this review is to summarize information related to the reported in vivo models of C. albicans biofilms, analyze the operating process and application of them, and compare their advantages and limitations. A literature search was performed from databases in Medline (PubMed, Web of Science, Science Direct, and Google scholar by applying some related search terms. The articles related to agriculture, ecology, and synthetic work and those using languages other than English have been excluded. The bibliographies of papers relating to the review subject were also searched for further relevant references. According to the common sites of C. albicans infection; three kinds of in vivo models are discussed in this review: oral mucosa model, vaginal mucosa model and implanted catheter model. The former two models can demonstrate the structure and composition of biofilms growing on the mucosa, and implanted catheter model represents different kinds of medical devices. To expedite the success of new treatments of infection, further refinement of in vivo models is an urgent need.

  17. Uranium speciation in biofilms studies by laser fluorescence techniques

    International Nuclear Information System (INIS)

    Biofilms may immobilize toxic heavy metals in the environment and thereby influence their migration behaviour. The mechanisms of these processes are currently not understood, because the complexity of such biofilms creates many discrete geochemical microenvironments which may differ from the surrounding bulk solution in their bacterial diversity, their prevailing geochemical properties, e.g. pH and dissolved oxygen concentration, the presence of organic molecules, e.g. metabolites, and many more, all of which may affect metal speciation. To obtain such information, which is necessary for performance assessment studies or the development of new cost-effective strategies for cleaning waste waters, it is very important to develop new non-invasive methods applicable to study the interactions of metals within biofilm systems. Laser fluorescence techniques have some superior features, above all very high sensitivity for fluorescent heavy metals. An approach combining confocal laser scanning microscopy and laser-induced fluorescence spectroscopy for study of the interactions of biofilms with uranium is presented. It was found that coupling these techniques furnishes a promising tool for in-situ non-invasive study of fluorescent heavy metals within biofilm systems. Information on uranium speciation and uranium redox states can be obtained.

  18. Physical solutions to the public goods dilemma in bacterial biofilms

    Science.gov (United States)

    Drescher, Knut; Nadell, Carey; Stone, Howard; Wingreen, Ned; Bassler, Bonnie

    2013-11-01

    Bacteria frequently live in densely populated surface-bound communities, termed biofilms. Biofilm-dwelling cells rely on secretion of extracellular substances to construct their communities and to capture nutrients from the environment. Some secreted factors behave as cooperative public goods: they can be exploited by non-producing cells. The means by which public good producing bacteria avert exploitation in biofilm environments are largely unknown. Using experiments with Vibrio cholerae, which secretes extracellular enzymes to digest its primary food source, the solid polymer chitin, we show that the public goods dilemma may be solved by two dramatically different, physical mechanisms: cells can produce thick biofilms that confine the goods to producers, or fluid flow can remove soluble products of chitin digestion, denying access to non-producers. Both processes limit the distance over which enzyme-secreting cells provide a benefit to neighbors, resulting in preferential benefit to nearby clonemates. Our results demonstrate how bacterial physiology and environmental conditions can interact with social phenotypes to influence the evolutionary dynamics of cooperation within biofilms.

  19. AI-2 of Aggregatibacter actinomycetemcomitans Inhibits Candida albicans Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Endang W. Bachtiar

    2014-07-01

    Full Text Available Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (AI-2, synthesized by LuxS, that plays an important role in expression of virulence factors, in intra- but also in interspecies communication. The aim of this study was to investigate the role of AI-2 based signaling in the interactions between C. albicans and A. actinomycetemcomitans. A. actinomycetemcomitans adhered to C. albicans and inhibited biofilm formation by means of a molecule that was secreted during growth. C. albicans biofilm formation increased significantly when co-cultured with A. actinomycetemcomitans luxS, lacking AI-2 production. Addition of wild-type-derived spent medium or synthetic AI-2 to spent medium of the luxS strain, restored inhibition of C. albicans biofilm formation to wild-type levels. Addition of synthetic AI-2 significantly inhibited hypha formation of C. albicans possibly explaining the inhibition of biofilm formation. AI-2 of A. actinomycetemcomitans is synthesized by LuxS, accumulates during growth and inhibits C. albicans hypha- and biofilm formation. Identifying the molecular mechanisms underlying the interaction between bacteria and fungi may provide important insight into the balance within complex oral microbial communities.

  20. Novel Targets for Treatment of Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Alhede, Morten; Alhede, Maria; Bjarnsholt, Thomas

    2014-01-01

    Pseudomonas aeruginosa causes infection in all parts of the human body. The bacterium is naturally resistant to a wide range of antibiotics. In addition to resistance mechanisms such as efflux pumps, the ability to form aggregates, known as biofilm, further reduces Pseudomonas aeruginosa...

  1. Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation.

    Science.gov (United States)

    Rinaudi, Luciana; Fujishige, Nancy A; Hirsch, Ann M; Banchio, Erika; Zorreguieta, Angeles; Giordano, Walter

    2006-11-01

    Rhizobia are non-spore-forming soil bacteria that fix atmospheric nitrogen into ammonia in a symbiosis with legume roots. However, in the absence of a legume host, rhizobia manage to survive and hence must have evolved strategies to adapt to diverse environmental conditions. The capacity to respond to variations in nutrient availability enables the persistence of rhizobial species in soil, and consequently improves their ability to colonize and to survive in the host plant. Rhizobia, like many other soil bacteria, persist in nature most likely in sessile communities known as biofilms, which are most often composed of multiple microbial species. We have been employing in vitro assays to study environmental parameters that might influence biofilm formation in the Medicago symbiont Sinorhizobium meliloti. These parameters include carbon source, amount of nitrate, phosphate, calcium and magnesium as well as the effects of osmolarity and pH. The microtiter plate assay facilitates the detection of subtle differences in rhizobial biofilms in response to these parameters, thereby providing insight into how environmental stress or nutritional status influences rhizobial survival. Nutrients such as sucrose, phosphate and calcium enhance biofilm formation as their concentrations increase, whereas extreme temperatures and pH negatively affect biofilm formation. PMID:16887339

  2. Biofilms in the petroleum sector - investigations of their lipid fatty acid patterns and the resulting changes in crude oil. Biofilme im Erdoelbereich - Untersuchungen ihrer Lipidfettsaeuremuster sowie der durch sie verursachten Veraenderungen von Rohoel

    Energy Technology Data Exchange (ETDEWEB)

    Morche-Fuechtjohann, A.

    1993-01-01

    In view of the importance of biofilms for the microbial activities observed in the petroleum industry, biofilm formation and development were investigated in petroleum production plants, in consideration of physiological and ecological mechanisms. Biofilm populations were characterized and compared on the basis of their lipid fatty acid patterns. Further investigations focused on biofilms in petroleum deposits (salt caverns) on the petroleum/brine phase boundary. Degradation experiments with crudes from salt caverns were carried out to show whether microorganisms, owing to their activities in this phase boundary, induce changes in the n-alkane fraction of the crudes, both in anaerobic conditions and with low-level oxygen supply. (orig./HS)

  3. Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Ren, Dawei

    structured aggregation consisting of multiple species of bacteria whose function relies on a complex web of cooperative and/or competitive interactions between community members, indicating that research in “whole-entity” should not be based on the assembled results from “mono pieces”. As one of the best...... by transcriptomic analysis are also presented. Due to the poor reproducibility of most biofilm quantification assays, the first part of my work is to develop a rapid, reproducible and sensitive approach for quantitative screening of biofilm formation by bacteria when cultivated as mono- and multispecies biofilms......, followed by species specific qPCR based on SYBR Green I fluorescence to measure the relative proportion of individual species in mixed-species biofilms. The reported approach was described in Manuscript 1 which can be used as a standard procedure for evaluating interspecies interactions in defined...

  4. Nanotechnology: Role in dental biofilms

    Directory of Open Access Journals (Sweden)

    Bhardwaj Sonia

    2009-01-01

    Full Text Available Biofilms are surface- adherent populations of microorganisms consisting of cells, water and extracellular matrix material Nanotechnology is promising field of science which can guide our understanding of the role of interspecies interaction in the development of biofilm. Streptococcus mutans with other species of bacteria has been known to form dental biofilm. The correlation between genetically modified bacteria Streptococcus mutans and nanoscale morphology has been assessed using AFMi.e atomic force microscopy. Nanotechnology application includes 16 O/ 18 O reverse proteolytic labeling,use of quantum dots for labeling of bacterial cells, selective removal of cariogenic bacteria while preserving the normal oral flora and silver antimicrobial nanotechnology against pathogens associated with biofilms. The future comprises a mouthwash full of smart nanomachines which can allow the harmless flora of mouth to flourish in a healthy ecosystem

  5. Toll like receptor 9 antagonism modulates spinal cord neuronal function and survival: Direct versus astrocyte-mediated mechanisms.

    Science.gov (United States)

    Acioglu, Cigdem; Mirabelli, Ersilia; Baykal, Ahmet Tarik; Ni, Li; Ratnayake, Ayomi; Heary, Robert F; Elkabes, Stella

    2016-08-01

    Toll like receptors (TLRs) are expressed by cells of the immune system and mediate the host innate immune responses to pathogens. However, increasing evidence indicates that they are important contributors to central nervous system (CNS) function in health and in pathological conditions involving sterile inflammation. In agreement with this idea, we have previously shown that intrathecal administration of a TLR9 antagonist, cytidine-phosphate-guanosine oligodeoxynucleotide 2088 (CpG ODN 2088), ameliorates the outcomes of spinal cord injury (SCI). Although these earlier studies showed a marked effect of CpG ODN 2088 on inflammatory cells, the expression of TLR9 in spinal cord (SC) neurons and astrocytes suggested that the antagonist exerts additional effects through direct actions on these cells. The current study was undertaken to assess the direct effects of CpG ODN 2088 on SC neurons, astrocytes and astrocyte-neuron interactions, in vitro. We report, for the first time, that inhibition of TLR9 in cultured SC neurons alters their function and confers protection against kainic acid (KA)-induced excitotoxic death. Moreover, the TLR9 antagonist attenuated the KA-elicited endoplasmic reticulum (ER) stress response in neurons, in vitro. CpG ODN 2088 also reduced the transcript levels and release of chemokine (C-X-C) motif ligand 1 (CXCL1) and monocyte chemotactic protein 1 (MCP-1) by astrocytes and it diminished interleukin-6 (IL-6) release without affecting transcript levels in vitro. Conditioned medium (CM) of CpG ODN 2088-treated astroglial cultures decreased the viability of SC neurons compared to CM of vehicle-treated astrocytes. However, this toxicity was not observed when astrocytes were co-cultured with neurons. Although CpG ODN 2088 limited the survival-promoting effects of astroglia, it did not reduce neuronal viability compared to controls grown in the absence of astrocytes. We conclude that the TLR9 antagonist acts directly on both SC neurons and astrocytes

  6. Single-cell twitching chemotaxis in developing biofilms.

    Science.gov (United States)

    Oliveira, Nuno M; Foster, Kevin R; Durham, William M

    2016-06-01

    Bacteria form surface-attached communities, known as biofilms, which are central to bacterial biology and how they affect us. Although surface-attached bacteria often experience strong chemical gradients, it remains unclear whether single cells can effectively perform chemotaxis on surfaces. Here we use microfluidic chemical gradients and massively parallel automated tracking to study the behavior of the pathogen Pseudomonas aeruginosa during early biofilm development. We show that individual cells can efficiently move toward chemoattractants using pili-based "twitching" motility and the Chp chemosensory system. Moreover, we discovered the behavioral mechanism underlying this surface chemotaxis: Cells reverse direction more frequently when moving away from chemoattractant sources. These corrective maneuvers are triggered rapidly, typically before a wayward cell has ventured a fraction of a micron. Our work shows that single bacteria can direct their motion with submicron precision and reveals the hidden potential for chemotaxis within bacterial biofilms. PMID:27222583

  7. The implication of Pseudomonas aeruginosa biofilms in infections

    DEFF Research Database (Denmark)

    Rybtke, Morten Theil; Jensen, Peter Ø; Høiby, Niels; Givskov, Michael Christian; Tolker-Nielsen, Tim; Bjarnsholt, Thomas

    2011-01-01

    Biofilm formation by bacteria is recognized as a major problem in chronic infections due to their recalcitrance against the immune defense and available antibiotic treatment schemes. The opportunistic pathogen Pseudomonas aeruginosa has drawn special attention in this regard due to its severity of...... extracellular matrix encasing the biofilm-associated bacteria as well as the elaborate signaling mechanisms employed by the bacterium enables it to withstand the continuous stresses imposed by the immune defense and administered antibiotics resulting in a state of chronic inflammation that damages the host. The...... immune response leading to this chronic inflammation is described. Finally, novel treatment strategies againstP. aeruginosa are described including, quorum-sensing inhibition and induced biofilm-dispersion. The tolerance towards currently available antimicrobials calls for development of alternative...

