WorldWideScience

Sample records for biofilm matrix regulation

  1. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa.

    Science.gov (United States)

    Sakuragi, Yumiko; Kolter, Roberto

    2007-07-01

    Quorum sensing (QS) has been previously shown to play an important role in the development of Pseudomonas aeruginosa biofilms (D. G. Davies et al., Science 280:295-298, 1998). Although QS regulation of swarming and DNA release has been shown to play important roles in biofilm development, regulation of genes directly involved in biosynthesis of biofilm matrix has not been described. Here, transcription of the pel operon, essential for the production of a glucose-rich matrix exopolysaccharide, is shown to be greatly reduced in lasI and rhlI mutants. Chemical complementation of the lasI mutant with 3-oxo-dodecanoyl homoserine lactone restores pel transcription to the wild-type level and biofilm formation ability. These findings thus connect QS signaling and transcription of genes responsible for biofilm matrix biosynthesis.

  2. Pseudomonas biofilm matrix composition and niche biology

    Science.gov (United States)

    Mann, Ethan E.; Wozniak, Daniel J.

    2014-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072

  3. Spermidine promotes Bacillus subtilis biofilm formation by activating expression of the matrix regulator slrR.

    Science.gov (United States)

    Hobley, Laura; Li, Bin; Wood, Jennifer L; Kim, Sok Ho; Naidoo, Jacinth; Ferreira, Ana Sofia; Khomutov, Maxim; Khomutov, Alexey; Stanley-Wall, Nicola R; Michael, Anthony J

    2017-07-21

    Ubiquitous polyamine spermidine is not required for normal planktonic growth of Bacillus subtilis but is essential for robust biofilm formation. However, the structural features of spermidine required for B. subtilis biofilm formation are unknown and so are the molecular mechanisms of spermidine-stimulated biofilm development. We report here that in a spermidine-deficient B. subtilis mutant, the structural analogue norspermidine, but not homospermidine, restored biofilm formation. Intracellular biosynthesis of another spermidine analogue, aminopropylcadaverine, from exogenously supplied homoagmatine also restored biofilm formation. The differential ability of C-methylated spermidine analogues to functionally replace spermidine in biofilm formation indicated that the aminopropyl moiety of spermidine is more sensitive to C -methylation, which it is essential for biofilm formation, but that the length and symmetry of the molecule is not critical. Transcriptomic analysis of a spermidine-depleted B. subtilis speD mutant uncovered a nitrogen-, methionine-, and S -adenosylmethionine-sufficiency response, resulting in repression of gene expression related to purine catabolism, methionine and S -adenosylmethionine biosynthesis and methionine salvage, and signs of altered membrane status. Consistent with the spermidine requirement in biofilm formation, single-cell analysis of this mutant indicated reduced expression of the operons for production of the exopolysaccharide and TasA protein biofilm matrix components and SinR antagonist slrR Deletion of sinR or ectopic expression of slrR in the spermidine-deficient Δ speD background restored biofilm formation, indicating that spermidine is required for expression of the biofilm regulator slrR Our results indicate that spermidine functions in biofilm development by activating transcription of the biofilm matrix exopolysaccharide and TasA operons through the regulator slrR . © 2017 by The American Society for Biochemistry and

  4. Confocal microscopy imaging of the biofilm matrix

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke L

    2017-01-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens...... the concentration of solutes and the diffusive properties of the biofilm matrix....

  5. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.

    Directory of Open Access Journals (Sweden)

    Luyan Ma

    2009-03-01

    Full Text Available Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell-cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications.

  6. The Candida albicans Biofilm Matrix: Composition, Structure and Function.

    Science.gov (United States)

    Pierce, Christopher G; Vila, Taissa; Romo, Jesus A; Montelongo-Jauregui, Daniel; Wall, Gina; Ramasubramanian, Anand; Lopez-Ribot, Jose L

    2017-03-01

    A majority of infections caused by Candida albicans -the most frequent fungal pathogen-are associated with biofilm formation. A salient feature of C. albicans biofilms is the presence of the biofilm matrix. This matrix is composed of exopolymeric materials secreted by sessile cells within the biofilm, in which all classes of macromolecules are represented, and provides protection against environmental challenges. In this review, we summarize the knowledge accumulated during the last two decades on the composition, structure, and function of the C. albicans biofilm matrix. Knowledge of the matrix components, its structure, and function will help pave the way to novel strategies to combat C. albicans biofilm infections.

  7. A major protein component of the Bacillus subtilis biofilm matrix.

    Science.gov (United States)

    Branda, Steven S; Chu, Frances; Kearns, Daniel B; Losick, Richard; Kolter, Roberto

    2006-02-01

    Microbes construct structurally complex multicellular communities (biofilms) through production of an extracellular matrix. Here we present evidence from scanning electron microscopy showing that a wild strain of the Gram positive bacterium Bacillus subtilis builds such a matrix. Genetic, biochemical and cytological evidence indicates that the matrix is composed predominantly of a protein component, TasA, and an exopolysaccharide component. The absence of TasA or the exopolysaccharide resulted in a residual matrix, while the absence of both components led to complete failure to form complex multicellular communities. Extracellular complementation experiments revealed that a functional matrix can be assembled even when TasA and the exopolysaccharide are produced by different cells, reinforcing the view that the components contribute to matrix formation in an extracellular manner. Having defined the major components of the biofilm matrix and the control of their synthesis by the global regulator SinR, we present a working model for how B. subtilis switches between nomadic and sedentary lifestyles.

  8. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes.

    Science.gov (United States)

    Hobley, Laura; Harkins, Catriona; MacPhee, Cait E; Stanley-Wall, Nicola R

    2015-09-01

    Biofilms are communities of microbial cells that underpin diverse processes including sewage bioremediation, plant growth promotion, chronic infections and industrial biofouling. The cells resident in the biofilm are encased within a self-produced exopolymeric matrix that commonly comprises lipids, proteins that frequently exhibit amyloid-like properties, eDNA and exopolysaccharides. This matrix fulfils a variety of functions for the community, from providing structural rigidity and protection from the external environment to controlling gene regulation and nutrient adsorption. Critical to the development of novel strategies to control biofilm infections, or the capability to capitalize on the power of biofilm formation for industrial and biotechnological uses, is an in-depth knowledge of the biofilm matrix. This is with respect to the structure of the individual components, the nature of the interactions between the molecules and the three-dimensional spatial organization. We highlight recent advances in the understanding of the structural and functional role that carbohydrates and proteins play within the biofilm matrix to provide three-dimensional architectural integrity and functionality to the biofilm community. We highlight, where relevant, experimental techniques that are allowing the boundaries of our understanding of the biofilm matrix to be extended using Escherichia coli, Staphylococcus aureus, Vibrio cholerae, and Bacillus subtilis as exemplars. © FEMS 2015.

  9. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly

    Science.gov (United States)

    Stewart, Elizabeth J.; Ganesan, Mahesh; Younger, John G.; Solomon, Michael J.

    2015-01-01

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, and DNA. Although the identity and abundance of EPS macromolecules are known, how these matrix materials interact with themselves and bacterial cells to generate biofilm morphology and mechanics is not understood. Here, we find that the colloidal self-assembly of Staphylococcus epidermidis RP62A cells and polysaccharides into viscoelastic biofilms is driven by thermodynamic phase instability of EPS. pH conditions that induce phase instability of chitosan produce artificial S. epidermidis biofilms whose mechanics match natural S. epidermidis biofilms. Furthermore, pH-induced solubilization of the matrix triggers disassembly in both artificial and natural S. epidermidis biofilms. This pH-induced disassembly occurs in biofilms formed by five additional staphylococcal strains, including three clinical isolates. Our findings suggest that colloidal self-assembly of cells and matrix polymers produces biofilm viscoelasticity and that biofilm control strategies can exploit this mechanism. PMID:26272750

  10. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    Bacteria in nature primarily live in surface-associated communities commonly known as biofilms. Because bacteria in biofilms, in many cases, display tolerance to host immune systems, antibiotics, and biocides, they are often difficult or impossible to eradicate. Biofilm formation, therefore, leads...... to various persistent infections in humans and animals, and to a variety of complications in industry, where solid–water interfaces occur. Knowledge about the molecular mechanisms involved in biofilm formation is necessary for creating strategies to control biofilms. Recent studies have shown...... that extracellular DNA is an important component of the extracellular matrix of microbial biofilms. The present chapter is focussed on extracellular DNA as matrix component in biofilms formed by Pseudomonas aeruginosa as an example from the Gram-negative bacteria, and Streptococcus and Staphylococcus as examples...

  11. A Biofilm Matrix-Associated Protease Inhibitor Protects Pseudomonas aeruginosa from Proteolytic Attack.

    Science.gov (United States)

    Tseng, Boo Shan; Reichhardt, Courtney; Merrihew, Gennifer E; Araujo-Hernandez, Sophia A; Harrison, Joe J; MacCoss, Michael J; Parsek, Matthew R

    2018-04-10

    Pseudomonas aeruginosa produces an extracellular biofilm matrix that consists of nucleic acids, exopolysaccharides, lipid vesicles, and proteins. In general, the protein component of the biofilm matrix is poorly defined and understudied relative to the other major matrix constituents. While matrix proteins have been suggested to provide many functions to the biofilm, only proteins that play a structural role have been characterized thus far. Here we identify proteins enriched in the matrix of P. aeruginosa biofilms. We then focused on a candidate matrix protein, the serine protease inhibitor ecotin (PA2755). This protein is able to inhibit neutrophil elastase, a bactericidal enzyme produced by the host immune system during P. aeruginosa biofilm infections. We show that ecotin binds to the key biofilm matrix exopolysaccharide Psl and that it can inhibit neutrophil elastase when associated with Psl. Finally, we show that ecotin protects both planktonic and biofilm P. aeruginosa cells from neutrophil elastase-mediated killing. This may represent a novel mechanism of protection for biofilms to increase their tolerance against the innate immune response. IMPORTANCE Proteins associated with the extracellular matrix of bacterial aggregates called biofilms have long been suggested to provide many important functions to the community. To date, however, only proteins that provide structural roles have been described, and few matrix-associated proteins have been identified. We developed a method to identify matrix proteins and characterized one. We show that this protein, when associated with the biofilm matrix, can inhibit a bactericidal enzyme produced by the immune system during infection and protect biofilm cells from death induced by the enzyme. This may represent a novel mechanism of protection for biofilms, further increasing their tolerance against the immune response. Together, our results are the first to show a nonstructural function for a confirmed matrix

  12. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm.

    Science.gov (United States)

    Koo, H; Falsetta, M L; Klein, M I

    2013-12-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms.

  13. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion.

    Science.gov (United States)

    Yan, Jing; Nadell, Carey D; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2017-08-23

    Biofilms, surface-attached communities of bacteria encased in an extracellular matrix, are a major mode of bacterial life. How the material properties of the matrix contribute to biofilm growth and robustness is largely unexplored, in particular in response to environmental perturbations such as changes in osmotic pressure. Here, using Vibrio cholerae as our model organism, we show that during active cell growth, matrix production enables biofilm-dwelling bacterial cells to establish an osmotic pressure difference between the biofilm and the external environment. This pressure difference promotes biofilm expansion on nutritious surfaces by physically swelling the colony, which enhances nutrient uptake, and enables matrix-producing cells to outcompete non-matrix-producing cheaters via physical exclusion. Osmotic pressure together with crosslinking of the matrix also controls the growth of submerged biofilms and their susceptibility to invasion by planktonic cells. As the basic physicochemical principles of matrix crosslinking and osmotic swelling are universal, our findings may have implications for other biofilm-forming bacterial species.Most bacteria live in biofilms, surface-attached communities encased in an extracellular matrix. Here, Yan et al. show that matrix production in Vibrio cholerae increases the osmotic pressure within the biofilm, promoting biofilm expansion and physical exclusion of non-matrix producing cheaters.

  14. KinD is a checkpoint protein linking spore formation to extracellular-matrix production in Bacillus subtilis biofilms.

    Science.gov (United States)

    Aguilar, Claudio; Vlamakis, Hera; Guzman, Alejandra; Losick, Richard; Kolter, Roberto

    2010-05-18

    Bacillus subtilis cells form multicellular biofilm communities in which spatiotemporal regulation of gene expression occurs, leading to differentiation of multiple coexisting cell types. These cell types include matrix-producing and sporulating cells. Extracellular matrix production and sporulation are linked in that a mutant unable to produce matrix is delayed for sporulation. Here, we show that the delay in sporulation is not due to a growth advantage of the matrix-deficient mutant under these conditions. Instead, we show that the link between matrix production and sporulation is through the Spo0A signaling pathway. Both processes are regulated by the phosphorylated form of the master transcriptional regulator Spo0A. When cells have low levels of phosphorylated Spo0A (Spo0A~P), matrix genes are expressed; however, at higher levels of Spo0A~P, sporulation commences. We have found that Spo0A~P levels are maintained at low levels in the matrix-deficient mutant, thereby delaying expression of sporulation-specific genes. This is due to the activity of one of the components of the Spo0A phosphotransfer network, KinD. A deletion of kinD suppresses the sporulation defect of matrix mutants, while its overproduction delays sporulation. Our data indicate that KinD displays a dual role as a phosphatase or a kinase and that its activity is linked to the presence of extracellular matrix in the biofilms. We propose a novel role for KinD in biofilms as a checkpoint protein that regulates the onset of sporulation by inhibiting the activity of Spo0A until matrix, or a component therein, is sensed.

  15. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance.

    Directory of Open Access Journals (Sweden)

    Heather T Taff

    Full Text Available Extracellular polysaccharides are key constituents of the biofilm matrix of many microorganisms. One critical carbohydrate component of Candida albicans biofilms, β-1,3 glucan, has been linked to biofilm protection from antifungal agents. In this study, we identify three glucan modification enzymes that function to deliver glucan from the cell to the extracellular matrix. These enzymes include two predicted glucan transferases and an exo-glucanase, encoded by BGL2, PHR1, and XOG1, respectively. We show that the enzymes are crucial for both delivery of β-1,3 glucan to the biofilm matrix and for accumulation of mature matrix biomass. The enzymes do not appear to impact cell wall glucan content of biofilm cells, nor are they necessary for filamentation or biofilm formation. We demonstrate that mutants lacking these genes exhibit enhanced susceptibility to the commonly used antifungal, fluconazole, during biofilm growth only. Transcriptional analysis and biofilm phenotypes of strains with multiple mutations suggest that these enzymes act in a complementary fashion to distribute matrix downstream of the primary β-1,3 glucan synthase encoded by FKS1. Furthermore, our observations suggest that this matrix delivery pathway works independently from the C. albicans ZAP1 matrix formation regulatory pathway. These glucan modification enzymes appear to play a biofilm-specific role in mediating the delivery and organization of mature biofilm matrix. We propose that the discovery of inhibitors for these enzymes would provide promising anti-biofilm therapeutics.

  16. Escherichia coli biofilms have an organized and complex extracellular matrix structure.

    Science.gov (United States)

    Hung, Chia; Zhou, Yizhou; Pinkner, Jerome S; Dodson, Karen W; Crowley, Jan R; Heuser, John; Chapman, Matthew R; Hadjifrangiskou, Maria; Henderson, Jeffrey P; Hultgren, Scott J

    2013-09-10

    Bacterial biofilms are ubiquitous in nature, and their resilience is derived in part from a complex extracellular matrix that can be tailored to meet environmental demands. Although common developmental stages leading to biofilm formation have been described, how the extracellular components are organized to allow three-dimensional biofilm development is not well understood. Here we show that uropathogenic Escherichia coli (UPEC) strains produce a biofilm with a highly ordered and complex extracellular matrix (ECM). We used electron microscopy (EM) techniques to image floating biofilms (pellicles) formed by UPEC. EM revealed intricately constructed substructures within the ECM that encase individual, spatially segregated bacteria with a distinctive morphology. Mutational and biochemical analyses of these biofilms confirmed curli as a major matrix component and revealed important roles for cellulose, flagella, and type 1 pili in pellicle integrity and ECM infrastructure. Collectively, the findings of this study elucidated that UPEC pellicles have a highly organized ultrastructure that varies spatially across the multicellular community. Bacteria can form biofilms in diverse niches, including abiotic surfaces, living cells, and at the air-liquid interface of liquid media. Encasing these cellular communities is a self-produced extracellular matrix (ECM) that can be composed of proteins, polysaccharides, and nucleic acids. The ECM protects biofilm bacteria from environmental insults and also makes the dissolution of biofilms very challenging. As a result, formation of biofilms within humans (during infection) or on industrial material (such as water pipes) has detrimental and costly effects. In order to combat bacterial biofilms, a better understanding of components required for biofilm formation and the ECM is required. This study defined the ECM composition and architecture of floating pellicle biofilms formed by Escherichia coli.

  17. Nutrient depletion in Bacillus subtilis biofilms triggers matrix production

    International Nuclear Information System (INIS)

    Zhang, Wenbo; Seminara, Agnese; Suaris, Melanie; Angelini, Thomas E; Brenner, Michael P; Weitz, David A

    2014-01-01

    Many types of bacteria form colonies that grow into physically robust and strongly adhesive aggregates known as biofilms. A distinguishing characteristic of bacterial biofilms is an extracellular polymeric substance (EPS) matrix that encases the cells and provides physical integrity to the colony. The EPS matrix consists of a large amount of polysaccharide, as well as protein filaments, DNA and degraded cellular materials. The genetic pathways that control the transformation of a colony into a biofilm have been widely studied, and yield a spatiotemporal heterogeneity in EPS production. Spatial gradients in metabolites parallel this heterogeneity in EPS, but nutrient concentration as an underlying physiological initiator of EPS production has not been explored. Here, we study the role of nutrient depletion in EPS production in Bacillus subtilis biofilms. By monitoring simultaneously biofilm size and matrix production, we find that EPS production increases at a critical colony thickness that depends on the initial amount of carbon sources in the medium. Through studies of individual cells in liquid culture we find that EPS production can be triggered at the single-cell level by reducing nutrient concentration. To connect the single-cell assays with conditions in the biofilm, we calculate carbon concentration with a model for the reaction and diffusion of nutrients in the biofilm. This model predicts the relationship between the initial concentration of carbon and the thickness of the colony at the point of internal nutrient deprivation. (paper)

  18. The Exopolysaccharide Matrix: A Virulence Determinant of Cariogenic Biofilm

    OpenAIRE

    Koo, H.; Falsetta, M.L.; Klein, M.I.

