WorldWideScience

Sample records for biofilms introducing natural

  1. Natural genetic transformation in Acinetobacter sp. BD413 Biofilms: introducing natural genetic transformation as a tool for bioenhancement of biofilm reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickx, L.

    2002-07-01

    This study focussed on the localization and quantification of natural genetic transformation using neutral and disadvantageous genes in monoculture biofilms to investigate gene transfer and expression of the transferred genes in the absence of a selective advantage. Data obtained by this investigation were regarded as initial steps for evaluating the applicability of adding catabolic traits into the indigenous bacterial community of biofilm reactors by in situ natural genetic transformation. Because Acinetobacter spp. strains are readily found in waste water treatment plants and because Acinetobacter sp. BD413 possesses a high effective level of competence, natural genetic transformation was investigated in monoculture Acinetobacter sp. BD413 biofilms. The genes used for transformation encoded for the green fluorescent protein (GFP) and its variants. Monitoring of transformation events were performed with the use of automated confocal laser scanning microscopy (CLSM) and semi automated digital image processing and analysis. (orig.)

  2. Natural biofilm formation with Legionella pneumophila.

    Science.gov (United States)

    Portier, Emilie; Héchard, Yann

    2013-01-01

    Biofilm formation could be studied in various conditions. Most of the studies with Legionella pneumophila used monospecies biofilm in culture media. In some cases, it is important to study bacteria in conditions more close to environmental conditions. In this paper, we describe protocols to produce natural biofilms from river water that were spiked with L. pneumophila. PMID:23150397

  3. Preliminary assessment of the interaction of introduced biological agents with biofilms in water distribution systems.

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Michael B.; Caldwell, Sara; Jones, Howland D. T.; Altman, Susan Jeanne; Souza, Caroline Ann; McGrath, Lucas K.

    2005-12-01

    Basic research is needed to better understand the potential risk of dangerous biological agents that are unintentionally or intentionally introduced into a water distribution system. We report on our capabilities to conduct such studies and our preliminary investigations. In 2004, the Biofilms Laboratory was initiated for the purpose of conducting applied research related to biofilms with a focus on application, application testing and system-scale research. Capabilities within the laboratory are the ability to grow biofilms formed from known bacteria or biofilms from drinking water. Biofilms can be grown quickly in drip-flow reactors or under conditions more analogous to drinking-water distribution systems in annular reactors. Biofilms can be assessed through standard microbiological techniques (i .e, aerobic plate counts) or with various visualization techniques including epifluorescent and confocal laser scanning microscopy and confocal fluorescence hyperspectral imaging with multivariate analysis. We have demonstrated the ability to grow reproducible Pseudomonas fluorescens biofilms in the annular reactor with plate counts on the order of 10{sup 5} and 10{sup 6} CFU/cm{sup 2}. Stationary phase growth is typically reached 5 to 10 days after inoculation. We have also conducted a series of pathogen-introduction experiments, where we have observed that both polystyrene microspheres and Bacillus cereus (as a surrogate for B. anthracis) stay incorporated in the biofilms for the duration of our experiments, which lasted as long as 36 days. These results indicated that biofilms may act as a safe harbor for bio-pathogens in drinking water systems, making it difficult to decontaminate the systems.

  4. Oral Biofilm Architecture on Natural Teeth

    NARCIS (Netherlands)

    Zijnge, Vincent; van Leeuwen, M. Barbara M.; Degener, John E.; Abbas, Frank; Thurnheer, Thomas; Gmuer, Rudolf; Harmsen, Hermie J. M.

    2010-01-01

    Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and acces

  5. Marine and estuarine natural microbial biofilms: ecological and biogeochemical dimensions

    Directory of Open Access Journals (Sweden)

    O. Roger Anderson

    2016-08-01

    Full Text Available Marine and estuarine microbial biofilms are ubiquitously distributed worldwide and are increasingly of interest in basic and applied sciences because of their unique structural and functional features that make them remarkably different from the biota in the plankton. This is a review of some current scientific knowledge of naturally occurring microbial marine and estuarine biofilms including prokaryotic and microeukaryotic biota, but excluding research specifically on engineering and applied aspects of biofilms such as biofouling. Because the microbial communities including bacteria and protists are integral to the fundamental ecological and biogeochemical processes that support biofilm communities, particular attention is given to the structural and ecological aspects of microbial biofilm formation, succession, and maturation, as well as the dynamics of the interactions of the microbiota in biofilms. The intent is to highlight current state of scientific knowledge and possible avenues of future productive research, especially focusing on the ecological and biogeochemical dimensions.

  6. Natural Sources as Innovative Solutions Against Fungal Biofilms.

    Science.gov (United States)

    Girardot, Marion; Imbert, Christine

    2016-01-01

    Fungal cells are capable of adhering to biotic and abiotic surfaces and form biofilms containing one or more microbial species that are microbial reservoirs. These biofilms may cause chronic and acute infections. Fungal biofilms related to medical devices are particularly responsible for serious infections such as candidemia. Nowadays, only a few therapeutic agents have demonstrated activities against fungal biofilms in vitro and/or in vivo. So the discovery of new anti-biofilm molecules is definitely needed. In this context, biodiversity is a large source of original active compounds including some that have already proven effective in therapies such as antimicrobial compounds (antibacterial or antifungal agents). Bioactive metabolites from natural sources, useful for developing new anti-biofilm drugs, are of interest. In this chapter, the role of molecules isolated from plants, lichens, algae, microorganisms, or from animal or human origin in inhibition and/or dispersion of fungal biofilms (especially Candida and Aspergillus biofilms) is discussed. Some essential oils, phenolic compounds, saponins, peptides and proteins and alkaloids could be of particular interest in fighting fungal biofilms. PMID:27115410

  7. Oral biofilm architecture on natural teeth.

    Directory of Open Access Journals (Sweden)

    Vincent Zijnge

    Full Text Available Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and accessibility. Despite descriptions of initial plaque formation on the tooth surface, studies on mature plaque and plaque structure below the gum are limited to landmark studies from the 1970s, without appreciating the breadth of microbial diversity in the plaque. We used fluorescent in situ hybridization to localize in vivo the most abundant species from different phyla and species associated with periodontitis on seven embedded teeth obtained from four different subjects. The data showed convincingly the dominance of Actinomyces sp., Tannerella forsythia, Fusobacterium nucleatum, Spirochaetes, and Synergistetes in subgingival plaque. The latter proved to be new with a possibly important role in host-pathogen interaction due to its localization in close proximity to immune cells. The present study identified for the first time in vivo that Lactobacillus sp. are the central cells of bacterial aggregates in subgingival plaque, and that Streptococcus sp. and the yeast Candida albicans form corncob structures in supragingival plaque. Finally, periodontal pathogens colonize already formed biofilms and form microcolonies therein. These in vivo observations on oral biofilms provide a clear vision on biofilm architecture and the spatial distribution of predominant species.

  8. Oral biofilm architecture on natural teeth.

    Science.gov (United States)

    Zijnge, Vincent; van Leeuwen, M Barbara M; Degener, John E; Abbas, Frank; Thurnheer, Thomas; Gmür, Rudolf; Harmsen, Hermie J M

    2010-02-24

    Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and accessibility. Despite descriptions of initial plaque formation on the tooth surface, studies on mature plaque and plaque structure below the gum are limited to landmark studies from the 1970s, without appreciating the breadth of microbial diversity in the plaque. We used fluorescent in situ hybridization to localize in vivo the most abundant species from different phyla and species associated with periodontitis on seven embedded teeth obtained from four different subjects. The data showed convincingly the dominance of Actinomyces sp., Tannerella forsythia, Fusobacterium nucleatum, Spirochaetes, and Synergistetes in subgingival plaque. The latter proved to be new with a possibly important role in host-pathogen interaction due to its localization in close proximity to immune cells. The present study identified for the first time in vivo that Lactobacillus sp. are the central cells of bacterial aggregates in subgingival plaque, and that Streptococcus sp. and the yeast Candida albicans form corncob structures in supragingival plaque. Finally, periodontal pathogens colonize already formed biofilms and form microcolonies therein. These in vivo observations on oral biofilms provide a clear vision on biofilm architecture and the spatial distribution of predominant species.

  9. Effect of natural marine biofilms on galvanic corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, S.C.; LaFontaine, J.P. [Univ. of Delaware, Lewes, DE (United States)

    1998-11-01

    Galvanic corrosion of copper (UNS C11000), 1018 carbon steel (CS, UNS G10180), aluminum alloy 3003 (UNS A93003), and zinc (UNS Z32121) coupled to cathodes of UNS N08367 was tested with and without natural marine biofilms on the cathode surface. Weight losses were significantly higher, and corrosion currents were up to 2 decades higher with a biofilm on the cathode surface for anodes of copper, steel, and aluminum. There was no difference for zinc. Results showed an increase in consumption of the anodic material should be expected in any case where biofilms on the cathodic member of a galvanic couple result in a systematic and significant increase in reduction current at the mixed potential of the couple. Cathodic reduction currents (versus control with no biofilm) were increased at all potentials down to {approximately}{minus}900 mV{sub SCE}, resulting in an elevated current capacity capable of increasing the weight loss of anodic materials over a sustained period of at least 2 months. Biofilms, however, did not increase consumption of zinc anodes. Potentiodynamic polarization curves taken from the corroded samples were used successfully to predict the effect of biofilms on galvanic corrosion rates for the materials tested. Weight-loss values calculated by Faraday`s law using corrosion currents from the polarization curves agreed well with actual measured values for anodes of steel, aluminum, and zinc, although there were some discrepancies for copper.

  10. Naturally Ocurring Polyphosphate-accumulating Bacteria in Benthic Biofilms

    Science.gov (United States)

    Locke, N. A.; Saia, S. M.; Walter, M. T.; Carrick, H. J.; Buda, A. R.; Regan, J. M.

    2014-12-01

    Polyphosphate accumulating organisms (PAOs), known to store excess phosphorus (P) as polyphosphate (poly-P), influence P transport in the environment. Enhanced biological phosphorus removal (EBPR) from wastewater has long served as a basis to study bacterial PAOs, yet little research has genetically identified similar organisms in natural settings. Aerobic/anaerobic cycles, used to select for PAOs in EBPR, can result from changing environmental conditions such as night/day cycles for benthic biofilms. Benthic biofilms from eight Pennsylvanian streams were studied for naturally-occurring bacterial PAOs similar to those typically found in EBPR systems. PAOs were confirmed in the benthic biofilms by a characteristic yellow fluorescent emission from DAPI staining. Cells containing yellow fluorescence were separated from the rest of the sample using a flow cytometer, resulting in a physically enriched culture of PAOs from the benthic biofilms. Amplicon-based metagenomic sequencing will reveal the phylogeny of bacteria responsible for poly-P accumulation in these benthic biofilms. Sequencing data will be used to develop fluorescent in-situ hybridization (FISH) probes, and hybridizations will be performed on DAPI-stained cells to confirm poly-P accumulation by targeted phylotypes. Identifying PAOs in natural settings is a critical step towards studying environments that support high concentrations of PAOs, serving as significant factors in the P cycle. PAOs can then be connected to P transport models to help understand and mitigate P pollution in agricultural watersheds.

  11. Another Way to Introduce Natural Logarithms and e.

    Science.gov (United States)

    Christian, Robert R.

    1983-01-01

    A simple way to introduce natural logarithms and e is presented. The standard approach is outlined, followed by the approach via differentiating the exponential functions that the student knows about. (MNS)

  12. Biofilm control with natural and genetically-modified phages.

    Science.gov (United States)

    Motlagh, Amir Mohaghegh; Bhattacharjee, Ananda Shankar; Goel, Ramesh

    2016-04-01

    Bacteriophages, as the most dominant and diverse entities in the universe, have the potential to be one of the most promising therapeutic agents. The emergence of multidrug-resistant bacteria and the antibiotic crisis in the last few decades have resulted in a renewed interest in phage therapy. Furthermore, bacteriophages, with the capacity to rapidly infect and overcome bacterial resistance, have demonstrated a sustainable approach against bacterial pathogens-particularly in biofilm. Biofilm, as complex microbial communities located at interphases embedded in a matrix of bacterial extracellular polysaccharide substances (EPS), is involved in health issues such as infections associated with the use of biomaterials and chronic infections by multidrug resistant bacteria, as well as industrial issues such as biofilm formation on stainless steel surfaces in food industry and membrane biofouling in water and wastewater treatment processes. In this paper, the most recent studies on the potential of phage therapy using natural and genetically-modified lytic phages and their associated enzymes in fighting biofilm development in various fields including engineering, industry, and medical applications are reviewed. Phage-mediated prevention approaches as an indirect phage therapy strategy are also explored in this review. In addition, the limitations of these approaches and suggestions to overcome these constraints are discussed to enhance the efficiency of phage therapy process. Finally, future perspectives and directions for further research towards a better understanding of phage therapy to control biofilm are recommended.

  13. Biofilm control with natural and genetically-modified phages.

    Science.gov (United States)

    Motlagh, Amir Mohaghegh; Bhattacharjee, Ananda Shankar; Goel, Ramesh

    2016-04-01

    Bacteriophages, as the most dominant and diverse entities in the universe, have the potential to be one of the most promising therapeutic agents. The emergence of multidrug-resistant bacteria and the antibiotic crisis in the last few decades have resulted in a renewed interest in phage therapy. Furthermore, bacteriophages, with the capacity to rapidly infect and overcome bacterial resistance, have demonstrated a sustainable approach against bacterial pathogens-particularly in biofilm. Biofilm, as complex microbial communities located at interphases embedded in a matrix of bacterial extracellular polysaccharide substances (EPS), is involved in health issues such as infections associated with the use of biomaterials and chronic infections by multidrug resistant bacteria, as well as industrial issues such as biofilm formation on stainless steel surfaces in food industry and membrane biofouling in water and wastewater treatment processes. In this paper, the most recent studies on the potential of phage therapy using natural and genetically-modified lytic phages and their associated enzymes in fighting biofilm development in various fields including engineering, industry, and medical applications are reviewed. Phage-mediated prevention approaches as an indirect phage therapy strategy are also explored in this review. In addition, the limitations of these approaches and suggestions to overcome these constraints are discussed to enhance the efficiency of phage therapy process. Finally, future perspectives and directions for further research towards a better understanding of phage therapy to control biofilm are recommended. PMID:26931607

  14. Interactions of bacteria with diatoms: Influence on natural marine biofilms.

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; DeCosta, P.M.; Anil, A.C.; Sawant, S.S.

    influenced by monsoons: spatial and temporal variations. Marine Biology, 148, 693-709. Mitbavkar S., Anil A.C. (2007) Species interactions within a fouling diatom community: roles of nutrients, initial inoculum and competitive strategies. Biofouling, 23, 99... by bacteria that helps in competition and signaling processes. The changes in fouling diatom communities when treated with antibiotics indicate the relevance of bacteria in influencing the biofilm. Streptomycin and chloramphenicol (produced naturally...

  15. Introducing social and sustainable enterprise: changing the nature of business

    OpenAIRE

    Underwood, Sarah; Blundel, Richard; Lyon, Fergus; Schaefer, Anja

    2012-01-01

    This chapter introduces the volume, Social and Sustainable Enterprise: Changing the Nature of Business, which is edited by Sarah Underwood, Richard Blundel, Fergus Lyon and Anja Schaefer. The book draws together contemporary research contributions that seek to critically explore a range of issues in the specific context of social enterprise, sustainable entrepreneurship and social responsibility. Collectively, the chapters in this volume consider the challenges facing social enterprises globa...

  16. Biofilms

    OpenAIRE

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-01-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and ...

  17. Biodegradation of carbamate pesticides by natural river biofilms in different seasons and their effects on biofilm community structure.

    Science.gov (United States)

    Tien, Chien-Jung; Lin, Mon-Chu; Chiu, Wan-Hsin; Chen, Colin S

    2013-08-01

    This study investigated the ability of natural river biofilms from different seasons to degrade the carbamate pesticides methomyl, carbaryl and carbofuran in single and multiple pesticide systems, and the effects of these pesticides on algal and bacterial communities within biofilms. Spring biofilms had the lowest biomass of algae and bacteria but showed the highest methomyl degradation (>99%) and dissipation rates, suggesting that they might contain microorganisms with high methomyl degradation abilities. Degradation of carbofuran (54.1-59.5%) by biofilms in four seasons was similar, but low degradation of carbaryl (0-27.5%) was observed. The coexistence of other pesticides was found to cause certain effects on pesticide degradation and primarily resulted in lower diversity of diatoms and bacteria than when using a single pesticide. The tolerant diatoms and bacteria potentially having the ability to degrade test pesticides were identified. River biofilms could be suitable biomaterials or used to isolate degraders for bioremediating pesticide-contaminated water.

  18. Biodegradation of carbamate pesticides by natural river biofilms in different seasons and their effects on biofilm community structure

    International Nuclear Information System (INIS)

    This study investigated the ability of natural river biofilms from different seasons to degrade the carbamate pesticides methomyl, carbaryl and carbofuran in single and multiple pesticide systems, and the effects of these pesticides on algal and bacterial communities within biofilms. Spring biofilms had the lowest biomass of algae and bacteria but showed the highest methomyl degradation (>99%) and dissipation rates, suggesting that they might contain microorganisms with high methomyl degradation abilities. Degradation of carbofuran (54.1–59.5%) by biofilms in four seasons was similar, but low degradation of carbaryl (0–27.5%) was observed. The coexistence of other pesticides was found to cause certain effects on pesticide degradation and primarily resulted in lower diversity of diatoms and bacteria than when using a single pesticide. The tolerant diatoms and bacteria potentially having the ability to degrade test pesticides were identified. River biofilms could be suitable biomaterials or used to isolate degraders for bioremediating pesticide-contaminated water. -- Highlights: •Natural river biofilms showed high ability to degrade methomyl and carbofuran. •The presence of other pesticides caused certain effects on pesticide degradation. •Carbamate pesticides caused adverse effects on communities of diatoms and bacteria. •The tolerant diatoms and bacteria were found as potential pesticide-degraders. -- Biodegradation of carbamate pesticides by river biofilms

  19. Textile industry can be less pollutant: introducing naturally colored cotton

    Directory of Open Access Journals (Sweden)

    Solimar Garcia

    2014-07-01

    Full Text Available 800x600 Studies in agribusiness and textile industry, both involved with the production of manufacturing fashion present insufficient development for new products that could represent water savings and reduction of chemical effluents, making this production chain a sustainable business. This paper introduces the colored and organic cotton as an alternative to foster colored cotton producing farmers and improving the concept of sustainability in the textile sector. Results show that the increase in the production of colored and organic cotton, may result in reduction of water use, and consequent reduction in the disposal of effluents in nature. As the colored and organic cotton is produced by small farmers, governmental agencies need to participate in the effort of improving its production and distribution, providing the needed infrastructure to meet the increasing market. This would slowly encourage the reduction of white cotton consumption in exchange for this naturally colored product. The water used, and consequent polluted discharge in the use of colored cotton in the textile industry might be reduced by 70%, assuming a reduction of environmental impact of 5% per year would represent expressive numbers in the next ten years. Normal 0 21 false false false ES X-NONE X-NONE

  20. Plaque biofilms: the effect of chemical environment on natural human plaque biofilm architecture.

    Science.gov (United States)

    Robinson, C; Strafford, S; Rees, G; Brookes, S J; Kirkham, J; Shore, R C; Watson, P S; Wood, S

    2006-11-01

    The architecture of microbial biofilms especially the outer regions have an important influence on the interaction between biofilm and local environment particularly on the flux of materials into and out of biofilm compartments and as a consequence, biofilm metabolic behaviour. In the case of dental plaque biofilms, architecture will determine access of nutrients including acidogenic substrates and therapeutic materials to the microbial biomass and to the underlying tooth surface. Manipulation of this architecture may offer a means of altering mass transfer into the whole biofilm and biomass and raises the possibility of improving access of therapeutics. Plaque biofilms formed in vivo on human enamel were subjected to a number of different chemical conditions while under observation by confocal laser scanning microscopy in reflection mode. In this way the outer 50-100 microm or so of the biofilms was examined. Density and distribution of biomass were recorded as degree of reflectance. The amount and density of biofilm biomass increased from the plaque saliva interface towards the interior. Plaque biofilms were robust and little affected by mechanical manipulation, high ionic strength or low pH (2.5). Detergent (SLS), however, often appeared to either remove biomass and/or dramatically reduce its density.

  1. Anti-Biofilm Performance of Three Natural Products against Initial Bacterial Attachment

    OpenAIRE

    Stokes, Keith R.; Dennington, Simon P.; Paul Stoodley; Maria Salta; Wharton, Julian A.

    2013-01-01

    Marine bacteria contribute significantly towards the fouling consortium, both directly (modern foul release coatings fail to prevent “slime” attachment) and indirectly (biofilms often excrete chemical cues that attract macrofouling settlement). This study assessed the natural product anti-biofilm performance of an extract of the seaweed, Chondrus crispus, and two isolated compounds from terrestrial sources, (+)-usnic acid and juglone, against two marine biofilm forming bacteria, Cobetia marin...

  2. Anti-Biofilm Performance of Three Natural Products against Initial Bacterial Attachment

    Directory of Open Access Journals (Sweden)

    Keith R. Stokes

    2013-11-01

    Full Text Available Marine bacteria contribute significantly towards the fouling consortium, both directly (modern foul release coatings fail to prevent “slime” attachment and indirectly (biofilms often excrete chemical cues that attract macrofouling settlement. This study assessed the natural product anti-biofilm performance of an extract of the seaweed, Chondrus crispus, and two isolated compounds from terrestrial sources, (+-usnic acid and juglone, against two marine biofilm forming bacteria, Cobetia marina and Marinobacter hydrocarbonoclasticus. Bioassays were developed using quantitative imaging and fluorescent labelling to test the natural products over a range of concentrations against initial bacterial attachment. All natural products affected bacterial attachment; however, juglone demonstrated the best anti-biofilm performance against both bacterial species at a concentration range between 5–20 ppm. In addition, for the first time, a dose-dependent inhibition (hormetic response was observed for natural products against marine biofilm forming bacteria.

  3. Recent advances in natural product-based anti-biofilm approaches to control infections.

    Science.gov (United States)

    Buommino, Elisabetta; Scognamiglio, Monica; Donnarumma, Giovanna; Fiorentino, Antonio; D'Abrosca, Brigida

    2014-01-01

    Bacterial biofilms are highly organized surface-associated communities of bacteria encased within an extracellular matrix produced by themselves, capable of growing in connection with different biological or inert surfaces such as artificial joints or catheters. Biofilms are commonly associated with many health problems, such as endocarditis, otitis media, periodontitis, prostatitis, and urinary tract infections. Several bacteria, such as Escherichia coli, Staphylococcus aureus, Streptococcus mutans, and Pseudomonas aeruginosa, or fungal pathogen as Candida albicans, can form biofilms in the body tissues, leading to different infections. The inherently defensive character of the biofilm is demonstrated by enhanced persistence of bacteria grown in the sessile mode respect to bacteria grown planktonically. This makes most biofilm- associated infections difficult to eradicate, thus contributing to disease chronicity. Since natural products provide a diverse array of chemical structures and possess a wide variety of biological properties, natural resources are worldwide exploited in the search of new pharmaceuticals. In this context bioactive secondary metabolites from natural sources, useful for the new antimicrobial and anti-biofilm drugs, are of interest. In this review, the role of small molecules from plants and marine organisms in inhibiting and/or dispersing bacterial biofilms is discussed, as well as the approaches that have been applied to the discovery of lead small molecules that mediate biofilm development. Molecules inhibiting the formation of biofilm may have therapeutic potential. Several candidates, as halogenated furanones, 2-amminoimidazole alkaloids and flavonoids have been already isolated and characterized from many plants and from marine organisms. PMID:25553429

  4. Efficacy of natural antimicrobials in toothpaste formulations against oral biofilms in vitro

    NARCIS (Netherlands)

    Verkaik, M.J.; Busscher, H.J.; Jager, D.; Slomp, A.M.; Abbas, F.; Mei, H.C. van der

    2011-01-01

    Objectives: To evaluate the antimicrobial efficacies of two toothpaste formulations containing natural antimicrobials (herbal extracts and chitosan) against oral biofilms of different composition and maturational status. Methods: Bacteria from a buffer suspension or fresh saliva were adhered for 2 h

  5. Biofilm biomass disruption by natural substances with potential for endodontic use

    Directory of Open Access Journals (Sweden)

    Flávio Rodrigues Ferreira Alves

    2013-02-01

    Full Text Available This study evaluated the in vitro effects of four natural substances on the biomass of bacterial biofilms to assess their potential use as root canal irrigants. The following substances and their combinations were tested: 0.2% farnesol; 5% xylitol; 20% xylitol; 0.2% farnesol and 5% xylitol; 0.2% farnesol, 5% xylitol, and 0.1% lactoferrin; 5% xylitol and 0.1% lactoferrin; and 20 mM salicylic acid. The crystal violet assay was used to evaluate the effects of these substances on the biomass of biofilms formed by Enterococcus faecalis and Staphylococcus epidermidis. All substances except for 20 mM salicylic acid and 20% xylitol reduced biofilm mass when compared to controls. The combination of farnesol and xylitol was the most effective agent against E. faecalis ATCC 29212 (p < 0.05. Farnesol combined with xylitol and lactoferrin was the most effective against biofilms of the endodontic strain of E. faecalis MB35 (p < 0.05. Similarly, combinations involving farnesol, xylitol, and lactoferrin reduced the biomass of S. epidermidis biofilms. In general, farnesol, xylitol, and lactoferrin or farnesol and xylitol reduced biofilm biomass most effectively. Therefore, it was concluded that combinations of antibiofilm substances have potential use in endodontic treatment to combat biofilms.

  6. Biofilm biomass disruption by natural substances with potential for endodontic use.

    Science.gov (United States)

    Alves, Flávio Rodrigues Ferreira; Silva, Marlei Gomes; Rôças, Isabela Neves; Siqueira, José Freitas

    2013-01-01

    This study evaluated the in vitro effects of four natural substances on the biomass of bacterial biofilms to assess their potential use as root canal irrigants. The following substances and their combinations were tested: 0.2% farnesol; 5% xylitol; 20% xylitol; 0.2% farnesol and 5% xylitol; 0.2% farnesol, 5% xylitol, and 0.1% lactoferrin; 5% xylitol and 0.1% lactoferrin; and 20 mM salicylic acid. The crystal violet assay was used to evaluate the effects of these substances on the biomass of biofilms formed by Enterococcus faecalis and Staphylococcus epidermidis. All substances except for 20 mM salicylic acid and 20% xylitol reduced biofilm mass when compared to controls. The combination of farnesol and xylitol was the most effective agent against E. faecalis ATCC 29212 (p antibiofilm substances have potential use in endodontic treatment to combat biofilms. PMID:23306623

  7. Effect of natural marine biofilms on galvanic corrosion predicted using potentiodynamic polarization curves

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, S.C.; LaFontaine, J.P. [Univ. of Delaware, Lewes, DE (United States). Coll. of Marine Studies

    1998-12-31

    Galvanic corrosion of copper, 1018 steel, 3003 aluminum and zinc coupled in turn to cathodes of stainless steel alloy N08367 was tested with and without natural marine biofilms on the cathode surface. Weight losses were significantly higher, and corrosion currents were up to two decades higher with a biofilm on the cathode surface for anodes of copper, steel and aluminum, but there was no difference for zinc. Results indicate that, in any case where biofilms on the cathodic member of a galvanic couple result in a systematic and significant increase in the reduction current at the mixed potential of the couple, an increase in consumption of the anodic material should be expected. Cathodic reduction currents (vs. controls with no biofilm) were increased at all potentials down to about {minus}900 mV{sub SCE}, resulting in an elevated current capacity capable of increasing the weight loss of anodic materials over a sustained period of at least two months. Biofilms, however, did not increase consumption of sacrificial anodes with potentials equal to, or more active than zinc. Potentiodynamic polarization curves taken from the corroded samples were used successfully to predict the effect of biofilms on galvanic corrosion rates for the materials tested. Weight loss values calculated by Faraday`s law using corrosion currents from the polarization curves agreed well with actual measured values for anodes of steel, aluminum and zinc, although there were some discrepancies for copper.

  8. Natural antimicrobials subtilosin and lauramide arginine ethyl ester synergize with conventional antibiotics clindamycin and metronidazole against biofilms of Gardnerella vaginalis but not against biofilms of healthy vaginal lactobacilli.

    Science.gov (United States)

    Algburi, Ammar; Volski, Anna; Chikindas, Michael L

    2015-07-01

    The purpose of this study was to evaluate the ability of clindamycin and metronidazole to synergize with natural antimicrobials against biofilms of bacterial vaginosis (BV)-associated Gardnerella vaginalis. Minimum bactericidal concentrations for biofilm cells (MBCs-B) were determined for each antimicrobial. The MBCs-B of lauramide arginine ethyl ester (LAE), subtilosin, clindamycin and metronidazole were 50, 69.5, 20 and 500 μg mL(-1), respectively. A checkerboard assay and isobologram were used to analyze the type of interactions between these antimicrobials. The combination of metronidazole with natural antimicrobials did not inhibit planktonic lactobacilli. Clindamycin with either LAE or with subtilosin was inhibitory for planktonic but not for biofilm-associated lactobacilli. All tested antimicrobial combinations were inhibitory for BV-associated Mobiluncus curtisii and Peptostreptococcus anaerobius. LAE and subtilosin synergized with clindamycin and metronidazole against biofilms of G. vaginalis but not biofilm-associated vaginal lactobacilli. The biofilms of BV-associated pathogens can be controlled by synergistically acting combinations of conventional antibiotics and natural antimicrobials which will help better management of current antibiotics, especially considering robust bacterial resistance. Our findings create a foundation for a new strategy in the effective control of vaginal infections.

  9. Drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment.

    Science.gov (United States)

    Kouidhi, Bochra; Al Qurashi, Yasir Mohammed A; Chaieb, Kamel

    2015-03-01

    Oral diseases, such as dental caries and periodontal disease are directly linked with the ability of bacteria to form biofilm. The development of dental caries involves acidogenic and aciduric Gram-positive bacteria colonizing the supragingival biofilm (Streptococcus, Lactobacillus and Actinomycetes). Periodontal diseases have been linked to anaerobic Gram-negative bacteria forming a subgingival plaque (Porphyromonas gingivalis, Actinobacillus, Prevotella and Fusobacterium). Cells embedded in biofilm are up to 1000-fold more resistant to antibiotics compared to their planctonic ones. Several mechanisms have been proposed to explain biofilms drug resistance. Given the increased bacterial resistance to antibiotics currently used in dentistry, a great importance is given to natural compounds for the prevention of oral bacterial growth, adhesion and colonization. Over the past decade, interest in drugs derived from medicinal plants has markedly increased. It has been well documented that medicinal plants and natural compounds confer considerable antibacterial activity against various microorganisms including cariogenic and periodontal pathogens. This paper provides a review of the literature focusing on the studies on (i) biofilm in the oral cavity, (ii) drug resistance of bacterial biofilm and (iii) the potential use of plant extracts, essential oils and natural compounds as biofilm preventive agents in dentistry, involving their origin and their mechanism of biofilm inhibition.

  10. The Formation of Biofilms by Pseudomonas aeruginosa: A Review of the Natural and Synthetic Compounds Interfering with Control Mechanisms

    Directory of Open Access Journals (Sweden)

    Tsiry Rasamiravaka

    2015-01-01

    Full Text Available P. aeruginosa is an opportunistic pathogenic bacterium responsible for both acute and chronic infections. Beyond its natural resistance to many drugs, its ability to form biofilm, a complex biological system, renders ineffective the clearance by immune defense systems and antibiotherapy. The objective of this report is to provide an overview (i on P. aeruginosa biofilm lifestyle cycle, (ii on the main key actors relevant in the regulation of biofilm formation by P. aeruginosa including QS systems, GacS/GacA and RetS/LadS two-component systems and C-di-GMP-dependent polysaccharides biosynthesis, and (iii finally on reported natural and synthetic products that interfere with control mechanisms of biofilm formation by P. aeruginosa without affecting directly bacterial viability. Concluding remarks focus on perspectives to consider biofilm lifestyle as a target for eradication of resistant infections caused by P. aeruginosa.

  11. Hydrophobic nature and effects of culture conditions on biofilm formation by the cellulolytic actinomycete Thermobifida fusca

    Directory of Open Access Journals (Sweden)

    Almaris N. Alonso

    2015-09-01

    Full Text Available Thermobifida fusca produces a firmly attached biofilm on nutritive and non-nutritive surfaces, such as cellulose, glass, plastic, metal and Teflon®. The ability to bind to surfaces has been suggested as a competitive advantage for microbes in soil environments. Results of previous investigations indicated that a Gram-positive cellulolytic soil bacteria, Cellulomonas uda, a facultative aerobe, specifically adhered to nutritive surfaces forming biofilms, but cells did not colonize non-nutritive surfaces. Cell surface hydrophobicity has been implicated in the interactions between bacteria and the adhesion to surfaces. It was recently described that the cellulolytic actinomycete T. fusca cells hydrophobicity was measured and compared to the cellulolytic soil bacteria C. uda. Also, T. fusca biofilm formation on non-nutritive surface, such as polyvinyl chloride, was examined by testing various culture ingredients to determine a possible trigger mechanism for biofilm formation. Experimental results showed that partitioning of bacterial cells to various hydrocarbons was higher in T. fusca cells than in C. uda. The results of this study suggest that the attachment to multiple surfaces by T. fusca could depend on nutrient availability, pH, salt concentrations, and the higher hydrophobic nature of bacterial cells. Possibly, these characteristics may confer T. fusca a selective advantage to compete and survive among the many environments it thrives.

  12. Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP.

    Directory of Open Access Journals (Sweden)

    Scot E Dowd

    Full Text Available BACKGROUND: Diabetic extremity ulcers are associated with chronic infections. Such ulcer infections are too often followed by amputation because there is little or no understanding of the ecology of such infections or how to control or eliminate this type of chronic infection. A primary impediment to the healing of chronic wounds is biofilm phenotype infections. Diabetic foot ulcers are the most common, disabling, and costly complications of diabetes. Here we seek to derive a better understanding of the polymicrobial nature of chronic diabetic extremity ulcer infections. METHODS AND FINDINGS: Using a new bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP approach we have evaluated the bacterial diversity of 40 chronic diabetic foot ulcers from different patients. The most prevalent bacterial genus associated with diabetic chronic wounds was Corynebacterium spp. Findings also show that obligate anaerobes including Bacteroides, Peptoniphilus, Fingoldia, Anaerococcus, and Peptostreptococcus spp. are ubiquitous in diabetic ulcers, comprising a significant portion of the wound biofilm communities. Other major components of the bacterial communities included commonly cultured genera such as Streptococcus, Serratia, Staphylococcus and Enterococcus spp. CONCLUSIONS: In this article, we highlight the patterns of population diversity observed in the samples and introduce preliminary evidence to support the concept of functional equivalent pathogroups (FEP. Here we introduce FEP as consortia of genotypically distinct bacteria that symbiotically produce a pathogenic community. According to this hypothesis, individual members of these communities when they occur alone may not cause disease but when they coaggregate or consort together into a FEP the synergistic effect provides the functional equivalence of well-known pathogens, such as Staphylococcus aureus, giving the biofilm community the factors necessary to maintain chronic biofilm infections

  13. Beneficial biofilms

    Directory of Open Access Journals (Sweden)

    Sara R Robertson

    2015-10-01

    Full Text Available Surface-adherent biofilm growth is a common trait of bacteria and other microorganisms in nature. Within biofilms, organisms are present in high density and are enmeshed in an organic matrix containing polysaccharides and other molecules. The close proximity of organisms within biofilms facilitates microbial interactions and signaling, including many metabolic processes in which consortia rather than individual organisms participate. Biofilm growth also enables microorganisms to withstand chemical and biological stresses. Here, we review some current literature and document representative beneficial aspects of biofilms using examples from wastewater treatment, microbial fuel cells, biological repair (biocementation of stonework, and biofilm protection against Candida albicans infections. Finally, we address a chemical ecology strategy whereby desired microbial succession and beneficial biofilm formation can be encouraged via manipulation of culture conditions and bacterial signaling.

  14. Bacterial biofilm supported on granular activated carbon and on natural zeolites- an application to wastewater treatment

    OpenAIRE

    Lameiras, Sandra Raquel de Vasconcelos; Quintelas, C.; Tavares, M. T.

    2004-01-01

    The removal of many heavy metals from industrial wastewater is one of the most important environmental problems to be solved today. The retention of this contaminants by a biofilm supported on granular activated carbon or on natural zeolites is one of the promising technologies for the reduction of this problem, because it is cheap and it removes a broad range of substances, heavy metals and organic compounds. This study aims the development of a system of two mini-columns in series ...

  15. Influence of humic substances on biofilm structure and its microbial diversity in natural waters

    OpenAIRE

    A.L. Rodrigues

    2010-01-01

    Doctoral dissertation for PhD degree in Chemical and Biological Engineering Natural organic matter (NOM) is ubiquitous in terrestrial and aquatic ecosystems; it comprises an important source of carbon for river biofilms which are major sites of carbon cycling in streams. NOM may be classified in two main categories: non-humic and humic substances (HSs). About 75 % of the dissolved organic carbon (DOC) in rivers results from HSs. The presence of HSs in water treatment plants is ...

  16. Temporal analyses of the distribution and diversity of Salmonella in natural biofilms.

    Science.gov (United States)

    Sha, Qiong; Gunathilake, Anuradha; Forstner, Michael R J; Hahn, Dittmar

    2011-07-01

    The diversity and distribution of salmonellae in freshwater biofilms were analyzed at a fine scale (i.e. in 20 locations from a 324 cm(2) area) for two sites in San Marcos, TX. A concrete storm water overflow channel (City Park) was sampled 4 times and a concrete surface in the spring-fed headwaters of the San Marcos River (Spring Lake) 5 times between April and September 2009, and each biofilm sample analyzed by a combination of traditional enrichment methods and molecular techniques. PCR detection of the invA gene, that encodes a protein of a type III secretion system present in salmonellae, after semi-selective enrichment of salmonellae was achieved in biofilms from all 20 locations at the City Park site, with locations generally being positive 2-3 times out of 4 sampling times for a total of 59% positive samples. InvA gene fragment detection in biofilms was less frequent for the 5 sampling times and 20 locations from the Spring Lake site (18% of all samples), with 1 sampling time being entirely negative and 8 locations remaining negative throughout the study. Rep-PCR fingerprinting of 491 Salmonella isolates obtained from both sites resulted in 30 distinct profiles, with 26 and 7 profiles retrieved from City Park and Spring Lake samples, respectively, and thus with 3 profiles present at both sites, and multiple strains frequently obtained from single locations at both sites. The composition of Salmonella strains in the area analyzed changed in time with large differences between early (April, June) and late sampling times (September) within and among sites, except for one strain (S12) that was present at almost all sampling times at both sites, though often at different locations within the area analyzed. These results demonstrate the presence of salmonellae in natural biofilms and a significant micro-heterogeneity with differences in diversity and persistence of salmonellae.

  17. A Gap in the Grid : Attempts to introduce natural gas in Sweden 1967-1991

    OpenAIRE

    Åberg, Anna

    2013-01-01

    This thesis follows the process of introducing natural gas in Sweden and the construction of a Northern European gas grid from 1967 to 1991. Natural gas is a relatively unnoticed fuel in Sweden today, but this relative anonymity stands in contrast to an extensive historical activity that has taken place behind the scenes of Swedish energy policy. The single pipeline constructed between Denmark and Sweden in the early 1980s was both preceded and followed by many other attempts to construct a l...

  18. Casbane Diterpene as a Promising Natural Antimicrobial Agent against Biofilm-Associated Infections

    Directory of Open Access Journals (Sweden)

    Edson Holanda Teixeira

    2010-12-01

    Full Text Available Croton nepetaefolius is a native plant from northeastern Brazil that belongs to the Euphorbiaceae family. The biological action of this plant has been extensively explored, being the secondary metabolites responsible for its properties alkaloids, diterpenes, and triterpenes. This study aimed to evaluate the ability of casbane diterpene (CD, isolated from the ethanolic extract of C. nepetaefolius, to inhibit microbial growth and biofilm formation of several clinical relevant species (bacteria and yeasts. It was found that CD possessed biocidal and biostatic activity against the majority of the species screened, with minimal active concentrations ranging between 125 and 500 µg/mL. In addition, it was observed that biofilm formation was inhibited even when the planktonic growth was not significantly affected. In conclusion, CD showed potential to be a natural tool for the treatment of diseases caused by different infectious microorganisms.

  19. Biofilm Formation and Motility Depend on the Nature of the Acinetobacter baumannii Clinical Isolates.

    Science.gov (United States)

    Vijayakumar, Saranya; Rajenderan, Sangeetha; Laishram, Shakti; Anandan, Shalini; Balaji, Veeraraghavan; Biswas, Indranil

    2016-01-01

    Acinetobacter baumannii is a nosocomial pathogen involved in various infections ranging from minor soft-tissue infections to more severe infections such as ventilator-associated pneumonia and bacteremia. The severity and the type of infections depend on the genetic and phenotypic variations of the strains. In this study, we compared the extent of biofilm formation and motility displayed by 60 multidrug-resistant A. baumannii clinical strains isolated from blood and sputum samples from patients from Southern India. Our results showed that isolates from the sputum samples formed significantly more robust biofilm compared to the blood isolates. On the other hand, we observed that the blood isolates were more motile than the sputum isolates. To the best of our knowledge, this is the first study that systematically evaluated the correlation between these two phenotypic traits and the nature of the isolates. PMID:27252939

  20. Studies to control biofilm formation by coupling ultrasonication of natural waters and anodization of titanium.

    Science.gov (United States)

    Nithila, S D Ruth; Anandkumar, B; Vanithakumari, S C; George, R P; Mudali, U Kamachi; Dayal, R K

    2014-01-01

    The main objective of this study was to investigate the combined effect of ultrasonication of natural waters and anodization of titanium on microbial density and biofilm formation tendency on titanium surfaces. Application of 24 kHz, 400 W high power ultrasound through a 14 mm horn type SS (stainless steel) Sonicator with medium amplitude of 60% for 30 min brought about three order decrease in total bacterial density of laboratory tap water, cooling tower water and reservoir water and two order decrease in seawater. Studies on the effect of ultrasonication on dilute pure cultures of Gram-negative and Gram-positive bacteria showed five order and three order decrease for Pseudomonas sp. and Flavobacterium sp. respectively and two order and less than one order decrease for Bacillus sp. and Micrococcus sp. respectively. Ultrasonication increased lag phase and reduced logarithmic population increase and specific growth rate of Gram-negative bacteria whereas for Gram-positive bacteria specific growth rate increased. Studies on the biofilm formation tendency of these ultrasonicated mediums on titanium surface showed one order reduction under all conditions. Detailed biofilm imaging by advanced microscopic techniques like AFM, SEM and epifluorescence microscopy clearly visualized the lysed/damaged cells and membrane perforations due to ultrasonication. Combination of ultrasonication and anodization brought about maximum decrease in bacterial density and biofilm formation with greater than two order decrease in seawater, two order decrease in Bacillus sp. culture and more than four order decrease in Flavobacterium sp. culture establishing the synergistic effect of anodization and ultrasonication in this study. PMID:23871547

  1. Medical Biofilms

    OpenAIRE

    Bryers, James D.

    2008-01-01

    For more than two decades, Biotechnology and Bioengineering has documented research focused on natural and engineered microbial biofilms within aquatic and subterranean ecosystems, wastewater and waste-gas treatment systems, marine vessels and structures, and industrial bioprocesses. Compared to suspended culture systems, intentionally engineered biofilms are heterogeneous reaction systems that can increase reactor productivity, system stability, and provide inherent cell: product separation....

  2. Biofilm biomass disruption by natural substances with potential for endodontic use

    OpenAIRE

    Flávio Rodrigues Ferreira Alves; Marlei Gomes Silva; Isabela Neves Rôças; José Freitas Siqueira Jr

    2013-01-01

    This study evaluated the in vitro effects of four natural substances on the biomass of bacterial biofilms to assess their potential use as root canal irrigants. The following substances and their combinations were tested: 0.2% farnesol; 5% xylitol; 20% xylitol; 0.2% farnesol and 5% xylitol; 0.2% farnesol, 5% xylitol, and 0.1% lactoferrin; 5% xylitol and 0.1% lactoferrin; and 20 mM salicylic acid. The crystal violet assay was used to evaluate the effects of these substances on the biomass of b...

  3. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Directory of Open Access Journals (Sweden)

    Marie Ragon

    terms of general diversity patterns, despite increased mutation levels at the single-OTU level. Therefore, biofilm communities growing in sunlight exposed substrates are capable of coping with increased mutation rates and appear pre-adapted to levels of ionizing radiation in Chernobyl due to their natural adaptation to periodical desiccation and ambient UV radiation.

  4. The Natural Evolutionary Potential of Tree Populations to Cope with Newly Introduced Pests and Pathogens

    DEFF Research Database (Denmark)

    Budde, Katharina Birgit; Nielsen, Lene Rostgaard; Ravn, Hans Peter;

    2016-01-01

    Emerging diseases often originate from host shifts of introduced pests or pathogens. Genetic resistance of the host to such diseases might be limited or absent due to the lack of coevolutionary history. We review six examples of major disease outbreaks on native tree species caused by different...... introduced pests and pathogens that led to large ecological and economical losses. In all six cases, high tree mortality was observed in natural populations with some surviving individuals exhibiting varying levels of genetic resistance. The abundance and distribution of resistant individuals...... and science-based guidance required to manage and maintain forests with high resilience. International cooperation on limiting disease spread and the provision of early invasive pest or pathogen detection systems are essential....

  5. Biofilm formation by environmental isolates of Salmonella and their sensitivity to natural antimicrobials

    Science.gov (United States)

    We evaluated 15 Salmonella isolates; S. Derby (2), S. Infantis (4), and S. Typhimurium (9) from conventional swine farm environment (soil and lagoon) for biofilm formation. Biofilm forming ability was determined by 96-well microtitre plate Crystal-Violet and Minimum Biofilm Eradication Concentration...

  6. Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration.

    Science.gov (United States)

    Emtiazi, Farahnaz; Schwartz, Thomas; Marten, Silke Mareike; Krolla-Sidenstein, Peter; Obst, Ursula

    2004-03-01

    Populations of bacteria in biofilms from different sites of a drinking water production system were analysed. Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) analyses revealed changing DNA band patterns, suggesting a population shift during bank filtration and processing at the waterworks. In addition, common DNA bands that were attributed to ubiquitous bacteria were found. Biofilms even developed directly after UV disinfection (1-2m distance). Their DNA band patterns only partly agreed with those of the biofilms from the downstream distribution system. Opportunistic pathogenic bacteria in biofilms were analysed using PCR and Southern blot hybridisation (SBH). Surface water appeared to have a direct influence on the composition of biofilms in the drinking water distribution system. In spite of preceding filtration and UV disinfection, opportunistic pathogens such as atypical mycobacteria and Legionella spp. were found in biofilms of drinking water, and Pseudomonas aeruginosa was detected sporadically. Enterococci were not found in any biofilm. Bacterial cell counts in the biofilms from surface water to drinking water dropped significantly, and esterase and alanine-aminopeptidase activity decreased. beta-glucosidase activity was not found in the biofilms. Contrary to the results for planktonic bacteria, inhibitory effects were not observed in biofilms. This suggested an increased tolerance of biofilm bacteria against toxic compounds.

  7. Poly-P storage by natural biofilms in streams with varying biogeochemistry

    Science.gov (United States)

    Carrick, H. J.

    2015-12-01

    Anthropogenic inputs of nitrogen (N) and phosphorus (P) have increased in many watersheds throughout the world; these inputs have been linked to the eutrophication of inland and coastal waters worldwide. We selected and surveyed 20, third-order streams that supported a range of water column biogeochemical conditions (conductivity, nutrient concentrations) located in the mid-Atlantic region, USA. Biofilm biomass, algal taxonomic composition, and nutrient stoichiometry (C, N, P, and poly-P) were measured at all stream sites. Pulse-amplitude modulation fluorometry (PAM) was used to estimate photosynthetic parameters for stream biofilms (e.g., alpha, Pmax), while microbiology techniques were used to verify poly-P storage by pro- and eukaryotic components of the biofilm (e.g., epi-fluorescent staining). As anticipated, chlorophyll ranged over 2 orders of magnitude among the streams (range 10-1,000 mg/m2). Biofilm chlorophyll and algal biovolume levels increased with water column nutrient contents, while the C:P ratio within the biofilm decreased. Both pro and eukaryotic organisms were present in resident biofilms and actively stored intracellular poly-P. Finally, the rate of photosynthetic within the biofilms appeared to be driven the nutritional condition of the biofilms; pmax and alpha values increased with significantly with stream biofilm poly-P content (r2 = 0.35 and 0.44, respectively). These results indicated that where nutrients are plentiful, biofilms P storage is favored, and this is likely a key regulator of stream biofilm biomass and productivity.

  8. NATURAL ANTIBIOFOULING AGENTS AS NEW CONTROL METHOD FOR PHOTOTROPHIC BIOFILMS DWELLING ON MONUMENTAL STONE SURFACES

    Directory of Open Access Journals (Sweden)

    Oana-Adriana CUZMAN

    2011-03-01

    Full Text Available Five natural antibiofoulants with terrestrial (capsaicine - CS, cinnamaldehyde - CI and marine origin (zosteric acid - ZA, poly-alkylpyridinium salts - pAPS and Ceramium botryocarpum extract - CBE have been selected and tested against phototrophic biofilm formation on the stone surfaces for their inhibitory properties. The antibiofouling agents (ABAs were incorporated into two commercial silicone based coatings (Silres BS OH 100 - S and Silres BS 290 - W. In this work, phototrophic growth was evaluated by epifluorescence microscopy and semi-quantitative image analysis. The results showed an inhibitory efficiency for almost all tested ABAs. However, this efficiency has been found for short time or when the incorporating agent were incompletely cured. Among the ABAs tested, the poly-alkylpyridinium salts and cinnamaldehyde incorporated into Silres BS 290 showed the best inhibitory efficiency.

  9. Sinefungin, a Natural Nucleoside Analogue of S-Adenosylmethionine, Inhibits Streptococcus pneumoniae Biofilm Growth

    OpenAIRE

    Mukesh Kumar Yadav; Seok-Won Park; Sung-Won Chae; Jae-Jun Song

    2014-01-01

    Pneumococcal colonization and disease is often associated with biofilm formation, in which the bacteria exhibit elevated resistance both to antibiotics and to host defense systems, often resulting in infections that are persistent and difficult to treat. We evaluated the effect of sinefungin, a nucleoside analogue of S-adenosylmethionine, on pneumococcal in vitro biofilm formation and in vivo colonization. Sinefungin is bacteriostatic to pneumococci and significantly decreased biofilm growth ...

  10. Natural antimicrobials and oral microorganisms: A systematic review on herbal interventions for the eradication of multispecies oral biofilms.

    Directory of Open Access Journals (Sweden)

    Lamprini eKarygianni

    2016-01-01

    Full Text Available Oral diseases such as caries and periodontitis are mainly caused by microbial biofilms. Antibiotic therapy has reached its limits with regard to antimicrobial resistance, and new therapeutic measures utilizing natural phytochemicals are currently a focus of research. Hence, this systematic review provides a critical presentation of the antimicrobial effects of various medicinal herbs against in vitro, ex vivo and in situ formed multispecies oral biofilms. Searches were performed in three English databases (PubMed, EMBASE, CAMbase and the electronic archives of five German journals from the times of their establishment until October 10th, 2014, with the search terms (plant extracts OR herbal extracts OR plant OR herb AND (oral biofilm OR dental biofilm OR dental plaque OR oral disease OR dental disease. The pooled data were assessed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Initially, 1,848 articles were identified, out of which 585 full-text articles were screened, 149 articles were reevaluated for eligibility and finally, 14 articles met all inclusion criteria. The data of 14 reports disclosed enhanced antiadhesive and antibiofilm activity by the plant extracts obtained from Vitis vinifera, Pinus spp., Coffea canephora, Camellia sinensis, Vaccinium macrocarpon, Galla chinensis, Caesalpinia ferrea Martius, Psidium cattleianum, representative Brazilian plants and manuka honey. Overall, a positive correlation was revealed between herb-based therapies and elimination rates of all types of multispecies oral biofilms. In that context, integrating or even replacing conventional dental therapy protocols with herbal-inspired treatments can allow effective antimicrobial control of oral biofilms and thus, dental diseases.

  11. Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms.

    Science.gov (United States)

    Karygianni, Lamprini; Al-Ahmad, Ali; Argyropoulou, Aikaterini; Hellwig, Elmar; Anderson, Annette C; Skaltsounis, Alexios L

    2015-01-01

    Oral diseases such as caries and periodontitis are mainly caused by microbial biofilms. Antibiotic therapy has reached its limits with regard to antimicrobial resistance, and new therapeutic measures utilizing natural phytochemicals are currently a focus of research. Hence, this systematic review provides a critical presentation of the antimicrobial effects of various medicinal herbs against in vitro, ex vivo, and in situ formed multispecies oral biofilms. Searches were performed in three English databases (PubMed, EMBASE, CAMbase) and the electronic archives of five German journals from the times of their establishment until October 10th, 2014, with the search terms "(plant extracts OR herbal extracts OR plant OR herb) AND (oral biofilm OR dental biofilm OR dental plaque OR oral disease OR dental disease)." The pooled data were assessed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA). Initially, 1848 articles were identified, out of which 585 full-text articles were screened, 149 articles were reevaluated for eligibility and finally, 14 articles met all inclusion criteria. The data of 14 reports disclosed enhanced antiadhesive and antibiofilm activity by the plant extracts obtained from Vitis vinifera, Pinus spp., Coffea canephora, Camellia sinensis, Vaccinium macrocarpon, Galla chinensis, Caesalpinia ferrea Martius, Psidium cattleianum, representative Brazilian plants and manuka honey. Overall, a positive correlation was revealed between herb-based therapies and elimination rates of all types of multispecies oral biofilms. In that context, integrating or even replacing conventional dental therapy protocols with herbal-inspired treatments can allow effective antimicrobial control of oral biofilms and thus, dental diseases. PMID:26834707

  12. Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms.

    Science.gov (United States)

    Karygianni, Lamprini; Al-Ahmad, Ali; Argyropoulou, Aikaterini; Hellwig, Elmar; Anderson, Annette C; Skaltsounis, Alexios L

    2015-01-01

    Oral diseases such as caries and periodontitis are mainly caused by microbial biofilms. Antibiotic therapy has reached its limits with regard to antimicrobial resistance, and new therapeutic measures utilizing natural phytochemicals are currently a focus of research. Hence, this systematic review provides a critical presentation of the antimicrobial effects of various medicinal herbs against in vitro, ex vivo, and in situ formed multispecies oral biofilms. Searches were performed in three English databases (PubMed, EMBASE, CAMbase) and the electronic archives of five German journals from the times of their establishment until October 10th, 2014, with the search terms "(plant extracts OR herbal extracts OR plant OR herb) AND (oral biofilm OR dental biofilm OR dental plaque OR oral disease OR dental disease)." The pooled data were assessed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA). Initially, 1848 articles were identified, out of which 585 full-text articles were screened, 149 articles were reevaluated for eligibility and finally, 14 articles met all inclusion criteria. The data of 14 reports disclosed enhanced antiadhesive and antibiofilm activity by the plant extracts obtained from Vitis vinifera, Pinus spp., Coffea canephora, Camellia sinensis, Vaccinium macrocarpon, Galla chinensis, Caesalpinia ferrea Martius, Psidium cattleianum, representative Brazilian plants and manuka honey. Overall, a positive correlation was revealed between herb-based therapies and elimination rates of all types of multispecies oral biofilms. In that context, integrating or even replacing conventional dental therapy protocols with herbal-inspired treatments can allow effective antimicrobial control of oral biofilms and thus, dental diseases.

  13. Sinefungin, a Natural Nucleoside Analogue of S-Adenosylmethionine, Inhibits Streptococcus pneumoniae Biofilm Growth

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Yadav

    2014-01-01

    Full Text Available Pneumococcal colonization and disease is often associated with biofilm formation, in which the bacteria exhibit elevated resistance both to antibiotics and to host defense systems, often resulting in infections that are persistent and difficult to treat. We evaluated the effect of sinefungin, a nucleoside analogue of S-adenosylmethionine, on pneumococcal in vitro biofilm formation and in vivo colonization. Sinefungin is bacteriostatic to pneumococci and significantly decreased biofilm growth and inhibited proliferation and structure of actively growing biofilms but did not alter growth or the matrix structure of established biofilms. Sinefungin significantly reduced pneumococcal colonization in rat middle ear. The quorum sensing molecule (autoinducer-2 production was significantly reduced by 92% in sinefungin treated samples. The luxS, pfs, and speE genes were downregulated in biofilms grown in the presence of sinefungin. This study shows that sinefungin inhibits pneumococcal biofilm growth in vitro and colonization in vivo, decreases AI-2 production, and downregulates luxS, pfs, and speE gene expressions. Therefore, the S-adenosylmethionine (SAM inhibitors could be used as lead compounds for the development of novel antibiofilm agents against pneumococci.

  14. Evolution of oxygen reduction current and biofilm on stainless steels cathodically polarised in natural aerated seawater

    Energy Technology Data Exchange (ETDEWEB)

    Faimali, Marco [ISMAR-CNR, Via De Marini 6, 16149 Genoa (Italy)], E-mail: marco.faimali@ismar.cnr.it; Chelossi, Elisabetta; Garaventa, Francesca; Corra, Christian; Greco, Giuliano; Mollica, Alfonso [ISMAR-CNR, Via De Marini 6, 16149 Genoa (Italy)

    2008-12-01

    The aim of a series of works recently performed at ISMAR was to provide new useful information for a better understanding of the mechanisms by which bacteria settlement causes corrosion on Stainless Steels (SS) and similar active-passive alloys exposed to seawater. In this work, the evolutions of cathodic current, bacteria population, and electronic structure of the passive layer were investigated on SS samples polarised at fixed potentials during their exposure to natural seawater. It was found that, during the first phase of biofilm growth, cathodic current increase is proportional to the number of settled bacteria at each fixed potential. However, the proportionality factor between settled bacteria and cathodic current depends on imposed potential. In particular, the proportionality factor strongly decreases when the potential is increased above a critical value close to -150 mV Ag/AgCl. This effect seems to be correlated with the electronic structure of the passive layer. Indeed, the outer part of the passive layer on tested SS was found to behave like a conductor at potentials more active than -150 mV Ag/AgCl, and like an n-type semiconductor at more noble potentials.

  15. Introducing Taiwanese Undergraduate Students to the Nature of Science through Nobel Prize Stories

    Science.gov (United States)

    Eshach, Haim; Hwang, Fu-Kwun; Wu, Hsin-Kai; Hsu, Ying-Shao

    2013-01-01

    Although there is a broad agreement among scientists and science educators that students should not only learn science, but also acquire some sense of its nature, it has been reported that undergraduate students possess an inadequate grasp of the nature of science (NOS). The study presented here examined the potential and effectiveness of Nobel…

  16. Biofilm Cohesive Strength as a Basis for Biofilm Recalcitrance: Are Bacterial Biofilms Overdesigned?

    Science.gov (United States)

    Aggarwal, Srijan; Stewart, Philip S; Hozalski, Raymond M

    2015-01-01

    Bacterial biofilms are highly resistant to common antibacterial treatments, and several physiological explanations have been offered to explain the recalcitrant nature of bacterial biofilms. Herein, a biophysical aspect of biofilm recalcitrance is being reported on. While engineering structures are often overdesigned with a factor of safety (FOS) usually under 10, experimental measurements of biofilm cohesive strength suggest that the FOS is on the order of thousands. In other words, bacterial biofilms appear to be designed to withstand extreme forces rather than typical or average loads. In scenarios requiring the removal or control of unwanted biofilms, this emphasizes the importance of considering strategies for structurally weakening the biofilms in conjunction with bacterial inactivation.

  17. Using Digital Learning Objects to Introduce Students to the Nature of Models and the Nature of Matter

    Science.gov (United States)

    Gustafson, Brenda; Mahaffy, Peter; Martin, Brian

    2011-01-01

    This article reports a subset of findings from a larger study centered on designing a series of six digital learning objects to help Grade 5 (age 10-12) students begin to consider the nature of models (understood as the physical or mental representation of objects, phenomena, or processes), the particle nature of matter, and the behavior of…

  18. Prelude to practice: Introducing a practice based approach to forest and nature governance

    NARCIS (Netherlands)

    Arts, B.J.M.; Behagel, J.H.; Bommel, van S.; Koning, de J.; Turnhout, E.