  8. There is a specific response to pH by isolates of Haemophilus influenzae and this has a direct influence on biofilm formation

    OpenAIRE

    Ishak, Nadiah; Tikhomirova, Alexandra; Bent, Stephen J.; Ehrlich, Garth D.; Hu, Fen Z; Kidd, Stephen P

    2014-01-01

    Background Haemophilus influenzae colonizes the nasopharynx as a commensal. Strain-specific factors allow some strains to migrate to particular anatomical niches, such as the middle ear, bronchi or blood, and induce disease by surviving within the conditions present at these sites in the body. It is established that H. influenzae colonization and in some cases survival is highly dependent on their ability to form a biofilm. Biofilm formation is a key trait in the development of chronic infect...

  9. Characterization of mixed-culture biofilms established in microbial fuel cells

    International Nuclear Information System (INIS)

    For the successful operation of a microbial fuel cell, it is important to characterize the biofilm on the anode. The behavior of MFCs during initial biofilm growth and characterization of anodic biofilm were studied using two-chamber MFCs with activated sludge as inoculum. After three times' replacement of the anodic growth medium, the biofilms were well developed, and a maximum closed circuit potential of 0.41 V and 0.37 V (1000 Ω resistor) was achieved using acetate and glucose, respectively. Electron microscopy revealed that there were rod-shaped cells 0.2–0.3 μm wide by 1.5–2.5 μm long in the anode biofilm in the acetate-fed MFC, and these cells were mainly arranged by monolayer. The biofilm in the glucose-fed MFC was made of cocci-shaped cells in chains and a thick matrix. Both using acetate and glucose, the anodic bacterial communities were different than those of the activated sludge. Cyclic voltammograms suggested that extracellular electron transfer in these MFCs was accomplished mainly by the biofilms on the anode and not by bacteria-produced mediators. -- Highlights: ► The mixed-culture biofilms established in MFCs were characterized. ► The possible electron transfer mechanism was presented. ► In these MFCs the anodic area should be much larger.

  10. Experimental and Theoretical Investigation of Multispecies Oral Biofilm Resistance to Chlorhexidine Treatment

    Science.gov (United States)

    Shen, Ya; Zhao, Jia; de La Fuente-Núñez, César; Wang, Zhejun; Hancock, Robert E. W.; Roberts, Clive R.; Ma, Jingzhi; Li, Jun; Haapasalo, Markus; Wang, Qi

    2016-06-01

    We investigate recovery of multispecies oral biofilms following chlorhexidine gluconate (CHX) and CHX with surface modifiers (CHX-Plus) treatment. Specifically, we examine the percentage of viable bacteria in the biofilms following their exposure to CHX and CHX-Plus for 1, 3, and 10 minutes, respectively. Before antimicrobial treatment, the biofilms are allowed to grow for three weeks. We find that (a). CHX-Plus kills bacteria in biofilms more effectively than the regular 2% CHX does, (b). cell continues to be killed for up to one week after exposure to the CHX solutions, (c). the biofilms start to recover after two weeks, the percentage of the viable bacteria recovers in the 1 and 3 minutes treatment groups but not in the 10 minutes treatment group after five weeks, and the biofilms fully return to the pretreatment levels after eight weeks. To understand the mechanism, a mathematical model for multiple bacterial phenotypes is developed, adopting the notion that bacterial persisters exist in the biofilms together with regulatory quorum sensing molecules and growth factor proteins. The model reveals the crucial role played by the persisters, quorum sensing molecules, and growth factors in biofilm recovery, accurately predicting the viable bacterial population after CHX treatment.

  11. High-throughput dental biofilm growth analysis for multiparametric microenvironmental biochemical conditions using microfluidics.

    Science.gov (United States)

    Lam, Raymond H W; Cui, Xin; Guo, Weijin; Thorsen, Todd

    2016-04-26

    Dental biofilm formation is not only a precursor to tooth decay, but also induces more serious systematic health problems such as cardiovascular disease and diabetes. Understanding the conditions promoting colonization and subsequent biofilm development involving complex bacteria coaggregation is particularly important. In this paper, we report a high-throughput microfluidic 'artificial teeth' device offering controls of multiple microenvironmental factors (e.g. nutrients, growth factors, dissolved gases, and seeded cell populations) for quantitative characteristics of long-term dental bacteria growth and biofilm development. This 'artificial teeth' device contains multiple (up to 128) incubation chambers to perform parallel cultivation and analyses (e.g. biofilm thickness, viable-dead cell ratio, and spatial distribution of multiple bacterial species) of bacteria samples under a matrix of different combinations of microenvironmental factors, further revealing possible developmental mechanisms of dental biofilms. Specifically, we applied the 'artificial teeth' to investigate the growth of two key dental bacteria, Streptococci species and Fusobacterium nucleatum, in the biofilm under different dissolved gas conditions and sucrose concentrations. Together, this high-throughput microfluidic platform can provide extended applications for general biofilm research, including screening of the biofilm properties developing under combinations of specified growth parameters such as seeding bacteria populations, growth medium compositions, medium flow rates and dissolved gas levels. PMID:27045372

  12. Experimental and Theoretical Investigation of Multispecies Oral Biofilm Resistance to Chlorhexidine Treatment.

    Science.gov (United States)

    Shen, Ya; Zhao, Jia; de la Fuente-Núñez, César; Wang, Zhejun; Hancock, Robert E W; Roberts, Clive R; Ma, Jingzhi; Li, Jun; Haapasalo, Markus; Wang, Qi

    2016-01-01

    We investigate recovery of multispecies oral biofilms following chlorhexidine gluconate (CHX) and CHX with surface modifiers (CHX-Plus) treatment. Specifically, we examine the percentage of viable bacteria in the biofilms following their exposure to CHX and CHX-Plus for 1, 3, and 10 minutes, respectively. Before antimicrobial treatment, the biofilms are allowed to grow for three weeks. We find that (a). CHX-Plus kills bacteria in biofilms more effectively than the regular 2% CHX does, (b). cell continues to be killed for up to one week after exposure to the CHX solutions, (c). the biofilms start to recover after two weeks, the percentage of the viable bacteria recovers in the 1 and 3 minutes treatment groups but not in the 10 minutes treatment group after five weeks, and the biofilms fully return to the pretreatment levels after eight weeks. To understand the mechanism, a mathematical model for multiple bacterial phenotypes is developed, adopting the notion that bacterial persisters exist in the biofilms together with regulatory quorum sensing molecules and growth factor proteins. The model reveals the crucial role played by the persisters, quorum sensing molecules, and growth factors in biofilm recovery, accurately predicting the viable bacterial population after CHX treatment. PMID:27325010

  13. Hydrodynamics of catheter biofilm formation

    CERN Document Server

    Sotolongo-Costa, Oscar; Rodriguez-Perez, Daniel; Martinez-Escobar, Sergio; Fernandez-Barbero, Antonio

    2009-01-01

    A hydrodynamic model is proposed to describe one of the most critical problems in intensive medical care units: the formation of biofilms inside central venous catheters. The incorporation of approximate solutions for the flow-limited diffusion equation leads to the conclusion that biofilms grow on the internal catheter wall due to the counter-stream diffusion of blood through a very thin layer close to the wall. This biological deposition is the first necessary step for the subsequent bacteria colonization.

  14. Sodium dodecyl sulfate allows the persistence and recovery of biofilms of Pseudomonas fluorescens formed under different hydrodynamic conditions

    OpenAIRE

    Simões, M.; Simões, Lúcia C.; Pereira, Maria Olívia; Vieira, M. J.

    2008-01-01

    The effect of the anionic surfactant sodium dodecyl sulfate (SDS) on Pseudomonas fluorescens biofilms was investigated using flow cell reactors with stainless steel substrata, under turbulent (Re=5200) and laminar (Re=2000) flow. Steady-state biofilms were exposed to SDS in single doses (0.5, 1, 3 and 7 mM) and biofilm respiratory activity and mass measured at 0, 3, 7 and 12 h after the SDS application. The effect of SDS on biofilm mechanical stability was assessed using a rotatin...

  15. In vitro biofilm forming capacity on abiotic contact surfaces by outbreak-associated Vibrio harveyi strains

    Institute of Scientific and Technical Information of China (English)

    Pallaval Veera Bramha Chari; Kuchipudi Viswadeepika; Bottu Anand Kumar

    2014-01-01

    Objective:To evaluate the in vitro biofilm forming capacity on abiotic food contact surfaces by Vibrio harveyi (V. harveyi) strains. Methods:Thirty six Gram-negative V. harveyi strains were isolated from various street vended seafood outlets in a food processing line and evaluated for their ability to produce mucoid biofilms on food contact surfaces using a microplate assay. Phenotypic characterization of mucoid biofilm producing V. harveyi strains were screened on Congo red agar, thiosulfate-citrate-bile salts-sucrose agar and tryptic soy agar, respectively. Results: Only five V. harveyi strains (14%) were mucoid biofilm producers characterized by formation of black colonies, whereas the remaining 31 strains (86%) were not capable of producing biofilm characterized by formation of red colonies or pinkish-red colonies with darkening at the centre. The morphological, physiological and biochemical characteristics of these isolates were studied using standard protocols. Strain identification was confirmed by polymerase chain reaction targeted to species-specific polymerase chain reaction primers VH-1 and VH-2 corresponding to variable regions of V. harveyi 16S rRNA sequence. All the biofilm-forming strains showed resistance to at least three antimicrobial compounds tested. V. harveyi strains isolated from various seafood were able to form biofilms of different capacity, and the strains VB267, VB238 and VB166 isolated from cat fish, shrimp and eel fish exhibited significantly greater biofilm forming ability compared to other isolates. Conclusions: It can be concluded from the present study that the strain VB166 was able to better attach and form subsequent biofilms on glass and stainless steel compared to high density polyethylene. These properties allow these bacteria to survive, proliferate and persist in street vended seafood outlets.

  16. Magnesium limitation is an environmental trigger of the Pseudomonas aeruginosa biofilm lifestyle.

    Directory of Open Access Journals (Sweden)

    Heidi Mulcahy

    Full Text Available Biofilm formation is a conserved strategy for long-term bacterial survival in nature and during infections. Biofilms are multicellular aggregates of cells enmeshed in an extracellular matrix. The RetS, GacS and LadS sensors control the switch from a planktonic to a biofilm mode of growth in Pseudomonas aeruginosa. Here we detail our approach to identify environmental triggers of biofilm formation by investigating environmental conditions that repress expression of the biofilm repressor RetS. Mg(2+ limitation repressed the expression of retS leading to increased aggregation, exopolysaccharide (EPS production and biofilm formation. Repression of retS expression under Mg(2+ limitation corresponded with induced expression of the GacA-controlled small regulatory RNAs rsmZ and rsmY and the EPS biosynthesis operons pel and psl. We recently demonstrated that extracellular DNA sequesters Mg(2+ cations and activates the cation-sensing PhoPQ two-component system, which leads to increased antimicrobial peptide resistance in biofilms. Here we show that exogenous DNA and EDTA, through their ability to chelate Mg(2+, promoted biofilm formation. The repression of retS in low Mg(2+ was directly controlled by PhoPQ. PhoP also directly controlled expression of rsmZ but not rsmY suggesting that PhoPQ controls the equilibrium of the small regulatory RNAs and thus fine-tunes the expression of genes in the RetS pathway. In summary, Mg(2+ limitation is a biologically relevant environmental condition and the first bonafide environmental signal identified that results in transcriptional repression of retS and promotes P. aeruginosa biofilm formation.

  17. In vitro biofilm forming capacity on abiotic contact surfaces by outbreak-associated Vibrio harveyi strains

    Directory of Open Access Journals (Sweden)

    Pallaval Veera Bramha Chari

    2014-02-01

    Full Text Available Objective: To evaluate the in vitro biofilm forming capacity on abiotic food contact surfaces by Vibrio harveyi (V. harveyi strains. Methods: Thirty six Gram-negative V. harveyi strains were isolated from various street vended seafood outlets in a food processing line and evaluated for their ability to produce mucoid biofilms on food contact surfaces using a microplate assay. Phenotypic characterization of mucoid biofilm producing V. harveyi strains were screened on Congo red agar, thiosulfate-citrate-bile salts-sucrose agar and tryptic soy agar, respectively. Results: Only five V. harveyi strains (14% were mucoid biofilm producers characterized by formation of black colonies, whereas the remaining 31 strains (86% were not capable of producing biofilm characterized by formation of red colonies or pinkish-red colonies with darkening at the centre. The morphological, physiological and biochemical characteristics of these isolates were studied using standard protocols. Strain identification was confirmed by polymerase chain reaction targeted to species-specific polymerase chain reaction primers VH-1 and VH-2 corresponding to variable regions of V. harveyi 16S rRNA sequence. All the biofilm-forming strains showed resistance to at least three antimicrobial compounds tested. V. harveyi strains isolated from various seafood were able to form biofilms of different capacity, and the strains VB267, VB238 and VB166 isolated from cat fish, shrimp and eel fish exhibited significantly greater biofilm forming ability compared to other isolates. Conclusions: It can be concluded from the present study that the strain VB166 was able to better attach and form subsequent biofilms on glass and stainless steel compared to high density polyethylene. These properties allow these bacteria to survive, proliferate and persist in street vended seafood outlets.