    2013-01-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzy...

  19. The biofilm matrix destabilizers, EDTA and DNaseI, enhance the susceptibility of nontypeable Hemophilus influenzae biofilms to treatment with ampicillin and ciprofloxacin.

    Science.gov (United States)

    Cavaliere, Rosalia; Ball, Jessica L; Turnbull, Lynne; Whitchurch, Cynthia B

    2014-08-01

    Nontypeable Hemophilus influenzae (NTHi) is a Gram-negative bacterial pathogen that causes chronic biofilm infections of the ears and airways. The biofilm matrix provides structural integrity to the biofilm and protects biofilm cells from antibiotic exposure by reducing penetration of antimicrobial compounds into the biofilm. Extracellular DNA (eDNA) has been found to be a major matrix component of biofilms formed by many species of Gram-positive and Gram-negative bacteria, including NTHi. Interestingly, the cation chelator ethylenediaminetetra-acetic acid (EDTA) has been shown to reduce the matrix strength of biofilms of several bacterial species as well as to have bactericidal activity against various pathogens. EDTA exerts its antimicrobial activity by chelating divalent cations necessary for growth and membrane stability and by destabilizing the matrix thus enhancing the detachment of bacterial cells from the biofilm. In this study, we have explored the role of divalent cations in NTHi biofilm development and stability. We have utilized in vitro static and continuous flow models of biofilm development by NTHi to demonstrate that magnesium cations enhance biofilm formation by NTHi. We found that the divalent cation chelator EDTA is effective at both preventing NTHi biofilm formation and at treating established NTHi biofilms. Furthermore, we found that the matrix destablilizers EDTA and DNaseI increase the susceptibility of NTHi biofilms to ampicillin and ciprofloxacin. Our observations indicate that DNaseI and EDTA enhance the efficacy of antibiotic treatment of NTHi biofilms. These observations may lead to new strategies that will improve the treatment options available to patients with chronic NTHi infections. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. Characteristics of Alcian-blue Dye Adsorption of Natural Biofilm Matrix

    Science.gov (United States)

    Kurniawan, A.; Yamamoto, T.; Sukandar; Guntur

    2018-01-01

    In this study, natural biofilm matrices formed on stones have been used for the adsorption of Alcian blue dye. Alcian blue is a member of polyvalent basic dyes that largely used from laboratory until industrial dying purposes. The adsorption of the dye onto the biofilm matrix has been carried out at different experimental conditions such as adsorption isotherm and kinetic of adsorption. The electric charge properties of biofilm matrix and its changes related to the adsorption of Alcian blue have been also investigated. Moreover, the results of Alcian blue adsorption to the biofilm were compared to those onto the acidic and neutral resin. The kinetics of adsorption result showed that the adsorption of the Alcian blue dye reached to a maximum adsorption amount within 60 minutes. The adsorption amount of Alcian blue to biofilm increased monotonously, and the maximum adsorption amount was greater compared to the resins. On the contrary, Alcian blue did not attach to the neutral resin having no electric charge. It seems that Alcian blue attached to the acidic resins due to electrostatic attractive force, and the same seems to be the case for adsorption of Alcian blue to biofilm. The adsorption of Alcian blue to the biofilm and acidic resins fitted to Langmuir type indicates that the binding of Alcian blue to the biofilm and acidic resins occurred in a monolayer like form. The maximum adsorption amount of Alcian blue on the biofilm (0.24 mmol/dry-g) was greater than those of acidic resin (0.025 mmol/dry-g). This indicates that the biofilm has many more sites for Alcian blue attachment than acidic resins. According to the result of this study, the biofilm matrix can be a good adsorbent for dye such as Alcian blue or other dyes that causing hazards in nature.

  1. SarA is a negative regulator of Staphylococcus epidermidis biofilm formation

    DEFF Research Database (Denmark)

    Martin, Christer; Heinze, C.; Busch, M.

    2012-01-01

    Biofilm formation is essential for Staphylococcus epidermidis pathogenicity in implant-associated infections. Nonetheless, large proportions of invasive S. epidermidis isolates fail to show accumulative biofilm growth in vitro. We here tested the hypothesis that this apparent paradox is related...... virulence. Genetic analysis revealed that inactivation of sarA induced biofilm formation via over-expression of the giant 1 MDa extracellular matrix binding protein (Embp), serving as an intercellular adhesin. In addition to Embp, increased extracellular DNA (eDNA) release significantly contributed...... to biofilm formation in mutant 1585ΔsarA. Increased eDNA amounts indirectly resulted from up-regulation of metalloprotease SepA, leading to boosted processing of major autolysin AtlE, in turn inducing augmented autolysis and release of chromosomal DNA. Hence, this study identifies sarA as a negative...

  2. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion

    OpenAIRE

    Yan, Jing; Nadell, Carey D.; Stone, Howard A.; Wingreen, Ned S.; Bassler, Bonnie L.

    2017-01-01

    Biofilms, surface-attached communities of bacteria encased in an extracellular matrix, are a major mode of bacterial life. How the material properties of the matrix contribute to biofilm growth and robustness is largely unexplored, in particular in response to environmental perturbations such as changes in osmotic pressure. Here, using Vibrio cholerae as our model organism, we show that during active cell growth, matrix production enables biofilm-dwelling bacterial cells to establish an osmot...

  3. msaABCR operon positively regulates biofilm development by repressing proteases and autolysis in Staphylococcus aureus.

    Science.gov (United States)

    Sahukhal, Gyan S; Batte, Justin L; Elasri, Mohamed O

    2015-02-01

    Staphylococcus aureus is an important human pathogen that causes nosocomial and community-acquired infections. One of the most important aspects of staphylococcal infections is biofilm development within the host, which renders the bacterium resistant to the host's immune response and antimicrobial agents. Biofilm development is very complex and involves several regulators that ensure cell survival on surfaces within the extracellular polymeric matrix. Previously, we identified the msaABCR operon as an additional positive regulator of biofilm formation. In this study, we define the regulatory pathway by which msaABCR controls biofilm formation. We demonstrate that the msaABCR operon is a negative regulator of proteases. The control of protease production mediates the processing of the major autolysin, Atl, and thus regulates the rate of autolysis. In the absence of the msaABCR operon, Atl is processed by proteases at a high rate, leading to increased cell death and a defect in biofilm maturation. We conclude that the msaABCR operon plays a key role in maintaining the balance between autolysis and growth within the staphylococcal biofilm. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Visualizing the dental biofilm matrix by means of fluorescence lectin-binding analysis

    DEFF Research Database (Denmark)

    Tawakoli, Pune Nina; Neu, Thomas R; Busck, Mette Marie

    2017-01-01

    lectins to visualize and quantify extracellular glycoconjugates in dental biofilms. Lectin binding was screened on pooled supragingival biofilm samples collected from 76 subjects using confocal microscopy. FLBA was then performed with 10 selected lectins on biofilms grown in situ for 48 h in the absence......The extracellular matrix is a poorly studied, yet important component of dental biofilms. Fluorescence lectin-binding analysis (FLBA) is a powerful tool to characterize glycoconjugates in the biofilm matrix. This study aimed to systematically investigate the ability of 75 fluorescently labeled......-biofilms: Aleuria aurantia (AAL), Calystega sepiem (Calsepa), Lycopersicon esculentum (LEA), Morniga-G (MNA-G) and Helix pomatia (HPA). No significant correlation between the binding of specific lectins and bacterial composition was found. Fluorescently labeled lectins enable the visualization of glycoconjugates...

  5. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    Science.gov (United States)

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.

  6. Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix

    Science.gov (United States)

    Kong, Eric F.; Tsui, Christina; Kucharíková, Sona; Andes, David

    2016-01-01

    ABSTRACT Biofilm-associated polymicrobial infections, particularly those involving fungi and bacteria, are responsible for significant morbidity and mortality and tend to be challenging to treat. Candida albicans and Staphylococcus aureus specifically are considered leading opportunistic fungal and bacterial pathogens, respectively, mainly due to their ability to form biofilms on catheters and indwelling medical devices. However, the impact of mixed-species biofilm growth on therapy remains largely understudied. In this study, we investigated the influence of C. albicans secreted cell wall polysaccharides on the response of S. aureus to antibacterial agents in biofilm. Results demonstrated significantly enhanced tolerance for S. aureus to drugs in the presence of C. albicans or its secreted cell wall polysaccharide material. Fluorescence confocal time-lapse microscopy revealed impairment of drug diffusion through the mixed biofilm matrix. Using C. albicans mutant strains with modulated cell wall polysaccharide expression, exogenous supplementation, and enzymatic degradation, the C. albicans-secreted β-1,3-glucan cell wall component was identified as the key matrix constituent providing the bacteria with enhanced drug tolerance. Further, antibody labeling demonstrated rapid coating of the bacteria by the C. albicans matrix material. Importantly, via its effect on the fungal biofilm matrix, the antifungal caspofungin sensitized the bacteria to the drugs. Understanding such symbiotic interactions with clinical relevance between microbial species in biofilms will greatly aid in overcoming the limitations of current therapies and in defining potential new targets for treating polymicrobial infections. PMID:27729510

  7. Phosphoenolpyruvate phosphotransferase system components positively regulate Klebsiella biofilm formation

    Directory of Open Access Journals (Sweden)

    Yu-Tze Horng

    2018-04-01

    Full Text Available Background/Purpose: Klebsiella pneumoniae is one of the leading causes of device-related infections (DRIs, which are associated with attachment of bacteria to these devices to form a biofilm. The latter is composed of not only bacteria but also extracellular polymeric substances (EPSes consisting of extracellular DNAs, polysaccharides, and other macromolecules. The phosphoenolpyruvate (PEP:carbohydrate phosphotransferase system (PTS regulates diverse processes of bacterial physiology. In the genome of K. pneumoniae MGH 78578, we found an uncharacterized enzyme II complex homolog of PTS: KPN00353 (EIIA homolog, KPN00352 (EIIB homolog, and KPN00351 (EIIC homolog. The aim of this study was to characterize the potential physiological role of KPN00353, KPN00352, and KPN00351 in biofilm formation by K. pneumoniae. Methods/Results: We constructed the PTS mutants and recombinant strains carrying the gene(s of PTS. The recombinant K. pneumoniae strain overexpressing KPN00353–KPN00352–KPN00351 produced more extracellular matrix than did the vector control according to transmission and scanning electron microscopy. Judging by quantification of biofilm formation, of extracellular DNA (eDNA, and of capsular polysaccharide, the recombinant strain overexpressing KPN00353-KPN00352-KPN00351 produced more biofilm and capsular polysaccharide after overnight culture and more eDNA in the log phase as compared to the vector control. Conclusion: The genes, KPN00353–KPN00352–KPN00351, encode a putative enzyme II complex in PTS and positively regulate biofilm formation by enhancing production of eDNA and capsular polysaccharide in K. pneumoniae. Five proteins related to chaperones, to the citric acid cycle, and to quorum sensing are upregulated by the KPN00353–KPN00352–KPN00351 system. Keywords: Klebsiella, PTS, Biofilm, eDNA, Polysaccharide

  8. Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Nadell, Carey D; Ricaurte, Deirdre; Yan, Jing; Drescher, Knut; Bassler, Bonnie L

    2017-01-13

    Bacteria often live in biofilms, which are microbial communities surrounded by a secreted extracellular matrix. Here, we demonstrate that hydrodynamic flow and matrix organization interact to shape competitive dynamics in Pseudomonas aeruginosa biofilms. Irrespective of initial frequency, in competition with matrix mutants, wild-type cells always increase in relative abundance in planar microfluidic devices under simple flow regimes. By contrast, in microenvironments with complex, irregular flow profiles - which are common in natural environments - wild-type matrix-producing and isogenic non-producing strains can coexist. This result stems from local obstruction of flow by wild-type matrix producers, which generates regions of near-zero shear that allow matrix mutants to locally accumulate. Our findings connect the evolutionary stability of matrix production with the hydrodynamics and spatial structure of the surrounding environment, providing a potential explanation for the variation in biofilm matrix secretion observed among bacteria in natural environments.

  9. Biofilm-specific extracellular matrix proteins of non-typeable Haemophilus influenzae

    Science.gov (United States)

    Wu, Siva; Baum, Marc M.; Kerwin, James; Guerrero-Given, Debbie; Webster, Simon; Schaudinn, Christoph; VanderVelde, David; Webster, Paul

    2014-01-01

    Non-typeable Haemophilus influenzae (NTHi), a human respiratory tract pathogen can form colony biofilms in vitro. Bacterial cells and the amorphous extracellular matrix (ECM) constituting the biofilm can be separated using sonication. The ECM from 24 hr and 96 hr NTHi biofilms contained polysaccharides and proteinaceous components as detected by NMR and FTIR spectroscopy. More conventional chemical assays on the biofilm ECM confirmed the presence of these components and also DNA. Proteomics revealed eighteen proteins present in biofilm ECM that were not detected in planktonic bacteria. One ECM protein was unique to 24 hr biofilms, two were found only in 96 hr biofilms, and fifteen were present in the ECM of both 24 hr and 96 hr NTHi biofilms. All proteins identified were either associated with bacterial membranes or were cytoplasmic proteins. Immunocytochemistry showed two of the identified proteins, a DNA-directed RNA polymerase and the outer membrane protein OMP P2, associated with bacteria and biofilm ECM. Identification of biofilm-specific proteins present in immature biofilms is an important step in understanding the in vitro process of NTHi biofilm formation. The presence of a cytoplasmic protein and a membrane protein in the biofilm ECM of immature NTHi biofilms suggests that bacterial cell lysis may be a feature of early biofilm formation. PMID:24942343

  10. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix.

    Science.gov (United States)

    Friedman, Lisa; Kolter, Roberto

    2004-07-01

    Pseudomonas aeruginosa forms biofilms, which are cellular aggregates encased in an extracellular matrix. Molecular genetics studies of three common autoaggregative phenotypes, namely wrinkled colonies, pellicles, and solid-surface-associated biofilms, led to the identification of two loci, pel and psl, that are involved in the production of carbohydrate-rich components of the biofilm matrix. The pel gene cluster is involved in the production of a glucose-rich matrix material in P. aeruginosa strain PA14 (L. Friedman and R. Kolter, Mol. Microbiol. 51:675-690, 2004). Here we investigate the role of the pel gene cluster in P. aeruginosa strain ZK2870 and identify a second genetic locus, termed psl, involved in the production of a mannose-rich matrix material. The 11 predicted protein products of the psl genes are homologous to proteins involved in carbohydrate processing. P. aeruginosa is thus able to produce two distinct carbohydrate-rich matrix materials. Either carbohydrate-rich matrix component appears to be sufficient for mature biofilm formation, and at least one of them is required for mature biofilm formation in P. aeruginosa strains PA14 and ZK2870. Copyright 2004 American Society for Microbiology

  11. Biofilm Matrix Composition Affects the Susceptibility of Food Associated Staphylococci to Cleaning and Disinfection Agents

    Science.gov (United States)

    Fagerlund, Annette; Langsrud, Solveig; Heir, Even; Mikkelsen, Maria I.; Møretrø, Trond

    2016-01-01

    Staphylococci are frequently isolated from food processing environments, and it has been speculated whether survival after cleaning and disinfection with benzalkonium chloride (BC)-containing disinfectants is due to biofilm formation, matrix composition, or BC efflux mechanisms. Out of 35 food associated staphylococci, eight produced biofilm in a microtiter plate assay and were identified as Staphylococcus capitis (2), S. cohnii, S. epidermidis, S. lentus (2), and S. saprophyticus (2). The eight biofilm producing strains were characterized using whole genome sequencing. Three of these strains contained the ica operon responsible for production of a polysaccharide matrix, and formed a biofilm which was detached upon exposure to the polysaccharide degrading enzyme Dispersin B, but not Proteinase K or trypsin. These strains were more tolerant to the lethal effect of BC both in suspension and biofilm than the remaining five biofilm producing strains. The five BC susceptible strains were characterized by lack of the ica operon, and their biofilms were detached by Proteinase K or trypsin, but not Dispersin B, indicating that proteins were major structural components of their biofilm matrix. Several novel cell wall anchored repeat domain proteins with domain structures similar to that of MSCRAMM adhesins were identified in the genomes of these strains, potentially representing novel mechanisms of ica-independent biofilm accumulation. Biofilms from all strains showed similar levels of detachment after exposure to alkaline chlorine, which is used for cleaning in the food industry. Strains with qac genes encoding BC efflux pumps could grow at higher concentrations of BC than strains without these genes, but no differences were observed at biocidal concentrations. In conclusion, the biofilm matrix of food associated staphylococci varies with respect to protein or polysaccharide nature, and this may affect the sensitivity toward a commonly used disinfectant. PMID:27375578

  12. Biofilm matrix composition affects the susceptibility of food associated staphylococci to cleaning and disinfection agents

    Directory of Open Access Journals (Sweden)

    Annette eFagerlund

    2016-06-01

    Full Text Available Staphylococci are frequently isolated from food processing environments, and it has been speculated whether survival after cleaning and disinfection with benzalkonium chloride-containing disinfectants is due to biofilm formation, matrix composition or benzalkonium chloride efflux mechanisms. Out of 35 food associated staphylococci, eight produced biofilm in a microtiter plate assay and were identified as Staphylococcus capitis (2, S. cohnii, S. epidermidis, S. lentus (2, and S. saprophyticus (2. The eight biofilm producing strains were characterized using whole genome sequencing. Three of these strains contained the ica operon responsible for production of a polysaccharide matrix, and formed a biofilm which was detached upon exposure to the polysaccharide degrading enzyme Dispersin B, but not Proteinase K or trypsin. These strains were more tolerant to the lethal effect of benzalkonium chloride both in suspension and biofilm than the remaining five biofilm producing strains. The five benzalkonium chloride susceptible strains were characterized by lack of the ica operon, and their biofilms were detached by Proteinase K or trypsin, but not Dispersin B, indicating that proteins were major structural components of their biofilm matrix. Several novel cell wall anchored repeat domain proteins with domain structures similar to that of MSCRAMM adhesins were identified in the genomes of these strains, potentially representing novel mechanisms of ica-independent biofilm accumulation. Biofilms from all strains showed similar levels of detachment after exposure to alkaline chlorine, which is used for cleaning in the food industry. Strains with qac genes encoding benzalkonium chloride efflux pumps could grow at higher concentrations of benzalkonium chloride than strains without these genes, but no differences were observed at biocidal concentrations. In conclusion, the biofilm matrix of food associated staphylococci varies with respect to protein or

  13. Exopolysaccharides regulate calcium flow in cariogenic biofilms

    Science.gov (United States)

    Varenganayil, Muth M.; Decho, Alan W.