    2013-01-01

    ‘Forest and nature governance’ is a field that has recently emerged from forestry sciences. It analyses the governance of a diverse set of issues, including deforestation, biodiversity loss and illegal logging, producing insights useful for science and policy. Its main theoretical base consists of t

  19. Introducing Taiwanese undergraduate students to the nature of science through Nobel Prize stories

    Science.gov (United States)

    Eshach, Haim; Hwang, Fu-Kwun; Wu, Hsin-Kai; Hsu, Ying-Shao

    2013-06-01

    Although there is a broad agreement among scientists and science educators that students should not only learn science, but also acquire some sense of its nature, it has been reported that undergraduate students possess an inadequate grasp of the nature of science (NOS). The study presented here examined the potential and effectiveness of Nobel Prize stories as a vehicle for teaching NOS. For this purpose, a 36-hour course, “Albert Einstein’s Nobel Prize and the Nature of Science,” was developed and conducted in Taiwan Normal University. Ten undergraduate physics students participated in the course. Analysis of the Views of Nature of Science questionnaires completed by the students before and after the course, as well as the students’ own presentations of Nobel Prize stories (with an emphasis on how NOS characteristics are reflected in the story), showed that the students who participated in the course enriched their views concerning all aspects of NOS. The paper concludes with some suggestions for applying the novel idea of using Nobel Prize stories in physics classrooms.

  20. Bacterial Amyloid and DNA are Important Constituents of Senile Plaques: Further Evidence of the Spirochetal and Biofilm Nature of Senile Plaques

    Science.gov (United States)

    Miklossy, Judith

    2016-01-01

    It has long been known that spirochetes form clumps or micro colonies in vitro and in vivo. Cortical spirochetal colonies in syphilitic dementia were considered as reproductive centers for spirochetes. Historic and recent data demonstrate that senile plaques in Alzheimer’s disease (AD) are made up by spirochetes. Spirochetes, are able to form biofilm in vitro. Senile plaques are also reported to contain elements of biofilm constituents. We expected that AβPP and Aβ (the main components of senile plaques) also occur in pure spirochetal biofilms, and bacterial DNA (an important component of biofilm) is also present in senile plaques. Histochemical, immunohistochemical, and in situ hybridization techniques and the TUNEL assay were used to answer these questions. The results obtained demonstrate that Aβ and DNA, including spirochete-specific DNA, are key components of both pure spirochetal biofilms and senile plaques in AD and confirm the biofilm nature of senile plaques. These results validate validate previous observations that AβPP and/or an AβPP-like amyloidogenic protein are an integral part of spirochetes, and indicate that bacterial and host derived Aβ are both constituents of senile plaques. DNA fragmentation in senile plaques further confirms their bacterial nature and provides biochemical evidence for spirochetal cell death. Spirochetes evade host defenses, locate intracellularly, form more resistant atypical forms and notably biofilms, which contribute to sustain chronic infection and inflammation and explain the slowly progressive course of dementia in AD. To consider co-infecting microorganisms is equally important, as multi-species biofilms result in a higher resistance to treatments and a more severe dementia. PMID:27314530

  1. Osteocompatibility of Biofilm Inhibitors

    OpenAIRE

    Rawson, Monica; Haggard, Warren; Jennings, Jessica A.

    2014-01-01

    The demand for infection prevention therapies has led to the discovery of several biofilm inhibitors. These inhibiting signals are released by bacteria, fungi, or marine organisms to signal biofilm dispersal or disruption in Gram-positive, Gram-negative, and fungal microorganisms. The purpose of this study was to test the biocompatibility of five different naturally-produced biofilm chemical dispersal and inhibition signals with osteoblast-like cells: D-amino acids (D-AA), lysostaphin (LS), f...

  2. Introducing natural thermoplastic shellac to microfluidics: A green fabrication method for point-of-care devices.

    Science.gov (United States)

    Lausecker, R; Badilita, V; Gleißner, U; Wallrabe, U

    2016-07-01

    We present a sustainable fabrication method for cheap point-of-care microfluidic systems, employing hot embossing of natural shellac as a key feature of an energy-efficient fabrication method that exclusively uses renewable materials as consumables. Shellac is a low-cost renewable biomaterial that features medium hydrophilicity (e.g., a water contact angle of ca. 73°) and a high chemical stability with respect to common solvents such as cyclohexane or toluene, rendering it an interesting candidate for low-cost microfluidics and a competitor to well-known systems such as paper-based or polydimethylsiloxane-based microfluidics. Moreover, its high replication accuracy for small features down to 30 μm lateral feature size and its ability to form smooth surfaces (surface roughness Ra  = 29 nm) at low embossing temperatures (glass transition temperature Tg  = 42.2 °C) enable energy-efficient hot embossing of microfluidic structures. Proof-of-concept for the implementation of shellac hot embossing as a green fabrication method for microfluidic systems is demonstrated through the successful fabrication of a microfluidic test setup and the assessment of its resource consumption. PMID:27478525

  3. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display...... a remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because...... the use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  4. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations

    NARCIS (Netherlands)

    Burt, Sara A; Ojo-Fakunle, Victoria T A; Woertman, Jenifer; Veldhuizen, Edwin J A

    2014-01-01

    The formation of biofilm by bacteria confers resistance to biocides and presents problems in medical and veterinary clinical settings. Here we report the effect of carvacrol, one of the major antimicrobial components of oregano oil, on the formation of biofilms and its activity on existing biofilms.

  5. Present status of Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) in the Mariana Islands and its control by two fortuitously introduced natural enemies.

    Science.gov (United States)

    Reddy, G V P; Muniappan, R; Cruz, Z T; Naz, F; Bamba, J P; Tenorio, J

    2009-08-01

    The mealybug Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae), attacks ornamental and fruit crops in the Mariana Islands. Insecticides cannot penetrate the heavy layers of wax that protect the insect's body. We surveyed the mealybug's locally recruited natural enemies and their effects on its population on Guam, Rota, Saipan, and Tinian to assess the need for introduction of exotic natural enemies. We monitored population densities of M. hirsutus, those of its natural enemies, and parasitism rates for 3 yr, 2005-2007. Our surveys revealed the presence of two parasitoids, Anagyrus kamali Moursi (Hymenoptera: Encyrtidae) and Allotropa sp. near mecrida (Walker) (Hymenoptera: Platygastridae), fortuitously introduced to the Mariana Islands with M. hirsutus. The predator Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) also was often found feeding on M. hirsutus. Population density of M. hirsutus was below the economic threshold at all locations. Rainfall seemed to affect mean numbers of M. hirsutus and mean numbers of eggs at some locations. On all four islands, the two parasitoids, complemented by the predator, were effectively controlling the M. hirsutus population. No evidence of hyperparasitism was recorded. Currently, economic damage by M. hirsutus is not a concern in the Mariana Islands, and additional parasitoids need not be introduced to control M. hirsutus.

  6. Bacterial biofilm formation inhibitory activity revealed for plant derived natural compounds.

    Science.gov (United States)

    Artini, M; Papa, R; Barbato, G; Scoarughi, G L; Cellini, A; Morazzoni, P; Bombardelli, E; Selan, L

    2012-01-15

    Use of herbal plant remedies to treat infectious diseases is a common practice in many countries in traditional and alternative medicine. However to date there are only few antimicrobial agents derived from botanics. Based on microbiological screening tests of crude plant extracts we identified four compounds derived from Krameria, Aesculus hippocastanum and Chelidonium majus that showed a potentially interesting antimicrobial activity. In this work we present an in depth characterization of the inhibition activity of these pure compounds on the formation of biofilm of Staphylococcus aureus as well as of Staphylococcus epidermidis strains. We show that two of these compounds possess interesting potential to become active principles of new drugs. PMID:22182580

  7. Biofilm Cohesive Strength as a Basis for Biofilm Recalcitrance: Are Bacterial Biofilms Overdesigned?

    OpenAIRE

    Srijan Aggarwal; Philip S. Stewart; Hozalski, Raymond M.

    2016-01-01

    Bacterial biofilms are highly resistant to common antibacterial treatments, and several physiological explanations have been offered to explain the recalcitrant nature of bacterial biofilms. Herein, a biophysical aspect of biofilm recalcitrance is being reported on. While engineering structures are often overdesigned with a factor of safety (FOS) usually under 10, experimental measurements of biofilm cohesive strength suggest that the FOS is on the order of thousands. In other words, bacteria...

  8. Molecular Techniques Revealed Highly Diverse Microbial Communities in Natural Marine Biofilms on Polystyrene Dishes for Invertebrate Larval Settlement

    KAUST Repository

    Lee, On On

    2014-01-09

    Biofilm microbial communities play an important role in the larval settlement response of marine invertebrates. However, the underlying mechanism has yet to be resolved, mainly because of the uncertainties in characterizing members in the communities using traditional 16S rRNA gene-based molecular methods and in identifying the chemical signals involved. In this study, pyrosequencing was used to characterize the bacterial communities in intertidal and subtidal marine biofilms developed during two seasons. We revealed highly diverse biofilm bacterial communities that varied with season and tidal level. Over 3,000 operational taxonomic units with estimates of up to 8,000 species were recovered in a biofilm sample, which is by far the highest number recorded in subtropical marine biofilms. Nineteen phyla were found, of which Cyanobacteria and Proteobacteria were the most dominant one in the intertidal and subtidal biofilms, respectively. Apart from these, Actinobacteria, Bacteroidetes, and Planctomycetes were the major groups recovered in both intertidal and subtidal biofilms, although their relative abundance varied among samples. Full-length 16S rRNA gene clone libraries were constructed for the four biofilm samples and showed similar bacterial compositions at the phylum level to those revealed by pyrosequencing. Laboratory assays confirmed that cyrids of the barnacle Balanus amphitrite preferred to settle on the intertidal rather than subtidal biofilms. This preference was independent of the biofilm bacterial density or biomass but was probably related to the biofilm community structure, particularly, the Proteobacterial and Cyanobacterial groups. © 2014 Springer Science+Business Media New York.

  9. Combating biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong;

    2012-01-01

    Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life...... is believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review......, strategies to control biofilms are discussed, including those of inhibition of microbial attachment, interference of biofilm structure development and differentiation, killing of biofilm cells and induction of biofilm dispersion....

  10. Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community

    Directory of Open Access Journals (Sweden)

    Parro Víctor

    2010-06-01

    Full Text Available Abstract Background Extreme acidic environments are characterized by their high metal content and lack of nutrients (oligotrophy. Macroscopic biofilms and filaments usually grow on the water-air interface or under the stream attached to solid substrates (streamers. In the Río Tinto (Spain, brown filaments develop under the water stream where the Gram-negative iron-oxidizing bacteria Leptospirillum spp. (L. ferrooxidans and L. ferriphilum and Acidithiobacillus ferrooxidans are abundant. These microorganisms play a critical role in bioleaching processes for industrial (biominery and environmental applications (acid mine drainage, bioremediation. The aim of this study was to investigate the physiological differences between the free living (planktonic and the sessile (biofilm associated lifestyles of Leptospirillum spp. as part of its natural extremely acidophilic community. Results Total RNA extracted from environmental samples was used to determine the composition of the metabolically active members of the microbial community and then to compare the biofilm and planktonic environmental transcriptomes by hybridizing to a genomic microarray of L. ferrooxidans. Genes up-regulated in the filamentous biofilm are involved in cellular functions related to biofilm formation and maintenance, such as: motility and quorum sensing (mqsR, cheAY, fliA, motAB, synthesis of cell wall structures (lnt, murA, murB, specific proteases (clpX/clpP, stress response chaperons (clpB, clpC, grpE-dnaKJ, groESL, etc. Additionally, genes involved in mixed acid fermentation (poxB, ackA were up-regulated in the biofilm. This result, together with the presence of small organic acids like acetate and formate (1.36 mM and 0.06 mM respectively in the acidic (pH 1.8 water stream, suggests that either L. ferrooxidans or other member of the microbial community are producing acetate in the acidophilic biofilm under microaerophilic conditions. Conclusions Our results indicate that the

  11. Biofilms in wounds

    DEFF Research Database (Denmark)

    Cooper, R A; Bjarnsholt, Thomas; Alhede, M

    2014-01-01

    Following confirmation of the presence of biofilms in chronic wounds, the term biofilm became a buzzword within the wound healing community. For more than a century pathogens have been successfully isolated and identified from wound specimens using techniques that were devised in the nineteenth...... extracellular polymeric substances (EPS). Cells within such aggregations (or biofilms) display varying physiological and metabolic properties that are distinct from those of planktonic cells, and which contribute to their persistence. There are many factors that influence healing in wounds and the discovery...... of biofilms in chronic wounds has provided new insight into the reasons why. Increased tolerance of biofilms to antimicrobial agents explains the limited efficacy of antimicrobial agents in chronic wounds and illustrates the need to develop new management strategies. This review aims to explain the nature...

  12. Design of Self-Healing Supramolecular Rubbers by Introducing Ionic Cross-Links into Natural Rubber via a Controlled Vulcanization.

    Science.gov (United States)

    Xu, Chuanhui; Cao, Liming; Lin, Baofeng; Liang, Xingquan; Chen, Yukun

    2016-07-13

    Introducing ionic associations is one of the most effective approaches to realize a self-healing behavior for rubbers. However, most of commercial rubbers are nonpolar rubbers without now available functional groups to be converted into ionic groups. In this paper, our strategy was based on a controlled peroxide-induced vulcanization to generate massive ionic cross-links via polymerization of zinc dimethacrylate (ZDMA) in natural rubber (NR) and exploited it as a potential self-healable material. We controlled vulcanization process to retard the formation of covalent cross-link network, and successfully generated a reversible supramolecular network mainly constructed by ionic cross-links. Without the restriction of covalent cross-linkings, the NR chains in ionic supramolecular network had good flexibility and mobility. The nature that the ionic cross-links was easily reconstructed and rearranged facilitating the self-healing behavior, thereby enabling a fully cut sample to rejoin and retain to its original properties after a suitable self-healing process at ambient temperature. This study thus demonstrates a feasible approach to impart an ionic association induced self-healing function to commercial rubbers without ionic functional groups. PMID:27337545

  13. Natural antifouling compounds produced by a novel fungus Aureobasidium pullulans HN isolated from marine biofilm.

    Science.gov (United States)

    Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2013-12-15

    A fungus, Aureobasidium pullulans, was isolated from marine biofilm and identified. A bioassay-guided fractionation procedure was developed to isolate and purify antifouling compounds from A. pullulans HN. The procedure was: fermentation broth-aeration and addition of sodium thiosulfate-graduated pH and liquid-liquid extraction-SPE purification-GC-MS analysis. Firstly, the fermentation broth was tested for its toxicity. Then it was treated with aeration and addition of sodium thiosulfate, and its toxicity was almost not changed. Lastly, antifouling compounds were extracted at different pH, the extract had high toxicity at pH 2 but almost no toxicity at pH 10, which suggested the toxicants should be fatty acids. The EC50 of the extract against Skeletonema costatum was 90.9 μg ml(-1), and its LC50 against Balanus amphitrete larvae was 22.2 μg ml(-1). After purified by HLB SPE column, the EC50 of the extract against S. costatum was 49.4 μg ml(-1). The myristic and palmitic acids were found as the main toxicants by GC-MS. PMID:24210009

  14. Aboveground biomass of an invasive tree Melaleuca (Melaleuca quinquenervia) before and after herbivory by adventive and introduced natural enemies: a temporal case-study in Florida

    Science.gov (United States)

    Invasive plants may respond to injury from natural enemies by altering the quantity and distribution of biomass among woody materials, foliage, fruits, and seeds. Melaleuca, an Australian tree that has naturalized in south Florida, USA, has been reunited with two natural enemies: a weevil introduce...

  15. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs

    Directory of Open Access Journals (Sweden)

    Florence eSchubotz

    2015-02-01

    Full Text Available Streamer biofilm communities (SBC are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75-88°C SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae, Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and ‘Bison Pool’, using various 13C-labeled substrates (bicarbonate, formate, acetate and glucose to determine the relative uptake of these different carbon sources. Highest 13C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. 13C-glucose showed a similar, but a 10 to 30 times lower uptake across most fatty acids. 13C bicarbonate uptake, signifying the presence of autotrophic communities was only significant at ‘Bison Pool’ and was observed predominantly in non-specific saturated C16, C18, C20 and C22 fatty acids. Incorporation of 13C-formate occurred only at very low rates at ‘Bison Pool’ and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. 13C uptake into archaeal lipids occurred predominantly with 13C acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being

  16. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs.

    Science.gov (United States)

    Schubotz, Florence; Hays, Lindsay E; Meyer-Dombard, D'Arcy R; Gillespie, Aimee; Shock, Everett L; Summons, Roger E

    2015-01-01

    Streamer biofilm communities (SBC) are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75-88°C) SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae and Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and "Bison Pool," using various (13)C-labeled substrates (bicarbonate, formate, acetate, and glucose) to determine the relative uptake of these different carbon sources. Highest (13)C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus, and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. (13)C-glucose showed a similar, but a 10-30 times lower uptake across most fatty acids. (13)C-bicarbonate uptake, signifying the presence of autotrophic communities was only significant at "Bison Pool" and was observed predominantly in non-specific saturated C16, C18, C20, and C22 fatty acids. Incorporation of (13)C-formate occurred only at very low rates at "Bison Pool" and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. (13)C-uptake into archaeal lipids occurred predominantly with (13)C-acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being sustained by

  17. Light history modulates antioxidant and photosynthetic responses of biofilms to both natural (light) and chemical (herbicides) stressors.

    Science.gov (United States)

    Bonnineau, Chloé; Sague, Irene Gallardo; Urrea, Gemma; Guasch, Helena

    2012-05-01

    In multiple stress situations, the co-occurrence of environmental and chemical factors can influence organisms' ability to cope with toxicity. In this context, the influence of light adaptation on the response of freshwater biofilms to sudden light changes or to herbicides exposure was investigated by determining various parameters: diatom community composition, photosynthetic parameters, chlorophyll a content, antioxidant enzyme activities. Biofilms were grown in microcosms under sub-optimal, saturating, and high light intensities and showed already described characteristics of shade/light adaptation (community structure, photosynthetic adaptation, etc.). Light history modulated antioxidant and photosynthetic responses of biofilms to the stress caused by short-term exposure to sudden light changes or to herbicides. First biofilms adapted to sub-optimal light intensity (shade-adapted) were found to be more sensitive to an increase in light intensity than high-light adapted ones to a reduction in light intensity. Second, while light history influenced biofilms' response to glyphosate, it had little influence on biofilms' response to copper and none on its response to oxyfluorfen. Indeed glyphosate exposure led to a stronger decrease in photosynthetic efficiency of shade-adapted biofilms (EC(50) = 11.7 mg L(-1)) than of high-light adapted communities (EC(50) = 35.6 mg L(-1)). Copper exposure led to an activation of ascorbate peroxidase (APX) in biofilms adapted to sub-optimal and saturating light intensity while the protein content decreased in all biofilms exposed to copper. Oxyfluorfen toxicity was independent of light history provoking an increase in APX activity. In conclusion this study showed that both previous exposure to contaminants and physical habitat characteristics might influence community tolerance to disturbances strongly. PMID:22407402

  18. Permeabilizing biofilms

    Science.gov (United States)

    Soukos, Nikolaos S.; Lee, Shun; Doukas, Apostolos G.

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  19. Electrochemical biofilm control: A review

    Science.gov (United States)

    Sultana, Sujala T; Babauta, Jerome T; Beyenal, Haluk

    2015-01-01

    One of the methods of controlling biofilms that has widely been discussed in the literature is to apply a potential or electrical current to a metal surface on which the biofilm is growing. Although electrochemical biofilm control has been studied for decades, the literature is often conflicting, as is detailed in this review. The goals of this review are to (1) present the current status of knowledge regarding electrochemical biofilm control, (2) establish a basis for a fundamental definition of electrochemical biofilm control and requirements for studying it, (3) discuss current proposed mechanisms, and (4) introduce future directions in the field. It is expected that the review will provide researchers with guidelines on comparing data sets across the literature and generating comparable data sets. The authors believe that, with the correct design, electrochemical biofilm control has great potential for industrial use. PMID:26592420

  20. Electrochemical biofilm control: a review.

    Science.gov (United States)

    Sultana, Sujala T; Babauta, Jerome T; Beyenal, Haluk

    2015-01-01

    One of the methods of controlling biofilms that has widely been discussed in the literature is to apply a potential or electrical current to a metal surface on which the biofilm is growing. Although electrochemical biofilm control has been studied for decades, the literature is often conflicting, as is detailed in this review. The goals of this review are: (1) to present the current status of knowledge regarding electrochemical biofilm control; (2) to establish a basis for a fundamental definition of electrochemical biofilm control and requirements for studying it; (3) to discuss current proposed mechanisms; and (4) to introduce future directions in the field. It is expected that the review will provide researchers with guidelines on comparing datasets across the literature and generating comparable datasets. The authors believe that, with the correct design, electrochemical biofilm control has great potential for industrial use.

  1. Impact of Irgarol 1051 on the larval development and metamorphosis of Balanus amphitirite Darwin, diatom, Amphora coffeaformis and natural biofilm

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, D.V.

    (Daley and Hobbie 1975). Development of diatom biofilm A. coffeaformis was cultured in f/2 medium (Guillard 1975). When visible diatom films had formed in the culture flask, the biofilm was removed by brushing the culture flask with a sterile..., 2 ml aliquots of the diatom suspension was inoculated into the 24 well multiwells which were gently shaken for a period of 24 hours. The multiwell plates were then rinsed three times using autoclaved filtered seawater. The films developed without...

  2. Biofilm formation on Conservolea natural black olives during single and combined inoculation with a functional Lactobacillus pentosus starter culture.

    Science.gov (United States)

    Grounta, Athena; Doulgeraki, Agapi I; Nychas, George-John E; Panagou, Efstathios Z

    2016-06-01

    The potential of biofilm formation of multifunctional starters Lactobacillus pentosus B281 and Pichia membranifaciens M3A during inoculated fermentation of Conservolea natural black olives according to Greek-style processing was investigated. Olives were directly brined in 8% (w/v) NaCl following three fermentation procedures namely, i) spontaneous fermentation, ii) inoculated fermentation with L. pentosus B281, and iii) co-inoculated fermentation with L. pentosus B281 and P. membranifaciens M3A. Lactic acid bacteria (LAB) and yeasts were monitored on olives by plate counting for a period of 153 days, whereas the survival of the inoculated strains was confirmed by Pulsed Field Gel Electrophoresis (PFGE) and Restriction Fragment Length Polymorphism (RFLP) analysis. Inoculated fermentation with L. pentosus B281 with/without the presence of the yeast resulted in higher acidification of the brine compared to the spontaneous process where no indigenous LAB could be enumerated. The population of LAB on olives ranged between 5.5 and 6.5 log CFU/g and it was maintained at higher levels compared to yeasts (3.5-4.5 log CFU/g) throughout the process. PFGE analysis revealed that L. pentosus B281 could successfully colonize the surface of black olives presenting high recovery rate (100%) at the end of fermentation in contrast to P. membranifaciens M3A that was successfully recovered (42%) only after 72 days of the process. The obtained results provide interesting perspectives for the production of natural black olives with functional properties. PMID:26919816

  3. Microbial Biofilms in Endodontic Infections: An Update Review

    Directory of Open Access Journals (Sweden)

    Zahed Mohammadi

    2013-04-01

    Full Text Available Biofilms and microbial aggregates are the common mechanisms for the survival of bacteria in nature. In other words, the ability to form biofilms has been regarded as a virulence factor. Microbial biofilms play an essential role in several infectious diseases such as pulp and periradicular pathosis. The aim of this article was to review the adaptation mechanisms of biofilms, their roles in pulpal and periapical pathosis, factors influencing biofilm formation, mechanisms of their antimicrobial resistance, models developed to create biofilms, observation techniques of endodontic biofilms, and the effects of root canal irrigants and medicaments as well as lasers on endodontic biofilms. The search was performed from 1982 to December 2010, and was limited to papers in English language. The keywords searched on Medline were "biofilms and endodontics," "biofilms and root canal irrigation," "biofilms and intra-canal medicament," and "biofilms and lasers." The reference section of each article was manually searched to find other suitable sources of information.

  4. Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections

    DEFF Research Database (Denmark)

    Burmølle, Mette; Thomsen, Trine Rolighed; Fazli, Mustafa;

    2010-01-01

    to permanent tissue fillers and chronic wounds) both as to distribution (such as where in the wound bed) and organization (monospecies or multispecies microcolonies). We correlate these biofilm observations to observations of commensal biofilms (dental and intestine) and biofilms in natural ecosystems (soil......). The observations of the chronic biofilm infections point toward a trend of low bacterial diversity and sovereign monospecies biofilm aggregates even though the infection in which they reside are multispecies. In contrast to this, commensal and natural biofilm aggregates contain multiple species that are believed...

  5. Bacteriophages and Biofilms

    Directory of Open Access Journals (Sweden)

    David R. Harper

    2014-06-01

    Full Text Available Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.

  6. Study of the oxygen reduction reaction on stainless steel materials in natural seawater. Influence of the bio-film on corrosion processes

    International Nuclear Information System (INIS)

    Bio-film development on stainless steels immersed in natural seawater can have prejudicial consequences on the resistance of these materials to corrosion. The goal of the present study was to get more precise information on the corrosion processes, and especially on the oxygen reduction reaction. As the reaction is linked to the stainless steel surface state, the characterisation of the oxides films (composition, structure, thickness...) is essential to understand the mechanisms and the oxygen reduction kinetic. The first aim of the study has been to correlate the oxygen reduction processes with the characteristics of the oxides layer as a function of the alloy surface treatment (mechanical polishing, electrochemical passivation and pre-reduction, chemical treatment with some acids or with hydrogen peroxide). The second stage has consisted in following the evolution of the oxygen reduction processes and of the characteristics of the oxides layer with the aging of stainless steels in natural and artificial sea-waters. One major bio-film effect appears to be the production of hydrogen peroxide at a concentration level which induces modifications of the oxides layers and, consequently, of the evolution of the oxygen reduction kinetics as well as of the open circuit potential. Electrochemical techniques (voltammetric analysis at rotating disk and ring-disk electrodes, coulometry) combined with a surface analytical method by X-ray photoelectron spectroscopy have been used. The characterisation of the bio-film required the use of microscopy (scanning electronic microscopy, epi-fluorescence microscopy) and microbiological methods (cultures). The in-situ detection of hydrogen peroxide formed inside the bio-film has been performed with a micro-electrode and the results were confirmed with enzymatic methods. (author)

  7. Integration of non-oral bacteria into in vitro oral biofilms.

    Science.gov (United States)

    Thurnheer, Thomas; Belibasakis, Georgios N

    2015-01-01

    Biofilms are polymicrobial communities that grow on surfaces in nature. Oral bacteria can spontaneously form biofilms on the surface of teeth, which may compromise the health of the teeth, or their surrounding (periodontal) tissues. While the oral bacteria exhibit high tropism for their specialized ecological niche, it is not clear if bacteria that are not part of the normal oral microbiota can efficiently colonize and grow within oral biofilms. By using an in vitro "supragingival" biofilm model of 6 oral species, this study aimed to investigate if 3 individual bacterial species that are not part of the normal oral microbiota (Eschericia coli, Staphylococcus aureus, Enterococcus faecails) and one not previously tested oral species (Aggregatibacter actinomycetemcomitans) can be incorporated into this established supragingival biofilm model. Staphylococcus aureus and A. actinomycetemcomitans were able to grow efficiently in the biofilm, without disrupting the growth of the remaining species. They localized in sparse small aggregates within the biofilm mass. Enterococcus faecalis and E. coli were both able to populate the biofilm at high numbers, and suppressed the growth of A. oris and S. mutants. Enterococcus faecalis was arranged in a chain-like conformation, whereas E. coli was densely and evenly spread throughout the biofilm mass. In conclusion, it is possible for selected species that are not part of the normal oral microbiota to be introduced into an oral biofilm, under the given experimental micro-environmental conditions. Moreover, the equilibrated incorporation of A. actinomycetemcomitans and S. aureus in this oral biofilm model could be a useful tool in the study of aggressive periodontitis and peri-implantitis, in which these organisms are involved, respectively.

  8. Investigating Biofilm Recalcitrance In Pipe Flow Systems

    Science.gov (United States)

    Aggarwal, S.; Stewart, P. S.; Hozalski, R. M.

    2015-12-01

    It is challenging to remove biofilms from pipe walls owing to their recalcitrant nature. Several physiological explanations resulting from the community existence of microbes have been offered to explain the recalcitrant nature of biofilms. Herein a biophysical aspect of biofilm recalcitrance is being reported. While optimal efficiency argument suggests that bacterial biofilms would be just strong enough to withstand the surrounding shear forces, our experimental findings reveal the biofilms to be at least 330 to 55000 times stronger. Additionally, Monte-Carlo simulations for biofilm detachment in drinking water systems were performed, which show that the existing flow velocities are insufficient for significant biofilm removal and warrant alternative detachment strategies. This emphasizes the importance of considering strategies for biofilm weakening (and subsequent detachment) in conjunction with or as an alternative to bacterial inactivation.

  9. Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    van Hoek Monique L

    2011-05-01

    Full Text Available Abstract Background Chronic, infected wounds typically contain multiple genera of bacteria, including Staphylococcus aureus, many of which are strong biofilm formers. Bacterial biofilms are thought to be a direct impediment to wound healing. New therapies that focus on a biofilm approach may improve the recovery and healing rate for infected wounds. In this study, cathelicidins and related short, synthetic peptides were tested for their anti-microbial effectiveness as well as their ability to inhibit the ability of S. aureus to form biofilms. Results The helical human cathelicidin LL-37 was tested against S. aureus, and was found to exhibit effective anti-microbial, anti-attachment as well as anti-biofilm activity at concentrations in the low μg/ml range. The effect of peptide chirality and associated protease-resistance was explored through the use of an all-D amino acid peptide, D-LL-37, and in turn compared to scrambled LL-37. Helical cathelicidins have been identified in other animals such as the Chinese cobra, Naja atra (NA-CATH. We previously identified an 11-residue imperfectly repeated pattern (ATRA motif within the sequence of NA-CATH. A series of short peptides (ATRA-1, -2, -1A, as well as a synthetic peptide, NA-CATH:ATRA1-ATRA1, were designed to explore the significance of the conserved residues within the ATRA motif for anti-microbial activity. The CD spectrum of NA-CATH and NA-CATH:ATRA1-ATRA1 revealed the structural properties of these peptides and suggested that helicity may factor into their anti-microbial and anti-biofilm activities. Conclusions The NA-CATH:ATRA1-ATRA1 peptide inhibits the production of biofilm by S. aureus in the presence of salt, exhibiting anti-biofilm activity at lower peptide concentrations than NA-CATH, LL-37 and D-LL-37; and demonstrates low cytoxicity against host cells but does not affect bacterial attachment. The peptides utilized in this anti-biofilm approach may provide templates for a new group of

  10. Strategies for combating bacterial biofilm infections

    Institute of Scientific and Technical Information of China (English)

    Hong Wu; Claus Moser; Heng-Zhuang Wang; Niels Hiby; Zhi-Jun Song

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwelling devices. Clinical observations and experimental studies indicated clearly that antibiotic treatment alone is in most cases insufficient to eradicate biofilm infections. Therefore, to effectively treat biofilm infections with currently available antibiotics and evaluate the outcomes become important and urgent for clinicians. The review summarizes the latest progress in treatment of clinical biofilm infections and scientific investigations, discusses the diagnosis and treatment of different biofilm infections and introduces the promising laboratory progress, which may contribute to prevention or cure of biofilm infections. We conclude that, an efficient treatment of biofilm infections needs a well-established multidisciplinary collaboration, which includes removal of the infected foreign bodies, selection of biofilm-active, sensitive and well-penetrating antibiotics, systemic or topical antibiotic administration in high dosage and combinations, and administration of anti-quorum sensing or biofilm dispersal agents.

  11. Efficacy of passive ultrasonic irrigation with natural irrigants (Morinda citrifolia juice, Aloe Vera and Propolis) in comparison with 1% sodium hypochlorite for removal of E. faecalis biofilm: An in vitro study

    OpenAIRE

    Anuj Bhardwaj; Natanasabapathy Velmurugan; Sumitha; Suma Ballal

    2013-01-01

    Aim: Present study evaluated the efficacy of natural derivative irrigants, Morinda citrifolia juice (MCJ), Aloe Vera and Propolis in comparison to 1% sodium hypochlorite with passive ultrasonic irrigation for removal of the intraradicular E. faecalis biofilms in extracted single rooted human permanent teeth. Materials and Methods: Biofilms of E. faecalis were grown on the prepared root canal walls of 60 standardized root halves which were longitudinally sectioned. These root halves were r...

  12. A method to determine photosynthetic activity from oxygen microsensor data in biofilms subjected to evaporation.

    Science.gov (United States)

    Li, Tong; Podola, Björn; de Beer, Dirk; Melkonian, Michael

    2015-10-01

    Phototrophic biofilms are widely distributed in nature and their ecological importance is well recognized. More recently, there has been a growing interest in using artificial phototrophic biofilms in innovative photobioreactors for production of microalgal biomass in biotechnological applications. To study physiological processes within these biofilms, microsensors have been applied in several studies. Here, the 'light-dark shift method' relies on measurement of photosynthetic activity in terms of light-induced oxygen production. However, when applied to non-submerged biofilms that can be found in numerous locations in nature, as well as in some types of photobioreactors, limitations of this approach are obvious due to rapid removal of gaseous species at the biofilm surface. Here, we introduce a mathematical correction to recover the distribution of the actual photosynthetic activity along the depth gradient in the biofilm, based on a numerical solution of the inversed diffusion equation of oxygen. This method considers changes in mass transport during the measurement period as can found on biofilms possessing a thin flow/mass transfer boundary layer (e. g., non-submerged biofilms). Using both simulated and real microsensor data, the proposed method was shown to be much more accurate than the classical method, which leads to underestimations of rates near the biofilm surface. All test profiles could be recovered with a high fit. According to our simulated microsensor measurements, a depth resolution of ≤20 μm is recommended near the surface. We conclude that our method strongly improves the quality of data acquired from light-dark measurements of photosynthetic activity in biofilms.

  13. Bioinspired, Dynamic, Structured Surfaces for Biofilm Prevention

    OpenAIRE

    Epstein, Alexander

    2012-01-01

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even l...

  14. Health- and disease-associated species clusters in complex natural biofilms determine the innate immune response in oral epithelial cells during biofilm maturation.

    Science.gov (United States)

    Langfeldt, Daniela; Neulinger, Sven C; Stiesch, Meike; Stumpp, Nico; Bang, Corinna; Schmitz, Ruth A; Eberhard, Jörg

    2014-11-01

    The aim of the present study was to verify our hypothesis concerning the differential induction of various antimicrobial and immunomodulatory responses in oral epithelial cells by diverse bacterial species clusters. For this purpose, oral biofilms between 1 and 14 days of maturation (36 volunteers) were co-incubated with gingival epithelial cells. Subsequently, human β-defensin (hBD)-2, hBD-3, LL-37, interleukin (IL)-1β, IL-6, IL-8 and IL-10 mRNA expression profiles were quantified by quantitative reverse transcription PCR. The correlation between bacterial species and the host innate immune response was determined by relating these results to existing 16S rRNA phylogenetic analysis by amplicon sequencing (Langfeldt et al. 2014. PLoS One 9: e87449). Data were analysed by multiple factor analysis. Transcription of hBD-2 and hBD-3 was significantly associated with the abundance of species of the Prevotella cluster and the absence of species of the Streptococcus cluster. IL-1β, -6, -8 and -10 mRNA syntheses were significant correlated with Leptotrichia species [Leptotrichia 302H02 (0.448, P oral epithelial cells during early stages of bacteria-host interactions.

  15. Discovering Biofilms: Inquiry-Based Activities for the Classroom

    Science.gov (United States)

    Redelman, Carly V.; Marrs, Kathleen; Anderson, Gregory G.

    2012-01-01

    In nature, bacteria exist in and adapt to different environments by forming microbial communities called "biofilms." We propose simple, inquiry-based laboratory exercises utilizing a biofilm formation assay, which allows controlled biofilm growth. Students will be able to qualitatively assess biofilm growth via staining. Recently, we developed a…

  16. Introducing Organic Chemistry Students to Natural Product Isolation Using Steam Distillation and Liquid Phase Extraction of Thymol, Camphor, and Citral, Monoterpenes Sharing a Unified Biosynthetic Precursor

    Science.gov (United States)

    McLain, Katherine A.; Miller, Kenneth A.; Collins, William R.

    2015-01-01

    Plants have provided and continue to provide the inspiration and foundation for modern medicines. Natural product isolation is a key component of the process of drug discovery from plants. The purpose of this experiment is to introduce first semester undergraduate organic chemistry students, who have relatively few lab techniques at their…

  17. Blast a Biofilm: A Hands-On Activity for School Children and Members of the Public

    Directory of Open Access Journals (Sweden)

    Victoria L. Marlow

    2013-08-01

    Full Text Available Microbial biofilms are very common in nature and have both detrimental and beneficial effects on everyday life. Practical and hands-on activities have been shown to achieve greater learning and engagement with science by young people (1, 4, 5. We describe an interactive activity, developed to introduce microbes and biofilms to school age children and members of the public. Biofilms are common in nature and, as the favored mode of growth for microbes, biofilms affect many parts ofeveryday life. This hands-on activity highlights the key  concepts of biofilms by allowing participants to first build, then attempt to ‘blast,’ a biofilm, thus enabling the robust nature of biofilms to become apparent. We developed the blast-a-biofilm activity as part of our two-day Magnificent Microbes event, which took place at the Dundee Science Centre-Sensation in May 2010 (6. This public engagement event was run by scientists from the Division of Molecular Microbiology at the University of Dundee. The purpose of the event was to use fun and interesting activities to make both children and adults think about how fascinating microbes are. Additionally, we aimed to develop interactive resources that could be used in future events and learning environments, of which the blast-a-biofilm activity is one such resource. Scientists and policy makers in the UK believe engaging the public with research ensures that the work of universities and research institutes is relevant to society and wider social concerns and can also help scientists actively contribute to positive social change (2. The activity is aimed at junior school age children (9–11 years and adults with little or no knowledge of microbiology. The activity is suitable for use at science festivals, science clubs, and also in the classroom, where it can serve as a tool to enrich and enhance the school curriculum.

  18. Small molecule control of bacterial biofilms.

    Science.gov (United States)

    Worthington, Roberta J; Richards, Justin J; Melander, Christian

    2012-10-01

    Bacterial biofilms are defined as a surface attached community of bacteria embedded in a matrix of extracellular polymeric substances that they have produced. When in the biofilm state, bacteria are more resistant to antibiotics and the host immune response than are their planktonic counterparts. Biofilms are increasingly recognized as being significant in human disease, accounting for 80% of bacterial infections in the body and diseases associated with bacterial biofilms include: lung infections of cystic fibrosis patients, colitis, urethritis, conjunctivitis, otitis, endocarditis and periodontitis. Additionally, biofilm infections of indwelling medical devices are of particular concern, as once the device is colonized infection is virtually impossible to eradicate. Given the prominence of biofilms in infectious diseases, there has been an increased effort toward the development of small molecules that will modulate bacterial biofilm development and maintenance. In this review, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms through non-microbicidal mechanisms. The review discuses the numerous approaches that have been applied to the discovery of lead small molecules that mediate biofilm development. These approaches are grouped into: (1) the identification and development of small molecules that target one of the bacterial signaling pathways involved in biofilm regulation, (2) chemical library screening for compounds with anti-biofilm activity, and (3) the identification of natural products that possess anti-biofilm activity, and the chemical manipulation of these natural products to obtain analogues with increased activity. PMID:22733439

  19. Salmonella biofilms

    NARCIS (Netherlands)

    Castelijn, G.A.A.

    2013-01-01

    Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm formation. A collectio

  20. Biofilm Infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Jensen, Peter Østrup; Moser, Claus Ernst;

    such as diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well...... as being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections......, especially the central role of aggregating bacteria in chronic infections. He has a combined position at University of Copenhagen and Copenhagen University Hospital. Due to this Thomas has both a scientific and applied approach to the role of biofilms in chronic infections. This has also been his approach...

  1. Microbial Biofilms in Endodontic Infections: An Update Review

    OpenAIRE

    Zahed Mohammadi; Flavio Palazzi; Luciano Giardino; Sousan Shalavi

    2013-01-01

    Biofilms and microbial aggregates are the common mechanisms for the survival of bacteria in nature. In other words, the ability to form biofilms has been regarded as a virulence factor. Microbial biofilms play an essential role in several infectious diseases such as pulp and periradicular pathosis. The aim of this article was to review the adaptation mechanisms of biofilms, their roles in pulpal and periapical pathosis, factors influencing biofilm formation, mechanisms of their antimicrobial ...

  2. Efficacy of passive ultrasonic irrigation with natural irrigants (Morinda citrifolia juice, Aloe Vera and Propolis in comparison with 1% sodium hypochlorite for removal of E. faecalis biofilm: An in vitro study

    Directory of Open Access Journals (Sweden)

    Anuj Bhardwaj

    2013-01-01

    Full Text Available Aim: Present study evaluated the efficacy of natural derivative irrigants, Morinda citrifolia juice (MCJ, Aloe Vera and Propolis in comparison to 1% sodium hypochlorite with passive ultrasonic irrigation for removal of the intraradicular E. faecalis biofilms in extracted single rooted human permanent teeth. Materials and Methods: Biofilms of E. faecalis were grown on the prepared root canal walls of 60 standardized root halves which were longitudinally sectioned. These root halves were re-approximated and the samples were divided into five groups of twelve each. The groups were, Group A (1% NaOCl, Group B (MCJ, Group C (Aloe vera, Group D (Propolis and Group E (Saline. These groups were treated with passive ultrasonic irrigation (PUI along with the respective irrigants. The root halves were processed for scanning electron microscopy. Three images (X2.5, coronal, middle and apical, were taken for the twelve root halves in each of the five groups. The images were randomized and biofilm coverage assessed independently by three calibrated examiners, using a four-point scoring system. Results: 1% NaOCl with passive ultrasonic irrigation (PUI was effective in completely removing E. faecalis biofilm and was superior to the natural irrigants like MCJ, Aloe vera and Propolis tested in this study. Conclusion: 1% NaOCl used along with passive ultrasonic irrigation was effective in completely removing E. faecalis biofilm when compared to natural irrigants (MCJ, Aloe Vera and Propolis.

  3. Biofilm Development

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2015-01-01

    During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction or terminat......During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction...... or termination of biofilm matrix production via the second messenger molecule c-di-GMP. In between initiation and termination of biofilm formation we have defined specific biofilm stages, but the currently available evidence suggests that these transitions are mainly governed by adaptive responses......, and not by specific genetic programs. It appears that biofilm formation can occur through multiple pathways and that the spatial structure of the biofilms is species dependent as well as dependent on environmental conditions. Bacterial subpopulations, e.g., motile and nonmotile subpopulations, can develop...

  4. Liver fluke (Fasciola hepatica) naturally infecting introduced European brown hare (Lepus europaeus) in northern Patagonia: phenotype, prevalence and potential risk.

    Science.gov (United States)

    Cuervo, Pablo F; Cataldo, Sophia Di; Fantozzi, M Cecilia; Deis, Erika; Isenrath, Gabriela Diaz; Viberti, Gabriela; Artigas, Patricio; Peixoto, Raquel; Valero, M Adela; Sierra, Roberto Mera Y; Mas-Coma, Santiago

    2015-09-01

    Fascioliasis has recently been included in the WHO list of Neglected Zoonotic Diseases. Besides being a major veterinary health problem, fascioliasis has large underdeveloping effects on the human communities affected. Though scarcely considered in fascioliasis epidemiology, it is well recognized that both native and introduced wildlife species may play a significant role as reservoirs of the disease. The objectives are to study the morphological characteristics of Fasciola hepatica adults and eggs in a population of Lepus europaeus, to assess liver fluke prevalence, and to analyze the potential reservoir role of the European brown hare in northern Patagonia, Argentina, where fascioliasis is endemic. Measures of F. hepatica found in L. europaeus from northern Patagonia demonstrate that the liver fluke is able to fully develop in wild hares and to shed normal eggs through their faeces. Egg shedding to the environment is close to the lower limit obtained for pigs, a domestic animal whose epidemiological importance in endemic areas has already been highlighted. The former, combined with the high prevalence found (14.28%), suggest an even more important role in the transmission cycle than previously considered. The results obtained do not only remark the extraordinary plasticity and adaptability of this trematode species to different host species, but also highlight the role of the European brown hare, and other NIS, as reservoirs capable for parasite spillback to domestic and native cycle, representing a potentially important, but hitherto neglected, cause of disease emergence.

  5. Water quality and Health: Biofilms and Legionella

    OpenAIRE

    Gea-Izquierdo Enrique; Loza-Murguía Manuel

    2016-01-01

    This paper discusses the drinking water quality and its relation to Public Health. It introduces the concept of biofilm formation under stood from the perspective of biological contamination. In particular, attends to Legionella spp., ecological niches and related legionnaires’ disease. It also develops the evolution of biofilms, their influence on water quality, treatment and control. Finally, shows the relationship between certain microorganisms included in aquatic biofilms, the substrate w...

  6. Introducing Aviary

    CERN Document Server

    Peutz, Mike

    2010-01-01

    The world is changing. Where before you needed to purchase and install big and expensive programs on your computer in order to create stunning images, you can now do it all online for free using Aviary. Aviary is an online collection of applications that enable you to upload and modify your own photographs and images, and create new imagery from scratch. It includes a powerful photo-manipulation tool called Phoenix, a vector-drawing application called Raven, an effects suite for creating eye-watering image effects called Peacock, and much more. Introducing Aviary takes you through all of these

  7. Introducing Mudbox

    CERN Document Server

    Kermanikian, Ara

    2010-01-01

    One of the first books on Autodesk's new Mudbox 3D modeling and sculpting tool!. Autodesk's Mudbox was used to create photorealistic creatures for The Dark Knight , The Mist , and others films. Now you can join the crowd interested in learning this exciting new digital modeling and sculpting tool with this complete guide. Get up to speed on all of Mudbox's features and functions, learn how sculpt and paint, and master the art of using effective workflows to make it all go easier.: Introduces Autodesk's Mudbox, an exciting 3D modeling and sculpting tool that enables you to create photorealistic

  8. The clinical impact of bacterial biofilms

    DEFF Research Database (Denmark)

    Høiby, Niels; Ciofu, Oana; Johansen, Helle Krogh;

    2011-01-01

    Bacteria survive in nature by forming biofilms on surfaces and probably most, if not all, bacteria (and fungi) are capable of forming biofilms. A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and extracellular DNA....... Bacterial biofilms are resistant to antibiotics, disinfectant chemicals and to phagocytosis and other components of the innate and adaptive inflammatory defense system of the body. It is known, for example, that persistence of staphylococcal infections related to foreign bodies is due to biofilm formation....... Likewise, chronic Pseudomonas aeruginosa lung infections in cystic fibrosis patients are caused by biofilm growing mucoid strains. Gradients of nutrients and oxygen exist from the top to the bottom of biofilms and the bacterial cells located in nutrient poor areas have decreased metabolic activity...

  9. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly.

    Science.gov (United States)

    Stewart, Elizabeth J; Ganesan, Mahesh; Younger, John G; Solomon, Michael J

    2015-08-14

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, and DNA. Although the identity and abundance of EPS macromolecules are known, how these matrix materials interact with themselves and bacterial cells to generate biofilm morphology and mechanics is not understood. Here, we find that the colloidal self-assembly of Staphylococcus epidermidis RP62A cells and polysaccharides into viscoelastic biofilms is driven by thermodynamic phase instability of EPS. pH conditions that induce phase instability of chitosan produce artificial S. epidermidis biofilms whose mechanics match natural S. epidermidis biofilms. Furthermore, pH-induced solubilization of the matrix triggers disassembly in both artificial and natural S. epidermidis biofilms. This pH-induced disassembly occurs in biofilms formed by five additional staphylococcal strains, including three clinical isolates. Our findings suggest that colloidal self-assembly of cells and matrix polymers produces biofilm viscoelasticity and that biofilm control strategies can exploit this mechanism.

  10. Wound biofilms: lessons learned from oral biofilms

    OpenAIRE

    Mancl, Kimberly A.; Kirsner, Robert S.; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque,are a primary cause of oral diseases including caries, gingivitis and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible, thus biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well-elucidated. In contrast, wound research has relati...

  11. Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Webb, J.S.; Rao, D.;

    2006-01-01

    Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated...... specific interactions. In summary, our data strongly indicate that synergistic effects promote biofilm biomass and resistance of the biofilm to antimicrobial agents and bacterial invasion in multispecies biofilms.......Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated......-species biofilms resisted invasion to a greater extent than did the biofilms formed by the single species. Replacement of each strain by its cell-free culture supernatant suggested that synergy was dependent both on species-specific physical interactions between cells and on extracellular secreted factors or less...

  12. Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections

    DEFF Research Database (Denmark)

    Burmølle, Mette; Thomsen, Trine Rolighed; Fazli, Mustafa;

    2010-01-01

    It has become evident that aggregation or biofilm formation is an important survival mechanism for bacteria in almost any environment. In this review, we summarize recent visualizations of bacterial aggregates in several chronic infections (chronic otitis media, cystic fibrosis, infection due...... to permanent tissue fillers and chronic wounds) both as to distribution (such as where in the wound bed) and organization (monospecies or multispecies microcolonies). We correlate these biofilm observations to observations of commensal biofilms (dental and intestine) and biofilms in natural ecosystems (soil......). The observations of the chronic biofilm infections point toward a trend of low bacterial diversity and sovereign monospecies biofilm aggregates even though the infection in which they reside are multispecies. In contrast to this, commensal and natural biofilm aggregates contain multiple species that are believed...

  13. Ginger Extract Inhibits Biofilm Formation by Pseudomonas aeruginosa PA14

    OpenAIRE

    Han-Shin Kim; Hee-Deung Park

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability ...

  14. Wound biofilms: lessons learned from oral biofilms.

    Science.gov (United States)

    Mancl, Kimberly A; Kirsner, Robert S; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque, are a primary cause of oral diseases including caries, gingivitis, and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible; thus, biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well elucidated. In contrast, wound research has relatively recently directed attention to the role biofilms have in chronic wounds. This review discusses the biofilms in periodontal disease and chronic wounds with comparisons focusing on biofilm detection, biofilm formation, the immune response to biofilms, bacterial interaction, and quorum sensing. Current treatment modalities used by both fields and future therapies are also discussed.

  15. Material modeling of biofilm mechanical properties.

    Science.gov (United States)

    Laspidou, C S; Spyrou, L A; Aravas, N; Rittmann, B E

    2014-05-01

    A biofilm material model and a procedure for numerical integration are developed in this article. They enable calculation of a composite Young's modulus that varies in the biofilm and evolves with deformation. The biofilm-material model makes it possible to introduce a modeling example, produced by the Unified Multi-Component Cellular Automaton model, into the general-purpose finite-element code ABAQUS. Compressive, tensile, and shear loads are imposed, and the way the biofilm mechanical properties evolve is assessed. Results show that the local values of Young's modulus increase under compressive loading, since compression results in the voids "closing," thus making the material stiffer. For the opposite reason, biofilm stiffness decreases when tensile loads are imposed. Furthermore, the biofilm is more compliant in shear than in compression or tension due to the how the elastic shear modulus relates to Young's modulus. PMID:24560820

  16. Current understanding of multi-species biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong;

    2011-01-01

    Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually...... formed by multiple bacterial species. Conventional methods for bacterial cleaning, such as applications of antibiotics and/or disinfectants are often ineffective for biofilm populations due to their special physiology and physical matrix barrier. It has been estimated that billions of dollars are spent...... every year worldwide to deal with damage to equipment, contaminations of products, energy losses, and infections in human beings resulted from microbial biofilms. Microorganisms compete, cooperate, and communicate with each other in multi-species biofilms. Understanding the mechanisms of multi...

  17. Drug resistance mechanisms of fungal biofilms

    OpenAIRE

    Seneviratne, CJ; Samaranayake, LP

    2011-01-01

    Fungi are ubiquitous in nature and exist in soil, water, plants, and in animals and humans. Similar to bacteria, fungi also form confluent biofilms either singly (mono-species) or with other microbial species (mixed-species). Fungal biofilms are known to be highly resistant to the adverse environmental conditions including antimicrobials and biocide compared to its planktonic (free-floating) counterparts. Although bacterial biofilms have been studied in detail, relatively little is known of f...

  18. Introducing Toxics

    Directory of Open Access Journals (Sweden)

    David C. Bellinger

    2013-04-01

    Full Text Available With this inaugural issue, Toxics begins its life as a peer-reviewed, open access journal focusing on all aspects of toxic chemicals. We are interested in publishing papers that present a wide range of perspectives on toxicants and naturally occurring toxins, including exposure, biomarkers, kinetics, biological effects, fate and transport, treatment, and remediation. Toxics differs from many other journals in the absence of a page or word limit on contributions, permitting authors to present their work in as much detail as they wish. Toxics will publish original research papers, conventional reviews, meta-analyses, short communications, theoretical papers, case reports, commentaries and policy perspectives, and book reviews (Book reviews will be solicited and should not be submitted without invitation. Toxins and toxicants concern individuals from a wide range of disciplines, and Toxics is interested in receiving papers that represent the full range of approaches applied to their study, including in vitro studies, studies that use experimental animal or non-animal models, studies of humans or other biological populations, and mathematical modeling. We are excited to get underway and look forward to working with authors in the scientific and medical communities and providing them with a novel venue for sharing their work. [...

  19. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    OpenAIRE

    E. S. Vorobey; O. S. Voronkova; A. I. Vinnikov

    2012-01-01

    Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molec...

  20. Influence of Streptococcus mutans on Enterococcus faecalis Biofilm Formation

    NARCIS (Netherlands)

    Deng, Dong Mei; Hoogenkamp, Michel A.; Exterkate, Rob A. M.; Jiang, Lei Meng; van der Sluis, Lucas W. M.; ten Cate, Jacob M.; Crielaard, Wim

    2009-01-01

    Introduction: An important virulence factor of Enterococcus faecalis is its ability to form biofilms. Most studies on biofilm formation have been carried out by using E. faecalis monocultures. Given the polymicrobial nature of root canal infections, it is important to understand biofilm formation of

  1. A personal history of research on microbial biofilms and biofilm infections.

    Science.gov (United States)

    Høiby, Niels

    2014-04-01

    The observation of aggregated microorganisms surrounded by a self-produced matrix adhering to surfaces or located in tissues or secretions is as old as microbiology, with both Leeuwenhoek and Pasteur describing the phenomenon. In environmental and technical microbiology, biofilms were already shown 80-90 years ago to be important for biofouling on submerged surfaces, e.g. ships. The concept of biofilm infections and their importance in medicine is, however, biofilm was introduced into medicine in 1985 by Costerton. In the following decades, it became obvious that biofilm infections are widespread in medicine, and their importance is now generally accepted.

  2. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions

    OpenAIRE

    Zhang, Wei; Sileika, Tadas S.; Chen, Cheng; Liu, Yang; Lee, Jisun; Packman, Aaron I.

    2011-01-01

    Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimension...

  3. Biofilms: The Stronghold of Legionella pneumophila

    Directory of Open Access Journals (Sweden)

    Mena Abdel-Nour

    2013-10-01

    Full Text Available Legionellosis is mostly caused by Legionella pneumophila and is defined as a severe respiratory illness with a case fatality rate ranging from 5% to 80%. L. pneumophila is ubiquitous in natural and anthropogenic water systems. L. pneumophila is transmitted by inhalation of contaminated aerosols produced by a variety of devices. While L. pneumophila replicates within environmental protozoa, colonization and persistence in its natural environment are also mediated by biofilm formation and colonization within multispecies microbial communities. There is now evidence that some legionellosis outbreaks are correlated with the presence of biofilms. Thus, preventing biofilm formation appears as one of the strategies to reduce water system contamination. However, we lack information about the chemical and biophysical conditions, as well as the molecular mechanisms that allow the production of biofilms by L. pneumophila. Here, we discuss the molecular basis of biofilm formation by L. pneumophila and the roles of other microbial species in L. pneumophila biofilm colonization. In addition, we discuss the protective roles of biofilms against current L. pneumophila sanitation strategies along with the initial data available on the regulation of L. pneumophila biofilm formation.

  4. Genetic drift outweighs natural selection at toll-like receptor (TLR) immunity loci in a re-introduced population of a threatened species.

    Science.gov (United States)

    Grueber, Catherine E; Wallis, Graham P; Jamieson, Ian G

    2013-09-01

    During population establishment, genetic drift can be the key driver of changes in genetic diversity, particularly while the population is small. However, natural selection can also play a role in shaping diversity at functionally important loci. We used a well-studied, re-introduced population of the threatened Stewart Island robin (N = 722 pedigreed individuals) to determine whether selection shaped genetic diversity at innate immunity toll-like receptor (TLR) genes, over a 9-year period of population growth following establishment with 12 genetic founders. We found no evidence for selection operating with respect to TLR diversity on first-year overwinter survival for the majority of loci, genotypes and alleles studied. However, survival of individuals with TLR4BE genotype was significantly improved: these birds were less than half as likely to die prior to maturity compared with all other TLR4 genotypes. Furthermore, the population frequency of this genotype, at a two-fold excess over Hardy-Weinberg expectation, was increased by nonrandom mating. Near-complete sampling and full pedigree and reproductive data enabled us to eliminate other potential causes of these patterns including inbreeding, year effects, density dependence, selection on animals at earlier life history stages or genome-level association of the TLR4E allele with 'good genes'. However, comparison of observed levels of gene diversity to predictions under simulated genetic drift revealed results consistent with neutral expectations for all loci, including TLR4. Although selection favoured TLR4BE heterozygotes in this population, these effects were insufficient to outweigh genetic drift. This is the first empirical study to show that genetic drift can overwhelm natural selection in a wild population immediately following establishment.

  5. Chemoinformatics-assisted development of new anti-biofilm compounds

    DEFF Research Database (Denmark)

    Dürig, Anna; Kouskoumvekaki, Irene; Vejborg, Rebecca Munk;

    2010-01-01

    to identify new and efficient anti-biofilm drugs. We found that ellagic acid (present in green tea) significantly inhibited biofilm formation of Streptococcus dysgalactiae. Based on ellagic acid, we performed in silico screening of the Chinese Natural Product Database to predict a 2nd-generation list...... of compounds with similar characteristics. One of these, esculetin, proved to be more efficient in preventing biofilm formation by Staphylococcus aureus. From esculetin a 3rd-generation list of compounds was predicted. One of them, fisetin, was even better to abolish biofilm formation than the two parent...... compounds. Fisetin dramatically inhibited biofilm formation of both S. aureus and S. dysgalactiae. The compounds did not affect planktonic growth in concentrations where they affected biofilm formation and appeared to be specific antagonists of biofilms. Arguably, since all three compounds are natural...

  6. Study of the oxygen reduction reaction on stainless steel materials in natural seawater. Influence of the bio-film on corrosion processes; Reaction de reduction de l'oxygene sur les aciers inoxydables en eau de mer naturelle. Influence du biofilm sur les processus de corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Le Bozec, N

    2000-01-15

    Bio-film development on stainless steels immersed in natural seawater can have prejudicial consequences on the resistance of these materials to corrosion. The goal of the present study was to get more precise information on the corrosion processes, and especially on the oxygen reduction reaction. As the reaction is linked to the stainless steel surface state, the characterisation of the oxides films (composition, structure, thickness...) is essential to understand the mechanisms and the oxygen reduction kinetic. The first aim of the study has been to correlate the oxygen reduction processes with the characteristics of the oxides layer as a function of the alloy surface treatment (mechanical polishing, electrochemical passivation and pre-reduction, chemical treatment with some acids or with hydrogen peroxide). The second stage has consisted in following the evolution of the oxygen reduction processes and of the characteristics of the oxides layer with the aging of stainless steels in natural and artificial sea-waters. One major bio-film effect appears to be the production of hydrogen peroxide at a concentration level which induces modifications of the oxides layers and, consequently, of the evolution of the oxygen reduction kinetics as well as of the open circuit potential. Electrochemical techniques (voltammetric analysis at rotating disk and ring-disk electrodes, coulometry) combined with a surface analytical method by X-ray photoelectron spectroscopy have been used. The characterisation of the bio-film required the use of microscopy (scanning electronic microscopy, epi-fluorescence microscopy) and microbiological methods (cultures). The in-situ detection of hydrogen peroxide formed inside the bio-film has been performed with a micro-electrode and the results were confirmed with enzymatic methods. (author)

  7. The Biofilm Challenge

    DEFF Research Database (Denmark)

    Alhede, Maria; Alhede, Morten

    2014-01-01

    reveals the significance of biofilms, as evidenced by a dramatic increase in scientific publications on the topic, as well as in publications concerning wounds with biofilms, which reached 600 publications in 2013. Judged from the number of publications, it appears that biofilms play a significant role...... in wounds. However, the impact of biofilms is often debated, because infected wounds were also treated before the concept of biofilms was coined. In this short review, we will address the significance of biofilms and their role in wounds, and discuss the future tasks of the biofilm challenge....