  18. Potential mode of protection of silkworm pupae from environmental stress by harboring the bacterial biofilm on the surfaces of silk cocoons.

    Science.gov (United States)

    Halder, Pranab K; Naskar, Deboki; Kumar, Akash; Yao, Juming; Kundu, Subhas C; Ghosh, Anindya S

    2015-02-01

    The silkworm forms cocoon to protect its pupa that survives for months inside the cocoon without being affected by various environmental stresses. To understand the possible mode of pupal survival within the cocoon encasement, we investigate the cause that protects the cocoon. During the end of the spinning process, we have isolated different bacterial species from the cocoon surface. These are identified using molecular techniques and checked for their abilities to form biofilm in vitro. The bacteria are able to form biofilm either individually or in consortia. Of which, Bacillus and Erwinia species are prominent biofilm formers. Interestingly, these bacteria have the ability to form biofilm on the cocoon mimetic surface of the silk protein Sericin Hope that contains only sericin. The origin and the behavior of the bacteria lead us to hypothesize the possible role of biofilm layer on the cocoon surface, which provides protection from adverse environmental conditions. PMID:25292249

  19. Polysialylation of brain gangliosides as a possible molecular mechanism for survival of antarctic ice fish below the freezing point

    Science.gov (United States)

    Becker, K.; Rahmann, H.

    In order to determine possible adaptation strategies of vertebrates to extreme low-temperature environments, we compared the concentration and composition of gangliosides from the brains of eight species of Antarctic Notothenioid ``ice'' fishes with those of warm-adapted species and those of fishes from habitats of moderate temperature. The concentration of whole-brain gangliosides in the ice fishes was comparable with that in moderate-temperature species (between 3.36 and 4.31 mg NeuAc/g protein). The composition of brain gangliosides differed, however. In particular, the relative concentrations of polysialogangliosides (= polarity) and alkali-labile gangliosides was higher in all Antarctic species investigated than in warm-adapted fish species. This difference is considered a suitable mechanism for keeping neuronal membranes functional even below the freezing point. This interpretation is supported by additional physicochemical results with artificial monolayer membranes, which give evidence for a high thermosensitivity of ganglioside complexes in connection with calcium.

  20. Biofilm and planktonic lifestyles differently support the resistance of the desert cyanobacterium Chroococcidiopsis under space and Martian simulations.

    Science.gov (United States)

    Baqué, Mickael; Scalzi, Giuliano; Rabbow, Elke; Rettberg, Petra; Billi, Daniela

    2013-10-01

    When Chroococcidiopsis sp. strain CCMEE 057 from the Sinai Desert and strain CCMEE 029 from the Negev Desert were exposed to space and Martian simulations in the dried status as biofilms or multilayered planktonic samples, the biofilms exhibited an enhanced rate of survival. Compared to strain CCMEE 029, biofilms of strain CCME 057 better tolerated UV polychromatic radiation (5 × 10(5) kJ/m(2) attenuated with a 0.1% neutral density filter) combined with space vacuum or Martian atmosphere of 780 Pa. CCMEE 029, on the other hand, failed to survive UV polychromatic doses higher than 1.5 × 10(3) kJ/m(2). The induced damage to genomic DNA, plasma membranes and photosynthetic apparatus was quantified and visualized by means of PCR-based assays and CLSM imaging. Planktonic samples of both strains accumulated a higher amount of damage than did the biofilms after exposure to each simulation; CLSM imaging showed that photosynthetic pigment bleaching, DNA fragmentation and damaged plasma membranes occurred in the top 3-4 cell layers of both biofilms and of multilayered planktonic samples. Differences in the EPS composition were revealed by molecular probe staining as contributing to the enhanced endurance of biofilms compared to that of planktonic samples. Our results suggest that compared to strain CCMEE 029, biofilms of strain CCMEE 057 might better tolerate 1 year's exposure in space during the next EXPOSE-R2 mission. PMID:23955666

  1. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions

    Directory of Open Access Journals (Sweden)

    Hana eTuronova

    2015-07-01

    Full Text Available During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176 prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions. The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen.

  2. Material properties of biofilms—a review of methods for understanding permeability and mechanics

    OpenAIRE

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2014-01-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the three-dimensional biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gasses, solutes, and foreign cells. Despite their critical relevance for understanding and eliminat...

  3. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae

    DEFF Research Database (Denmark)

    Matz, Carsten; McDougald, D.; Moreno, A.M.;

    2005-01-01

    Persistence of the opportunistic bacterial pathogen Vibrio cholerae in aquatic environments is the principal cause for seasonal occurrence of cholera epidemics. This causality has been explained by postulating that V. cholerae forms biofilms in association with animate and inanimate surfaces....... Alternatively, it has been proposed that bacterial pathogens are an integral part of the natural microbial food web and thus their survival is constrained by protozoan predation. Here, we report that both explanations are interrelated. our data show that biofilms are the protective agent enabling V. cholerae to...... survive protozoan grazing while their planktonic counterparts are eliminated. Grazing on planktonic V. cholerae was found to select for the biofilm-enhancing rugose phase variant, which is adapted to the surf ace-associated niche by the production of exopolymers. Interestingly, grazing resistance in V...

  4. The effects of sodium hypochlorite on the control of inter-kingdom biofilm formation by drinking water-isolated microorganisms

    OpenAIRE

    Simões, Lúcia C; Chaves, Ana F.A.; Simões, Manuel; Lima, Nelson

    2015-01-01

    Biofilms in drinking water distribution systems (DWDS) are responsible for several undesirable effects in water. One of the main drawbacks is their potential to protect pathogens from stress conditions. Microbial interactions in biofilms can benefit the survival of co existing microorganisms, including the increased resistance to antimicrobials. Chlorine disinfection is the main widespread strategy used in DWDS for microbial control. Even if new and alternative strategies are b...

  5. Phenomenological Theory of Survival

    OpenAIRE

    Azbel', Mark Ya.

    2001-01-01

    Theoretical analysis proves that human survivability is dominated by an unusual physical, rather than biological, mechanism, which yields an exact law. The law agrees with all experimental data, but, contrary to existing theories, it is the same for an entire species, i.e., it is independent of the population, its phenotypes, environment and history. The law implies that the survivability changes with environment via phase transitions, which are simultaneous for all generations. They allow fo...

  6. STUDY OF ULTRASOUND RADIATION INFLUENCE ON ABILITY TO FORM BIOFILMS AND FORMED BIOFILMS OF KLEBSIELLA PNEUMONIAE

    OpenAIRE

    Mozgova Yu.A.

    2013-01-01

    With aim to detect ability to form biofilms in K.pneumoniae and to study effects of low-intensity ultrasound radiation on formed biofilms and their aggregation microbiological research of material frompatients with pyoinflammatory diseases was performed. It was found that low-intensity ultrasound radiation could destroy formed biofilms of K. pneumoniae and decrease ability of this pathogen to form secondary biofilms.

  7. Survival mechanism of Escherichia coli O157:H7 against combined treatment with acetic acid and sodium chloride.

    Science.gov (United States)

    Lee, Sun-Young; Kang, Dong-Hyun

    2016-05-01

    The combination of salt and acid is commonly used in the production of many foods, including pickles and fermented foods. However, in our previous studies, the addition of salt significantly reduced the inhibitory effect of acetic acid on Escherichia coli O157:H7 in laboratory media and pickled cucumbers. Therefore, this study was conducted to determine the mechanism by which salt confers resistance against acetic acid in E. coli O157:H7. The addition of high concentrations (up to 9% or 15% [w/v]) of salt increased the resistance of E. coli O157:H7 to acetic acid treatment. Combined treatment with acetic acid and salt showed varying results among different bacterial strains (an antagonistic effect for E. coli O157:H7 and Shigella and a synergistic effect for Listeria monocytogenes and Staphylococcus aureus). The addition of salt increased the cytoplasmic pH of E. coli O157:H7, but decreased the cytoplasmic pH of L. monocytogenes and S. aureus on treatment with acetic acid. Therefore, the addition of salt increases the acid resistance of E. coli O157:H7 possibly by increasing its acid resistance response and consequently preventing the acidification of its cytoplasm by organic acids. PMID:26742620

  8. Biofilmes nanocompósitos obtidos de isolado proteico de corvina (Micropogonias furnieri e Montmorilonita: avaliação das propriedades físicas, mecânicas e de barreira Nanocomposite biofilms obtained from Whitemouth croaker (Micropogonias furnieri protein isolate and Monmorilonite: Evaluation of the physical, mechanical and barrier properties

    Directory of Open Access Journals (Sweden)

    William Renzo Cortez-Vega

    2013-01-01

    Full Text Available O objetivo deste trabalho foi avaliar as propriedades de biofilmes nanocompósitos de isolado proteico de corvina (Micropogonias furnieri com argila organofílica. Inicialmente, foi obtido isolado proteico de corvina (IPC utilizando-se o processo de mudança de pH. O IPC foi obtido a partir de subprodutos da industrialização de corvina. Para o desenvolvimento dos filmes, foi executado um planejamento experimental de Box e Behnken, com três níveis de IPC (2; 3,5; 5 g.100 g-1 de solução, argila montmorilonita MMT (0,3; 0,5; 0,7 g.100 g-1 de solução e glicerol (25, 30, 35 g.100 g-1 IPC. Os filmes poliméricos foram desenvolvidos pela técnica de casting. Os valores de resistência à tração variaram entre 7,2 e 10,7 MPa, e os valores de alongamento, de 39,6 a 45,8%. Os valores de permeabilidade ao vapor de água (PVA variaram entre 3,2 e 5,5 g mm m-2 d-1kPa-1. O IPC apresentou teor médio de proteína de 97,87% (b. s.. Pode-se concluir que os filmes nanocompósitos produzidos a partir de IPC com MMT foram promissores, desde o ponto de vista das propriedades mecânicas, da aparência visual e do fácil manuseio até a baixa permeabilidade ao vapor de água e a baixa solubilidade. Com relação às propriedades mecânicas, as concentrações de IPC e MMT foram os principais fatores que influenciaram o desenvolvimento dos filmes nanocompósitos. Os resultados obtidos no planejamento experimental utilizado indicaram que 3,5 g de IPC.100 g-1 de solução, 0,5 g de MMT.100 g-1 de solução e 30 g de glicerol.100 g-1 IPC seriam os parâmetros ideais para a preparação de filmes nanocompósitos por casting.The objective of this study was to evaluate the properties of nanocomposite biofilms based on Whitemouth croaker (Micropogonias furnieri protein isolate with organophilic clays. Initially the croaker protein isolate (CPI was obtained using the pH shifting process from by-products of croaker industrialization. A Box and Behnken experimental

  9. Losac, a factor X activator from Lonomia obliqua bristle extract: Its role in the pathophysiological mechanisms and cell survival

    International Nuclear Information System (INIS)

    Contact with the bristles of the caterpillar Lonomia obliqua can cause serious hemorrhage. Previously it was reported that a procoagulant protein (Lopap) in the bristle extract of L. obliqua increases cell longevity by inhibiting apoptosis. In this work, we purified from bristle extract a factor X activator that stimulates proliferation of endothelial cells. This protein, named Losac, was purified by ion exchange chromatography, followed by gel filtration chromatography and reverse-phase HPLC. Losac is a 45-kDa protein that activates factor X in a concentration-dependent manner and does not depend on calcium ions. In cultures of HUVECs, Losac increased cell proliferation and inhibited the apoptosis induced by starvation. HUVECs incubated with Losac (0.58 μM for 1 h) increased release of nitric oxide and tissue-plasminogen activator, which both may mediate anti-apoptosis. Losac also increased slightly the decay-accelerating factor (DAF = CD55), which protects cells from complement-mediated lysis. On the other hand, Losac did not alter the release or expression of von Willebrand factor, tissue factor, intercellular adhesion molecule-1, interleukin-8, and prostacyclin. These characteristics indicate that Losac, a protein with procoagulant activity, also functions as a growth stimulator and an inhibitor of cellular death for endothelial cells. Losac may have biotechnological applications, including the reduction of cell death and consequently increased productivity of animal cell cultures, and the use of hemolymph of L. obliqua for this purpose is already being explored. Further study is required to elucidate the mechanism for the inhibition of apoptosis by Losac

  10. Investigating Biofilm Recalcitrance In Pipe Flow Systems

    Science.gov (United States)

    Aggarwal, S.; Stewart, P. S.; Hozalski, R. M.

    2015-12-01

    It is challenging to remove biofilms from pipe walls owing to their recalcitrant nature. Several physiological explanations resulting from the community existence of microbes have been offered to explain the recalcitrant nature of biofilms. Herein a biophysical aspect of biofilm recalcitrance is being reported. While optimal efficiency argument suggests that bacterial biofilms would be just strong enough to withstand the surrounding shear forces, our experimental findings reveal the biofilms to be at least 330 to 55000 times stronger. Additionally, Monte-Carlo simulations for biofilm detachment in drinking water systems were performed, which show that the existing flow velocities are insufficient for significant biofilm removal and warrant alternative detachment strategies. This emphasizes the importance of considering strategies for biofilm weakening (and subsequent detachment) in conjunction with or as an alternative to bacterial inactivation.