    2017-01-01

    Caries-associated biofilms induce loss of calcium from tooth surfaces in the presence of dietary carbohydrates. Exopolysaccharides (EPS) provide a matrix scaffold and an abundance of primary binding sites within biofilms. The role of EPS in binding calcium in cariogenic biofilms is only partially understood. Thus, the aim of the present study is to investigate the relationship between the calcium dissolution rates and calcium tolerance of caries-associated bacteria and yeast as well as to examine the properties of EPS to quantify its binding affinity for dissolved calcium. Calcium dissolution was measured by dissolution zones on Pikovskaya’s agar. Calcium tolerance was assessed by isothermal microcalorimetry (IMC) by adding CaCl2 to the bacterial cultures. Acid-base titration and Fourier transform infrared (FTIR) spectroscopy were used to identify possible functional groups responsible for calcium binding, which was assessed by isothermal titration calorimetry (ITC). Lactobacillus spp. and mutans streptococci demonstrated calcium dissolution in the presence of different carbohydrates. All strains that demonstrated high dissolution rates also revealed higher rates of calcium tolerance by IMC. In addition, acidic functional groups were predominantly identified as possible binding sites for calcium ions by acid-base titration and FTIR. Finally, ITC revealed EPS to have a higher binding affinity for calcium compared, for example, to lactic acid. In conclusion, this study illustrates the role of EPS in terms of the calcium tolerance of cariogenic microbiota by determining the ability of EPS to control free calcium concentrations within the biofilms as a self-regulating mode of action in the pathogenesis of dental caries. PMID:29023506

  14. Exopolysaccharides regulate calcium flow in cariogenic biofilms.

    Directory of Open Access Journals (Sweden)

    Monika Astasov-Frauenhoffer

    Full Text Available Caries-associated biofilms induce loss of calcium from tooth surfaces in the presence of dietary carbohydrates. Exopolysaccharides (EPS provide a matrix scaffold and an abundance of primary binding sites within biofilms. The role of EPS in binding calcium in cariogenic biofilms is only partially understood. Thus, the aim of the present study is to investigate the relationship between the calcium dissolution rates and calcium tolerance of caries-associated bacteria and yeast as well as to examine the properties of EPS to quantify its binding affinity for dissolved calcium. Calcium dissolution was measured by dissolution zones on Pikovskaya's agar. Calcium tolerance was assessed by isothermal microcalorimetry (IMC by adding CaCl2 to the bacterial cultures. Acid-base titration and Fourier transform infrared (FTIR spectroscopy were used to identify possible functional groups responsible for calcium binding, which was assessed by isothermal titration calorimetry (ITC. Lactobacillus spp. and mutans streptococci demonstrated calcium dissolution in the presence of different carbohydrates. All strains that demonstrated high dissolution rates also revealed higher rates of calcium tolerance by IMC. In addition, acidic functional groups were predominantly identified as possible binding sites for calcium ions by acid-base titration and FTIR. Finally, ITC revealed EPS to have a higher binding affinity for calcium compared, for example, to lactic acid. In conclusion, this study illustrates the role of EPS in terms of the calcium tolerance of cariogenic microbiota by determining the ability of EPS to control free calcium concentrations within the biofilms as a self-regulating mode of action in the pathogenesis of dental caries.

  15. Extracellular matrix influence in Streptococcus mutans gene expression in a cariogenic biofilm.

    Science.gov (United States)

    Florez Salamanca, E J; Klein, M I

    2018-04-01

    Caries etiology is biofilm-diet-dependent. Biofilms are highly dynamic and structured microbial communities enmeshed in a three-dimensional extracellular matrix. The study evaluated the expression dynamics of Streptococcus mutans genes associated with exopolysaccharides (EPS) (gtfBCD, gbpB, dexA), lipoteichoic acids (LTA) (dltABCD, SMU_775c) and extracellular DNA (eDNA) (lytST, lrgAB, ccpA) during matrix development within a mixed-species biofilm of S. mutans, Actinomyces naeslundii and Streptococcus gordonii. Mixed-species biofilms using S. mutans strains UA159 or ΔgtfB formed on saliva-coated hydroxyapatite discs were submitted to a nutritional challenge (providing an abundance of sucrose and starch). Biofilms were removed at eight developmental stages for gene expression analysis by quantitative polymerase chain reaction. The pH of spent culture media remained acidic throughout the experimental periods, being lower after sucrose and starch exposure. All genes were expressed at all biofilm developmental phases. EPS- and LTA-associated genes had a similar expression profile for both biofilms, presenting lower levels of expression at 67, 91 and 115 hours and a peak of expression at 55 hours, but having distinct expression magnitudes, with lower values for ΔgtfB (eg, fold-difference of ~382 for gtfC and ~16 for dltB at 43 hours). The eDNA-associated genes presented different dynamics of expression between both strains. In UA159 biofilms lrgA and lrgB genes were highly expressed at 29 hours (which were ~13 and ~5.4 times vs ΔgtfB, respectively), whereas in ΔgtfB biofilms an inverse relationship between lytS and lrgA and lrgB expression was detected. Therefore, the deletion of gtfB influences dynamics and magnitude of expression of genes associated with matrix main components. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Biofilms of vaginal Lactobacillus reuteri CRL 1324 and Lactobacillus rhamnosus CRL 1332: kinetics of formation and matrix characterization.

    Science.gov (United States)

    Leccese Terraf, María Cecilia; Juárez Tomás, María Silvina; Rault, Lucie; Le Loir, Yves; Even, Sergine; Nader-Macías, María Elena Fátima

    2016-09-01

    Adhesion and biofilm formation are strain properties that reportedly contribute to the permanence of lactobacilli in the human vagina. The kinetics of biofilm formation and the chemical nature of the biofilm matrix formed by Lactobacillus reuteri CRL (Centro de Referencia para Lactobacilos Culture Collection) 1324 and Lactobacillus rhamnosus CRL 1332, vaginal beneficial strains, were evaluated in this work. Crystal violet-stained microplate assay and techniques of epifluorescence, electron and confocal microscopy were applied. The highest density and complexity of biofilms of both vaginal lactobacilli were observed at 72 h of incubation. Protease, proteinase K, α-chymotrypsin and trypsin treatments efficiently detached L. reuteri CRL 1324 biofilm that was also partially affected by α-amylase. However, L. rhamnosus CRL 1332 biofilm was slightly affected by protease, proteinase K and α-amylase. Confocal microscopy revealed greater amount of polysaccharides in L. rhamnosus CRL 1332 biofilm matrix than in L. reuteri CRL 1324 biofilm matrix. The results indicate that proteins are one of the main components of the L. reuteri CRL 1324 biofilm, while the biofilm matrix of L. rhamnosus CRL 1332 is composed of carbohydrates and proteins. The results obtained support the knowledge, understanding and characterization of two biofilm-forming vaginal Lactobacillus strains.

  17. Silver colloidal nanoparticles: effect on matrix composition and structure of Candida albicans and Candida glabrata biofilms.

    Science.gov (United States)

    Monteiro, D R; Silva, S; Negri, M; Gorup, L F; de Camargo, E R; Oliveira, R; Barbosa, D B; Henriques, M

    2013-04-01

    The aim of this study was to assess the effect of different silver nanoparticles (SN) concentrations on the matrix composition and structure of Candida albicans and Candida glabrata biofilms. Candida biofilms were developed in 6-well microtiter plates during 48 h. After, these biofilms were exposed to 13.5 or 54 μg SN ml(-1) for 24 h. Then, extracellular matrices were extracted from biofilms and analysed chemically in terms of proteins, carbohydrates and DNA. To investigate the biofilm structure, scanning electron microscopy (SEM) and epifluorescence microscopy were used. SN interfered with the matrix composition of Candida biofilms tested in terms of protein, carbohydrate and DNA, except for the protein content of C. albicans biofilm. By SEM, Candida biofilms treated with SN revealed structural differences, when compared with the control groups. Further, SN showed a trend of agglomeration within the biofilms. Epifluorescence microscopy images suggest that SN induced damage on cell walls of the Candida isolates tested. In general, irrespective of concentration, SN affected the matrix composition and structure of Candida biofilms and these findings may be related to the mechanisms of biocide action of SN. This study reveals new insights about the behaviour of SN when in contact with Candida biofilms. SN may contribute to the development of therapies to prevent or control Candida infections. © 2012 The Society for Applied Microbiology.

  18. Nonleachable Imidazolium-Incorporated Composite for Disruption of Bacterial Clustering, Exopolysaccharide-Matrix Assembly, and Enhanced Biofilm Removal.

    Science.gov (United States)

    Hwang, Geelsu; Koltisko, Bernard; Jin, Xiaoming; Koo, Hyun

    2017-11-08

    Surface-grown bacteria and production of an extracellular polymeric matrix modulate the assembly of highly cohesive and firmly attached biofilms, making them difficult to remove from solid surfaces. Inhibition of cell growth and inactivation of matrix-producing bacteria can impair biofilm formation and facilitate removal. Here, we developed a novel nonleachable antibacterial composite with potent antibiofilm activity by directly incorporating polymerizable imidazolium-containing resin (antibacterial resin with carbonate linkage; ABR-C) into a methacrylate-based scaffold (ABR-modified composite; ABR-MC) using an efficient yet simplified chemistry. Low-dose inclusion of imidazolium moiety (∼2 wt %) resulted in bioactivity with minimal cytotoxicity without compromising mechanical integrity of the restorative material. The antibiofilm properties of ABR-MC were assessed using an exopolysaccharide-matrix-producing (EPS-matrix-producing) oral pathogen (Streptococcus mutans) in an experimental biofilm model. Using high-resolution confocal fluorescence imaging and biophysical methods, we observed remarkable disruption of bacterial accumulation and defective 3D matrix structure on the surface of ABR-MC. Specifically, the antibacterial composite impaired the ability of S. mutans to form organized bacterial clusters on the surface, resulting in altered biofilm architecture with sparse cell accumulation and reduced amounts of EPS matrix (versus control composite). Biofilm topology analyses on the control composite revealed a highly organized and weblike EPS structure that tethers the bacterial clusters to each other and to the surface, forming a highly cohesive unit. In contrast, such a structured matrix was absent on the surface of ABR-MC with mostly sparse and amorphous EPS, indicating disruption in the biofilm physical stability. Consistent with lack of structural organization, the defective biofilm on the surface of ABR-MC was readily detached when subjected to low shear

  19. [Involvement of the global regulators GrrS, RpoS, and SplIR in formation of biofilms in Serratia plymuthica].

    Science.gov (United States)

    Zaĭtseva, Iu V; Voloshina, P V; Liu, X; Ovadis, M I; Berg, G; Chernin, L S; Khmel', I A

    2010-05-01

    Most bacteria exist in the natural environment as biofilms, multicellular communities attached to hard surfaces. Biofilms have a characteristic architecture and are enclosed in the exopolymer matrix. Bacterial cells in biofilms are extremely resistant to antibacterial factors. It was shown in this work that the GrrA/GrrS system of global regulators of gene expression and the sigma S subunit of RNA polymerase (RpoS) play a significant role in positive regulation of biofilm formation in the rhizospheric bacterium Serratia plymuthica IC1270. Inactivation of grrS and rpoS genes resulted in an up to six-to-sevenfold and four-to-fivefold reduction in biofilm formation, respectively. Mutations in the grrS gene decreased the capacity of the bacterium for swarming motility. The splIR Quorum Sensing (QS) system was shown to negatively influence the biofilm formation. Transfer of the recombinant plasmid containing cloned genes splI/splR of S. plymuthica HRO-C48 into S. plymuthica IC1270 cells led to a twofold decrease of their ability to form biofilms. Inactivation of the splI gene coding for the synthase of N-acyl-homoserine lactones in S. plymuthica HRO-C48 resulted in a 2-2.5-fold increase in the level of biofilm formation, whereas the inclusion of plasmid carrying the cloned splI/splR genes into these mutant cells restored the biofilm formation to the normal level. The results obtained demonstrate that the formation of biofilms in S. plymuthica is positively regulated by the GrrA/GrrS and RpoS global regulators and is negatively regulated by the SplIR QS system.

  20. Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of Streptococcus mutans biofilms

    Science.gov (United States)

    Castillo Pedraza, Midian C.; Novais, Tatiana F.; Faustoferri, Roberta C.; Quivey, Robert G.; Terekhov, Anton; Hamaker, Bruce R.; Klein, Marlise I.

    2018-01-01

    Streptococcus mutans -derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA – ΔlytS and ΔlytT; LTA – ΔdltA and ΔdltD; and insoluble exopolysaccharide – ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms. PMID:28946780

  1. Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of Streptococcus mutans biofilms.

    Science.gov (United States)

    Castillo Pedraza, Midian C; Novais, Tatiana F; Faustoferri, Roberta C; Quivey, Robert G; Terekhov, Anton; Hamaker, Bruce R; Klein, Marlise I

    2017-10-01

    Streptococcus mutans-derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA - ∆lytS and ∆lytT; LTA - ∆dltA and ∆dltD; and insoluble exopolysaccharide - ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms.

  2. Poly-N-acetylglucosamine matrix polysaccharide impedes fluid convection and transport of the cationic surfactant cetylpyridinium chloride through bacterial biofilms.

    Science.gov (United States)

    Ganeshnarayan, Krishnaraj; Shah, Suhagi M; Libera, Matthew R; Santostefano, Anthony; Kaplan, Jeffrey B

    2009-03-01

    Biofilms are composed of bacterial cells encased in a self-synthesized, extracellular polymeric matrix. Poly-beta(1,6)-N-acetyl-d-glucosamine (PNAG) is a major biofilm matrix component in phylogenetically diverse bacteria. In this study we investigated the physical and chemical properties of the PNAG matrix in biofilms produced in vitro by the gram-negative porcine respiratory pathogen Actinobacillus pleuropneumoniae and the gram-positive device-associated pathogen Staphylococcus epidermidis. The effect of PNAG on bulk fluid flow was determined by measuring the rate of fluid convection through biofilms cultured in centrifugal filter devices. The rate of fluid convection was significantly higher in biofilms cultured in the presence of the PNAG-degrading enzyme dispersin B than in biofilms cultured without the enzyme, indicating that PNAG decreases bulk fluid flow. PNAG also blocked transport of the quaternary ammonium compound cetylpyridinium chloride (CPC) through the biofilms. Binding of CPC to biofilms further impeded fluid convection and blocked transport of the azo dye Allura red. Bioactive CPC was efficiently eluted from biofilms by treatment with 1 M sodium chloride. Taken together, these findings suggest that CPC reacts directly with the PNAG matrix and alters its physical and chemical properties. Our results indicate that PNAG plays an important role in controlling the physiological state of biofilms and may contribute to additional biofilm-associated processes such as biocide resistance.

  3. Material properties of biofilms – key methods for understanding permeability and mechanics

    Science.gov (United States)

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-01-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the three-dimensional biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gasses, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms. PMID:25719969

  4. Bacillus subtilis biofilm induction by plant polysaccharides.

    Science.gov (United States)

    Beauregard, Pascale B; Chai, Yunrong; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2013-04-23

    Bacillus subtilis is a plant-beneficial Gram-positive bacterium widely used as a biofertilizer. However, relatively little is known regarding the molecular processes underlying this bacterium's ability to colonize roots. In contrast, much is known about how this bacterium forms matrix-enclosed multicellular communities (biofilms) in vitro. Here, we show that, when B. subtilis colonizes Arabidopsis thaliana roots it forms biofilms that depend on the same matrix genes required in vitro. B. subtilis biofilm formation was triggered by certain plant polysaccharides. These polysaccharides served as a signal for biofilm formation transduced via the kinases controlling the phosphorylation state of the master regulator Spo0A. In addition, plant polysaccharides are used as a source of sugars for the synthesis of the matrix exopolysaccharide. The bacterium's response to plant polysaccharides was observed across several different strains of the species, some of which are known to have beneficial effects on plants. These observations provide evidence that biofilm genes are crucial for Arabidopsis root colonization by B. subtilis and provide insights into how matrix synthesis may be triggered by this plant.

  5. Cranberry Flavonoids Modulate Cariogenic Properties of Mixed-Species Biofilm through Exopolysaccharides-Matrix Disruption.