  8. The in vivo biofilm

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Maria; Alhede, Morten;

    2013-01-01

    Bacteria can grow and proliferate either as single, independent cells or organized in aggregates commonly referred to as biofilms. When bacteria succeed in forming a biofilm within the human host, the infection often becomes very resistant to treatment and can develop into a chronic state. Biofilms...... have been studied for decades using various in vitro models, but it remains debatable whether such in vitro biofilms actually resemble in vivo biofilms in chronic infections. In vivo biofilms share several structural characteristics that differ from most in vitro biofilms. Additionally, the in vivo...... experimental time span and presence of host defenses differ from chronic infections and the chemical microenvironment of both in vivo and in vitro biofilms is seldom taken into account. In this review, we discuss why the current in vitro models of biofilms might be limited for describing infectious biofilms...

  9. Reconstruction of biofilm images: combining local and global structural parameters

    Energy Technology Data Exchange (ETDEWEB)

    Resat, Haluk; Renslow, Ryan S.; Beyenal, Haluk

    2014-11-07

    Digitized images can be used for quantitative comparison of biofilms grown under different conditions. Using biofilm image reconstruction, it was previously found that biofilms with a completely different look can have nearly identical structural parameters and that the most commonly utilized global structural parameters were not sufficient to uniquely define these biofilms. Here, additional local and global parameters are introduced to show that these parameters considerably increase the reliability of the image reconstruction process. Assessment using human evaluators indicated that the correct identification rate of the reconstructed images increased from 50% to 72% with the introduction of the new parameters into the reconstruction procedure. An expanded set of parameters especially improved the identification of biofilm structures with internal orientational features and of structures in which colony sizes and spatial locations varied. Hence, the newly introduced structural parameter sets helped to better classify the biofilms by incorporating finer local structural details into the reconstruction process.

  10. Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Ren, Dawei

    The coexistence of hugely diverse microbes in most environments highlights the intricate interactions in microbial communities, which are central to their properties, such as productivity, stability and the resilience to disturbance. Biofilm, in environmental habitats, is such a spatially...... multispecies biofilm models, oral microbial community, also known as “dental plaque” is thoroughly investigated as a focal point to describe the interspecies interactions [1]. However, owing to the lack of a reliable high throughput and quantitative approach for exploring the interplay between multiple...... bacterial species, the study to elucidate the impact of interaction networks on the multispecies biofilms in natural ecosystems, especially in soil, is still at an early stage. The diverse patterns of interactions within the mixed communities as well as the predatorprey relationship between protozoa...

  11. Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages

    OpenAIRE

    Abedon, Stephen T.

    2015-01-01

    Bacteriophages, the viruses that infect bacteria, have for decades been successfully used to combat antibiotic-resistant, chronic bacterial infections, many of which are likely biofilm associated. Antibiotics as anti-biofilm agents can, by contrast, be inefficacious against even genetically sensitive targets. Such deficiencies in usefulness may result from antibiotics, as naturally occurring compounds, not serving their producers, in nature, as stand-alone disruptors of mature biofilms. Anti-...

  12. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14.

    Science.gov (United States)

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39-56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3'-5')-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor. PMID:24086697

  13. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14.

    Directory of Open Access Journals (Sweden)

    Han-Shin Kim

    Full Text Available Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39-56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3'-5'-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor.

  14. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Helen L Brown

    Full Text Available The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.

  15. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni.

    Science.gov (United States)

    Brown, Helen L; Reuter, Mark; Hanman, Kate; Betts, Roy P; van Vliet, Arnoud H M

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.

  16. [On Biofilms of Streptomycetes. II. Use in Biotechnology].

    Science.gov (United States)

    Vinogradoya, A; Bulgakova, V G; Polin, A N; Kozhevin, P A

    2015-01-01

    Streptomycetes or mycelial microorganisms are able to form biofilms under the natural, industrial and clinical conditions. The controlled use of biofilms in various industrial processes is much more efficient vs. the cultivation of plankton suspended cells. Optimization of biotechnological processes with the use of streptomycete biofilms is advisable in production of lactic acid and detoxication of the liquor in pyrolysis of plant biomass. Streptomycete biofilms are used in water purification systems. It is recommended to use biofilms for detoxication of wastes and bioremediation of soils contaminated with hard metals. The use of biofilms of streptomycetes producing biologically active substances is of special interest. High yields of.antibiotics and actinomycin D in particular was observed with. cultivation of antibioc-producing streptomycetes as biofilms in bioreactors of unique design.

  17. Biofilm Fixed Film Systems

    Directory of Open Access Journals (Sweden)

    Dipesh Das

    2011-09-01

    Full Text Available The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, rotating biological contactors, fluidized bed bioreactors, submerged bed biofilm reactors, biological granular activated carbon, membrane bioreactors, and immobilized cell reactors. Innovative reactors, not easily classified, are then presented, followed by a section on biofilms on sand, soil and sediment.

  18. BiofilmQuant: a computer-assisted tool for dental biofilm quantification.

    Science.gov (United States)

    Mansoor, Awais; Patsekin, Valery; Scherl, Dale; Robinson, J Paul; Rajwa, Bartlomiej

    2014-01-01

    Dental biofilm is the deposition of microbial material over a tooth substratum. Several methods have recently been reported in the literature for biofilm quantification; however, at best they provide a barely automated solution requiring significant input needed from the human expert. On the contrary, state-of-the-art automatic biofilm methods fail to make their way into clinical practice because of the lack of effective mechanism to incorporate human input to handle praxis or misclassified regions. Manual delineation, the current gold standard, is time consuming and subject to expert bias. In this paper, we introduce a new semi-automated software tool, BiofilmQuant, for dental biofilm quantification in quantitative light-induced fluorescence (QLF) images. The software uses a robust statistical modeling approach to automatically segment the QLF image into three classes (background, biofilm, and tooth substratum) based on the training data. This initial segmentation has shown a high degree of consistency and precision on more than 200 test QLF dental scans. Further, the proposed software provides the clinicians full control to fix any misclassified areas using a single click. In addition, BiofilmQuant also provides a complete solution for the longitudinal quantitative analysis of biofilm of the full set of teeth, providing greater ease of usability.

  19. Reduction Kinetics of Manganese Dioxide by Geobacter Sulfurreducens and Associated Biofilm Morphology in a Flow-Through Reactor

    Science.gov (United States)

    Berns, E.; Werth, C. J.; Valocchi, A. J.; Sanford, R. A.

    2015-12-01

    Biogeochemical interactions have been investigated extensively to characterize natural nutrient cycling and predict contaminant transport in surface and groundwater. Dissimilatory metal reducing bacteria, many of which form biofilms, play an important role in reducing a variety of metals in these systems. It has been shown that biofilm morphology is impacted by flow conditions, but there has been little work that explores how reduction kinetics change as a result of these different morphologies. Different flow rates may affect physical properties of the biofilm that influence the rate of substrate reduction. We introduce an approach to calculate changes in Monod kinetic parameters while simultaneously evaluating biofilm morphologies under different flow rates. A vertical, cylindrical flow cell with removable glass slide sections coated in manganese dioxide (electron acceptor) was used to grow a biofilm of Geobacter sulfurreducens with acetate as the electron donor under both high (50 mL/hr) and low (5 mL/h) flow rates. The removable sections allowed for visualization of the biofilm at different time points with a confocal microscope, and quantification of the biomass on the surface using a combination of a protein assay and image analysis. Data collected from the experiments was used to determine yield and specific growth rate at the different flow rates, and a simple numerical model was used to estimate the half saturation constant of manganese dioxide at both flow rates. A smaller half saturation constant was estimated at the higher flow rate, indicating that the biofilm was more efficient in the high flow system, but a strong correlation between morphology and the faster reduction rate was not observed. Monod kinetic parameters are important for the development of accurate nutrient cycling and contaminant transport models in natural environments, and understanding how they are impacted by flow will be important for the development of new, improved models.

  20. Pseudomonas aeruginosa Biofilm Infections

    DEFF Research Database (Denmark)

    Rybtke, Morten; Hultqvist, Louise Dahl; Givskov, Michael;

    2015-01-01

    Studies of biopsies from infectious sites, explanted tissue and medical devises have provided evidence that biofilms are the underlying cause of a variety of tissue-associated and implant-associated recalcitrant human infections. With a need for novel anti-biofilm treatment strategies, research...... in biofilm infection microbiology, biofilm formation mechanisms and biofilm-associated antimicrobial tolerance has become an important area in microbiology. Substantial knowledge about biofilm formation mechanisms, biofilm-associated antimicrobial tolerance and immune evasion mechanisms has been obtained...... through work with biofilms grown in in vitro experimental setups, and the relevance of this information in the context of chronic infections is being investigated by the use of animal models of infection. Because our current in vitro experimental setups and animal models have limitations, new advanced...

  1. Implications of Biofilm Formation on Urological Devices

    Science.gov (United States)

    Cadieux, Peter A.; Wignall, Geoffrey R.; Carriveau, Rupp; Denstedt, John D.

    2008-09-01

    Despite millions of dollars and several decades of research targeted at their prevention and eradication, biofilm-associated infections remain the major cause of urological device failure. Numerous strategies have been aimed at improving device design, biomaterial composition, surface properties and drug delivery, but have been largely circumvented by microbes and their plethora of attachment, host evasion, antimicrobial resistance, and dissemination strategies. This is not entirely surprising since natural biofilm formation has been going on for millions of years and remains a major part of microorganism survival and evolution. Thus, the fact that biofilms develop on and in the biomaterials and tissues of humans is really an extension of this natural tendency and greatly explains why they are so difficult for us to combat. Firstly, biofilm structure and composition inherently provide a protective environment for microorganisms, shielding them from the shear stress of urine flow, immune cell attack and some antimicrobials. Secondly, many biofilm organisms enter a metabolically dormant state that renders them tolerant to those antibiotics and host factors able to penetrate the biofilm matrix. Lastly, the majority of organisms that cause biofilm-associated urinary tract infections originate from our own oral cavity, skin, gastrointestinal and urogenital tracts and therefore have already adapted to many of our host defenses. Ultimately, while biofilms continue to hold an advantage with respect to recurrent infections and biomaterial usage within the urinary tract, significant progress has been made in understanding these dynamic microbial communities and novel approaches offer promise for their prevention and eradication. These include novel device designs, antimicrobials, anti-adhesive coatings, biodegradable polymers and biofilm-disrupting compounds and therapies.

  2. Crenarchaeal Biofilm Formation under Extreme Conditions

    OpenAIRE

    Andrea Koerdt; Julia Gödeke; Jürgen Berger; Thormann, Kai M.; Sonja-Verena Albers

    2010-01-01

    BACKGROUND: Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments. METHODOLOGY: We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitr...

  3. Rheology of biofilms

    OpenAIRE

    Winston, M.; Rupp, C.J.; Vinogradov, A.; Towler, B.W.; Adams, H; Stoodley, P

    2003-01-01

    The paper describes an experimental study concerning the mechanical properties of bacterial biofilms formed from the early dental plaque colonizer Streptoccocus mutans and pond water biofilms. Experiments reported in this paper demonstrate that both types of biofilms exhibit mechanical behavior similar to that of rheological fluids. The time-dependent properties of both biofilms have been modeled using the principles of viscoelasticity theory. The Burger model has been found to accurately re...

  4. The Vibrio cholerae Pst2 phosphate transport system is upregulated in biofilms and contributes to biofilm-induced hyperinfectivity.

    Science.gov (United States)

    Mudrak, Benjamin; Tamayo, Rita

    2012-05-01

    Vibrio cholerae is the causative agent of the deadly diarrheal disease cholera. As part of its life cycle, V. cholerae persists in marine environments, where it forms surface-attached communities commonly described as biofilms. Evidence indicates that these biofilms constitute the infectious form of the pathogen during outbreaks. Previous work has shown that biofilm-derived V. cholerae cells, even when fully dispersed from the biofilm matrix, are vastly more infectious than planktonic (free-living) cells. Here, we sought to identify factors that contribute to biofilm-induced hyperinfectivity in V. cholerae, and we present evidence for one aspect of the molecular basis of this phenotype. We identified proteins upregulated during growth in biofilms and determined their contributions to the hyperinfectivity phenotype. We found that PstS2, the periplasmic component of the Pst2 phosphate uptake system, was enriched in biofilms. Another gene in the pst2 locus was transcriptionally upregulated in biofilms. Using the infant mouse model, we found that mutation of two pst2 components resulted in impaired colonization. Importantly, deletion of the Pst2 inner membrane complex caused a greater colonization defect after growth in a biofilm compared to shaking culture. Based on these data, we propose that V. cholerae cells in biofilms upregulate the Pst2 system and therefore gain an advantage upon entry into the host. Further characterization of factors contributing to biofilm-induced hyperinfectivity in V. cholerae will improve our understanding of the transmission of the bacteria from natural aquatic habitats to the human host.

  5. Non-toxic plant metabolites regulate Staphylococcus viability and biofilm formation: a natural therapeutic strategy useful in the treatment and prevention of skin infections.

    Science.gov (United States)

    Morán, A; Gutiérrez, S; Martínez-Blanco, H; Ferrero, M A; Monteagudo-Mera, A; Rodríguez-Aparicio, L B

    2014-01-01

    In the present study, the efficacy of generally recognised as safe (GRAS) antimicrobial plant metabolites in regulating the growth of Staphylococcus aureus and S. epidermidis was investigated. Thymol, carvacrol and eugenol showed the strongest antibacterial action against these microorganisms, at a subinhibitory concentration (SIC) of ≤ 50 μg ml(-1). Genistein, hydroquinone and resveratrol showed antimicrobial effects but with a wide concentration range (SIC = 50-1,000 μg ml(-1)), while catechin, gallic acid, protocatechuic acid, p-hydroxybenzoic acid and cranberry extract were the most biologically compatible molecules (SIC ≥ 1000 μg ml(-1)). Genistein, protocatechuic acid, cranberry extract, p-hydroxybenzoic acid and resveratrol also showed anti-biofilm activity against S. aureus, but not against S. epidermidis in which, surprisingly, these metabolites stimulated biofilm formation (between 35% and 1,200%). Binary combinations of cranberry extract and resveratrol with genistein, protocatechuic or p-hydroxibenzoic acid enhanced the stimulatory effect on S. epidermidis biofilm formation and maintained or even increased S. aureus anti-biofilm activity. PMID:25397362

  6. Morphological responses of Legionella pneumophila biofilm to nanoparticle exposure.

    Science.gov (United States)

    Stojak, Amber R; Raftery, Tara; Klaine, Stephen J; McNealy, Tamara L

    2011-12-01

    Legionella pneumophila is a pathogenic bacterium that forms biofilms in natural and anthropogenic habitats. This feature not only facilitates colonization but also limits the effectiveness of biocides. L. pneumophila was exposed to three sizes of citrate-capped gold nanospheres in both planktonic and biofilm stages. TEM micrographs indicated that gold nanoparticles (AuNPs) adsorbed to the bacterial cell surface, were absorbed into the cells, aggregated within the cells, and integrated into the extrapolymeric matrix of the biofilm. Both 4 and 18 nm, but not 50 nm AuNPs caused an alteration of biofilm morphology. Treatment with 20 nm polystyrene spheres did not induce these changes suggesting that the response was a result of the gold and not just the presence of the nanosphere. The morphological changes observed in the biofilm suggest that aquatic ecosystems may be affected by nanoparticle exposure. This may compromise ecosystem functions such as nutrient cycling facilitated by natural biofilms. PMID:21294606

  7. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  8. Biofilms: A microbial home

    OpenAIRE

    Chandki, Rita; Banthia, Priyank; Banthia, Ruchi

    2011-01-01

    Microbial biofilms are mainly implicated in etiopathogenesis of caries and periodontal disease. Owing to its properties, these pose great challenges. Continuous and regular disruption of these biofilms is imperative for prevention and management of oral diseases. This essay provides a detailed insight into properties, mechanisms of etiopathogenesis, detection and removal of these microbial biofilms.

  9. Crenarchaeal biofilm formation under extreme conditions.

    Directory of Open Access Journals (Sweden)

    Andrea Koerdt

    Full Text Available BACKGROUND: Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments. METHODOLOGY: We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells. CONCLUSION: The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.

  10. Introducing Scientific Literature to Honors General Chemistry Students: Teaching Information Literacy and the Nature of Research to First-Year Chemistry Students

    Science.gov (United States)

    Ferrer-Vinent, Ignacio J.; Bruehl, Margaret; Pan, Denise; Jones, Galin L.

    2015-01-01

    This paper describes the methodology and implementation of a case study introducing the scientific literature and creative experiment design to honors general chemistry laboratory students. The purpose of this study is to determine whether first-year chemistry students can develop information literacy skills while they engage with the primary…

  11. The influence of biofilms in the biology of plasmids

    OpenAIRE

    Cook, Laura C.C.; Dunny, Gary M.

    2014-01-01

    The field of plasmid biology has historically focused on bacteria growing in liquid culture. Surface attached communities of bacterial biofilms have recently been understood to be the normal environment of bacteria in the natural world. Thus, studies examining plasmid replication, maintenance, and transfer in biofilms are essential for a true understanding of bacterial plasmid biology. This chapter reviews the current knowledge of the interplay between bacterial biofilms and plasmids, focusin...

  12. Synergistic effects in mixed Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Holler, B.M.; Molin, Søren;

    2006-01-01

    the pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from...... the cocultivation of 403 undomesticated E. coli strains with a characterized E. coli K-12 strain was detected at a significant frequency. The survey suggests that different mechanisms underlie the observed stimulation, yet synergistic development of biofilm within the subset of E. coli isolates (n = 56) exhibiting...... the strongest effects was most often linked to conjugative transmission of natural plasmids carried by the E. coli isolates (70%). Thus, the capacity of an isolate to promote the biofilm through cocultivation was (i) transferable to the K-12 strain, (ii) was linked with the acquisition of conjugation genes...

  13. Controlling the oral biofilm with antimicrobials.

    Science.gov (United States)

    Marsh, P D

    2010-06-01

    The aim of this article is to review the properties of compounds available for the control of dental plaque biofilms, and describe their mode of action. The mouth is colonised by a diverse but characteristic collection of micro-organisms, which confer benefit to host. Numerous antiplaque (e.g. surfactants, essential oils) and antimicrobial agents (e.g. bisbiguanides, metal ions, phenols, quaternary ammonium compounds, etc.) have been successfully formulated into toothpastes and mouthrinses to control plaque biofilms. At high concentrations, these agents can remove biofilm and/or kill disease-associated bacteria, while even at sub-lethal levels they can inhibit the expression of pathogenic traits. Successful antimicrobial agents are able to meet the apparently contradictory requirements of maintaining the oral biofilm at levels compatible with oral health but without disrupting the natural and beneficial properties of the resident oral microflora.

  14. Anti-Biofilm Compounds Derived from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Christian Melander

    2011-10-01

    Full Text Available Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues—including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds.

  15. Anti-biofilm compounds derived from marine sponges.

    Science.gov (United States)

    Stowe, Sean D; Richards, Justin J; Tucker, Ashley T; Thompson, Richele; Melander, Christian; Cavanagh, John

    2011-01-01

    Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues-including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds. PMID:22073007

  16. Revealing the relationship between microbial community structure in natural biofilms and the pollution level in urban rivers: a case study in the Qinhuai River basin, Yangtze River Delta.

    Science.gov (United States)

    Cai, Wei; Li, Yi; Wang, Peifang; Niu, Lihua; Zhang, Wenlong; Wang, Chao

    2016-01-01

    River pollution is one of the most challenging environmental issues, but the effect of river pollution levels on the biofilm communities has not been well-studied. Spatial and temporal distribution characteristics of environmental parameters and the biofilm communities were investigated in the Qinhuai River basin, Nanjing, China. Water samples were grouped into three clusters reflecting their varying pollution levels of relatively slight pollution, moderated pollution, and high pollution by hierarchical cluster analysis. In different clusters, the biofilm communities mainly differed in the proportion of Actinobacteria, Firmicutes, and Proteobacteria. As the dominant classes of Proteobacteria, Alpha-, Beta- and Gammaproteobacteria seemed to show an upward trend followed by a small fluctuation in the abundance with the escalation of water pollution level. Results of redundancy analysis demonstrated that temperature, total nitrogen to total phosphorus ratios (TN/TP) and concentrations of ammonia nitrogen (NH3-N) and TN were mainly responsible for the variation in bacterial community structure. The occurrences of Alpha-, Beta- and Gammaproteobacteria were closely associated with higher temperature, higher concentrations of NH3-N and TN and a lower TN/TP ratio. This study may provide a theoretical basis for the water pollution control and ecological restoration in urban rivers under different pollution levels. PMID:27642836

  17. A modified CDC biofilm reactor to produce mature biofilms on the surface of peek membranes for an in vivo animal model application.

    Science.gov (United States)

    Williams, Dustin L; Woodbury, Kassie L; Haymond, Bryan S; Parker, Albert E; Bloebaum, Roy D

    2011-06-01

    Biofilm-related infections have become a major clinical concern. Typically, animal models that involve inoculation with planktonic bacteria have been used to create positive infection signals and examine antimicrobial strategies for eradicating or preventing biofilm-related infection. However, it is estimated that 99.9% of bacteria in nature dwell in established biofilms. As such, open wounds have significant potential to become contaminated with bacteria that reside in a well-established biofilm. In this study, a modified CDC biofilm reactor was developed to repeatably grow mature biofilms of Staphylococcus aureus on the surface of polyetheretherketone (PEEK) membranes for inoculation in a future animal model of orthopaedic implant biofilm-related infection. Results indicated that uniform, mature biofilms repeatably grew on the surface of the PEEK membranes.

  18. Protocols to study the physiology of oral biofilms.

    Science.gov (United States)

    Lemos, José A; Abranches, Jacqueline; Koo, Hyun; Marquis, Robert E; Burne, Robert A

    2010-01-01

    The oral cavity harbors several hundred different bacterial species that colonize both hard (teeth) and soft tissues, forming complex populations known as microbial biofilms. It is widely accepted that the phenotypic characteristics of bacteria grown in biofilms are substantially different from those grown in suspensions. Because biofilms are the natural habitat for the great majority of oral bacteria, including those contributing to oral diseases, a better understanding of the physiology of adherent populations is clearly needed to control oral microbes in health and disease. In this chapter, we use oral streptococci as examples for studying the physiology of oral biofilms.

  19. Microbial Biofilms: Persisters, Tolerance and Dosing

    Science.gov (United States)

    Cogan, N. G.

    2005-03-01

    Almost all moist surfaces are colonized by microbial biofilms. Biofilms are implicated in cross-contamination of food products, biofouling, medical implants and various human infections such as dental cavities, ulcerative colitis and chronic respiratory infections. Much of current research is focused on the recalcitrance of biofilms to typical antibiotic and antimicrobial treatments. Although the polymer component of biofilms impedes the penetration of antimicrobials through reaction-diffusion limitation, this does not explain the observed tolerance, it merely delays the action of the agent. Heterogeneities in growth-rate also slow the eradication of the bacteria since most antimicrobials are far less effective for non-growing, or slowly growing bacteria. This also does not fully describe biofilm tolerance, since heterogeneities arr primairly a result of nutrient consumption. In this investigation, we describe the formation of `persister' cells which neither grow nor die in the presence of antibiotics. We propose that the cells are of a different phenotype than typical bacterial cells and the expression of the phenotype is regulated by the growth rate and the antibiotic concentration. We describe several experiments which describe the dynamics of persister cells and which motivate a dosing protocol that calls for periodic dosing of the population. We then introduce a mathematical model, which describes the effect of such a dosing regiment and indicates that the relative dose/withdrawal times are important in determining the effectiveness of such a treatment. A reduced model is introduced and the similar behavior is demonstrated analytically.

  20. Shaping the Growth Behaviour of Bacterial Aggregates in Biofilms

    CERN Document Server

    Melaugh, Gavin; Kragh, Kasper Nørskov; Irie, Yasuhiko; Roberts, Aled; Bjarnsholt, Thomas; Diggle, Steve P; Gordon, Vernita; Allen, Rosalind J

    2015-01-01

    Bacterial biofilms are usually assumed to originate from individual cells deposited on a surface. However, many biofilm-forming bacteria tend to aggregate in the planktonic phase meaning it is possible that many natural and infectious biofilms originate wholly or partially from pre-formed cell aggregates. Here, we use agent-based computer simulations to investigate the role of pre-formed aggregates in biofilm development. Focusing on the role of aggregate shape, we find that the degree of spreading of an aggregate on a surface can play a key role in determining its eventual fate during biofilm development. Specifically, initially spread aggregates perform better when competition with surrounding bacterial cells is low, while initially rounded aggregates perform better when competition is high. These contrasting outcomes are governed by a trade-off between aggregate surface area and height. Our results provide new insight into biofilm formation and development, and reveal new factors that may be at play in the...

  1. Anti-biofilm Activity as a Health Issue.

    Science.gov (United States)

    Miquel, Sylvie; Lagrafeuille, Rosyne; Souweine, Bertrand; Forestier, Christiane

    2016-01-01

    The formation and persistence of surface-attached microbial communities, known as biofilms, are responsible for 75% of human microbial infections (National Institutes of Health). Biofilm lifestyle confers several advantages to the pathogens, notably during the colonization process of medical devices and/or patients' organs. In addition, sessile bacteria have a high tolerance to exogenous stress including anti-infectious agents. Biofilms are highly competitive communities and some microorganisms exhibit anti-biofilm capacities such as bacterial growth inhibition, exclusion or competition, which enable them to acquire advantages and become dominant. The deciphering and control of anti-biofilm properties represent future challenges in human infection control. The aim of this review is to compare and discuss the mechanisms of natural bacterial anti-biofilm strategies/mechanisms recently identified in pathogenic, commensal and probiotic bacteria and the main synthetic strategies used in clinical practice, particularly for catheter-related infections.

  2. Anti-biofilm activity as a health issue

    Directory of Open Access Journals (Sweden)

    Sylvie eMiquel

    2016-04-01

    Full Text Available The formation and persistence of surface-attached microbial communities, known as biofilms, are responsible for 75% of human microbial infections (National Institutes of Health. Biofilm lifestyle confers several advantages to the pathogens, notably during the colonization process of medical devices and/or patients’ organs. In addition, sessile bacteria have a high tolerance to exogenous stress including anti-infectious agents. Biofilms are highly competitive communities and some microorganisms exhibit anti-biofilm capacities such as bacterial growth inhibition, exclusion or competition, which enable them to acquire advantages and become dominant. The deciphering and control of anti-biofilm properties represent future challenges in human infection control. The aim of this review is to compare and discuss the mechanisms of natural bacterial anti-biofilm strategies/mechanisms recently identified in pathogenic, commensal and probiotic bacteria and the main synthetic strategies used in clinical practice, particularly for catheter-related infections.

  3. Are Africans, Europeans, and Asians Different "Races"? A Guided-Inquiry Lab for Introducing Undergraduate Students to Genetic Diversity and Preparing Them to Study Natural Selection

    Science.gov (United States)

    Kalinowski, Steven T.; Andrews, Tessa M.; Leonard, Mary J.; Snodgrass, Meagan

    2012-01-01

    Many students do not recognize that individual organisms within populations vary, and this may make it difficult for them to recognize the essential role variation plays in natural selection. Also, many students have weak scientific reasoning skills, and this makes it difficult for them to recognize misconceptions they might have. This paper…

  4. A personal history of research on microbial biofilms and biofilm infections

    DEFF Research Database (Denmark)

    Høiby, Niels

    2014-01-01

    80-90 years ago to be important for biofouling on submerged surfaces, e.g. ships. The concept of biofilm infections and their importance in medicine is, however, dental pellicles and my own observations of heaps of Pseudomonas......The observation of aggregated microorganisms surrounded by a self-produced matrix adhering to surfaces or located in tissues or secretions is as old as microbiology, with both Leeuwenhoek and Pasteur describing the phenomenon. In environmental and technical microbiology, biofilms were already shown...... aeruginosa cells in sputum and lung tissue from chronically infected cystic fibrosis patients. The term biofilm was introduced into medicine in 1985 by Costerton. In the following decades, it became obvious that biofilm infections are widespread in medicine, and their importance is now generally accepted....

  5. Pseudomonas aeruginosa and Saccharomyces cerevisiae Biofilm in Flow Cells

    DEFF Research Database (Denmark)

    Weiss Nielsen, Martin; Sternberg, Claus; Molin, Søren;

    2011-01-01

    Many microbial cells have the ability to form sessile microbial communities defined as biofilms that have altered physiological and pathological properties compared to free living microorganisms. Biofilms in nature are often difficult to investigate and reside under poorly defined conditions(1). ...

  6. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms.

    Science.gov (United States)

    Cairns, Lynne S; Hobley, Laura; Stanley-Wall, Nicola R

    2014-08-01

    Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, function and structure of the biofilm matrix. PMID:24988880

  7. Mini Review of Phytochemicals and Plant Taxa with Activity as Microbial Biofilm and Quorum Sensing Inhibitors

    OpenAIRE

    Chieu Anh Kim Ta; John Thor Arnason

    2015-01-01

    Microbial biofilms readily form on many surfaces in nature including plant surfaces. In order to coordinate the formation of these biofilms, microorganisms use a cell-to-cell communication system called quorum sensing (QS). As formation of biofilms on vascular plants may not be advantageous to the hosts, plants have developed inhibitors to interfere with these processes. In this mini review, research papers published on plant-derived molecules that have microbial biofilm or quorum sensing inh...

  8. Host Responses to Biofilm.

    Science.gov (United States)

    Watters, C; Fleming, D; Bishop, D; Rumbaugh, K P

    2016-01-01

    From birth to death the human host immune system interacts with bacterial cells. Biofilms are communities of microbes embedded in matrices composed of extracellular polymeric substance (EPS), and have been implicated in both the healthy microbiome and disease states. The immune system recognizes many different bacterial patterns, molecules, and antigens, but these components can be camouflaged in the biofilm mode of growth. Instead, immune cells come into contact with components of the EPS matrix, a diverse, hydrated mixture of extracellular DNA (bacterial and host), proteins, polysaccharides, and lipids. As bacterial cells transition from planktonic to biofilm-associated they produce small molecules, which can increase inflammation, induce cell death, and even cause necrosis. To survive, invading bacteria must overcome the epithelial barrier, host microbiome, complement, and a variety of leukocytes. If bacteria can evade these initial cell populations they have an increased chance at surviving and causing ongoing disease in the host. Planktonic cells are readily cleared, but biofilms reduce the effectiveness of both polymorphonuclear neutrophils and macrophages. In addition, in the presence of these cells, biofilm formation is actively enhanced, and components of host immune cells are assimilated into the EPS matrix. While pathogenic biofilms contribute to states of chronic inflammation, probiotic Lactobacillus biofilms cause a negligible immune response and, in states of inflammation, exhibit robust antiinflammatory properties. These probiotic biofilms colonize and protect the gut and vagina, and have been implicated in improved healing of damaged skin. Overall, biofilms stimulate a unique immune response that we are only beginning to understand. PMID:27571696

  9. Dispersal from Microbial Biofilms.

    Science.gov (United States)

    Barraud, Nicolas; Kjelleberg, Staffan; Rice, Scott A

    2015-12-01

    One common feature of biofilm development is the active dispersal of cells from the mature biofilm, which completes the biofilm life cycle and allows for the subsequent colonization of new habitats. Dispersal is likely to be critical for species survival and appears to be a precisely regulated process that involves a complex network of genes and signal transduction systems. Sophisticated molecular mechanisms control the transition of sessile biofilm cells into dispersal cells and their coordinated detachment and release in the bulk liquid. Dispersal cells appear to be specialized and exhibit a unique phenotype different from biofilm or planktonic bacteria. Further, the dispersal population is characterized by a high level of heterogeneity, reminiscent of, but distinct from, that in the biofilm, which could potentially allow for improved colonization under various environmental conditions. Here we review recent advances in characterizing the molecular mechanisms that regulate biofilm dispersal events and the impact of dispersal in a broader ecological context. Several strategies that exploit the mechanisms controlling biofilm dispersal to develop as applications for biofilm control are also presented. PMID:27337281

  10. Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages

    Science.gov (United States)

    Abedon, Stephen T.

    2015-01-01

    Bacteriophages, the viruses that infect bacteria, have for decades been successfully used to combat antibiotic-resistant, chronic bacterial infections, many of which are likely biofilm associated. Antibiotics as anti-biofilm agents can, by contrast, be inefficacious against even genetically sensitive targets. Such deficiencies in usefulness may result from antibiotics, as naturally occurring compounds, not serving their producers, in nature, as stand-alone disruptors of mature biofilms. Anti-biofilm effectiveness by phages, by contrast, may result from a combination of inherent abilities to concentrate lytic antibacterial activity intracellularly via bacterial infection and extracellularly via localized population growth. Considered here is the anti-biofilm activity of microorganisms, with a case presented for why, ecologically, bacteriophages can be more efficacious than traditional antibiotics as medically or environmentally applied biofilm-disrupting agents. Four criteria, it can be argued, generally must be met, in combination, for microorganisms to eradicate biofilms: (1) Furnishing of sufficiently effective antibacterial factors, (2) intimate interaction with biofilm bacteria over extended periods, (3) associated ability to concentrate antibacterial factors in or around targets, and, ultimately, (4) a means of physically disrupting or displacing target bacteria. In nature, lytic predators of bacteria likely can meet these criteria whereas antibiotic production, in and of itself, largely may not. PMID:26371010

  11. Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages

    Directory of Open Access Journals (Sweden)

    Stephen T. Abedon

    2015-09-01

    Full Text Available Bacteriophages, the viruses that infect bacteria, have for decades been successfully used to combat antibiotic-resistant, chronic bacterial infections, many of which are likely biofilm associated. Antibiotics as anti-biofilm agents can, by contrast, be inefficacious against even genetically sensitive targets. Such deficiencies in usefulness may result from antibiotics, as naturally occurring compounds, not serving their producers, in nature, as stand-alone disruptors of mature biofilms. Anti-biofilm effectiveness by phages, by contrast, may result from a combination of inherent abilities to concentrate lytic antibacterial activity intracellularly via bacterial infection and extracellularly via localized population growth. Considered here is the anti-biofilm activity of microorganisms, with a case presented for why, ecologically, bacteriophages can be more efficacious than traditional antibiotics as medically or environmentally applied biofilm-disrupting agents. Four criteria, it can be argued, generally must be met, in combination, for microorganisms to eradicate biofilms: (1 Furnishing of sufficiently effective antibacterial factors, (2 intimate interaction with biofilm bacteria over extended periods, (3 associated ability to concentrate antibacterial factors in or around targets, and, ultimately, (4 a means of physically disrupting or displacing target bacteria. In nature, lytic predators of bacteria likely can meet these criteria whereas antibiotic production, in and of itself, largely may not.

  12. Novel Targets for Treatment of Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Alhede, Morten; Alhede, Maria; Bjarnsholt, Thomas

    2014-01-01

    Pseudomonas aeruginosa causes infection in all parts of the human body. The bacterium is naturally resistant to a wide range of antibiotics. In addition to resistance mechanisms such as efflux pumps, the ability to form aggregates, known as biofilm, further reduces Pseudomonas aeruginosa’s suscep......Pseudomonas aeruginosa causes infection in all parts of the human body. The bacterium is naturally resistant to a wide range of antibiotics. In addition to resistance mechanisms such as efflux pumps, the ability to form aggregates, known as biofilm, further reduces Pseudomonas aeruginosa......’s susceptibility to antibiotics. The presence of such biofilms is acknowledged to equal a persistent infection due to their inherent high tolerance to all antimicrobials and immune cells. In this chapter we discuss the mechanisms of biofilm tolerance. The latest biofilm research is reviewed and future treatment...... strategies such as quorum sensing inhibitors, silver, and antibodies are thoroughly evaluated....

  13. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids

    OpenAIRE

    Sanchez, Laura M.; Cheng, Andrew T.; Warner, Christopher J. A.; Loni Townsley; Peach, Kelly C.; Gabriel Navarro; Nicholas J Shikuma; Bray, Walter M.; Riener, Romina M.; Yildiz, Fitnat H.; Linington, Roger G.

    2016-01-01

    Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition,...

  14. Electro-active bio-films: formation, characterization and mechanisms

    International Nuclear Information System (INIS)

    Some bacteria, which are able to exchange electrons with a conductive material without mediator form on conductive surfaces electro-active bio-films. This bacterial property has been recently discovered (2001). Objectives of this work are to develop electro-active bio-films in various natural environments from indigenous flora, then through complementary electrochemical techniques (chrono-amperometry and cyclic voltammetry), to evaluate electro-activity of isolates coming from so-formed bio-films and to characterize mechanisms of electron transfer between bacteria and materials. First, electro-active bio-films have been developed under chrono-amperometry in garden compost and in water coming from Guyana mangrove. These bio-films were respectively able to use an electrode as electron acceptor (oxidation) or as electron donor (reduction). In compost, results obtained in chrono-amperometry and cyclic voltammetry suggest a two-step electron transfer: slow substrate consumption, then rapid electron transfer between bacteria and the electrode. Thereafter, the ability to reduce oxygen was demonstrated with cyclic voltammetry for facultative aerobic isolates from compost bio-films (Enterobacter spp. and Pseudomonas spp.) and for aerobic isolates obtained from marine electro-active bio-films (Roseobacter spp. in majority). Finally, bio-films inducing current increase in chrono-amperometry were developed in bioreactor with synthetic medium from a pure culture of isolates. Hence, for the first time, electro-activity of several anaerobic strains of Geobacter bremensis isolated from compost bio-films was highlighted. (author)

  15. Histophilus somni biofilm formation in cardiopulmonary tissue of the bovine host following respiratory challenge

    DEFF Research Database (Denmark)

    Sandal, Indra; Shao, Jian Q.; Annadata, Satish;

    2009-01-01

    cultured with H. somni from heart and lung samples. Transposon mutagenesis of H. somni strain 2336 resulted in the generation of mutants that expressed more or less biofilm. than the parent strain. Six mutants deficient in biofilm formation had an insertion in the gene encoding for a homolog of filamentous...... haemagglutinin (FHA), predicted to be involved in attachment. Thus, this investigation demonstrated that H. somni is capable of forming a biofilm in its natural host, that such a biofilm may be capable of harboring other bovine respiratory disease pathogens, and that the genes responsible for biofilm formation......Biofilms form in a variety of host sites following infection with many bacterial species. However, the study of biofilms in a host is hindered due to the lack of protocols for the proper experimental investigation of biofilms in vivo. Histophilus somni is an agent of respiratory and systemic...

  16. Metagenomic and metaproteomic analyses of Accumulibacter phosphatis-enriched floccular and granular biofilm.

    Science.gov (United States)

    Barr, Jeremy J; Dutilh, Bas E; Skennerton, Connor T; Fukushima, Toshikazu; Hastie, Marcus L; Gorman, Jeffrey J; Tyson, Gene W; Bond, Philip L

    2016-01-01

    Biofilms are ubiquitous in nature, forming diverse adherent microbial communities that perform a plethora of functions. Here we operated two laboratory-scale sequencing batch reactors enriched with Candidatus Accumulibacter phosphatis (Accumulibacter) performing enhanced biological phosphorus removal. Reactors formed two distinct biofilms, one floccular biofilm, consisting of small, loose, microbial aggregates, and one granular biofilm, forming larger, dense, spherical aggregates. Using metagenomic and metaproteomic methods, we investigated the proteomic differences between these two biofilm communities, identifying a total of 2022 unique proteins. To understand biofilm differences, we compared protein abundances that were statistically enriched in both biofilm states. Floccular biofilms were enriched with pathogenic secretion systems suggesting a highly competitive microbial community. Comparatively, granular biofilms revealed a high-stress environment with evidence of nutrient starvation, phage predation pressure, and increased extracellular polymeric substance and cell lysis. Granular biofilms were enriched in outer membrane transport proteins to scavenge the extracellular milieu for amino acids and other metabolites, likely released through cell lysis, to supplement metabolic pathways. This study provides the first detailed proteomic comparison between Accumulibacter-enriched floccular and granular biofilm communities, proposes a conceptual model for the granule biofilm, and offers novel insights into granule biofilm formation and stability. PMID:26279094

  17. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease

    Directory of Open Access Journals (Sweden)

    Yashuan eChao

    2015-01-01

    Full Text Available Streptococcus pneumoniae (the pneumococcus is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over 1 million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo.In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of

  18. Biofilm Shows Spatially Stratified Metabolic Responses to Contaminant Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Bin; Majors, Paul D.; Ahmed, B.; Renslow, Ryan S.; Sylvia, Crystal P.; Shi, Liang; Kjelleberg, Staffan; Fredrickson, Jim K.; Beyenal, Haluk

    2012-11-01

    The objective of this study was to elucidate the spatiotemporal responses of live S. oneidensis MR-1 biofilms to U(VI) (uranyl, UO22+) and Cr(VI) (chromate, CrO42-), important environmental contaminants at DOE contaminated sites. Toward this goal, we applied noninvasive nuclear magnetic resonance (NMR) imaging, diffusion, relaxation and spectroscopy techniques to monitor in situ spatiotemporal responses of S. oneidensis biofilms to U(VI) and Cr(VI) exposure in terms of changes in biofilm structures, diffusion properties, and cellular metabolism. Exposure to U(VI) or Cr(VI) did not appear to change the overall biomass distribution but caused changes in the physicochemical microenvironments inside the biofilm as indicated by diffusion measurements. Changes in the diffusion properties of the biofilms in response to U(VI) and Cr(VI) exposure imply a novel function of the extracellular polymeric substances (EPS) affecting the biotransformation and transport of contaminants in the environment. In the presence of U(VI) or Cr(VI), the anaerobic metabolism of lactate was inhibited significantly, although the biofilms were still capable of reducing U(VI) and Cr(VI). Local concentrations of Cr(III)aq in the biofilm suggested relatively high Cr(VI) reduction activities at the top of the biofilm, near the medium-biofilm interface. The depth-resolved metabolic activities of the biofilm suggested higher diversion effects of gluconeogenesis and C1 metabolism pathways at the bottom of the biofilm and in the presence of U(VI). This study provides a noninvasive means to investigate spatiotemporal responses of biofilms, including surface-associated microbial communities in engineering, natural and medical settings, to various environmental perturbations including exposure to environmental contaminants and antimicrobials.

  19. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  20. Meningococcal biofilm formation

    DEFF Research Database (Denmark)

    Lappann, M.; Haagensen, Janus Anders Juul; Claus, H.;

    2006-01-01

    We show that in a standardized in vitro flow system unencapsulated variants of genetically diverse lineages of Neisseria meningitidis formed biofilms, that could be maintained for more than 96 h. Biofilm cells were resistant to penicillin, but not to rifampin or ciprofloxacin. For some strains......, microcolony formation within biofilms was observed. Microcolony formation in strain MC58 depended on a functional copy of the pilE gene encoding the pilus subunit pilin, and was associated with twitching of cells. Nevertheless, unpiliated pilE mutants formed biofilms showing that attachment and accumulation......X alleles was identified among genetically diverse meningococcal strains. PilX alleles differed in their propensity to support autoaggregation of cells in suspension, but not in their ability to support microcolony formation within biofilms in the continuous flow system....

  1. Antimicrobial and biofilm inhibiting diketopiperazines.

    Science.gov (United States)

    de Carvalho, M P; Abraham, W-R

    2012-01-01

    Diketopiperazines are the smallest cyclic peptides known. 90% of Gram-negative bacteria produce diketopiperazines and they have also been isolated from Gram-positive bacteria, fungi and higher organisms. Biosynthesis of cyclodipeptides can be achieved by dedicated nonribosomal peptide synthetases or by a novel type of synthetases named cyclopeptide synthases. Since the first report in 1924 a large number of bioactive diketopiperazines was discovered spanning activities as antitumor, antiviral, antifungal, antibacterial, antiprion, antihyperglycemic or glycosidase inhibitor agents. As infections are of increasing concern for human health and resistances against existing antibiotics are growing this review focuses on the antimicrobial activities of diketopiperazines. The antibiotic bicyclomycin is a diketopiperazine and structure activity studies revealed the unique nature of this compound which was finally developed for clinical applications. The antimicrobial activities of a number of other diketopiperazines along with structure activity relationships are discussed. Here a special focus is on the activity-toxicity problem of many compounds setting tight limitations to their application as drugs. Not only these classical antimicrobial activities but also proposed action in modulating bacterial communication as a new target to control biofilms will be evaluated. Pathogens organized in biofilms are difficult to eradicate because of the increase of their tolerance for antibiotics for several orders. Diketopiperazines were reported to modulate LuxR-mediated quorum-sensing systems of bacteria, and they are considered to influence cell-cell signaling offering alternative ways of biofilm control by interfering with microbial communication. Concluding the review we will finally discuss the potential of diketopiperazines in the clinic to erase biofilm infections.

  2. Pseudomonas aeruginosa biofilm growth inhibition on medical plastic materials by immobilized esterases and acylase.

    Science.gov (United States)

    Kisch, Johannes Martin; Utpatel, Christian; Hilterhaus, Lutz; Streit, Wolfgang R; Liese, Andreas

    2014-09-01

    Biofilms are matrix-encapsulated cell aggregates that cause problems in technical and health-related areas; for example, 65 % of all human infections are biofilm associated. This is mainly due to their ameliorated resistance against antimicrobials and immune systems. Pseudomonas aeruginosa, a biofilm-forming organism, is commonly responsible for nosocomial infections. Biofilm development is partly mediated by signal molecules, such as acyl-homoserine lactones (AHLs) in Gram-negative bacteria. We applied horse liver esterase, porcine kidney acylase, and porcine liver esterase; these can hydrolyze AHLs, thereby inhibiting biofilm formation. As biofilm infections are often related to foreign material introduced into the human body, we immobilized the enzymes on medical plastic materials. Biofilm formation was quantified by Crystal Violet staining and confocal laser scanning microscopy, revealing up to 97 % (on silicone), 54 % (on polyvinyl chloride), and 77 % (on polyurethane) reduced biomass after 68 h growth.

  3. Anti-biofilm activity of pseudoalteromonas haloplanktis tac125 against staphylococcus epidermidis biofilm: Evidence of a signal molecule involvement?

    Science.gov (United States)

    Parrilli, E; Papa, R; Carillo, S; Tilotta, M; Casillo, A; Sannino, F; Cellini, A; Artini, M; Selan, L; Corsaro, M M; Tutino, M L

    2015-03-01

    Staphylococcus epidermidis is recognized as cause of biofilm-associated infections and interest in the development of new approaches for S. epidermidis biofilm treatment has increased. In a previous paper we reported that the supernatant of Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 presents an anti-biofilm activity against S. epidermidis and preliminary physico-chemical characterization of the supernatant suggested that this activity is due to a polysaccharide. In this work we further investigated the chemical nature of the anti-biofilm P. haloplanktis TAC125 molecule. The production of the molecule was evaluated in different conditions, and reported data demonstrated that it is produced in all P. haloplanktis TAC125 biofilm growth stages, also in minimal medium and at different temperatures. By using a surface coating assay, the surfactant nature of the anti-biofilm compound was excluded. Moreover, a purification procedure was set up and the analysis of an enriched fraction demonstrated that the anti-biofilm activity is not due to a polysaccharide molecule but that it is due to small hydrophobic molecules that likely work as signal. The enriched fraction was also used to evaluate the effect on S. epidermidis biofilm formation in dynamic condition by BioFlux system. PMID:25816412

  4. The catabolite repression control protein Crc plays a role in the development of antimicrobial-tolerant subpopulations in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Zhang, Lianbo; Chiang, Wen-Chi; Gao, Qingguo;

    2012-01-01

    . In the present study, we show that the catabolite repression control protein Crc regulates the metabolic state of Pseudomonas aeruginosa cells in biofilms, and plays an important role in the development of antimicrobial-tolerant subpopulations in P. aeruginosa biofilms.......Bacteria form complex surface-attached biofilm communities in nature. Biofilm cells differentiate into subpopulations which display tolerance towards antimicrobial agents. However, the signal transduction pathways regulating subpopulation differentiation in biofilms are largely unelucidated...

  5. Effect of marine biofilms on initiation time of crevice corrosion for stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.J. [Montana State Univ., Bozeman, MT (United States). Center for Biofilm Engineering; Dexter, S.C. [Univ. of Delaware, Lewes, DE (United States). College of Marine Studies

    1995-10-01

    The effect of marine biofilms on the crevice corrosion of stainless steels S31600 and S31725 has been studied using the remote crevice assembly technique. Eight samples of each steel were used in both control and natural seawater. Results showed that biofilms significantly decreased the initiation time for both steels in coastal seawater, and the decrease was due to potential ennoblement by biofilms. Marine biofilms also significantly increased the propagation rate for S31600 and S31725 as measured by current density, weight loss and maximum and average depths of attack. The increase in propagation rate of crevice corrosion was caused by an increase of the cathodic reaction rate by biofilms.

  6. Bioinspired, dynamic, structured surfaces for biofilm prevention

    Science.gov (United States)

    Epstein, Alexander K.

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even low surface tension commercial antimicrobials. Our study shows multiple contributing factors, including biochemical components and multiscale reentrant topography. Reliant on surface chemistry, conventional strategies for preventing biofilm only transiently affect attachment and/or are environmentally toxic. In this work, we look to Nature's antifouling solutions, such as the dynamic spiny skin of the echinoderm, and we develop a versatile surface nanofabrication platform. Our benchtop approach unites soft lithography, electrodeposition, mold deformation, and material selection to enable many degrees of freedom—material, geometric, mechanical, dynamic—that can be programmed starting from a single master structure. The mechanical properties of the bio-inspired nanostructures, verified by AFM, are precisely and rationally tunable. We examine how synthetic dynamic nanostructured surfaces control the attachment of pathogenic biofilms. The parameters governing long-range patterning of bacteria on high-aspect-ratio (HAR) nanoarrays are combinatorially elucidated, and we discover that sufficiently low effective stiffness of these HAR arrays mechanoselectively inhibits ˜40% of Pseudomonas aeruginosa biofilm attachment. Inspired by the active echinoderm skin, we design and fabricate externally actuated dynamic elastomer surfaces with active surface microtopography. We extract from a large parameter space the critical topographic length scales and actuation time scales for achieving

  7. Dinosaurian soft tissues interpreted as bacterial biofilms.

    Directory of Open Access Journals (Sweden)

    Thomas G Kaye

    Full Text Available A scanning electron microscope survey was initiated to determine if the previously reported findings of "dinosaurian soft tissues" could be identified in situ within the bones. The results obtained allowed a reinterpretation of the formation and preservation of several types of these "tissues" and their content. Mineralized and non-mineralized coatings were found extensively in the porous trabecular bone of a variety of dinosaur and mammal species across time. They represent bacterial biofilms common throughout nature. Biofilms form endocasts and once dissolved out of the bone, mimic real blood vessels and osteocytes. Bridged trails observed in biofilms indicate that a previously viscous film was populated with swimming bacteria. Carbon dating of the film points to its relatively modern origin. A comparison of infrared spectra of modern biofilms with modern collagen and fossil bone coatings suggests that modern biofilms share a closer molecular make-up than modern collagen to the coatings from fossil bones. Blood cell size iron-oxygen spheres found in the vessels were identified as an oxidized form of formerly pyritic framboids. Our observations appeal to a more conservative explanation for the structures found preserved in fossil bone.

  8. Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand.

    Science.gov (United States)

    Mitzel, Michael R; Sand, Stefanie; Whalen, Joann K; Tufenkji, Nathalie

    2016-04-01

    Engineered nanoparticles (ENPs) are used in the manufacture of over 2000 industrial and consumer products to enhance their material properties and functions or to enable new nanoparticle-dependent functions. The widespread use of ENPs will result in their release to the subsurface and aquatic environments, where they will interact with indigenous biota. Laboratory column experiments were designed to understand the influence of two different Pseudomonas aeruginosa biofilms on the mobility of polystyrene latex nanoparticles in granular porous media representative of groundwater aquifers or riverbank filtration settings. The transport behavior of 20 nm carboxylate-modified (CLPs) and sulfate (SLPs) polystyrene latex ENPs suspended in NaCl or CaCl2 (1 and 10 mM ionic strength, pH 7) was studied in columns packed with quartz sand coated with biofilms formed by two P. aeruginosa strains that differed in cell surface hydrophobicity (P. aeruginosa 9027™, relatively hydrophilic and P. aeruginosa PAO1, relatively hydrophobic). Biofilm-coated quartz sand retained more of the electrostatically-stabilized latex ENPs than clean, uncoated sand, regardless of the serotype. As IS increased, clear differences in the shape of the ENP breakthrough curves were observed for each type of biofilm coating. ENP breakthrough in the P. aeruginosa PAO1 biofilm-coated sand was generally constant with time whereby breakthrough in the P. aeruginosa 9027 biofilm-coated sand showed dynamic behavior. This indicates a fundamental difference in the mechanisms of ENP deposition onto hydrophilic or hydrophobic biofilm coatings due to the hydration properties of these biofilms. The results of this study demonstrate the importance of considering the surface properties of aquifer grain coatings when evaluating ENP fate in natural subsurface environments. PMID:26845456

  9. DNase I and Proteinase K eliminate DNA from injured or dead bacteria but not from living bacteria in microbial reference systems and natural drinking water biofilms for subsequent molecular biology analyses.

    Science.gov (United States)

    Villarreal, Jessica Varela; Jungfer, Christina; Obst, Ursula; Schwartz, Thomas

    2013-09-01

    Molecular techniques, such as polymerase chain reaction (PCR) and quantitative PCR (qPCR), are very sensitive, but may detect total DNA present in a sample, including extracellular DNA (eDNA) and DNA coming from live and dead cells. DNase I is an endonuclease that non-specifically cleaves single- and double-stranded DNA. This enzyme was tested in this study to analyze its capacity of digesting DNA coming from dead cells with damaged cell membranes, leaving DNA from living cells with intact cell membranes available for DNA-based methods. For this purpose, an optimized DNase I/Proteinase K (DNase/PK) protocol was developed. Intact Staphylococcus aureus cells, heat-killed Pseudomonas aeruginosa cells, free genomic DNA of Salmonella enterica, and a mixture of these targets were treated according to the developed DNase/PK protocol. In parallel, these samples were treated with propidium monoazide (PMA) as an already described assay for live-dead discrimination. Quantitative PCR and PCR-DGGE of the eubacterial 16S rDNA fragment were used to test the ability of the DNase/PK and PMA treatments to distinguish DNA coming from cells with intact cell membranes in the presence of DNA from dead cells and free genomic DNA. The methods were applied to three months old autochthonous drinking water biofilms from a pilot facility built at a German waterworks. Shifts in the DNA patterns observed after DGGE analysis demonstrated the applicability of DNase/PK as well as of the PMA treatment for natural biofilm investigation. However, the DNase/PK treatment demonstrated some practical advantages in comparison with the PMA treatment for live/dead discrimination of bacterial targets in drinking water systems.

  10. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    Energy Technology Data Exchange (ETDEWEB)

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.; Mehta, Hardeep S.; Ewing, R James; Ewing, Thomas; Mueller, Karl T.; Beyenal, Haluk

    2014-03-01

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.

  11. Biofilm streamers cause rapid clogging of flow systems

    Science.gov (United States)

    Shen, Yi; Drescher, Knut; Wingreen, Ned; Bassler, Bonnie; Stone, Howard

    2012-11-01

    Biofilms are antibiotic-resistant, sessile bacterial communities that are found on most surfaces on Earth. In addition to constituting the most abundant form of bacterial life, biofilms also cause chronic and medical device-associated infections. Despite their importance, basic information about how biofilms behave in common ecological environments is lacking. Here we demonstrate that flow through soil-like porous materials, industrial filters, and medical stents dramatically modifies the morphology of Pseudomonas aeruginosa biofilms to form streamers which over time bridge the space between obstacles and corners in non-uniform environments. Using a microfluidic model system we find that, contrary to the accepted paradigm, the accumulation of surface-attached bacterial biofilm has little effect on flow resistance whereas the formation of biofilm streamers causes sudden and rapid clogging. The time at which clogging happens depends on bacterial growth, while the duration of the clogging transition is driven by flow-mediated transport of bacteria to the clogging site. Flow-induced shedding of extracellular matrix from the resident biofilm generates a sieve-like network that catches bacteria flowing by, which add to the network of extracellular matrix, to cause exponentially rapid clogging. We expect these biofilm streamers to be ubiquitous in nature, and to have profound effects on flow through porous materials in environmental, industrial, and medical environments.

  12. A method for rapid quantitative assessment of biofilms with biomolecular staining and image analysis.

    Science.gov (United States)

    Larimer, Curtis; Winder, Eric; Jeters, Robert; Prowant, Matthew; Nettleship, Ian; Addleman, Raymond Shane; Bonheyo, George T

    2016-01-01

    The accumulation of bacteria in surface-attached biofilms can be detrimental to human health, dental hygiene, and many industrial processes. Natural biofilms are soft and often transparent, and they have heterogeneous biological composition and structure over micro- and macroscales. As a result, it is challenging to quantify the spatial distribution and overall intensity of biofilms. In this work, a new method was developed to enhance the visibility and quantification of bacterial biofilms. First, broad-spectrum biomolecular staining was used to enhance the visibility of the cells, nucleic acids, and proteins that make up biofilms. Then, an image analysis algorithm was developed to objectively and quantitatively measure biofilm accumulation from digital photographs and results were compared to independent measurements of cell density. This new method was used to quantify the growth intensity of Pseudomonas putida biofilms as they grew over time. This method is simple and fast, and can quantify biofilm growth over a large area with approximately the same precision as the more laborious cell counting method. Stained and processed images facilitate assessment of spatial heterogeneity of a biofilm across a surface. This new approach to biofilm analysis could be applied in studies of natural, industrial, and environmental biofilms.

  13. A method for rapid quantitative assessment of biofilms with biomolecular staining and image analysis.

    Science.gov (United States)

    Larimer, Curtis; Winder, Eric; Jeters, Robert; Prowant, Matthew; Nettleship, Ian; Addleman, Raymond Shane; Bonheyo, George T

    2016-01-01

    The accumulation of bacteria in surface-attached biofilms can be detrimental to human health, dental hygiene, and many industrial processes. Natural biofilms are soft and often transparent, and they have heterogeneous biological composition and structure over micro- and macroscales. As a result, it is challenging to quantify the spatial distribution and overall intensity of biofilms. In this work, a new method was developed to enhance the visibility and quantification of bacterial biofilms. First, broad-spectrum biomolecular staining was used to enhance the visibility of the cells, nucleic acids, and proteins that make up biofilms. Then, an image analysis algorithm was developed to objectively and quantitatively measure biofilm accumulation from digital photographs and results were compared to independent measurements of cell density. This new method was used to quantify the growth intensity of Pseudomonas putida biofilms as they grew over time. This method is simple and fast, and can quantify biofilm growth over a large area with approximately the same precision as the more laborious cell counting method. Stained and processed images facilitate assessment of spatial heterogeneity of a biofilm across a surface. This new approach to biofilm analysis could be applied in studies of natural, industrial, and environmental biofilms. PMID:26643074

  14. Monoculture and mixed biofilms of listeria monocytogenes and pseudomonas fluorescens: effect of different culture media and temperatures

    OpenAIRE

    Oliveira, Rosário; Azeredo, Joana; Teixeira, P.; Cerqueira, Bruna; Rodrigues, Diana Alexandra Ferreira

    2010-01-01

    Like most microorganisms, Listeria monocytogenes and Pseudomonas fluorescens are able to form biofilms and are rarely found as monoculture biofilms in natural environments. Previous works showed that associations between bacteria from different genus commonly found in food-processing environments may affect their growth, attachment and biofilm formation. This work studied L. monocytogenes and P. fluorescens monoculture and multispecies biofilm formation, and investigated how diffe...

  15. Characterizing Pilus-Mediated Adhesion of Biofilm-Forming E. coli to Chemically Diverse Surfaces Using Atomic Force Microscopy

    OpenAIRE

    Xu, He; Murdaugh, Anne E.; Chen, Wei; Aidala, Katherine E.; Ferguson, Megan A.; Spain, Eileen M.; Núñez, Megan E.