  11. D-amino acids trigger biofilm disassembly.

    Science.gov (United States)

    Kolodkin-Gal, Ilana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-04-30

    Bacteria form communities known as biofilms, which disassemble over time. In our studies outlined here, we found that, before biofilm disassembly, Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine, and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofilms in the presence of D-amino acids contained alterations in a protein (YqxM) required for the formation and anchoring of the fibers to the cell. D-amino acids also prevented biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. D-amino acids are produced by many bacteria and, thus, may be a widespread signal for biofilm disassembly. PMID:20431016

  12. Fibrinogen-Induced Streptococcus mutans Biofilm Formation and Adherence to Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Telma Blanca Lombardo Bedran

    2013-01-01

    Full Text Available Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis.

  13. Applying insights from biofilm biology to drug development - can a new approach be developed?

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Ciofu, Oana; Molin, Søren;

    2013-01-01

    Most of the research on bacterial pathogenesis has focused on acute infections, but much less is known about the pathogenesis of infections caused by bacteria that grow as aggregates in biofilms. These infections tend to be chronic as they resist innate and adaptive immune defence mechanisms as w...... pathology, and discuss how a deep insight into the physical and biological characteristics of biofilms can inform therapeutic strategies and molecular targets for the development of anti-biofilm drugs.......Most of the research on bacterial pathogenesis has focused on acute infections, but much less is known about the pathogenesis of infections caused by bacteria that grow as aggregates in biofilms. These infections tend to be chronic as they resist innate and adaptive immune defence mechanisms as...... well as antibiotics, and the treatment of biofilm infections presents a considerable unmet clinical need. To date, there are no drugs that specifically target bacteria in biofilms; however, several approaches are in early-stage development. Here, we review current insights into biofilm physiology and...

  14. Rock physics models for constraining quantitative interpretation of ultrasonic data for biofilm growth and development

    Science.gov (United States)

    Alhadhrami, Fathiya Mohammed

    This study examines the use of rock physics modeling for quantitative interpretation of seismic data in the context of microbial growth and biofilm formation in unconsolidated sediment. The impetus for this research comes from geophysical experiments by Davis et al. (2010) and Kwon and Ajo-Franklin et al. (2012). These studies observed that microbial growth has a small effect on P-wave velocities (VP) but a large effect on seismic amplitudes. Davis et al. (2010) and Kwon and Ajo-Franklin et al. (2012) speculated that the amplitude variations were due to a combination of rock mechanical changes from accumulation of microbial growth related features such as biofilms. A more definite conclusion can be drawn by developing rock physics models that connect rock properties to seismic amplitudes. The primary objective of this work is to provide an explanation for high amplitude attenuation due to biofilm growth. The results suggest that biofilm formation in the Davis et al. (2010) experiment exhibit two growth styles: a loadbearing style where biofilm behaves like an additional mineral grain and a non-loadbearing mode where the biofilm grows into the pore spaces. In the loadbearing mode, the biofilms contribute to the stiffness of the sediments. We refer to this style as "filler." In the non-loadbearing mode, the biofilms contribute only to change in density of sediments without affecting their strength. We refer to this style of microbial growth as "mushroom." Both growth styles appear to be changing permeability more than the moduli or the density. As the result, while the VP velocity remains relatively unchanged, the amplitudes can change significantly depending on biofilm saturation. Interpreting seismic data from biofilm growths in term of rock physics models provide a greater insight into the sediment-fluid interaction. The models in turn can be used to understand microbial enhanced oil recovery and in assisting in solving environmental issues such as creating bio

  15. The relationship of biofilm production to biocontrol activity of Burkholderia pyrrocinia FP62

    Science.gov (United States)

    Foliar biocontrol agent (BCA) efficacy is often inconsistent due to poor colonization and survival on plant surfaces. Burkholderia pyrrocinia FP62, a superior leaf colonist and BCA of Botrytis cinerea, forms unsaturated biofilms on plant surfaces. To determine the relationship between biocontrol act...

  16. Small molecule control of bacterial biofilms

    OpenAIRE

    Worthington, Roberta J.; Richards, Justin J.; Melander, Christian

    2012-01-01

    Bacterial biofilms are defined as a surface attached community of bacteria embedded in a matrix of extracellular polymeric substances that they have produced. When in the biofilm state, bacteria are more resistant to antibiotics and the host immune response than are their planktonic counterparts. Biofilms are increasingly recognized as being significant in human disease, accounting for 80% of bacterial infections in the body and diseases associated with bacterial biofilms include: lung infect...

  17. Current understanding of multi-species biofilms

    OpenAIRE

    Yang, Liang; Liu, Yang; Wu,Hong; Høiby, Niels; Molin, Søren; Zhi-jun SONG

    2011-01-01

    Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually formed by multiple bacterial species. Conventional methods for bacterial cleaning, such as applications of antibiotics and/or disinfectants are often ineffective for biofilm populations due to their...

  18. Maggot Excretions Inhibit Biofilm Formation on Biomaterials

    OpenAIRE

    Cazander, G.; Veerdonk, van de, RJM Rene; Vandenbroucke-Grauls, C. M. J. E.; Schreurs, M.W.J.; Jukema, G.N.

    2010-01-01

    Background Biofilm-associated infections in trauma surgery are difficult to treat with conventional therapies. Therefore, it is important to develop new treatment modalities. Maggots in captured bags, which are permeable for larval excretions/secretions, aid in healing severe, infected wounds, suspect for biofilm formation. Therefore we presumed maggot excretions/secretions would reduce biofilm formation. Questions/purposes We studied biofilm formation of Staphylococcus aureus, Staphylococcus...

  19. Bioinspired, Dynamic, Structured Surfaces for Biofilm Prevention

    OpenAIRE

    Epstein, Alexander

    2012-01-01

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even l...

  20. Pseudomonas biofilm matrix composition and niche biology

    OpenAIRE

    Mann, Ethan E.; Wozniak, Daniel J.

    2012-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produ...

  1. Candida albicans Biofilm-Defective Mutants

    OpenAIRE

    Richard, Mathias L.; Nobile, Clarissa J.; Bruno, Vincent M; Mitchell, Aaron P.

    2005-01-01

    Biofilm formation plays a key role in the life cycles and subsistence of many microorganisms. For the human fungal pathogen Candida albicans, biofilm development is arguably a virulence trait, because medical implants that serve as biofilm substrates are significant risk factors for infection. The development of C. albicans biofilms in vitro proceeds through an early phase, in which yeast cells populate a substrate, an intermediate phase, in which pseudohyphal and hyphal cell types are produc...

  2. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm

    OpenAIRE

    Lee, Kai Wei Kelvin; Periasamy, Saravanan; Mukherjee, Manisha; Xie, Chao; Kjelleberg, Staffan; Rice, Scott A.

    2013-01-01

    Most studies of biofilm biology have taken a reductionist approach, where single-species biofilms have been extensively investigated. However, biofilms in nature mostly comprise multiple species, where interspecies interactions can shape the development, structure and function of these communities differently from biofilm populations. Hence, a reproducible mixed-species biofilm comprising Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae was adapted to study how interspe...

  3. Surviving Cancer

    Science.gov (United States)

    ... his or her health status, when diagnosed with cancer may have an effect on their survival and recovery. Older adults are more likely to have other health conditions such as diabetes and heart disease. Managing these conditions can complicate ...

  4. Biofilm forming cyanobacteria, algae and fungi on two historic monuments in Belgrade, Serbia

    Directory of Open Access Journals (Sweden)

    Ljaljević-Grbić Milica

    2010-01-01

    Full Text Available Biofilm on the sandstone substrata of the bridge 'Brankov most' and on the granite substrata of the 'Monument of the Unknown Hero' contains a complex consortia of cyanobacteria, algae, and fungi. Coccoid and filamentous cyanobacteria, green algae and diatoms make up the photosynthetic part of the biofilm while hyphal fragments, chlamydospores, fruiting bodies and spores take part as fungal components. These structures make a dense layer by intertwining and overlapping the stone surface. Five cyanobacterial, 11 algal and 23 fungal taxa were found. The interaction of the biofilm's constituents results in the bioweathering of the stone substrata through mechanical penetration, acid corrosion and the production of secondary mycogenic biominerals. .

  5. Control of the Biofilms Formed by Curli- and Cellulose-Expressing Shiga Toxin-Producing Escherichia coli Using Treatments with Organic Acids and Commercial Sanitizers.

    Science.gov (United States)

    Park, Yoen Ju; Chen, Jinru

    2015-05-01

    Biofilms are a mixture of bacteria and extracellular products secreted by bacterial cells and are of great concern to the food industry because they offer physical, mechanical, and biological protection to bacterial cells. This study was conducted to quantify biofilms formed by different Shiga toxin-producing Escherichia coli (STEC) strains on polystyrene and stainless steel surfaces and to determine the effectiveness of sanitizing treatments in control of these biofilms. STEC producing various amounts of cellulose (n = 6) or curli (n = 6) were allowed to develop biofilms on polystyrene and stainless steel surfaces at 28°C for 7 days. The biofilms were treated with 2% acetic or lactic acid and manufacturer-recommended concentrations of acidic or alkaline sanitizers, and residual biofilms were quantified. Treatments with the acidic and alkaline sanitizers were more effective than those with the organic acids for removing the biofilms. Compared with their counterparts, cells expressing a greater amount of cellulose or curli formed more biofilm mass and had greater residual mass after sanitizing treatments on polystyrene than on stainless steel. Research suggests that the organic acids and sanitizers used in the present study differed in their ability to control biofilms. Bacterial surface components and cell contact surfaces can influence both biofilm formation and the efficacy of sanitizing treatments. These results provide additional information on control of biofilms formed by STEC. PMID:25951395

  6. Microbiële biofilms in tandheelkunde

    NARCIS (Netherlands)

    B.P. Krom

    2015-01-01

    Aangehechte gemeenschappen van micro-organismen, ook wel biofilms genoemd, zijn altijd en overal aanwezig. Hoewel biofilms een slechte naam hebben, zijn ze meestal natuurlijk, gezond en zelfs gewenst. In de mondzorgpraktijk komen zowel gezonde (orale biofilms) als ongezonde (bijv. in de waterleiding

  7. Microbiële biofilms in tandheelkunde

    NARCIS (Netherlands)

    B.P. Krom

    2015-01-01

    Aangehechte gemeenschappen van micro-organismen, ook wel biofilms genoemd, zijn altijd en overal aanwezig. Hoewel biofilms een slechte naam hebben, zijn ze meestal natuurlijk, gezond en zelfs gewenst. In de tandartspraktijk komen zowel gezonde (orale biofilms) als ongezonde (bijv. in de waterleiding

  8. Disruption of urogenital biofilms by lactobacilli.

    Science.gov (United States)

    McMillan, Amy; Dell, Melissa; Zellar, Michelle P; Cribby, Sarah; Martz, Sarah; Hong, Emilio; Fu, Jennifer; Abbas, Ahmed; Dang, Thien; Miller, Wayne; Reid, Gregor

    2011-08-01

    The process that changes a relatively sparse vaginal microbiota of healthy women into a dense biofilm of pathogenic and potentially pathogenic bacteria is poorly understood. Likewise, the reverse step whereby an aberrant biofilm is displaced and returns to a healthy lactobacilli dominated microbiota is unclear. In order to study these phenomena, in vitro experiments were performed to examine the structure of biofilms associated with aerobic vaginosis, urinary tract infections, and bacterial vaginosis (BV). Uropathogenic Escherichia coli were able to form relatively thin biofilms within five days (6 μm height), while Atopobium vaginae and Gardnerella vaginalis formed thicker biofilms 12 μm in height within two days. Challenge of E. coli biofilms with lactobacilli did not result in pathogen displacement. However, the resulting thicker lactobacilli infused biofilms, caused significant E. coli killing. E. coli biofilms challenged with secreted products of L. rhamnosus GR-1 caused a marked decrease in cell density, and increased cell death. Similarly challenge of BV biofilms with lactobacilli infiltrated BV biofilms and caused bacterial cell death. Metronidazole produced holes in the biofilm but did not eradicate the organisms. The findings provide some evidence of how lactobacilli probiotics might interfere with an aberrant vaginal microbiota, and strengthen the position that combining probiotics with antimicrobials could better eradicate pathogenic biofilms. PMID:21497071

  9. Natural biofilm formation with Legionella pneumophila.

    Science.gov (United States)

    Portier, Emilie; Héchard, Yann

    2013-01-01

    Biofilm formation could be studied in various conditions. Most of the studies with Legionella pneumophila used monospecies biofilm in culture media. In some cases, it is important to study bacteria in conditions more close to environmental conditions. In this paper, we describe protocols to produce natural biofilms from river water that were spiked with L. pneumophila. PMID:23150397