    Directory of Open Access Journals (Sweden)

    Dongyeop Kim

    Full Text Available The exopolysaccharides (EPS produced by Streptococcus mutans-derived glucosyltransferases (Gtfs are essential virulence factors associated with the initiation of cariogenic biofilms. EPS forms the core of the biofilm matrix-scaffold, providing mechanical stability while facilitating the creation of localized acidic microenvironments. Cranberry flavonoids, such as A-type proanthocyanidins (PACs and myricetin, have been shown to inhibit the activity of Gtfs and EPS-mediated bacterial adhesion without killing the organisms. Here, we investigated whether a combination of cranberry flavonoids disrupts EPS accumulation and S. mutans survival using a mixed-species biofilm model under cariogenic conditions. We also assessed the impact of cranberry flavonoids on mechanical stability and the in situ pH at the biofilm-apatite interface. Topical application of an optimized combination of PACs oligomers (100-300 μM with myricetin (2 mM twice daily was used to simulate treatment regimen experienced clinically. Treatments with cranberry flavonoids effectively reduced the insoluble EPS content (>80% reduction vs. vehicle-control; p<0.001, while hindering S. mutans outgrowth within mixed-species biofilms. As a result, the 3D architecture of cranberry-treated biofilms was severely compromised, showing a defective EPS-matrix and failure to develop microcolonies on the saliva-coated hydroxyapatite (sHA surface. Furthermore, topical applications of cranberry flavonoids significantly weaken the mechanical stability of the biofilms; nearly 90% of the biofilm was removed from sHA surface after exposure to a shear stress of 0.449 N/m2 (vs. 36% removal in vehicle-treated biofilms. Importantly, in situ pH measurements in cranberry-treated biofilms showed significantly higher pH values (5.2 ± 0.1 at the biofilm-apatite interface vs. vehicle-treated biofilms (4.6 ± 0.1. Altogether, the data provide important insights on how cranberry flavonoids treatments modulate

  6. FtsEX-CwlO regulates biofilm formation by a plant-beneficial rhizobacterium Bacillus velezensis SQR9.

    Science.gov (United States)

    Li, Qing; Li, Zunfeng; Li, Xingxing; Xia, Liming; Zhou, Xuan; Xu, Zhihui; Shao, Jiahui; Shen, Qirong; Zhang, Ruifu

    2018-04-01

    Bacillus velezensis strain SQR9 is a well-investigated rhizobacterium with an outstanding ability to colonize roots, enhance plant growth and suppress soil-borne diseases. The recognition that biofilm formation by plant-beneficial bacteria is crucial for their root colonization and function has resulted in increased interest in understanding molecular mechanisms related to biofilm formation. Here, we report that the gene ftsE, encoding the ATP-binding protein of an FtsEX ABC transporter, is required for efficient SQR9 biofilm formation. FtsEX has been reported to regulate the atolysin CwlO. We provided evidence that FtsEX-CwlO was involved in the regulation of SQR9 biofilm formation; however, this effect has little to do with CwlO autolysin activity. We propose that regulation of biofilm formation by CwlO was exerted through the spo0A pathway, since transcription of spo0A cascade genes was altered and their downstream extracellular matrix genes were downregulated in SQR9 ftsE/cwlO deletion mutants. CwlO was also shown to interact physically with KinB/KinD. CwlO may therefore interact with KinB/KinD to interfere with the spo0A pathway. This study revealed that FtsEX-CwlO plays a previously undiscovered regulatory role in biofilm formation by SQR9 that may enhance root colonization and plant-beneficial functions of SQR9 and other beneficial rhizobacteria as well. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, Angeles [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain)], E-mail: aguileraba@inta.es; Souza-Egipsy, Virginia [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain); San Martin-Uriz, Patxi [Centro de Biologia Molecular (UAM-CSIC), Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Amils, Ricardo [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain); Centro de Biologia Molecular (UAM-CSIC), Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2008-07-30

    To evaluate the importance of the extracellular matrix in relation to heavy metal binding capacity in extreme acidic environments, the extracellular polymeric substances (EPS) composition of 12 biofilms isolated from Rio Tinto (SW, Spain) was analyzed. Each biofilm was composed mainly by one or two species of eukaryotes, although other microorganisms were present. EPS ranged from 130 to 439 mg g{sup -1} biofilm dry weight, representing between 15% and the 40% of the total biofilm dry weight (DW). Statistically significant differences (p < 0.05) were found in the amount of total EPS extracted from biofilms dominated by the same organism at different sampling points. The amount of EPS varied among different biofilms collected from the same sampling location. Colloidal EPS ranged from 42 to 313 mg g{sup -1} dry weight; 10% to 30% of the total biofilm dry weight. Capsular EPS ranged from 50 to 318 mg g{sup -1} dry weight; 5% to 30% of the total biofilm dry weight. Seven of the 12 biofilms showed higher amounts of capsular than colloidal EPS (p < 0.05). Total amount of EPS decreased when total cell numbers and pH increased. There was a positive correlation between EPS concentration and heavy metal concentration in the water. Observations by low temperature scanning electron microscopy (LTSEM) revealed the mineral adsorption in the matrix of EPS and onto the cell walls. EPS in all biofilms were primarily composed of carbohydrates, heavy metals and humic acid, plus small quantities of proteins and DNA. After carbohydrates, heavy metals were the second main constituents of the extracellular matrix. Their total concentrations ranged from 3 to 32 mg g{sup -1} biofilm dry weight, reaching up to 16% of the total composition. In general, the heavy metal composition of the EPS extracted from the biofilms closely resembled the metal composition of the water from which the biofilms were collected.

  8. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix.

    Science.gov (United States)

    Jennings, Laura K; Storek, Kelly M; Ledvina, Hannah E; Coulon, Charlène; Marmont, Lindsey S; Sadovskaya, Irina; Secor, Patrick R; Tseng, Boo Shan; Scian, Michele; Filloux, Alain; Wozniak, Daniel J; Howell, P Lynne; Parsek, Matthew R

    2015-09-08

    Biofilm formation is a complex, ordered process. In the opportunistic pathogen Pseudomonas aeruginosa, Psl and Pel exopolysaccharides and extracellular DNA (eDNA) serve as structural components of the biofilm matrix. Despite intensive study, Pel's chemical structure and spatial localization within mature biofilms remain unknown. Using specialized carbohydrate chemical analyses, we unexpectedly found that Pel is a positively charged exopolysaccharide composed of partially acetylated 1→4 glycosidic linkages of N-acetylgalactosamine and N-acetylglucosamine. Guided by the knowledge of Pel's sugar composition, we developed a tool for the direct visualization of Pel in biofilms by combining Pel-specific Wisteria floribunda lectin staining with confocal microscopy. The results indicate that Pel cross-links eDNA in the biofilm stalk via ionic interactions. Our data demonstrate that the cationic charge of Pel is distinct from that of other known P. aeruginosa exopolysaccharides and is instrumental in its ability to interact with other key biofilm matrix components.

  9. Molecular Determinants of the Thickened Matrix in a Dual-Species Pseudomonas aeruginosa and Enterococcus faecalis Biofilm.

    Science.gov (United States)

    Lee, Keehoon; Lee, Kang-Mu; Kim, Donggeun; Yoon, Sang Sun

    2017-11-01

    Biofilms are microbial communities that inhabit various surfaces and are surrounded by extracellular matrices (ECMs). Clinical microbiologists have shown that the majority of chronic infections are caused by biofilms, following the introduction of the first biofilm infection model by J. W. Costerton and colleagues (J. Lam, R. Chan, K. Lam, and J. W. Costerton, Infect Immun 28:546-556, 1980). However, treatments for chronic biofilm infections are still limited to surgical removal of the infected sites. Pseudomonas aeruginosa and Enterococcus faecalis are two frequently identified bacterial species in biofilm infections; nevertheless, the interactions between these two species, especially during biofilm growth, are not clearly understood. In this study, we observed phenotypic changes in a dual-species biofilm of P. aeruginosa and E. faecalis , including a dramatic increase in biofilm matrix thickness. For clear elucidation of the spatial distribution of the dual-species biofilm, P. aeruginosa and E. faecalis were labeled with red and green fluorescence, respectively. E. faecalis was located at the lower part of the dual-species biofilm, while P. aeruginosa developed a structured biofilm on the upper part. Mutants with altered exopolysaccharide (EPS) productions were constructed in order to determine the molecular basis for the synergistic effect of the dual-species biofilm. Increased biofilm matrix thickness was associated with EPSs, not extracellular DNA. In particular, Pel and Psl contributed to interspecies and intraspecies interactions, respectively, in the dual-species P. aeruginosa and E. faecalis biofilm. Accordingly, targeting Pel and Psl might be an effective part of eradicating P. aeruginosa polymicrobial biofilms. IMPORTANCE Chronic infection is a serious problem in the medical field. Scientists have observed that chronic infections are closely associated with biofilms, and the vast majority of infection-causing biofilms are polymicrobial. Many studies

  10. Cleaning and Disinfection of Bacillus cereus Biofilm.

    Science.gov (United States)

    Deal, Amanda; Klein, Dan; Lopolito, Paul; Schwarz, John Spencer

    2016-01-01

    Methodology has been evolving for the testing of disinfectants against bacterial single-species biofilms, as the difficulty of biofilm remediation continues to gain much-needed attention. Bacterial single-species biofilm contamination presents a real risk to good manufacturing practice-regulated industries. However, mixed-species biofilms and biofilms containing bacterial spores remain an even greater challenge for cleaning and disinfection. Among spore-forming microorganisms frequently encountered in pharmaceutical manufacturing areas, the spores of Bacillus cereus are often determined to be the hardest to disinfect and eradicate. One of the reasons for the low degree of susceptibility to disinfection is the ability of these spores to be encapsulated within an exopolysachharide biofilm matrix. In this series of experiments, we evaluated the disinfectant susceptibility of B. cereus biofilms relative to disassociated B. cereus spores and biofilm from a non-spore-forming species. Further, we assessed the impact that pre-cleaning has on increasing that susceptibility. Methodology has been evolving for the testing of disinfectants against bacterial single-species biofilms, as the difficulty of biofilm remediation continues to gain much-needed attention. Bacterial single-species biofilm contamination presents a real risk to good manufacturing practice-regulated industries. However, mixed-species biofilms and biofilms containing bacterial spores remain an even greater challenge for cleaning and disinfection. Among spore-forming microorganisms frequently encountered in pharmaceutical manufacturing areas, the spores of Bacillus cereus are often determined to be the hardest to disinfect and eradicate. One of the reasons for the low degree of susceptibility to disinfection is the ability of these spores to be encapsulated within an exopolysachharide biofilm matrix. In this series of experiments, we evaluated the disinfectant susceptibility of B. cereus biofilms relative to

  11. The Porphyromonas gingivalis ferric uptake regulator orthologue binds hemin and regulates hemin-responsive biofilm development.

    Directory of Open Access Journals (Sweden)

    Catherine A Butler

    Full Text Available Porphyromonas gingivalis is a Gram-negative pathogen associated with the biofilm-mediated disease chronic periodontitis. P. gingivalis biofilm formation is dependent on environmental heme for which P. gingivalis has an obligate requirement as it is unable to synthesize protoporphyrin IX de novo, hence P. gingivalis transports iron and heme liberated from the human host. Homeostasis of a variety of transition metal ions is often mediated in Gram-negative bacteria at the transcriptional level by members of the Ferric Uptake Regulator (Fur superfamily. P. gingivalis has a single predicted Fur superfamily orthologue which we have designated Har (heme associated regulator. Recombinant Har formed dimers in the presence of Zn2+ and bound one hemin molecule per monomer with high affinity (Kd of 0.23 µM. The binding of hemin resulted in conformational changes of Zn(IIHar and residue 97Cys was involved in hemin binding as part of a predicted -97C-98P-99L- hemin binding motif. The expression of 35 genes was down-regulated and 9 up-regulated in a Har mutant (ECR455 relative to wild-type. Twenty six of the down-regulated genes were previously found to be up-regulated in P. gingivalis grown as a biofilm and 11 were up-regulated under hemin limitation. A truncated Zn(IIHar bound the promoter region of dnaA (PGN_0001, one of the up-regulated genes in the ECR455 mutant. This binding decreased as hemin concentration increased which was consistent with gene expression being regulated by hemin availability. ECR455 formed significantly less biofilm than the wild-type and unlike wild-type biofilm formation was independent of hemin availability. P. gingivalis possesses a hemin-binding Fur orthologue that regulates hemin-dependent biofilm formation.

  12. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal

    DEFF Research Database (Denmark)

    Harmsen, Morten; Yang, Liang; Pamp, Sünje Johanna

    2010-01-01

    We review the recent advances in the understanding of the Pseudomonas aeruginosa biofilm lifestyle from studies using in vitro laboratory setups such as flow chambers and microtiter trays. Recent work sheds light on the role of nutrients, motility, and quorum sensing in structure formation in P....... aeruginosa biofilms. The second messenger, c-di-GMP, is established as an important regulator of the synthesis of polysaccharide and protein components of the biofilm matrix. Extracellular DNA is shown to be an essential component of the biofilm matrix. It has become apparent that biofilm formation involves...... interactions between different subpopulations. The molecular mechanisms underlying the tolerance of biofilm bacteria to antimicrobial agents are beginning to be unraveled, and new knowledge has been obtained regarding the environmental cues and regulatory mechanisms involved in biofilm dispersal....

  13. Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae.

    Science.gov (United States)

    Johnson, Jeremiah G; Murphy, Caitlin N; Sippy, Jean; Johnson, Tylor J; Clegg, Steven

    2011-07-01

    Klebsiella pneumoniae is an opportunistic pathogen which frequently causes hospital-acquired urinary and respiratory tract infections. K. pneumoniae may establish these infections in vivo following adherence, using the type 3 fimbriae, to indwelling devices coated with extracellular matrix components. Using a colony immunoblot screen, we identified transposon insertion mutants which were deficient for type 3 fimbrial surface production. One of these mutants possessed a transposon insertion within a gene, designated mrkI, encoding a putative transcriptional regulator. A site-directed mutant of this gene was constructed and shown to be deficient for fimbrial surface expression under aerobic conditions. MrkI mutants have a significantly decreased ability to form biofilms on both abiotic and extracellular matrix-coated surfaces. This gene was found to be cotranscribed with a gene predicted to encode a PilZ domain-containing protein, designated MrkH. This protein was found to bind cyclic-di-GMP (c-di-GMP) and regulate type 3 fimbrial expression.

  14. Type 3 Fimbriae and Biofilm Formation Are Regulated by the Transcriptional Regulators MrkHI in Klebsiella pneumoniae▿

    Science.gov (United States)

    Johnson, Jeremiah G.; Murphy, Caitlin N.; Sippy, Jean; Johnson, Tylor J.; Clegg, Steven

    2011-01-01

    Klebsiella pneumoniae is an opportunistic pathogen which frequently causes hospital-acquired urinary and respiratory tract infections. K. pneumoniae may establish these infections in vivo following adherence, using the type 3 fimbriae, to indwelling devices coated with extracellular matrix components. Using a colony immunoblot screen, we identified transposon insertion mutants which were deficient for type 3 fimbrial surface production. One of these mutants possessed a transposon insertion within a gene, designated mrkI, encoding a putative transcriptional regulator. A site-directed mutant of this gene was constructed and shown to be deficient for fimbrial surface expression under aerobic conditions. MrkI mutants have a significantly decreased ability to form biofilms on both abiotic and extracellular matrix-coated surfaces. This gene was found to be cotranscribed with a gene predicted to encode a PilZ domain-containing protein, designated MrkH. This protein was found to bind cyclic-di-GMP (c-di-GMP) and regulate type 3 fimbrial expression. PMID:21571997

  15. Complex Interplay between FleQ, Cyclic Diguanylate and Multiple σ Factors Coordinately Regulates Flagellar Motility and Biofilm Development in Pseudomonas putida.

    Directory of Open Access Journals (Sweden)

    Alicia Jiménez-Fernández

    Full Text Available Most bacteria alternate between a free living planktonic lifestyle and the formation of structured surface-associated communities named biofilms. The transition between these two lifestyles requires a precise and timely regulation of the factors involved in each of the stages that has been likened to a developmental process. Here we characterize the involvement of the transcriptional regulator FleQ and the second messenger cyclic diguanylate in the coordinate regulation of multiple functions related to motility and surface colonization in Pseudomonas putida. Disruption of fleQ caused strong defects in flagellar motility, biofilm formation and surface attachment, and the ability of this mutation to suppress multiple biofilm-related phenotypes associated to cyclic diguanylate overproduction suggests that FleQ mediates cyclic diguanylate signaling critical to biofilm growth. We have constructed a library containing 94 promoters potentially involved in motility and biofilm development fused to gfp and lacZ, screened this library for FleQ and cyclic diguanylate regulation, and assessed the involvement of alternative σ factors σN and FliA in the transcription of FleQ-regulated promoters. Our results suggest a dual mode of action for FleQ. Low cyclic diguanylate levels favor FleQ interaction with σN-dependent promoters to activate the flagellar cascade, encompassing the flagellar cluster and additional genes involved in cyclic diguanylate metabolism, signal transduction and gene regulation. On the other hand, characterization of the FleQ-regulated σN- and FliA-independent PlapA and PbcsD promoters revealed two disparate regulatory mechanisms leading to a similar outcome: the synthesis of biofilm matrix components in response to increased cyclic diguanylate levels.