    2013-01-01

    Biofilms are complex communities of microorganisms living together at an interface. Because biofilms are often associated with contamination and infection, it is critical to understand how bacterial cells adhere to surfaces in the early stages of biofilm formation. Even harmless commensal Escherichia coli naturally forms biofilms in the human digestive tract by adhering to epithelial cells, a trait that presents major concerns in the case of pathogenic E. coli strains. The laboratory strain E...

  16. Introduced Terrestrial Species Richness

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted current distributions of all introduced mammals, birds, reptiles, amphibians and butterflies in the Middle-Atlantic region. These...

  17. Biofilm activity and sludge characteristics affected by exogenous N-acyl homoserine lactones in biofilm reactors.

    Science.gov (United States)

    Hu, Huizhi; He, Junguo; Liu, Jian; Yu, Huarong; Zhang, Jie

    2016-07-01

    This study verified the effect of N-acyl homoserine lactone (AHL) concentrations on mature biofilm systems. Three concentrations of an AHL mixture were used in the batch test. Introducing of 5nM AHLs significantly increased biofilm activity and increased sludge characteristics, which resulted in better pollutant removal performance, whereas exogenous 50nM and 500nM AHLs limited pollutant removal, especially COD and nitrogen removal. To further identify how exogenous signal molecular affects biofilm system nitrogen removal, analyzing of nitrifying bacteria through real-time polymerase chain reaction (RT-PCR) revealed that these additional signal molecules affect nitrifying to total bacteria ratio. In addition, the running state of the system was stable during 15days of operation without an AHL dose, which suggests that the changes in the system due to AHL are irreversible. PMID:27030953

  18. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the benefits...... and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial communities...

  19. Biofilm in wound care.

    Science.gov (United States)

    Rajpaul, Kumal

    2015-03-01

    A biofilm can be described as a microbial colony encased in a polysaccharide matrix which can become attached to a wound surface. This can affect the healing potential of chronic wounds due to the production of destructive enzymes and toxins which can promote a chronic inflammatory state within the wound. Biofilms can be polymicrobial and can result in delayed wound healing and chronic wound infection resistant to antibiotics, leading to prolonged hospitalisation for some patients. There appears to be a correlation between biofilms and non-healing in chronic wounds. It is suggested that biofilms are a major player in the chronicity of wounds. They are a complex concept to diagnose and management needs to be multifactorial.

  20. Compaction and relaxation of biofilms

    KAUST Repository

    Valladares Linares, R.

    2015-06-18

    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  1. Biofilms: The Stronghold of Legionella pneumophila

    OpenAIRE

    Mena Abdel-Nour; Carla Duncan; Low, Donald E.; Cyril Guyard

    2013-01-01

    Legionellosis is mostly caused by Legionella pneumophila and is defined as a severe respiratory illness with a case fatality rate ranging from 5% to 80%. L. pneumophila is ubiquitous in natural and anthropogenic water systems. L. pneumophila is transmitted by inhalation of contaminated aerosols produced by a variety of devices. While L. pneumophila replicates within environmental protozoa, colonization and persistence in its natural environment are also mediated by biofilm formation and colon...

  2. Interactions in multispecies biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Ren, Dawei; Bjarnsholt, Thomas;

    2014-01-01

    The recent focus on complex bacterial communities has led to the recognition of interactions across species boundaries. This is particularly pronounced in multispecies biofilms, where synergistic interactions impact the bacterial distribution and overall biomass produced. Importantly, in a number...... of settings, the interactions in a multispecies biofilm affect its overall function, physiology, or surroundings, by resulting in enhanced resistance, virulence, or degradation of pollutants, which is of significant importance to human health and activities. The underlying mechanisms causing these synergistic...

  3. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms.

    Science.gov (United States)

    Schwartz, Kelly; Ganesan, Mahesh; Payne, David E; Solomon, Michael J; Boles, Blaise R

    2016-01-01

    Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology.

  4. Ratiometric Imaging of Extracellular pH in Dental Biofilms Using C-SNARF-4

    DEFF Research Database (Denmark)

    Dige, Irene

    pH in dental biofilms plays a central role for the development of caries lesions. For decades, pH measurements in biofilms have been limited to recording pH with electrodes/microelectrodes that do not permit monitoring horizontal pH gradients in biofilms in real-time. Quantitative fluorescent...... microscopy can overcome these problems. Objective: The aim of this demonstration study was to monitor extracellular biofilm pH microscopically with the ratiometric pH-sensitive dye C-SNARF-4 in in-situ-grown dental biofilms. Methods: Using confocal microscopy, the dye C-SNARF-4 was employed both as p......H-sensitive ratiometric dye and as a bacterial stain. We tested the method on natural 48-h in-situ-grown dental biofilms from two individuals. Four biofilms per person were collected on standardized glass slabs mounted in intra-oral appliances. Digital image analysis was employed to remove the bacterial biomass from...

  5. Role of mutation in Pseudomonas aeruginosa biofilm development.

    Directory of Open Access Journals (Sweden)

    Tim C R Conibear

    Full Text Available The survival of bacteria in nature is greatly enhanced by their ability to grow within surface-associated communities called biofilms. Commonly, biofilms generate proliferations of bacterial cells, called microcolonies, which are highly recalcitrant, 3-dimensional foci of bacterial growth. Microcolony growth is initiated by only a subpopulation of bacteria within biofilms, but processes responsible for this differentiation remain poorly understood. Under conditions of crowding and intense competition between bacteria within biofilms, microevolutionary processes such as mutation selection may be important for growth; however their influence on microcolony-based biofilm growth and architecture have not previously been explored. To study mutation in-situ within biofilms, we transformed Pseudomonas aeruginosa cells with a green fluorescent protein gene containing a +1 frameshift mutation. Transformed P. aeruginosa cells were non-fluorescent until a mutation causing reversion to the wildtype sequence occurs. Fluorescence-inducing mutations were observed in microcolony structures, but not in other biofilm cells, or in planktonic cultures of P. aeruginosa cells. Thus microcolonies may represent important foci for mutation and evolution within biofilms. We calculated that microcolony-specific increases in mutation frequency were at least 100-fold compared with planktonically grown cultures. We also observed that mutator phenotypes can enhance microcolony-based growth of P. aeruginosa cells. For P. aeruginosa strains defective in DNA fidelity and error repair, we found that microcolony initiation and growth was enhanced with increased mutation frequency of the organism. We suggest that microcolony-based growth can involve mutation and subsequent selection of mutants better adapted to grow on surfaces within crowded-cell environments. This model for biofilm growth is analogous to mutation selection that occurs during neoplastic progression and tumor

  6. Introducing ZBrush 4

    CERN Document Server

    Keller, Eric

    2011-01-01

    Introducing ZBrush 4 launches readers head-on into fulfilling their artistic potential for sculpting realistic creature, cartoon, and hard surface models in ZBrush. ZBrush's innovative technology and interface can be intimidating to both digital-art beginners as well as veterans who are used to a more conventional modeling environment. This book dispels myths about the difficulty of ZBrush with a thorough tour and exploration of the program's interface. Engaging projects also allow the reader to become comfortable with digital sculpting in with a relaxed and fun book atmosphere. Introducing ZB

  7. Biofilm transplantation in the deep sea.

    Science.gov (United States)

    Wagner-Döbler, Irene

    2016-05-01

    A gold rush is currently going on in microbial ecology, which is powered by the possibility to determine the full complexity of microbial communities through next-generation sequencing. Accordingly, enormous efforts are underway to describe microbiomes worldwide, in humans, animals, plants, soil, air and the ocean. While much can be learned from these studies, only experiments will finally unravel mechanisms. One of the key questions is how a microbial community is assembled from a pool of bacteria in the environment, and how it responds to change - be it the increase in CO2 concentration in the ocean, or antibiotic treatment of the gut microbiome. The study by Zhang et al. () in this issue is one of the very few that approaches this problem experimentally in the natural environment. The authors selected a habitat which is both extremely interesting and difficult to access. They studied the Thuwal Seep in the Red Sea at 850 m depth and used a remotely operated vehicle (ROV) to place a steel frame carrying substrata for biofilm growth into the brine pool and into the adjacent normal bottom water (NBW). Biofilms were allowed to develop for 3 days, and then those that had been growing in the brine pool were transported to normal bottom water and stayed there for another 3 days, and vice versa. The 'switched' biofilms were then compared with their source communities by metagenome sequencing. Strikingly, both 'switched' biofilms were now dominated by the same two species. These species were able to cope with conditions in both source ecosystems, as shown by assembly of their genomes and detection of expression of key genes. The biofilms had adapted to environmental change, rather than to brine pools or NBW. The study shows both the resilience and adaptability of biofilm communities and has implications for microbial ecology in general and even for therapeutic approaches such as transplantation of faecal microbiomes.

  8. Microbiology of dental plaque biofilms and their role in oral health and caries.

    Science.gov (United States)

    Marsh, Philip D

    2010-07-01

    Dental plaque is the biofilm found naturally on teeth. Dental plaque is also implicated in dental caries, which is associated with shifts in the microbial balance of the biofilm resulting in increased proportions of acid producing and acid tolerating bacteria, especially (but not exclusively) mutans streptococci and lactobacilli. The regular intake of fermentable dietary sugars, or impaired saliva flow, produces persistent conditions of low pH within the biofilm, which selects for these cariogenic bacteria. Clinicians should prevent this disruption to the natural microbial balance of the biofilm (relevant approaches are described) rather than merely treating its consequences by restoring cavities.

  9. Biofilms and the food industry

    Directory of Open Access Journals (Sweden)

    Nathanon Trachoo

    2003-11-01

    Full Text Available In the past, interest in biofilms was limited to research related to water distribution systems, waste water treatment and dental plaques. Biofilm has become a more popular research topic in many other areas in recent years including food safety. Biofilm formation can compromise the sanitation of food surfaces and environmental surfaces by spreading detached organisms to other areas of processing plants. Unfortunately, these detached organisms are not similar to normal microorganisms suspended in an aquatic environment but are more resistant to several stresses or microbial inactivation including some food preservation methods. Microstructures of biofilms as revealed by different types of microscopic techniques showed that biofilms are highly complex and consist of many symbiotic organisms, some of which are human pathogens. This article reviewed the process of biofilm formation, the significance of biofilms on food or food contact surfaces, their ability to protect foodborne pathogens from environmental stresses and recent methods for the study of biofilms on food contact surfaces.

  10. Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Maria José Alves

    2014-08-01

    Full Text Available Microorganisms can colonize a wide variety of medical devices, putting patients in risk for local and systemic infectious complications, including local-site infections, catheter-related bloodstream infections, and endocarditis. These microorganisms are able to grow adhered to almost every surface, forming architecturally complex communities termed biofilms. The use of natural products has been extremely successful in the discovery of new medicine, and mushrooms could be a source of natural antimicrobials. The present study reports the capacity of wild mushroom extracts to inhibit in vitro biofilm formation by multi-resistant bacteria. Four Gram-negative bacteria biofilm producers (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Acinetobacter baumannii isolated from urine were used to verify the activity of Russula delica, Fistulina hepatica, Mycena rosea, Leucopaxilus giganteus, and Lepista nuda extracts. The results obtained showed that all tested mushroom extracts presented some extent of inhibition of biofilm production. Pseudomonas aeruginosa was the microorganism with the highest capacity of biofilm production, being also the most susceptible to the extracts inhibition capacity (equal or higher than 50%. Among the five tested extracts against E. coli, Leucopaxillus giganteus (47.8% and Mycenas rosea (44.8% presented the highest inhibition of biofilm formation. The extracts exhibiting the highest inhibitory effect upon P. mirabilis biofilm formation were Sarcodon imbricatus (45.4% and Russula delica (53.1%. Acinetobacter baumannii was the microorganism with the lowest susceptibility to mushroom extracts inhibitory effect on biofilm production (highest inhibition—almost 29%, by Russula delica extract. This is a pioneer study since, as far as we know, there are no reports on the inhibition of biofilm production by the studied mushroom extracts and in particular against multi-resistant clinical isolates; nevertheless, other

  11. Introducing Business English

    NARCIS (Netherlands)

    Nickerson, C.; Planken, B.C.

    2015-01-01

    Introducing Business English provides a comprehensive overview of this topic, situating the concepts of Business English and English for Specific Business Purposes within the wider field of English for Special Purposes. This book draws on contemporary teaching and research contexts to demonstrate th

  12. Introducing Mood Swings

    NARCIS (Netherlands)

    Bialoskorski, Leticia S.S.; Westerink, Joyce H.D.M.; Broek, van den Egon L.; Markopoulos, P.; Hoonhout, J.; Soute, I.; Read, J.

    2008-01-01

    Mood Swings is introduced: an affective interactive art installation that interprets and visualizes affect expressed by a person. Founded on the integration of a color model and a framework for affective movements, Mood Swings recognizes affective movement characteristics, processes these, and displ

  13. Introducing Electromagnetic Field Momentum

    Science.gov (United States)

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  14. Microalgal biofilms for wastewater treatment

    OpenAIRE

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scenario analysis. Then biofilms were grown on wastewater treatment plant effluent in horizontal flow cells under different nutrient loads to determine the maximum uptake capacity of the biofilms for N...

  15. Effect of the pollution level on the functional bacterial groups aiming at degrading bisphenol A and nonylphenol in natural biofilms of an urban river.

    Science.gov (United States)

    Cai, Wei; Li, Yi; Wang, Peifang; Niu, Lihua; Zhang, Wenlong; Wang, Chao

    2016-08-01

    Bisphenol A (BPA) and 4-nonylphenol (NP) are ubiquitous pollutants with estrogenic activity in aquatic environment and have attracted global concern due to their disruption of endocrine systems. This study investigated the spatial distribution characteristics of the bacterial groups involved in the degradation of BPA and NP within biofilms in an urban river using terminal restriction fragment length polymorphism based on 16S rRNA gene sequences. The effects of the pollution level and water parameters on these groups were also assessed. Hierarchical cluster analysis grouped the sampling sites into three clusters reflecting their varying nutrient pollution levels of relatively slight pollution (SP), moderate pollution (MP), and high pollution (HP) based on water quality data and Environmental Quality Standard for Surface Water of China (GB3838-2002). The BPA and NP concentration in river water ranged from 0.8 to 77.5 and 10.2 to 162.9 ng L(-1), respectively. Comamonadaceae, Pseudomonadaceae, Alcaligenaceae, Bacillaceae, Sphingomonadacea, Burkholderiaceae, and Rhizobiaceae were the dominant bacterial taxa involved in BPA and NP degradation, comprising an average of 9.8, 8.1, 7.6, 6.7, 6.2, 4.1, and 2.8 % of total sequences, respectively. The total abundance of these groups showed a slight upward trend and subsequently rapidly decreased with increasing pollution levels. The average proportion of Comamonadaceae in MP river sections was almost 1.5-2 times than that in SP or HP one. The distribution of functional groups was found related to environmental variables, especially pH, conductivity, ammonium nitrogen (NH3-N), and BPA. The abundance of Comamonadaceae and Rhizobiaceae was both closely related to higher values of pH and conductivity as well as lower concentrations of NP and BPA. Alcaligenaceae and Pseudomonadaceae were associated with higher concentrations of TP and CODMn and inversely correlated with DO concentration. This study might provide effective data on

  16. Effect of the pollution level on the functional bacterial groups aiming at degrading bisphenol A and nonylphenol in natural biofilms of an urban river.

    Science.gov (United States)

    Cai, Wei; Li, Yi; Wang, Peifang; Niu, Lihua; Zhang, Wenlong; Wang, Chao

    2016-08-01

    Bisphenol A (BPA) and 4-nonylphenol (NP) are ubiquitous pollutants with estrogenic activity in aquatic environment and have attracted global concern due to their disruption of endocrine systems. This study investigated the spatial distribution characteristics of the bacterial groups involved in the degradation of BPA and NP within biofilms in an urban river using terminal restriction fragment length polymorphism based on 16S rRNA gene sequences. The effects of the pollution level and water parameters on these groups were also assessed. Hierarchical cluster analysis grouped the sampling sites into three clusters reflecting their varying nutrient pollution levels of relatively slight pollution (SP), moderate pollution (MP), and high pollution (HP) based on water quality data and Environmental Quality Standard for Surface Water of China (GB3838-2002). The BPA and NP concentration in river water ranged from 0.8 to 77.5 and 10.2 to 162.9 ng L(-1), respectively. Comamonadaceae, Pseudomonadaceae, Alcaligenaceae, Bacillaceae, Sphingomonadacea, Burkholderiaceae, and Rhizobiaceae were the dominant bacterial taxa involved in BPA and NP degradation, comprising an average of 9.8, 8.1, 7.6, 6.7, 6.2, 4.1, and 2.8 % of total sequences, respectively. The total abundance of these groups showed a slight upward trend and subsequently rapidly decreased with increasing pollution levels. The average proportion of Comamonadaceae in MP river sections was almost 1.5-2 times than that in SP or HP one. The distribution of functional groups was found related to environmental variables, especially pH, conductivity, ammonium nitrogen (NH3-N), and BPA. The abundance of Comamonadaceae and Rhizobiaceae was both closely related to higher values of pH and conductivity as well as lower concentrations of NP and BPA. Alcaligenaceae and Pseudomonadaceae were associated with higher concentrations of TP and CODMn and inversely correlated with DO concentration. This study might provide effective data on

  17. Shaping the Growth Behaviour of Biofilms Initiated from Bacterial Aggregates.

    Science.gov (United States)

    Melaugh, Gavin; Hutchison, Jaime; Kragh, Kasper Nørskov; Irie, Yasuhiko; Roberts, Aled; Bjarnsholt, Thomas; Diggle, Stephen P; Gordon, Vernita D; Allen, Rosalind J

    2016-01-01

    Bacterial biofilms are usually assumed to originate from individual cells deposited on a surface. However, many biofilm-forming bacteria tend to aggregate in the planktonic phase so that it is possible that many natural and infectious biofilms originate wholly or partially from pre-formed cell aggregates. Here, we use agent-based computer simulations to investigate the role of pre-formed aggregates in biofilm development. Focusing on the initial shape the aggregate forms on the surface, we find that the degree of spreading of an aggregate on a surface can play an important role in determining its eventual fate during biofilm development. Specifically, initially spread aggregates perform better when competition with surrounding unaggregated bacterial cells is low, while initially rounded aggregates perform better when competition with surrounding unaggregated cells is high. These contrasting outcomes are governed by a trade-off between aggregate surface area and height. Our results provide new insight into biofilm formation and development, and reveal new factors that may be at play in the social evolution of biofilm communities. PMID:26934187

  18. Fungal Metabolites for the Control of Biofilm Infections

    Directory of Open Access Journals (Sweden)

    Andréia Bergamo Estrela

    2016-08-01

    Full Text Available Many microbes attach to surfaces and produce a complex matrix of polymers surrounding their cells, forming a biofilm. In biofilms, microbes are much better protected against hostile environments, impairing the action of most antibiotics. A pressing demand exists for novel therapeutic strategies against biofilm infections, which are a grave health wise on mucosal surfaces and medical devices. From fungi, a large number of secondary metabolites with antimicrobial activity have been characterized. This review discusses natural compounds from fungi which are effective against fungal and bacterial biofilms. Some molecules are able to block the cell communication process essential for biofilm formation (known as quorum sensing, others can penetrate and kill cells within the structure. Several targets have been identified, ranging from the inhibition of quorum sensing receptors and virulence factors, to cell wall synthesizing enzymes. Only one group of these fungal metabolites has been optimized and made it to the market, but more preclinical studies are ongoing to expand the biofilm-fighting arsenal. The broad diversity of bioactive compounds from fungi, their activities against various pathogens, and the multi-target trait of some molecules are promising aspects of fungal secondary metabolites. Future screenings for biofilm-controlling compounds will contribute to several novel clinical applications.

  19. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms

    OpenAIRE

    Cairns, Lynne S; Hobley, Laura; Stanley-Wall, Nicola R.

    2014-01-01

    Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, func...

  20. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm

    OpenAIRE

    Hobley, Laura; Ostrowski, Adam; Rao, Francesco V.; Bromley, Keith M.; Porter, Michael; Prescott, Alan R.; MacPhee, Cait E.; van Aalten, Daan M F; Nicola R. Stanley-Wall

    2013-01-01

    Biofilms represent the predominant mode of microbial growth in the natural environment. Bacillus subtilis is a ubiquitous Gram-positive soil bacterium that functions as an effective plant growth-promoting agent. The biofilm matrix is composed of an exopolysaccharide and an amyloid fiber-forming protein, TasA, and assembles with the aid of a small secreted protein, BslA. Here we show that natively synthesized and secreted BslA forms surface layers around the biofilm. Biophysical analysis demon...

  1. Inhibition of Biofilm Formation by T7 Bacteriophages Producing Quorum-Quenching Enzymes

    OpenAIRE

    Pei, Ruoting; Lamas-Samanamud, Gisella R.

    2014-01-01

    Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysacc...

  2. Unravelling the Structural and Molecular Basis Responsible for the Anti-Biofilm Activity of Zosteric Acid

    OpenAIRE

    Cristina Cattò; Silvia Dell'Orto; Federica Villa; Stefania Villa; Arianna Gelain; Alberto Vitali; Valeria Marzano; Sara Baroni; Fabio Forlani; Francesca Cappitelli

    2015-01-01

    The natural compound zosteric acid, or p-(sulfoxy)cinnamic acid (ZA), is proposed as an alternative biocide-free agent suitable for preventive or integrative anti-biofilm approaches. Despite its potential, the lack of information concerning the structural and molecular mechanism of action involved in its anti-biofilm activity has limited efforts to generate more potent anti-biofilm strategies. In this study a 43-member library of small molecules based on ZA scaffold diversity was designed and...

  3. Characterization of the internal ion environment of biofilms based on charge density and shape of ion.

    Science.gov (United States)

    Kurniawan, Andi; Tsuchiya, Yuki; Eda, Shima; Morisaki, Hisao

    2015-12-01

    Biofilm polymers contain both electrically positively and negatively charged sites. These charged sites enable the biofilm to trap and retain ions leading to an important role of biofilm such as nutrient recycling and pollutant purification. Much work has focused on the ion-exchange capacity of biofilms, and they are known to adsorb ions through an exchange mechanism between the ions in solution and the ions adsorbed to the charged sites on the biofilm polymer. However, recent studies suggest that the adsorption/desorption behavior of ions in a biofilm cannot be explained solely by this ion exchange mechanism. To examine the possibility that a substantial amount of ions are held in the interstitial region of the biofilm polymer by an electrostatic interaction, intact biofilms formed in a natural environment were immersed in distilled water and ion desorption was investigated. All of the detected ion species were released from the biofilms over a short period of time, and very few ions were subsequently released over more time, indicating that the interstitial region of biofilm polymers is another ion reserve. The extent of ion retention in the interstitial region of biofilms for each ion can be determined largely by charge density, |Z|/r, where |Z| is the ion valence as absolute value and r is the ion radius. The higher |Z|/r value an ion has, the stronger it is retained in the interstitial region of biofilms. Ion shape is also a key determinant of ion retention. Spherical and non-spherical ions have different correlations between the condensation ratio and |Z|/r. The generality of these findings were assured by various biofilm samples. Thus, the internal regions of biofilms exchange ions dynamically with the outside environment.

  4. H2 O2 Generated by Natural Biofilms Under Light Irradiation and Its Effects on Degradation of Sodium Dodecyl Benzene Sulfonate%光照下自然水体生物膜产生 H2O2及其对十二烷基苯磺酸钠降解的影响

    Institute of Scientific and Technical Information of China (English)

    董德明; 李明; 孙家倩; 赵天宇; 花修艺; 郭爱桐; 梁大鹏

    2014-01-01

    In this study, generation of H2 O2(hydrogen peroxide) by natural biofilms of different bioactivities under light irradiation was investigated, and effect of light on sodium dodecyl benzene sulfonate(SDBS) degra-dation in such natural biofilm-water systems was evaluated. The role of H2 O2 in the degradation of SDBS was also verified by SDBS degradation experiments in H2 O2 solution without biofilms. The results indicated that:(1) biofilms with full bio-activity can generate H2 O2 , while biofilms without any bio-activity or bio-activity of photosynthesis can not generate H2 O2; (2) much more SDBS can be degraded under visible light than in darkness; (3) light and Fe2+ can promote the degradation of SDBS in the presence of H2 O2 . H2 O2 produced by natural biofilms should be one of the most important causes of the degradation of SDBS, and the roles of H2 O2 in the degradation should include both direct oxidation of SDBS by H2 O2 and the indirect role in genera-ting active oxygen species.%通过模拟实验研究了不同活性的自然水体生物膜在光照条件下生成过氧化氢(H2 O2)的反应。并研究了光照对自然水体生物膜体系中十二烷基苯磺酸钠(SDBS)降解的影响,结合无生物膜 H2 O2溶液中 SDBS的降解实验,验证了 H2 O2对 SDBS 降解的作用。结果表明,具有生物活性的生物膜可以生成 H2 O2,而无活性和光合作用受到抑制的生物膜则不能生成 H2 O2;光照条件下,生物膜体系中 SDBS 的降解量明显高于无光照条件下的;光照和 Fe2+对 H2 O2降解 SDBS 有促进作用。

  5. Nuclease modulates biofilm formation in community-associated methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Megan R Kiedrowski

    Full Text Available Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA is an emerging contributor to biofilm-related infections. We recently reported that strains lacking sigma factor B (sigB in the USA300 lineage of CA-MRSA are unable to develop a biofilm. Interestingly, when spent media from a USA300 sigB mutant was incubated with other S. aureus strains, biofilm formation was inhibited. Following fractionation and mass spectrometry analysis, the major anti-biofilm factor identified in the spent media was secreted thermonuclease (Nuc. Considering reports that extracellular DNA (eDNA is an important component of the biofilm matrix, we investigated the regulation and role of Nuc in USA300. The expression of the nuc gene was increased in a sigB mutant, repressed by glucose supplementation, and was unaffected by the agr quorum-sensing system. A FRET assay for Nuc activity was developed and confirmed the regulatory results. A USA300 nuc mutant was constructed and displayed an enhanced biofilm-forming capacity, and the nuc mutant also accumulated more high molecular weight eDNA than the WT and regulatory mutant strains. Inactivation of nuc in the USA300 sigB mutant background partially repaired the sigB biofilm-negative phenotype, suggesting that nuc expression contributes to the inability of the mutant to form biofilm. To test the generality of the nuc mutant biofilm phenotypes, the mutation was introduced into other S. aureus genetic backgrounds and similar increases in biofilm formation were observed. Finally, using multiple S. aureus strains and regulatory mutants, an inverse correlation between Nuc activity and biofilm formation was demonstrated. Altogether, our findings confirm the important role for eDNA in the S. aureus biofilm matrix and indicates Nuc is a regulator of biofilm formation.

  6. Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Alhede, Maria; Bjarnsholt, Thomas; Givskov, Michael;

    2014-01-01

    biofilms, which protect the aggregated, biopolymer-embedded bacteria from the detrimental actions of antibiotic treatments and host immunity. A key component in the protection against innate immunity is rhamnolipid, which is a quorum sensing (QS)-regulated virulence factor. QS is a cell-to-cell signaling...... mechanism used to coordinate expression of virulence and protection of aggregated biofilm cells. Rhamnolipids are known for their ability to cause hemolysis and have been shown to cause lysis of several cellular components of the human immune system, for example, macrophages and polymorphonuclear leukocytes...

  7. Manipulatiaon of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Burkhalter, R.; Macnaughton, S.J.; Palmer, R.J.; Smith, C.A.; Whitaker, K.W.; White, D.C.; Zinn, M.; kirkegaard, R.

    1998-08-09

    The Biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms by generated. The most effective monitoring of biofilm formation, succession and desquamation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in the distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  8. Manipulation of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  9. Biofilm formation on abiotic surfaces

    DEFF Research Database (Denmark)

    Tang, Lone

    2011-01-01

    Bacteria can attach to any surface in contact with water and proliferate into complex communities enclosed in an adhesive matrix, these communities are called biofilms. The matrix makes the biofilm difficult to remove by physical means, and bacteria in biofilm can survive treatment with many...... antibiotics, disinfectants and cleaning agents. Biofilms are therefore very difficult to eradicate, and an attractive approach to limit biofilm formation is to reduce bacterial adhesion. In this thesis it was shown that lowering the surface roughness had a greater effect on bacterial retention compared....... The ability to form biofilms, the amount of eDNA produced, and the importance of eDNA for biofilm formation or stability did not correlate and varied from strain to strain. Finally, a method was developed for immobilization of living bacteria for analysis by atomic force microscopy (AFM). AFM is used...

  10. A Method for Quantitative Determination of Biofilm Viability

    Directory of Open Access Journals (Sweden)

    Maria Strømme

    2012-06-01

    Full Text Available In this study we present a scheme for quantitative determination of biofilm viability offering significant improvement over existing methods with metabolic assays. Existing metabolic assays for quantifying viable bacteria in biofilms usually utilize calibration curves derived from planktonic bacteria, which can introduce large errors due to significant differences in the metabolic and/or growth rates of biofilm bacteria in the assay media compared to their planktonic counterparts. In the presented method we derive the specific growth rate of Streptococcus mutans bacteria biofilm from a series of metabolic assays using the pH indicator phenol red, and show that this information could be used to more accurately quantify the relative number of viable bacteria in a biofilm. We found that the specific growth rate of S. mutans in biofilm mode of growth was 0.70 h−1, compared to 1.09 h−1 in planktonic growth. This method should be applicable to other bacteria types, as well as other metabolic assays, and, for example, to quantify the effect of antibacterial treatments or the performance of bactericidal implant surfaces.

  11. Biofilm Implication in Oral Diseases of Dogs and Cats

    Directory of Open Access Journals (Sweden)

    Csilla Zambori

    2012-10-01

    Full Text Available The importance of biofilm in disease processes in humans and animals is now widely recognized. In animal species,the risk of infection is probably greater than the risk in humans. This is due to the difference in animal housing andliving environments – animals naturally live in environments with a large and much more diverse microbialcommunity. Most oral bacteria live symbiotically in biofilm. This symbiotic association gives the bacteria differentcommunal properties than individual planktonic bacteria.Bacteria that form biofilm live and develop in communities which are an important property for dental plaqueformation that leads to dental calculus formation, periodontal diseases, dental caries and systemic diseases.The objective of this study is to reveal the role of dental plaque (oral biofilm in pathogenesis of dental calculus,periodontal disease and dental caries in dogs and cats.

  12. Pathogens protection against the action of disinfectants in multispecies biofilms

    Directory of Open Access Journals (Sweden)

    Pilar eSanchez-Vizuete

    2015-07-01

    Full Text Available Biofilms constitute the prevalent way of life for microorganisms in both natural and man-made environments. Biofilm-dwelling cells display greater tolerance to antimicrobial agents than those that are free-living, and the mechanisms by which this occurs have been investigated extensively using single-strain axenic models. However, there is growing evidence that interspecies interactions may profoundly alter the response of the community to such toxic exposure. In this paper, we propose an overview of the studies dealing with multispecies biofilms resistance to biocides, with particular reference to the protection of pathogenic species by resident surface flora when subjected to disinfectants treatments. The mechanisms involved in such protection include interspecies signaling, interference between biocides molecules and public goods in the matrix or the physiology and genetic plasticity associated with a structural spatial arrangement. After describing these different mechanisms, we will discuss the experimental methods available for their analysis in the context of complex multispecies biofilms.

  13. Interspecific bacterial interactions are reflected in multispecies biofilm spatial organization

    Directory of Open Access Journals (Sweden)

    Wenzheng Liu

    2016-08-01

    Full Text Available Interspecies interactions are essential for the persistence and development of any kind of complex community, and microbial biofilms are no exception. Multispecies biofilms are structured and spatially defined communities that have received much attention due to their omnipresence in natural environments. Species residing in these complex bacterial communities usually interact both intra- and interspecifically. Such interactions are considered to not only be fundamental in shaping overall biomass and the spatial distribution of cells residing in multispecies biofilms, but also to result in coordinated regulation of gene expression in the different species present. These communal interactions often lead to emergent properties in biofilms, such as enhanced tolerance against antibiotics, host immune responses and other stresses, which have been shown to provide benefits to all biofilm members not only the enabling sub-populations. However, the specific molecular mechanisms of cellular processes affecting spatial organization, and vice versa, are poorly understood and very complex to unravel. Therefore, detailed description of the spatial organization of individual bacterial cells in multispecies communities can be an alternative strategy to reveal the nature of interspecies interactions of constituent species. Closing the gap between visual observation and biological processes may become crucial for resolving biofilm related problems, which is of utmost importance to environmental, industrial, and clinical implications. This review briefly presents the state of the art of studying interspecies interactions and spatial organization of multispecies communities, aiming to support theoretical and practical arguments for further advancement of this field.

  14. Biofilms in wounds: a review of present knowledge.

    Science.gov (United States)

    Cooper, R A; Bjarnsholt, T; Alhede, M

    2014-11-01

    Following confirmation of the presence of biofilms in chronic wounds, the term biofilm became a buzzword within the wound healing community. For more than a century pathogens have been successfully isolated and identified from wound specimens using techniques that were devised in the nineteenth century by Louis Pasteur and Robert Koch. Although this approach still provides valuable information with which to help diagnose acute infections and to select appropriate antibiotic therapies, it is evident that those organisms isolated from clinical specimens with the conditions normally used in diagnostic laboratories are mainly in a planktonic form that is unrepresentative of the way in which most microbial species exist naturally. Usually microbial species adhere to each other, as well as to living and non-living surfaces, where they form complex communities surrounded by collectively secreted extracellular polymeric substances (EPS). Cells within such aggregations (or biofilms) display varying physiological and metabolic properties that are distinct from those of planktonic cells, and which contribute to their persistence. There are many factors that influence healing in wounds and the discovery of biofilms in chronic wounds has provided new insight into the reasons why. Increased tolerance of biofilms to antimicrobial agents explains the limited efficacy of antimicrobial agents in chronic wounds and illustrates the need to develop new management strategies. This review aims to explain the nature of biofilms, with a view to explaining their impact on wounds. PMID:25375405

  15. Biofilm roughness determines Cryptosporidium parvum retention in environmental biofilms.

    Science.gov (United States)

    DiCesare, E A Wolyniak; Hargreaves, B R; Jellison, K L

    2012-06-01

    The genus Cryptosporidium is a group of waterborne protozoan parasites that have been implicated in significant outbreaks of gastrointestinal infections throughout the world. Biofilms trap these pathogens and can contaminate water supplies through subsequent release. Biofilm microbial assemblages were collected seasonally from three streams in eastern Pennsylvania and used to grow biofilms in laboratory microcosms. Daily oocyst counts in the influx and efflux flow allowed the calculation of daily oocyst retention in the biofilm. Following the removal of oocysts from the influx water, oocyst attachment to the biofilm declined to an equilibrium state within 5 days that was sustained for at least 25 days. Varying the oocyst loading rate for the system showed that biofilm retention could be saturated, suggesting that discrete binding sites determined the maximum number of oocysts retained. Oocyst retention varied seasonally but was consistent across all three sites; however, seasonal oocyst retention was not consistent across years at the same site. No correlation between oocyst attachment and any measured water quality parameter was found. However, oocyst retention was strongly correlated with biofilm surface roughness and roughness varied among seasons and across years. We hypothesize that biofilm roughness and oocyst retention are dependent on environmentally driven changes in the biofilm community rather than directly on water quality conditions. It is important to understand oocyst transport dynamics to reduce risks of human infection. Better understanding of factors controlling biofilm retention of oocysts should improve our understanding of oocyst transport at different scales.

  16. In vitro study of biofilm formation and effectiveness of antimicrobial treatment on various dental material surfaces.

    Science.gov (United States)

    Li, L; Finnegan, M B; Özkan, S; Kim, Y; Lillehoj, P B; Ho, C-M; Lux, R; Mito, R; Loewy, Z; Shi, W

    2010-12-01

    Elevated proportions of Candida albicans in biofilms formed on dentures are associated with stomatitis whereas Streptococcus mutans accumulation on restorative materials can cause secondary caries. Candida albicans, S. mutans, saliva-derived and C. albicans/saliva-derived mixed biofilms were grown on different materials including acrylic denture, porcelain, hydroxyapatite (HA), and polystyrene. The resulting biomass was analysed by three-dimensional image quantification and assessment of colony-forming units. The efficacy of biofilm treatment with a dissolved denture cleansing tablet (Polident(®)) was also evaluated by colony counting. Biofilms formed on HA exhibited the most striking differences in biomass accumulation: biofilms comprising salivary bacteria accrued the highest total biomass whereas C. albicans biofilm formation was greatly reduced on the HA surface compared with other materials, including the acrylic denture surface. These results substantiate clinical findings that acrylic dentures can comprise a reservoir for C. albicans, which renders patients more susceptible to C. albicans infections and stomatitis. Additionally, treatment efficacy of the same type of biofilms varied significantly depending on the surface. Although single-species biofilms formed on polystyrene surfaces exhibited the highest susceptibility to the treatment, the most surviving cells were recovered from HA surfaces for all types of biofilms tested. This study demonstrates that the nature of a surface influences biofilm characteristics including biomass accumulation and susceptibility to antimicrobial treatments. Such treatments should therefore be evaluated on the surfaces colonized by the target pathogen(s).

  17. Unravelling the Structural and Molecular Basis Responsible for the Anti-Biofilm Activity of Zosteric Acid.

    Science.gov (United States)

    Cattò, Cristina; Dell'Orto, Silvia; Villa, Federica; Villa, Stefania; Gelain, Arianna; Vitali, Alberto; Marzano, Valeria; Baroni, Sara; Forlani, Fabio; Cappitelli, Francesca

    2015-01-01

    The natural compound zosteric acid, or p-(sulfoxy)cinnamic acid (ZA), is proposed as an alternative biocide-free agent suitable for preventive or integrative anti-biofilm approaches. Despite its potential, the lack of information concerning the structural and molecular mechanism of action involved in its anti-biofilm activity has limited efforts to generate more potent anti-biofilm strategies. In this study a 43-member library of small molecules based on ZA scaffold diversity was designed and screened against Escherichia coli to understand the structural requirements necessary for biofilm inhibition at sub-lethal concentrations. Considerations concerning the relationship between structure and anti-biofilm activity revealed that i) the para-sulfoxy ester group is not needed to exploit the anti-biofilm activity of the molecule, it is the cinnamic acid scaffold that is responsible for anti-biofilm performance; ii) the anti-biofilm activity of ZA derivatives depends on the presence of a carboxylate anion and, consequently, on its hydrogen-donating ability; iii) the conjugated aromatic system is instrumental to the anti-biofilm activities of ZA and its analogues. Using a protein pull-down approach, combined with mass spectrometry, the herein-defined active structure of ZA was matrix-immobilized, and was proved to interact with the E. coli NADH:quinone reductase, WrbA, suggesting a possible role of this protein in the biofilm formation process. PMID:26132116

  18. Unravelling the Structural and Molecular Basis Responsible for the Anti-Biofilm Activity of Zosteric Acid.

    Directory of Open Access Journals (Sweden)

    Cristina Cattò

    Full Text Available The natural compound zosteric acid, or p-(sulfoxycinnamic acid (ZA, is proposed as an alternative biocide-free agent suitable for preventive or integrative anti-biofilm approaches. Despite its potential, the lack of information concerning the structural and molecular mechanism of action involved in its anti-biofilm activity has limited efforts to generate more potent anti-biofilm strategies. In this study a 43-member library of small molecules based on ZA scaffold diversity was designed and screened against Escherichia coli to understand the structural requirements necessary for biofilm inhibition at sub-lethal concentrations. Considerations concerning the relationship between structure and anti-biofilm activity revealed that i the para-sulfoxy ester group is not needed to exploit the anti-biofilm activity of the molecule, it is the cinnamic acid scaffold that is responsible for anti-biofilm performance; ii the anti-biofilm activity of ZA derivatives depends on the presence of a carboxylate anion and, consequently, on its hydrogen-donating ability; iii the conjugated aromatic system is instrumental to the anti-biofilm activities of ZA and its analogues. Using a protein pull-down approach, combined with mass spectrometry, the herein-defined active structure of ZA was matrix-immobilized, and was proved to interact with the E. coli NADH:quinone reductase, WrbA, suggesting a possible role of this protein in the biofilm formation process.

  19. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging.

    Science.gov (United States)

    Yan, Jing; Sharo, Andrew G; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2016-09-01

    Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli.

  20. Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater

    KAUST Repository

    Ling, Fangqiong

    2013-01-01

    This study evaluated the continuous impact of monochloramine disinfection on laboratory-grown biofilms through the characterization of biofilm architecture and microbial community structure. Biofilm development and disinfection were achieved using CDC (Centers for Disease Control and Prevention) biofilm reactor systems with polyvinyl chloride (PVC) coupons as the substratum and sand filter-pretreated groundwater as the source of microbial seeding and growth nutrient. After 2 weeks of growth, the biofilms were subjected to chloramination for 8 more weeks at concentrations of 7.5±1.4 to 9.1±0.4 mg Cl2 L-1. Control reactors received no disinfection during the development of biofilms. Confocal laser scanning microscopy and image analysis indicated that chloramination could lead to 81.4-83.5% and 86.3-95.6% reduction in biofilm biomass and thickness, respectively, but could not eliminate biofilm growth. 16S rRNA gene terminal restriction fragment length polymorphism analysis indicated that microbial community structures between chloraminated and non-chloraminated biofilms exhibited different successional trends. 16S rRNA gene pyrosequencing analysis further revealed that chloramination could select members of Actinobacteria and Acidobacteria as the dominant populations, whereas natural development leads to the selection of members of Nitrospira and Bacteroidetes as dominant biofilm populations. Overall, chloramination treatment could alter the growth of multi-species biofilms on the PVC surface, shape the biofilm architecture, and select a certain microbial community that can survive or proliferate under chloramination.

  1. Evaluation of environmental scanning electron microscopy for analysis of Proteus mirabilis crystalline biofilms in situ on urinary catheters

    OpenAIRE

    Holling, Nina; Dedi, Cinzia; Jones, Caroline E; Hawthorne, Joseph A; Hanlon, Geoffrey W; Salvage, Jonathan P.; Patel, Bhavik A.; Barnes, Lara M; Jones, Brian V.

    2014-01-01

    Proteus mirabilis is a common cause of catheter-associated urinary tract infections and frequently leads to blockage of catheters due to crystalline biofilm formation. Scanning electron microscopy (SEM) has proven to be a valuable tool in the study of these unusual biofilms, but entails laborious sample preparation that can introduce artefacts, undermining the investigation of biofilm development. In contrast, environmental scanning electron microscopy (ESEM) permits imaging of unprocessed, f...

  2. Mechanism of biofilm formation and analysis of influencing factors%生物膜形成机理及影响因素探究

    Institute of Scientific and Technical Information of China (English)

    戚韩英; 汪文斌; 郑昱; 朱亮; 徐向阳

    2013-01-01

    Biofilm is a kind of special microbial aggregates, and exists widely in various natural environments. The paper introduced the basic principle of biofilm formation, and reviewed the effects of carrier property, key components of extracellular polymeric substances (EPS) on the formation and stability of biofilms. Finally, the cross-disciplinary research prospect on the biofilm was provided.%生物膜是一种依附于载体材料的特殊微生物聚集体,其大量存在于自然环境中,并在水质净化、废水处理等领域广泛应用.本文介绍了生物膜形成基本原理,综述了有关载体界面性质、胞外多聚物(EPS)关键组分对生物膜形成及其稳定性的影响,并对各学科交叉研究生物膜提供技术思路.

  3. The Root Canal Biofilm

    NARCIS (Netherlands)

    Sluis, van der L.W.M.; Boutsioukis, C.; Jiang, L.M.; Macedo, R.; Verhaagen, B.; Versluis, M.; Chávez de Paz, E.; Sedgley, C.M.; Kishen, A.

    2015-01-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products from the root canal wall, their removal out of the root cana

  4. Disturbance of the bacterial cell wall specifically interferes with biofilm formation.

    Science.gov (United States)

    Bucher, Tabitha; Oppenheimer-Shaanan, Yaara; Savidor, Alon; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2015-12-01

    In nature, bacteria communicate via chemical cues and establish complex communities referred to as biofilms, wherein cells are held together by an extracellular matrix. Much research is focusing on small molecules that manipulate and prevent biofilm assembly by modifying cellular signalling pathways. However, the bacterial cell envelope, presenting the interface between bacterial cells and their surroundings, is largely overlooked. In our study, we identified specific targets within the biosynthesis pathways of the different cell wall components (peptidoglycan, wall teichoic acids and teichuronic acids) hampering biofilm formation and the anchoring of the extracellular matrix with a minimal effect on planktonic growth. In addition, we provide convincing evidence that biofilm hampering by transglycosylation inhibitors and D-Leucine triggers a highly specific response without changing the overall protein levels within the biofilm cells or the overall levels of the extracellular matrix components. The presented results emphasize the central role of the Gram-positive cell wall in biofilm development, resistance and sustainment. PMID:26472159

  5. Disturbance of the bacterial cell wall specifically interferes with biofilm formation.

    Science.gov (United States)

    Bucher, Tabitha; Oppenheimer-Shaanan, Yaara; Savidor, Alon; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2015-12-01

    In nature, bacteria communicate via chemical cues and establish complex communities referred to as biofilms, wherein cells are held together by an extracellular matrix. Much research is focusing on small molecules that manipulate and prevent biofilm assembly by modifying cellular signalling pathways. However, the bacterial cell envelope, presenting the interface between bacterial cells and their surroundings, is largely overlooked. In our study, we identified specific targets within the biosynthesis pathways of the different cell wall components (peptidoglycan, wall teichoic acids and teichuronic acids) hampering biofilm formation and the anchoring of the extracellular matrix with a minimal effect on planktonic growth. In addition, we provide convincing evidence that biofilm hampering by transglycosylation inhibitors and D-Leucine triggers a highly specific response without changing the overall protein levels within the biofilm cells or the overall levels of the extracellular matrix components. The presented results emphasize the central role of the Gram-positive cell wall in biofilm development, resistance and sustainment.

  6. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Yang, Liang; Hu, Yifan; Liu, Yang;

    2011-01-01

    distinguishable stages are observed during bacterial biofilm development. Biofilm formation is shown to be coordinated by EPS production, cell migration, subpopulation differentiation and interactions. However, the ways these different factors affect each other and contribute to community structural......Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self‐generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self‐assembly process and several...... differentiation remain largely unknown. The distinct roles of different EPS have been addressed in the present report. Both Pel and Psl polysaccharides are required for type IV pilus‐independent microcolony formation in the initial stages of biofilm formation by Pseudomonas aeruginosa PAO1. Both Pel and Psl...

  7. Cationic Pillararenes Potently Inhibit Biofilm Formation without Affecting Bacterial Growth and Viability.

    Science.gov (United States)

    Joseph, Roymon; Naugolny, Alissa; Feldman, Mark; Herzog, Ido M; Fridman, Micha; Cohen, Yoram

    2016-01-27

    It is estimated that up to 80% of bacterial infections are accompanied by biofilm formation. Since bacteria in biofilms are less susceptible to antibiotics than are bacteria in the planktonic state, biofilm-associated infections pose a major health threat, and there is a pressing need for antibiofilm agents. Here we report that water-soluble cationic pillararenes differing in the quaternary ammonium groups efficiently inhibited the formation of biofilms by clinically important Gram-positive pathogens. Biofilm inhibition did not result from antimicrobial activity; thus, the compounds should not inhibit growth of natural bacterial flora. Moreover, none of the cationic pillararenes caused detectable membrane damage to red blood cells or toxicity to human cells in culture. The results indicate that cationic pillararenes have potential for use in medical applications in which biofilm formation is a problem. PMID:26745311

  8. Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil

    Directory of Open Access Journals (Sweden)

    Wu Siva

    2009-05-01

    Full Text Available Abstract Background Microbial biofilms represent an incompletely understood, but fundamental mode of bacterial growth. These sessile communities typically consist of stratified, morphologically-distinct layers of extracellular material, where numerous metabolic processes occur simultaneously in close proximity. Limited reports on environmental isolates have revealed highly ordered, three-dimensional organization of the extracellular matrix, which may hold important implications for biofilm physiology in vivo. Results A Pseudomonas spp. isolated from a natural soil environment produced flocculent, nonmucoidal biofilms in vitro with unique structural features. These mature biofilms were made up of numerous viable bacteria, even after extended culture, and contained up to 50% of proteins and accumulated 3% (by dry weight calcium, suggesting an important role for the divalent metal in biofilm formation. Ultrastructurally, the mature biofilms contained structural motifs consisting of dense, fibrillary clusters, nanofibers, and ordered, honeycomb-like chambers enveloped in thin sheets. Conclusion Mature biofilms contained living bacteria and were structurally, chemically, and physiologically heterogeneous. The principal architectural elements observed by electron microscopy may represent useful morphological clues for identifying bacterial biofilms in vivo. The complexity and reproducibility of the structural motifs observed in bacterial biofilms appear to be the result of organized assembly, suggesting that this environmental isolate may possess ecological advantages in its natural habitat.

  9. Occurrence of Legionella pneumophila and Hartmannella vermiformis in fresh water environments and their interactions in biofilms

    NARCIS (Netherlands)

    Kuiper, M.W.

    2006-01-01

    Legionella pneumophila, the causative agent of Legionnaires’ disease, is widespread in natural fresh water environments and is also frequently found in man-made water systems. Microbial biofilms and protozoa are known to play a major role in the proliferation of L. pneumophila. Biofilms provide shel

  10. Biofilm adaptation to iron availability in the presence of biotite and consequences for chemical weathering

    Science.gov (United States)

    Bacteria in nature often live within biofilms, exopolymeric matrices that provide a favorable environment that can differ markedly from their surroundings. Biofilms have been found growing on mineral surfaces and are expected to play a role in weathering those surfaces, but this role is not well und...

  11. Biofilm formation and design features of indwelling silicone rubber tracheoesophageal voice prostheses - An electron microscopical study

    NARCIS (Netherlands)

    Leunisse, C; van Weissenbruch, R; Busscher, HJ; van der Mei, HC; Dijk, F; Albers, FWJ

    2001-01-01

    After total laryngectomy, voice can be restored with a silicone rubber tracheoesophageal voice prosthesis. However, biofilm formation and subsequent deterioration of the silicone material of the prosthesis will limit device life by impairing valve function. To simulate the natural process of biofilm

  12. Fungal β-1,3-Glucan Increases Ofloxacin Tolerance of Escherichia coli in a Polymicrobial E. coli/Candida albicans Biofilm

    OpenAIRE

    De Brucker, Katrijn; Tan, Yulong; Vints, Katlijn; De Cremer, Kaat; Braem, Annabel; Verstraeten, Natalie; Michiels, Jan; Vleugels, Jef; Bruno P.A. Cammue; Thevissen, Karin

    2015-01-01

    In the past, biofilm-related research has focused mainly on axenic biofilms. However, in nature, biofilms are often composed of multiple species, and the resulting polymicrobial interactions influence industrially and clinically relevant outcomes such as performance and drug resistance. In this study, we show that Escherichia coli does not affect Candida albicans tolerance to amphotericin or caspofungin in an E. coli/C. albicans biofilm. In contrast, ofloxacin tolerance of E. coli is signific...

  13. Davies, Florence (1995. Introducing Reading. Davies, Florence (1995. Introducing Reading.

    Directory of Open Access Journals (Sweden)

    Sonia Maria Gomes Ferreira

    2008-04-01

    Full Text Available Arising at a time of unprecedented growth of interest in fostering critical thinking, Introducing Reading offers a clear introduction and thorough account of contemporary developments in the field of reading. While overtly focusing on the special demands of social and human aspects of the reading practice, the issues raised have crucial resonance in the sphere of critical reading. Explicitly addressed to teachers of mother tongue and foreign language contexts, the book claims to elaborate on aspects of reading which have received meager attention to date: individual readers engaged in different real-world reading tasks, the social contexts where such readers engage and interact with texts, and the nature and variety of texts, here regarded as “participants” in the interaction between reader and writer. To this extent, the book successfully reaches the ambitious aim of “socializing and humanizing reading and the teaching of reading” (p. xi. Arising at a time of unprecedented growth of interest in fostering critical thinking, Introducing Reading offers a clear introduction and thorough account of contemporary developments in the field of reading. While overtly focusing on the special demands of social and human aspects of the reading practice, the issues raised have crucial resonance in the sphere of critical reading. Explicitly addressed to teachers of mother tongue and foreign language contexts, the book claims to elaborate on aspects of reading which have received meager attention to date: individual readers engaged in different real-world reading tasks, the social contexts where such readers engage and interact with texts, and the nature and variety of texts, here regarded as “participants” in the interaction between reader and writer. To this extent, the book successfully reaches the ambitious aim of “socializing and humanizing reading and the teaching of reading” (p. xi.

  14. Biofilm Roughness Determines Cryptosporidium parvum Retention in Environmental Biofilms

    OpenAIRE

    Wolyniak DiCesare, E. A.; Hargreaves, B. R.; Jellison, K. L.

    2012-01-01

    The genus Cryptosporidium is a group of waterborne protozoan parasites that have been implicated in significant outbreaks of gastrointestinal infections throughout the world. Biofilms trap these pathogens and can contaminate water supplies through subsequent release. Biofilm microbial assemblages were collected seasonally from three streams in eastern Pennsylvania and used to grow biofilms in laboratory microcosms. Daily oocyst counts in the influx and efflux flow allowed the calculation of d...

  15. Introducing the new EDMS

    CERN Multimedia

    The EDMS Team

    2014-01-01

    We are very pleased to announce the arrival of a brand new EDMS: EDMS 6. The CERN Engineering and Equipment Data Management Service just got better than ever! EDMS is the de facto interface for all engineering related data and more. Currently there are more than 1.2 million documents and nearly 2 million files stored in EDMS.   What’s new? The first thing you will notice is the look and feel of EDMS 6; the new design not only makes it more modern but also more intuitive, so that the system is easier to use, regardless of your experience with EDMS. Whilst we have kept the key concepts, we have introduced more functionality and improved navigation within the interface, allowing for better performance to help you in your daily work. We have also added a personal slant to EDMS 6 so that you can now customise your list of favourite objects. Modifying data in EDMS is much simpler, allowing you to view all object data in a single window.  More functionality will be added in the ...

  16. Introducing International Geneva

    CERN Multimedia

    2015-01-01

    Geneva is variously known as the city of peace, the world’s smallest metropolis and a place where great ideas have taken form. It has been the home to philosophers such as Rousseau and Voltaire. It was the centre of the Calvinist reformation and birthplace of the Red Cross.   I hardly need to tell you that it is also a city of great international collaboration in science. Little wonder, then, that over the years, Geneva has developed into the world’s capital of internationalism in the broadest sense of the word. Yet while we all know of the existence of modern day International Geneva, how many of us really know what it does? Here at CERN, we’re about to find out. Next week sees the first in a series of talks at the Laboratory from the heads of some of the institutions that make up International Geneva. On Friday, 20 February, it will be my pleasure to introduce you to Michael Møller, Acting Director-General of the United Nations Office at Geneva (UNO...

  17. Potential novel therapeutic strategies in cystic fibrosis: antimicrobial and anti-biofilm activity of natural and designed α-helical peptides against Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia

    Directory of Open Access Journals (Sweden)

    Pompilio Arianna

    2012-07-01

    Full Text Available Abstract Background Treatment of cystic fibrosis-associated lung infections is hampered by the presence of multi-drug resistant pathogens, many of which are also strong biofilm producers. Antimicrobial peptides, essential components of innate immunity in humans and animals, exhibit relevant in vitro antimicrobial activity although they tend not to select for resistant strains. Results Three α-helical antimicrobial peptides, BMAP-27 and BMAP-28 of bovine origin, and the artificial P19(9/B peptide were tested, comparatively to Tobramycin, for their in vitro antibacterial and anti-biofilm activity against 15 Staphylococcus aureus, 25 Pseudomonas aeruginosa, and 27 Stenotrophomonas maltophilia strains from cystic fibrosis patients. All assays were carried out in physical-chemical experimental conditions simulating a cystic fibrosis lung. All peptides showed a potent and rapid bactericidal activity against most P. aeruginosa, S. maltophilia and S. aureus strains tested, at levels generally higher than those exhibited by Tobramycin and significantly reduced biofilm formation of all the bacterial species tested, although less effectively than Tobramycin did. On the contrary, the viability-reducing activity of antimicrobial peptides against preformed P. aeruginosa biofilms was comparable to and, in some cases, higher than that showed by Tobramycin. Conclusions The activity shown by α-helical peptides against planktonic and biofilm cells makes them promising “lead compounds” for future development of novel drugs for therapeutic treatment of cystic fibrosis lung disease.

  18. Penetration of Candida Biofilms by Antifungal Agents

    OpenAIRE

    Al-Fattani, Mohammed A.; Douglas, L. Julia

    2004-01-01

    A filter disk assay was used to investigate the penetration of antifungal agents through biofilms containing single and mixed-species biofilms containing Candida. Fluconazole permeated all single-species Candida biofilms more rapidly than flucytosine. The rates of diffusion of either drug through biofilms of three strains of Candida albicans were similar. However, the rates of drug diffusion through biofilms of C. glabrata or C. krusei were faster than those through biofilms of C. parapsilosi...

  19. Silver against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Kirketerp-Møller, K.; Kristiansen, S.;

    2007-01-01

    bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa......, but that the silver concentration is important. A concentration of 5-10 ig/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 ig/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate...... planktonic bacteria. These observations strongly indicate that the concentration of silver in currently available wound dressings is much too low for treatment of chronic biofilm wounds. It is suggested that clinicians and manufacturers of the said wound dressings consider whether they are treating wounds...

  20. Biofilm susceptibility to metal toxicity.

    Science.gov (United States)

    Harrison, Joe J; Ceri, Howard; Stremick, Carol A; Turner, Raymond J

    2004-12-01

    This study compared bacterial biofilm and planktonic cell susceptibility to metal toxicity by evaluating the minimum inhibitory concentration (MIC), the planktonic minimum bactericidal concentration (MBC), and minimum biofilm eradication concentration (MBEC) using the MBEC device. In total, 17 metal cations and oxyanions, chosen to represent groups VIB to VIA of the periodic table, were each tested on biofilm and planktonic cultures of Escherichia coli JM109, Staphylococcus aureus ATCC 29213, and Pseudomonas aeruginosa ATCC 27853. In contrast to control antibiotic assays, where biofilm cultures were 2 to 64 times less susceptible to killing than logarithmically growing planktonic bacteria, metal compounds killed planktonic and biofilm cultures at the same concentration in the vast majority of combinations. Our data indicate that, under the conditions reported, growth in a biofilm does not provide resistance to bacteria against killing by metal cations or oxyanions.

  1. Biofilms: a developing microscopic community

    Directory of Open Access Journals (Sweden)

    Rivera Sandra Patricia

    2004-09-01

    Full Text Available Biofilms are microbial communities composed by different microbiota embebbed in a special adaptive environment. These communities show different characteristics such as heterogeneity, diversity in microenvironments, capacity to resist antimicrobial therapy and ability to allow bacterial communication. These characteristics convert them in complex organizations that are difficult to eradicate in their own environment. In the man, biofilms are associated to a great number of slow-development infectious processes which greatly difficulties their eradication. In the industry and environment, biofilms are centered in processes known as biofouling and bioremediation. The former is the contamination of a system due to the microbial activity of a biofilm. The latter uses biofilms to improve the conditions of a contaminated system. The study of biofilms is a new and exciting field which is constantly evolving and whose implications in medicine and industry would have important repercussions for the humankind.