  10. Early differential cell death and survival mechanisms initiate and contribute to the development of OPIDN: A study of molecular, cellular, and anatomical parameters

    International Nuclear Information System (INIS)

    Organophosphorus-ester induced delayed neurotoxicity (OPIDN) is a neurodegenerative disorder characterized by ataxia progressing to paralysis with a concomitant central and peripheral, distal axonapathy. Diisopropylphosphorofluoridate (DFP) produces OPIDN in the chicken that results in mild ataxia in 7–14 days and severe paralysis as the disease progresses with a single dose. White leghorn layer hens were treated with DFP (1.7 mg/kg, sc) after prophylactic treatment with atropine (1 mg/kg, sc) in normal saline and eserine (1 mg/kg, sc) in dimethyl sulfoxide. Control groups were treated with vehicle propylene glycol (0.1 ml/kg, sc), atropine in normal saline and eserine in dimethyl sulfoxide. The hens were euthanized at different time points such as 1, 2, 5, 10 and 20 days, and the tissues from cerebrum, midbrain, cerebellum, brainstem and spinal cord were quickly dissected and frozen for mRNA (northern) studies. Northern blots were probed with BCL2, GADD45, beta actin, and 28S RNA to investigate their expression pattern. Another set of hens was treated for a series of time points and perfused with phosphate buffered saline and fixative for histological studies. Various staining protocols such as Hematoxylin and Eosin (H and E); Sevier-Munger; Cresyl echt Violet for Nissl substance; and Gallocynin stain for Nissl granules were used to assess various patterns of cell death and degenerative changes. Complex cell death mechanisms may be involved in the neuronal and axonal degeneration. These data indicate altered and differential mRNA expressions of BCL2 (anti apoptotic gene) and GADD45 (DNA damage inducible gene) in various tissues. Increased cell death and other degenerative changes noted in the susceptible regions (spinal cord and cerebellum) than the resistant region (cerebrum), may indicate complex molecular pathways via altered BCL2 and GADD45 gene expression, causing the homeostatic imbalance between cell survival and cell death mechanisms. Semi quantitative

  11. Early differential cell death and survival mechanisms initiate and contribute to the development of OPIDN: A study of molecular, cellular, and anatomical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Damodaran, T.V., E-mail: tdamodar@nccu.edu [Dept of Medicine, Duke University Medical Center, Durham, NC (United States); Pharmacology and Cancer biology, Duke University Medical Center, Durham, NC (United States); Dept of Biology, North Carolina Central University, Durham, NC 27707 (United States); Attia, M.K. [Pharmacology and Cancer biology, Duke University Medical Center, Durham, NC (United States); Abou-Donia, M.B., E-mail: donia@mc.duke.edu [Pharmacology and Cancer biology, Duke University Medical Center, Durham, NC (United States)

    2011-11-15

    Organophosphorus-ester induced delayed neurotoxicity (OPIDN) is a neurodegenerative disorder characterized by ataxia progressing to paralysis with a concomitant central and peripheral, distal axonapathy. Diisopropylphosphorofluoridate (DFP) produces OPIDN in the chicken that results in mild ataxia in 7-14 days and severe paralysis as the disease progresses with a single dose. White leghorn layer hens were treated with DFP (1.7 mg/kg, sc) after prophylactic treatment with atropine (1 mg/kg, sc) in normal saline and eserine (1 mg/kg, sc) in dimethyl sulfoxide. Control groups were treated with vehicle propylene glycol (0.1 ml/kg, sc), atropine in normal saline and eserine in dimethyl sulfoxide. The hens were euthanized at different time points such as 1, 2, 5, 10 and 20 days, and the tissues from cerebrum, midbrain, cerebellum, brainstem and spinal cord were quickly dissected and frozen for mRNA (northern) studies. Northern blots were probed with BCL2, GADD45, beta actin, and 28S RNA to investigate their expression pattern. Another set of hens was treated for a series of time points and perfused with phosphate buffered saline and fixative for histological studies. Various staining protocols such as Hematoxylin and Eosin (H and E); Sevier-Munger; Cresyl echt Violet for Nissl substance; and Gallocynin stain for Nissl granules were used to assess various patterns of cell death and degenerative changes. Complex cell death mechanisms may be involved in the neuronal and axonal degeneration. These data indicate altered and differential mRNA expressions of BCL2 (anti apoptotic gene) and GADD45 (DNA damage inducible gene) in various tissues. Increased cell death and other degenerative changes noted in the susceptible regions (spinal cord and cerebellum) than the resistant region (cerebrum), may indicate complex molecular pathways via altered BCL2 and GADD45 gene expression, causing the homeostatic imbalance between cell survival and cell death mechanisms. Semi quantitative

  12. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism

    Science.gov (United States)

    Quintero Barceinas, Reyna Sara; García-Regalado, Alejandro; Aréchaga-Ocampo, Elena; Villegas-Sepúlveda, Nicolás; González-De la Rosa, Claudia Haydée

    2015-01-01

    All-trans retinoic acid (ATRA) has been used as an antineoplastic because of its ability to promote proliferation, inhibition, and differentiation, primarily in leukemia; however, in other types of cancer, such as lung cancer, treatment with ATRA is restricted because not all the patients experience the same results. The ERK signaling pathway is dysregulated in cancer cells, including lung cancer, and this dysregulation promotes proliferation and cell invasion. In this study, we demonstrate that treatment with ATRA can activate the ERK signaling pathway by a transcription-independent mechanism through a signaling cascade that involves RARα and PI3K, promoting growth, survival, and migration in lung cancer cells. Until now, this mechanism was unknown in lung cancer cells. The inhibition of the ERK signaling pathway restores the beneficial effects of ATRA, reduces proliferation, increases apoptosis, and blocks the cell migration process in lung cancer cells. In conclusion, our results suggest that the combination of ATRA with ERK inhibitor in clinical trials for lung cancer is warranted. PMID:26557664

  13. Solutions to the public goods dilemma in bacterial biofilms

    Science.gov (United States)

    Drescher, Knut; Nadell, Carey D.; Stone, Howard A.; Wingreen, Ned S.; Bassler, Bonnie L.

    2014-03-01

    Bacteria frequently live in densely populated surface-bound communities, termed biofilms. Biofilm-dwelling cells rely on secretion of extracellular substances to construct their communities and to capture nutrients from the environment. Some secreted factors behave as cooperative public goods: they can be exploited by non-producing cells. The means by which public-good-producing bacteria avert exploitation in biofilm environments are largely unknown. Using experiments with Vibrio cholerae, which secretes extracellular enzymes to digest its primary food source, the solid polymer chitin, we show that the public goods dilemma may be solved by two very different mechanisms: cells can produce thick biofilms that confine the goods to producers, or fluid flow can remove soluble products of chitin digestion, denying access to non-producers. Both processes are unified by limiting the distance over which enzyme-secreting cells provide benefits to neighbors, resulting in preferential benefit to nearby clonemates and allowing kin selection to favor public good production. Our results demonstrate new mechanisms by which the physical conditions of natural habitats can interact with bacterial physiology to promote the evolution of cooperation.

  14. Hydrodynamic dispersion within porous biofilms.

    Science.gov (United States)

    Davit, Y; Byrne, H; Osborne, J; Pitt-Francis, J; Gavaghan, D; Quintard, M

    2013-01-01

    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher's equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels' network; (2) the solute's diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. PMID:23410370

  15. Lipolysis within single culture and co-culture biofilms of dairy origin.

    Science.gov (United States)

    Teh, Koon Hoong; Lindsay, Denise; Palmer, Jon; Andrewes, Paul; Bremer, Phil; Flint, Steve

    2013-05-15

    Bacteria in raw milk can produce heat-stable lipases, which survive pasteurisation and subsequently reduce the shelf life of dairy products because of their ability to break down the milk fat and increase rancidity. In this study, four bacteria, originating from the surfaces of raw milk transport tankers, and a known lipase-producing bacterium were evaluated for their ability to produce lipolysis in planktonic and biofilm cultures. Lipolysis was determined using two separate assays that measured hydrolysis of the ester p-nitrophenol palmitate (pnpp) and the lipid tributyrin. The hydrolysis of pnpp per CFU within biofilms and planktonic cultures ranged from 0.01 to 8.35 and 0.01 to 0.07 nU/CFU respectively. The amount of butyric acid released from hydrolysis of tributyrin per CFU within biofilms and planktonic cultures ranged from 0.1 to 1110.3 and 0.1 to 0.3 ng/CFU, respectively. The hydrolysis of pnpp and tributyrin per CFU within biofilms was at least 10 times higher compared with the corresponding planktonic cultures. This is the first study to show that lipolysis occurs within biofilms of bacteria that were originally isolated from the surfaces of raw milk tankers. This is relevant to the dairy industry, highlighting the importance of eliminating biofilms on milk tanker surfaces as a source of heat-stable lipases. PMID:23558196

  16. Anti-biofilm efficacy of low temperature processed AgCl–TiO{sub 2} nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Kshipra, E-mail: kshipra_naik21@yahoo.co.in; Kowshik, Meenal, E-mail: meenal@goa.bits-pilani.ac.in

    2014-01-01

    Biofilms are a major concern in the medical settings and food industries due to their high tolerance to antibiotics, biocides and mechanical stress. Currently, the development of novel methods to control biofilm formation is being actively pursued. In the present study, sol–gel coatings of AgCl–TiO{sub 2} nanoparticles are presented as potential anti-biofilm agents, wherein TiO{sub 2} acts as a good supporting matrix to prevent aggregation of silver and facilitates its controlled release. Low-temperature processed AgCl–TiO{sub 2} nanocomposite coatings inhibit biofilm formation by Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa. In vitro biofilm assay experiments demonstrated that AgCl–TiO{sub 2} nanocomposite coated surfaces, inhibited the development of biofilms over a period of 10 days as confirmed by scanning electron microscopy. The silver release kinetics exhibited an initial high release, followed by a slow and sustained release. The anti-biofilm efficacy of the coatings could be attributed to the release of silver, which prevents the initial bacterial adhesion required for biofilm formation. - Highlights: • Potential of AgCl–TiO{sub 2} nanocomposite coating to inhibit biofilm formation is exhibited. • Initial rapid release followed by later slow and sustained release of silver obtained. • TiO{sub 2} being porous and inorganic in nature acts as a good supporting matrix.

  17. Bifidobacteria inhibit the growth of Porphyromonas gingivalis but not of Streptococcus mutans in an in vitro biofilm model.

    Science.gov (United States)

    Jäsberg, Heli; Söderling, Eva; Endo, Akihito; Beighton, David; Haukioja, Anna

    2016-06-01

    There is growing interest in the use of probiotic bifidobacteria for enhancement of the therapy, and in the prevention, of oral microbial diseases. However, the results of clinical studies assessing the effects of bifidobacteria on the oral microbiota are controversial, and the mechanisms of actions of probiotics in the oral cavity remain largely unknown. In addition, very little is known about the role of commensal bifidobacteria in oral health. Our aim was to study the integration of the probiotic Bifidobacterium animalis subsp. lactis Bb12 and of oral Bifidobacterium dentium and Bifidobacterium longum isolates in supragingival and subgingival biofilm models and their effects on other bacteria in biofilms in vitro using two different in vitro biofilms and agar-overlay assays. All bifidobacteria integrated well into the subgingival biofilms composed of Porphyromonas gingivalis, Actinomyces naeslundii, and Fusobacterium nucleatum and decreased significantly only the number of P. gingivalis in the biofilms. The integration of bifidobacteria into the supragingival biofilms containing Streptococcus mutans and A. naeslundii was less efficient, and bifidobacteria did not affect the number of S. mutans in biofilms. Therefore, our results suggest that bifidobacteria may have a positive effect on subgingival biofilm and thereby potential in enhancing gingival health; however, their effect on supragingival biofilm may be limited. PMID:27061393

  18. Association of left ventricular mechanical dyssynchrony with survival benefit from revascularization: a study of gated positron emission tomography in patients with ischemic LV dysfunction and narrow QRS

    International Nuclear Information System (INIS)

    LV mechanical dyssynchrony (LVMD) is a risk marker in narrow QRS cardiomyopathy, but its association with treatment outcome is not well defined. We determined the incremental prognostic value of LVMD in ischemic cardiomyopathy, and assessed its interaction with scar, myocardium in jeopardy and subsequent revascularization. Stress and rest 82Rb gated PET were performed in 486 consecutive patients (66 ± 11 years of age, 82 % men, LV ejection fraction 26 ± 6 %) with ischemic cardiomyopathy and QRS <120 ms. LVMD was determined as the standard deviation (SD) of the regional time to minimum volume on phase analysis of the gated PET scan. A propensity score was determined to adjust for nonrandomized referral after imaging to coronary artery bypass grafting (CABG). In a Cox proportional hazards model used to determine the association between measures of LVMD and survival time, CABG was included as a time-dependent covariate and the use of an implantable cardiac defibrillator (ICD) after imaging was modeled as a stratification factor. Over 1.9 ± 1.4 years, 96 patients (20 %) underwent CABG and 108 (22 %) died. LVMD was a predictor of mortality (HR 1.16. 95 % CI 1.03;1.30, per 10 increase in phase SD, p = 0.02) after adjusting for baseline covariates, prior ICD use, the use of postimaging CABG, and other imaging data. There was a significant interaction between phase SD and CABG. Nested Cox models showed that LVMD carried prognostic information incremental to clinical variables, ejection fraction and CABG. LVMD is an independent predictor of all-cause mortality in ischemic cardiomyopathy, and may identify patients with a differential survival benefit from CABG versus medical therapy. (orig.)