  16. A Rhizobium leguminosarum CHDL- (Cadherin-Like-) Lectin Participates in Assembly and Remodeling of the Biofilm Matrix

    DEFF Research Database (Denmark)

    Vozza, Nicolás F.; Abdian, Patricia L; Russo, Daniela M

    2016-01-01

    In natural environments most bacteria live in multicellular structures called biofilms. These cell aggregates are enclosed in a self-produced polymeric extracellular matrix, which protects the cells, provides mechanical stability and mediates cellular cohesion and adhesion to surfaces. Although...... important advances were made in the identification of the genetic and extracellular factors required for biofilm formation, the mechanisms leading to biofilm matrix assembly, and the roles of extracellular proteins in these processes are still poorly understood. The symbiont Rhizobium leguminosarum requires...... the synthesis of the acidic exopolysaccharide and the PrsDE secretion system to develop a mature biofilm. PrsDE is responsible for the secretion of the Rap family of proteins that share one or two Ra/CHDL (cadherin-like-) domains. RapA2 is a calcium-dependent lectin with a cadherin-like β sheet structure...

  17. In Situ Molecular Imaging of the Biofilm and Its Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yuanzhao; Zhou, Yufan; Yao, Juan; Szymanski, Craig J.; Fredrickson, Jim K.; Shi, Liang; Cao, B.; Zhu, Zihua; Yu, Xiao-Ying

    2016-11-15

    Molecular mapping of live biofilms at submicron resolution presents a grand challenge. Here, we present the first chemical mapping results of biofilm extracellular polymeric sub-stance (EPS) components in biofilms using correlative imaging be-tween super resolution florescence microscopy and liquid time-of-flight secondary ion mass spectrometry (ToF-SIMS). Shewanella oneidensis is used as a model organism. Heavy metal anions chro-mate (Cr2O72-) consisting of chromium Cr (VI) was a model envi-ronmental stressor used to treat the biofilms. Of particular interest, biologically relevant water clusters have been first observed in the biofilms. Characteristic fragments of biofilm matrix components such as proteins, polysaccharides, and lipids can be spatially im-aged. Furthermore, characteristic fatty acids (e.g., palmitic acid), quinolone signal, and riboflavin fragments are found to respond af-ter the biofilm is treated with Cr (VI), leading to biofilm dispersion. Significant changes in water clusters and quorum sensing signals indicative of intercellular communication in the aqueous environ-ment are observed, suggesting that they might result in fatty acid synthesis and inhibit riboflavin production. The Cr (VI) reduction seems to follow the Mtr pathway leading to Cr (III) formation. Our approach potentially opens a new avenue for mechanistic insight of microbial community processes and communications using in situ imaging mass spectrometry and superresolution optical micros-copy.

  18. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies.

    Science.gov (United States)

    Taylor, Patrick K; Yeung, Amy T Y; Hancock, Robert E W

    2014-12-10

    The growth of bacteria as structured aggregates termed biofilms leads to their protection from harsh environmental conditions such as physical and chemical stresses, shearing forces, and limited nutrient availability. Because of this highly adapted ability to survive adverse environmental conditions, bacterial biofilms are recalcitrant to antibiotic therapies and immune clearance. This is particularly problematic in hospital settings where biofilms are a frequent cause of chronic and device-related infections and constitute a significant burden on the health-care system. The major therapeutic strategy against infections is the use of antibiotics, which, due to adaptive resistance, are often insufficient to clear biofilm infections. Thus, novel biofilm-specific therapies are required. Specific features of biofilm development, such as surface adherence, extracellular matrix formation, quorum sensing, and highly regulated biofilm maturation and dispersal are currently being studied as targets to be exploited in the development of novel biofilm-specific treatments. Using Pseudomonas aeruginosa for illustrative purposes, this review highlights the antibiotic resistance mechanisms of biofilms, and discusses current research into novel biofilm-specific therapies. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. CRP-Mediated Carbon Catabolite Regulation of Yersinia pestis Biofilm Formation Is Enhanced by the Carbon Storage Regulator Protein, CsrA.

    Directory of Open Access Journals (Sweden)

    Stephan P Willias

    Full Text Available The natural transmission of Yersinia pestis is reliant upon biofilm blockage of the flea vector. However, the environmentally-responsive adaptive regulators which facilitate Y. pestis biofilm production in accordance with the flea midgut milieu are not well understood. We seek to establish the impact of available carbon source metabolism and storage upon Y. pestis biofilm production. Our findings demonstrate that Y. pestis biofilm production is subject to carbon catabolite regulation in which the presence of glucose impairs biofilm production; whereas, the sole metabolism of alternate carbon sources promotes robust biofilm formation. This observation is facilitated by the cAMP receptor protein, CRP. In accordance with a stark growth defect, deletion of crp in both CO92 and KIM6+ Y. pestis strains significantly impaired biofilm production when solely utilizing alternate carbon sources. Media supplementation with cAMP, a small-molecule activator of CRP, did not significantly alter Y. pestis biofilm production. Furthermore, CRP did not alter mRNA abundance of previously-characterized hms biofilm synthesis and regulation factors. Therefore, our findings indicate CRP does not confer a direct stimulatory effect, but may indirectly promote Y. pestis biofilm production by facilitating the alternate carbon source expression profile. Additionally, we assessed the impact of the carbon storage regulator protein, CsrA, upon Y. pestis biofilm production. Contrary to what has been described for E. coli, Y. pestis biofilm formation was found to be enhanced by CsrA. Regardless of media composition and available carbon source, deletion of csrA significantly impaired Y. pestis biofilm production. CsrA was found to promote Y. pestis biofilm production independent of glycogen regulation. Loss of csrA did not significantly alter relative hmsH, hmsP, or hmsT mRNA abundance. However, deletion of hmsP in the csrA-deficient mutant enabled excessive biofilm production

  20. The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes.

    Science.gov (United States)

    Lemon, Katherine P; Freitag, Nancy E; Kolter, Roberto

    2010-08-01

    Listeria monocytogenes is a food-borne facultative intracellular pathogen. It is widespread in the environment and has several distinct life-styles. The key transcriptional activator PrfA positively regulates L. monocytogenes virulence genes to mediate the transition from extracellular, flagellum-propelled cell to intracellular pathogen. Here we report the first evidence that PrfA also has a significant positive impact on extracellular biofilm formation. Mutants lacking prfA were defective in surface-adhered biofilm formation. The DeltaprfA mutant exhibited wild-type flagellar motility, and its biofilm defect occurred after initial surface adhesion. We also observed that mutations that led to the constitutive expression of PrfA-dependent virulence genes had a minimal impact on biofilm formation. Furthermore, biofilm development was enhanced in a mutant encoding a PrfA protein variant unable to fully transition from the extracellular form to the virulent, intracellular activity conformation. These results indicate that PrfA positively regulates biofilm formation and suggest that PrfA has a global role in modulating the life-style of L. monocytogenes. The requirement of PrfA for optimal biofilm formation may provide selective pressure to maintain this critical virulence regulator when L. monocytogenes is outside host cells in the environment.

  1. Effects of Iron on DNA Release and Biofilm Development by Pseudomonas Aeruginosa

    DEFF Research Database (Denmark)

    Yang, Liang; Barken, Kim Bundvig; Skindersø, Mette Elena

    2007-01-01

    Extracellular DNA is one of the major matrix components in Pseudomonas aeruginosa biofilms. It functions as an intercellular connector and plays a role in stabilization of the biofilms. Evidence that DNA release in P. aeruginosa PAO1 biofilms is controlled by the las-rhl and pqs quorum-sensing sy......Extracellular DNA is one of the major matrix components in Pseudomonas aeruginosa biofilms. It functions as an intercellular connector and plays a role in stabilization of the biofilms. Evidence that DNA release in P. aeruginosa PAO1 biofilms is controlled by the las-rhl and pqs quorum......-sensing systems has been previously presented. This paper provides evidence that DNA release in P. aeruginosa PAO1 biofilms is also under iron regulation. Experiments involving cultivation of P. aeruginosa in microtitre trays suggested that pqs expression, DNA release and biofilm formation were favoured in media...

  2. Conservation and Divergence in the Candida Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control.

    Science.gov (United States)

    Dominguez, Eddie; Zarnowski, Robert; Sanchez, Hiram; Covelli, Antonio S; Westler, William M; Azadi, Parastoo; Nett, Jeniel; Mitchell, Aaron P; Andes, David R

    2018-04-03

    Candida biofilms resist the effects of available antifungal therapies. Prior studies with Candida albicans biofilms show that an extracellular matrix mannan-glucan complex (MGCx) contributes to antifungal sequestration, leading to drug resistance. Here we implement biochemical, pharmacological, and genetic approaches to explore a similar mechanism of resistance for the three most common clinically encountered non- albicans Candida species (NAC). Our findings reveal that each Candida species biofilm synthesizes a mannan-glucan complex and that the antifungal-protective function of this complex is conserved. Structural similarities extended primarily to the polysaccharide backbone (α-1,6-mannan and β-1,6-glucan). Surprisingly, biochemical analysis uncovered stark differences in the branching side chains of the MGCx among the species. Consistent with the structural analysis, similarities in the genetic control of MGCx production for each Candida species also appeared limited to the synthesis of the polysaccharide backbone. Each species appears to employ a unique subset of modification enzymes for MGCx synthesis, likely accounting for the observed side chain diversity. Our results argue for the conservation of matrix function among Candida spp. While biogenesis is preserved at the level of the mannan-glucan complex backbone, divergence emerges for construction of branching side chains. Thus, the MGCx backbone represents an ideal drug target for effective pan- Candida species biofilm therapy. IMPORTANCE Candida species, the most common fungal pathogens, frequently grow as a biofilm. These adherent communities tolerate extremely high concentrations of antifungal agents, due in large part, to a protective extracellular matrix. The present studies define the structural, functional, and genetic similarities and differences in the biofilm matrix from the four most common Candida species. Each species synthesizes an extracellular mannan-glucan complex (MGCx) which

  3. The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349

    DEFF Research Database (Denmark)

    Fazli, Mustafa; McCarthy, Yvonne; Givskov, Michael

    2013-01-01

    In Burkholderia cenocepacia, the second messenger cyclic diguanosine monophosphate (c-di-GMP) has previously been shown to positively regulate biofilm formation and the expression of cellulose and type-I fimbriae genes through binding to the transcriptional regulator Bcam1349. Here, we provide...... evidence that cellulose and type-I fimbriae are not involved in B. cenocepacia biofilm formation in flow chambers, and we identify a novel Bcam1349/c-di-GMP-regulated exopolysaccharide gene cluster which is essential for B. cenocepacia biofilm formation. Overproduction of Bcam1349 in trans promotes wrinkly...... matrix exopolysaccharide and to be essential for flow-chamber biofilm formation. We demonstrate that Bcam1349 binds to the promoter region of genes in the Bcam1330-Bcam1341 cluster and that this binding is enhanced by the presence of c-di-GMP. Furthermore, we demonstrate that overproduction of both c-di-GMP...

  4. In situ analysis of Bacillus licheniformis biofilms: amyloid-like polymers and eDNA are involved in the adherence and aggregation of the extracellular matrix.

    Science.gov (United States)

    Randrianjatovo-Gbalou, I; Rouquette, P; Lefebvre, D; Girbal-Neuhauser, E; Marcato-Romain, C-E

    2017-05-01

    This study attempts to determine which of the exopolymeric substances are involved in the adherence and aggregation of a Bacillus licheniformis biofilm. The involvement of extracellular proteins and eDNA were particularly investigated using DNase and proteinase K treatment. The permeability of the biofilms increased fivefold after DNase I treatment. The quantification of the matrix components showed that, irrespective to the enzyme tested, eDNA and amyloid-like polymers were removed simultaneously. Size-exclusion chromatography analyses supported these observations and revealed the presence of associated nucleic acid and protein complexes in the biofilm lysates. These data suggest that some extracellular DNA and amyloid-like proteins were closely interlaced within the matrix. Finally, confocal laser scanning microscopy imaging gave supplementary clues about the 3D organization of the biofilms, confirming that eDNA and exoproteins were essentially layered under and around the bacterial cells, whereas the amyloid-like fractions were homogeneously distributed within the matrix. These results confirm that some DNA-amyloid complexes play a key role in the modulation of the mechanical resistance of B. licheniformis biofilms. The study highlights the need to consider the whole structure of biofilms and to target the interactions between matrix components. A better understanding of B. licheniformis biofilm physiology and the structural organization of the matrix will strengthen strategies of biofilm control. © 2017 The Society for Applied Microbiology.

  5. Sticking together: building a biofilm the Bacillus subtilis way.

    Science.gov (United States)

    Vlamakis, Hera; Chai, Yunrong; Beauregard, Pascale; Losick, Richard; Kolter, Roberto

    2013-03-01

    Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long served as a robust model organism to examine the molecular mechanisms of biofilm formation, and a number of studies have revealed that this process is regulated by several integrated pathways. In this Review, we focus on the molecular mechanisms that control B. subtilis biofilm assembly, and then briefly summarize the current state of knowledge regarding biofilm disassembly. We also discuss recent progress that has expanded our understanding of B. subtilis biofilm formation on plant roots, which are a natural habitat for this soil bacterium.

  6. Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption

    International Nuclear Information System (INIS)

    Aguilera, Angeles; Souza-Egipsy, Virginia; San Martin-Uriz, Patxi; Amils, Ricardo

    2008-01-01

    To evaluate the importance of the extracellular matrix in relation to heavy metal binding capacity in extreme acidic environments, the extracellular polymeric substances (EPS) composition of 12 biofilms isolated from Rio Tinto (SW, Spain) was analyzed. Each biofilm was composed mainly by one or two species of eukaryotes, although other microorganisms were present. EPS ranged from 130 to 439 mg g -1 biofilm dry weight, representing between 15% and the 40% of the total biofilm dry weight (DW). Statistically significant differences (p -1 dry weight; 10% to 30% of the total biofilm dry weight. Capsular EPS ranged from 50 to 318 mg g -1 dry weight; 5% to 30% of the total biofilm dry weight. Seven of the 12 biofilms showed higher amounts of capsular than colloidal EPS (p -1 biofilm dry weight, reaching up to 16% of the total composition. In general, the heavy metal composition of the EPS extracted from the biofilms closely resembled the metal composition of the water from which the biofilms were collected

  7. Essential roles and regulation of the Legionella pneumophila collagen-like adhesin during biofilm formation.

    Directory of Open Access Journals (Sweden)

    Julia Mallegol

    Full Text Available Legionellosis is mostly caused by Legionella pneumophila (Lp and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In a previous study, we showed that a glycosaminoglycan (GAG-binding adhesin of Lp, named Lcl, is produced during legionellosis and is unique to the L. pneumophila species. Importantly, a mutant depleted in Lcl (Δlpg2644 is impaired in adhesion to GAGs and epithelial cells and in biofilm formation. Here, we examine the molecular function(s of Lcl and the transcriptional regulation of its encoding gene during different stages of the biofilm development. We show that the collagen repeats and the C-terminal domains of Lcl are crucial for the production of biofilm. We present evidence that Lcl is involved in the early step of surface attachment but also in intercellular interactions. Furthermore, we address the relationship between Lcl gene regulation during biofilm formation and quorum sensing (QS. In a static biofilm assay, we show that Lcl is differentially regulated during growth phases and biofilm formation. Moreover, we show that the transcriptional regulation of lpg2644, mediated by a prototype of QS signaling homoserine lactone (3OC12-HSL, may play a role during the biofilm development. Thus, transcriptional down-regulation of lpg2644 may facilitate the dispersion of Lp to reinitiate biofilm colonization on a distal surface.

  8. Biofilms from Klebsiella pneumoniae: Matrix Polysaccharide Structure and Interactions with Antimicrobial Peptides.

    Science.gov (United States)

    Benincasa, Monica; Lagatolla, Cristina; Dolzani, Lucilla; Milan, Annalisa; Pacor, Sabrina; Liut, Gianfranco; Tossi, Alessandro; Cescutti, Paola; Rizzo, Roberto

    2016-08-10

    Biofilm matrices of two Klebsiella pneumoniae clinical isolates, KpTs101 and KpTs113, were investigated for their polysaccharide composition and protective effects against antimicrobial peptides. Both strains were good biofilm producers, with KpTs113 forming flocs with very low adhesive properties to supports. Matrix exopolysaccharides were isolated and their monosaccharide composition and glycosidic linkage types were defined. KpTs101 polysaccharide is neutral and composed only of galactose, in both pyranose and furanose ring configurations. Conversely, KpTs113 polysaccharide is anionic due to glucuronic acid units, and also contains glucose and mannose residues. The susceptibility of the two strains to two bovine cathelicidin antimicrobial peptides, BMAP-27 and Bac7(1-35), was assessed using both planktonic cultures and biofilms. Biofilm matrices exerted a relevant protection against both antimicrobials, which act with quite different mechanisms. Similar protection was also detected when antimicrobial peptides were tested against planktonic bacteria in the presence of the polysaccharides extracted from KpTs101 and KpTs113 biofilms, suggesting sequestering adduct formation with antimicrobials. Circular dichroism experiments on BMAP-27 in the presence of increasing amounts of either polysaccharide confirmed their ability to interact with the peptide and induce an α-helical conformation.

  9. Biofilms.

    Science.gov (United States)

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-07-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. Using these bacteria as examples, we discuss the key features of biofilms as well as mechanisms by which extracellular signals trigger biofilm formation.

  10. Bacillus cereus growth and biofilm formation: the impact of substratum, iron sources, and transcriptional regulator Sigma 54

    NARCIS (Netherlands)

    Hayrapetyan, Hasmik

    2017-01-01

    Biofilms are surface-associated communities of microbial cells embedded in a matrix of extracellular polymers. It is generally accepted that the biofilm growth mode represents the most common lifestyle of microorganisms. Next to beneficial biofilms used in biotechnology applications, undesired

  11. Biofilms

    OpenAIRE

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-01-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and ...