  2. Effects of selected pharmaceuticals on riverine biofilm communities.

    Science.gov (United States)

    Lawrence, John R; Swerhone, George D W; Wassenaar, Leonard I; Neu, Thomas R

    2005-08-01

    Although pharmaceutical and therapeutic products are widely found in the natural environment, there is limited understanding of their ecological effects. Here we used rotating annular bioreactors to assess the impact of 10 microg.L(-1) of the selected pharmaceuticals ibuprofen, carbamazepine, furosemide, and caffeine on riverine biofilms. After 8 weeks of development, community structure was assessed using in situ microscopic analyses, fluor-conjugated lectin binding, standard plate counts, fluorescent in situ hybridization, carbon utilization spectra, and stable carbon isotope analyses. The biofilm communities varied markedly in architecture although only caffeine treated biofilms were significantly thicker. Cyanobacteria were suppressed by all 4 compounds, whereas the nitrogen containing caffeine, furosemide, and carbamazepine increased algal biomass. Ibuprofen and carbamazepine reduced bacterial biomass, while caffeine and furosemide increased it. Exopolymer content and composition of the biofilms was also influenced. Significant positive and negative effects were observed in carbon utilization spectra. In situ hybridization analyses indicated all treatments significantly decreased the gamma-proteobacterial populations and increased beta-proteobacteria. Ibuprofen in particular increased the alpha-proteobacteria, beta-proteobacteria, cytophaga-flavobacteria, and SRB385 probe positive populations. Caffeine and carbamazepine additions resulted in significant increases in the high GC354c and low GC69a probe positive cells. Live-dead analyses of the biofilms indicated that all treatments influenced the ratio of live-to-dead cells with controls having a ratio of 2.4, carbamazepine and ibuprofen being 3.2 and 3.5, respectively, and furosemide and caffeine being 1.9 and 1.7, respectively. Stable isotope analyses of the biofilms indicated delta 13C values shifted to more negative values relative to control biofilms. This shift may be consistent with proportional loss of

  3. Biofilm formation and microbial corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.; Porcella, D.

    1992-07-01

    Biofilms-colonies of microorganisms growing on surfaces - can greatly accelerate the corrosion rates of metals and alloys in utility water systems. Fundamental EPRI research is showing how mechanisms of biofilm formation, interactions between bacterial species, and metabolic activities control such biofilm properties as corrosive potential This research is identifying methods to control biofilm development and prevent microbially influenced corrosion. The results should also apply to the control of other processes involving biological consortia, including the bioremediation of contaminated groundwater and soil and the biodesulfurization of coal.

  4. Biofilm and Dental Biomaterials

    Directory of Open Access Journals (Sweden)

    Marit Øilo

    2015-05-01

    Full Text Available All treatment involving the use of biomaterials in the body can affect the host in positive or negative ways. The microbiological environment in the oral cavity is affected by the composition and shape of the biomaterials used for oral restorations. This may impair the patients’ oral health and sometimes their general health as well. Many factors determine the composition of the microbiota and the formation of biofilm in relation to biomaterials such as, surface roughness, surface energy and chemical composition, This paper aims to give an overview of the scientific literature regarding the association between the chemical, mechanical and physical properties of dental biomaterials and oral biofilm formation, with emphasis on current research and future perspectives.

  5. Biofilms of vaginal Lactobacillus reuteri CRL 1324 and Lactobacillus rhamnosus CRL 1332: kinetics of formation and matrix characterization.

    Science.gov (United States)

    Leccese Terraf, María Cecilia; Juárez Tomás, María Silvina; Rault, Lucie; Le Loir, Yves; Even, Sergine; Nader-Macías, María Elena Fátima

    2016-09-01

    Adhesion and biofilm formation are strain properties that reportedly contribute to the permanence of lactobacilli in the human vagina. The kinetics of biofilm formation and the chemical nature of the biofilm matrix formed by Lactobacillus reuteri CRL (Centro de Referencia para Lactobacilos Culture Collection) 1324 and Lactobacillus rhamnosus CRL 1332, vaginal beneficial strains, were evaluated in this work. Crystal violet-stained microplate assay and techniques of epifluorescence, electron and confocal microscopy were applied. The highest density and complexity of biofilms of both vaginal lactobacilli were observed at 72 h of incubation. Protease, proteinase K, α-chymotrypsin and trypsin treatments efficiently detached L. reuteri CRL 1324 biofilm that was also partially affected by α-amylase. However, L. rhamnosus CRL 1332 biofilm was slightly affected by protease, proteinase K and α-amylase. Confocal microscopy revealed greater amount of polysaccharides in L. rhamnosus CRL 1332 biofilm matrix than in L. reuteri CRL 1324 biofilm matrix. The results indicate that proteins are one of the main components of the L. reuteri CRL 1324 biofilm, while the biofilm matrix of L. rhamnosus CRL 1332 is composed of carbohydrates and proteins. The results obtained support the knowledge, understanding and characterization of two biofilm-forming vaginal Lactobacillus strains. PMID:27146055

  6. Characteristics of extracellular polymeric substances of phototrophic biofilms at different aquatic habitats.

    Science.gov (United States)

    Fang, Fang; Lu, Wen-Tao; Shan, Qi; Cao, Jia-Shun

    2014-06-15

    Three different phototrophic biofilms obtained from a natural lake (Sample 1), drinking water plant (Sample 2) and wastewater treatment plant (Sample 3) were investigated. Diatoms and green algae were the dominant algae of three biofilms, and the biomass was highest in biofilm of Sample 2. The three phototrophic biofilms also had variable extracellular polymeric substances (EPS) concentrations and compositions. Total EPS concentration of 14.80 mg/g DW was highest in biofilm of Sample 2, followed by biofilms of Samples 3 and 1 (13.11 and 12.29 mg/g DW). Tightly bound EPS (TB-EPS) were the main fraction, and polysaccharides and protein were the main components of total EPS in all three biofilms. However, the compositions of loosely bound EPS (LB-EPS) and TB-EPS were different in three biofilms. Fourier-transform infrared and fluorescence spectra indicated different structure and compositions of LB-EPS and TB-EPS. These results demonstrated the characteristics of EPS produced by phototrophic biofilms varied and had compact relation to their growth environmental conditions.

  7. Invasibility of resident biofilms by allochthonous communities in bioreactors.

    Science.gov (United States)

    Bellucci, Micol; Bernet, Nicolas; Harmand, Jérôme; Godon, Jean-Jacques; Milferstedt, Kim

    2015-09-15

    Invasion of non-native species can drastically affect the community composition and diversity of engineered and natural ecosystems, biofilms included. In this study, a molecular community fingerprinting method was used to monitor the putative establishment and colonization of allochthonous consortia in resident multi-species biofilms. To do this, biofilms inoculated with tap water or activated sludge were grown for 10 days in bubble column reactors W1 and W2, and S, respectively, before being exposed to non-native microbial consortia. These consortia consisted of fresh activated sludge suspensions for the biofilms inoculated with tap water (reactors W1 and W2) and of transplanted mature tap water biofilm for the activated sludge biofilm (reactor S). The introduction of virgin, unoccupied coupons into W1 and W2 enabled us to additionally investigate the competition for new resources (space) among the resident biofilm and the allochthonous consortia. CE-SSCP revealed that after the invasion event changes were mostly observed in the abundance of the dominant species in the native biofilms rather than their composition. This suggests that the resident communities within a bioreactor immediately outcompete the allochthonous microbes and shape the microbial community assemblage on both new coupons and already colonized surfaces for the short term. However, with time, latent members of the allochthonous community might grow up affecting the diversity and composition of the original biofilms.

  8. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Alexander K.; Pokroy, Boaz; Seminara, Agnese; Aizenberg, Joanna (Harvard)

    2011-09-28

    Most of the world's bacteria exist in robust, sessile communities known as biofilms, ubiquitously adherent to environmental surfaces from ocean floors to human teeth and notoriously resistant to antimicrobial agents. We report the surprising observation that Bacillus subtilis biofilm colonies and pellicles are extremely nonwetting, greatly surpassing the repellency of Teflon toward water and lower surface tension liquids. The biofilm surface remains nonwetting against up to 80% ethanol as well as other organic solvents and commercial biocides across a large and clinically important concentration range. We show that this property limits the penetration of antimicrobial liquids into the biofilm, severely compromising their efficacy. To highlight the mechanisms of this phenomenon, we performed experiments with mutant biofilms lacking ECM components and with functionalized polymeric replicas of biofilm microstructure. We show that the nonwetting properties are a synergistic result of ECM composition, multiscale roughness, reentrant topography, and possibly yet other factors related to the dynamic nature of the biofilm surface. Finally, we report the impenetrability of the biofilm surface by gases, implying defense capability against vapor-phase antimicrobials as well. These remarkable properties of B. subtilis biofilm, which may have evolved as a protection mechanism against native environmental threats, provide a new direction in both antimicrobial research and bioinspired liquid-repellent surface paradigms.

  9. Anti-biofilm efficacy of low temperature processed AgCl–TiO2 nanocomposite coating

    International Nuclear Information System (INIS)

    Biofilms are a major concern in the medical settings and food industries due to their high tolerance to antibiotics, biocides and mechanical stress. Currently, the development of novel methods to control biofilm formation is being actively pursued. In the present study, sol–gel coatings of AgCl–TiO2 nanoparticles are presented as potential anti-biofilm agents, wherein TiO2 acts as a good supporting matrix to prevent aggregation of silver and facilitates its controlled release. Low-temperature processed AgCl–TiO2 nanocomposite coatings inhibit biofilm formation by Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa. In vitro biofilm assay experiments demonstrated that AgCl–TiO2 nanocomposite coated surfaces, inhibited the development of biofilms over a period of 10 days as confirmed by scanning electron microscopy. The silver release kinetics exhibited an initial high release, followed by a slow and sustained release. The anti-biofilm efficacy of the coatings could be attributed to the release of silver, which prevents the initial bacterial adhesion required for biofilm formation. - Highlights: • Potential of AgCl–TiO2 nanocomposite coating to inhibit biofilm formation is exhibited. • Initial rapid release followed by later slow and sustained release of silver obtained. • TiO2 being porous and inorganic in nature acts as a good supporting matrix

  10. Phosphorus removal coupled to bioenergy production by three cyanobacterial isolates in a biofilm dynamic growth system.

    Science.gov (United States)

    Gismondi, Alessandra; Pippo, Francesca Di; Bruno, Laura; Antonaroli, Simonetta; Congestri, Roberta

    2016-09-01

    In the present study a closed incubator, designed for biofilm growth on artificial substrata, was used to grow three isolates of biofilm-forming heterocytous cyanobacteria using an artificial wastewater secondary effluent as the culture medium. We evaluated biofilm efficiency in removing phosphorus, by simulating biofilm-based tertiary wastewater treatment and coupled this process with biodiesel production from the developed biomass. The three strains were able to grow in the synthetic medium and remove phosphorus in percentages, between 6 and 43%, which varied between strains and also among each strain according to the biofilm growth phase. Calothrix sp. biofilm turned out to be a good candidate for tertiary treatment, showing phosphorus reducing capacity (during the exponential biofilm growth) at the regulatory level for the treated effluent water being discharged into natural water systems. Besides phosphorus removal, the three cyanobacterial biofilms produced high quality lipids, whose profile showed promising chemical stability and combustion behavior. Further integration of the proposed processes could include the integration of oil extracted from these cyanobacterial biofilms with microalgal oil known for high monounsaturated fatty acids content, in order to enhance biodiesel cold flow characteristics.

  11. Phosphorus removal coupled to bioenergy production by three cyanobacterial isolates in a biofilm dynamic growth system.

    Science.gov (United States)

    Gismondi, Alessandra; Pippo, Francesca Di; Bruno, Laura; Antonaroli, Simonetta; Congestri, Roberta

    2016-09-01

    In the present study a closed incubator, designed for biofilm growth on artificial substrata, was used to grow three isolates of biofilm-forming heterocytous cyanobacteria using an artificial wastewater secondary effluent as the culture medium. We evaluated biofilm efficiency in removing phosphorus, by simulating biofilm-based tertiary wastewater treatment and coupled this process with biodiesel production from the developed biomass. The three strains were able to grow in the synthetic medium and remove phosphorus in percentages, between 6 and 43%, which varied between strains and also among each strain according to the biofilm growth phase. Calothrix sp. biofilm turned out to be a good candidate for tertiary treatment, showing phosphorus reducing capacity (during the exponential biofilm growth) at the regulatory level for the treated effluent water being discharged into natural water systems. Besides phosphorus removal, the three cyanobacterial biofilms produced high quality lipids, whose profile showed promising chemical stability and combustion behavior. Further integration of the proposed processes could include the integration of oil extracted from these cyanobacterial biofilms with microalgal oil known for high monounsaturated fatty acids content, in order to enhance biodiesel cold flow characteristics. PMID:26939844

  12. Invasibility of resident biofilms by allochthonous communities in bioreactors.

    Science.gov (United States)

    Bellucci, Micol; Bernet, Nicolas; Harmand, Jérôme; Godon, Jean-Jacques; Milferstedt, Kim

    2015-09-15

    Invasion of non-native species can drastically affect the community composition and diversity of engineered and natural ecosystems, biofilms included. In this study, a molecular community fingerprinting method was used to monitor the putative establishment and colonization of allochthonous consortia in resident multi-species biofilms. To do this, biofilms inoculated with tap water or activated sludge were grown for 10 days in bubble column reactors W1 and W2, and S, respectively, before being exposed to non-native microbial consortia. These consortia consisted of fresh activated sludge suspensions for the biofilms inoculated with tap water (reactors W1 and W2) and of transplanted mature tap water biofilm for the activated sludge biofilm (reactor S). The introduction of virgin, unoccupied coupons into W1 and W2 enabled us to additionally investigate the competition for new resources (space) among the resident biofilm and the allochthonous consortia. CE-SSCP revealed that after the invasion event changes were mostly observed in the abundance of the dominant species in the native biofilms rather than their composition. This suggests that the resident communities within a bioreactor immediately outcompete the allochthonous microbes and shape the microbial community assemblage on both new coupons and already colonized surfaces for the short term. However, with time, latent members of the allochthonous community might grow up affecting the diversity and composition of the original biofilms. PMID:26072021

  13. Establishment of new genetic traits in a microbial biofilm community

    DEFF Research Database (Denmark)

    Christensen, Bjarke Bak; Sternberg, Claus; Andersen, Jens Bo;

    1998-01-01

    of donors and transconjugants, Upon transfer of the plasmids to the recipient cells, expression of green fluorescence was activated as a result of zygotic induction of the gfp gene. This allowed a direct in situ identification of cells receiving the gfp-tagged version of the TOL plasmid, Our data suggest...... as a recipient for the TOL plasmid. Cells carrying a chromosomally integrated lacI(q) gene and a lacp-gfp-tagged version of the TOL plasmid were introduced as donor strains in the biofilm community after its formation. The occurrence of plasmid-carrying cells was analyzed by viable-count-based enumeration...... that the frequency of horizontal plasmid transfer was low, and growth (vertical transfer) of the recipient strain was the major cause of plasmid establishment in the biofilm community, Employment of scanning confocal laser microscopy on fixed biofilms, combined with simultaneous identification of P. putida cells...

  14. Anti-biofilm activities from marine cold adapted bacteria against staphylococci and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Rosanna ePapa

    2015-12-01

    Full Text Available Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules.The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules.The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules

  15. Anti-Biofilm Activities from Marine Cold Adapted Bacteria Against Staphylococci and Pseudomonas aeruginosa.

    Science.gov (United States)

    Papa, Rosanna; Selan, Laura; Parrilli, Ermenegilda; Tilotta, Marco; Sannino, Filomena; Feller, Georges; Tutino, Maria L; Artini, Marco

    2015-01-01

    Microbial biofilms have great negative impacts on the world's economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter, and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules. The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules and to test their

  16. Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Parker Albert

    2010-11-01

    Full Text Available Abstract Background Transcriptome analysis was applied to characterize the physiological activities of Pseudomonas aeruginosa grown for three days in drip-flow biofilm reactors. Conventional applications of transcriptional profiling often compare two paired data sets that differ in a single experimentally controlled variable. In contrast this study obtained the transcriptome of a single biofilm state, ranked transcript signals to make the priorities of the population manifest, and compared ranki ngs for a priori identified physiological marker genes between the biofilm and published data sets. Results Biofilms tolerated exposure to antibiotics, harbored steep oxygen concentration gradients, and exhibited stratified and heterogeneous spatial patterns of protein synthetic activity. Transcriptional profiling was performed and the signal intensity of each transcript was ranked to gain insight into the physiological state of the biofilm population. Similar rankings were obtained from data sets published in the GEO database http://www.ncbi.nlm.nih.gov/geo. By comparing the rank of genes selected as markers for particular physiological activities between the biofilm and comparator data sets, it was possible to infer qualitative features of the physiological state of the biofilm bacteria. These biofilms appeared, from their transcriptome, to be glucose nourished, iron replete, oxygen limited, and growing slowly or exhibiting stationary phase character. Genes associated with elaboration of type IV pili were strongly expressed in the biofilm. The biofilm population did not indicate oxidative stress, homoserine lactone mediated quorum sensing, or activation of efflux pumps. Using correlations with transcript ranks, the average specific growth rate of biofilm cells was estimated to be 0.08 h-1. Conclusions Collectively these data underscore the oxygen-limited, slow-growing nature of the biofilm population and are consistent with antimicrobial tolerance due

  17. Staphylococcus aureus biofilms: recent developments in biofilm dispersal.

    Science.gov (United States)

    Lister, Jessica L; Horswill, Alexander R

    2014-01-01

    Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and represents a significant burden on the healthcare system. S. aureus attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in the persistence of chronic infections. The formation of a biofilm, and encasement of cells in a polymer-based matrix, decreases the susceptibility to antimicrobials and immune defenses, making these infections difficult to eradicate. During infection, dispersal of cells from the biofilm can result in spread to secondary sites and worsening of the infection. In this review, we discuss the current understanding of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential applications of dispersal in the treatment of biofilm-mediated infections.

  18. A Mixed-Culture Biofilm Model with Cross-Diffusion.

    Science.gov (United States)

    Rahman, Kazi A; Sudarsan, Rangarajan; Eberl, Hermann J

    2015-11-01

    We propose a deterministic continuum model for mixed-culture biofilms. A crucial aspect is that movement of one species is affected by the presence of the other. This leads to a degenerate cross-diffusion system that generalizes an earlier single-species biofilm model. Two derivations of this new model are given. One, like cellular automata biofilm models, starts from a discrete in space lattice differential equation where the spatial interaction is described by microscopic rules. The other one starts from the same continuous mass balances that are the basis of other deterministic biofilm models, but it gives up a simplifying assumption of these models that has recently been criticized as being too restrictive in terms of ecological structure. We show that both model derivations lead to the same PDE model, if corresponding closure assumptions are introduced. To investigate the role of cross-diffusion, we conduct numerical simulations of three biofilm systems: competition, allelopathy and a mixed system formed by an aerobic and an anaerobic species. In all cases, we find that accounting for cross-diffusion affects local distribution of biomass, but it does not affect overall lumped quantities such as the total amount of biomass in the system.

  19. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scen

  20. Microbial ecology of phototrophic biofilms

    NARCIS (Netherlands)

    Roeselers, G.

    2007-01-01

    Biofilms are layered structures of microbial cells and an extracellular matrix of polymeric substances, associated with surfaces and interfaces. Biofilms trap nutrients for growth of the enclosed microbial community and help prevent detachment of cells from surfaces in flowing systems. Phototrophic

  1. Experimental evolution in biofilm populations.

    Science.gov (United States)

    Steenackers, Hans P; Parijs, Ilse; Foster, Kevin R; Vanderleyden, Jozef

    2016-05-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques.

  2. Experimental evolution in biofilm populations

    Science.gov (United States)

    Steenackers, Hans P.; Parijs, Ilse; Foster, Kevin R.; Vanderleyden, Jozef

    2016-01-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  3. Nature

    OpenAIRE

    Ferretti, Federico; Schmidt Di Friedberg, Marcella

    2012-01-01

    International audience From the ancient times to the present debates on nature and environment, the idea of Nature has been one of the main concepts which interested Geographers. This paper deals with the representations of this idea in the works of thinkers who played a major role in shaping modern Geography, with a special focus on the Mediterranean world. It aims to clarify how Nature was important in defining heuristic strategies of the geographical sciences and their explications of r...

  4. Inhibition of Biofilm Formation by T7 Bacteriophages Producing Quorum-Quenching Enzymes

    Science.gov (United States)

    Lamas-Samanamud, Gisella R.

    2014-01-01

    Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysaccharides and may have limited effects on natural multispecies biofilms. In this study, an engineered T7 bacteriophage was constructed to encode a lactonase enzyme with broad-range activity for quenching of quorum sensing, a form of bacterial cell-cell communication via small chemical molecules (acyl homoserine lactones [AHLs]) that is necessary for biofilm formation. Our results demonstrated that the engineered T7 phage expressed the AiiA lactonase to effectively degrade AHLs from many bacteria. Addition of the engineered T7 phage to mixed-species biofilms containing Pseudomonas aeruginosa and Escherichia coli resulted in inhibition of biofilm formation. Such quorum-quenching phages that can lyse host bacteria and express quorum-quenching enzymes to affect diverse bacteria in biofilm communities may become novel antifouling and antibiofilm agents in industrial and clinical settings. PMID:24951790

  5. The formation of green rust induced by tropical river biofilm components

    Energy Technology Data Exchange (ETDEWEB)

    Jorand, F., E-mail: jorand@pharma.uhp-nancy.fr [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy-Universite, Institut Jean Barriol, 405 rue de Vandoeuvre, F-54600 Villers-les Nancy (France); Zegeye, A. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy-Universite, Institut Jean Barriol, 405 rue de Vandoeuvre, F-54600 Villers-les Nancy (France); Ghanbaja, J. [Service Commun de Microscopies Electroniques et Microanalyses X (SCMEM), Nancy-Universite, Bvd des Aiguillettes, BP 239, 54506, Vandoeuvre-les-Nancy (France); Abdelmoula, M. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy-Universite, Institut Jean Barriol, 405 rue de Vandoeuvre, F-54600 Villers-les Nancy (France)

    2011-06-01

    In the Sinnamary Estuary (French Guiana), a dense red biofilm grows on flooded surfaces. In order to characterize the iron oxides in this biofilm and to establish the nature of secondary minerals formed after anaerobic incubation, we conducted solid analysis and performed batch incubations. Elemental analysis indicated a major amount of iron as inorganic compartment along with organic matter. Solid analysis showed the presence of two ferric oxides ferrihydrite and lepidocrocite. Bacteria were abundant and represented more than 10{sup 11} cells g{sup -1} of dry weight among which iron reducers were revealed. Optical and electronic microscopy analysis revealed than the bacteria were in close vicinity of the iron oxides. After anaerobic incubations with exogenous electron donors, the biofilm's ferric material was reduced into green rust, a Fe{sup II}-Fe{sup III} layered double hydroxide. This green rust remained stable for several years. From this study and previous reports, we suggest that ferruginous biofilms should be considered as a favorable location for GR biomineralization when redox conditions and electron donors availability are gathered. - Research highlights: {yields} Characterization of ferruginous biofilm components by solid analysis methods. {yields} Lepidocrocite and ferrihydrite were the main iron oxides. {yields} Anaerobic incubation of biofilm with electron donors produced green rust. {yields} Biofilm components promote the formation of the green rust. {yields} Ferruginous biofilm could contribute to the natural mercury attenuation.

  6. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes.

    Science.gov (United States)

    Pei, Ruoting; Lamas-Samanamud, Gisella R

    2014-09-01

    Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysaccharides and may have limited effects on natural multispecies biofilms. In this study, an engineered T7 bacteriophage was constructed to encode a lactonase enzyme with broad-range activity for quenching of quorum sensing, a form of bacterial cell-cell communication via small chemical molecules (acyl homoserine lactones [AHLs]) that is necessary for biofilm formation. Our results demonstrated that the engineered T7 phage expressed the AiiA lactonase to effectively degrade AHLs from many bacteria. Addition of the engineered T7 phage to mixed-species biofilms containing Pseudomonas aeruginosa and Escherichia coli resulted in inhibition of biofilm formation. Such quorum-quenching phages that can lyse host bacteria and express quorum-quenching enzymes to affect diverse bacteria in biofilm communities may become novel antifouling and antibiofilm agents in industrial and clinical settings. PMID:24951790

  7. Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms†

    OpenAIRE

    Burmølle, Mette; Webb, Jeremy S; Rao, Dhana; Hansen, Lars H.; Sørensen, Søren J.; Kjelleberg, Staffan

    2006-01-01

    Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated from the surface of the marine alga Ulva australis, were screened for synergistic interactions within biofilms when present together in different combinations. Four isolates, Microbacterium phyllosph...

  8. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.;

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains....... Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance...

  9. Antibiotic tolerance and microbial biofilms

    DEFF Research Database (Denmark)

    Folkesson, Anders

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We study the dynamics of antibiotic action within hydrodynamic flow chamber biofilms of Escherichia coli and Pseudomonas aeruginosa using isogenic mutants and fluorescent gene...... expression reporters and we address the question of how biofilm organization affects antibiotic susceptibility. The dynamics of microbial killing is monitored by viable count determination, and confocal laser microscopy. Our work shows that the apparent increased antibiotic tolerance is due to the formation...... of antibiotic tolerant subpopulations within the biofilm. The formation of these subpopulations is highly variable and dependent on the antibiotic used, the biofilm structural organization and the induction of specific tolerance mechanisms....

  10. Impact of Hydrodynamics on Oral Biofilm Strength

    NARCIS (Netherlands)

    Paramonova, E.; Kalmykowa, O. J.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K.

    2009-01-01

    Mechanical removal of oral biofilms is ubiquitously accepted as the best way to prevent caries and periodontal diseases. Removal effectiveness strongly depends on biofilm strength. To investigate the influence of hydrodynamics on oral biofilm strength, we grew single- and multi-species biofilms of S

  11. Oral biofilm models for mechanical plaque removal

    NARCIS (Netherlands)

    Verkaik, Martinus J.; Busscher, Henk J.; Rustema-Abbing, Minie; Slomp, Anje M.; Abbas, Frank; van der Mei, Henny C.

    2010-01-01

    In vitro plaque removal studies require biofilm models that resemble in vivo dental plaque. Here, we compare contact and non-contact removal of single and dual-species biofilms as well as of biofilms grown from human whole saliva in vitro using different biofilm models. Bacteria were adhered to a sa

  12. Bacterial biofilms: prokaryotic adventures in multicellularity

    DEFF Research Database (Denmark)

    Webb, J.S.; Givskov, Michael Christian; Kjelleberg, S.

    2003-01-01

    The development of bacterial biofilms includes both the initial social behavior of undifferentiated cells, as well as cell death and differentiation in the mature biofilm, and displays several striking similarities with higher organisms. Recent advances in the field provide new insight...... into differentiation and cell death events in bacterial biofilm development and propose that biofilms have an unexpected level of multicellularity....

  13. Metagenomic and metaproteomic analyses of Accumulibacter phosphatis enriched floccular and granular biofilm

    NARCIS (Netherlands)

    Barr, Jeremy J; Dutilh, Bas E; Skennerton, Connor T; Fukushima, Toshikazu; Hastie, Marcus L; Gorman, Jeffrey J; Tyson, Gene W; Bond, Philip L

    2015-01-01

    Biofilms are ubiquitous in nature, forming diverse adherent microbial communities that perform a plethora of functions. Here we operated two laboratory-scale sequencing batch reactors enriched with Candidatus Accumulibacter phosphatis (Accumulibacter) performing enhanced biological phosphorus remova

  14. Microbially influenced corrosion on stainless steels in natural seawater; Kaisuichu ni okeru sutenresu ko no biseibutsu fushoku

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, H.; Miyuki, H. [Sumitomo Metal Industries Ltd., Osaka (Japan)

    1995-04-05

    The influence of microbes on the corrosion of steels in natural seawater is introduced laying stress on elucidated points. Biofilm consisting of various kinds of microbes is formed on the surface immersed in natural seawater. Adhered bacteria in this biofilm are isolated, and corrosion potential (Ecorr) in an experimental pure cultured system has been also investigated. Metabolic reaction of bacteria plays a part in microbially influenced corrosion (MIC), and reproduction of ennoblement of Ecorr is attempted by artificial means which simulates the breathing reaction of bacteria using refined oxidizing enzyme. It is made clear that corrosion behavior in natural seawater can be reproduced experimentally in a short period of time. This test method simulates the environment of the actual natural seawater well, and environmental MIC can be easily reproduced, which has been difficult in tests where conventional isolated bacteria are employed. 32 refs., 6 figs., 2 tabs.

  15. Growing and analyzing biofilms in flow chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic......, and disassembly and cleaning of the system. In addition, embedding and fluorescent in situ hybridization of flow chamber-grown biofilms are addressed....

  16. Combination of synchrotron radiation-based Fourier transforms infrared microspectroscopy and confocal laser scanning microscopy to understand spatial heterogeneity in aquatic multispecies biofilms.

    Science.gov (United States)

    Reuben, Sheela; Banas, Krzysztof; Banas, Agnieszka; Swarup, Sanjay

    2014-11-01

    Understanding the spatial heterogeneity within environmental biofilms can provide an insight into compartmentalization of different functions in biofilm communities. We used a non-destructive and label-free method by combining Synchrotron Radiation-based Fourier Transform Infrared Microspectroscopy (SR-FTIR) with Confocal Laser Scanning Microscopy (CLSM) to distinguish the spatial chemical changes within multispecies biofilms grown from natural storm waters in flow cells. Among the different surfaces tested for biofilm growth and optimal imaging, mylar membranes were most suited and it enabled successful spatial infrared imaging of natural biofilms for obtaining reliable and interpretable FTIR spectra. Time series analysis of biofilm growth showed that influx of water during biofilm growth, results in significant changes in biofilm formation. Early biofilms showed active nutrient acquisition and desiccation tolerance mechanisms corresponding with accumulation of secreted proteins. Statistical approach used for the evaluation of chemical spectra allowed for clustering and classification of various regions of the biofilm. Microheterogeneity was observed in the polymeric components of the biofilm matrix, including cellulose, glycocalyx and dextran-like molecules. Fructan and glycan-rich regions were distinguishable and glycocalyx was abundant in the strongly adhering peripheral regions of biofilms. Inner core showed coexistence of oxygen dimers and ferrihydrite that will likely support growth of Fe (II)-oxidising bacteria. The combined SR-FTIR microspectroscopy and CSLM approach for complex natural biofilms described here will be useful both in understanding heterogeneity of matrix components and in correlating functions of juxtaposed microbial species in complex natural biofilms with physicochemical microenvironment to which they are exposed.

  17. Distinct gene expression profile of Xanthomonas retroflexus engaged in synergistic multispecies biofilm formation

    DEFF Research Database (Denmark)

    Hansen, Lea Benedicte Skov; Ren, Dawei; Burmølle, Mette;

    2016-01-01

    It is well known that bacteria often exist in naturally formed multispecies biofilms. Within these biofilms, interspecies interactions seem to have an important role in ecological processes. Little is known about the effects of interspecies interactions on gene expression in these multispecies...... biofilms. This study presents a comparative gene expression analysis of the Xanthomonas retroflexus transcriptome when grown in a single-species biofilm and in dual- and four-species consortia with Stenotrophomonas rhizophila, Microbacterium oxydans and Paenibacillus amylolyticus. The results revealed...... complex interdependent interaction patterns in the multispecies biofilms. Many of the regulated functions are related to interactions with the external environment and suggest a high phenotypic plasticity in response to coexistence with other species. Furthermore, the changed expression of genes involved...

  18. Determining productivity of transferred benthic biofilms within wetlands differing in anthropogenic stressors

    International Nuclear Information System (INIS)

    Algal biofilms are a fundamental contributor to wetland productivity. The films maintain high turnover rates, nutrient uptake and storage capacities are prevalent in shallow water as well as over large littoral zones. This study investigated biofilm transfer techniques as a means of accelerating carbon capture, plant production, and colonization in reclaimed oil sand wetlands affected by process water. The study examined the productivity of transferred biofilms and their ability to accelerate succession; methods of transferring biofilms; and the community composition of algae in relation to other substrates. Microcosms with 4 types of substrates were submersed in experimental trenches containing either process water or natural water. Dissolved oxygen, chlorophyll, and biomass standing crop sampling was conducted at intervals throughout a 1-year period. Analysis of variance (ANOVA) was conducted to compare the substrate types. Results of the study will be used to assess the impacts of oil sands process affected materials (OSPM) on benthic biofilm productivity and the initial carbon accumulation process.

  19. Hydroxychalcone inhibitors of Streptococcus mutans glucosyl transferases and biofilms as potential anticaries agents.

    Science.gov (United States)

    Nijampatnam, Bhavitavya; Casals, Luke; Zheng, Ruowen; Wu, Hui; Velu, Sadanandan E

    2016-08-01

    Streptococcus mutans has been implicated as the major etiological agent in the initiation and the development of dental caries due to its robust capacity to form tenacious biofilms. Ideal therapeutics for this disease will aim to selectively inhibit the biofilm formation process while preserving the natural bacterial flora of the mouth. Several studies have demonstrated the efficacies of flavonols on S. mutans biofilms and have suggested the mechanism of action through their effect on S. mutans glucosyltransferases (Gtfs). These enzymes metabolize sucrose into water insoluble and soluble glucans, which are an integral measure of the dental caries pathogenesis. Numerous studies have shown that flavonols and polyphenols can inhibit Gtf and biofilm formation at millimolar concentrations. We have screened a group of 14 hydroxychalcones, synthetic precursors of flavonols, in an S. mutans biofilm assay. Several of these compounds emerged to be biofilm inhibitors at low micro-molar concentrations. Chalcones that contained a 3-OH group on ring A exhibited selectivity for biofilm inhibition. Moreover, we synthesized 6 additional analogs of the lead compound and evaluated their potential activity and selectivity against S. mutans biofilms. The most active compound identified from these studies had an IC50 value of 44μM against biofilm and MIC50 value of 468μM against growth displaying >10-fold selectivity inhibition towards biofilm. The lead compound displayed a dose dependent inhibition of S. mutans Gtfs. The lead compound also did not affect the growth of two commensal species (Streptococcus sanguinis and Streptococcus gordonii) at least up to 200μM, indicating that it can selectively inhibit cariogenic biofilms, while leaving commensal and/or beneficial microbes intact. Thus non-toxic compounds have the potential utility in public oral health regimes. PMID:27371109

  20. Quorum sensing in biofilms--how to destroy the bacterial citadels or their cohesion/power?

    Science.gov (United States)

    Lazar, Veronica

    2011-12-01

    Biofilms or microbial communities formed by adherent and cohesive cells on cellular or inert substrata (like medical devices), are involved in ≈ 60% of all infections and characterized by moderate intensity symptoms, chronic evolution and resistance to antibiotics. Biofilms' pathogenicity, even of those formed by opportunistic microorganisms, is amplified by two major biofilm characteristics: 1) the increased resistance to antimicrobials; 2) the protection of cells against the host's defence mechanisms. The studies at the molecular level shown that the biofilms formation is controlled by cell-to-cell signalling mechanisms and the gene regulation during biofilm growth is due to the accumulation of signal molecules. In this regard, quorum sensing mechanism (QS) is defined as a cell-density dependent bacterial intercellular communication, involved in gene expression (e.g. virulence genes for exoenzymes, exopolysaccharides) and the consequent changed behaviour of biofilm's cells, including the resistance to stress conditions; this resistance is different of well known antibioresistance, being named phenotypical resistance or tolerance. Considering the differences in physiology and susceptibility to antibiotics of biofilm embedded bacteria, as well as their increased power against the host defence responses, there are necessary new strategies for prevention and therapy of biofilm associated infections. The dental plaque is a typical example of biofilm, involved in the ethiology of cariogenesis and periodontal diseases associated with local chronic inflammation and cytokines production. The genetical and phenotypical versatility of the biofilm's cells represent a challenge for discovering new methods of treatment and prevention of biofilm associated infections. A novel class of antibiofilm and antipathogenic therapeutics which are interfering with a new target - the QS pathway, not based on growth inhibition and called QS inhibitors, natural, with different origins or

  1. Biofilm Matrix Composition Affects the Susceptibility of Food Associated Staphylococci to Cleaning and Disinfection Agents

    Science.gov (United States)

    Fagerlund, Annette; Langsrud, Solveig; Heir, Even; Mikkelsen, Maria I.; Møretrø, Trond

    2016-01-01

    Staphylococci are frequently isolated from food processing environments, and it has been speculated whether survival after cleaning and disinfection with benzalkonium chloride (BC)-containing disinfectants is due to biofilm formation, matrix composition, or BC efflux mechanisms. Out of 35 food associated staphylococci, eight produced biofilm in a microtiter plate assay and were identified as Staphylococcus capitis (2), S. cohnii, S. epidermidis, S. lentus (2), and S. saprophyticus (2). The eight biofilm producing strains were characterized using whole genome sequencing. Three of these strains contained the ica operon responsible for production of a polysaccharide matrix, and formed a biofilm which was detached upon exposure to the polysaccharide degrading enzyme Dispersin B, but not Proteinase K or trypsin. These strains were more tolerant to the lethal effect of BC both in suspension and biofilm than the remaining five biofilm producing strains. The five BC susceptible strains were characterized by lack of the ica operon, and their biofilms were detached by Proteinase K or trypsin, but not Dispersin B, indicating that proteins were major structural components of their biofilm matrix. Several novel cell wall anchored repeat domain proteins with domain structures similar to that of MSCRAMM adhesins were identified in the genomes of these strains, potentially representing novel mechanisms of ica-independent biofilm accumulation. Biofilms from all strains showed similar levels of detachment after exposure to alkaline chlorine, which is used for cleaning in the food industry. Strains with qac genes encoding BC efflux pumps could grow at higher concentrations of BC than strains without these genes, but no differences were observed at biocidal concentrations. In conclusion, the biofilm matrix of food associated staphylococci varies with respect to protein or polysaccharide nature, and this may affect the sensitivity toward a commonly used disinfectant. PMID:27375578

  2. Biofilm matrix composition affects the susceptibility of food associated staphylococci to cleaning and disinfection agents

    Directory of Open Access Journals (Sweden)

    Annette eFagerlund

    2016-06-01

    Full Text Available Staphylococci are frequently isolated from food processing environments, and it has been speculated whether survival after cleaning and disinfection with benzalkonium chloride-containing disinfectants is due to biofilm formation, matrix composition or benzalkonium chloride efflux mechanisms. Out of 35 food associated staphylococci, eight produced biofilm in a microtiter plate assay and were identified as Staphylococcus capitis (2, S. cohnii, S. epidermidis, S. lentus (2, and S. saprophyticus (2. The eight biofilm producing strains were characterized using whole genome sequencing. Three of these strains contained the ica operon responsible for production of a polysaccharide matrix, and formed a biofilm which was detached upon exposure to the polysaccharide degrading enzyme Dispersin B, but not Proteinase K or trypsin. These strains were more tolerant to the lethal effect of benzalkonium chloride both in suspension and biofilm than the remaining five biofilm producing strains. The five benzalkonium chloride susceptible strains were characterized by lack of the ica operon, and their biofilms were detached by Proteinase K or trypsin, but not Dispersin B, indicating that proteins were major structural components of their biofilm matrix. Several novel cell wall anchored repeat domain proteins with domain structures similar to that of MSCRAMM adhesins were identified in the genomes of these strains, potentially representing novel mechanisms of ica-independent biofilm accumulation. Biofilms from all strains showed similar levels of detachment after exposure to alkaline chlorine, which is used for cleaning in the food industry. Strains with qac genes encoding benzalkonium chloride efflux pumps could grow at higher concentrations of benzalkonium chloride than strains without these genes, but no differences were observed at biocidal concentrations. In conclusion, the biofilm matrix of food associated staphylococci varies with respect to protein or

  3. Biofilm Matrix Composition Affects the Susceptibility of Food Associated Staphylococci to Cleaning and Disinfection Agents.

    Science.gov (United States)

    Fagerlund, Annette; Langsrud, Solveig; Heir, Even; Mikkelsen, Maria I; Møretrø, Trond

    2016-01-01

    Staphylococci are frequently isolated from food processing environments, and it has been speculated whether survival after cleaning and disinfection with benzalkonium chloride (BC)-containing disinfectants is due to biofilm formation, matrix composition, or BC efflux mechanisms. Out of 35 food associated staphylococci, eight produced biofilm in a microtiter plate assay and were identified as Staphylococcus capitis (2), S. cohnii, S. epidermidis, S. lentus (2), and S. saprophyticus (2). The eight biofilm producing strains were characterized using whole genome sequencing. Three of these strains contained the ica operon responsible for production of a polysaccharide matrix, and formed a biofilm which was detached upon exposure to the polysaccharide degrading enzyme Dispersin B, but not Proteinase K or trypsin. These strains were more tolerant to the lethal effect of BC both in suspension and biofilm than the remaining five biofilm producing strains. The five BC susceptible strains were characterized by lack of the ica operon, and their biofilms were detached by Proteinase K or trypsin, but not Dispersin B, indicating that proteins were major structural components of their biofilm matrix. Several novel cell wall anchored repeat domain proteins with domain structures similar to that of MSCRAMM adhesins were identified in the genomes of these strains, potentially representing novel mechanisms of ica-independent biofilm accumulation. Biofilms from all strains showed similar levels of detachment after exposure to alkaline chlorine, which is used for cleaning in the food industry. Strains with qac genes encoding BC efflux pumps could grow at higher concentrations of BC than strains without these genes, but no differences were observed at biocidal concentrations. In conclusion, the biofilm matrix of food associated staphylococci varies with respect to protein or polysaccharide nature, and this may affect the sensitivity toward a commonly used disinfectant. PMID:27375578

  4. Novel microfluidic system for online monitoring of biofilm dynamics by electrical impedance spectroscopy and amperometry

    Science.gov (United States)

    Bruchmann, Julia; Sachsenheimer, Kai; Schwartz, Thomas; Rapp, Bastian E.

    2016-03-01

    Biofilm formation is ubiquitous in nature where microorganisms attach to surfaces and form highly adapted and protected communities. In technical and industrial systems like drinking water supply, food production or shipping industry biofilms are a major cause of product contamination, biofouling, and biocorrosion. Therefore, understanding of biofilm formation and means of preventing biofilm formation is important to develop novel biofilm treatment strategies. A system allowing directly online detection and monitoring biofilm formation is necessary. However, until today, there are little to none technical systems featuring a non-destructive real-time characterization of biofilm formation in a highthroughput manner. This paper presents such a microfluidic system based on electrical impedance spectroscopy (EIS) and amperomertic current measurement. The sensor consists of four modules, each housing 24 independent electrodes within 12 microfluidic channels. Attached biomass on the electrodes is monitored as increased inhibition in charge transfer by EIS and a change in metabolic activity is measured as change in produced electric current by amperometry. This modular sensor system is highly adaptable and suitable for a broad range of microbiological applications. Among others, biofilm formation processes can be characterized online, biofilm manipulation like inactivation or destabilization can be monitored in real-time and gene expression can be analyzed in parallel. The use of different electrode designs allows effective biofilm studies during all biofilm phases. The whole system was recently extended by an integrated pneumatic microfluidic pump which enables easy handling procedures. Further developments of this pumping module will allow a fully- automated computer-controlled valving and pumping.

  5. Significance of biofilms in dentistry.

    Science.gov (United States)

    Wróblewska, Marta; Strużycka, Izabela; Mierzwińska-Nastalska, Elżbieta

    2015-01-01

    In the past decades significant scientific progress has taken place in the knowledge about biofilms. They constitute multilayer conglomerates of bacteria and fungi, surrounded by carbohydrates which they produce, as well as substances derived from saliva and gingival fluid. Modern techniques showed significant diversity of the biofilm environment and a system of microbial communication (quorum sensing), enhancing their survival. At present it is believed that the majority of infections, particularly chronic with exacerbations, are a result of biofilm formation, particularly in the presence of biomaterials. It should be emphasised that penetration of antibiotics and other antimicrobial agents into deeper layers of a biofilm is poor, causing therapeutic problems and necessitating sometimes removal of the implant or prosthesis. Biofilms play an increasing role in dentistry as a result of more and more broad use in dental practice of plastic and implantable materials. Biofilms are produced on the surfaces of teeth as dental plaque, in the para-nasal sinuses, on prostheses, dental implants, as well as in waterlines of a dental unit, constituting a particular risk for severely immunocompromised patients. New methods of therapy and prevention of infections linked to biofilms are under development.

  6. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids.

    Science.gov (United States)

    Sanchez, Laura M; Cheng, Andrew T; Warner, Christopher J A; Townsley, Loni; Peach, Kelly C; Navarro, Gabriel; Shikuma, Nicholas J; Bray, Walter M; Riener, Romina M; Yildiz, Fitnat H; Linington, Roger G

    2016-01-01

    Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition, we describe the identification of taurine-conjugated bile acids as inhibitors of biofilm formation against both Vibrio cholerae and Pseudomonas aeruginosa. Taurocholic acid (1) was isolated from the fermentation broth of the fish microbiome-derived strain of Rhodococcus erythropolis and identified using standard NMR and MS methods. Screening of the twelve predominant human steroidal bile acid components revealed that a subset of these compounds can inhibit biofilm formation, induce detachment of preformed biofilms under static conditions, and that these compounds display distinct structure-activity relationships against V. cholerae and P. aeruginosa. Our findings highlight the significance of distinct bile acid components in the regulation of biofilm formation and dispersion in two different clinically relevant bacterial pathogens, and suggest that the bile acids, which are endogenous mammalian metabolites used to solubilize dietary fats, may also play a role in maintaining host health against bacterial infection.

  7. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids.

    Science.gov (United States)

    Sanchez, Laura M; Cheng, Andrew T; Warner, Christopher J A; Townsley, Loni; Peach, Kelly C; Navarro, Gabriel; Shikuma, Nicholas J; Bray, Walter M; Riener, Romina M; Yildiz, Fitnat H; Linington, Roger G

    2016-01-01

    Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition, we describe the identification of taurine-conjugated bile acids as inhibitors of biofilm formation against both Vibrio cholerae and Pseudomonas aeruginosa. Taurocholic acid (1) was isolated from the fermentation broth of the fish microbiome-derived strain of Rhodococcus erythropolis and identified using standard NMR and MS methods. Screening of the twelve predominant human steroidal bile acid components revealed that a subset of these compounds can inhibit biofilm formation, induce detachment of preformed biofilms under static conditions, and that these compounds display distinct structure-activity relationships against V. cholerae and P. aeruginosa. Our findings highlight the significance of distinct bile acid components in the regulation of biofilm formation and dispersion in two different clinically relevant bacterial pathogens, and suggest that the bile acids, which are endogenous mammalian metabolites used to solubilize dietary fats, may also play a role in maintaining host health against bacterial infection. PMID:26992172

  8. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids.

    Directory of Open Access Journals (Sweden)

    Laura M Sanchez

    Full Text Available Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition, we describe the identification of taurine-conjugated bile acids as inhibitors of biofilm formation against both Vibrio cholerae and Pseudomonas aeruginosa. Taurocholic acid (1 was isolated from the fermentation broth of the fish microbiome-derived strain of Rhodococcus erythropolis and identified using standard NMR and MS methods. Screening of the twelve predominant human steroidal bile acid components revealed that a subset of these compounds can inhibit biofilm formation, induce detachment of preformed biofilms under static conditions, and that these compounds display distinct structure-activity relationships against V. cholerae and P. aeruginosa. Our findings highlight the significance of distinct bile acid components in the regulation of biofilm formation and dispersion in two different clinically relevant bacterial pathogens, and suggest that the bile acids, which are endogenous mammalian metabolites used to solubilize dietary fats, may also play a role in maintaining host health against bacterial infection.

  9. Biofilm models for the practitioner

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; van Loosdrecht, M. C. M.; Wanner, O.

    2000-01-01

    Even though mathematical biofilm models are extensively used in biofilm research, there has been very little application of these models in the engineering practice so far. However, practitioners would be interested in models that can be used as tools to control plant operation under dynamic...... conditions or to help them handle complex interactions between particle removal, carbon oxidation, nitrification, denitrification and biological phosphorus removal. But even though there is a whole range of biofilm models available, it is difficult for the practitioner to select the appropriate modeling...

  10. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures.

    Science.gov (United States)

    Vázquez-Nion, D; Rodríguez-Castro, J; López-Rodríguez, M C; Fernández-Silva, I; Prieto, B

    2016-07-01

    Microbial communities of natural subaerial biofilms developed on granitic historic buildings of a World Heritage Site (Santiago de Compostela, NW Spain) were characterized and cultured in liquid BG11 medium. Environmental barcoding through next-generation sequencing (Pacific Biosciences) revealed that the biofilms were mainly composed of species of Chlorophyta (green algae) and Ascomycota (fungi) commonly associated with rock substrata. Richness and diversity were higher for the fungal than for the algal assemblages and fungi showed higher heterogeneity among samples. Cultures derived from natural biofilms showed the establishment of stable microbial communities mainly composed of Chlorophyta and Cyanobacteria. Although most taxa found in these cultures were not common in the original biofilms, they are likely common pioneer colonizers of building stone surfaces, including granite. Stable phototrophic multi-species cultures of known microbial diversity were thus obtained and their reliability to emulate natural colonization on granite should be confirmed in further experiments. PMID:27192622

  11. Mechanistic Lessons Learned from Studies of Planktonic Bacteria with Metallic Nanomaterials: Implications for Interactions between Nanomaterials and Biofilm Bacteria

    Directory of Open Access Journals (Sweden)

    Navid B Saleh

    2015-07-01

    Full Text Available Metal and metal oxide nanoparticles (NPs are used in numerous applications and have high likelihood of entering engineered and natural environmental systems. Careful assessment of the interaction of these NPs with bacteria, particularly biofilm bacteria, is necessary. This perspective discusses mechanisms of NP interaction with bacteria and identifies challenges in understanding NP-biofilm interaction, considering fundamental material attributes and inherent complexities of biofilm structure. The current literature is reviewed, both for planktonic bacteria and biofilms; future challenges and complexities are identified, both in light of the literature and a dataset on the toxicity of silver NPs toward planktonic and biofilm bacteria. This perspective aims to highlight the complexities in such studies and emphasizes the needs for systematic evaluation of NP-biofilm interaction.

  12. Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection.

    Science.gov (United States)

    Otter, J A; Vickery, K; Walker, J T; deLancey Pulcini, E; Stoodley, P; Goldenberg, S D; Salkeld, J A G; Chewins, J; Yezli, S; Edgeworth, J D

    2015-01-01

    Microbes tend to attach to available surfaces and readily form biofilms, which is problematic in healthcare settings. Biofilms are traditionally associated with wet or damp surfaces such as indwelling medical devices and tubing on medical equipment. However, microbes can survive for extended periods in a desiccated state on dry hospital surfaces, and biofilms have recently been discovered on dry hospital surfaces. Microbes attached to surfaces and in biofilms are less susceptible to biocides, antibiotics and physical stress. Thus, surface attachment and/or biofilm formation may explain how vegetative bacteria can survive on surfaces for weeks to months (or more), interfere with attempts to recover microbes through environmental sampling, and provide a mixed bacterial population for the horizontal transfer of resistance genes. The capacity of existing detergent formulations and disinfectants to disrupt biofilms may have an important and previously unrecognized role in determining their effectiveness in the field, which should be reflected in testing standards. There is a need for further research to elucidate the nature and physiology of microbes on dry hospital surfaces, specifically the prevalence and composition of biofilms. This will inform new approaches to hospital cleaning and disinfection, including novel surfaces that reduce microbial attachment and improve microbial detachment, and methods to augment the activity of biocides against surface-attached microbes such as bacteriophages and antimicrobial peptides. Future strategies to address environmental contamination on hospital surfaces should consider the presence of microbes attached to surfaces, including biofilms.

  13. Pulsed light for the inactivation of fungal biofilms of clinically important pathogenic Candida species.

    Science.gov (United States)

    Garvey, Mary; Andrade Fernandes, Joao Paulo; Rowan, Neil

    2015-07-01

    Microorganisms are naturally found as biofilm communities more than planktonic free-floating cells; however, planktonic culture remains the current model for microbiological studies, such as disinfection techniques. The presence of fungal biofilms in the clinical setting has a negative impact on patient mortality, as Candida biofilms have proved to be resistant to biocides in numerous in vitro studies; however, there is limited information on the effect of pulsed light on sessile communities. Here we report on the use of pulsed UV light for the effective inactivation of clinically relevant Candida species. Fungal biofilms were grown by use of a CDC reactor on clinically relevant surfaces. Following a maximal 72 h formation period, the densely populated biofilms were exposed to pulsed light at varying fluences to determine biofilm sensitivity to pulsed-light inactivation. The results were then compared to planktonic cell inactivation. High levels of inactivation of C. albicans and C. parapsilosis biofilms were achieved with pulsed light for both 48 and 72 h biofilm structures. The findings suggest that pulsed light has the potential to provide a means of surface decontamination, subsequently reducing the risk of infection to patients. The research described herein deals with an important aspect of disease prevention and public health.

  14. Biofilm removal technique using sands as a research tool for accessing microbial attachment on surface

    Directory of Open Access Journals (Sweden)

    Nathanon Trachoo

    2004-01-01

    Full Text Available Biofilms have profound impacts on improved survival of the constituent microorganisms in nature. Biofilms were believed to protect constituent microorganisms from sanitizer treatment, provide a more suitable habitat for microorganisms, and become a site for genetic material exchanges between microorganisms. As we realize more about the significance of biofilm, methods used for biofilm study should be consistently developed and evaluated. To determine microbial attachment on surfaces, usually biofilms are grown on substratum surfaces and removed by vortexing with glass beads or scraping. However, scraping is not as effective as vortexing with glass beads. Another approach is direct-agar overlaying which cannot be used with high density biofilm. In this experiment, we compared effectiveness of glass beads (298±28 μm in diameter and sands (width: 221±55 μm and length: 329±118 μm in removing biofilm of Pseudomonas aeruginosa by vortexing method. The results suggested that acid-washed sands, which are significantly less inexpensive than glass beads, were as effective as (P>0.05 analytical grade glass beads in Pseudomonas aeruginosa biofilm removal without inhibiting growth of the organism.

  15. Effects of green tea compound epigallocatechin-3-gallate against Stenotrophomonas maltophilia infection and biofilm.

    Directory of Open Access Journals (Sweden)

    Pedrina G Vidigal

    Full Text Available We investigated the in vitro and in vivo activities of epigallocatechin-3-gallate (EGCg, a green tea component, against Stenotrophomonas maltophilia (Sm isolates from cystic fibrosis (CF patients. In vitro effects of EGCg and the antibiotic colistin (COL on growth inhibition, survival, and also against young and mature biofilms of S. maltophilia were determined. Qualitative and quantitative changes on the biofilms were assessed by confocal laser scanning microscopy (CLSM. Further, in vivo effects of nebulized EGCg in C57BL/6 and Cftr mutant mice during acute Sm lung infection were evaluated. Subinhibitory concentrations of EGCg significantly reduced not only biofilm formation, but also the quantity of viable cells in young and mature biofilms. CLSM showed that EGCg-exposed biofilms exhibited either a change in total biofilm biovolume or an increase of the fraction of dead cells contained within the biofilm in a dose depended manner. Sm infected wild-type and Cftr mutant mice treated with 1,024 mg/L EGCg by inhalation exhibited significantly lower bacterial counts than those undergoing no treatment or treated with COL. EGCg displayed promising inhibitory and anti-biofilm properties against CF Sm isolates in vitro and significantly reduced Sm bacterial counts in an acute infection model with wild type and CF mice. This natural compound may represent a novel therapeutic agent against Sm infection in CF.

  16. Novel Strategies for Combating Pathogenic Biofilms Using Plant Products and Microbial Antibiosis.

    Science.gov (United States)

    Khan, Mohd S A; Lee, Jintae

    2015-01-01

    Microorganisms prefer to live in three-dimensional self-organized communities (biofilms), and this behavior provides microbial pathogens inhabiting various sites in the human body or on medical devices with survival advantages. In fact, pathogens in the biofilm stage exhibit up to a thousandfold more tolerance to conventional antimicrobial agents, and thus, they are difficult to eradicate and biofilms generated during acute infections become persistent, chronic, and recurrent. Consequently, novel strategies are being sought to control biofilm associated infections. The developmental strategies used include improved drug delivery and the penetration of biofilm matrices, and in particular, natural products that interfere with virulence and cross talk between microbial cells are being investigated as potential anti-biofilm agents. This article provides an overview of existing and promising biofilm control strategies based on plant and microbial products. Control strategies like quorum sensing inhibition, microbial antibiosis, and the uses of phages and probiotics are reviewed along with current developments in high throughput screening and in our understanding of structure activity relationships related to the regulation of biofilms by small molecules. PMID:26343132

  17. (+)-Dehydroabietic Acid, an Abietane-Type Diterpene, Inhibits Staphylococcus aureus Biofilms in Vitro

    Science.gov (United States)

    Fallarero, Adyary; Skogman, Malena; Kujala, Janni; Rajaratnam, Mohanathas; Moreira, Vânia M.; Yli-Kauhaluoma, Jari; Vuorela, Pia

    2013-01-01

    Potent drugs are desperately needed to counteract bacterial biofilm infections, especially those caused by gram-positive organisms, such as Staphylococcus aureus. Moreover, anti-biofilm compounds/agents that can be used as chemical tools are also needed for basic in vitro or in vivo studies aimed at exploring biofilms behavior and functionability. In this contribution, a collection of naturally-occurring abietane-type diterpenes and their derivatives was tested against S. aureus biofilms using a platform consisting of two phenotypic assays that have been previously published by our group. Three active compounds were identified: nordehydroabietylamine (1), (+)-dehydroabietic acid (2) and (+)-dehydroabietylamine (3) that prevented biofilm formation in the low micromolar range, and unlike typical antibiotics, only 2 to 4-fold higher concentrations were needed to significantly reduce viability and biomass of existing biofilms. Compound 2, (+)-dehydroabietic acid, was the most selective towards biofilm bacteria, achieving high killing efficacy (based on log Reduction values) and it was best tolerated by three different mammalian cell lines. Since (+)-dehydroabietic acid is an easily available compound, it holds great potential to be used as a molecular probe in biofilms-related studies as well as to serve as inspirational chemical model for the development of potent drug candidates. PMID:23739682

  18. (+-Dehydroabietic Acid, an Abietane-Type Diterpene, Inhibits Staphylococcus aureus Biofilms in Vitro

    Directory of Open Access Journals (Sweden)

    Pia Vuorela

    2013-06-01

    Full Text Available Potent drugs are desperately needed to counteract bacterial biofilm infections, especially those caused by gram-positive organisms, such as Staphylococcus aureus. Moreover, anti-biofilm compounds/agents that can be used as chemical tools are also needed for basic in vitro or in vivo studies aimed at exploring biofilms behavior and functionability. In this contribution, a collection of naturally-occurring abietane-type diterpenes and their derivatives was tested against S. aureus biofilms using a platform consisting of two phenotypic assays that have been previously published by our group. Three active compounds were identified: nordehydroabietylamine (1, (+-dehydroabietic acid (2 and (+-dehydroabietylamine (3 that prevented biofilm formation in the low micromolar range, and unlike typical antibiotics, only 2 to 4-fold higher concentrations were needed to significantly reduce viability and biomass of existing biofilms. Compound 2, (+-dehydroabietic acid, was the most selective towards biofilm bacteria, achieving high killing efficacy (based on log Reduction values and it was best tolerated by three different mammalian cell lines. Since (+-dehydroabietic acid is an easily available compound, it holds great potential to be used as a molecular probe in biofilms-related studies as well as to serve as inspirational chemical model for the development of potent drug candidates.

  19. An ecological perspective of Listeria monocytogenes biofilms in food processing facilities.

    Science.gov (United States)

    Valderrama, Wladir B; Cutter, Catherine N

    2013-01-01

    Listeria monocytogenes can enter the food chain at virtually any point. However, food processing environments seem to be of particular importance. From an ecological point of view, food processing facilities are microbial habitats that are constantly disturbed by cleaning and sanitizing procedures. Although L. monocytogenes is considered ubiquitous in nature, it is important to recognize that not all L. monocytogenes strains appear to be equally distributed; the distribution of the organism seems to be related to certain habitats. Currently, no direct evidence exists that L. monocytogenes-associated biofilms have played a role in food contamination or foodborne outbreaks, likely because biofilm isolation and identification are not part of an outbreak investigation, or the definition of biofilm is unclear. Because L. monocytogenes is known to colonize surfaces, we suggest that contamination patterns may be studied in the context of how biofilm formation is influenced by the environment within food processing facilities. In this review, direct and indirect epidemiological and phenotypic evidence of lineage-related biofilm formation capacity to specific ecological niches will be discussed. A critical view on the development of the biofilm concept, focused on the practical implications, strengths, and weaknesses of the current definitions also is discussed. The idea that biofilm formation may be an alternative surrogate for microbial fitness is proposed. Furthermore, current research on the influence of environmental factors on biofilm formation is discussed.