  19. Association of left ventricular mechanical dyssynchrony with survival benefit from revascularization: a study of gated positron emission tomography in patients with ischemic LV dysfunction and narrow QRS

    Energy Technology Data Exchange (ETDEWEB)

    AlJaroudi, Wael [Imaging Institute, Heart and Vascular, Cleveland, OH (United States); Sydell and Arnold Miller Family Heart and Vascular Institute, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Cleveland, OH (United States); Alraies, M.C. [Cleveland Clinic, Department of Hospital Medicine, Cleveland, OH (United States); Hachamovitch, Rory; Jaber, Wael A.; Brunken, Richard; Cerqueira, Manuel D.; Marwick, Thomas [Imaging Institute, Heart and Vascular, Cleveland, OH (United States)

    2012-10-15

    LV mechanical dyssynchrony (LVMD) is a risk marker in narrow QRS cardiomyopathy, but its association with treatment outcome is not well defined. We determined the incremental prognostic value of LVMD in ischemic cardiomyopathy, and assessed its interaction with scar, myocardium in jeopardy and subsequent revascularization. Stress and rest {sup 82}Rb gated PET were performed in 486 consecutive patients (66 {+-} 11 years of age, 82 % men, LV ejection fraction 26 {+-} 6 %) with ischemic cardiomyopathy and QRS <120 ms. LVMD was determined as the standard deviation (SD) of the regional time to minimum volume on phase analysis of the gated PET scan. A propensity score was determined to adjust for nonrandomized referral after imaging to coronary artery bypass grafting (CABG). In a Cox proportional hazards model used to determine the association between measures of LVMD and survival time, CABG was included as a time-dependent covariate and the use of an implantable cardiac defibrillator (ICD) after imaging was modeled as a stratification factor. Over 1.9 {+-} 1.4 years, 96 patients (20 %) underwent CABG and 108 (22 %) died. LVMD was a predictor of mortality (HR 1.16. 95 % CI 1.03;1.30, per 10 increase in phase SD, p = 0.02) after adjusting for baseline covariates, prior ICD use, the use of postimaging CABG, and other imaging data. There was a significant interaction between phase SD and CABG. Nested Cox models showed that LVMD carried prognostic information incremental to clinical variables, ejection fraction and CABG. LVMD is an independent predictor of all-cause mortality in ischemic cardiomyopathy, and may identify patients with a differential survival benefit from CABG versus medical therapy. (orig.)

  20. Quantification of biofilm accumulation by an optical approach

    OpenAIRE

    Bakke, Rune; Kalvenes, Sigmund; Kommedal, Roald

    2001-01-01

    Methods for non-invasive, in situ, measurements of biofilm optical density and biofilm optical thickness were evaluated based on Pseudomonas aeruginosa experiments. Biofilm optical density, measured as intensity reduction of a light beam transmitted through the biofilm, correlates with biofilm mass, measured as total carbon and as cell mass. The method is more sensitive and less labor intensive than other commonly used methods for determining extent of biofilm mass accumulation. Biofilm optic...

  1. Global screening of potential Candida albicans biofilm-related transcription factors via network comparison

    Directory of Open Access Journals (Sweden)

    Murillo Luis A

    2010-01-01

    Full Text Available Abstract Background Candida albicans is a commonly encountered fungal pathogen in humans. The formation of biofilm is a major virulence factor in C. albicans pathogenesis and is related to antidrug resistance of this organism. Although many factors affecting biofilm have been analyzed, molecular mechanisms that regulate biofilm formation still await to be elucidated. Results In this study, from the gene regulatory network perspective, we developed an efficient computational framework, which integrates different kinds of data from genome-scale analysis, for global screening of potential transcription factors (TFs controlling C. albicans biofilm formation. S. cerevisiae information and ortholog data were used to infer the possible TF-gene regulatory associations in C. albicans. Based on TF-gene regulatory associations and gene expression profiles, a stochastic dynamic model was employed to reconstruct the gene regulatory networks of C. albicans biofilm and planktonic cells. The two networks were then compared and a score of relevance value (RV was proposed to determine and assign the quantity of correlation of each potential TF with biofilm formation. A total of twenty-three TFs are identified to be related to the biofilm formation; ten of them are previously reported by literature evidences. Conclusions The results indicate that the proposed screening method can successfully identify most known biofilm-related TFs and also identify many others that have not been previously reported. Together, this method can be employed as a pre-experiment screening approach that reveals new target genes for further characterization to understand the regulatory mechanisms in biofilm formation, which can serve as the starting point for therapeutic intervention of C. albicans infections.

  2. Comparison of RNA extraction methods from biofilm samples of Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    França Angela

    2011-12-01

    Full Text Available Abstract Background Microbial biofilms are communities of bacteria adhered to a surface and surrounded by an extracellular polymeric matrix. Biofilms have been associated with increased antibiotic resistance and tolerance to the immune system. Staphylococcus epidermidis is the major bacterial species found in biofilm-related infections on indwelling medical devices. Obtaining high quality mRNA from biofilms is crucial to validate the transcriptional measurements associated with the switching to the biofilm mode of growth. Therefore, we selected three commercially available RNA extraction kits with distinct characteristics, including those using silica membrane or organic extraction methods, and enzymatic or mechanical cell lysis, and evaluated the RNA quality obtained from two distinct S. epidermidis bacterial biofilms. Results RNA extracted using the different kits was evaluated for quantity, purity, integrity, and functionally. All kits were able to extract intact and functional total RNA from the biofilms generated from each S. epidermidis strain. The results demonstrated that the kit based on mechanical lysis and organic extraction (FastRNA® Pro Blue was the only one that was able to isolate pure and large quantities of RNA. Normalized expression of the icaA virulence gene showed that RNA extracted with PureLink™ had a significant lower concentration of icaA mRNA transcripts than the other kits tested. Conclusions When working with complex samples, such as biofilms, that contain a high content extracellular polysaccharide and proteins, special care should be taken when selecting the appropriate RNA extraction system, in order to obtain accurate, reproducible, and biologically significant results. Among the RNA extraction kits tested, FastRNA® Pro Blue was the best option for both S. epidermidis biofilms used.

  3. Investigating the Complex Conductivity Response of Different Biofilm Components

    Science.gov (United States)

    Atekwana, E. A.; Abdel Aal, G. Z.; Sarkisova, S. A.; Patrauchan, M.

    2013-12-01

    Microbial biofilms are structured communities of microorganisms commonly attached to a surface and embedded in a self-produced matrix. The matrix is composed of extracellular polymeric substances (EPS), which commonly include extracellular DNA, proteins, and polysaccharides. In addition, the biofilm structure may contain some other components such as metabolic byproducts and biogenic nanoparticle minerals. Biogeophysical studies have demonstrated the sensitivity of spectral induced polarization (SIP) measurements to the growth and development of biofilm in saturated porous media. However, the mechanisms are not very well understood. The overarching goal of this study is to determine the contribution of the different biofilm components to the spectral induced polarization (SIP) signatures in aqueous and/or porous media. We investigated the SIP response of different biofilm components including bacterial cells, alginate (exopolysaccharide), phenazine (redox-active metabolite) and magnetite (semi-conductive particulate matter). The porous media was glass beads with grain diameter of 1 mm. Each of the biofilm components was suspended in a low salt growth medium with electrolytic conductivity of 513 μS/cm. Using Pseudomonas aeruginosa PAO1 cells in suspension and in porous media, we observed the increase in SIP parameters with increasing cell density with a very well defined relaxation peak at a frequency of ~10 Hz, which was predicted by recently developed quantitative models. However, this characteristic relaxation peak was minimized in the presence of porous media. We also observed that cells suspended in alginate enhance the polarization and show a peak frequency at ~10 Hz. The study of alginate gelation in liquid phase and porous media in vitro revealed that solidified (gelated) alginate (from brown algae) increased the magnitude of imaginary conductivity while real conductivity increased very moderately. In contrast, the study of the SIP response within a porous

  4. Microbial pathogenesis and biofilm development

    DEFF Research Database (Denmark)

    Reisner, A.; Høiby, N.; Tolker-Nielsen, Tim; Molin, Søren

    2004-01-01

    Microbial infections constitute a major cause of premature death in large parts of the world, and for several years we have seen an alarming tendency towards increasing problems of controlling such infections by antibiotic treatments. It is hoped that an improved understanding of the infectious...... been termed 'maturation', which is thought to be mediated by a differentiation process. Maturation into late stages of biofilm development resulting in stable and robust structures may require the formation of a matrix of extracellular polymeric substances (EPS), which are most often assumed to consist...... of polysaccharides. A recent striking finding is that DNA released from biofilm cells may be important as an initial matrix former [3]. At later times other EPS molecules may add to the shape and quality of the mature biofilm structure. Figure 1 summarizes the principle stepsinvolved in the...

  5. Biofilmes e Lentes de Contacto

    OpenAIRE

    Silva, Ana Rita Baptista da

    2012-01-01

    O Biofilme pode ser designado como um grupo funcional de microrganismos aderidos a uma superfície estando envolvidos numa matriz exopolimérica. As bactérias organizam-se em Biofilmes, devido a, quando não estão organizadas em microcolónias terem reduzida taxa de sobrevivência. A estrutura e formação destes filmes são heterogéneas, integrando em si nichos de bactérias com graus de crescimento distintos. O estudo da relação dos Biofilmes com as lentes de contacto é pertinente, pois estas são...

  6. Survival of falling robots

    Science.gov (United States)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  7. Growing and Analyzing Biofilms in Flow Chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic......, and disassembly and cleaning of the system. In addition, embedding and fluorescent in situ hybridization of flow chamber–grown biofilms are addressed. Curr. Protoc. Microbiol. 21:1B.2.1-1B.2.17. © 2011 by John Wiley & Sons, Inc....

  8. D-Amino Acids Trigger Biofilm Disassembly

    OpenAIRE

    Kolodkin-Gal, Illana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-01-01

    Bacteria form communities known as biofilms, which disassemble over time. Here we found that prior to biofilm disassembly Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofi...

  9. Biofilm formation is a risk factor for mortality in patients with Candida albicans bloodstream infection-Scotland, 2012-2013.

    Science.gov (United States)

    Rajendran, R; Sherry, L; Nile, C J; Sherriff, A; Johnson, E M; Hanson, M F; Williams, C; Munro, C A; Jones, B J; Ramage, G

    2016-01-01

    Bloodstream infections caused by Candida species remain a significant cause of morbidity and mortality in hospitalized patients. Biofilm formation by Candida species is an important virulence factor for disease pathogenesis. A prospective analysis of patients with Candida bloodstream infection (n = 217) in Scotland (2012-2013) was performed to assess the risk factors associated with patient mortality, in particular the impact of biofilm formation. Candida bloodstream isolates (n = 280) and clinical records for 157 patients were collected through 11 different health boards across Scotland. Biofilm formation by clinical isolates was assessed in vitro with standard biomass assays. The role of biofilm phenotype on treatment efficacy was also evaluated in vitro by treating preformed biofilms with fixed concentrations of different classes of antifungal. Available mortality data for 134 patients showed that the 30-day candidaemia case mortality rate was 41%, with predisposing factors including patient age and catheter removal. Multivariate Cox regression survival analysis for 42 patients showed a significantly higher mortality rate for Candida albicans infection than for Candida glabrata infection. Biofilm-forming ability was significantly associated with C. albicans mortality (34 patients). Finally, in vitro antifungal sensitivity testing showed that low biofilm formers and high biofilm formers were differentially affected by azoles and echinocandins, but not by polyenes. This study provides further evidence that the biofilm phenotype represents a significant clinical entity, and that isolates with this phenotype differentially respond to antifungal therapy in vitro. Collectively, these findings show that greater clinical understanding is required with respect to Candida biofilm infections, and the implications of isolate heterogeneity. PMID:26432192

  10. Systems of Quasi-Linear PDEs Arising in the Modelling of Biofilms and Related Dynamical Questions

    OpenAIRE

    Sonner, Stefanie

    2012-01-01

    In the deterministic continuum modelling of biofilms arise systems of degenerate parabolic equations. The highly irregular structure of the governing equations requires new mathematical concepts and ideas to study questions like the existence and uniqueness of solutions. We prove the well-posedness of an extended biofilm model that takes a communication mechanism of the bacteria into account. Motivated by the biological applications we also study the qualitative behaviour of general systems o...