  12. Cross-regulation by CrcZ RNA controls anoxic biofilm formation in Pseudomonas aeruginosa

    Science.gov (United States)

    Pusic, Petra; Tata, Muralidhar; Wolfinger, Michael T.; Sonnleitner, Elisabeth; Häussler, Susanne; Bläsi, Udo

    2016-12-01

    Pseudomonas aeruginosa (PA) can thrive in anaerobic biofilms in the lungs of cystic fibrosis (CF) patients. Here, we show that CrcZ is the most abundant PA14 RNA bound to the global regulator Hfq in anoxic biofilms grown in cystic fibrosis sputum medium. Hfq was crucial for anoxic biofilm formation. This observation complied with an RNAseq based transcriptome analysis and follow up studies that implicated Hfq in regulation of a central step preceding denitrification. CrcZ is known to act as a decoy that sequesters Hfq during relief of carbon catabolite repression, which in turn alleviates Hfq-mediated translational repression of catabolic genes. We therefore inferred that CrcZ indirectly impacts on biofilm formation by competing for Hfq. This hypothesis was supported by the findings that over-production of CrcZ mirrored the biofilm phenotype of the hfq deletion mutant, and that deletion of the crcZ gene augmented biofilm formation. To our knowledge, this is the first example where competition for Hfq by CrcZ cross-regulates an Hfq-dependent physiological process unrelated to carbon metabolism.

  13. Quantitative proteomic analysis of extracellular matrix extracted from mono- and dual-species biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis.

    Science.gov (United States)

    Mohammed, Marwan Mansoor Ali; Pettersen, Veronika Kuchařová; Nerland, Audun H; Wiker, Harald G; Bakken, Vidar

    2017-04-01

    The Gram-negative bacteria Fusobacterium nucleatum and Porphyromonas gingivalis are members of a complex dental biofilm associated with periodontal disease. In this study, we cultured F. nucleatum and P. gingivalis as mono- and dual-species biofilms, and analyzed the protein composition of the biofilms extracellular polymeric matrix (EPM) by high-resolution liquid chromatography-tandem mass spectrometry. Label-free quantitative proteomic analysis was used for identification of proteins and sequence-based functional characterization for their classification and prediction of possible roles in EPM. We identified 542, 93 and 280 proteins in the matrix of F. nucleatum, P. gingivalis, and the dual-species biofilm, respectively. Nearly 70% of all EPM proteins in the dual-species biofilm originated from F. nucleatum, and a majority of these were cytoplasmic proteins, suggesting an enhanced lysis of F. nucleatum cells. The proteomic analysis also indicated an interaction between the two species: 22 F. nucleatum proteins showed differential levels between the mono and dual-species EPMs, and 11 proteins (8 and 3 from F. nucleatum and P. gingivalis, respectively) were exclusively detected in the dual-species EPM. Oxidoreductases and chaperones were among the most abundant proteins identified in all three EPMs. The biofilm matrices in addition contained several known and hypothetical virulence proteins, which can mediate adhesion to the host cells and disintegration of the periodontal tissues. This study demonstrated that the biofilm matrix of two important periodontal pathogens consists of a multitude of proteins whose amounts and functionalities vary largely. Relatively high levels of several of the detected proteins might facilitate their potential use as targets for the inhibition of biofilm development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Liao, Julie; Schurr, Michael J; Sauer, Karin

    2013-08-01

    A defining characteristic of biofilms is antibiotic tolerance that can be up to 1,000-fold greater than that of planktonic cells. In Pseudomonas aeruginosa, biofilm tolerance to antimicrobial agents requires the biofilm-specific MerR-type transcriptional regulator BrlR. However, the mechanism by which BrlR mediates biofilm tolerance has not been elucidated. Genome-wide transcriptional profiling indicated that brlR was required for maximal expression of genes associated with antibiotic resistance, in particular those encoding the multidrug efflux pumps MexAB-OprM and MexEF-OprN. Chromatin immunoprecipitation (ChIP) analysis revealed a direct regulation of these genes by BrlR, with DNA binding assays confirming BrlR binding to the promoter regions of the mexAB-oprM and mexEF-oprN operons. Quantitative reverse transcriptase PCR (qRT-PCR) analysis further indicated BrlR to be an activator of mexAB-oprM and mexEF-oprN gene expression. Moreover, immunoblot analysis confirmed increased MexA abundance in cells overexpressing brlR. Inactivation of both efflux pumps rendered biofilms significantly more susceptible to five different classes of antibiotics by affecting MIC but not the recalcitrance of biofilms to killing by bactericidal agents. Overexpression of either efflux pump in a ΔbrlR strain partly restored tolerance of ΔbrlR biofilms to antibiotics. Expression of brlR in mutant biofilms lacking both efflux pumps partly restored antimicrobial tolerance of biofilms to wild-type levels. Our results indicate that BrlR acts as an activator of multidrug efflux pumps to confer tolerance to P. aeruginosa biofilms and to resist the action of antimicrobial agents.

  15. Biofilm formation on abiotic surfaces

    DEFF Research Database (Denmark)

    Tang, Lone

    2011-01-01

    Bacteria can attach to any surface in contact with water and proliferate into complex communities enclosed in an adhesive matrix, these communities are called biofilms. The matrix makes the biofilm difficult to remove by physical means, and bacteria in biofilm can survive treatment with many...

  16. Combating biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong

    2012-01-01

    Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life...... is believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review......, strategies to control biofilms are discussed, including those of inhibition of microbial attachment, interference of biofilm structure development and differentiation, killing of biofilm cells and induction of biofilm dispersion....

  17. Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal

    DEFF Research Database (Denmark)

    Gjermansen, Morten; Ragas, Paula Cornelia; Tolker-Nielsen, Tim

    2006-01-01

    Microbial biofilm formation often causes problems in medical and industrial settings, and knowledge about the factors that are involved in biofilm development and dispersion is useful for creating strategies to control the processes. In this report, we present evidence that proteins with GGDEF...... and EAL domains are involved in the regulation of biofilm formation and biofilm dispersion in Pseudomonas putida. Overexpression in P. putida of the Escherichia coli YedQ protein, which contains a GGDEF domain, resulted in increased biofilm formation. Overexpression in P. putida of the E. coli Yhj......H protein, which contains an EAL domain, strongly inhibited biofilm formation. Induction of YhjH expression in P. putida cells situated in established biofilms led to rapid dispersion of the biofilms. These results support the emerging theme that GGDEF-domain and EAL-domain proteins are involved...

  18. Regulation of Burkholderia cenocepacia biofilm formation by RpoN and the c-di-GMP effector BerB

    DEFF Research Database (Denmark)

    Fazli, Mustafa; Rybtke, Morten Levin; Steiner, Elisabeth

    2017-01-01

    Knowledge about the molecular mechanisms that are involved in the regulation of biofilm formation is essential for the development of biofilm-control measures. It is well established that the nucleotide second messenger cyclic diguanosine monophosphate (c-di-GMP) is a positive regulator of biofilm...... formation in many bacteria, but more knowledge about c-di-GMP effectors is needed. We provide evidence that c-di-GMP, the alternative sigma factor RpoN (σ54), and the enhancer-binding protein BerB play a role in biofilm formation of Burkholderia cenocepacia by regulating the production of a biofilm......-stabilizing exopolysaccharide. Our findings suggest that BerB binds c-di-GMP, and activates RpoN-dependent transcription of the berA gene coding for a c-di-GMP-responsive transcriptional regulator. An increased level of the BerA protein in turn induces the production of biofilm-stabilizing exopolysaccharide in response to high...

  19. The CpAL quorum sensing system regulates production of hemolysins CPA and PFO to build Clostridium perfringens biofilms.

    Science.gov (United States)

    Vidal, Jorge E; Shak, Joshua R; Canizalez-Roman, Adrian

    2015-06-01

    Clostridium perfringens strains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by the C. perfringens Agr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. Although C. perfringens strains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrB mutant strains were not able to produce biofilms, a ΔluxS mutant produced wild-type levels. The transcript levels of CpAL-regulated cpa and pfoA genes, but not cpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpa and ΔpfoA mutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpb made wild-type levels. Biofilm formation was restored in complemented Δcpa/cpa and ΔpfoA/pfoA strains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation in C. perfringens by increasing levels of certain toxins required to build biofilms. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. The CpAL Quorum Sensing System Regulates Production of Hemolysins CPA and PFO To Build Clostridium perfringens Biofilms

    Science.gov (United States)

    Shak, Joshua R.; Canizalez-Roman, Adrian

    2015-01-01

    Clostridium perfringens strains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by the C. perfringens Agr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. Although C. perfringens strains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrB mutant strains were not able to produce biofilms, a ΔluxS mutant produced wild-type levels. The transcript levels of CpAL-regulated cpa and pfoA genes, but not cpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpa and ΔpfoA mutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpb made wild-type levels. Biofilm formation was restored in complemented Δcpa/cpa and ΔpfoA/pfoA strains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation in C. perfringens by increasing levels of certain toxins required to build biofilms. PMID:25824838

  1. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    Bacteria in nature primarily live in surface-associated communities commonly known as biofilms. Because bacteria in biofilms, in many cases, display tolerance to host immune systems, antibiotics, and biocides, they are often difficult or impossible to eradicate. Biofilm formation, therefore, leads...

  2. Poly-γ-Glutamic Acids Contribute to Biofilm Formation and Plant Root Colonization in Selected Environmental Isolates of Bacillus subtilis

    Science.gov (United States)

    Yu, Yiyang; Yan, Fang; Chen, Yun; Jin, Christopher; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacillus subtilis is long known to produce poly-γ-glutamic acids (γ-PGA) as one of the major secreted polymeric substances. In B. subtilis, the regulation of γ-PGA production and its physiological role are still unclear. B. subtilis is also capable of forming structurally complex multicellular communities, or biofilms, in which an extracellular matrix consisting of secreted proteins and polysaccharides holds individual cells together. Biofilms were shown to facilitate B. subtilis–plant interactions. In this study, we show that different environmental isolates of B. subtilis, all capable of forming biofilms, vary significantly in γ-PGA production. This is possibly due to differential regulation of γ-PGA biosynthesis genes. In many of those environmental isolates, γ-PGA seems to contribute to robustness and complex morphology of the colony biofilms, suggesting a role of γ-PGA in biofilm formation. Our evidence further shows that in selected B. subtilis strains, γ-PGA also plays a role in root colonization by the bacteria, pinpointing a possible function of γ-PGA in B. subtilis–plant interactions. Finally, we found that several pathways co-regulate both γ-PGA biosynthesis genes and genes for the biofilm matrix in B. subtilis, but in an opposing fashion. We discussed potential biological significance of that. PMID:27891125

  3. Streptococcus mutans Protein Synthesis during Mixed-Species Biofilm Development by High-Throughput Quantitative Proteomics

    Science.gov (United States)

    Klein, Marlise I.; Xiao, Jin; Lu, Bingwen; Delahunty, Claire M.; Yates, John R.; Koo, Hyun

    2012-01-01

    Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (Pmutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the presence of other

  4. New Technologies for Studying Biofilms

    Science.gov (United States)

    FRANKLIN, MICHAEL J.; CHANG, CONNIE; AKIYAMA, TATSUYA; BOTHNER, BRIAN

    2016-01-01

    Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level. PMID:26350329

  5. Relative contributions of norspermidine synthesis and signaling pathways to the regulation of Vibrio cholerae biofilm formation.

    Directory of Open Access Journals (Sweden)

    Caitlin K Wotanis

    Full Text Available The polyamine norspermidine is one of the major polyamines synthesized by Vibrionales and has also been found in various aquatic organisms. Norspermidine is among the environmental signals that positively regulate Vibrio cholerae biofilm formation. The NspS/MbaA signaling complex detects extracellular norspermidine and mediates the response to this polyamine. Norspermidine binding to the NspS periplasmic binding protein is thought to inhibit the phosphodiesterase activity of MbaA, increasing levels of the biofilm-promoting second messenger cyclic diguanylate monophosphate, thus enhancing biofilm formation. V. cholerae can also synthesize norspermidine using the enzyme NspC as well as import it from the environment. Deletion of the nspC gene was shown to reduce accumulation of bacteria in biofilms, leading to the conclusion that intracellular norspermidine is also a positive regulator of biofilm formation. Because V. cholerae uses norspermidine to synthesize the siderophore vibriobactin it is possible that intracellular norspermidine is required to obtain sufficient amounts of iron, which is also necessary for robust biofilm formation. The objective of this study was to assess the relative contributions of intracellular and extracellular norspermidine to the regulation of biofilm formation in V. cholerae. We show the biofilm defect of norspermidine synthesis mutants does not result from an inability to produce vibriobactin as vibriobactin synthesis mutants do not have diminished biofilm forming abilities. Furthermore, our work shows that extracellular, but not intracellular norspermidine, is mainly responsible for promoting biofilm formation. We establish that the NspS/MbaA signaling complex is the dominant mediator of biofilm formation in response to extracellular norspermidine, rather than norspermidine synthesized by NspC or imported into the cell.

  6. SMU.940 regulates dextran-dependent aggregation and biofilm formation in Streptococcus mutans.

    Science.gov (United States)

    Senpuku, Hidenobu; Yonezawa, Hideo; Yoneda, Saori; Suzuki, Itaru; Nagasawa, Ryo; Narisawa, Naoki

    2018-02-01

    The oral bacterium Streptococcus mutans is the principal agent in the development of dental caries. Biofilm formation by S. mutans requires bacterial attachment, aggregation, and glucan formation on the tooth surface under sucrose supplementation conditions. Our previous microarray analysis of clinical strains identified 74 genes in S. mutans that were related to biofilm morphology; however, the roles of almost all of these genes in biofilm formation are poorly understood. We investigated the effects of 21 genes randomly selected from our previous study regarding S. mutans biofilm formation, regulation by the complement pathway, and responses to competence-stimulating peptide. Eight competence-stimulating peptide-dependent genes were identified, and their roles in biofilm formation and aggregation were examined by mutational analyses of the S. mutansUA159 strain. Of these eight genes, the inactivation of the putative hemolysin III family SMU.940 gene of S. mutansUA159 promoted rapid dextran-dependent aggregation and biofilm formation in tryptic soy broth without dextrose (TSB) with 0.25% glucose and slightly reduced biofilm formation in TSB with 0.25% sucrose. The SMU.940 mutant showed higher expression of GbpC and gbpC gene than wild-type. GbpC is known to be involved in the dextran-dependent aggregation of S. mutans. An SMU.940-gbpC double mutant strain was constructed in the SMU.940 mutant background. The gbpC mutation completely abolished the dextran-dependent aggregation of the SMU.940 mutant. In addition, the aggregation of the mutant was abrogated by dextranase. These findings suggest that SMU.940 controls GbpC expression, and contributes to the regulation of dextran-dependent aggregation and biofilm formation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Capsular Polysaccharide Interferes with Biofilm Formation by Pasteurella multocida Serogroup A

    Directory of Open Access Journals (Sweden)

    Briana Petruzzi

    2017-11-01

    Full Text Available Pasteurella multocida is an important multihost animal and zoonotic pathogen that is capable of causing respiratory and multisystemic diseases, bacteremia, and bite wound infections. The glycosaminoglycan capsule of P. multocida is an essential virulence factor that protects the bacterium from host defenses. However, chronic infections (such as swine atrophic rhinitis and the carrier state in birds and other animals may be associated with biofilm formation, which has not been characterized in P. multocida. Biofilm formation by clinical isolates was inversely related to capsule production and was confirmed with capsule-deficient mutants of highly encapsulated strains. Capsule-deficient mutants formed biofilms with a larger biomass that was thicker and smoother than the biofilm of encapsulated strains. Passage of a highly encapsulated, poor-biofilm-forming strain under conditions that favored biofilm formation resulted in the production of less capsular polysaccharide and a more robust biofilm, as did addition of hyaluronidase to the growth medium of all of the strains tested. The matrix material of the biofilm was composed predominately of a glycogen exopolysaccharide (EPS, as determined by gas chromatography-mass spectrometry, nuclear magnetic resonance, and enzymatic digestion. However, a putative glycogen synthesis locus was not differentially regulated when the bacteria were grown as a biofilm or planktonically, as determined by quantitative reverse transcriptase PCR. Therefore, the negatively charged capsule may interfere with biofilm formation by blocking adherence to a surface or by preventing the EPS matrix from encasing large numbers of bacterial cells. This is the first detailed description of biofilm formation and a glycogen EPS by P. multocida.

  8. Facultative control of matrix production optimizes competitive fitness in Pseudomonas aeruginosa PA14 biofilm models.

    Science.gov (United States)

    Madsen, Jonas S; Lin, Yu-Cheng; Squyres, Georgia R; Price-Whelan, Alexa; de Santiago Torio, Ana; Song, Angela; Cornell, William C; Sørensen, Søren J; Xavier, Joao B; Dietrich, Lars E P

    2015-12-01

    As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required for pellicle formation and for colony wrinkling, two activities that promote access to O2. We examined the exploitability and evolvability of Pel production at the air-liquid interface (during pellicle formation) and on solid surfaces (during colony formation). Although Pel contributes to the developmental response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage in colonies. Adaptation to the pellicle environment selected for mutants with a competitive advantage against the wild type in pellicles but also caused a severe disadvantage in colonies, even in wrinkled colony centers. Evolution in the colony center produced divergent phenotypes, while adaptation to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Burkholderia contaminans Biofilm Regulating Operon and Its Distribution in Bacterial Genomes.