  20. Effect of calcium on moving-bed biofilm reactor biofilms.

    Science.gov (United States)

    Goode, C; Allen, D G

    2011-03-01

    The effect of calcium concentration on the biofilm structure, microbiology, and treatment performance was evaluated in a moving-bed biofilm reactor. Three experiments were conducted in replicate laboratory-scale reactors to determine if wastewater calcium is an important variable for the design and optimization of these reactors. Biofilm structural properties, such as thickness, oxygen microprofiles, and the composition of extracellular polymeric substances (EPS) were affected by increasing calcium concentrations. Above a threshold concentration of calcium between 1 and 50 mg/L, biofilms became thicker and denser, with a shift toward increasingly proteinaceous EPS at higher calcium concentrations up to 200 mgCa2+/L. At 300 mgCa2+/L, biofilms were found to become primarily composed of inorganic calcium precipitates. Microbiology was assessed through microscopy, denaturing grade gel electrophoresis, and enumeration of higher organisms. Higher calcium concentrations were found to change the bacterial community and promote the abundant growth of filamentous organisms and various protazoa and metazoan populations. The chemical oxygen demand removal efficiency was improved for reactors at calcium concentrations of 50 mg/L and above. Reactor effluents for the lowest calcium concentration (1 mgCa2+/L) were found to be turbid (>50 NTU), as a result of the detachment of small and poorly settling planktonic biomass, whereas higher concentrations promoted settling of the suspended phase. In general, calcium was found to be an important variable causing significant changes in biofilm structure and reactor function.

  1. Stratified growth in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Werner, E.; Roe, F.; Bugnicourt, A.;

    2004-01-01

    In this study, stratified patterns of protein synthesis and growth were demonstrated in Pseudomonas aeruginosa biofilms. Spatial patterns of protein synthetic activity inside biofilms were characterized by the use of two green fluorescent protein (GFP) reporter gene constructs. One construct...... synthesis was restricted to a narrow band in the part of the biofilm adjacent to the source of oxygen. The zone of active GFP expression was approximately 60 Am wide in colony biofilms and 30 Am wide in flow cell biofilms. The region of the biofilm in which cells were capable of elongation was mapped...... by treating colony biofilms with carbenicillin, which blocks cell division, and then measuring individual cell lengths by transmission electron microscopy. Cell elongation was localized at the air interface of the biofilm. The heterogeneous anabolic patterns measured inside these biofilms were likely a result...

  2. Metabolism links bacterial biofilms and colon carcinogenesis.

    Science.gov (United States)

    Johnson, Caroline H; Dejea, Christine M; Edler, David; Hoang, Linh T; Santidrian, Antonio F; Felding, Brunhilde H; Ivanisevic, Julijana; Cho, Kevin; Wick, Elizabeth C; Hechenbleikner, Elizabeth M; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A; Pardoll, Drew M; White, James R; Patti, Gary J; Sears, Cynthia L; Siuzdak, Gary

    2015-06-01

    Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N(1), N(12)-diacetylspermine in both biofilm-positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N(1), N(12)-diacetylspermine levels to those seen in biofilm-negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression.

  3. Impact of hydrodynamics on oral biofilm strength.

    Science.gov (United States)

    Paramonova, E; Kalmykowa, O J; van der Mei, H C; Busscher, H J; Sharma, P K

    2009-10-01

    Mechanical removal of oral biofilms is ubiquitously accepted as the best way to prevent caries and periodontal diseases. Removal effectiveness strongly depends on biofilm strength. To investigate the influence of hydrodynamics on oral biofilm strength, we grew single- and multi-species biofilms of Streptococcus oralis J22, Actinomyces naeslundii TV14-J1, and full dental plaque at shear rates ranging from 0.1 to 50 1/sec and measured their compressive strength. Subsequently, biofilm architecture was evaluated by confocal laser scanning microscopy. Multi-species biofilms were stronger than single-species biofilms, with strength values ranging from 6 to 51 Pa and from 5 to 17 Pa, respectively. In response to increased hydrodynamic shear, biofilm strength decreased, and architecture changed from uniform carpet-like to more "fluffy" with higher thickness. S. oralis biofilms grown under variable shear of 7 and 50 1/sec possessed properties intermediate of those measured at the respective single shears. PMID:19783800

  4. Differential growth of wrinkled biofilms

    CERN Document Server

    Espeso, D R; Einarsson, B

    2015-01-01

    Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Foppl-Von Karman equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to repr...

  5. Nanotechnology: Role in dental biofilms

    Directory of Open Access Journals (Sweden)

    Bhardwaj Sonia

    2009-01-01

    Full Text Available Biofilms are surface- adherent populations of microorganisms consisting of cells, water and extracellular matrix material Nanotechnology is promising field of science which can guide our understanding of the role of interspecies interaction in the development of biofilm. Streptococcus mutans with other species of bacteria has been known to form dental biofilm. The correlation between genetically modified bacteria Streptococcus mutans and nanoscale morphology has been assessed using AFMi.e atomic force microscopy. Nanotechnology application includes 16 O/ 18 O reverse proteolytic labeling,use of quantum dots for labeling of bacterial cells, selective removal of cariogenic bacteria while preserving the normal oral flora and silver antimicrobial nanotechnology against pathogens associated with biofilms. The future comprises a mouthwash full of smart nanomachines which can allow the harmless flora of mouth to flourish in a healthy ecosystem

  6. High-throughput metal susceptibility testing of microbial biofilms

    Directory of Open Access Journals (Sweden)

    Turner Raymond J

    2005-10-01

    Full Text Available Abstract Background Microbial biofilms exist all over the natural world, a distribution that is paralleled by metal cations and oxyanions. Despite this reality, very few studies have examined how biofilms withstand exposure to these toxic compounds. This article describes a batch culture technique for biofilm and planktonic cell metal susceptibility testing using the MBEC assay. This device is compatible with standard 96-well microtiter plate technology. As part of this method, a two part, metal specific neutralization protocol is summarized. This procedure minimizes residual biological toxicity arising from the carry-over of metals from challenge to recovery media. Neutralization consists of treating cultures with a chemical compound known to react with or to chelate the metal. Treated cultures are plated onto rich agar to allow metal complexes to diffuse into the recovery medium while bacteria remain on top to recover. Two difficulties associated with metal susceptibility testing were the focus of two applications of this technique. First, assays were calibrated to allow comparisons of the susceptibility of different organisms to metals. Second, the effects of exposure time and growth medium composition on the susceptibility of E. coli JM109 biofilms to metals were investigated. Results This high-throughput method generated 96-statistically equivalent biofilms in a single device and thus allowed for comparative and combinatorial experiments of media, microbial strains, exposure times and metals. By adjusting growth conditions, it was possible to examine biofilms of different microorganisms that had similar cell densities. In one example, Pseudomonas aeruginosa ATCC 27853 was up to 80 times more resistant to heavy metalloid oxyanions than Escherichia coli TG1. Further, biofilms were up to 133 times more tolerant to tellurite (TeO32- than corresponding planktonic cultures. Regardless of the growth medium, the tolerance of biofilm and planktonic

  7. Introducing particle physics a graphic guide

    CERN Document Server

    Whyntie, Tom

    2013-01-01

    What really happens at the most fundamental levels of nature? Introducing Particle Physics explores the very frontiers of our knowledge, even showing how particle physicists are now using theory and experiment to probe our very concept of what is real. From the earliest history of the atomic theory through to supersymmetry, micro-black holes, dark matter, the Higgs boson, and the possibly mythical graviton, practising physicist and CERN contributor Tom Whyntie gives us a mind-expanding tour of cutting-edge science. Featuring brilliant illustrations from Oliver Pugh, Introducing Particle Physics is a unique tour through the most astonishing and challenging science being undertaken today.

  8. Hydrodynamics of catheter biofilm formation

    CERN Document Server

    Sotolongo-Costa, Oscar; Rodriguez-Perez, Daniel; Martinez-Escobar, Sergio; Fernandez-Barbero, Antonio

    2009-01-01

    A hydrodynamic model is proposed to describe one of the most critical problems in intensive medical care units: the formation of biofilms inside central venous catheters. The incorporation of approximate solutions for the flow-limited diffusion equation leads to the conclusion that biofilms grow on the internal catheter wall due to the counter-stream diffusion of blood through a very thin layer close to the wall. This biological deposition is the first necessary step for the subsequent bacteria colonization.

  9. Arsenate Retention by Epipsammic Biofilms Developed on Streambed Sediments: Influence of Phosphate

    Directory of Open Access Journals (Sweden)

    D. M. Prieto

    2013-01-01

    Full Text Available Natural geological conditions together with the impact of human activities could produce environmental problems due to high As concentrations. The aim of this study was to assess the role of epipsammic biofilm-sediment systems onto As (V sorption and to evaluate the effect of the presence of equimolar P concentrations on As retention. A natural biofilm was grown on sediment samples in the laboratory, using river water as nutrient supplier. Sorption experiments with initial As concentrations 0, 5, 25, 50, 100, 250, and 500 μg L−1 were performed. The average percentage of As sorbed was 78.9±3.5 and 96.9±6.6% for the sediment and biofilm-sediment systems, respectively. Phosphate decreased by 25% the As sorption capactity in the sediment devoid of biofilm, whereas no significant effect was observed in the systems with biofilm. Freundlich, Sips, and Toth models were the best to describe experimental data. The maximum As sorption capacity of the sediment and biofilm-sediment systems was, respectively, 6.6 and 6.8 μg g−1 and 4.5 and 7.8 μg g−1 in the presence of P. In conclusion, epipsammic biofilms play an important role in the environmental quality of river systems, increasing As retention by the system, especially in environments where both As and P occur simultaneously.

  10. Three-Dimensional Imaging and Quantification of Biomass and Biofilms in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Dorthe Wildenschild

    2012-10-10

    A new method to resolve biofilms in three dimensions in porous media using high-resolution synchrotron-based x-ray computed microtomography (CMT) has been developed. Imaging biofilms in porous media without disturbing the natural spatial arrangement of the porous media and associated biofilm has been a challenging task, primarily because porous media generally precludes conventional imaging via optical microscopy; x-ray tomography offers a potential alternative. One challenge for using this method is that most conventional x-ray contrast agents are water-soluble and easily diffuse into biofilms. To overcome this problem, silver-coated microspheres were added to the fluid phase to create an x-ray contrast that does not diffuse into the biofilm mass. Using this approach, biofilm imaging in porous media was accomplished with sufficient contrast to differentiate between the biomass- and fluid-filled pore spaces. The method was validated by using a two-dimensional micro-model flow cell where both light microscopy and CMT imaging were used to im age the biofilm. The results of this work has been published in Water Resources Research (Iltis et al., 2010). Additional work needs to be done to optimize this imaging approach, specifically, we find that the quality of the images are highly dependent on the coverage of the biofilm with Ag particles, - which means that we may have issues in dead-end pore space and for very low density (fluffy) biofilms. What we can image for certain with this technique is the biofilm surface that is well-connected to flow paths and thus well-supplied with nutrients etc.

  11. Photodynamic therapy for inactivating endodontic bacterial biofilms and effect of tissue inhibitors on antibacterial efficacy

    Science.gov (United States)

    Shrestha, Annie; Kishen, Anil

    Complex nature of bacterial cell membrane and structure of biofilm has challenged the efficacy of antimicrobial photodynamic therapy (APDT) to achieve effective disinfection of infected root canals. In addition, tissue-inhibitors present inside the root canals are known to affect APDT activity. This study was aimed to assess the effect of APDT on bacterial biofilms and evaluate the effect of tissue-inhibitors on the APDT. Rose-bengal (RB) and methylene-blue (MB) were tested on Enterococcus faecalis (gram-positive) and Pseudomonas aeruginosa (gram-negative) biofilms. In vitro 7- day old biofilms were sensitized with RB and MB, and photodynamically activated with 20-60 J/cm2. Photosensitizers were pre-treated with different tissue-inhibitors (dentin, dentin-matrix, pulp tissue, bacterial lipopolysaccharides (LPS), and bovine serum albumin (BSA)) and tested for antibacterial effect of APDT. Microbiological culture based analysis was used to analyze the cell viability, while Laser Scanning Confocal Microscopy (LSCM) was used to examine the structure of biofilm. Photoactivation resulted in significant reduction of bacterial biofilms with RB and MB. The structure of biofilm under LSCM was found to be disrupted with reduced biofilm thickness. Complete biofilm elimination could not be achieved with both tested photosensitizers. APDT effect using MB and RB was inhibited in a decreasing order by dentin-matrix, BSA, pulp, dentin and LPS (Pbacterial biofilms resisted complete elimination after APDT and the tissue inhibitors existing within the root canal reduced the antibacterial activity at varying degrees. Further research is required to enhance the antibacterial efficacy of APDT in an endodontic environment.

  12. Liposome-encapsulated ISMN: a novel nitric oxide-based therapeutic agent against Staphylococcus aureus biofilms.

    Directory of Open Access Journals (Sweden)

    Camille Jardeleza

    Full Text Available BACKGROUND: Staphylococcus aureus in its biofilm form has been associated with recalcitrant chronic rhinosinusitis with significant resistance to conventional therapies. This study aims to determine if liposomal-encapsulation of a precursor of the naturally occurring antimicrobial nitric oxide (NO enhances its desired anti-biofilm effects against S. aureus, in the hope that improving its efficacy can provide an effective topical agent for future clinical use. METHODOLOGY: S. aureus ATCC 25923 biofilms were grown in-vitro using the Minimum Biofilm Eradication Concentration (MBEC device and exposed to 3 and 60 mg/mL of the NO donor isosorbide mononitrate (ISMN encapsulated into different anionic liposomal formulations based on particle size (unilamellar ULV, multilamellar MLV and lipid content (5 and 25 mM at 24 h and 5 min exposure times. Biofilms were viewed using Live-Dead Baclight stain and confocal scanning laser microscopy and quantified using the software COMSTAT2. RESULTS: At 3 and 60 mg/mL, ISMN-ULV liposomes had comparable and significant anti-biofilm effects compared to untreated control at 24 h exposure (p = 0.012 and 0.02 respectively. ULV blanks also had significant anti-biofilm effects at both 24 h and 5 min exposure (p = 0.02 and 0.047 respectively. At 5 min exposure, 60 mg/mL ISMN-MLV liposomes appeared to have greater anti-biofilm effects compared to pure ISMN or ULV particles. Increasing liposomal lipid content improved the anti-biofilm efficacy of both MLV and ULVs at 5 min exposure. CONCLUSION: Liposome-encapsulated "nitric oxide" is highly effective in eradicating S. aureus biofilms in-vitro, giving great promise for use in the clinical setting to treat this burdensome infection. Further studies however are needed to assess its safety and efficacy in-vivo before clinical translation is attempted.

  13. Peri-implant infections of oral biofilm etiology.

    Science.gov (United States)

    Belibasakis, Georgios N; Charalampakis, Georgios; Bostanci, Nagihan; Stadlinger, Bernd

    2015-01-01

    Biofilms are complex microbial communities that grow on various surfaces in nature. The oral micobiota tend to form polymicrobial biofilms, particularly on the hard mineralized surfaces of teeth, which may impact on oral health and disease. They can cause inflammation of the adjacent tooth-supporting (periodontal) tissues, leading to destructive periodontal disease and tooth loss. The emergence of osseointegrated dental implants as a restorative treatment option for replacing missing teeth has also brought along new artificial surfaces within the oral cavity, on which oral bacteria can form biofilms. As in the case of natural teeth, biofilms on implant surfaces may also trigger infection and cause inflammatory destruction of the peri-implant tissue (i.e. peri-implantitis). While there are strong similarities in the composition of the mixed microbial flora between periodontal and peri-implant infections, there are also a few distinctive differences. The immunological events underlying the pathogenesis of peri-implant infections are qualitatively similar, yet more extensive, compared to periodontal infections, resulting in a faster progression of tissue destruction. This chapter summarizes the current knowledge on the microbiology and immunology of peri-implant infections, including findings from the peri-implant crevicular fluid, the inflammatory exudate of the peri-implant tissue. Moreover, it discusses the diagnosis and current approaches for the treatment of oral infections.

  14. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics.

    Science.gov (United States)

    Klein, Marlise I; Xiao, Jin; Lu, Bingwen; Delahunty, Claire M; Yates, John R; Koo, Hyun

    2012-01-01

    Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the

  15. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics.

    Directory of Open Access Journals (Sweden)

    Marlise I Klein

    Full Text Available Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA and glucan-binding (gbpB during this transition (P<0.05. Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism, and molecular chaperones (GroEL. Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms demonstrating fundamental differences in the matrix assembly, survival and biofilm

  16. [Recurrent cystitis and vaginitis: role of biofilms and persister cells. From pathophysiology to new therapeutic strategies].

    Science.gov (United States)

    Graziottin, A; Zanello, P P; D'Errico, G

    2014-10-01

    Recurrent vaginitis and cystitis are a daily challenge for the woman and the physician. The recurrence worsens the symptoms' severity, increases comorbidities, both pelvic (provoked vestibulodynia, bladder pain syndrome, levator ani hyperactivity, introital dyspareunia, obstructive constipation, chronic pelvic pain) and cerebral (neuroinflammation and depression), increases health costs, worsens the quality of life. Antibiotics increase the risk of bacterial resistences and devastate the ecosystems: intestinal, vaginal and mucocutaneous. Pathogenic biofilms are the (still) neglected etiology of recurrences. Biofilms are structured communities of bacteria and yeasts, protected by a self-produced polymeric matrix adherent to a living or inert structures, such as medical devices. Biofims can be intra or extracellular. Pathogens live in a resting state in the deep biofilm layers as "persister cells", resistant to antibiotics and host defences and ready to re-attack the host. The paper updates the evidence on biofilms and introduces new non-antibiotic strategies of preventing and modulating recurrent vaginitis and cystitis. PMID:25245998

  17. Enhancing the formation and shear resistance of nitrifying biofilms on membranes by surface modification

    DEFF Research Database (Denmark)

    Lackner, Susanne; Holmberg, Maria; Terada, Akihiko;

    2009-01-01

    Polypropylene (PP) membranes and polyethylene (PE) surfaces were modified to enhance formation and shear resistance of nitrifying biofilms for wastewater treatment applications. A combination of plasma polymerization and wet chemistry was employed to ultimately introduce poly(ethyleneglycol) (PEG......) chains with two different functional groups (-PEG-NH2 and -PEG-CH3). Biofilm growth experiments using a mixed nitrifying bacterial culture revealed that the specific combination of PEG chains with amino groups resulted in most biofilm formation on both PP and PE samples. Detachment experiments showed...... similar trends: biofilms on -PEG-NH2 modified surfaces were much stronger compared to the other modifications and the unmodified reference surfaces. Electrostatic interactions between the protonated amino group and negatively charged bacteria as well as PEG chain density which can affect the surface...

  18. Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect.

    Science.gov (United States)

    Kim, Soo-Kyoung; Park, Ha-Young; Lee, Joon-Hee

    2015-04-01

    Anthranilate and indole are alternative degradation products of tryptophan, depending on the bacterial species. While indole enhances the biofilm formation of Pseudomonas aeruginosa, we found that anthranilate, the tryptophan degradation product of P. aeruginosa, had an opposite effect on P. aeruginosa biofilm formation, in which anthranilate deteriorated the mushroom structure of biofilm. The anthranilate effect on biofilm formation was differentially exerted depending on the developmental stage and the presence of shear force. Anthranilate slightly accelerated the initial attachment of P. aeruginosa at the early stage of biofilm development and appeared to build more biofilm without shear force. But anthranilate weakened the biofilm structure in the late stage, deteriorating the mushroom structure of biofilms with shear force to make a flat biofilm. To investigate the interplay of anthranilate with indole in biofilm formation, biofilms were cotreated with anthranilate and indole, and the results showed that anthranilate antagonized the biofilm-enhancing effect of indole. Anthranilate was able to deteriorate the preformed biofilm. The effect of anthranilate and indole on biofilm formation was quorum sensing independent. AntR, a regulator of anthranilate-degrading metabolism was synergistically activated by cotreatment with anthranilate and indole, suggesting that indole might enhance biofilm formation by facilitating the degradation of anthranilate. Anthranilate slightly but significantly affected the cyclic diguaniylate (c-di-GMP) level and transcription of major extracellular polysaccharide (Psl, Pel, and alginate) operons. These results suggest that anthranilate may be a promising antibiofilm agent and antagonize the effect of indole on P. aeruginosa biofilm formation.

  19. STUDY OF ULTRASOUND RADIATION INFLUENCE ON ABILITY TO FORM BIOFILMS AND FORMED BIOFILMS OF KLEBSIELLA PNEUMONIAE

    OpenAIRE

    Mozgova Yu.A.

    2013-01-01

    With aim to detect ability to form biofilms in K.pneumoniae and to study effects of low-intensity ultrasound radiation on formed biofilms and their aggregation microbiological research of material frompatients with pyoinflammatory diseases was performed. It was found that low-intensity ultrasound radiation could destroy formed biofilms of K. pneumoniae and decrease ability of this pathogen to form secondary biofilms.

  20. Photocatalytic inactivation of biofilms on bioactive dental adhesives.

    Science.gov (United States)

    Cai, Yanling; Strømme, Maria; Melhus, Asa; Engqvist, Håkan; Welch, Ken

    2014-01-01

    Biofilms are the most prevalent mode of microbial life in nature and are 10-1000 times more resistant to antibiotics than planktonic bacteria. Persistent biofilm growth associated at the margin of a dental restoration often leads to secondary caries, which remains a challenge in restorative dentistry. In this work, we present the first in vitro evaluation of on-demand photocatalytic inactivation of biofilm on a novel dental adhesive containing TiO2 nanoparticles. Streptococcus mutans biofilm was cultured on this photocatalytic surface for 16 h before photocatalytic treatment with ultraviolet-A (UV-A) light. UV-A doses ranging from 3 to 43 J/cm(2) were applied to the surface and the resulting viability of biofilms was evaluated with a metabolic activity assay incorporating phenol red that provided a quantitative measure of the reduction in viability due to the photocatalytic treatments. We show that an UV-A irradiation dose of 8.4 J/cm(2) leads to one order of magnitude reduction in the number of biofilm bacteria on the surface of the dental adhesives while as much as 5-6 orders of magnitude reduction in the corresponding number can be achieved with a dose of 43 J/cm(2). This material maintains its functional properties as an adhesive in restorative dentistry while offering the possibility of a novel dental procedure in the treatment or prevention of bacterial infections via on-demand UV-A irradiation. Similar materials could be developed for the treatment of additional indications such as peri-implantits.

  1. The influence of Brazilian plant extracts on Streptococcus mutans biofilm

    Directory of Open Access Journals (Sweden)

    Michele BARNABÉ

    2014-10-01

    Full Text Available Nineteen plant extracts obtained from plants from the Brazilian Amazon showed activity against planktonic Streptococcus mutans, an important bacterium involved in the first steps of biofilm formation and the subsequent initiation of several oral diseases. Objective: Our goal was to verify whether plant extracts that showed activity against planktonic S. mutans could prevent the organization of or even disrupt a single-species biofilm made by the same bacteria. Material and Methods: Plant extracts were tested on a single-bacteria biofilm prepared using the Zürich method. Each plant extract was tested at a concentration 5 times higher than its minimum inhibitory concentration (MIC. Discs of hydroxyapatite were submersed overnight in brain-heart infusion broth enriched with saccharose 5%, which provided sufficient time for biofilm formation. The discs were then submersed in extract solutions for one minute, three times per day, for two subsequent days. The discs were then washed with saline three times, at ten seconds each, after each treatment. Supports were allowed to remain in the enriched medium for one additional night. At the end of the process, the bacteria were removed from the discs by vortexing and were counted. Results: Only two of 19 plant extracts showed activity in the present assay: EB1779, obtained from Dioscorea altissima, and EB1673, obtained from Annona hypoglauca. Although the antibacterial activity of the plant extracts was first observed against planktonic S. mutans, influence over biofilm formation was not necessarily observed in the biofilm model. The present results motivate us to find new natural products to be used in dentistry.

  2. Introduced Terrestrial Species Richness (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted current distributions of all introduced fish in the Middle-Atlantic region. These data are available for both 8-digit HUCs and EMAP...

  3. Candida Biofilms: Development, Architecture, and Resistance.

    Science.gov (United States)

    Chandra, Jyotsna; Mukherjee, Pranab K

    2015-08-01

    Intravascular device-related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis-associated infections and also are commonly isolated from contact lens-related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms.

  4. D-amino acids trigger biofilm disassembly.

    Science.gov (United States)

    Kolodkin-Gal, Ilana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-04-30

    Bacteria form communities known as biofilms, which disassemble over time. In our studies outlined here, we found that, before biofilm disassembly, Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine, and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofilms in the presence of D-amino acids contained alterations in a protein (YqxM) required for the formation and anchoring of the fibers to the cell. D-amino acids also prevented biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. D-amino acids are produced by many bacteria and, thus, may be a widespread signal for biofilm disassembly. PMID:20431016

  5. Anti-biofilm efficacy of low temperature processed AgCl–TiO{sub 2} nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Kshipra, E-mail: kshipra_naik21@yahoo.co.in; Kowshik, Meenal, E-mail: meenal@goa.bits-pilani.ac.in

    2014-01-01

    Biofilms are a major concern in the medical settings and food industries due to their high tolerance to antibiotics, biocides and mechanical stress. Currently, the development of novel methods to control biofilm formation is being actively pursued. In the present study, sol–gel coatings of AgCl–TiO{sub 2} nanoparticles are presented as potential anti-biofilm agents, wherein TiO{sub 2} acts as a good supporting matrix to prevent aggregation of silver and facilitates its controlled release. Low-temperature processed AgCl–TiO{sub 2} nanocomposite coatings inhibit biofilm formation by Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa. In vitro biofilm assay experiments demonstrated that AgCl–TiO{sub 2} nanocomposite coated surfaces, inhibited the development of biofilms over a period of 10 days as confirmed by scanning electron microscopy. The silver release kinetics exhibited an initial high release, followed by a slow and sustained release. The anti-biofilm efficacy of the coatings could be attributed to the release of silver, which prevents the initial bacterial adhesion required for biofilm formation. - Highlights: • Potential of AgCl–TiO{sub 2} nanocomposite coating to inhibit biofilm formation is exhibited. • Initial rapid release followed by later slow and sustained release of silver obtained. • TiO{sub 2} being porous and inorganic in nature acts as a good supporting matrix.

  6. Challenges when introducing electronic exam

    OpenAIRE

    Kuikka, Matti; Kitola, Markus; Mikko-Jussi LAAKSO

    2014-01-01

    Time pressures often necessitate the use of more efficient exam tools, such as electronic exams (e-exams), instead of traditional paper exams. However, teachers may face challenges when introducing e-exams in a higher education context. This paper describes what kinds of challenges teachers may face when introducing e-exams, based on experiences in Turku University of Applied Sciences (TUAS) where e-exams have been used since 2012. For this research, the authors used their personal experience...

  7. Streptococcus thermophilus Biofilm Formation: A Remnant Trait of Ancestral Commensal Life?

    Directory of Open Access Journals (Sweden)

    Benoit Couvigny

    Full Text Available Microorganisms have a long history of use in food production and preservation. Their adaptation to food environments has profoundly modified their features, mainly through genomic flux. Streptococcus thermophilus, one of the most frequent starter culture organisms consumed daily by humans emerged recently from a commensal ancestor. As such, it is a useful model for genomic studies of bacterial domestication processes. Many streptococcal species form biofilms, a key feature of the major lifestyle of these bacteria in nature. However, few descriptions of S. thermophilus biofilms have been reported. An analysis of the ability of a representative collection of natural isolates to form biofilms revealed that S. thermophilus was a poor biofilm producer and that this characteristic was associated with an inability to attach firmly to surfaces. The identification of three biofilm-associated genes in the strain producing the most biofilms shed light on the reasons for the rarity of this trait in this species. These genes encode proteins involved in crucial stages of biofilm formation and are heterogeneously distributed between strains. One of the biofilm genes appears to have been acquired by horizontal transfer. The other two are located in loci presenting features of reductive evolution, and are absent from most of the strains analyzed. Their orthologs in commensal bacteria are involved in adhesion to host cells, suggesting that they are remnants of ancestral functions. The biofilm phenotype appears to be a commensal trait that has been lost during the genetic domestication of S. thermophilus, consistent with its adaptation to the milk environment and the selection of starter strains for dairy fermentations.

  8. Mycoalgae biofilm: development of a novel platform technology using algae and fungal cultures

    OpenAIRE

    Rajendran, Aravindan; Hu, Bo

    2016-01-01

    Background Microalgae is considered a promising source for biofuel and bioenergy production, bio-remediation and production of high-value bioactive compounds, but harvesting microalgae is a major bottleneck in the algae based processes. The objective of this research is to mimic the growth of natural lichen and develop a novel biofilm platform technology using filamentous fungi and microalgae to form a lichen type of biofilm “mycoalgae” in a supporting polymer matrix. Results The possibility ...

  9. Occurrence of Legionella pneumophila and Hartmannella vermiformis in fresh water environments and their interactions in biofilms

    OpenAIRE

    Kuiper, M.W.

    2006-01-01

    Legionella pneumophila, the causative agent of Legionnaires’ disease, is widespread in natural fresh water environments and is also frequently found in man-made water systems. Microbial biofilms and protozoa are known to play a major role in the proliferation of L. pneumophila. Biofilms provide shelter and a gradient of nutrients, and protozoa may act as host for L. pneumophila, since intracellular multiplication of L. pneumophila was shown in a variety of protozoan species. The need for prot...

  10. Microbial interactions in biofilms : role of siderophores and iron-dependent mechanisms as biocontrol strategies

    OpenAIRE

    Simões, M; Cleto, S.; Simões, Lúcia C; Pereira, Maria Olívia; Vieira, M. J.

    2007-01-01

    Biofilms are ubiquitous in nature and can cause significant problems in public health, medicine and industry. Antimicrobial approaches to treat bacterial proliferation and biofilm formation constitute a focal point of modern research. We are entering a post-chemical antimicrobial era, not only due to the need to delivering of environmentally- friendly products, but also due to the increasing resistance of some pathogens against the most common antimicrobials, and the recalcitra...

  11. Oral biofilms: molecular analysis, challenges, and future prospects in dental diagnostics

    OpenAIRE

    Do T; Devine D; Marsh PD

    2013-01-01

    Thuy Do,1 Deirdre Devine,1 Philip D Marsh1,21Department of Oral Biology, Leeds Dental Institute, Leeds, 2Health Protection Agency Microbiology Services, Salisbury, UKAbstract: Oral biofilms are functionally and structurally organized polymicrobial communities that are embedded in an extracellular matrix of exopolymers on mucosal and dental surfaces. These biofilms are found naturally in health, and provide benefits to the host. However, this relationship can break down, and disease can occur;...

  12. Mechanical properties and disruption of dental biofilms

    OpenAIRE

    Rmaile, Amir

    2013-01-01

    A literature review of dental plaque biofilms formation, progression and detachment mechanisms is presented in this thesis. Various strategies that have been employed to reduce or eliminate dental biofilms are discussed. The focus of the thesis was on the mechanical properties and disruption of dental biofilms, especially from hard-to-access areas of the oral cavity, such as the interproximal (IP) sites between the teeth. Various methods to measure mechanical properties of dental biofilms wer...

  13. Strategies for combating bacterial biofilm infections

    DEFF Research Database (Denmark)

    Wu, Hong; Moser, Claus Ernst; Wang, Heng-Zhuang;

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases...

  14. Microbiële biofilms in tandheelkunde

    NARCIS (Netherlands)

    B.P. Krom

    2015-01-01

    Aangehechte gemeenschappen van micro-organismen, ook wel biofilms genoemd, zijn altijd en overal aanwezig. Hoewel biofilms een slechte naam hebben, zijn ze meestal natuurlijk, gezond en zelfs gewenst. In de tandartspraktijk komen zowel gezonde (orale biofilms) als ongezonde (bijv. in de waterleiding

  15. Microbiële biofilms in tandheelkunde

    NARCIS (Netherlands)

    B.P. Krom

    2015-01-01

    Aangehechte gemeenschappen van micro-organismen, ook wel biofilms genoemd, zijn altijd en overal aanwezig. Hoewel biofilms een slechte naam hebben, zijn ze meestal natuurlijk, gezond en zelfs gewenst. In de mondzorgpraktijk komen zowel gezonde (orale biofilms) als ongezonde (bijv. in de waterleiding

  16. Extracellular DNA in oral microbial biofilms.

    Science.gov (United States)

    Jakubovics, Nicholas S; Burgess, J Grant

    2015-07-01

    The extracellular matrix of microbial biofilms is critical for surface adhesion and nutrient homeostasis. Evidence is accumulating that extracellular DNA plays a number of important roles in biofilm integrity and formation on hard and soft tissues in the oral cavity. Here, we summarise recent developments in the field and consider the potential of targeting DNA for oral biofilm control.

  17. Implications of bacterial biofilms in chronic rhinosinusitis

    Directory of Open Access Journals (Sweden)

    Edwin Tamashiro

    2009-06-01

    Full Text Available The recognition of sessile form of bacteria with particular features, known as biofilm, has given new insights to the understanding of pathogenesis of several chronic diseases, including Chronic Rhinosinusitis (CRS. In this article we review the main characteristics of biofilms, describe the current methods used to demonstrate biofilms in chronic rhinosinusitis and discuss the future directions of research in the field.

  18. Confocal Microscopy Imaging of the Biofilm Matrix

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke Louise

    2016-01-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens...

  19. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms.

    Science.gov (United States)

    Martins, Margarida; Uppuluri, Priya; Thomas, Derek P; Cleary, Ian A; Henriques, Mariana; Lopez-Ribot, José L; Oliveira, Rosário

    2010-05-01

    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.

  20. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    Directory of Open Access Journals (Sweden)

    Karcher Patrick

    2005-08-01

    Full Text Available Abstract This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent or form flocs/aggregates (also called granules without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR, packed bed reactor (PBR, fluidized bed reactor (FBR, airlift reactor (ALR, upflow anaerobic sludge blanket (UASB reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes.

  1. Metabolomics-Based Screening of Biofilm-Inhibitory Compounds against Pseudomonas aeruginosa from Burdock Leaf

    Directory of Open Access Journals (Sweden)

    Zaixiang Lou

    2015-09-01

    Full Text Available Screening of anti-biofilm compounds from the burdock leaf based on metabolomics is reported here. The crystal violet assay indicated 34% ethanol elution fraction of burdock leaf could completely inhibit biofilm formation of Pseudomonas aeruginosa at 1 mg·mL−1. Then, the chemical composition of burdock leaf fraction was analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS and 11 active compounds (chlorogenic acid, caffeic acid, p-coumaric acid, quercetin, ursolic acid, rutin, cynarin, luteolin, crocin, benzoic acid, and Tenacissoside I were identified. Lastly, UPLC-MS analysis was employed to obtain the metabolic fingerprints of burdock leaf fractions before and after inhibiting the biofilm of Pseudomonas aeruginosa. The metabolic fingerprints were transformed to data, analyzed with PLS-DA (partial least squares discriminant analysis and the peaks whose area was significantly changed were found out. Thus, 81 compounds were screened as potential anti-biofilm ingredients. Among them, rutin, ursolic acid, caffeic acid, p-coumaric acid and quercetin were identified and confirmed as the main anti-biofilm compounds in burdock leaf. The study provided basic anti-biofilm profile data for the compounds in burdock leaf, as well as provided a convenient method for fast screening of anti-biofilm compounds from natural plants.

  2. Metabolomics-Based Screening of Biofilm-Inhibitory Compounds against Pseudomonas aeruginosa from Burdock Leaf.

    Science.gov (United States)

    Lou, Zaixiang; Tang, Yuxia; Song, Xinyi; Wang, Hongxin

    2015-01-01

    Screening of anti-biofilm compounds from the burdock leaf based on metabolomics is reported here. The crystal violet assay indicated 34% ethanol elution fraction of burdock leaf could completely inhibit biofilm formation of Pseudomonas aeruginosa at 1 mg·mL(-1). Then, the chemical composition of burdock leaf fraction was analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and 11 active compounds (chlorogenic acid, caffeic acid, p-coumaric acid, quercetin, ursolic acid, rutin, cynarin, luteolin, crocin, benzoic acid, and Tenacissoside I) were identified. Lastly, UPLC-MS analysis was employed to obtain the metabolic fingerprints of burdock leaf fractions before and after inhibiting the biofilm of Pseudomonas aeruginosa. The metabolic fingerprints were transformed to data, analyzed with PLS-DA (partial least squares discriminant analysis) and the peaks whose area was significantly changed were found out. Thus, 81 compounds were screened as potential anti-biofilm ingredients. Among them, rutin, ursolic acid, caffeic acid, p-coumaric acid and quercetin were identified and confirmed as the main anti-biofilm compounds in burdock leaf. The study provided basic anti-biofilm profile data for the compounds in burdock leaf, as well as provided a convenient method for fast screening of anti-biofilm compounds from natural plants. PMID:26370951

  3. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or gamma-polyglutamate.

    Science.gov (United States)

    Ornek, D; Jayaraman, A; Syrett, B C; Hsu, C-H; Mansfeld, F B; Wood, T K

    2002-04-01

    Pitting corrosion of aluminum 2024 in Luria Bertani medium was reduced by the secretion of anionic peptides by engineered and natural Bacillus biofilms and was studied in continuous reactors using electrochemical impedance spectroscopy. Compared to sterile controls, pitting was reduced dramatically by the presence of the biofilms. The secretion of a 20 amino acid polyaspartate peptide by an engineered Bacillus subtilis WB600/pBE92-Asp biofilm slightly reduced the corrosion rate of the passive aluminum alloy at pH 6.5; however, the secretion of gamma-polyglutamate by a Bacillus licheniformis biofilm reduced the corrosion rate by 90% (compared to the B. subtilis WB600/pBE92 biofilm which did not secrete polyaspartate or gamma-polyglutamate). The corrosion potential ( E(corr)) of aluminum 2024 was increased by about 0.15-0.44 V due to the formation of B. subtilis and B. licheniformis biofilms as compared to sterile controls. The increase of E(corr) and the observed prevention of pitting indicate that the pitting potential ( E(pit)) had increased. This result and the further decrease of corrosion rates for the passive aluminum alloy suggest that the rate of the anodic metal dissolution reaction was reduced by an inhibitor produced by the biofilms. Purified gamma-polyglutamate also decreased the corrosion rates of aluminum 2024. PMID:11956749

  4. Biofilm-derived Legionella pneumophila evades the innate immune response in macrophages

    Directory of Open Access Journals (Sweden)

    Arwa eAbu Khweek

    2013-05-01

    Full Text Available Legionella pneumophila, the causative agent of Legionnaire’s disease, replicates in human alveolar macrophages to establish infection. There is no human-to-human transmission and the main source of infection is L. pneumophila biofilms established in air conditioners, water fountains, and hospital equipments. The biofilm structure provides protection to the organism from disinfectants and antibacterial agents. L. pneumophila infection in humans is characterized by a subtle initial immune response, giving time for the organism to establish infection before the patient succumbs to pneumonia. Planktonic L. pneumophila elicits a strong immune response in murine, but not in human macrophages enabling control of the infection. Interactions between planktonic L. pneumophila and murine or human macrophages have been studied for years, yet the interface between biofilm-derived L. pneumophila and macrophages has not been explored. Here, we demonstrate that biofilm-derived L. pneumophila replicates significantly more in murine macrophages than planktonic bacteria. In contrast to planktonic L. pneumophila, biofilm-derived L. pneumophila lacks flagellin expression, do not activate caspase-1 or 7 and trigger less cell death. In addition, while planktonic L. pneumophila is promptly delivered to lysosomes for degradation, most biofilm-derived bacteria were enclosed in a vacuole that did not fuse with lysosomes in murine macrophages. This study advances our understanding of the innate immune response to biofilm-derived L. pneumophila and closely reproduces the natural mode of infection in human.

  5. Biofilm-derived Legionella pneumophila evades the innate immune response in macrophages.

    Science.gov (United States)

    Abu Khweek, Arwa; Fernández Dávila, Natalia S; Caution, Kyle; Akhter, Anwari; Abdulrahman, Basant A; Tazi, Mia; Hassan, Hoda; Novotny, Laura A; Bakaletz, Lauren O; Amer, Amal O

    2013-01-01

    Legionella pneumophila, the causative agent of Legionnaire's disease, replicates in human alveolar macrophages to establish infection. There is no human-to-human transmission and the main source of infection is L. pneumophila biofilms established in air conditioners, water fountains, and hospital equipments. The biofilm structure provides protection to the organism from disinfectants and antibacterial agents. L. pneumophila infection in humans is characterized by a subtle initial immune response, giving time for the organism to establish infection before the patient succumbs to pneumonia. Planktonic L. pneumophila elicits a strong immune response in murine, but not in human macrophages enabling control of the infection. Interactions between planktonic L. pneumophila and murine or human macrophages have been studied for years, yet the interface between biofilm-derived L. pneumophila and macrophages has not been explored. Here, we demonstrate that biofilm-derived L. pneumophila replicates significantly more in murine macrophages than planktonic bacteria. In contrast to planktonic L. pneumophila, biofilm-derived L. pneumophila lacks flagellin expression, do not activate caspase-1 or -7 and trigger less cell death. In addition, while planktonic L. pneumophila is promptly delivered to lysosomes for degradation, most biofilm-derived bacteria were enclosed in a vacuole that did not fuse with lysosomes in murine macrophages. This study advances our understanding of the innate immune response to biofilm-derived L. pneumophila and closely reproduces the natural mode of infection in human. PMID:23750338

  6. Using bacterial bioluminescence to evaluate the impact of biofilm on porous media hydraulic properties.

    Science.gov (United States)

    Bozorg, Ali; Gates, Ian D; Sen, Arindom

    2015-02-01

    Biofilm formation in natural and engineered porous systems can significantly impact hydrodynamics by reducing porosity and permeability. To better understand and characterize how biofilms influence hydrodynamic properties in porous systems, the genetically engineered bioluminescent bacterial strain Pseudomonas fluorescens HK44 was used to quantify microbial population characteristics and biofilm properties in a translucent porous medium. Power law relationships were found to exist between bacterial bioluminescence and cell density, fraction of void space occupied by biofilm (i.e. biofilm saturation), and hydraulic conductivity. The simultaneous evaluation of biofilm saturation and porous medium hydraulic conductivity in real time using a non-destructive approach enabled the construction of relative hydraulic conductivity curves. Such information can facilitate simulation studies related to biological activity in porous structures, and support the development of new models to describe the dynamic behavior of biofilm and fluid flow in porous media. The bioluminescence based approach described here will allow for improved understanding and control of industrially relevant processes such as biofiltration and bioremediation. PMID:25479429

  7. Oral biofilms: molecular analysis, challenges, and future prospects in dental diagnostics

    Directory of Open Access Journals (Sweden)

    Do T

    2013-02-01

    Full Text Available Thuy Do,1 Deirdre Devine,1 Philip D Marsh1,21Department of Oral Biology, Leeds Dental Institute, Leeds, 2Health Protection Agency Microbiology Services, Salisbury, UKAbstract: Oral biofilms are functionally and structurally organized polymicrobial communities that are embedded in an extracellular matrix of exopolymers on mucosal and dental surfaces. These biofilms are found naturally in health, and provide benefits to the host. However, this relationship can break down, and disease can occur; disease is associated with a shift in the balance of the species within these biofilms. Simple diagnostic tests have been developed that involve the culture of selected bacteria, eg, those implicated in dental caries, facilitating an assessment of risk of further disease in individual patients. However, oral diseases have a complex etiology, and because only around 50% of oral biofilm can be grown at present, culture-independent molecular-based approaches are being developed that give a more comprehensive assessment of the presence of a range of putative pathogens in samples. The diversity of these biofilms creates challenges in the interpretation of findings, and future work is investigating the ability of novel techniques to detect biological activity and function in oral biofilms, rather than simply providing a catalogue of microbial names.Keywords: oral biofilms, dental plaque, dental diagnostics, molecular techniques, polymerase chain reaction, next-generation sequencing

  8. From Nanowires to Biofilms: An Exploration of Novel Mechanisms of Uranium Transformation Mediated by Geobacter Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    REGUERA, GEMMA [Michigan State University

    2014-01-16

    One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilms than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.

  9. Effects of electric polarization of indium tin oxide (ITO) and polypyrrole on biofilm formation.

    Science.gov (United States)

    Schaule, Gabriela; Rumpf, A; Weidlich, C; Mangold, K-M; Flemming, H-C

    2008-01-01

    The influence of electric polarization on primary adhesion and on biofilm formation was investigated. As substrata, indium tin oxide (ITO) and polypyrrole coatings were used because of their electric conductivity. The materials were polarized from -600 mV to +600 mV, switching every 60 seconds. Control was non-polarized substrata. Primary adhesion under this regime was not strongly influenced, however, the morphology of the primary biofilm was obviously different from that of the control. Biofilm formation of the natural population of non-chlorinated drinking water, supplemented with nutrient in low concentration, was determined over 164 hours. While the biofilm on the control surface developed to a thickness of about 100 microm, on the pulsed polarized surface it reproducibly developed only to a very thin biofilm. Faster switching of the polarization (10 second) had no further influence. If the polarization routine was reduced to only twice a day (one hour), no influence on biofilm development was observed. These results indicate that fluctuating polarization at a rate of once per minute inhibits the physiological processes during biofilm formation during one week. Investigations are in process to determine further details of this effect in order to employ it for inhibition of biofouling. PMID:19092192

  10. Microbial pathogenesis and biofilm development

    DEFF Research Database (Denmark)

    Reisner, A.; Høiby, N.; Tolker-Nielsen, Tim;

    2004-01-01

    cycles of different microorganisms will eventually lead to improved treatments. Several bacteria have evolved specific strategies for virulent colonization of humans in addition to their otherwise harmless establishment as environmental inhabitants. In many such cases biofilm development seems to play...... permit bacterial growth to occur. In laboratory model systems the growth of the surface-associated bacteria is supported by the nutrient supply in the moving or standing liquid. A benchmark of biofilm formation by several organisms in vitro is the development of three-dimensional structures that have...... been termed 'maturation', which is thought to be mediated by a differentiation process. Maturation into late stages of biofilm development resulting in stable and robust structures may require the formation of a matrix of extracellular polymeric substances (EPS), which are most often assumed to consist...

  11. Biofilmes e Lentes de Contacto

    OpenAIRE

    Silva, Ana Rita Baptista da

    2012-01-01

    O Biofilme pode ser designado como um grupo funcional de microrganismos aderidos a uma superfície estando envolvidos numa matriz exopolimérica. As bactérias organizam-se em Biofilmes, devido a, quando não estão organizadas em microcolónias terem reduzida taxa de sobrevivência. A estrutura e formação destes filmes são heterogéneas, integrando em si nichos de bactérias com graus de crescimento distintos. O estudo da relação dos Biofilmes com as lentes de contacto é pertinente, pois estas são...

  12. Solutions to the public goods dilemma in bacterial biofilms

    Science.gov (United States)

    Drescher, Knut; Nadell, Carey D.; Stone, Howard A.; Wingreen, Ned S.; Bassler, Bonnie L.

    2014-03-01

    Bacteria frequently live in densely populated surface-bound communities, termed biofilms. Biofilm-dwelling cells rely on secretion of extracellular substances to construct their communities and to capture nutrients from the environment. Some secreted factors behave as cooperative public goods: they can be exploited by non-producing cells. The means by which public-good-producing bacteria avert exploitation in biofilm environments are largely unknown. Using experiments with Vibrio cholerae, which secretes extracellular enzymes to digest its primary food source, the solid polymer chitin, we show that the public goods dilemma may be solved by two very different mechanisms: cells can produce thick biofilms that confine the goods to producers, or fluid flow can remove soluble products of chitin digestion, denying access to non-producers. Both processes are unified by limiting the distance over which enzyme-secreting cells provide benefits to neighbors, resulting in preferential benefit to nearby clonemates and allowing kin selection to favor public good production. Our results demonstrate new mechanisms by which the physical conditions of natural habitats can interact with bacterial physiology to promote the evolution of cooperation.

  13. Quorum sensing in water and wastewater treatment biofilms.

    Science.gov (United States)

    Feng, Lin; Wu, Zhuoying; Yu, Xin

    2013-04-01

    Fixed film processes and activated sludge processes are two main families of wastewater treatment systems which all refer to the heterogeneous microbial communities. Meanwhile, biofilms in drinking water distribution systems (DWDS) and biofouling in membrane systems are significant problems in the water and wastewater treatment which reduce the microbial quality of drinking water and limit the development of membrane system respectively. Since biofilms and quorum sensing (QS) as two microbial social behaviors have been inextricably linked, a number of studies have focused on the role of QS signaling and QS inhibition in the processes of water and wastewater treatment, which will help us engineer these biological treatment processes successfully and develop promising approaches for control of microbial adhesion, colonization and biofilm formation. This review gives a summary of recent known QS mechanisms and their role in biofilm formation for different species. Particular attentions are dedicated to the signaling molecules involved in some microbial granulation processes and the potential applications by some of their natural and synthetic analogues in the treatment of membrane biofouling. PMID:24620615

  14. Measurement of biofilm thickness. An effective Legionella risk assessment tool

    Energy Technology Data Exchange (ETDEWEB)

    Foret, Christophe [BKG France, Arnage (France); Martemianov, Serguei [Poitiers Univ. (FR). Lab. of Thermal Study (LET); Moscow Univ. (Russian Federation). Frumkin Inst. of Physical Chemistry and Electrochemistry; Hater, Wolfgang [BK Giulini GmbH, Duesseldorf (Germany); Merlet, Nicole; Chaussec, Guenole; Tribollet, Bernard

    2010-02-15

    The best way to prevent the risk of bacterial growth in water systems is to monitor and control the microorganisms (biofilm) attached to pipe walls. Three years of laboratory research led two Centre National de Recherche Scientifique (French National Center for Scientific Research) teams (UMR 6008 and UPR 15) to develop a tool designed to determine the average biofilm thickness. The average biofilm thickness measurements carried out on pilot plants fed with natural water were sufficiently accurate and sensitive to monitor the formation and development of biofilm in a water system and to determine the efficiency of the applied treatments. The implementation of appropriate treatments (type and dose of the treatment product) leads to a significant reduction in or even complete removal of the porous layer on the material surface. A reduction of the attached biomass, measured by the sensor, is connected to a decrease in the density of the bacterial attached to the material (viable flora in the plate count agar environment). (orig.)

  15. Solutions to the public goods dilemma in bacterial biofilms.

    Science.gov (United States)

    Drescher, Knut; Nadell, Carey D; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2014-01-01

    Bacteria frequently live in densely populated surface-bound communities, termed biofilms [1-4]. Biofilm-dwelling cells rely on secretion of extracellular substances to construct their communities and to capture nutrients from the environment [5]. Some secreted factors behave as cooperative public goods: they can be exploited by nonproducing cells [6-11]. The means by which public-good-producing bacteria avert exploitation in biofilm environments are largely unknown. Using experiments with Vibrio cholerae, which secretes extracellular enzymes to digest its primary food source, the solid polymer chitin, we show that the public goods dilemma may be solved by two very different mechanisms: cells can produce thick biofilms that confine the goods to producers, or fluid flow can remove soluble products of chitin digestion, denying access to nonproducers. Both processes are unified by limiting the distance over which enzyme-secreting cells provide benefits to neighbors, resulting in preferential benefit to nearby clonemates and allowing kin selection to favor public good production. Our results demonstrate new mechanisms by which the physical conditions of natural habitats can interact with bacterial physiology to promote the evolution of cooperation.

  16. Pattern formation in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Parsek, Matthew R.; Tolker-Nielsen, Tim

    2008-01-01

    Bacteria are capable of forming elaborate multicellular communities called biofilms. Pattern formation in biofilms depends on cell proliferation and cellular migration in response to the available nutrients and other external cues, as well as on self-generated intercellular signal molecules...... and the production of an extracellular matrix that serves as a structural 'scaffolding' for the biofilm cells. Pattern formation in biofilms allows cells to position themselves favorably within nutrient gradients and enables buildup and maintenance of physiologically distinct subpopulations, which facilitates...... survival of one or more subpopulations upon environmental insult, and therefore plays an important role in the innate tolerance displayed by biofilms toward adverse conditions....

  17. Growing and Analyzing Biofilms in Flow Chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic......, and disassembly and cleaning of the system. In addition, embedding and fluorescent in situ hybridization of flow chamber–grown biofilms are addressed. Curr. Protoc. Microbiol. 21:1B.2.1-1B.2.17. © 2011 by John Wiley & Sons, Inc....

  18. D-Amino Acids Trigger Biofilm Disassembly

    OpenAIRE

    Kolodkin-Gal, Illana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-01-01

    Bacteria form communities known as biofilms, which disassemble over time. Here we found that prior to biofilm disassembly Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofi...

  19. [Effects of introducing Eucalyptus on indigenous biodiversity].

    Science.gov (United States)

    Ping, Liang; Xie, Zong-Qiang

    2009-07-01

    Eucalyptus is well-known as an effective reforestation tree species, due to its fast growth and high adaptability to various environments. However, the introduction of Eucalyptus could have negative effects on the local environment, e. g., inducing soil degradation, decline of groundwater level, and decrease of biodiversity, and especially, there still have controversies on the effects of introduced Eucalyptus on the understory biodiversity of indigenous plant communities and related mechanisms. Based on a detailed analysis of the literatures at home and abroad, it was considered that the indigenous plant species in the majority of introduced Eucalyptus plantations were lesser than those in natural forests and indigenous species plantations but more than those in other exotic species plantations, mainly due to the unique eco-physiological characteristics of Eucalyptus and the irrational plantation design and harvesting techniques, among which, anthropogenic factors played leading roles. Be that as it may, the negative effects of introducing Eucalyptus on local plant biodiversity could be minimized via more rigorous scientific plantation design and management based on local plant community characteristics. To mitigate the negative effects of Eucalyptus introduction, the native trees and understory vegetation in plantations should be kept intact during reforestation with Eucalyptus to favor the normal development of plant community and regeneration. At the same time, human disturbance should be minimized to facilitate the natural regeneration of native species. PMID:19899483

  20. An Exercise to Introduce Power

    Science.gov (United States)

    Seier, Edith; Liu, Yali

    2013-01-01

    In introductory statistics courses, the concept of power is usually presented in the context of testing hypotheses about the population mean. We instead propose an exercise that uses a binomial probability table to introduce the idea of power in the context of testing a population proportion. (Contains 2 tables, and 2 figures.)

  1. Introduce XBRL to Business Students

    Science.gov (United States)

    Corkern, Sheree M.; Morgan, Mark I.

    2012-01-01

    This paper informs business instructors and educators about XBRL (Extensible Business Reporting Language) so that they can introduce it to their students and expand their students' understanding of how it relates to the accounting profession. Even though the financial community has entered a new age with this standardized reporting language, many…

  2. Introducing Variety in Risk Management

    OpenAIRE

    Fabrizio Lillo; Mantegna, Rosario N.; Jean-Philippe Bouchaud; Marc Potters

    2001-01-01

    We review the recently introduced concept of variety of a financial portfolio and we sketch its importance for risk control purposes. The empirical behaviour of variety, correlation, exceedance correlation and asymmetry of the probability density function of daily returns is discussed. The results obtained are compared with the ones of a one-factor model showing strengths and limitations of this model.

  3. The roles of biofilm matrix polysaccharide Psl in mucoid Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Ma, Luyan; Wang, Shiwei; Wang, Di; Parsek, Matthew R; Wozniak, Daniel J

    2012-07-01

    The opportunistic pathogen Pseudomonas aeruginosa causes life-threatening, persistent infections in patients with cystic fibrosis (CF). Persistence is attributed to the ability of these bacteria to form structured communities (biofilms). Biofilms rely on an extracellular polymeric substances matrix to maintain structure. Psl exopolysaccharide is a key matrix component of nonmucoid biofilms, yet the role of Psl in mucoid biofilms is unknown. In this report, using a variety of mutants in a mucoid P. aeruginosa background, we found that deletion of Psl-encoding genes dramatically decreased their biofilm formation ability, indicating that Psl is also a critical matrix component of mucoid biofilms. Our data also suggest that the overproduction of alginate leads to mucoid biofilms, which occupy more space, whereas Psl-dependent biofilms are densely packed. These data suggest that Psl polysaccharide may have significant contributions in biofilm persistence in patients with CF and may be helpful for designing therapies for P. aeruginosa CF infection.

  4. Surprisingly high substrate specificities observed in complex biofilms

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Kindaichi, Tomonori; Kragelund, Caroline;

    to investigate the cell-specific in situ substrate uptake pattern of different bacteria. Different substrates were tested by combination of Microautoradiography and Fluorescence in situ Hybridization. Conditions applied (different substrate concentrations, starvation, induction with specific substrates, multiple......, microorganisms can regulate their metabolism expressing wide range of uptake and catabolic systems. However, ecophysiological studies of natural biofilms indicate that bacteria are very specialized in their choice of substrate, so even minor changes in substrate composition can affect the community composition...... by selection for different specialized species. We hypothesized that bacteria growing in natural environment express strongly conserved substrate specificity which is independent on short-term (few hours) variations in growth conditions. In this study, biofilm from Aalborg wastewater treatment plant was used...

  5. Combining Biofilm-Controlling Compounds and Antibiotics as a Promising New Way to Control Biofilm Infections

    Directory of Open Access Journals (Sweden)

    Andréia Bergamo Estrela

    2010-05-01

    Full Text Available Many bacteria grow on surfaces forming biofilms. In this structure, they are well protected and often high dosages of antibiotics cannot clear infectious biofilms. The formation and stabilization of biofilms are mediated by diffusible autoinducers (e.g. N-acyl homoserine lactones, small peptides, furanosyl borate diester. Metabolites interfering with this process have been identified in plants, animals and microbes, and synthetic analogues are known. Additionally, this seems to be not the only way to control biofilms. Enzymes capable of cleaving essential components of the biofilm matrix, e.g. polysaccharides or extracellular DNA, and thus weakening the biofilm architecture have been identified. Bacteria also have mechanisms to dissolve their biofilms and return to planktonic lifestyle. Only a few compounds responsible for the signalling of these processes are known, but they may open a completely novel line of biofilm control. All these approaches lead to the destruction of the biofilm but not the killing of the pathogens. Therefore, a combination of biofilm-destroying compounds and antibiotics to handle biofilm infections is proposed. In this article, different approaches to combine biofilm-controlling compounds and antibiotics to fight biofilm infections are discussed, as well as the balance between biofilm formation and virulence.

  6. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment

    Directory of Open Access Journals (Sweden)

    Helen L Brown

    2015-07-01

    Full Text Available Biofilms make an important contribution to survival and transmission of bacterial pathogens in the food chain. The human pathogen Campylobacter jejuni is known to form biofilms in vitro in food chain-relevant conditions, but the exact roles and composition of the extracellular matrix are still not clear. Extracellular DNA has been found in many bacterial biofilms and can be a major component of the extracellular matrix. Here we show that extracellular DNA is also an important component of the C. jejuni biofilm when attached to stainless steel surfaces, in aerobic conditions and on conditioned surfaces. Degradation of extracellular DNA by exogenous addition of DNase I led to rapid biofilm removal, without loss of C. jejuni viability. Following treatment of a surface with DNase I, C. jejuni was unable to re-establish a biofilm population within 48 hr. Similar results were obtained by digesting extracellular DNA with restriction enzymes, suggesting the need for high molecular weight DNA. Addition of C. jejuni genomic DNA containing an antibiotic resistance marker resulted in transfer of the antibiotic resistance marker to susceptible cells in the biofilm, presumably by natural transformation. Taken together, this suggest that eDNA is not only an important component of C. jejuni biofilms and subsequent food chain survival of C. jejuni, but may also contribute to the spread of antimicrobial resistance in C. jejuni. The degradation of extracellular DNA with enzymes such as DNase I is a rapid method to remove C. jejuni biofilms, and is likely to potentiate the activity of antimicrobial treatments and thus synergistically aid disinfection treatments.

  7. Magnesium limitation is an environmental trigger of the Pseudomonas aeruginosa biofilm lifestyle.

    Directory of Open Access Journals (Sweden)

    Heidi Mulcahy

    Full Text Available Biofilm formation is a conserved strategy for long-term bacterial survival in nature and during infections. Biofilms are multicellular aggregates of cells enmeshed in an extracellular matrix. The RetS, GacS and LadS sensors control the switch from a planktonic to a biofilm mode of growth in Pseudomonas aeruginosa. Here we detail our approach to identify environmental triggers of biofilm formation by investigating environmental conditions that repress expression of the biofilm repressor RetS. Mg(2+ limitation repressed the expression of retS leading to increased aggregation, exopolysaccharide (EPS production and biofilm formation. Repression of retS expression under Mg(2+ limitation corresponded with induced expression of the GacA-controlled small regulatory RNAs rsmZ and rsmY and the EPS biosynthesis operons pel and psl. We recently demonstrated that extracellular DNA sequesters Mg(2+ cations and activates the cation-sensing PhoPQ two-component system, which leads to increased antimicrobial peptide resistance in biofilms. Here we show that exogenous DNA and EDTA, through their ability to chelate Mg(2+, promoted biofilm formation. The repression of retS in low Mg(2+ was directly controlled by PhoPQ. PhoP also directly controlled expression of rsmZ but not rsmY suggesting that PhoPQ controls the equilibrium of the small regulatory RNAs and thus fine-tunes the expression of genes in the RetS pathway. In summary, Mg(2+ limitation is a biologically relevant environmental condition and the first bonafide environmental signal identified that results in transcriptional repression of retS and promotes P. aeruginosa biofilm formation.