  11. Effect of Amylase, Papaein and Pepsin enzyme solutions on Candida biofilm formed on acrylic resin plates

    OpenAIRE

    A Jafari Nodoushan; A Fallah Tafti; Emami, P; H Ashoori

    2013-01-01

    Abstract:     Background and Aim: Denture stomatitis results from colonization of oral Candida on the surface of denture acrylic base. To control this infection,Candida biofilm formation must be prevented using mechanical and chemical decontamination. The purpose of the present study was to evaluate the effect of Amylase, Papaein and Pepsin solutions on removal of Candida Albicans plaques formed on acrylic resin plates.   Materials and Methods : In this experimental study Candida biofilm was ...

  12. Effect of Amylase, Papaein and Pepsin enzyme solutions on Candida biofilm formed on acrylic resin plates

    OpenAIRE

    AA jafari_nodoushan; FalahTafti A; Emmami P; Ashouri

    2013-01-01

    Background and Aim: Denture stomatitis results from colonization of oral Candida on the surface of denture acrylic base. To control this infection,Candida biofilm formation must be prevented using mechanical and chemical decontamination. The purpose of the present study was to evaluate the effect of Amylase, Papaein and Pepsin solutions on removal of Candida Albicans plaques formed on acrylic resin plates. Materials and Methods: In this experimental study Candida biofilm was formed on 220 ...

  13. Enzyme multilayer coatings inhibit Pseudomonas aeruginosa biofilm formation on urinary catheters

    OpenAIRE

    Ivanova, Kristina; Fernandes, Margarida M.; Mendoza, Ernest; Tzanov, Tzanko

    2015-01-01

    Bacteria use a signaling mechanism called quorum sensing (QS) to form complex communities of surface-attached cells known as biofilms. This protective mode of growth allows them to resist antibiotic treatment and originates the majority of hospital-acquired infections. Emerging alternatives to control biofilm-associated infections and multidrug resistance development interfere with bacterial QS pathways, exerting less selective pressure on bacterial population. In this study, biologically sta...

  14. Effects of Benzalkonium Chloride on Planktonic Growth and Biofilm Formation by Animal Bacterial Pathogens

    OpenAIRE

    Ebrahimi, Azizollah; Hemati, Majid; Shabanpour, Ziba; Habibian Dehkordi, Saeed; BAHADORAN, Shahab; Lotfalian, Sharareh; Khubani, Shahin

    2015-01-01

    Background: Resistance toward quaternary ammonium compounds (QACs) is widespread among a diverse range of microorganisms and is facilitated by several mechanisms such as biofilm formation. Objectives: In this study, the effects of benzalkonium chloride on planktonic growth and biofilm formation by some field isolates of animal bacterial pathogens were investigated. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus aureus and Streptococcus...

  15. Microbial diversities (16S and 18S rDNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper

    Science.gov (United States)

    Drinking water (DW) biofilm communities influence the survival of opportunistic pathogens, e.g. Legionella pneumophila, via parasitization of free-living amoebae such as Acanthamoebae. Yet knowledge about the microbial composition of DW biofilms developed on common in-premise pl...

  16. Analysis of the role of the LH92_11085 gene of a biofilm hyper-producing Acinetobacter baumannii strain on biofilm formation and attachment to eukaryotic cells.

    Science.gov (United States)

    Álvarez-Fraga, Laura; Pérez, Astrid; Rumbo-Feal, Soraya; Merino, María; Vallejo, Juan Andrés; Ohneck, Emily J; Edelmann, Richard E; Beceiro, Alejandro; Vázquez-Ucha, Juan C; Valle, Jaione; Actis, Luis A; Bou, Germán; Poza, Margarita

    2016-05-18

    Acinetobacter baumannii is a nosocomial pathogen that has a considerable ability to survive in the hospital environment partly due to its capacity to form biofilms. The first step in the process of establishing an infection is adherence of the bacteria to target cells. Chaperone-usher pili assembly systems are involved in pilus biogenesis pathways that play an important role in adhesion to host cells and tissues as well as medically relevant surfaces. After screening a collection of strains, a biofilm hyper-producing A. baumannii strain (MAR002) was selected to describe potential targets involved in pathogenicity. MAR002 showed a remarkable ability to form biofilm and attach to A549 human alveolar epithelial cells. Analysis of MAR002 using transmission electron microscopy (TEM) showed a significant presence of pili on the bacterial surface. Putative protein-coding genes involved in pili formation were identified based on the newly sequenced genome of MAR002 strain (JRHB01000001/2 or NZ_JRHB01000001/2). As assessed by qRT-PCR, the gene LH92_11085, belonging to the operon LH92_11070-11085, is overexpressed (ca. 25-fold more) in biofilm-associated cells compared to exponential planktonic cells. In the present work we investigate the role of this gene on the MAR002 biofilm phenotype. Scanning electron microscopy (SEM) and biofilm assays showed that inactivation of LH92_11085 gene significantly reduced bacterial attachment to A549 cells and biofilm formation on plastic, respectively. TEM analysis of the LH92_11085 mutant showed the absence of long pili formations normally present in the wild-type. These observations indicate the potential role this LH92_11085 gene could play in the pathobiology of A baumannii. PMID:26854744

  17. [Dental plaque as a biofilm - a risk in oral cavity and methods to prevent].

    Science.gov (United States)

    Chałas, Renata; Wójcik-Chęcińska, Ilona; Woźniak, Michał J; Grzonka, Justyna; Święszkowski, Wojciech; Kurzydłowski, Krzysztof J

    2015-01-01

    Bacteria living constantly in the oral cavity are in the form of a biofilm. The biofilm formed on a solid base such as the enamel of the teeth, fillings, restorations, orthodontic appliances or obturators is dental plaque. Disturbance of homeostasis of biofilm, excessive growth or increase in the number of acid-forming bacteria leads to the development of the most common diseases of the oral cavity, i.e. dental caries and periodontal disease. The presence of bacterial biofilm on the walls of the root canal or at the top of the root on an outer wall leads to complications and failure in endodontic treatment. The aim of the study was to present the latest information on the occurrence, development and the role of biofilm in the etiopathogenesis of oral diseases and its control. Based on the literature analyzed, it can be concluded that the biofilm, due to its complex structure and numerous mechanisms of bacteria adaptation, is an effective barrier against the traditional agents with antibacterial properties. There are now great hopes for nanotechnology as an innovative method for obtaining new structures of nanometric size and different properties than source materials. The use of antibacterial properties of nano-silver used in dentistry significantly reduces the metabolic activity and the number of colony forming bacteria and lactic acid production in the biofilm. PMID:26561840

  18. Antibiofilm activity of carboxymethyl chitosan on the biofilms of non-Candida albicans Candida species.

    Science.gov (United States)

    Tan, Yulong; Leonhard, Matthias; Moser, Doris; Schneider-Stickler, Berit

    2016-09-20

    Although most cases of candidiasis have been attributed to Candida albicans, non-C. albicans Candida species have been isolated in increasing numbers in patients. In this study, we determined the inhibition of carboxymethyl chitosan (CM-chitosan) on single and mixed species biofilm of non-albicans Candida species, including Candida tropicalis, Candida parapsilosis, Candida krusei and Candida glabrata. Biofilm by all tested species in microtiter plates were inhibited nearly 70%. CM-chitosan inhibited mixed species biofilm in microtiter plates and also on medical materials surfaces. To investigate the mechanism, the effect of CM-chitosan on cell viability and biofilm growth was employed. CM-chitosan inhibited Candida planktonic growth as well as adhesion. Further biofilm formation was inhibited with CM-chitosan added at 90min, 12h or 24h after biofilm initiation. CM-chitosan was not only able to inhibit the metabolic activity of Candida cells, but was also active upon the establishment and the development of biofilms. PMID:27261732

  19. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids.

    Science.gov (United States)

    Sanchez, Laura M; Cheng, Andrew T; Warner, Christopher J A; Townsley, Loni; Peach, Kelly C; Navarro, Gabriel; Shikuma, Nicholas J; Bray, Walter M; Riener, Romina M; Yildiz, Fitnat H; Linington, Roger G

    2016-01-01

    Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition, we describe the identification of taurine-conjugated bile acids as inhibitors of biofilm formation against both Vibrio cholerae and Pseudomonas aeruginosa. Taurocholic acid (1) was isolated from the fermentation broth of the fish microbiome-derived strain of Rhodococcus erythropolis and identified using standard NMR and MS methods. Screening of the twelve predominant human steroidal bile acid components revealed that a subset of these compounds can inhibit biofilm formation, induce detachment of preformed biofilms under static conditions, and that these compounds display distinct structure-activity relationships against V. cholerae and P. aeruginosa. Our findings highlight the significance of distinct bile acid components in the regulation of biofilm formation and dispersion in two different clinically relevant bacterial pathogens, and suggest that the bile acids, which are endogenous mammalian metabolites used to solubilize dietary fats, may also play a role in maintaining host health against bacterial infection. PMID:26992172

  20. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids.

    Directory of Open Access Journals (Sweden)

    Laura M Sanchez

    Full Text Available Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition, we describe the identification of taurine-conjugated bile acids as inhibitors of biofilm formation against both Vibrio cholerae and Pseudomonas aeruginosa. Taurocholic acid (1 was isolated from the fermentation broth of the fish microbiome-derived strain of Rhodococcus erythropolis and identified using standard NMR and MS methods. Screening of the twelve predominant human steroidal bile acid components revealed that a subset of these compounds can inhibit biofilm formation, induce detachment of preformed biofilms under static conditions, and that these compounds display distinct structure-activity relationships against V. cholerae and P. aeruginosa. Our findings highlight the significance of distinct bile acid components in the regulation of biofilm formation and dispersion in two different clinically relevant bacterial pathogens, and suggest that the bile acids, which are endogenous mammalian metabolites used to solubilize dietary fats, may also play a role in maintaining host health against bacterial infection.

  1. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation.

    Science.gov (United States)

    Janissen, Richard; Murillo, Duber M; Niza, Barbara; Sahoo, Prasana K; Nobrega, Marcelo M; Cesar, Carlos L; Temperini, Marcia L A; Carvalho, Hernandes F; de Souza, Alessandra A; Cotta, Monica A

    2015-01-01

    Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation. PMID:25891045

  2. Transcriptional response to fluconazole and amphotericin B in Candida albicans biofilms.

    Science.gov (United States)

    Nailis, Heleen; Vandenbosch, Davy; Deforce, Dieter; Nelis, Hans J; Coenye, Tom

    2010-05-01

    Biofilm formation is often associated with persistent Candida albicans infections. Treatment of these infections is difficult, since sessile C. albicans cells show increased resistance towards antifungal agents. The molecular mechanisms behind biofilm resistance in C. albicans are not yet understood. In the present study, we investigated the transcriptional response in young and mature in vitro-grown biofilms after a short and longer exposure time to high doses of fluconazole or amphotericin B. Treatment of biofilms with high doses of antifungal agents resulted in a drug-specific transcriptional response. Exposure of biofilms to fluconazole induced upregulation of genes encoding enzymes involved in ergosterol biosynthesis (ERG1, ERG3, ERG11 and ERG25). Treatment of biofilms with amphotericin B resulted in an overexpression of KRE1 and SKN1, two genes encoding proteins involved in beta-1,6-glucan biosynthesis. Our data indicate that sessile C. albicans cells show controlled regulation of gene expression, as they quickly mount a drug-specific transcriptional response in the presence of high doses of antifungal agents. These transcriptional changes suggest upregulation of ergosterol biosynthesis (fluconazole) and upregulation of beta-1,6-glucan biosynthesis (amphotericin B) in sessile C. albicans cells that might contribute to a resistant biofilm phenotype. PMID:20170727

  3. Heavy metals-bioremediation by highly radioresistant Deinococcus radiodurans biofilm prospective use in nuclear reactor decontamination

    International Nuclear Information System (INIS)

    Over the past few decades, rapid growth of chemical industries have enhanced the heavy metal contamination in water, thereby raising environmental concerns. In the nuclear power industry, decontamination procedure also generates radioactive heavy metal containing wastes. Radio-resistant Deinococcus radiodurans R1 is reported to be a potential candidate for the treatment of low active waste material. To use any bacterium for bioremediation purpose, knowledge about its biofilm production characteristics is a prerequisite. This is because biofilm-mediated bioremediation processes are more efficient as compared to processes mediated by their planktonic counterparts. However, so far there are no reports on the biofilm producing capability of D. radiodurans. We observed that tagging of D. radiodurans by a plasmid harbouring gfp and kanR conferred significant biofilm producing property to the bacterium. Chemical analysis of biofilm matrix components produced by D. radiodurans showed that the matrix consists primarily of proteins and carbohydrates with small amount of extracellular DNA (eDNA). Further, we studied the effect of Ca2+ on D. radiodurans biofilm formation and it was observed that D. radiodurans biofilm formation was enhanced at higher concentrations of Ca2+. We investigated the capability of D. radiodurans biofilm to remove the heavy metals Co and Ni from synthetic waste streams. Results showed that Ca2+ enhanced the bioremediation of both heavy metals (Co, Ni) by D. radiodurans biofilms in a highly significant manner. In the presence of 50 mM Ca2+ 35% Co removal and 25% Ni removal was observed, when compared to biofilm grown in the absence of Ca2+, which showed mere 7% Co and 3% Ni removal, respectively. The results showed that the presence of Ca2+ significantly enhanced exopolysaccharide and eDNA (both negatively charged) production in the biofilm matrix. This indicated adsorption could be the major mechanism behind enhanced biofilm mediated removal of heavy

  4. Cell death in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Webb, J.S.; Thompson, L.S.; James, S.;

    2003-01-01

    Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids....... However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death...... occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development...