    Science.gov (United States)

    Voronina, Olga L; Kunda, Marina S; Ryzhova, Natalia N; Aksenova, Ekaterina I; Semenov, Andrey N; Romanova, Yulia M; Gintsburg, Alexandr L

    2016-01-01

    Biofilm formation by Burkholderia spp. is a principal cause of lung chronic infections in cystic fibrosis patients. A "lacking biofilm production" (LBP) strain B. contaminans GIMC4587:Bct370-19 has been obtained by insertion modification of clinical strain with plasposon mutagenesis. It has an interrupted transcriptional response regulator (RR) gene. The focus of our investigation was a two-component signal transduction system determination, including this RR. B. contaminans clinical and LBP strains were analyzed by whole genome sequencing and bioinformatics resources. A four-component operon (BiofilmReg) has a key role in biofilm formation. The relative location (i.e., by being separated by another gene) of RR and histidine kinase genes is unique in BiofilmReg. Orthologs were found in other members of the Burkholderiales order. Phylogenetic analysis of strains containing BiofilmReg operons demonstrated evidence for earlier inheritance of a three-component operon. During further evolution one lineage acquired a fourth gene, whereas others lost the third component of the operon. Mutations in sensor domains have created biodiversity which is advantageous for adaptation to various ecological niches. Different species Burkholderia and Achromobacter strains all demonstrated similar BiofilmReg operon structure. Therefore, there may be an opportunity to develop a common drug which is effective for treating all these causative agents.

  10. The Exopolysaccharide Matrix

    Science.gov (United States)

    Koo, H.; Falsetta, M.L.; Klein, M.I.

    2013-01-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms. PMID:24045647

  11. Host Proteins Determine MRSA Biofilm Structure and Integrity

    DEFF Research Database (Denmark)

    Dreier, Cindy; Nielsen, Astrid; Jørgensen, Nis Pedersen

    Human extracellular matrix (hECM) proteins aids the initial attachment and initiation of an infection, by specific binding to bacterial cell surface proteins. However, the importance of hECM proteins in structure, integrity and antibiotic resilience of a biofilm is unknown. This study aims...... to determine how specific hECM proteins affect S. aureus USA300 JE2 biofilms. Biofilms were grown in the presence of synovial fluid from rheumatoid arteritis patients to mimic in vivo conditions, where bacteria incorporate hECM proteins into the biofilm matrix. Difference in biofilm structure, with and without...... addition of hECM to growth media, was visualized by confocal laser scanning microscopy. Two enzymatic degradation experiments were used to study biofilm matrix composition and importance of hECM proteins: enzymatic removal of specific hECM proteins from growth media, before biofilm formation, and enzymatic...

  12. Regulation of biofilm formation in Shewanella oneidensis by BpfA, BpfG, and BpfD

    Directory of Open Access Journals (Sweden)

    Guangqi eZhou

    2015-08-01

    Full Text Available Bacteria switch between two distinct life styles -- planktonic (free living and biofilm forming -- in keeping with their ever-changing environment. Such switch involves sophisticated signaling and tight regulation, which provides a fascinating portal for studying gene function and orchestrated protein interactions. In this work, we investigated the molecular mechanism underlying biofilm formation in S. oneidensis MR-1, an environmentally important model bacterium renowned for respiratory diversities, and uncovered a gene cluster coding for seven proteins involved in this process. The three key proteins, BpfA, BpfG, and BpfD, were studied in detail for the first time. BpfA directly participates in biofilm formation as extracellular glue; BpfG is not only indispensable for BpfA export during biofilm forming but also functions to turn BpfA into active form for biofilm dispersing. BpfD regulates biofilm development by interacting with both BpfA and BpfG, likely in response to signal molecule c-di-GMP. In addition, we found that 1:1 stoichiometry between BpfD and BpfG is critical for biofilm formation. Furthermore, we demonstrated that a biofilm over-producing phenotype can be induced by C116S mutation but not loss of BpfG.

  13. Beta- Lactam Antibiotics Stimulate Biofilm Formation in Non-Typeable Haemophilus influenzae by Up-Regulating Carbohydrate Metabolism

    Science.gov (United States)

    Wu, Siva; Li, Xiaojin; Gunawardana, Manjula; Maguire, Kathleen; Guerrero-Given, Debbie; Schaudinn, Christoph; Wang, Charles; Baum, Marc M.; Webster, Paul

    2014-01-01

    Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended. PMID:25007395

  14. Bacteriophages and Biofilms

    Directory of Open Access Journals (Sweden)

    David R. Harper

    2014-06-01

    Full Text Available Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.

  15. Antibiofilm Effect of DNase against Single and Mixed Species Biofilm

    Science.gov (United States)

    Sharma, Komal

    2018-01-01

    Biofilms are aggregates of microorganisms that coexist in socially coordinated micro-niche in a self-produced polymeric matrix on pre-conditioned surfaces. The biofilm matrix reduces the efficacy of antibiofilm strategies. DNase degrades the extracellular DNA (e-DNA) present in the matrix, rendering the matrix weak and susceptible to antimicrobials. In the current study, the effect of DNase I was evaluated during biofilm formation (pre-treatment), on preformed biofilms (post-treatment) and both (dual treatment). The DNase I pre-treatment was optimized for P. aeruginosa PAO1 (model biofilm organism) at 10 µg/mL and post-treatment at 10 µg/mL with 15 min of contact duration. Inclusion of Mg2+ alongside DNase I post-treatment resulted in 90% reduction in biofilm within only 5 min of contact time (irrespective of age of biofilm). On extension of these findings, DNase I was found to be less effective against mixed species biofilm than individual biofilms. DNase I can be used as potent antibiofilm agent and with further optimization can be effectively used for biofilm prevention and reduction in situ. PMID:29562719

  16. Staphylococcus aureus Quorum Regulator SarA Targeted Compound, 2-[(Methylaminomethyl]phenol Inhibits Biofilm and Down-Regulates Virulence Genes

    Directory of Open Access Journals (Sweden)

    P. Balamurugan

    2017-07-01

    Full Text Available Staphylococcus aureus is a widely acknowledged Gram-positive pathogen for forming biofilm and virulence gene expressions by quorum sensing (QS, a cell to cell communication process. The quorum regulator SarA of S. aureus up-regulates the expression of many virulence factors including biofilm formation to mediate pathogenesis and evasion of the host immune system in the late phases of growth. Thus, inhibiting the production or blocking SarA protein might influence the down-regulation of biofilm and virulence factors. In this context, here we have synthesized 2-[(Methylaminomethyl]phenol, which was specifically targeted toward the quorum regulator SarA through in silico approach in our previous study. The molecule has been evaluated in vitro to validate its antibiofilm activity against clinical S. aureus strains. In addition, antivirulence properties of the inhibitor were confirmed with the observation of a significant reduction in the expression of representative virulence genes like fnbA, hla and hld that are governed under S. aureus QS. Interestingly, the SarA targeted inhibitor showed negligible antimicrobial activity and markedly reduced the minimum inhibitory concentration of conventional antibiotics when used in combination making it a more attractive lead for further clinical tests.

  17. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.

    Science.gov (United States)

    Nguyen, Uyen T; Burrows, Lori L

    2014-09-18

    Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (biofilms with 100μg/ml of DNase for 24h induced incomplete biofilm dispersal, with biofilm remaining compared to control. In contrast, addition of proteinase K completely inhibited biofilm formation, and 72h biofilms-including those grown under stimulatory conditions-were completely dispersed with 100μg/ml proteinase K. Generally-regarded-as-safe proteases bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25μg/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Bistability and Biofilm Formation in Bacillus subtilis

    Science.gov (United States)

    Chai, Yunrong; Chu, Frances; Kolter, Roberto; Losick, Richard

    2008-01-01

    Summary Biofilms of Bacillus subtilis consist of long chains of cells that are held together in bundles by an extracellular matrix of exopolysaccharide and the protein TasA. The exopolysaccharide is produced by enzymes encoded by the epsA-O operon and the gene encoding TasA is located in the yqxM-sipW-tasA operon. Both operons are under the control of the repressor SinR. Derepression is mediated by the antirepressor SinI, which binds to SinR with a 1:1 stoichiometry. Paradoxically, in medium promoting derepression of the matrix operons, the overall concentration of SinR in the culture greatly exceeded that of SinI. We show that under biofilm-promoting conditions sinI, which is under the control of the response regulator Spo0A, was expressed only in a small subpopulation of cells, whereas sinR was expressed in almost all cells. Activation of Spo0A is known to be subject to a bistable switch, and we infer that SinI reaches levels sufficient to trigger matrix production only in the subpopulation of cells in which Spo0A is active. Additionally, evidence suggests that sinI is expressed at intermediate, but not low or high, levels of Spo0A activity, which may explain why certain nutritional conditions are more effective in promoting biofilm formation than others. PMID:18047568

  19. Beta- lactam antibiotics stimulate biofilm formation in non-typeable haemophilus influenzae by up-regulating carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Siva Wu

    Full Text Available Non-typeable Haemophilus influenzae (NTHi is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended.

  20. Biofilm architecture in a novel pressurized biofilm reactor.

    Science.gov (United States)

    Jiang, Wei; Xia, Siqing; Duan, Liang; Hermanowicz, Slawomir W

    2015-01-01

    A novel pure-oxygen pressurized biofilm reactor was operated at different organic loading, mechanical shear and hydrodynamic conditions to understand the relationships between biofilm architecture and its operation. The ultimate goal was to improve the performance of the biofilm reactor. The biofilm was labeled with seven stains and observed with confocal laser scanning microscopy. Unusual biofilm architecture of a ribbon embedded between two surfaces with very few points of attachment was observed. As organic loading increased, the biofilm morphology changed from a moderately rough layer into a locally smoother biomass with significant bulging protuberances, although the chemical oxygen demand (COD) removal efficiency remained unchanged at about 75%. At higher organic loadings, biofilms contained a larger fraction of active cells distributed uniformly within a proteinaceous matrix with decreasing polysaccharide content. Higher hydrodynamic shear in combination with high organic loading resulted in the collapse of biofilm structure and a substantial decrease in reactor performance (a COD removal of 16%). Moreover, the important role of proteins for the spatial distribution of active cells was demonstrated quantitatively.

  1. Staphylococcus aureus biofilms: recent developments in biofilm dispersal.

    Science.gov (United States)

    Lister, Jessica L; Horswill, Alexander R

    2014-01-01

    Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and represents a significant burden on the healthcare system. S. aureus attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in the persistence of chronic infections. The formation of a biofilm, and encasement of cells in a polymer-based matrix, decreases the susceptibility to antimicrobials and immune defenses, making these infections difficult to eradicate. During infection, dispersal of cells from the biofilm can result in spread to secondary sites and worsening of the infection. In this review, we discuss the current understanding of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential applications of dispersal in the treatment of biofilm-mediated infections.

  2. The Yin and Yang of SagS: Distinct Residues in the HmsP Domain of SagS Independently Regulate Biofilm Formation and Biofilm Drug Tolerance

    Science.gov (United States)

    Dingemans, Jozef; Poudyal, Bandita

    2018-01-01

    ABSTRACT The formation of inherently drug-tolerant biofilms by the opportunistic pathogen Pseudomonas aeruginosa requires the sensor-regulator hybrid SagS, with ΔsagS biofilms being unstructured and exhibiting increased antimicrobial susceptibility. Recent findings indicated SagS to function as a switch to control biofilm formation and drug tolerance independently. Moreover, findings suggested the periplasmic sensory HmsP domain of SagS is likely to be the control point in the regulation of biofilm formation and biofilm cells transitioning to a drug-tolerant state. We thus asked whether specific amino acid residues present in the HmsP domain contribute to the switch function of SagS. HmsP domain residues were therefore subjected to alanine replacement mutagenesis to identify substitutions that block the sensory function(s) of SagS, which is apparent by attached cells being unable to develop mature biofilms and/or prevent transition to an antimicrobial-resistant state. Mutant analyses revealed 32 residues that only contribute to blocking one sensory function. Moreover, amino acid residues affecting attachment and subsequent biofilm formation but not biofilm tolerance also impaired histidine kinase signaling via BfiS. In contrast, residues affecting biofilm drug tolerance but not attachment and subsequent biofilm formation negatively impacted BrlR transcription factor levels. Structure prediction suggested the two sets of residues affecting sensory functions are located in distinct areas that were previously described as being involved in ligand binding interactions. Taken together, these studies identify the molecular basis for the dual regulatory function of SagS. IMPORTANCE The membrane-bound sensory protein SagS plays a pivotal role in P. aeruginosa biofilm formation and biofilm cells gaining their heightened resistance to antimicrobial agents, with SagS being the control point at which both pathways diverge. Here, we demonstrate for the first time that the two

  3. Transcriptional Profiling of Biofilm Regulators Identified by an Overexpression Screen in Saccharomyces cerevisiae

    Science.gov (United States)

    Cromie, Gareth A.; Tan, Zhihao; Hays, Michelle; Sirr, Amy; Jeffery, Eric W.; Dudley, Aimée M.

    2017-01-01

    Biofilm formation by microorganisms is a major cause of recurring infections and removal of biofilms has proven to be extremely difficult given their inherent drug resistance . Understanding the biological processes that underlie biofilm formation is thus extremely important and could lead to the development of more effective drug therapies, resulting in better infection outcomes. Using the yeast Saccharomyces cerevisiae as a biofilm model, overexpression screens identified DIG1, SFL1, HEK2, TOS8, SAN1, and ROF1/YHR177W as regulators of biofilm formation. Subsequent RNA-seq analysis of biofilm and nonbiofilm-forming strains revealed that all of the overexpression strains, other than DIG1 and TOS8, were adopting a single differential expression profile, although induced to varying degrees. TOS8 adopted a separate profile, while the expression profile of DIG1 reflected the common pattern seen in most of the strains, plus substantial DIG1-specific expression changes. We interpret the existence of the common transcriptional pattern seen across multiple, unrelated overexpression strains as reflecting a transcriptional state, that the yeast cell can access through regulatory signaling mechanisms, allowing an adaptive morphological change between biofilm-forming and nonbiofilm states. PMID:28673928

  4. The Small Molecule DAM Inhibitor, Pyrimidinedione, Disrupts Streptococcus pneumoniae Biofilm Growth In Vitro.

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Yadav

    -clumps were scattered and attached to the bottom of the plate when cells were grown in the presence of pyrimidinedione. Scanning electron microscopy analysis demonstrated the absence of an extracellular polysaccharide matrix in pyrimidinedione-grown biofilms compared to control-biofilms. Pyrimidinedione also significantly inhibited MRSA, MSSA, and Staphylococcus epidermidis biofilm growth in vitro. Furthermore, pyrimidinedione does not exhibit eukaryotic cell toxicity. In a microarray analysis, 56 genes were significantly up-regulated and 204 genes were significantly down-regulated. Genes involved in galactose metabolism were exclusively up-regulated in pyrimidinedione-grown biofilms. Genes related to DNA replication, cell division and the cell cycle, pathogenesis, phosphate-specific transport, signal transduction, fatty acid biosynthesis, protein folding, homeostasis, competence, and biofilm formation were down regulated in pyrimidinedione-grown biofilms. This study demonstrated that the small molecule Dam inhibitor, pyrimidinedione, inhibits pneumococcal biofilm growth in vitro at concentrations that do not inhibit planktonic cell growth and down regulates important metabolic-, virulence-, competence-, and biofilm-related genes. The identification of a small molecule (pyrimidinedione with S. pneumoniae biofilm-inhibiting capabilities has potential for the development of new compounds that prevent biofilm formation.

  5. Pseudomonas aeruginosa biofilms in cystic fibrosis

    DEFF Research Database (Denmark)

    Høiby, Niels; Ciofu, Oana; Bjarnsholt, Thomas

    2010-01-01

    The persistence of chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients is due to biofilm-growing mucoid (alginate-producing) strains. A biofilm is a structured consortium of bacteria, embedded in a self-produced polymer matrix consisting of polysaccharide, protein...... and DNA. In CF lungs, the polysaccharide alginate is the major part of the P. aeruginosa biofilm matrix. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and resist phagocytosis, as well as other components of the innate and the adaptive immune system....... As a consequence, a pronounced antibody response develops, leading to immune complex-mediated chronic inflammation, dominated by polymorphonuclear leukocytes. The chronic inflammation is the major cause of the lung tissue damage in CF. Biofilm growth in CF lungs is associated with an increased frequency...

  6. Differential regulation of c-di-GMP metabolic enzymes by environmental signals modulates biofilm formation in Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Gai-Xian eRen

    2016-06-01

    Full Text Available Cyclic diguanylate (c-di-GMP is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs, HmsT and HmsD and one phosphodiesterase (PDE, HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD and HmsP in Y. pestis. Biofilm formation was higher in the presence of nonlethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfonate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulates their DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments.

  7. BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation

    OpenAIRE

    Moreira, Ricardo N.; Dressaire, Clémentine; Barahona, Susana; Galego, Lisete; Kaever, Volkhard; Jenal, Urs; Arraiano, Cecília M.

    2017-01-01

    The bacterial second messenger cyclic dimeric GMP (c-di-GMP) is a nearly ubiquitous intracellular signaling molecule involved in the transition from the motile to the sessile/biofilm state in bacteria. C-di-GMP regulates various cellular processes, including biofilm formation, motility, and virulence. BolA is a transcription factor that promotes survival in different stresses and is also involved in biofilm formation. Both BolA and c-di-GMP participate in the regulation of motility mechanisms...

  8. Biofilm Development

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2015-01-01

    During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction or terminat......During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction...... or termination of biofilm matrix production via the second messenger molecule c-di-GMP. In between initiation and termination of biofilm formation we have defined specific biofilm stages, but the currently available evidence suggests that these transitions are mainly governed by adaptive responses......, and not by specific genetic programs. It appears that biofilm formation can occur through multiple pathways and that the spatial structure of the biofilms is species dependent as well as dependent on environmental conditions. Bacterial subpopulations, e.g., motile and nonmotile subpopulations, can develop...