  8. Biofilm induced tolerance towards antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Anders Folkesson

    Full Text Available Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms.

  9. The immune system vs. Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jensen, Peter Østrup; Givskov, Michael; Bjarnsholt, Thomas;

    2010-01-01

    in the planktonic state. Accordingly, much less is known about the immune responses to the presence of biofilm-based infections (which is probably also due to the relatively short period of time in which the immune response to biofilms has been studied). Nevertheless, more recent in vivo and in vitro studies have...... revealed both innate as well as adaptive immune responses to biofilms. On the other hand, measures launched by biofilm bacteria to achieve protection against the various immune responses have also been demonstrated. Whether particular immune responses to biofilm infections exist remains to be firmly...... established. However, because biofilm infections are often persistent (or chronic), an odd situation appears with the simultaneous activation of both arms of the host immune response, neither of which can eliminate the biofilm pathogen, but instead, in synergy, causes collateral tissue damage. Although...

  10. Biofilm Induced Tolerance Towards Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Folkesson, Anders; Haagensen, Janus Anders Juul; Zampaloni, Claudia;

    2008-01-01

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due...... to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics...... of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically...

  11. Vibrio cholerae Biofilms and Cholera Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Anisia J Silva

    2016-02-01

    Full Text Available Vibrio cholerae can switch between motile and biofilm lifestyles. The last decades have been marked by a remarkable increase in our knowledge of the structure, regulation, and function of biofilms formed under laboratory conditions. Evidence has grown suggesting that V. cholerae can form biofilm-like aggregates during infection that could play a critical role in pathogenesis and disease transmission. However, the structure and regulation of biofilms formed during infection, as well as their role in intestinal colonization and virulence, remains poorly understood. Here, we review (i the evidence for biofilm formation during infection, (ii the coordinate regulation of biofilm and virulence gene expression, and (iii the host signals that favor V. cholerae transitions between alternative lifestyles during intestinal colonization, and (iv we discuss a model for the role of V. cholerae biofilms in pathogenicity.

  12. Modelling the growth of a methanotrophic biofilm

    DEFF Research Database (Denmark)

    Arcangeli, J.-P.; Arvin, E.

    1999-01-01

    This article discusses the growth of methanotrophic biofilms. Several independent biofilm growths scenarios involving different inocula were examined. Biofilm growth, substrate removal and product formation were monitored throughout the experiments. Based on the oxygen consumption it was concluded...... that heterotrophs and nitrifiers co-existed with methanotrophs in the biofilm. Heterotrophic biomass grew on soluble polymers formed by the hydrolysis of dead biomass entrapped in the biofilm. Nitrifier populations developed because of the presence of ammonia in the mineral medium. Based on these experimental...... was performed on this model. It indicated that the most influential parameters were those related to the biofilm (i.e. density; solid-volume fraction; thickness). This suggests that in order to improve the model, further research regarding the biofilm structure and composition is needed....

  13. Molecular Basis for Saccharomyces cerevisiae Biofilm Development

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz

    In this study, I sought to identify genes regulating the global molecular program for development of sessile multicellular communities, also known as biofilm, of the eukaryotic microorganism, Saccharomyces cerevisiae (yeast). Yeast biofilm has a clinical interest, as biofilms can cause chronic...... infections in humans. Biofilm is also interesting from an evolutionary standpoint, as an example of primitive multicellularity. By using a genome-wide screen of yeast deletion mutants, I show that 71 genes are essential for biofilm formation. Two-thirds of these genes are required for transcription of FLO11......, but only a small subset is previously described as regulators of FLO11. These results reveal that the regulation of biofilm formation and FLO11 is even more complex than what has previously been described. I find that the molecular program for biofilm formation shares many essential components with two...

  14. Cell death in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Webb, J.S.; Thompson, L.S.; James, S.;

    2003-01-01

    Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids....... However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death...... occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development...

  15. Biofilms: an emergent form of bacterial life.

    Science.gov (United States)

    Flemming, Hans-Curt; Wingender, Jost; Szewzyk, Ulrich; Steinberg, Peter; Rice, Scott A; Kjelleberg, Staffan

    2016-08-11

    Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle. PMID:27510863

  16. Biofilm monitoring using complex permittivity.

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Susan Jeanne; McGrath, Lucas K.; Dolan, Patricia L.; Yelton, William Graham

    2008-10-01

    There is strong interest in the detection and monitoring of bio-fouling. Bio-fouling problems are common in numerous water treatments systems, medical and dental apparatus and food processing equipment. Current bio-fouling control protocols are time consuming and costly. New early detection techniques to monitor bio-forming contaminates are means to enhanced efficiency. Understanding the unique dielectric properties of biofilm development, colony forming bacteria and nutrient background will provide a basis to the effectiveness of controlling or preventing biofilm growth. Dielectric spectroscopy measurements provide values of complex permittivity, {var_epsilon}*, of biofilm formation by applying a weak alternating electric field at various frequencies. The dielectric characteristic of the biofilm, {var_epsilon}{prime}, is the real component of {var_epsilon}* and measures the biofilm's unique ability to store energy. Graphically observed dependencies of {var_epsilon}{prime} to frequency indicate dielectric relaxation or dielectric dispersion behaviors that mark the particular stage of progression during the development of biofilms. In contrast, any frequency dependency of the imaginary component, {var_epsilon}{double_prime} the loss factor, is expressed as dielectric losses from the biofilm due to dipole relaxation. The tangent angle of these two component vectors is the ratio of the imaginary component to the real component, {var_epsilon}{double_prime}/{var_epsilon}{prime} and is referred to as the loss angle tangent (tan {delta}) or dielectric loss. Changes in tan {delta} are characteristic of changes in dielectric losses during various developmental stages of the films. Permittivity scans in the above figure are of biofilm growth from P. Fluorescens (10e7 CFU's at the start). Three trends are apparent from these scans, the first being a small drop in the imaginary permittivity over a 7 hours period, best seen in the Cole-Cole plot (a). The second trend

  17. Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances.

    Science.gov (United States)

    Laspidou, Chrysi S; Rittmann, Bruce E

    2004-01-01

    We present the unified multi-component cellular automaton (UMCCA) model, which predicts quantitatively the development of the biofilm's composite density for three biofilm components: active bacteria, inert or dead biomass, and extracellular polymeric substances. The model also describes the concentrations of three soluble organic components (soluble substrate and two types of soluble microbial products) and oxygen. The UMCCA model is a hybrid discrete-differential mathematical model and introduces the novel feature of biofilm consolidation. Our hypothesis is that the fluid over the biofilm creates pressures and vibrations that cause the biofilm to consolidate, or pack itself to a higher density over time. Each biofilm compartment in the model output consolidates to a different degree that depends on the age of its biomass. The UMCCA model also adds a cellular automaton algorithm that identifies the path of least resistance and directly moves excess biomass along that path, thereby ensuring that the excess biomass is distributed efficiently. A companion paper illustrates the trends that the UMCCA model is able to represent and shows a comparison with experimental results. PMID:15276752

  18. Biofilm in Osteomyelitis caused by a Rare Pathogen, Morganella morganii : A Case Report.

    Science.gov (United States)

    De, Asmita; Raj, Hirak Jyoti; Maiti, Prasanta Kumar

    2016-06-01

    Morganella morganii is a member of Enterobacteriaceae family, whose natural habitat is the human gastrointestinal tract. It rarely causes infection alone and is generally encountered in immunosuppressed patients. Osteoarticular pathologies are not commonly observed with Morganella morganii and infections by it have high mortality rate. Biofilm colonization is a causative factor behind the chronicity and/or refractoriness of certain infections. Biofilms colonize on inert medical devices, prosthesis, fibrosed tissues, sinus tracts as well as dead bones as in case of chronic osteomyelitis. Morganella morganii is not a common pathogen to produce biofilm. In this case report, we present a 56-year-old male patient with chronic osteomyelitis of right proximal tibia caused by biofilm producing strain of Morganella morganii, following trauma.

  19. Eradication of Bacterial Biofilms Using Atmospheric Pressure Non-Thermal Plasmas

    Science.gov (United States)

    Alkawareek, Mahmoud; Gilmore, Brendan; Gorman, Sean; Algwari, Qais; Graham, William; O'Connell, Deborah

    2011-10-01

    Bacterial biofilms are ubiquitous in natural and clinical settings and form a major health risk. Biofilms are recognised to be the predominant mode of bacterial growth, and are an immunological challenge compared to planktonic bacteria of the same species. Eradication of biofilms with atmospheric pressure plasma jets is investigated. Cold non-equilibrium plasmas, operated at ambient atmospheric pressure and temperature, are efficient sources for controlled energy transport through highly reactive neutrals (e.g. ROS, RNS), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. A focused panel of clinically significant biofilms, including Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Bacillus cereus, are exposed to various plasma jet configurations operated in helium and oxygen mixtures. Viability of surviving cells was determined using both standard plate counting method and XTT viability assay. These are correlated with measurements and simulations of relevant reactive plasma species.

  20. Introducing thermodynamics through energy and entropy

    Science.gov (United States)

    de Abreu, Rodrigo; Guerra, Vasco

    2012-07-01

    We suggest a simple approach to introducing thermodynamics, beginning with the concept of internal energy of deformable bodies. From a series of thought experiments involving ideal gases, we show that the internal energy depends on the volume and on a second parameter, leading to the development of the concept of entropy. By introducing entropy before the notions of temperature and heat, the proposed approach avoids some of the major conceptual difficulties with the traditional presentation. The relationship between mechanics and thermodynamics naturally emerges, mechanics corresponding to isentropic thermodynamics. The questions of evolution to equilibrium and irreversibility are studied under the light of the action of the "dynamic force" and its dissipative character, evincing the benefits of keeping in mind the microscopic picture.

  1. Evaluation of Anaerobic Biofilm Reactor Kinetic Parameters Using Ant Colony Optimization.

    Science.gov (United States)

    Satya, Eswari Jujjavarapu; Venkateswarlu, Chimmiri

    2013-09-01

    Fixed bed reactors with naturally attached biofilms are increasingly used for anaerobic treatment of industry wastewaters due their effective treatment performance. The complex nature of biological reactions in biofilm processes often poses difficulty in analyzing them experimentally, and mathematical models could be very useful for their design and analysis. However, effective application of biofilm reactor models to practical problems suffers due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, an inverse modeling approach based on ant colony optimization is proposed and applied to estimate the kinetic and film thickness model parameters of wastewater treatment process in an anaerobic fixed bed biofilm reactor. Experimental data of pharmaceutical industry wastewater treatment process are used to determine the model parameters as a consequence of the solution of the rigorous mathematical models of the process. Results were evaluated for different modeling configurations derived from the combination of mathematical models, kinetic expressions, and optimization algorithms. Analysis of results showed that the two-dimensional mathematical model with Haldane kinetics better represents the pharmaceutical wastewater treatment in the biofilm reactor. The mathematical and kinetic modeling of this work forms a useful basis for the design and optimization of industry wastewater treating biofilm reactors. PMID:24065871

  2. Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125.

    Science.gov (United States)

    Papa, Rosanna; Parrilli, Ermenegilda; Sannino, Filomena; Barbato, Gaetano; Tutino, Maria Luisa; Artini, Marco; Selan, Laura

    2013-06-01

    Considering the increasing impact of bacterial biofilms on human health, industrial and food-processing activities, the interest in the development of new approaches for the prevention and treatment of adhesion and biofilm formation capabilities has increased. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the rapid appearance of escape mutants. It is known that marine bacteria belonging to the genus Pseudoalteromonas produce compounds of biotechnological interest, including anti-biofilm molecules. Pseudoalteromonas haloplanktis TAC125 is the first Antarctic Gram-negative strain whose genome was sequenced. In this work the anti-biofilm activity of P. haloplanktis supernatant was examined on different staphylococci. Results obtained demonstrated that supernatant of P. haloplanktis, grown in static condition, inhibits biofilm of Staphylococcus epidermidis. In order to define the chemical nature of the biofilm-inhibiting compound, the supernatant was subject to various treatments. Data reported demonstrated that the biologically active component is sensible to treatment with sodium periodate suggesting its saccharidic nature. PMID:23411371

  3. Effect of LongZhang Gargle on Biofilm Formation and Acidogenicity of Streptococcus mutans In Vitro

    Science.gov (United States)

    Yang, Yutao; Liu, Shiyu; He, Yuanli

    2016-01-01

    Streptococcus mutans, with the ability of high-rate acid production and strong biofilm formation, is considered the predominant bacterial species in the pathogenesis of human dental caries. Natural products which may be bioactive against S. mutans have become a hot spot to researches to control dental caries. LongZhang Gargle, completely made from Chinese herbs, was investigated for its effects on acid production and biofilm formation by S. mutans in this study. The results showed an antimicrobial activity of LongZhang Gargle against S. mutans planktonic growth at the minimum inhibitory concentration (MIC) of 16% and minimum bactericidal concentration (MBC) of 32%. Acid production was significantly inhibited at sub-MIC concentrations. Biofilm formation was also significantly disrupted, and 8% was the minimum concentration that resulted in at least 50% inhibition of biofilm formation (MBIC50). A scanning electron microscopy (SEM) showed an effective disruption of LongZhang Gargle on S. mutans biofilm integrity. In addition, a confocal laser scanning microscopy (CLSM) suggested that the extracellular polysaccharides (EPS) synthesis could be inhibited by LongZhang Gargle at a relatively low concentration. These findings suggest that LongZhang Gargle may be a promising natural anticariogenic agent in that it suppresses planktonic growth, acid production, and biofilm formation against S. mutans. PMID:27314029

  4. Effects of marine microbial biofilms on the biocide release rate from antifouling paints – A model-based analysis

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Weinell, Claus E.;

    2006-01-01

    . The effects of biofilms on the leaching of any generic active compound (e.g. natural antifoulants) are discussed in relation to their potential release mechanisms. The largest influence of biofilms is predicted for those active compounds that are released by a diffusion-controlled mechanism (typically tin......The antifouling (AF) paint model of Kiil et al. [S. Kiil, C.E. Weinell, M.S. Pedersen, K. Dam-Johansen, Analysis of self-polishing antifouling paints using rotary experiments and mathematical modelling, Ind. Eng. Chem. Res. 40 (2001) 3906-3920] and the simplified biofilm. growth model of Gujer...... and Warmer [W. Gujer, O. Warmer, Modeling mixed population biofilms, in: W.G. Characklis, K.C. Marshall (Eds.), Biofilms, Wiley-Interscience, New York, 1990] are used to provide a reaction engineering-based insight to the effects of marine microbial slimes on biocide leaching and, to a minor extent...

  5. Important contribution of the novel locus comEB to extracellular DNA-dependent Staphylococcus lugdunensis biofilm formation.

    Science.gov (United States)

    Rajendran, Nithya Babu; Eikmeier, Julian; Becker, Karsten; Hussain, Muzaffar; Peters, Georg; Heilmann, Christine

    2015-12-01

    The coagulase-negative species Staphylococcus lugdunensis is an emerging cause of serious and potentially life-threatening infections, such as infective endocarditis. The pathogenesis of these infections is characterized by the ability of S. lugdunensis to form biofilms on either biotic or abiotic surfaces. To elucidate the genetic basis of biofilm formation in S. lugdunensis, we performed transposon (Tn917) mutagenesis. One mutant had a significantly reduced biofilm-forming capacity and carried a Tn917 insertion within the competence gene comEB. Site-directed mutagenesis and subsequent complementation with a functional copy of comEB verified the importance of comEB in biofilm formation. In several bacterial species, natural competence stimulates DNA release via lysis-dependent or -independent mechanisms. Extracellular DNA (eDNA) has been demonstrated to be an important structural component of many bacterial biofilms. Therefore, we quantified the eDNA in the biofilms and found diminished eDNA amounts in the comEB mutant biofilm. High-resolution images and three-dimensional data obtained via confocal laser scanning microscopy (CSLM) visualized the impact of the comEB mutation on biofilm integrity. The comEB mutant did not show reduced expression of autolysin genes, decreased autolytic activities, or increased cell viability, suggesting a cell lysis-independent mechanism of DNA release. Furthermore, reduced amounts of eDNA in the comEB mutant biofilms did not result from elevated levels or activity of the S. lugdunensis thermonuclease NucI. In conclusion, we defined here, for the first time, a role for the competence gene comEB in staphylococcal biofilm formation. Our findings indicate that comEB stimulates biofilm formation via a lysis-independent mechanism of DNA release.

  6. Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP

    Directory of Open Access Journals (Sweden)

    Almeida Jonas S

    2006-01-01

    Full Text Available Abstract Background Confocal laser scanning microscopy (CLSM is the method of choice to study interfacial biofilms and acquires time-resolved three-dimensional data of the biofilm structure. CLSM can be used in a multi-channel modus where the different channels map individual biofilm components. This communication presents a novel image quantification tool, PHLIP, for the quantitative analysis of large amounts of multichannel CLSM data in an automated way. PHLIP can be freely downloaded from http://phlip.sourceforge.net. Results PHLIP is an open source public license Matlab toolbox that includes functions for CLSM imaging data handling and ten image analysis operations describing various aspects of biofilm morphology. The use of PHLIP is here demonstrated by a study of the development of a natural marine phototrophic biofilm. It is shown how the examination of the individual biofilm components using the multi-channel capability of PHLIP allowed the description of the dynamic spatial and temporal separation of diatoms, bacteria and organic and inorganic matter during the shift from a bacteria-dominated to a diatom-dominated phototrophic biofilm. Reflection images and weight measurements complementing the PHLIP analyses suggest that a large part of the biofilm mass consisted of inorganic mineral material. Conclusion The presented case study reveals new insight into the temporal development of a phototrophic biofilm where multi-channel imaging allowed to parallel monitor the dynamics of the individual biofilm components over time. This application of PHLIP presents the power of biofilm image analysis by multi-channel CLSM software and demonstrates the importance of PHLIP for the scientific community as a flexible and extendable image analysis platform for automated image processing.

  7. Biofilms as Biobarriers

    Science.gov (United States)

    Lennox, John; Ashe, Jeffrey

    2009-01-01

    In a climate of increased concern for the environment and its protection, teachers in disciplines as diverse as biology, microbiology, environmental studies, and environmental engineering may be seeking teaching materials and laboratory exercises that will enable them to introduce these new concepts into their classrooms and laboratories. The…

  8. Introducing positive psychology to SLA

    OpenAIRE

    MacIntyre, Peter D.; Mercer, Sarah

    2014-01-01

    Positive psychology is a rapidly expanding subfield in psychology that has important implications for the field of second language acquisition (SLA). This paper introduces positive psychology to the study of language by describing its key tenets. The potential contributions of positive psychology are contextualized with reference to prior work, including the humanistic movement in language teaching, models of motivation, the concept of an affective filter, stud- ies of the good language learn...

  9. Benthic biofilm structure controls the deposition-resuspension dynamics of fine clay particles

    Science.gov (United States)

    Hunter, W. R.; Roche, K. R.; Drummond, J. D.; Boano, F.; Packman, A. I.; Battin, T. J.

    2015-12-01

    In fluvial ecosystems the alternation of deposition and resuspension of particles represents an important pathway for the downstream translocation of microbes and organic matter. Such particles can originate from algae and microbes, the spontaneous auto-aggregation of organic macromolecules (e.g., "river sown"), terrestrial detritus (traditionally classified as "particulate organic matter"), and erosive mineral and organo-mineral particles. The transport and retention of particles in headwater streams is associated with biofilms, which are surface-attached microbial communities. Whilst biofilm-particle interactions have been studied in bulk, a mechanistic understanding of these processes is lacking. Parallel macroscale/microscale observations are required to unravel the complex feedbacks between biofilm structure, coverage and the dynamics of deposition and resuspension. We used recirculating flume mesocosms to test how changes in biofilm structure affected the deposition and resuspension of clay-sized (Biofilms were grown in replicate 3-m-long recirculating flumes over variable lengths of time (0, 14, 21, 28, and 35) days. Fixed doses of fluorescent clay-sized particles were introduced to each flume and their deposition was traced over 30 minutes. A flood event was then simulated via a step increase in flowrate to quantify particle resuspension. 3D Optical Coherence Tomography was used to determine roughness, areal coverage and height of biofilms in each flume. From these measurements we characterised particle deposition and resuspension rates, using continuous time random walk modelling techniques, which we then tested as responses to changes in biofilm coverage and structure under both base-flow and flood-flow scenarios. Our results suggest that biofilm structural complexity is a primary control upon the retention and downstream transport of fine particles in stream mesocosms.

  10. Evaluating antibiotics for use in medicine using a poloxamer biofilm model

    Directory of Open Access Journals (Sweden)

    Cochrane Christine A

    2007-02-01

    Full Text Available Abstract Background Wound infections, due to biofilms, are a constant problem because of their recalcitrant nature towards antibiotics. Appropriate antibiotic selection for the treatment of these biofilm infections is important. The traditional in vitro disc diffusion method for antibiotic selection uses bacterial cultures grown on agar plates. However, the form of bacterial growth on agar is not representative of how bacteria grow in wounds and other tissue sites as here bacteria grow naturally in a biofilm. The aim of this research was to test a more appropriate method for testing antimicrobial efficacy on biofilms and compare with the standard methods used for antibiotic sensitivity testing. Methods Outer Membrane Protein analysis was performed on E.coli, Staphylococcus aureus, Pseudomonas aeruginosa, Proteus mirabilis and Acinetobacter juni when grown on Mueller Hinton agar ('quasi-biofilm state' and 30% Poloxamer hydrogel ('true- biofilm state. Susceptibility to antibiotics on 28 clinical isolates was determined using the modified Kirby Bauer disc diffusion method, on agar and 30% Poloxamer. Results Similar outer membrane proteins [OMPs] were identified in bacteria grown in a biofilm state and on a 30% poloxamer hydrogel, which were very different to the OMPs identified in bacteria grown on Mueller-Hinton agar and broth. There was a significant difference between the means of the clearance zones around the antibiotic discs on standard agar and poloxamer gels [P 0.05]. Conclusion The findings of this experiment suggest that poloxamer gel could be used as an appropriate medium on which to conduct biofilm antibiotic susceptibility tests as it enables bacteria to be grown in a state representative of the infected surface from which the culture was taken.

  11. Biogenesis of Enterococcis faecium biofilms

    NARCIS (Netherlands)

    Paganelli, F.L.

    2015-01-01

    Nosocomial infections caused by Enterococcus faecium have rapidly increased worldwide and treatment options become more limited. The presence of antibiotic resistance genes and virulence factors in pathogenic E. faecium contribute to difficult-to-treat infections, frequently biofilm mediated, such a

  12. Candida biofilms: is adhesion sexy?

    Science.gov (United States)

    Soll, David R

    2008-08-26

    The development of Candida albicans biofilms requires two types of adhesion molecule - the Als proteins and Hwp1. Mutational analyses have recently revealed that these molecules play complementary roles, and their characteristics suggest that they may have evolved from primitive mating agglutinins. PMID:18727911

  13. Electrochemical impedance spectroscopy of biofilms

    Science.gov (United States)

    Microbial activity that leads to the formation of biofilms on process equipment can accelerate corrosion, reduce heat transfer rates, and generally decrease process efficiencies. Additional concerns arise in the food and pharma industries where product quality and safety are a high priority. Pharmac...

  14. Microbial biofilm growth vs. tissue integration: “The race for the surface” experimentally studied

    NARCIS (Netherlands)

    Subbiahdoss, Guruprakash; Kuijer, Roel; Grijpma, Dirk W.; Mei, van der Henny C.; Busscher, Henk J.

    2009-01-01

    Biomaterial-associated infections constitute a major clinical problem. Unfortunately, microorganisms are frequently introduced onto an implant surface during surgery and start the race for the surface before tissue integration can occur. So far, no method has been forwarded to study biofilm formatio

  15. Microbial biofilm growth vs. tissue integration : "The race for the surface" experimentally studied

    NARCIS (Netherlands)

    Subbiahdoss, Guruprakash; Kuijer, Roel; Grijpma, Dirk W.; van der Mei, Henny C.; Busscher, Henk J.

    2009-01-01

    Biomaterial-associated infections constitute a major clinical problem. Unfortunately, microorganisms are frequently introduced onto an implant surface during surgery and start the race for the surface before tissue integration can occur. So far, no method has been forwarded to study biofilm formatio

  16. The Labyrinth of Time Introducing the Universe

    CERN Document Server

    Lockwood, Michael

    2007-01-01

    Modern physics has revealed the universe as a much stranger place than we could have imagined. The puzzle at the centre of our knowledge of the universe is time. Michael Lockwood takes the reader on a fascinating journey into the nature of things. He investigates philosophical questions about past, present, and future, our experience of time, and the possibility of time travel. And he provides the most careful, lively, and up-to-date introduction to the physics of time and thestructure of the universe. He guides us step by step through relativity theory and quantum physics, introducing and exp

  17. Impairment of the bacterial biofilm stability by triclosan.

    Directory of Open Access Journals (Sweden)

    Helen V Lubarsky

    Full Text Available The accumulation of the widely-used antibacterial and antifungal compound triclosan (TCS in freshwaters raises concerns about the impact of this harmful chemical on the biofilms that are the dominant life style of microorganisms in aquatic systems. However, investigations to-date rarely go beyond effects at the cellular, physiological or morphological level. The present paper focuses on bacterial biofilms addressing the possible chemical impairment of their functionality, while also examining their substratum stabilization potential as one example of an important ecosystem service. The development of a bacterial assemblage of natural composition--isolated from sediments of the Eden Estuary (Scotland, UK--on non-cohesive glass beads (<63 µm and exposed to a range of triclosan concentrations (control, 2-100 µg L(-1 was monitored over time by Magnetic Particle Induction (MagPI. In parallel, bacterial cell numbers, division rate, community composition (DGGE and EPS (extracellular polymeric substances: carbohydrates and proteins secretion were determined. While the triclosan exposure did not prevent bacterial settlement, biofilm development was increasingly inhibited by increasing TCS levels. The surface binding capacity (MagPI of the assemblages was positively correlated to the microbial secreted EPS matrix. The EPS concentrations and composition (quantity and quality were closely linked to bacterial growth, which was affected by enhanced TCS exposure. Furthermore, TCS induced significant changes in bacterial community composition as well as a significant decrease in bacterial diversity. The impairment of the stabilization potential of bacterial biofilm under even low, environmentally relevant TCS levels is of concern since the resistance of sediments to erosive forces has large implications for the dynamics of sediments and associated pollutant dispersal. In addition, the surface adhesive capacity of the biofilm acts as a sensitive measure of

  18. Pore-scale imaging of biofilm grown under varying flow rates

    Science.gov (United States)

    Iltis, G.; Connolly, J.; Davit, Y.; Gerlach, R.; Wood, B. D.; Wildenschild, D.

    2012-12-01

    Biofilm growth in porous media can influence porosity, permeability, dispersion, diffusion, and mass transport of solutes. Even small scale changes in pore morphology have been shown to significantly influence the hydrodynamics of porous systems. The direct observation of biofilm formation and development in porous media is challenging. To date, porous media-associated biofilm research has focused predominantly on investigations of biomass formation in two-dimensional systems, due to (1) the opaque nature of common porous materials, and (2) the direct dependence of conventional biofilm imaging techniques on optically transparent systems. In order to further understand porous media-associated biofilm growth, techniques for quantitatively assessing the three-dimensional spatial distribution of biomass, non-destructively, within opaque porous materials is required for the development of improved reactive transport and biofilm growth models. Through the addition of a barium sulfate suspension to the aqueous phase of experimental column growth reactors, delineation of the biofilm matrix from both the solid and free-flowing aqueous phases is attainable using synchrotron based x-ray computed microtomography. Using this technique, three-dimensional imaging of biofilm within glass bead-packed column growth reactors is possible at a resolution on the order of 10 um/pixel. Results will be presented where biofilm growth characteristics and changes in porous media hydrodynamics associated with bioclogging have been investigated across the Darcy flow regime and into the steady inertial flow regime (0.1 properties associated with biofilm growth, or bio-clogging. Bulk hydraulic properties are evaluated using a combination of tracer tests and differential pressure measurements. In addition, pore scale imaging enables the analysis of spatial changes to macropore morphology, as well as spatial variation in properties potentially relevant to reactive transport models such as biofilm

  19. From Mouth to Model: Combining in vivo and in vitro Oral Biofilm Growth

    Science.gov (United States)

    Klug, Barbara; Santigli, Elisabeth; Westendorf, Christian; Tangl, Stefan; Wimmer, Gernot; Grube, Martin

    2016-01-01

    of Firmicutes. Conclusion: We demonstrate the in vitro survival of native primary oral biofilm in its natural complexity over 48 h. Our results offer a baseline for cultivation studies of native oral biofilms in (phyto-) pharmacological and dental materials research. Further investigations and validation of culturing conditions could also facilitate the study of biofilm-induced diseases. PMID:27708626

  20. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Aylin Ugurlu

    2016-08-01

    Conclusions: We may suggest that if swarming and consecutive biofilm formation could be inhibited by the natural products as shown in our study, the bacteria could not attach to the surfaces and produce chronic infections. Antimicrobials and natural products could be combined and the dosage of antimicrobials could be reduced to overcome antimicrobial resistance and drug side effects.

  1. Hydrodynamic dispersion within porous biofilms

    KAUST Repository

    Davit, Y.

    2013-01-23

    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher\\'s equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels\\' network; (2) the solute\\'s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. © 2013 American Physical Society.

  2. Chemical Biology Strategies for Biofilm Control.

    Science.gov (United States)

    Yang, Liang; Givskov, Michael

    2015-08-01

    Microbes live as densely populated multicellular surface-attached biofilm communities embedded in self-generated, extracellular polymeric substances (EPSs). EPSs serve as a scaffold for cross-linking biofilm cells and support development of biofilm architecture and functions. Biofilms can have a clear negative impact on humans, where biofilms are a common denominator in many chronic diseases in which they prime development of destructive inflammatory conditions and the failure of our immune system to efficiently cope with them. Our current assortment of antimicrobial agents cannot efficiently eradicate biofilms. For industrial applications, the removal of biofilms within production machinery in the paper and hygienic food packaging industry, cooling water circuits, and drinking water manufacturing systems can be critical for the safety and efficacy of those processes. Biofilm formation is a dynamic process that involves microbial cell migration, cell-to-cell signaling and interactions, EPS synthesis, and cell-EPS interactions. Recent progress of fundamental biofilm research has shed light on novel chemical biology strategies for biofilm control. In this article, chemical biology strategies targeting the bacterial intercellular and intracellular signaling pathways will be discussed.

  3. Diffusion in biofilms respiring on electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Renslow, Ryan S. [Washington State Univ., Pullman, WA (United States); Babauta, Jerome T. [Washington State Univ., Pullman, WA (United States); Majors, Paul D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Beyenal, Haluk [Washington State Univ., Pullman, WA (United States)

    2012-11-15

    The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (De) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed for noninvasive, nondestructive, high spatial resolution in situ De measurements in living biofilms respiring on electrodes. The electrodes were polarized so that they would act as the sole terminal electron acceptor for microbial metabolism. We present our results as both two-dimensional De heat maps and surface-averaged relative effective diffusion coefficient (Drs) depth profiles. We found that (1) Drs decreases with depth in G. sulfurreducens biofilms, following a sigmoid shape; (2) Drs at a given location decreases with G. sulfurreducens biofilm age; (3) average De and Drs profiles in G. sulfurreducens biofilms are lower than those in S. oneidensis biofilms—the G. sulfurreducens biofilms studied here were on average 10 times denser than the S. oneidensis biofilms; and (4) halting the respiration of a G. sulfurreducens biofilm decreases the De values. Density, reflected by De, plays a major role in the extracellular electron transfer strategies of electrochemically active biofilms.

  4. Dynamic interactions of neutrophils and biofilms

    Directory of Open Access Journals (Sweden)

    Josefine Hirschfeld

    2014-12-01

    Full Text Available Background: The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. Objective/design: In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. Results/conclusion: Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.

  5. Introducing Character Animation with Blender

    CERN Document Server

    Mullen, Tony

    2011-01-01

    Introducing Character Animation with Blender, 2nd Edition is written in a friendly but professional tone, with clear descriptions and numerous illustrative screenshots. Throughout the book, tutorials focus on how to accomplish actual animation goals, while illustrating the necessary technical methods along the way. These are reinforced by clear descriptions of how each specific aspect of Blender works and fits together with the rest of the package. By following all the tutorials, the reader will gain all the skills necessary to build and animate a well-modeled, fully-rigged character of their

  6. Introducing ZBrush 3rd Edition

    CERN Document Server

    Keller, Eric

    2012-01-01

    Learn ZBrush inside and out with this updated new edition Get totally comfortable sculpting in a digital environment with the latest edition of this bestselling beginner's guide to ZBrush. Fully updated for the newest version of the software, ZBrush 4R3, this book dispels any fears you might have about the difficulty of using ZBrush and soon has you creating realistic, cartoon, and organic models with flair. Learn all the essentials, as you complete fun tutorials on painting, meshes, organic scripting, hard surface sculpting, lighting, rendering, and more. Introduces you to ZBrush, the sculpt

  7. Introducing the Adaptive Convex Enveloping

    CERN Document Server

    Yu, Sheng

    2011-01-01

    Convexity, though extremely important in mathematical programming, has not drawn enough attention in the field of dynamic programming. This paper gives conditions for verifying convexity of the cost-to-go functions, and introduces an accurate, fast and reliable algorithm for solving convex dynamic programs with multivariate continuous states and actions, called Adaptive Convex Enveloping. This is a short introduction of the core technique created and used in my dissertation, so it is less formal, and misses some parts, such as literature review and reference, compared to a full journal paper.

  8. Introducing the Medical Ethics Bowl.

    Science.gov (United States)

    Merrick, Allison; Green, Rochelle; Cunningham, Thomas V; Eisenberg, Leah R; Hester, D Micah

    2016-01-01

    Although ethics is an essential component of undergraduate medical education, research suggests that current medical ethics curricula face considerable challenges in improving students' ethical reasoning. This article discusses these challenges and introduces a promising new mode of graduate and professional ethics instruction for overcoming them. We begin by describing common ethics curricula, focusing in particular on established problems with current approaches. Next, we describe a novel method of ethics education and assessment for medical students that we have devised: the Medical Ethics Bowl (MEB). Finally, we suggest the pedagogical advantages of the MEB when compared to other ethics curricula.

  9. Mycobacterium biofilms: factors involved in development, dispersal, and therapeutic strategies against biofilm-relevant pathogens.

    Science.gov (United States)

    Xiang, Xiaohong; Deng, Wanyan; Liu, Minqiang; Xie, Jianping

    2014-01-01

    Many bacteria can develop biofilm (BF), a multicellular structure largely combining bacteria and their extracellular polymeric substances (EPS). The formation of biofilm results in an alternative existence in which microbes ensure their survival in adverse environments. Biofilm-relevant infections are more persistent, resistant to most antibiotics, and more recalcitrant to host immunity. Mycobacterium tuberculosis, the causative agent of tuberculosis, can develop biofilm, though whether M. tuberculosis can form biofilm within tuberculosis patients has yet to be determined. Here, we summarize the factors involved in the development and dispersal of mycobacterial biofilms, as well as underlying regulatory factors and inhibitors against biofilm to deepen our understanding of their development and to elucidate potential novel modes of action for future antibiotics. Key factors in biofilm formation identified as drug targets represent a novel and promising avenue for developing better antibiotics.

  10. Influence of biofilm thickness on micropollutants removal in nitrifying MBBRs

    DEFF Research Database (Denmark)

    Torresi, Elena; Andersen, Henrik Rasmus; Smets, Barth F.;

    The removal of pharmaceuticals was investigated in nitrifying Moving Bed Biofilm Reactors (MBBRs) containing carriers with different biofilm thicknesses. The biofilm with the thinnest thickness was found to have the highest nitrification and biotransformation rate for some key pharmaceuticals...

  11. Inhibition of Biofilm Formation Using Novel Nanostructured Surfaces Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Biofilms are ubiquitous in the environment. Few surfaces resist biofilm formation, most promote it. Biofilm formation poses problems in water systems as they can...

  12. Novel metabolic activity indicator in Streptococcus mutans biofilms

    NARCIS (Netherlands)

    D.M. Deng; M.A. Hoogenkamp; J.M. ten Cate; W. Crielaard

    2009-01-01

    Antimicrobial resistance of micro-organisms in biofilms requires novel strategies to evaluate the efficacy of caries preventive agents in actual biofilms. Hence we investigated fluorescence intensity (FI) in Streptococcus mutans biofilms constitutively expressing green fluorescent protein (GFP). Upo

  13. Challenges when introducing electronic exam

    Directory of Open Access Journals (Sweden)

    Matti Kuikka

    2014-10-01

    Full Text Available Time pressures often necessitate the use of more efficient exam tools, such as electronic exams (e-exams, instead of traditional paper exams. However, teachers may face challenges when introducing e-exams in a higher education context. This paper describes what kinds of challenges teachers may face when introducing e-exams, based on experiences in Turku University of Applied Sciences (TUAS where e-exams have been used since 2012. For this research, the authors used their personal experiences as administrators and teachers of current e-systems used for e-exams in universities in Turku, Finland. Quantitative data were collected by survey from teachers in TUAS (the case study. The learning management systems, Moodle, Optima and ViLLE, and dedicated e-examination systems, Soft Tutor and Tenttis, were also compared to clarify what kind of features are available in order to ease teachers’ work with examinations. The results identified various challenges during e-exam introduction in TUAS. The paper also provides a list of essential services or features for teachers to ease the introduction of e-exams. Among the analysed systems, ViLLE supported most of the required features, and can be used for both learning management and e-examination systems, providing teachers with one single system, which was found to be important to teachers. The key service found by this paper is ‘support for teachers’, which is in line with previous studies.

  14. The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance.

    Science.gov (United States)

    Derlon, Nicolas; Grütter, Alexander; Brandenberger, Fabienne; Sutter, Anja; Kuhlicke, Ute; Neu, Thomas R; Morgenroth, Eberhard

    2016-10-01

    This study aimed at identifying how to improve the level of permeate flux stabilisation during gravity-driven membrane filtration without control of biofilm formation. The focus was therefore on understanding (i) how the different fractions of the biofilms (inorganics particles, bacterial cells, EPS matrix) influence its hydraulic resistance and (ii) how the compression of biofilms impacts its hydraulic resistance, i.e., can water head be increased to increase the level of permeate flux stabilisation. Biofilms were developed on ultrafiltration membranes at 88 and 284 cm water heads with dead-end filtration for around 50 days. A larger water head resulted in a smaller biofilm permeability (150 and 50 L m(-2) h(-1) bar(-1) for biofilms grown at 88 cm and 284 cm water head, respectively). Biofilms were mainly composed of EPS (>90% in volume). The comparison of the hydraulic resistances of biofilms to model fouling layers indicated that most of the hydraulic resistance is due to the EPS matrix. The compressibility of the biofilm was also evaluated by subjecting the biofilms to short-term (few minutes) and long-term variations of transmembrane pressures (TMP). A sudden change of TMP resulted in an instantaneous and reversible change of biofilm hydraulic resistance. A long-term change of TMP induced a slow change in the biofilm hydraulic resistance. Our results demonstrate that the response of biofilms to a TMP change has two components: an immediate variation of resistance (due to compression/relaxation) and a long-term response (linked to biofilm adaptation/growth). Our results provide relevant information about the relationship between the operating conditions in terms of TMP, the biofilm structure and composition and the resulting biofilm hydraulic resistance. These findings have practical implications for a broad range of membrane systems. PMID:27318448

  15. The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance.

    Science.gov (United States)

    Derlon, Nicolas; Grütter, Alexander; Brandenberger, Fabienne; Sutter, Anja; Kuhlicke, Ute; Neu, Thomas R; Morgenroth, Eberhard

    2016-10-01

    This study aimed at identifying how to improve the level of permeate flux stabilisation during gravity-driven membrane filtration without control of biofilm formation. The focus was therefore on understanding (i) how the different fractions of the biofilms (inorganics particles, bacterial cells, EPS matrix) influence its hydraulic resistance and (ii) how the compression of biofilms impacts its hydraulic resistance, i.e., can water head be increased to increase the level of permeate flux stabilisation. Biofilms were developed on ultrafiltration membranes at 88 and 284 cm water heads with dead-end filtration for around 50 days. A larger water head resulted in a smaller biofilm permeability (150 and 50 L m(-2) h(-1) bar(-1) for biofilms grown at 88 cm and 284 cm water head, respectively). Biofilms were mainly composed of EPS (>90% in volume). The comparison of the hydraulic resistances of biofilms to model fouling layers indicated that most of the hydraulic resistance is due to the EPS matrix. The compressibility of the biofilm was also evaluated by subjecting the biofilms to short-term (few minutes) and long-term variations of transmembrane pressures (TMP). A sudden change of TMP resulted in an instantaneous and reversible change of biofilm hydraulic resistance. A long-term change of TMP induced a slow change in the biofilm hydraulic resistance. Our results demonstrate that the response of biofilms to a TMP change has two components: an immediate variation of resistance (due to compression/relaxation) and a long-term response (linked to biofilm adaptation/growth). Our results provide relevant information about the relationship between the operating conditions in terms of TMP, the biofilm structure and composition and the resulting biofilm hydraulic resistance. These findings have practical implications for a broad range of membrane systems.

  16. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly

    OpenAIRE

    Stewart, Elizabeth J.; Mahesh Ganesan; Younger, John G.; Solomon, Michael J.

    2015-01-01

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) co...

  17. Game and player: C. albicans biofilm lifestyle and extracellular DNA

    OpenAIRE

    Martins, Margarida Isabel Barros Coelho; Uppuluri, Priya; Thomas, Derek P.; Cleary, Ian A.; Henriques, Mariana; Lopez-Ribot, José L.; Oliveira, Rosário

    2010-01-01

    DNA is as a structural component of bacterial biofilms extracellular matrix (ECM). Although evidences have shown that DNA may play a role in C. albicans biofilms, further studies are required to understand the contribution of extracellular DNA (eDNA) in C. albicans biofilm lifestyle. Herein we aimed to determine the eDNA content of C. albicans SC5314 biofilm ECM and the effect of DNase I and exogenous DNA treatments on biofilm formation and biofilm cells susceptibility to antifungals. First, ...

  18. Influence of flow on the structure of bacterial biofilms.

    OpenAIRE

    Stoodley, Paul; Boyle, John D.; Lappin-Scott, Hilary M.

    2000-01-01

    Bacteria attached to surfaces in biofilms are responsible for the contamination of industrial processes and many types of microbial infections and disease. Once established, biofilms are notoriously difficult to eradicate. A more complete understanding of how biofilms form and behave is crucial if we are to predict, and ultimately control, biofilm processes. A major breakthrough in biofilm research came in the early 1990’s when confocal scanning laser microscopy (CSLM) showed that biofilms fo...

  19. Microbial biofilm growth on irradiated, spent nuclear fuel cladding

    International Nuclear Information System (INIS)

    A fundamental criticism regarding the potential for microbial influenced corrosion in spent nuclear fuel cladding or storage containers concerns whether the required microorganisms can, in fact, survive radiation fields inherent in these materials. This study was performed to unequivocally answer this critique by addressing the potential for biofilm formation, the precursor to microbial-influenced corrosion, in radiation fields representative of spent nuclear fuel storage environments. This study involved the formation of a microbial biofilm on irradiated spent nuclear fuel cladding within a hot cell environment. This was accomplished by introducing 22 species of bacteria, in nutrient-rich media, to test vessels containing irradiated cladding sections and that was then surrounded by radioactive source material. The overall dose rate exceeded 2 Gy/h gamma/beta radiation with the total dose received by some of the bacteria reaching 5 x 103 Gy. This study provides evidence for the formation of biofilms on spent-fuel materials, and the implication of microbial influenced corrosion in the storage and permanent deposition of spent nuclear fuel in repository environments

  20. Mucosal biofilm detection in chronic otitis media

    DEFF Research Database (Denmark)

    Wessman, Marcus; Bjarnsholt, Thomas; Eickhardt-Sørensen, Steffen Robert;

    2015-01-01

    The objectives of this study were to examine middle ear biopsies from Greenlandic patients with chronic otitis media (COM) for the presence of mucosal biofilms and the bacteria within the biofilms. Thirty-five middle ear biopsies were obtained from 32 Greenlandic COM patients admitted to ear...... of the patients served as controls. PNA-FISH showed morphological signs of biofilms in 15 out of 35 (43 %) middle ear biopsies. In the control skin biopsies, there were signs of biofilms in eight out of 23 biopsies (30 %), probably representing skin flora. PCR and 16s sequencing detected bacteria in seven out...... of 20 (35 %) usable middle ear biopsies, and in two out of ten (20 %) usable control samples. There was no association between biofilm findings and PCR and 16s sequencing. Staphylococci were the most common bacteria in bacterial culture. We found evidence of bacterial biofilms in 43 % of middle ear...

  1. Innovative Strategies to Overcome Biofilm Resistance

    Directory of Open Access Journals (Sweden)

    Aleksandra Taraszkiewicz

    2013-01-01

    Full Text Available We review the recent literature concerning the efficiency of antimicrobial photodynamic inactivation toward various microbial species in planktonic and biofilm cultures. The review is mainly focused on biofilm-growing microrganisms because this form of growth poses a threat to chronically infected or immunocompromised patients and is difficult to eradicate from medical devices. We discuss the biofilm formation process and mechanisms of its increased resistance to various antimicrobials. We present, based on data in the literature, strategies for overcoming the problem of biofilm resistance. Factors that have potential for use in increasing the efficiency of the killing of biofilm-forming bacteria include plant extracts, enzymes that disturb the biofilm structure, and other nonenzymatic molecules. We propose combining antimicrobial photodynamic therapy with various antimicrobial and antibiofilm approaches to obtain a synergistic effect to permit efficient microbial growth control at low photosensitizer doses.

  2. Development of a simplified biofilm model

    Science.gov (United States)

    Sarkar, Sushovan; Mazumder, Debabrata

    2015-11-01

    A simplified approach for analyzing the biofilm process in deriving an easy model has been presented. This simplified biofilm model formulated correlations between substrate concentration in the influent/effluent and at biofilm-liquid interface along with substrate flux and biofilm thickness. The model essentially considered the external mass transport according to Fick's Law, steady state substrate as well as biomass balance for attached growth microorganisms. In substrate utilization, Monod growth kinetics has been followed incorporating relevant boundary conditions at the liquid-biofilm interface and at the attachment surface. The numerical solution of equations was accomplished using Runge-Kutta method and accordingly an integrated computer program was developed. The model has been successfully applied in a distinct set of trials with varying range of representative input variables. The model performance was compared with available existing methods and it was found an easy, accurate method that can be used for process design of biofilm reactor.

  3. L-Tryptophan prevents Escherichia coli biofilm formation and triggers biofilm degradation.

    Science.gov (United States)

    Shimazaki, Junji; Furukawa, Soichi; Ogihara, Hirokazu; Morinaga, Yasushi

    2012-03-23

    The effect of deletion of trp operon and tna operon on the Escherichia coli biofilm formation was investigated in order to elucidate the role of L-tryptophan metabolism in biofilm formation. trp operon deletion mutants ΔtrpC, ΔtrpD and ΔtrpE deficient in L-tryptophan biosynthesis showed higher biofilm formation. In addition, ΔtnaC with increased L-tryptophan degradation activity showed higher biofilm formation. On the contrary, ΔtnaA deletion mutant which lost L-tryptophan degradation activity showed low biofilm formation. From these results, it was suggested that decrease of intracellular L-tryptophan level induced biofilm formation and increase of L-tryptophan repressed biofilm formation. So the effect of the addition of L-tryptophan to the medium on the E. coli biofilm formation was investigated. L-Tryptophan addition at starting culture decreased biofilm formation and furthermore L-tryptophan addition after 16 h culture induced the degradation of preformed biofilm. From the above results, it was suggested that maintenance of high intracellular L-tryptophan concentration prevents E. coli biofilm formation and elevation of intracellular L-tryptophan concentration triggers degradation of matured biofilm. PMID:22386992

  4. Going beyond the Control of Quorum-Sensing to Combat Biofilm Infections

    Directory of Open Access Journals (Sweden)

    Wolf-Rainer Abraham

    2016-01-01

    Full Text Available Most bacteria attach to surfaces where they form a biofilm, cells embedded in a complex matrix of polymers. Cells in biofilms are much better protected against noxious agents than free-living cells. As a consequence it is very difficult to control pathogens with antibiotics in biofilm infections and novel targets are urgently needed. One approach aims at the communication between cells to form and to maintain a biofilm, a process called quorum-sensing. Water soluble small-sized molecules mediate this process and a number of antagonists of these compounds have been found. In this review natural compounds and synthetic drugs which do not interfere with the classical quorum-sensing compounds are discussed. For some of these compounds the targets are still not known, but others interfere with the formation of exopolysaccharides, virulence factors, or cell wall synthesis or they start an internal program of biofilm dispersal. Some of their targets are more conserved among pathogens than the receptors for quorum sensing autoinducers mediating quorum-sensing, enabling a broader application of the drug. The broad spectrum of mechanisms, the diversity of bioactive compounds, their activity against several targets, and the conservation of some targets among bacterial pathogens are promising aspects for several clinical applications of this type of biofilm-controlling compound in the future.

  5. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans.

    Science.gov (United States)

    Hsu, Chih-Chieh; Lai, Wen-Lin; Chuang, Kuei-Chin; Lee, Meng-Hwan; Tsai, Ying-Chieh

    2013-07-01

    Candida spp. are part of the natural human microbiota, but they also represent important opportunistic human pathogens. Biofilm-associated Candida albicans infections are clinically relevant due to their high levels of resistance to traditional antifungal agents. In this study, we investigated the ability of linalool to inhibit the formation of C. albicans biofilms and reduce existing C. albicans biofilms. Linalool exhibited antifungal activity against C. albicans ATCC 14053, with a minimum inhibitory concentration (MIC) of 8 mM. Sub-MIC concentrations of linalool also inhibited the formation of germ tubes and biofilms in that strain. The defective architecture composition of C. albicans biofilms exposed to linalool was characterized by scanning electron microscopy. The expression levels of the adhesin genes HWP1 and ALS3 were downregulated by linalool, as assessed by real-time RT-PCR. The expression levels of CYR1 and CPH1, which encode components of the cAMP-PKA and MAPK hyphal formation regulatory pathways, respectively, were also suppressed by linalool, as was the gene encoding their upstream regulator, Ras1. The expression levels of long-term hyphae maintenance associated genes, including UME6, HGC1, and EED1, were all suppressed by linalool. These results indicate that linalool may have therapeutic potential in the treatment of candidiasis associated with medical devices because it interferes with the morphological switch and biofilm formation of C. albicans.

  6. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    Science.gov (United States)

    Epstein, A. K.; Hochbaum, A. I.; Kim, Philseok; Aizenberg, J.

    2011-12-01

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  7. Modeling bacterial attachment to surfaces as an early stage of biofilm development.

    Science.gov (United States)

    El Moustaid, Fadoua; Eladdadi, Amina; Uys, Lafras

    2013-06-01

    Biofilms are present in all natural, medical and industrial surroundings where bacteria live. Biofilm formation is a key factor in the growth and transport of both beneficial and harmful bacteria. While much is known about the later stages of biofilm formation, less is known about its initiation which is an important first step in the biofilm formation. In this paper, we develop a non-linear system of partial differential equations of Keller-Segel type model in one-dimensional space, which couples the dynamics of bacterial movement to that of the sensing molecules. In this case, bacteria perform a biased random walk towards the sensing molecules. We derive the boundary conditions of the adhesion of bacteria to a surface using zero-Dirichlet boundary conditions, while the equation describing sensing molecules at the interface needed particular conditions to be set. The numerical results show the profile of bacteria within the space and the time evolution of the density within the free-space and on the surface. Testing different parameter values indicate that significant amount of sensing molecules present on the surface leads to a faster bacterial movement toward the surface which is the first step of biofilm initiation. Our work gives rise to results that agree with the biological description of the early stages of biofilm formation. PMID:23906151

  8. Exploring the secrets of the three-dimensional architecture of phototrophic biofilms in caves

    Directory of Open Access Journals (Sweden)

    Roldàn Monica

    2009-01-01

    Full Text Available Caves with dim natural light, and lighted hypogean environments, have been found to host phototrophic microorganisms from varioustaxonomic groups. These microorganisms group themselves into assemblies known as communities or biofilms, which are associated withrock surfaces. In this work, the phototrophic biofilms that colonise speleothems, walls and floors in three tourist caves (Spain were studied.Confocal laser scanning microscopy (CLSM and scanning electron microscopy (SEM were used to study these organisms and acquirethree-dimensional data on their biofilm structure. CLSM was used in a multi-channel mode whereby the different channels map individualbiofilm components. Cyanobacteria, green microalgae, diatoms, mosses and lichens were found to be grouped as biofilms that differedaccording to the sampling sites. The biofilms were classified into six types regarding their environmental conditions. These types weredefined by their constituent organisms, the thickness of their photosynthetic layers and their structure. Light-related stress is associated with lower biofilm thickness and species diversity, as is low humidity, and, in the case of artificially illuminated areas, the duration of lightexposure.

  9. Antibiotic tolerance and resistance in biofilms

    DEFF Research Database (Denmark)

    Ciofu, Oana; Tolker-Nielsen, Tim

    2010-01-01

    One of the most important features of microbial biofilms is their tolerance to antimicrobial agents and components of the host immune system. The difficulty of treating biofilm infections with antibiotics is a major clinical problem. Although antibiotics may decrease the number of bacteria...... in biofilms, they will not completely eradicate the bacteria in vivo which may have important clinical consequences in form of relapses of the infection....

  10. Polymicrobial biofilms by diabetic foot clinical isolates.

    Science.gov (United States)

    Mottola, Carla; Mendes, João J; Cristino, José Melo; Cavaco-Silva, Patrícia; Tavares, Luís; Oliveira, Manuela

    2016-01-01

    Diabetes mellitus is a major chronic disease that continues to increase significantly. One of the most important and costly complications of diabetes is foot ulceration that may be colonized by pathogenic and antimicrobial resistant bacteria, which may express several virulence factors that could impair treatment success. These bacterial communities can be organized in polymicrobial biofilms, which may be responsible for diabetic foot ulcer (DFU) chronicity. We evaluated the influence of polymicrobial communities in the ability of DFU isolates to produce biofilm, using a microtiter plate assay and a multiplex fluorescent in situ hybridization, at three time points (24, 48, 72 h), after evaluating biofilm formation by 95 DFU isolates belonging to several bacterial genera (Staphylococcus, Corynebacterium, Enterococcus, Pseudomonas and Acinetobacter). All isolates were biofilm-positive at 24 h, and the amount of biofilm produced increased with incubation time. Pseudomonas presented the higher biofilm production, followed by Corynebacterium, Acinetobacter, Staphylococcus and Enterococcus. Significant differences were found in biofilm formation between the three time points. Polymicrobial communities produced higher biofilm values than individual species. Pseudomonas + Enterococcus, Acinetobacter + Staphylococcus and Corynebacterium + Staphylococcus produced higher biofilm than the ones formed by E. faecalis + Staphylococcus and E. faecalis + Corynebacterium. Synergy between bacteria present in dual or multispecies biofilms has been described, and this work represents the first report on time course of biofilm formation by polymicrobial communities from DFUs including several species. The biological behavior of different bacterial species in polymicrobial biofilms has important clinical implications for the successful treatment of these infections.

  11. Penetration of erythromycin through Staphylococcus epidermidis biofilm

    Institute of Scientific and Technical Information of China (English)

    LIN Mao-hu; HE Lei; GAO Jie; LIU Yun-xi; SUO Ji-jiang; XING Yu-bin; JIA Ning

    2013-01-01

    Background The catheter related infection caused by Staphylococcus epiderrnidis biofilm is increasing and difficult to treat by antimicrobial chemotherapy.The properties of biofilms that give rise to antibiotic resistance are only partially understood.This study aimed to elucidate the penetration of erythromycin through Staphylococcus epidermidis biofilm.Methods The penetration ratio of erythromycin through Staphylococcus epidermidis biofilms of 1457,1457-msrA,and wild isolate S68 was detected by biofilm penetration model at different time points according to the standard regression curve.The RNNDNA ratio and the cell density within the biofilms were observed by confocal laser microscope and transmission electromicroscope,respectively.Results The penetration ratios of erythromycin through the biofilms of 1457,1457-msrA,and S68 after cultivation for 36 hours were 0.93,0.55 and 0.4,respectively.The erythromycin penetration ratio through 1457 biofilm (0.58 after 8 hours)was higher than that through the other two (0.499 and 0.31 after 24 hours).Lower growth rate of the cells in biofilm was shown,with reduction of RNA/DNA proportion observed by confocal laser microscope through acridine orange stain.Compared with the control group observed by transmission electrmicroscope,the cell density of biofilm air face was lower than that of agar face,with more cell debris.Conclusions Erythromycin could penetrate to the Staphylococcus epidermidis biofilm,but could not kill the cells thoroughly.The lower growth rate of the cells within biofilm could help decreasing the erythromycin susceptibility.

  12. Introducing positive psychology to SLA

    Directory of Open Access Journals (Sweden)

    Sarah Mercer

    2014-01-01

    Full Text Available Positive psychology is a rapidly expanding subfield in psychology that has important implications for the field of second language acquisition (SLA. This paper introduces positive psychology to the study of language by describing its key tenets. The potential contributions of positive psychology are contextualized with reference to prior work, including the humanistic movement in language teaching, models of motivation, the concept of an affective filter, studies of the good language learner, and the concepts related to the self. There are reasons for both encouragement and caution as studies inspired by positive psychology are undertaken. Papers in this special issue of SSLLT cover a range of quantitative and qualitative methods with implications for theory, research, and teaching practice. The special issue serves as a springboard for future research in SLA under the umbrella of positive psychology.

  13. Introducing Newton and classical physics

    CERN Document Server

    Rankin, William

    2002-01-01

    The rainbow, the moon, a spinning top, a comet, the ebb and flood of the oceans ...a falling apple. There is only one universe and it fell to Isaac Newton to discover its secrets. Newton was arguably the greatest scientific genius of all time, and yet he remains a mysterious figure. Written and illustrated by William Rankin, "Introducting Newton and Classical Physics" explains the extraordinary ideas of a man who sifted through the accumulated knowledge of centuries, tossed out mistaken beliefs, and single-handedly made enormous advances in mathematics, mechanics and optics. By the age of 25, entirely self-taught, he had sketched out a system of the world. Einstein's theories are unthinkable without Newton's founding system. He was also a secret heretic, a mystic and an alchemist, the man of whom Edmund Halley said "Nearer to the gods may no man approach!". This is an ideal companion volume to "Introducing Einstein".

  14. Seasonal biostabilization and erosion behavior of fluvial biofilms under different hydrodynamic and light conditions

    Institute of Scientific and Technical Information of China (English)

    Moritz Thom n; Holger Schmidt; Sabine U. Gerbersdorf; Silke Wieprecht

    2015-01-01

    Biofilm growth may considerably influence the erodibility of river bed sediments and is, thus, an important morphological feature. The extent to which the sediment is stabilized depends on many environmental conditions and even though it is well accepted that these conditions are responsible for the variance of results obtained from field studies, little is known about their impact on biostabilization. In this article, the results from five long-term (4–8 weeks) experiments are presented, investigating the impact of hydrodynamics and light intensity on biostabilization in different seasons. Biofilms are culti-vated in a sophisticated setup of six identical straight flumes by circulating natural river water over glass beads with diameters between 0.1 and 0.2 mm. During the course of the experiments biofilm samples are eroded regularly to determine the critical shear stress and to learn more about the erosional behavior of biostabilized sediments. The results indicate a large variance of biostabilization between seasons with the highest values in spring and the lowest in late autumn. Presumably, this is explained by the differ-ences in biofilm growth and composition resulting in mechanically diverse responses to the increased bed shear stress. Higher bed shear stress during cultivation delayed biofilm growth possibly due to reduced net attachment and growth of formerly advected microbes on the sediment surface. Unex-pectedly, no substantial biostabilization effect is detected in experiments where biofilms are cultivated in darkness. Another focus in this article is the analysis of the mechanical behavior observed during erosion of the biofilms, that is shown to be an important aspect for the understanding of freshwater biostabil-ization caused by young growing biofilms.