  5. Modelling the growth of a methanotrophic biofilm

    DEFF Research Database (Denmark)

    Arcangeli, J.-P.; Arvin, E.

    1999-01-01

    This article discusses the growth of methanotrophic biofilms. Several independent biofilm growths scenarios involving different inocula were examined. Biofilm growth, substrate removal and product formation were monitored throughout the experiments. Based on the oxygen consumption it was concluded...... that heterotrophs and nitrifiers co-existed with methanotrophs in the biofilm. Heterotrophic biomass grew on soluble polymers formed by the hydrolysis of dead biomass entrapped in the biofilm. Nitrifier populations developed because of the presence of ammonia in the mineral medium. Based on these...... analysis was performed on this model. It indicated that the most influential parameters were those related to the biofilm (i.e. density; solid-volume fraction; thickness). This suggests that in order to improve the model, further research regarding the biofilm structure and composition is needed....

  6. Vibrio cholerae Biofilms and Cholera Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Anisia J Silva

    2016-02-01

    Full Text Available Vibrio cholerae can switch between motile and biofilm lifestyles. The last decades have been marked by a remarkable increase in our knowledge of the structure, regulation, and function of biofilms formed under laboratory conditions. Evidence has grown suggesting that V. cholerae can form biofilm-like aggregates during infection that could play a critical role in pathogenesis and disease transmission. However, the structure and regulation of biofilms formed during infection, as well as their role in intestinal colonization and virulence, remains poorly understood. Here, we review (i the evidence for biofilm formation during infection, (ii the coordinate regulation of biofilm and virulence gene expression, and (iii the host signals that favor V. cholerae transitions between alternative lifestyles during intestinal colonization, and (iv we discuss a model for the role of V. cholerae biofilms in pathogenicity.

  7. In situ monitoring of Shewanella oneidensis MR-1 biofilm growth on gold electrodes by using a Pt microelectrode.

    Science.gov (United States)

    Bao, Han; Zheng, Zhanwang; Yang, Bin; Liu, Ding; Li, Feifang; Zhang, Xingwang; Li, Zhongjian; Lei, Lecheng

    2016-06-01

    Much attention has been focused on electrochemically active bacteria (EAB) in the application of bioelectrochemical systems (BESs). Studying the EAB biofilm growth mechanism as well as electron transfer mechanism provides a route to upgrade BES performance. But an effective bacterial growth monitoring method on the biofilm scale is still absent in this field. In this work, electrode-attached bacterial biofilms formed by Shewanella oneidensis MR-1 were dynamically monitored through a microelectrode method. For S. oneidensis MR-1, a respiratory electron transport chain is associated with the secretion of riboflavin, severing as the cofactor to the outer membrane c-type cytochromes. The biofilm growth was monitored through adopting riboflavin as an electrochemical probe during the approach of the microelectrode to the biofilm external surface. This method allows in vivo and in situ biofilm monitoring at different growth stages without destructive manipulation. Furthermore, the biofilm growth monitoring results have been proved to be relatively accurate through observation under confocal laser scanning microscopy. We further applied this method to investigate the effects of four environmental factors (the concentrations of dissolved oxygen, sodium lactate, riboflavin as well as the electrode potential) on S. oneidensis MR-1 biofilm development. PMID:26850925

  8. Biofilm monitoring using complex permittivity.

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Susan Jeanne; McGrath, Lucas K.; Dolan, Patricia L.; Yelton, William Graham

    2008-10-01

    There is strong interest in the detection and monitoring of bio-fouling. Bio-fouling problems are common in numerous water treatments systems, medical and dental apparatus and food processing equipment. Current bio-fouling control protocols are time consuming and costly. New early detection techniques to monitor bio-forming contaminates are means to enhanced efficiency. Understanding the unique dielectric properties of biofilm development, colony forming bacteria and nutrient background will provide a basis to the effectiveness of controlling or preventing biofilm growth. Dielectric spectroscopy measurements provide values of complex permittivity, {var_epsilon}*, of biofilm formation by applying a weak alternating electric field at various frequencies. The dielectric characteristic of the biofilm, {var_epsilon}{prime}, is the real component of {var_epsilon}* and measures the biofilm's unique ability to store energy. Graphically observed dependencies of {var_epsilon}{prime} to frequency indicate dielectric relaxation or dielectric dispersion behaviors that mark the particular stage of progression during the development of biofilms. In contrast, any frequency dependency of the imaginary component, {var_epsilon}{double_prime} the loss factor, is expressed as dielectric losses from the biofilm due to dipole relaxation. The tangent angle of these two component vectors is the ratio of the imaginary component to the real component, {var_epsilon}{double_prime}/{var_epsilon}{prime} and is referred to as the loss angle tangent (tan {delta}) or dielectric loss. Changes in tan {delta} are characteristic of changes in dielectric losses during various developmental stages of the films. Permittivity scans in the above figure are of biofilm growth from P. Fluorescens (10e7 CFU's at the start). Three trends are apparent from these scans, the first being a small drop in the imaginary permittivity over a 7 hours period, best seen in the Cole-Cole plot (a). The second trend

  9. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae

    DEFF Research Database (Denmark)

    Matz, Carsten; McDougald, D.; Moreno, A.M.; Yung, P.Y.; Yildiz, F.H.; Kjelleberg, S.

    2005-01-01

    . Alternatively, it has been proposed that bacterial pathogens are an integral part of the natural microbial food web and thus their survival is constrained by protozoan predation. Here, we report that both explanations are interrelated. our data show that biofilms are the protective agent enabling V. cholerae to...... of V. cholerae biofilms was found to be widespread among toxigenic and nontoxigenic isolates. Our results provide a mechanistic explanation for the adaptive advantage of surf ace-associated growth in the environmental persistence of V. cholerae and suggest an important contribution of protozoan...

  10. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms

    DEFF Research Database (Denmark)

    Gjermansen, Morten; Ragas, Paula Cornelia; Sternberg, Claus;

    2005-01-01

    that they must be able to regulate their ability to form biofilm and to dissolve biofilm. We present an investigation of a biofilm dissolution process occurring in flow-chamber-grown Pseudomonas putida biofilms. Local starvation-induced biofilm dissolution appears to be an integrated part of P. putida...

  11. Modeling cell-death patterning during biofilm formation

    International Nuclear Information System (INIS)

    Self-organization by bacterial cells often leads to the formation of a highly complex spatially-structured biofilm. In such a bacterial biofilm, cells adhere to each other and are embedded in a self-produced extracellular matrix (ECM). Bacillus substilis bacteria utilize localized cell-death patterns which focuses mechanical forces to form wrinkled sheet-like structures in three dimensions. A most intriguing feature underlying this biofilm formation is that vertical buckling and ridge location is biased to occur in region of high cell-death. Here we present a spatially extended model to investigate the role of the bacterial secreted ECM during the biofilm formation and the self-organization of cell-death. Using this reaction-diffusion model we show that the interaction between the cell's motion and the ECM concentration gives rise to a self-trapping instability, leading to variety of cell-death patterns. The resultant spot patterns generated by our model are shown to be in semi-quantitative agreement with recent experimental observation. (paper)

  12. Quorum sensing in water and wastewater treatment biofilms.

    Science.gov (United States)

    Feng, Lin; Wu, Zhuoying; Yu, Xin

    2013-04-01

    Fixed film processes and activated sludge processes are two main families of wastewater treatment systems which all refer to the heterogeneous microbial communities. Meanwhile, biofilms in drinking water distribution systems (DWDS) and biofouling in membrane systems are significant problems in the water and wastewater treatment which reduce the microbial quality of drinking water and limit the development of membrane system respectively. Since biofilms and quorum sensing (QS) as two microbial social behaviors have been inextricably linked, a number of studies have focused on the role of QS signaling and QS inhibition in the processes of water and wastewater treatment, which will help us engineer these biological treatment processes successfully and develop promising approaches for control of microbial adhesion, colonization and biofilm formation. This review gives a summary of recent known QS mechanisms and their role in biofilm formation for different species. Particular attentions are dedicated to the signaling molecules involved in some microbial granulation processes and the potential applications by some of their natural and synthetic analogues in the treatment of membrane biofouling. PMID:24620615

  13. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms.

    Science.gov (United States)

    Klein, Marlise I; Hwang, Geelsu; Santos, Paulo H S; Campanella, Osvaldo H; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases. PMID:25763359

  14. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms

    Directory of Open Access Journals (Sweden)

    Marlise eKlein

    2015-02-01

    Full Text Available Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS, eDNA and lipoteichoic acid (LTA. EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases.

  15. Survival Analysis

    CERN Document Server

    Miller, Rupert G

    2011-01-01

    A concise summary of the statistical methods used in the analysis of survival data with censoring. Emphasizes recently developed nonparametric techniques. Outlines methods in detail and illustrates them with actual data. Discusses the theory behind each method. Includes numerous worked problems and numerical exercises.

  16. A fungal biofilm reactor based on metal structured packing improves the quality of a Gla::GFP fusion protein produced by Aspergillus oryzae

    OpenAIRE

    Zune, Quentin; Delepierre, Anissa; Gofflot, Sebastien; Bauwens, Julien; Twizere, Jean-Claude; Punt, P. J.; Francis, Frédéric; Bawin, Thomas; Toye, Dominique; Delvigne, Frank

    2015-01-01

    Fungal biofilm is known to promote the excretion of secondary metabolites in accordance with solid-state related physiological mechanisms. This work is based on the comparative analysis of classical submerged fermentation with a fungal biofilm reactor for the production of a Gla::GFP fusion protein by Aspergillus oryzae. The biofilm reactor comprises a metal structured packing allowing the attachment of the fungal biomass. Since the production of the target protein is under the control of the...

  17. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Swearingen, Matthew C; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J; Falzarano, Anthony R; Wozniak, Daniel J; Hall-Stoodley, Luanne; Stoodley, Paul

    2016-02-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples. PMID:26536894

  18. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans.

    Science.gov (United States)

    Verma-Gaur, Jiyoti; Qu, Yue; Harrison, Paul F; Lo, Tricia L; Quenault, Tara; Dagley, Michael J; Bellousoff, Matthew; Powell, David R; Beilharz, Traude H; Traven, Ana

    2015-10-01

    The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability) we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease. PMID:26474309

  19. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Jiyoti Verma-Gaur

    2015-10-01

    Full Text Available The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease.

  20. Inhibitory activity of thymol on native and mature Gardnerella vaginalis biofilms: in vitro study.

    Science.gov (United States)

    Braga, Pier Carlo; Dal Sasso, Monica; Culici, Maria; Spallino, Alessandra

    2010-01-01

    Bacterial vaginosis (BV) is the most frequent diagnosis made in women with lower genital tract symptoms. It has recently been observed that 90 % of subjects with BV show the growth of bacteria in the form of biofilms as against only 10% without BV, and that Gardnerella vaginalis was the predominant species. The propensity of G. vaginalis to form biofilm is clinically relevant because this form of growth allows it to tolerate higher concentrations of certain antibiotics, thus increasing the possibilty of recurrent BV even after apparently curative therapy. The aim of this study was to investigate whether thymol (CAS 89-83-8), a molecule present in thyme essential oil, that is credited with having a series of pharmacological properties including antimicrobial and antifungal effects, can interfere with newly formed and mature G. vaginalis biofilms. The ability of G. vaginalis ATCC 49145 and two G. vaginalis strains isolated from human BV to form biofilm in flat-bottomed 96-well microtitre plates was verified, and the effects of thymol concentrations ranging from 1 to 1/16 MIC (minimum inhibitory concentration) on preformed and mature biofilms was investigated by means of spectrophotometric analysis, Nomarski interference contrast microscopy, and fluorescence microscopy with live-dead cell visualisation (SYTO 9 and propidium iodide). Native biofilm was inhibited by concentrations ranging from 1 MIC to 1/8 MIC (32.77% +/- 2.37 to 11.39% +/- 1.46), and mature biofilm was inhibited by concentrations ranging from 1 MIC to 1/4 MIC (26.18% +/- 1.36 to 13.20% +/- 1.44). Nomarski interference contrast and fluorescence microscopy visually confirmed these findings. As biofilm is a multi-factorial phenomenon, the multiple mechanisms of thymol may act on different steps in the evolution of mature biofilm. PMID:21175040