  15. Impact of biofilm-induced heterogeneities on solute transport in porous media

    Science.gov (United States)

    Kone, T.; Golfier, F.; Orgogozo, L.; Oltéan, C.; Lefèvre, E.; Block, J. C.; Buès, M. A.

    2014-11-01

    In subsurface systems, biofilm may degrade organic or organometallic pollutants contributing to natural attenuation and soil bioremediation techniques. This increase of microbial activity leads to change the hydrodynamic properties of aquifers. The purpose of this work was to investigate the influence of biofilm-induced heterogeneities on solute transport in porous media and more specifically on dispersivity. We pursued this goal by (i) monitoring both spatial concentration fields and solute breakthrough curves from conservative tracer experiments in a biofilm-supporting porous medium, (ii) characterizing in situ the changes in biovolume and visualizing the dynamics of the biological material at the mesoscale. A series of experiments was carried out in a flow cell system (60 cm3) with a silica sand (Φ = 50-70 mesh) as solid carrier and Shewanella oneidensis MR-1 as bacterial strain. Biofilm growth was monitored by image acquisition with a digital camera. The biofilm volume fraction was estimated through tracer experiments with the Blue Dextran macromolecule as in size-exclusion chromatography, leading to a fair picture of the biocolonization within the flow cell. Biofilm growth was achieved in the whole flow cell in 29 days and up to 50% of void space volume was plugged. The influence of biofilm maturation on porous medium transport properties was evaluated from tracer experiments using Brilliant Blue FCF. An experimental correlation was found between effective (i.e., nonbiocolonized) porosity and biofilm-affected dispersivity. Comparison with values given by the theoretical model of Taylor and Jaffé (1990b) yields a fair agreement.

  16. The Role of Biofilms in the Sedimentology of Actively Forming Gypsum Deposits at Guerrero Negro, Mexico

    Science.gov (United States)

    Vogel, Marilyn B.; Des Marais, David J.; Turk, Kendra A.; Parenteau, Mary N.; Jahnke, Linda L.; Kubo, Michael D. Y.

    2009-11-01

    Actively forming gypsum deposits at the Guerrero Negro sabkha and saltern system provided habitats for stratified, pigmented microbial communities that exhibited significant morphological and phylogenetic diversity. These deposits ranged from meter-thick gypsum crusts forming in saltern seawater concentration ponds to columnar microbial mats with internally crystallized gypsum granules developing in natural anchialine pools. Gypsum-depositing environments were categorized as forming precipitation surfaces, biofilm-supported surfaces, and clastic surfaces. Each surface type was described in terms of depositional environment, microbial diversity, mineralogy, and sedimentary fabrics. Precipitation surfaces developed in high-salinity subaqueous environments where rates of precipitation outpaced the accumulation of clastic, organic, and/or biofilm layers. These surfaces hosted endolithic biofilms comprised predominantly of oxygenic and anoxygenic phototrophs, sulfate-reducing bacteria, and bacteria from the phylum Bacteroidetes. Biofilm-supported deposits developed in lower-salinity subaqueous environments where light and low water-column turbulence supported dense benthic microbial communities comprised mainly of oxygenic phototrophs. In these settings, gypsum granules precipitated in the extracellular polymeric substance (EPS) matrix as individual granules exhibiting distinctive morphologies. Clastic surfaces developed in sabkha mudflats that included gypsum, carbonate, and siliclastic particles with thin gypsum/biofilm components. Clastic surfaces were influenced by subsurface brine sheets and capillary evaporation and precipitated subsedimentary gypsum discs in deeper regions. Biofilms appeared to influence both chemical and physical sedimentary processes in the various subaqueous and subaerially exposed environments studied. Biofilm interaction with chemical sedimentary processes included dissolution and granularization of precipitation surfaces, formation of

  17. Effects of low arsenic concentration exposure on freshwater fish in the presence of fluvial biofilms.

    Science.gov (United States)

    Tuulaikhuu, Baigal-Amar; Bonet, Berta; Guasch, Helena

    2016-02-15

    Arsenic (As) is a highly toxic element and its carcinogenic effect on living organisms is well known. However, predicting real effects in the environment requires an ecological approach since toxicity is influenced by many environmental and biological factors. The purpose of this paper was to evaluate if environmentally-realistic arsenic exposure causes toxicity to fish. An experiment with four different treatments (control (C), biofilm (B), arsenic (+As) and biofilm with arsenic (B+As)) was conducted and each one included sediment to enhance environmental realism, allowing the testing of the interactive effects of biofilm and arsenic on the toxicity to fish. Average arsenic exposure to Eastern mosquitofish (Gambusia holbrooki) was 40.5 ± 7.5 μg/L for +As treatment and 34.4 ± 1.4 μg/L for B+As treatment for 56 days. Fish were affected directly and indirectly by this low arsenic concentration since exposure did not only affect fish but also the function of periphytic biofilms. Arsenic effects on the superoxide dismutase (SOD) and glutathione reductase (GR) activities in the liver of mosquitofish were ameliorated in the presence of biofilms at the beginning of exposure (day 9). Moreover, fish weight gaining was only affected in the treatment without biofilm. After longer exposure (56 days), effects of exposure were clearly seen. Fish showed a marked increase in the catalase (CAT) activity in the liver but the interactive influence of biofilms was not further observed since the arsenic-affected biofilm had lost its role in water purification. Our results highlight the interest and application of incorporating some of the complexity of natural systems in ecotoxicology and support the use of criterion continuous concentration (CCC) for arsenic lower than 150 μg/L and closer to the water quality criteria to protect aquatic life recommended by the Canadian government which is 5 μg As/L.

  18. Effects of N-pyrrole substitution on the anti-biofilm activities of oroidin derivatives against Acinetobacter baumannii.

    Science.gov (United States)

    Richards, Justin J; Reed, Catherine S; Melander, Christian

    2008-08-01

    Bacteria of the genus Acinetobacter spp. are rapidly emerging as problematic pathogens in healthcare settings. This is exacerbated by the bacteria's ability to form robust biofilms. Marine natural products incorporating a 2-aminoimidazole (2-AI) motif, namely from the oroidin class of marine alkaloids, have served as a unique scaffold for developing molecules that have the ability to inhibit and disperse bacterial biofilms. Herein we present the anti-biofilm activity of a small library of second generation oroidin analogues against the bacterium Acinetobacter baumannii. PMID:18625555

  19. Bioluminescence-based system for rapid detection of natural transformation.

    Science.gov (United States)

    Santala, Ville; Karp, Matti; Santala, Suvi

    2016-07-01

    Horizontal gene transfer plays a significant role in bacterial evolution and has major clinical importance. Thus, it is vital to understand the mechanisms and kinetics of genetic transformations. Natural transformation is the driving mechanism for horizontal gene transfer in diverse genera of bacteria. Our study introduces a simple and rapid method for the investigation of natural transformation. This highly sensitive system allows the detection of a transformation event directly from a bacterial population without any separation step or selection of cells. The system is based on the bacterial luciferase operon from Photorhabdus luminescens The studied molecular tools consist of the functional modules luxCDE and luxAB, which involve a replicative plasmid and an integrative gene cassette. A well-established host for bacterial genetic investigations, Acinetobacter baylyi ADP1, is used as the model bacterium. We show that natural transformation followed by homologous recombination or plasmid recircularization can be readily detected in both actively growing and static biofilm-like cultures, including very rare transformation events. The system allows the detection of natural transformation within 1 h of introducing sample DNA into the culture. The introduced method provides a convenient means to study the kinetics of natural transformation under variable conditions and perturbations. PMID:27190150

  20. Targeting quorum sensing in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jakobsen, Tim Holm; Bjarnsholt, Thomas; Jensen, Peter Østrup;

    2013-01-01

    Bacterial resistance to conventional antibiotics combined with an increasing acknowledgement of the role of biofilms in chronic infections has led to a growing interest in new antimicrobial strategies that target the biofilm mode of growth. In the aggregated biofilm mode, cell-to-cell communication...... alternative antibacterial strategies. Here, we review state of the art research of quorum sensing inhibitors against the opportunistic human pathogen Pseudomonas aeruginosa, which is found in a number of biofilm-associated infections and identified as the predominant organism infecting the lungs of cystic...

  1. Aspartate inhibits Staphylococcus aureus biofilm formation.

    Science.gov (United States)

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp.

  2. Aspartate inhibits Staphylococcus aureus biofilm formation.

    Science.gov (United States)

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp. PMID:25687923

  3. Spatial structure, cooperation and competition in biofilms.

    Science.gov (United States)

    Nadell, Carey D; Drescher, Knut; Foster, Kevin R

    2016-09-01

    Bacteria often live within matrix-embedded communities, termed biofilms, which are now understood to be a major mode of microbial life. The study of biofilms has revealed their vast complexity both in terms of resident species composition and phenotypic diversity. Despite this complexity, theoretical and experimental work in the past decade has identified common principles for understanding microbial biofilms. In this Review, we discuss how the spatial arrangement of genotypes within a community influences the cooperative and competitive cell-cell interactions that define biofilm form and function. Furthermore, we argue that a perspective rooted in ecology and evolution is fundamental to progress in microbiology. PMID:27452230

  4. Electroactive biofilms of sulphate reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cordas, Cristina M.; Guerra, L. Tiago; Xavier, Catarina [Requimte-CQFB, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Moura, Jose J.G. [Requimte-CQFB, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)], E-mail: jose.moura@dq.fct.unl.pt

    2008-12-01

    Biofilms formed from a pure strain of Desulfovibrio desulfuricans 27774 on stainless steel and graphite polarised surfaces were studied. The polarisation conditions applied were -0.4 V vs. SCE for different times. A cathodic current related with the biofilms growth was observed with a maximum intensity of -270 mA m{sup -2} that remained stable for several days using graphite electrodes. These sulphate reducing bacteria biofilms present electrocatalytic activity towards hydrogen and oxygen reduction reactions. Electrode polarisation has a selective effect on the catalytic activity. The biofilms were also observed by scanning electronic microscopy revealing the formation of homogeneous films on the surfaces.

  5. Biofilm responses to marine fish farm wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sanz-Lazaro, Carlos, E-mail: carsanz@um.es [Departamento de Ecologia e Hidrologia, Facultad de Biologia, Universidad de Murcia, 30100 Murcia (Spain); Navarrete-Mier, Francisco; Marin, Arnaldo [Departamento de Ecologia e Hidrologia, Facultad de Biologia, Universidad de Murcia, 30100 Murcia (Spain)

    2011-03-15

    The changes in the biofilm community due to organic matter enrichment, eutrophication and metal contamination derived from fish farming were studied. The biofilm biomass, polysaccharide content, trophic niche and element accumulation were quantified along an environmental gradient of fish farm wastes in two seasons. Biofilm structure and trophic diversity was influenced by seasonality as well as by the fish farm waste load. Fish farming enhanced the accumulation of organic carbon, nutrients, selenium and metals by the biofilm community. The accumulation pattern of these elements was similar regardless of the structure and trophic niche of the community. This suggests that the biofilm communities can be considered a reliable tool for assessing dissolved aquaculture wastes. Due to the ubiquity of biofilms and its wide range of consumers, its role as a sink of dissolved wastes may have important implications for the transfer of aquaculture wastes to higher trophic levels in coastal systems. - Research highlights: > Biofilms can act as a trophic pathway of fish farm dissolved wastes. > Biofilms are reliable tools for monitoring fish farm dissolved wastes. > The influence of the fish farm dissolved wastes can be detected 120-350 m from farm. - Under the influence of fish farming biofilm accumulates organic carbon, nutrients, selenium and metals, regardless of the structure and trophic niche of the community.

  6. In vitro biofilm formation by methicillin susceptible and resistant Staphylococcus aureus strains isolated from cystic fibrosis patients

    Directory of Open Access Journals (Sweden)

    Antonietta Lambiase

    2008-12-01

    Full Text Available Staphylococcus aureus is one of the most common pathogens isolated from respiratory tracts of Cystic Fibrosis patients (CF. The infection by this pathogen starts in early infancy, often preceding chronic infections by Pseudomonas aeruginosa. The infection and colonization by methicillin-resistant Staphylococcus aureus (MRSA are, by then, events very frequent among CF patients and this bacterial isolation leads to complications in therapeutic management because of the limited treatment options. Strains of Staphylococcus aureus are able to produce biofilms on natural or synthetic surfaces. Biofilms are sophisticated communities of matrix-encased bacteria and infections by biofilm-producing bacteria are particularly problematic because sessile bacteria can often withstand host immune responses and are generally much more tolerant to antibiotics. The first aim of this work is to evaluate the ability of MRSA strains isolated from respiratory secretions of CF patients to develop biofilms in comparison with methicillin-sensitive Staphylococcus aureus (MSSA strains obtained from respiratory secretions of CF patients.Therefore, our second aim is to evaluate the environmental influence on this ability. To evaluate the development of biofilm on solid matrix and the possible environmental influence,we applied the method described by Christensen et al. We found that a significantly higher number of MRSA strains were biofilm positive compared with MSSA strains (p<0.05.The presence of glucose did not influence the ability to form biofilm in our MRSA strains (p=0.165. MSSA strains are not strong biofilm-producers, but, when grown in TSB added with 0.25% glucose, the number of biofilm-forming strains increases, as expected. These data suggest a possible association between methicillin-resistance and biofilm formation.

  7. Activity of panduratin A isolated from Kaempferia pandurata Roxb. against multi-species oral biofilms in vitro.

    Science.gov (United States)

    Yanti; Rukayadi, Yaya; Lee, Kwan-Hyoung; Hwang, Jae-Kwan

    2009-03-01

    The formation of dental biofilm caused by oral bacteria on tooth surfaces is the primary step leading to oral diseases. This study was performed to investigate the preventive and reducing effects of panduratin A, isolated from Kaempferia pandurata Roxb., against multi-species oral biofilms consisting of Streptococcus mutans, Streptococcus sanguis and Actinomyces viscosus. Minimum inhibitory concentration (MIC) of panduratin A was determined by the Clinical and Laboratory Standards Institute (CLSI) broth microdilution assay. Prevention of biofilm formation was performed on 96-well microtiter plates by coating panduratin A in mucin at 0.5-40 microg/ml, followed by biofilm formation at 37 degrees C for 24 h. The reducing effect on the preformed biofilm was tested by forming the biofilm at 37 degrees C for 24 h, followed by treatment with panduratin A at 0.2-10 microg/ml for up to 60 min. Panduratin A showed a MIC of 1 microg/ml for multi-species strains. Panduratin A at 2 x MIC for 8 h exhibited bactericidal activity against multi-species planktonic cells for 8 h. At 8 x MIC, panduratin A was able to prevent biofilm formation by > 50%. Biofilm mass was reduced by > 50% after exposure to panduratin A at 10 microg/ml for 15 min. Panduratin A showed a dose-dependent effect in preventing and reducing the biofilm. These results suggest that panduratin A is applicable as a natural anti-biofilm agent to eliminate oral bacterial colonization during early dental plaque formation.

  8. Use of a high-throughput in vitro microfluidic system to develop oral multi-species biofilms.

    Science.gov (United States)

    Samarian, Derek S; Jakubovics, Nicholas S; Luo, Ting L; Rickard, Alexander H

    2014-12-01

    There are few high-throughput in vitro systems which facilitate the development of multi-species biofilms that contain numerous species commonly detected within in vivo oral biofilms. Furthermore, a system that uses natural human saliva as the nutrient source, instead of artificial media, is particularly desirable in order to support the expression of cellular and biofilm-specific properties that mimic the in vivo communities. We describe a method for the development of multi-species oral biofilms that are comparable, with respect to species composition, to supragingival dental plaque, under conditions similar to the human oral cavity. Specifically, this methods article will describe how a commercially available microfluidic system can be adapted to facilitate the development of multi-species oral biofilms derived from and grown within pooled saliva. Furthermore, a description of how the system can be used in conjunction with a confocal laser scanning microscope to generate 3-D biofilm reconstructions for architectural and viability analyses will be presented. Given the broad diversity of microorganisms that grow within biofilms in the microfluidic system (including Streptococcus, Neisseria, Veillonella, Gemella, and Porphyromonas), a protocol will also be presented describing how to harvest the biofilm cells for further subculture or DNA extraction and analysis. The limits of both the microfluidic biofilm system and the current state-of-the-art data analyses will be addressed. Ultimately, it is envisioned that this article will provide a baseline technique that will improve the study of oral biofilms and aid in the development of additional technologies that can be integrated with the microfluidic platform.

  9. 5-Episinuleptolide Decreases the Expression of the Extracellular Matrix in Early Biofilm Formation of Multi-Drug Resistant Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Sung-Pin Tseng

    2016-07-01

    Full Text Available Nosocomial infections and increasing multi-drug resistance caused by Acinetobacter baumannii have been recognized as emerging problems worldwide. Moreover, A. baumannii is able to colonize various abiotic materials and medical devices, making it difficult to eradicate and leading to ventilator-associated pneumonia, and bacteremia. Development of novel molecules that inhibit bacterial biofilm formation may be an alternative prophylactic option for the treatment of biofilm-associated A. baumannii infections. Marine environments, which are unlike their terrestrial counterparts, harbor an abundant biodiversity of marine organisms that produce novel bioactive natural products with pharmaceutical potential. In this study, we identified 5-episinuleptolide, which was isolated from Sinularia leptoclados, as an inhibitor of biofilm formation in ATCC 19606 and three multi-drug resistant A. baumannii strains. In addition, the anti-biofilm activities of 5-episinuleptolide were observed for Gram-negative bacteria but not for Gram-positive bacteria, indicating that the inhibition mechanism of 5-episinuleptolide is effective against only Gram-negative bacteria. The mechanism of biofilm inhibition was demonstrated to correlate to decreased gene expression from the pgaABCD locus, which encodes the extracellular polysaccharide poly-β-(1,6-N-acetylglucosamine (PNAG. Scanning electron microscopy (SEM indicated that extracellular matrix of the biofilm was dramatically decreased by treatment with 5-episinuleptolide. Our study showed potentially synergistic activity of combination therapy with 5-episinuleptolide and levofloxacin against biofilm formation and biofilm cells. These data indicate that inhibition of biofilm formation via 5-episinuleptolide may represent another prophylactic option for solving the persistent problem of biofilm-associated A. baumannii infections.

  10. 5-Episinuleptolide Decreases the Expression of the Extracellular Matrix in Early Biofilm Formation of Multi-Drug Resistant Acinetobacter baumannii.

    Science.gov (United States)

    Tseng, Sung-Pin; Hung, Wei-Chun; Huang, Chiung-Yao; Lin, Yin-Shiou; Chan, Min-Yu; Lu, Po-Liang; Lin, Lin; Sheu, Jyh-Horng

    2016-01-01

    Nosocomial infections and increasing multi-drug resistance caused by Acinetobacter baumannii have been recognized as emerging problems worldwide. Moreover, A. baumannii is able to colonize various abiotic materials and medical devices, making it difficult to eradicate and leading to ventilator-associated pneumonia, and bacteremia. Development of novel molecules that inhibit bacterial biofilm formation may be an alternative prophylactic option for the treatment of biofilm-associated A. baumannii infections. Marine environments, which are unlike their terrestrial counterparts, harbor an abundant biodiversity of marine organisms that produce novel bioactive natural products with pharmaceutical potential. In this study, we identified 5-episinuleptolide, which was isolated from Sinularia leptoclados, as an inhibitor of biofilm formation in ATCC 19606 and three multi-drug resistant A. baumannii strains. In addition, the anti-biofilm activities of 5-episinuleptolide were observed for Gram-negative bacteria but not for Gram-positive bacteria, indicating that the inhibition mechanism of 5-episinuleptolide is effective against only Gram-negative bacteria. The mechanism of biofilm inhibition was demonstrated to correlate to decreased gene expression from the pgaABCD locus, which encodes the extracellular polysaccharide poly-β-(1,6)-N-acetylglucosamine (PNAG). Scanning electron microscopy (SEM) indicated that extracellular matrix of the biofilm was dramatically decreased by treatment with 5-episinuleptolide. Our study showed potentially synergistic activity of combination therapy with 5-episinuleptolide and levofloxacin against biofilm formation and biofilm cells. These data indicate that inhibition of biofilm formation via 5-episinuleptolide may represent another prophylactic option for solving the persistent problem of biofilm-associated A. baumannii infections. PMID:27483290

  11. Activity of metazoa governs biofilm structure formation and enhances permeate flux during Gravity-Driven Membrane (GDM) filtration.

    Science.gov (United States)

    Derlon, Nicolas; Koch, Nicolas; Eugster, Bettina; Posch, Thomas; Pernthaler, Jakob; Pronk, Wouter; Morgenroth, Eberhard

    2013-04-15

    The impact of different feed waters in terms of eukaryotic populations and organic carbon content on the biofilm structure formation and permeate flux during Gravity-Driven Membrane (GDM) filtration was investigated in this study. GDM filtration was performed at ultra-low pressure (65 mbar) in dead-end mode without control of the biofilm formation. Different feed waters were tested (River water, pre-treated river water, lake water, and tap water) and varied with regard to their organic substrate content and their predator community. River water was manipulated either by chemically inhibiting all eukaryotes or by filtering out macrozoobenthos (metazoan organisms). The structure of the biofilm was characterized at the meso- and micro-scale using Optical Coherence Tomography (OCT) and Confocal Laser Scanning Microscopy (CLSM), respectively. Based on Total Organic Carbon (TOC) measurements, the river waters provided the highest potential for bacterial growth whereas tap water had the lowest. An increasing content in soluble and particulate organic substrate resulted in increasing biofilm accumulation on membrane surface. However, enhanced biofilm accumulation did not result in lower flux values and permeate flux was mainly influenced by the structure of the biofilm. Metazoan organisms (in particular nematodes and oligochaetes) built-up protective habitats, which resulted in the formation of open and spatially heterogeneous biofilms composed of biomass patches. In the absence of predation by metazoan organisms, a flat and compact biofilm developed. It is concluded that the activity of metazoan organisms in natural river water and its impact on biofilm structure balances the detrimental effect of a high biofilm accumulation, thus allowing for a broader application of GDM filtration. Finally, our results suggest that for surface waters with high particulate organic carbon (POC) content, the use of worms is suitable to enhance POC removal before ultrafiltration units.

  12. Incorporation of Farnesol Significantly Increases the Efficacy of Liposomal Ciprofloxacin against Pseudomonas aeruginosa Biofilms in Vitro.

    Science.gov (United States)

    Bandara, H M H N; Herpin, M J; Kolacny, D; Harb, A; Romanovicz, D; Smyth, H D C

    2016-08-01

    The challenge of eliminating Pseudomonas aeruginosa infections, such as in cystic fibrosis lungs, remains unchanged due to the rapid development of antibiotic resistance. Poor drug penetration into dense P. aeruginosa biofilms plays a vital role in ineffective clearance of the infection. Thus, the current antibiotic therapy against P. aeruginosa biofilms need to be revisited and alternative antibiofilm strategies need to be invented. Fungal quorum sensing molecule (QSM), farnesol, appears to have detrimental effects on P. aeruginosa. Thus, this study aimed to codeliver naturally occurring QSM farnesol, with the antibiotic ciprofloxacin as a liposomal formulation to eradicate P. aeruginosa biofilms. Four different liposomes (with ciprofloxacin and farnesol, Lcip+far; with ciprofloxacin, Lcip; with farnesol, Lfar; control, Lcon) were prepared using dehydration-rehydration method and characterized. Drug entrapment and release were evaluated by spectrometry and high performance liquid chromatography (HPLC). The efficacy of liposomes was assessed using standard biofilm assay. Liposome-treated 24 h P. aeruginosa biofilms were quantitatively assessed by XTT reduction assay and crystal violet assay, and qualitatively by confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). Ciprofloxacin release from liposomes was higher when encapsulated with farnesol (Lcip+far) compared to Lcip (3.06% vs 1.48%), whereas farnesol release was lower when encapsulated with ciprofloxacin (Lcip+far) compared to Lfar (1.81% vs 4.75%). The biofilm metabolism was significantly lower when treated with Lcip+far or Lcip compared to free ciprofloxacin (XTT, P < 0.05). When administered as Lcip+far, the ciprofloxacin concentration required to achieve similar biofilm inhibition was 125-fold or 10-fold lower compared to free ciprofloxacin or Lcip, respectively (P < 0.05). CLSM and TEM confirmed predominant biofilm disruption, greater dead cell ratio, and increased depth of

  13. Introducing Astronomy into Mozambican Society

    CERN Document Server

    Ribeiro, V A R M; Besteiro, A M A R; Geraldes, H; Maphossa, A M; Nhanonbe, F A; Uaissine, A J R

    2009-01-01

    Mozambique has been proposed as a host for one of the future Square Kilometre Array stations in Southern Africa. However, Mozambique does not possess a university astronomy department and only recently has there been interest in developing one. South Africa has been funding students at the MSc and PhD level, as well as researchers. Additionally, Mozambicans with Physics degrees have been funded at the MSc level. With the advent of the International Year of Astronomy, there has been a very strong drive, from these students, to establish a successful astronomy department in Mozambique. The launch of the commemorations during the 2008 World Space Week was very successful and Mozambique is to be used to motivate similar African countries who lack funds but are still trying to take part in the International Year of Astronomy. There hare been limited resources and funding, however there is a strong will to carry this momentum into 2009 and, with this, influence the Government to introduce Astronomy into its nationa...

  14. Interfacial separation of a mature biofilm from a glass surface - A combined experimental and cohesive zone modelling approach.

    Science.gov (United States)

    Safari, Ashkan; Tukovic, Zeljko; Cardiff, Philip; Walter, Maik; Casey, Eoin; Ivankovic, Alojz

    2016-02-01

    A good understanding of the mechanical stability of biofilms is essential for biofouling management, particularly when mechanical forces are used. Previous biofilm studies lack a damage-based theoretical model to describe the biofilm separation from a surface. The purpose of the current study was to investigate the interfacial separation of a mature biofilm from a rigid glass substrate using a combined experimental and numerical modelling approach. In the current work, the biofilm-glass interfacial separation process was investigated under tensile and shear stresses at the macroscale level, known as modes I and II failure mechanisms respectively. The numerical simulations were performed using a Finite Volume (FV)-based simulation package (OpenFOAM®) to predict the separation initiation using the cohesive zone model (CZM). Atomic force microscopy (AFM)-based retraction curve was used to obtain the separation properties between the biofilm and glass colloid at microscale level, where the CZM parameters were estimated using the Johnson-Kendall-Roberts (JKR) model. In this study CZM is introduced as a reliable method for the investigation of interfacial separation between a biofilm and rigid substrate, in which a high local stress at the interface edge acts as an ultimate stress at the crack tip.This study demonstrated that the total interfacial failure energy measured at the macroscale, was significantly higher than the pure interfacial separation energy obtained by AFM at the microscale, indicating a highly ductile deformation behaviour within the bulk biofilm matrix. The results of this study can significantly contribute to the understanding of biofilm detachments. PMID:26474034

  15. Short and long term biosorption of silica-coated iron oxide nanoparticles in heterotrophic biofilms.

    Science.gov (United States)

    Herrling, Maria P; Lackner, Susanne; Tatti, Oleg; Guthausen, Gisela; Delay, Markus; Franzreb, Matthias; Horn, Harald

    2016-02-15

    The increased application of engineered nanoparticles (ENP) in industrial processes and consumer products has raised concerns about their impact on health and environmental safety. When ENP enter the global water cycle by e.g. wastewater streams, wastewater treatment plants (WWTP) represent potential sinks for ENP. During biological WWT, the attachment of ENP to biofilms is responsible for the desired removal of ENP from the water phase avoiding their release into the aquatic environment. However, the fundamental mechanisms guiding the interactions between ENP and biofilms are not yet fully understood. Therefore, this study investigates the behavior and biosorption of inorganic ENP, here magnetic iron oxide nanoparticles coated with silica (scFe3O4-NP), with heterotrophic biofilms at different time scales. Their magnetic properties enable to follow scFe3O4-NP in the biofilm system by a magnetic susceptibility balance and magnetic resonance imaging. Biofilms were exposed to scFe3O4-NP at short contact times (5 min) in flow cells and complementary, scFe3O4-NP were introduced into a moving bed biofilm reactor (MBBR) to be observed for 27 d. Mass balances revealed that scFe3O4-NP sorbed to the biofilm within a few minutes, but that the total biosorption was rather low (3.2 μg Fe/mg TSS). scFe3O4-NP mainly sorbed to the biofilm surface inducing the detachment of outer biofilm parts starting after an exposure time of 3h in the MBBR. The biosorption depended on the exposure concentration of scFe3O4-NP, but less on the contact time. Most scFe3O4-NP exited the flow cell (up to 65%) and the MBBR (57%) via the effluent. This effect was favored by the stabilization of scFe3O4-NP in the bulk liquid by organic matter leading to a low retention capacity of the MBBR system. The results contribute to improve our understanding about the fate of ENP in environmental and in technical biofilm systems and give indications for future investigations needed. PMID:26674701

  16. Short and long term biosorption of silica-coated iron oxide nanoparticles in heterotrophic biofilms.

    Science.gov (United States)

    Herrling, Maria P; Lackner, Susanne; Tatti, Oleg; Guthausen, Gisela; Delay, Markus; Franzreb, Matthias; Horn, Harald

    2016-02-15

    The increased application of engineered nanoparticles (ENP) in industrial processes and consumer products has raised concerns about their impact on health and environmental safety. When ENP enter the global water cycle by e.g. wastewater streams, wastewater treatment plants (WWTP) represent potential sinks for ENP. During biological WWT, the attachment of ENP to biofilms is responsible for the desired removal of ENP from the water phase avoiding their release into the aquatic environment. However, the fundamental mechanisms guiding the interactions between ENP and biofilms are not yet fully understood. Therefore, this study investigates the behavior and biosorption of inorganic ENP, here magnetic iron oxide nanoparticles coated with silica (scFe3O4-NP), with heterotrophic biofilms at different time scales. Their magnetic properties enable to follow scFe3O4-NP in the biofilm system by a magnetic susceptibility balance and magnetic resonance imaging. Biofilms were exposed to scFe3O4-NP at short contact times (5 min) in flow cells and complementary, scFe3O4-NP were introduced into a moving bed biofilm reactor (MBBR) to be observed for 27 d. Mass balances revealed that scFe3O4-NP sorbed to the biofilm within a few minutes, but that the total biosorption was rather low (3.2 μg Fe/mg TSS). scFe3O4-NP mainly sorbed to the biofilm surface inducing the detachment of outer biofilm parts starting after an exposure time of 3h in the MBBR. The biosorption depended on the exposure concentration of scFe3O4-NP, but less on the contact time. Most scFe3O4-NP exited the flow cell (up to 65%) and the MBBR (57%) via the effluent. This effect was favored by the stabilization of scFe3O4-NP in the bulk liquid by organic matter leading to a low retention capacity of the MBBR system. The results contribute to improve our understanding about the fate of ENP in environmental and in technical biofilm systems and give indications for future investigations needed.

  17. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence.

    Science.gov (United States)

    Horev, Benjamin; Klein, Marlise I; Hwang, Geelsu; Li, Yong; Kim, Dongyeop; Koo, Hyun; Benoit, Danielle S W

    2015-03-24

    Development of effective therapies to control oral biofilms is challenging, as topically introduced agents must avoid rapid clearance from biofilm-tooth interfaces while targeting biofilm microenvironments. Additionally, exopolysaccharides-matrix and acidification of biofilm microenvironments are associated with cariogenic (caries-producing) biofilm virulence. Thus, nanoparticle carriers capable of binding to hydroxyapatite (HA), saliva-coated HA (sHA), and exopolysaccharides with enhanced drug release at acidic pH were developed. Nanoparticles are formed from diblock copolymers composed of 2-(dimethylamino)ethyl methacrylate (DMAEMA), butyl methacrylate (BMA), and 2-propylacrylic acid (PAA) (p(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA)) that self-assemble into ∼21 nm cationic nanoparticles. Nanoparticles exhibit outstanding adsorption affinities (∼244 L-mmol(-1)) to negatively charged HA, sHA, and exopolysaccharide-coated sHA due to strong electrostatic interactions via multivalent tertiary amines of p(DMAEMA). Owing to hydrophobic cores, nanoparticles load farnesol, a hydrophobic antibacterial drug, at ∼22 wt %. Farnesol release is pH-dependent with t1/2 = 7 and 15 h for release at pH 4.5 and 7.2, as nanoparticles undergo core destabilization at acidic pH, characteristic of cariogenic biofilm microenvironments. Importantly, topical applications of farnesol-loaded nanoparticles disrupted Streptococcus mutans biofilms 4-fold more effectively than free farnesol. Mechanical stability of biofilms treated with drug-loaded nanoparticles was compromised, resulting in >2-fold enhancement in biofilm removal under shear stress compared to free farnesol and controls. Farnesol-loaded nanoparticles effectively attenuated biofilm virulence in vivo using a clinically relevant topical treatment regimen (2×/day) in a rodent dental caries disease model. Strikingly, treatment with farnesol-loaded nanoparticles reduced both the number and severity of carious lesions, while free

  18. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence.

    Science.gov (United States)

    Horev, Benjamin; Klein, Marlise I; Hwang, Geelsu; Li, Yong; Kim, Dongyeop; Koo, Hyun; Benoit, Danielle S W

    2015-03-24

    Development of effective therapies to control oral biofilms is challenging, as topically introduced agents must avoid rapid clearance from biofilm-tooth interfaces while targeting biofilm microenvironments. Additionally, exopolysaccharides-matrix and acidification of biofilm microenvironments are associated with cariogenic (caries-producing) biofilm virulence. Thus, nanoparticle carriers capable of binding to hydroxyapatite (HA), saliva-coated HA (sHA), and exopolysaccharides with enhanced drug release at acidic pH were developed. Nanoparticles are formed from diblock copolymers composed of 2-(dimethylamino)ethyl methacrylate (DMAEMA), butyl methacrylate (BMA), and 2-propylacrylic acid (PAA) (p(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA)) that self-assemble into ∼21 nm cationic nanoparticles. Nanoparticles exhibit outstanding adsorption affinities (∼244 L-mmol(-1)) to negatively charged HA, sHA, and exopolysaccharide-coated sHA due to strong electrostatic interactions via multivalent tertiary amines of p(DMAEMA). Owing to hydrophobic cores, nanoparticles load farnesol, a hydrophobic antibacterial drug, at ∼22 wt %. Farnesol release is pH-dependent with t1/2 = 7 and 15 h for release at pH 4.5 and 7.2, as nanoparticles undergo core destabilization at acidic pH, characteristic of cariogenic biofilm microenvironments. Importantly, topical applications of farnesol-loaded nanoparticles disrupted Streptococcus mutans biofilms 4-fold more effectively than free farnesol. Mechanical stability of biofilms treated with drug-loaded nanoparticles was compromised, resulting in >2-fold enhancement in biofilm removal under shear stress compared to free farnesol and controls. Farnesol-loaded nanoparticles effectively attenuated biofilm virulence in vivo using a clinically relevant topical treatment regimen (2×/day) in a rodent dental caries disease model. Strikingly, treatment with farnesol-loaded nanoparticles reduced both the number and severity of carious lesions, while free

  19. A study of biofilm production in clinical isolates of Staphylococci at a tertiary care hospital, Bangalore

    Directory of Open Access Journals (Sweden)

    Saroj Golia

    2015-02-01

    Full Text Available Background: The Biofilms are densely packed communities of microorganisms consisting of layers of cell clusters embedded in a matrix of extracellular polysaccharide called polysaccharide intercellular adhesin. This layer impedes the delivery of antibiotics to the biofilm forming microbial cells leading to emergence of drug resistance. Staphylococci are commensal bacteria on the human skin and mucous membranes. So it may be easily introduced as a contaminant during the surgical intervention. So, this study was conducted to identify the Biofilm producing strains from clinical isolates of Staphylococci. Methods: A total of 182 non-repetitive clinical strains of Staphylococci isolated from various clinical samples from Feb 2014 and #8211;Oct 2014 were included in the study. All the isolates were identified using standard microbiological procedures. All the samples were tested for biofilm production by modified Congo-red agar method and tube method. Results: Out of 182 samples that were included in the study, a total of 90 (49.45% samples showed biofilm formation of which 58 (75.32% were methicillin resistant and 32 (30.47% were methicillin sensitive. Also these strains were resistant to other antibiotics. Conclusion: Our study showed biofilm production by methicillin resistant strains which were also multidrug resistant. Treatment of methicillin resistant strains of Staphylococci is one of the most challenging task for the clinicians and the microbiologists. So they should be routinely screened for biofilm formation in order to prevent emergence and spread of multidrug resistant strains. [Int J Res Med Sci 2015; 3(2.000: 470-474

  20. The effect of blue light on periodontal biofilm growth in vitro.

    Science.gov (United States)

    Fontana, Carla R; Song, Xiaoqing; Polymeri, Angeliki; Goodson, J Max; Wang, Xiaoshan; Soukos, Nikolaos S

    2015-11-01

    We have previously shown that blue light eliminates the black-pigmented oral bacteria Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, and Prevotella melaninogenica. In the present study, the in vitro photosensitivity of the above black-pigmented microorganisms and four Fusobacteria species (Fusobacterium nucleatum ss. nucleatum, F. nucleatum ss. vincentii, F. nucleatum ss. polymorphum, Fusobacterium periodonticum) was investigated in pure cultures and human dental plaque suspensions. We also tested the hypothesis that phototargeting the above eight key periodontopathogens in plaque-derived biofilms in vitro would control growth within the dental biofilm environment. Cultures of the eight bacteria were exposed to blue light at 455 nm with power density of 80 mW/cm2 and energy fluence of 4.8 J/cm2. High-performance liquid chromatography (HPLC) analysis of bacteria was performed to demonstrate the presence and amounts of porphyrin molecules within microorganisms. Suspensions of human dental plaque bacteria were also exposed once to blue light at 455 nm with power density of 50 mW/cm2 and energy fluence of 12 J/cm2. Microbial biofilms developed from the same plaque were exposed to 455 nm blue light at 50 mW/cm2 once daily for 4 min (12 J/cm2) over a period of 3 days (4 exposures) in order to investigate the cumulative action of phototherapy on the eight photosensitive pathogens as well as on biofilm growth. Bacterial growth was evaluated using the colony-forming unit (CFU) assay. The selective phototargeting of pathogens was studied using whole genomic probes in the checkerboard DNA-DNA format. In cultures, all eight species showed significant growth reduction (p biofilms, respectively, (p biofilms. The cumulative blue light treatment suppressed biofilm growth in vitro. This may introduce a new avenue of prophylactic treatment for periodontal diseases. PMID:25759232

  1. A modeling and simulation study of siderophore mediated antagonism in dual-species biofilms

    Directory of Open Access Journals (Sweden)

    Collinson Shannon

    2009-12-01

    Full Text Available Abstract Background Several bacterial species possess chelation mechanisms that allow them to scavenge iron from the environment under conditions of limitation. To this end they produce siderophores that bind the iron and make it available to the cells later on, while rendering it unavailable to other organisms. The phenomenon of siderophore mediated antagonism has been studied to some extent for suspended populations where it was found that the chelation ability provides a growth advantage over species that do not have this possibility. However, most bacteria live in biofilm communities. In particular Pseudomonas fluorescens and Pseudomonas putida, the species that have been used in most experimental studies of the phenomenon, are known to be prolific biofilm formers, but only very few experimental studies of iron chelation have been published to date for the biofilm setting. We address this question in the present study. Methods Based on a previously introduced model of iron chelation and an existing model of biofilm growth we formulate a model for iron chelation and competition in dual species biofilms. This leads to a highly nonlinear system of partial differential equations which is studied in computer simulation experiments. Conclusions (i Siderophore production can give a growth advantage also in the biofilm setting, (ii diffusion facilitates and emphasizes this growth advantage, (iii the magnitude of the growth advantage can also depend on the initial inoculation of the substratum, (iv a new mass transfer boundary condition was derived that allows to a priori control the expect the expected average thickness of the biofilm in terms of the model parameters.

  2. The effect of blue light on periodontal biofilm growth in vitro.

    Science.gov (United States)

    Fontana, Carla R; Song, Xiaoqing; Polymeri, Angeliki; Goodson, J Max; Wang, Xiaoshan; Soukos, Nikolaos S

    2015-11-01

    We have previously shown that blue light eliminates the black-pigmented oral bacteria Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, and Prevotella melaninogenica. In the present study, the in vitro photosensitivity of the above black-pigmented microorganisms and four Fusobacteria species (Fusobacterium nucleatum ss. nucleatum, F. nucleatum ss. vincentii, F. nucleatum ss. polymorphum, Fusobacterium periodonticum) was investigated in pure cultures and human dental plaque suspensions. We also tested the hypothesis that phototargeting the above eight key periodontopathogens in plaque-derived biofilms in vitro would control growth within the dental biofilm environment. Cultures of the eight bacteria were exposed to blue light at 455 nm with power density of 80 mW/cm2 and energy fluence of 4.8 J/cm2. High-performance liquid chromatography (HPLC) analysis of bacteria was performed to demonstrate the presence and amounts of porphyrin molecules within microorganisms. Suspensions of human dental plaque bacteria were also exposed once to blue light at 455 nm with power density of 50 mW/cm2 and energy fluence of 12 J/cm2. Microbial biofilms developed from the same plaque were exposed to 455 nm blue light at 50 mW/cm2 once daily for 4 min (12 J/cm2) over a period of 3 days (4 exposures) in order to investigate the cumulative action of phototherapy on the eight photosensitive pathogens as well as on biofilm growth. Bacterial growth was evaluated using the colony-forming unit (CFU) assay. The selective phototargeting of pathogens was studied using whole genomic probes in the checkerboard DNA-DNA format. In cultures, all eight species showed significant growth reduction (p biofilms, respectively, (p biofilms. The cumulative blue light treatment suppressed biofilm growth in vitro. This may introduce a new avenue of prophylactic treatment for periodontal diseases.

  3. Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections

    OpenAIRE

    Issam Alshami; Alharbi, Ahmed E

    2014-01-01

    Objective: To explore the prevention of recurrent candiduria using natural based approaches and to study the antimicrobial effect of Hibiscus sabdariffa (H. sabdariffa) extract and the biofilm forming capacity of Candida albicans strains in the present of the H. sabdariffa extract. Methods: In this particular study, six strains of fluconazole resistant Candida albicans isolated from recurrent candiduria were used. The susceptibility of fungal isolates, time-kill curves and biofilm forming ...

  4. Efficient surface functionalization of wound dressings by a phytoactive nanocoating refractory to Candida albicans biofilm development.

    Science.gov (United States)

    Anghel, Ion; Holban, Alina Maria; Andronescu, Ecaterina; Grumezescu, Alexandru Mihai; Chifiriuc, Mariana Carmen

    2013-12-01

    The present study reports the fabrication and characterization of a novel nanostructured phyto-bioactive coated rayon/polyester wound dressing (WD) surface refractory to Candida albicans adhesion, colonization and biofilm formation, based on functionalized magnetite nanoparticles and Anethum graveolens (AG) and Salvia officinalis (SO) essential oils (EOs). TEM, XRD, TGA, FT-IR were used for the characterization of the fabricated nanobiocoated WDs. Using magnetic nanoparticles for the stabilization and controlled release of EOs, the activity of natural volatile compounds is significantly enhanced and their effect is stable during time. For this reason the nanobiocoated surfaces exhibited a longer term anti-biofilm effect, maintained for at least 72 h. Besides their excellent anti- adherence properties, the proposed solutions exhibit the advantage of using vegetal natural compounds, which are less toxic and easily biodegradable in comparison with synthetic antifungal drugs, representing thus promising approaches for the development of successful ways to control and prevent fungal biofilms associated infections. PMID:24706124

  5. Protein-based biofilm matrices in Staphylococci

    Directory of Open Access Journals (Sweden)

    Pietro eSpeziale

    2014-12-01

    Full Text Available Staphylococcus aureus and Staphylococcus epidermidis are the most important etiological agents of biofilm associated-infections on indwelling medical devices. Biofilm infections may also develop independently of indwelling devices, e.g. in native valve endocarditis, bone tissue and open wounds. After attachment to tissue or indwelling medical devices that have been conditioned with host plasma proteins, staphylococcal biofilms grow and produce a specific environment which provides the conditions for cell-cell interaction and formation of multicellular communities. Bacteria living in biofilms express a variety of macromolecules, including exopolysaccharides, proteins, extracellular eDNA and other polymers. The S. aureus surface protein C and G (SasC and SasG, clumping factor B (ClfB, serine aspartate repeat protein (SdrC, the biofilm-associated protein (Bap and the fibronectin/fibrinogen-binding proteins (FnBPA and FnBPB are individually implicated in biofilm matrix formation. In S. epidermidis, a protein named accumulation-associated protein (Aap contributes to both the primary attachment phase and the establishment of intercellular connections by forming fibrils on the cell surface. In S. epidermidis proteinaceous biofilm formation can also be mediated by the extracellular matrix binding protein (Embp and S. epidermidis surface protein C (SesC. Additionally, multifunctional proteins such as extracellular adherence protein (Eap and extracellular matrix protein binding protein (Emp of S. aureus and the iron-regulated surface determinant protein C (IsdC of S. lugdunensis can promote biofilm formation in iron-depleted conditions. This multitude of proteins intervene at different stages of biofilm formation with certain proteins contributing to biofilm accumulation and others mediating primary attachment to surfaces. This review examines the contribution of proteins to biofilm formation in staphylococci. The potential to develop vaccines to prevent

  6. Oral biofilm models for mechanical plaque removal.

    Science.gov (United States)

    Verkaik, Martinus J; Busscher, Henk J; Rustema-Abbing, Minie; Slomp, Anje M; Abbas, Frank; van der Mei, Henny C

    2010-08-01

    In vitro plaque removal studies require biofilm models that resemble in vivo dental plaque. Here, we compare contact and non-contact removal of single and dual-species biofilms as well as of biofilms grown from human whole saliva in vitro using different biofilm models. Bacteria were adhered to a salivary pellicle for 2 h or grown after adhesion for 16 h, after which, their removal was evaluated. In a contact mode, no differences were observed between the manual, rotating, or sonic brushing; and removal was on average 39%, 84%, and 95% for Streptococcus mutans, Streptococcus oralis, and Actinomyces naeslundii, respectively, and 90% and 54% for the dual- and multi-species biofilms, respectively. However, in a non-contact mode, rotating and sonic brushes still removed considerable numbers of bacteria (24-40%), while the manual brush as a control (5-11%) did not. Single A. naeslundii and dual-species (A. naeslundii and S. oralis) biofilms were more difficult to remove after 16 h growth than after 2 h adhesion (on average, 62% and 93% for 16- and 2-h-old biofilms, respectively), while in contrast, biofilms grown from whole saliva were easier to remove (97% after 16 h and 54% after 2 h of growth). Considering the strong adhesion of dual-species biofilms and their easier more reproducible growth compared with biofilms grown from whole saliva, dual-species biofilms of A. naeslundii and S. oralis are suggested to be preferred for use in mechanical plaque removal studies in vitro. PMID:19565279

  7. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation

    DEFF Research Database (Denmark)

    Stapper, A.P.; Narasimhan, G.; Oman, D.E.;

    2004-01-01

    Extracellular polymers can facilitate the non-specific attachment of bacteria to surfaces and hold together developing biofilms. This study was undertaken to qualitatively and quantitatively compare the architecture of biofilms produced by Pseudomonas aeruginosa strain PAO1 and its alginate......-overproducing (mucA22) and alginate-defective (algD) variants in order to discern the role of alginate in biofilm formation. These strains, PAO1, Alg(+) PAOmucA22 and Alg(-) PAOalgD, tagged with green fluorescent protein, were grown in a continuous flow cell system to characterize the developmental cycles...... of their biofilm formation using confocal laser scanning microscopy. Biofilm Image Processing (BIP) and Community Statistics (COMSTAT) software programs were used to provide quantitative measurements of the two-dimensional biofilm images. All three strains formed distinguishable biofilm architectures, indicating...

  8. Microbial diversities (16S and 18S rRNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper.

    Science.gov (United States)

    Buse, Helen Y; Lu, Jingrang; Lu, Xinxin; Mou, Xiaozhen; Ashbolt, Nicholas J

    2014-05-01

    Drinking water (DW) biofilm communities influence the survival of opportunistic pathogens, yet knowledge about the microbial composition of DW biofilms developed on common in-premise plumbing material is limited. Utilizing 16S and 18S rRNA gene pyrosequencing, this study characterized the microbial community structure within DW biofilms established on unplasticized polyvinyl chloride (uPVC) and copper (Cu) surfaces and the impact of introducing Legionella pneumophila (Lp) and Acanthamoeba polyphaga. Mature (> 1 year old) biofilms were developed before inoculation with sterilized DW (control, Con), Lp, or Lp and A. polyphaga (LpAp). Comparison of uPVC and Cu biofilms indicated significant differences between bacterial (P = 0.001) and eukaryotic (P 0.05) but did affect eukaryotic members (uPVC, P < 0.01; Cu, P = 0.001). Thus, established DW biofilms host complex communities that may vary based on substratum matrix and maintain consistent bacterial communities despite introduction of Lp, an environmental pathogen.

  9. Introducing Science to undergraduate students

    Directory of Open Access Journals (Sweden)

    P. Avila Jr

    2006-07-01

    Full Text Available The knowledge of scientific method provides stimulus and development of critical thinking and logical analysis of information besides the training of continuous formulation of hypothesis to be applied in formal scientific issues as well as in everyday facts. The scientific education, useful for all people, is indispensable for the experimental science students. Aiming at the possibility to offer a systematic learning of the scientific principles, we developed a undergraduate course designed to approximate the students to the procedures of scientific production and publication. The course was developed in a 40 hours, containing two modules: I. Introducing Scientific Articles (papers and II. Writing Research Project. The first module deals with: (1 the difference between scientific knowledge and common sense; (2 scientific methodology; (3 scientific publishing categories; (4 logical principles; (5 deduction and induction approach and (6 paper analysis. The second module includes (1 selection of problem to be solved by experimental procedures; (2 bibliography revision; (3 support agencies; (4 project writing and presentation and (5 critical analysis of experimental results. The course used a Collaborative Learning strategy with each topic being developed through activities performed by the students. Qualitative and quantitative (through Likert questionnaires evaluation were carried out in each step of the course, the results showing great appreciation by the students. This is also the opinion of the staff responsible for the planning and development of the course, which is now in its second and improved version.

  10. Introducing quantum theory a graphic guide

    CERN Document Server

    McEvoy, J P

    2013-01-01

    Quantum theory confronts us with bizarre paradoxes which contradict the logic of classical physics. At the subatomic level, one particle seems to know what the others are doing, and according to Heisenberg's "uncertainty principle", there is a limit on how accurately nature can be observed. And yet the theory is amazingly accurate and widely applied, explaining all of chemistry and most of physics. "Introducing Quantum Theory" takes us on a step-by-step tour with the key figures, including Planck, Einstein, Bohr, Heisenberg and Schrodinger. Each contributed at least one crucial concept to the theory. The puzzle of the wave-particle duality is here, along with descriptions of the two questions raised against Bohr's "Copenhagen Interpretation" - the famous "dead and alive cat" and the EPR paradox. Both remain unresolved.

  11. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Aylin Ugurlu; Aysegul Karahasan Yagci; Seyhan Ulusoy; Burak Aksu; Gulgun Bosgelmez-Tinaz

    2016-01-01

    Objective: To investigate the effects of plant-derived phenolic compounds (i.e. caffeic acid, cinnamic acid, ferulic acid and vanillic acid) on the production of quorum sensing regulated virulence factors such as pyocyanin, biofilm formation and swarming motility of Pseudomonas aeruginosa (P. aeruginosa) isolates. Methods: Fourteen clinical P. aeruginosa isolates obtained from urine samples and P. aeruginosa PA01 strain were included in the study. The antibacterial effects of phenolic compounds were screened by well diffusion assay. Pyocyanin and biofilm ac-tivity were measured from culture supernatants and the absorbance values were measured using a spectrophotometer. Swarming plates supplemented with phenolic acids were point inoculated with P. aeruginosa strains and the ability to swarm was determined by measuring the distance of swarming from the central inoculation site. Results: Tested phenolic compounds reduced the production of pyocyanin and biofilm formation without affecting growth compared to untreated cultures. Moreover, these compounds blocked about 50% of biofilm production and swarming motility in P. aeruginosa isolates. Conclusions: We may suggest that if swarming and consecutive biofilm formation could be inhibited by the natural products as shown in our study, the bacteria could not attach to the surfaces and produce chronic infections. Antimicrobials and natural products could be combined and the dosage of antimicrobials could be reduced to overcome antimicrobial resistance and drug side effects.

  12. Mini Review of Phytochemicals and Plant Taxa with Activity as Microbial Biofilm and Quorum Sensing Inhibitors

    Directory of Open Access Journals (Sweden)

    Chieu Anh Kim Ta

    2015-12-01

    Full Text Available Microbial biofilms readily form on many surfaces in nature including plant surfaces. In order to coordinate the formation of these biofilms, microorganisms use a cell-to-cell communication system called quorum sensing (QS. As formation of biofilms on vascular plants may not be advantageous to the hosts, plants have developed inhibitors to interfere with these processes. In this mini review, research papers published on plant-derived molecules that have microbial biofilm or quorum sensing inhibition are reviewed with the objectives of determining the biosynthetic classes of active compounds, their biological activity in assays, and their families of occurrence and range. The main findings are the identification of plant phenolics, including benzoates, phenyl propanoids, stilbenes, flavonoids, gallotannins, proanthocyanidins and coumarins as important inhibitors with both activities. Some terpenes including monoterpenes, sesquiterpenes, diterpenes and triterpenes also have anti-QS and anti-biofilm activities. Relatively few alkaloids were reported. Quinones and organosulfur compounds, especially from garlic, were also active. A common feature is the polar nature of these compounds. Phytochemicals with these activities are widespread in Angiosperms in temperate and tropical regions, but gymnosperms, bryophytes and pteridophytes were not represented.

  13. Mini Review of Phytochemicals and Plant Taxa with Activity as Microbial Biofilm and Quorum Sensing Inhibitors.

    Science.gov (United States)

    Ta, Chieu Anh Kim; Arnason, John Thor

    2015-01-01

    Microbial biofilms readily form on many surfaces in nature including plant surfaces. In order to coordinate the formation of these biofilms, microorganisms use a cell-to-cell communication system called quorum sensing (QS). As formation of biofilms on vascular plants may not be advantageous to the hosts, plants have developed inhibitors to interfere with these processes. In this mini review, research papers published on plant-derived molecules that have microbial biofilm or quorum sensing inhibition are reviewed with the objectives of determining the biosynthetic classes of active compounds, their biological activity in assays, and their families of occurrence and range. The main findings are the identification of plant phenolics, including benzoates, phenyl propanoids, stilbenes, flavonoids, gallotannins, proanthocyanidins and coumarins as important inhibitors with both activities. Some terpenes including monoterpenes, sesquiterpenes, diterpenes and triterpenes also have anti-QS and anti-biofilm activities. Relatively few alkaloids were reported. Quinones and organosulfur compounds, especially from garlic, were also active. A common feature is the polar nature of these compounds. Phytochemicals with these activities are widespread in Angiosperms in temperate and tropical regions, but gymnosperms, bryophytes and pteridophytes were not represented. PMID:26712734

  14. Macroscopic amyloid fiber formation by staphylococcal biofilm associated SuhB protein.

    Science.gov (United States)

    Dutta, Anirudha; Bhattacharyya, Sudipta; Kundu, Anirban; Dutta, Debabrata; Das, Amit Kumar

    2016-10-01

    Staphylococcus aureus is a commensal and opportunistic pathogen that causes lethal infections. Biofilm forming ability of S. aureus enhances its virulence since biofilm provides the bacteria protective shield against antibiotics and host immunity. Polysaccharide independent biofilm formation by several virulent S. aureus strains have been identified recently, where protein components substitute polysaccharide intercellular adhesin (PIA) involved in bacterial cell attachment. The suhB gene has been reported to be essential in staphylococcal PIA-independent biofilm formation. Overexpression of staphylococcal SuhB (SasuhB) in E. coli produces extracellular macroscopic fibers made of recombinant SaSuhB protein. The amyloidic nature of the fiber is evaluated by high resolution electron microscopy, X-ray fiber diffraction and amyloid specific dyes, such as Congo red and thioflavin-T binding assay. The fibers appear to be sticky in nature and bind a large number of bacterial cells. The results suggest the possible role of SaSuhB-fibers as a structural component as well as an adhesin in biofilm matrix. PMID:27497060

  15. Introducing Multimedia Information Retrieval to libraries

    Directory of Open Access Journals (Sweden)

    Roberto Raieli

    2016-09-01

    Full Text Available The paper aims to introduce libraries to the view that operating within the terms of traditional Information Retrieval (IR, only through textual language, is limitative, and that considering broader criteria, as those of Multimedia Information Retrieval (MIR, is necessary. The paper stresses the story of MIR fundamental principles, from early years of questioning on documentation to today’s theories on semantic means. New issues for a LIS methodology of processing and searching multimedia documents are theoretically argued, introducing MIR as a holistic whole composed by content-based and semantic information retrieval methodologies. MIR offers a better information searching way: every kind of digital document can be analyzed and retrieved through the elements of language appropriate to its own nature. MIR approach directly handles the concrete content of documents, also considering semantic aspects. Paper conclusions remark the organic integration of the revolutionary contentual conception of information processing with an improved semantics conception, gathering and composing advantages of both systems for accessing to information.

  16. The 'Swiss cheese' instability of bacterial biofilms

    CERN Document Server

    Jang, Hongchul; Stocker, Roman

    2012-01-01

    We demonstrate a novel pattern that results in bacterial biofilms as a result of the competition between hydrodynamic forces and adhesion forces. After the passage of an air plug, the break up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a Swiss cheese pattern of holes is left in the residual biofilm.

  17. Cadmium Modulates Biofilm Formation by Staphylococcus epidermidis

    NARCIS (Netherlands)

    Wu, Xueqing; Santos, Regiane R.; Fink-Gremmels, Johanna

    2015-01-01

    The aim of the study was to evaluate the effect of cadmium exposure on Staphylococcus epidermidis (ATCC 35984) biofilm formation. Bacteria were cultured in the absence or presence of different concentrations (0-50 mu M) of cadmium. Biofilm formation and bacterial viability were assessed. Quantitativ

  18. Penetration of Rifampin through Staphylococcus epidermidis Biofilms

    OpenAIRE

    Zheng, Zhilan; Philip S. Stewart

    2002-01-01

    Rifampin penetrated biofilms formed by Staphylococcus epidermidis but failed to effectively kill the bacteria. Penetration was demonstrated by a simple diffusion cell bioassay and by transmission electron microscopic observation of antibiotic-affected cells at the distal edge of the biofilm.

  19. Screening of Compounds against Gardnerella vaginalis Biofilms.

    Directory of Open Access Journals (Sweden)

    Cornelia Gottschick

    Full Text Available Bacterial vaginosis (BV is a common infection in reproductive age woman and is characterized by dysbiosis of the healthy vaginal flora which is dominated by Lactobacilli, followed by growth of bacteria like Gardnerella vaginalis. The ability of G. vaginalis to form biofilms contributes to the high rates of recurrence that are typical for BV and which unfortunately make repeated antibiotic therapy inevitable. Here we developed a biofilm model for G. vaginalis and screened a large spectrum of compounds for their ability to prevent biofilm formation and to resolve an existing G. vaginalis biofilm. The antibiotics metronidazole and tobramycin were highly effective in preventing biofilm formation, but had no effect on an established biofilm. The application of the amphoteric tenside sodium cocoamphoacetate (SCAA led to disintegration of existing biofilms, reducing biomass by 51% and viability by 61% and it was able to increase the effect of metronidazole by 40% (biomass and 61% (viability. Our data show that attacking the biofilm and the bacterial cells by the combination of an amphoteric tenside with the antibiotic metronidazole might be a useful strategy against BV.

  20. Pseudomonas aeruginosa biofilms in cystic fibrosis

    DEFF Research Database (Denmark)

    Høiby, Niels; Ciofu, Oana; Bjarnsholt, Thomas

    2010-01-01

    The persistence of chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients is due to biofilm-growing mucoid (alginate-producing) strains. A biofilm is a structured consortium of bacteria, embedded in a self-produced polymer matrix consisting of polysaccharide, protein...