  9. sarA negatively regulates Staphylococcus epidermidis biofilm formation by modulating expression of 1 MDa extracellular matrix binding protein and autolysis‐dependent release of eDNA

    DEFF Research Database (Denmark)

    Christner, Martin; Heinze, Constanze; Busch, Michael

    2012-01-01

    to biofilm formation in mutant 1585ΔsarA. Increased eDNA amounts indirectly resulted from upregulation of metalloprotease SepA, leading to boosted processing of autolysin AtlE, in turn inducing augmented autolysis and release of eDNA. Hence, this study identifies sarA as a negative regulator of Embp‐ and e...

  10. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display...... a remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because...... the use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  11. Current and future trends for biofilm reactors for fermentation processes.

    Science.gov (United States)

    Ercan, Duygu; Demirci, Ali

    2015-03-01

    Biofilms in the environment can both cause detrimental and beneficial effects. However, their use in bioreactors provides many advantages including lesser tendencies to develop membrane fouling and lower required capital costs, their higher biomass density and operation stability, contribution to resistance of microorganisms, etc. Biofilm formation occurs naturally by the attachment of microbial cells to the support without use of any chemicals agent in biofilm reactors. Biofilm reactors have been studied and commercially used for waste water treatment and bench and pilot-scale production of value-added products in the past decades. It is important to understand the fundamentals of biofilm formation, physical and chemical properties of a biofilm matrix to run the biofilm reactor at optimum conditions. This review includes the principles of biofilm formation; properties of a biofilm matrix and their roles in the biofilm formation; factors that improve the biofilm formation, such as support materials; advantages and disadvantages of biofilm reactors; and industrial applications of biofilm reactors.

  12. Growth regulation of Legionella Pneumophila in biofilms and amoebae; Wachstumsregulation von Legionella Pneumophila in Biofilmen und Amoeben

    Energy Technology Data Exchange (ETDEWEB)

    Hilbi, H.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of studies made on the regulation of the growth of Legionella Pneumophila bacteria in biofilms and amoebae. In a first project, the formation of biofilms by Legionella Pneumophila bacteria was analysed in static and dynamic systems using a complex growth medium. Under static and dynamic clinical and environmental conditions, the adherence of the biofilms on polystyrene tissue was studied. This was also examined under dynamic flow conditions. In a second part of the project, the regulation of growth of Legionella Pneumophila in amoebae was examined in that changes were made to the genome of the bacteria. The importance of the work for the de-activation of Legionella Pneumophila bacteria in biofilms is noted in the conclusions of the report.

  13. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms.

    Science.gov (United States)

    Schwartz, Kelly; Ganesan, Mahesh; Payne, David E; Solomon, Michael J; Boles, Blaise R

    2016-01-01

    Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  14. Microbial ecology of phototrophic biofilms

    NARCIS (Netherlands)

    Roeselers, G.

    2007-01-01

    Biofilms are layered structures of microbial cells and an extracellular matrix of polymeric substances, associated with surfaces and interfaces. Biofilms trap nutrients for growth of the enclosed microbial community and help prevent detachment of cells from surfaces in flowing systems. Phototrophic

  15. BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation.

    Science.gov (United States)

    Moreira, Ricardo N; Dressaire, Clémentine; Barahona, Susana; Galego, Lisete; Kaever, Volkhard; Jenal, Urs; Arraiano, Cecília M

    2017-09-19

    The bacterial second messenger cyclic dimeric GMP (c-di-GMP) is a nearly ubiquitous intracellular signaling molecule involved in the transition from the motile to the sessile/biofilm state in bacteria. C-di-GMP regulates various cellular processes, including biofilm formation, motility, and virulence. BolA is a transcription factor that promotes survival in different stresses and is also involved in biofilm formation. Both BolA and c-di-GMP participate in the regulation of motility mechanisms leading to similar phenotypes. Here, we establish the importance of the balance between these two factors for accurate regulation of the transition between the planktonic and sessile lifestyles. This balance is achieved by negative-feedback regulation of BolA and c-di-GMP. BolA not only contributes directly to the motility of bacteria but also regulates the expression of diguanylate cyclases and phosphodiesterases. This expression modulation influences the synthesis and degradation of c-di-GMP, while this signaling metabolite has a negative influence in bolA mRNA transcription. Finally, we present evidence of the dominant role of BolA in biofilm, showing that, even in the presence of elevated c-di-GMP levels, biofilm formation is reduced in the absence of BolA. C-di-GMP is one of the most important bacterial second messengers involved in several cellular processes, including virulence, cell cycle regulation, biofilm formation, and flagellar synthesis. In this study, we unravelled a direct connection between the bolA morphogene and the c-di-GMP signaling molecule. We show the important cross-talk that occurs between these two molecular regulators during the transition between the motile/planktonic and adhesive/sessile lifestyles in Escherichia coli This work provides important clues that can be helpful in the development of new strategies, and the results can be applied to other organisms with relevance for human health. IMPORTANCE Bacterial cells have evolved several

  16. Two-component system VicRK regulates functions associated with establishment of Streptococcus sanguinis in biofilms.

    Science.gov (United States)

    Moraes, Julianna J; Stipp, Rafael N; Harth-Chu, Erika N; Camargo, Tarsila M; Höfling, José F; Mattos-Graner, Renata O

    2014-12-01

    Streptococcus sanguinis is a commensal pioneer colonizer of teeth and an opportunistic pathogen of infectious endocarditis. The establishment of S. sanguinis in host sites likely requires dynamic fitting of the cell wall in response to local stimuli. In this study, we investigated the two-component system (TCS) VicRK in S. sanguinis (VicRKSs), which regulates genes of cell wall biogenesis, biofilm formation, and virulence in opportunistic pathogens. A vicK knockout mutant obtained from strain SK36 (SKvic) showed slight reductions in aerobic growth and resistance to oxidative stress but an impaired ability to form biofilms, a phenotype restored in the complemented mutant. The biofilm-defective phenotype was associated with reduced amounts of extracellular DNA during aerobic growth, with reduced production of H2O2, a metabolic product associated with DNA release, and with inhibitory capacity of S. sanguinis competitor species. No changes in autolysis or cell surface hydrophobicity were detected in SKvic. Reverse transcription-quantitative PCR (RT-qPCR), electrophoretic mobility shift assays (EMSA), and promoter sequence analyses revealed that VicR directly regulates genes encoding murein hydrolases (SSA_0094, cwdP, and gbpB) and spxB, which encodes pyruvate oxidase for H2O2 production. Genes previously associated with spxB expression (spxR, ccpA, ackA, and tpK) were not transcriptionally affected in SKvic. RT-qPCR analyses of S. sanguinis biofilm cells further showed upregulation of VicRK targets (spxB, gbpB, and SSA_0094) and other genes for biofilm formation (gtfP and comE) compared to expression in planktonic cells. This study provides evidence that VicRKSs regulates functions crucial for S. sanguinis establishment in biofilms and identifies novel VicRK targets potentially involved in hydrolytic activities of the cell wall required for these functions. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Fremmedlegemeinfektioner--nyt om biofilm og quorum sensing

    DEFF Research Database (Denmark)

    Høiby, Niels; Johansen, Helle Krogh; Ciofu, Oana

    2007-01-01

    Biofilms are structured consortia of bacteria embedded in self-produced polymer matrix. Biofilms are resistant to antibiotics, disinfectives and phagocytosis. The persistence of foreign body infections is due to biofilms. Chronic P. aeruginosa lung infection in cystic fibrosis patients is a biofilm....... Bacteria in biofilms communicate by means of quorum sensing which activates genes for virulence factors. Biofilms can be prevented by antibiotic prophylaxis or early therapy or by quorum sensing inhibitors which make them susceptible to antibiotics and phagocytosis....

  18. A personal history of research on microbial biofilms and biofilm infections.

    Science.gov (United States)

    Høiby, Niels

    2014-04-01

    The observation of aggregated microorganisms surrounded by a self-produced matrix adhering to surfaces or located in tissues or secretions is as old as microbiology, with both Leeuwenhoek and Pasteur describing the phenomenon. In environmental and technical microbiology, biofilms were already shown 80-90 years ago to be important for biofouling on submerged surfaces, e.g. ships. The concept of biofilm infections and their importance in medicine is, however, biofilm was introduced into medicine in 1985 by Costerton. In the following decades, it became obvious that biofilm infections are widespread in medicine, and their importance is now generally accepted. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Impact of Environmental Conditions on the Form and Function of Candida albicans Biofilms

    Science.gov (United States)

    Daniels, Karla J.; Park, Yang-Nim; Srikantha, Thyagarajan; Pujol, Claude

    2013-01-01

    Candida albicans, like other pathogens, can form complex biofilms on a variety of substrates. However, as the number of studies of gene regulation, architecture, and pathogenic traits of C. albicans biofilms has increased, so have differences in results. This suggests that depending upon the conditions employed, biofilms may vary widely, thus hampering attempts at a uniform description. Gene expression studies suggest that this may be the case. To explore this hypothesis further, we compared the architectures and traits of biofilms formed in RPMI 1640 and Spider media at 37°C in air. Biofilms formed by a/α cells in the two media differed to various degrees in cellular architecture, matrix deposition, penetrability by leukocytes, fluconazole susceptibility, and the facilitation of mating. Similar comparisons of a/a cells in the two media, however, were made difficult given that in air, although a/a cells form traditional biofilms in RPMI medium, they form polylayers composed primarily of yeast cells in Spider medium. These polylayers lack an upper hyphal/matrix region, are readily penetrated by leukocytes, are highly fluconazole susceptible, and do not facilitate mating. If, however, air is replaced with 20% CO2, a/a cells make a biofilm in Spider medium similar architecturally to that of a/α cells, which facilitates mating. A second, more cursory comparison is made between the disparate cellular architectures of a/a biofilms formed in air in RPMI and Lee's media. The results demonstrate that C. albicans forms very different types of biofilms depending upon the composition of the medium, level of CO2 in the atmosphere, and configuration of the MTL locus. PMID:23954841

  20. Effect of secondary metabolite of Actinidia deliciosa on the biofilm and extra-cellular matrix components of Acinetobacter baumannii.

    Science.gov (United States)

    Tiwari, Vishvanath; Tiwari, Deepika; Patel, Varsha; Tiwari, Monalisa

    2017-09-01

    Acinetobacter baumannii, opportunistic nosocomial pathogen, increases gradually in the clinical setup. The high level of resistance mechanisms acquired by these bacteria makes their eradication difficult and biofilm formation is one of them. Biofilm comprises of closely packed bacterial population crowded together by extra-cellular matrix (ECM). ECM contains bacterial secreted polymers such as exopolysaccharides (EPS), proteins and extracellular-DNA (e-DNA) and rarely amyloidogenic proteins. Biofilm offers protection of underlying bacterial population against chemotherapeutic agents and host immune system. Therefore, present efforts are focused to find a novel therapeutic that targets biofilm-associated infections. Plants are used as a natural therapeutic for numerous ailments. In order to find an alternative of the available antibacterial drugs, we have focused on the natural herbal active compounds. In this study, we have extracted active compounds from various medicinal plants and screened its anti-biofilm activity against carbapenem resistant strain of A. baumannii. Results showed that polar extract of kiwi (Actinidia deliciosa) and clove (Syzygium aromaticum) exhibit effective anti-biofilm activity. These two plants were also used for their phytochemical screening and TLC profiling to find out the constituting secondary metabolites. Actinidia deliciosa extract contains an alkaloid (sanquinarine) as well as a flavonoid (hydroxyflavone). Anti-biofilm effect of this extract on the ECM of A. baumannii showed that it reduces EPS, protein and eDNA contents in the ECM. Proteins of ECM have also shown to form amyloid like structure, which was evident from its interaction with the Congo Red. CFU counting after Actinidia deliciosa extract treatment also supported the results. Therefore, it can be concluded that polar extract of A. deliciosa can be used to find suitable alternative therapeutic to control biofilm formation by carbapenem resistant strain of

  1. Fremmedlegemeinfektioner--nyt om biofilm og quorum sensing

    DEFF Research Database (Denmark)

    Høiby, Niels; Johansen, Helle Krogh; Ciofu, Oana

    2007-01-01

    Biofilms are structured consortia of bacteria embedded in self-produced polymer matrix. Biofilms are resistant to antibiotics, disinfectives and phagocytosis. The persistence of foreign body infections is due to biofilms. Chronic P. aeruginosa lung infection in cystic fibrosis patients is a biofilm....... Bacteria in biofilms communicate by means of quorum sensing which activates genes for virulence factors. Biofilms can be prevented by antibiotic prophylaxis or early therapy or by quorum sensing inhibitors which make them susceptible to antibiotics and phagocytosis. Udgivelsesdato: 2007-Nov-26...

  2. Ciliates as engineers of phototrophic biofilms

    NARCIS (Netherlands)

    Weerman, Ellen J.; van der Geest, Harm G.; van der Meulen, Myra D.; Manders, Erik M. M.; van de Koppel, Johan; Herman, Peter M. J.; Admiraal, Wim

    1. Phototrophic biofilms consist of a matrix of phototrophs, non-photosynthetic bacteria and extracellular polymeric substances (EPS) which is spatially structured. Despite widespread exploitation of algae and bacteria within phototrophic biofilms, for example by protozoans, the 'engineering'

  3. Direct Comparison of Physical Properties of Bacillus subtilis NCIB 3610 and B-1 Biofilms

    Science.gov (United States)

    Kesel, Sara; Grumbein, Stefan; Gümperlein, Ina; Tallawi, Marwa; Marel, Anna-Kristina

    2016-01-01

    Many bacteria form surface-attached communities known as biofilms. Due to the extreme resistance of these bacterial biofilms to antibiotics and mechanical stresses, biofilms are of growing interest not only in microbiology but also in medicine and industry. Previous studies have determined the extracellular polymeric substances present in the matrix of biofilms formed by Bacillus subtilis NCIB 3610. However, studies on the physical properties of biofilms formed by this strain are just emerging. In particular, quantitative data on the contributions of biofilm matrix biopolymers to these physical properties are lacking. Here, we quantitatively investigated three physical properties of B. subtilis NCIB 3610 biofilms: the surface roughness and stiffness and the bulk viscoelasticity of these biofilms. We show how specific biomolecules constituting the biofilm matrix formed by this strain contribute to those biofilm properties. In particular, we demonstrate that the surface roughness and surface elasticity of 1-day-old NCIB 3610 biofilms are strongly affected by the surface layer protein BslA. For a second strain, B. subtilis B-1, which forms biofilms containing mainly γ-polyglutamate, we found significantly different physical biofilm properties that are also differently affected by the commonly used antibacterial agent ethanol. We show that B-1 biofilms are protected from ethanol-induced changes in the biofilm's stiffness and that this protective effect can be transferred to NCIB 3610 biofilms by the sole addition of γ-polyglutamate to growing NCIB 3610 biofilms. Together, our results demonstrate the importance of specific biofilm matrix components for the distinct physical properties of B. subtilis biofilms. PMID:26873313

  4. Regulation of Biofilm Formation by Hfq is Influenced by Presence of Plasmid pCD1 in Yersinia Pestis Biovar Microtus

    Directory of Open Access Journals (Sweden)

    Huiying Yang

    2017-10-01

    Full Text Available Yersinia pestis synthesizes the attached biofilms in the flea gut to promotethe flea-borne transmission of this deadly pathogen. Bellows et al. reported that the posttranscriptional regulator Hfq inhibites biofilm formation in apCD1− derivative of Y. pestis CO92, however, we found that Hfq stimulates biofilm production in a microtus strain of Y. pestis with the typical plasmids, including pCD1. When we cured pCD1 from this strain, the biofilm phenotype was in accordance with that reported by Bellows et al., indicating that the unknown pCD1-associated factors modulating the regulatory pathways of Y. pestis biofilm formation. Further gene regulation experiments using relevant pCD1+ Y. pestis strains disclose that Hfq positively regulates the expression of hmsHFRS and hmsT encoding a diguanylate cyclase while negatively regulates the expression of hmsP encoding the sole phosphodiesterase. However, Hfq has no regulatory effect on the expression of hmsCDE at the mRNA and protein levels. Our results suggest that we should be cautious to make conclusion from results based on the pCD1-cured Y. pestis.

  5. Current understanding of multi-species biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong

    2011-01-01

    every year worldwide to deal with damage to equipment, contaminations of products, energy losses, and infections in human beings resulted from microbial biofilms. Microorganisms compete, cooperate, and communicate with each other in multi-species biofilms. Understanding the mechanisms of multi......Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually......-species biofilm formation will facilitate the development of methods for combating bacterial biofilms in clinical, environmental, industrial, and agricultural areas. The most recent advances in the understanding of multi-species biofilms are summarized and discussed in the review....

  6. Extracellular DNA Contributes to Dental Biofilm Stability

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke Louise; Dige, Irene

    2017-01-01

    dental biofilms. This study aimed to determine whether eDNA was part of the matrix in biofilms grown in situ in the absence of sucrose and whether treatment with DNase dispersed biofilms grown for 2.5, 5, 7.5, 16.5, or 24 h. Three hundred biofilms from 10 study participants were collected and treated...... the amount of biofilm in very early stages of growth (up to 7.5 h), but the treatment effect decreased with increasing biofilm age. This study proves the involvement of eDNA in dental biofilm formation and its importance for biofilm stability in the earliest stages. Further research is required to uncover...

  7. Staphylococcus aureus biofilm removal by targeting biofilm-associated extracellular proteins

    Directory of Open Access Journals (Sweden)

    Sudhir K Shukla

    2017-01-01

    Methods: Biofilm assay was done in 96-well microtitre plate to evaluate the effect of proteinase K on biofilms of bovine mastitis S. Aureus isolates. Extracellular polymeric substances were extracted and evaluated for their composition (protein, polysaccharides and extracellular DNA, before and after the proteinase K treatment. Results: Biofilm assay showed that 2 μg/ml proteinase K significantly inhibited biofilm development in bap-positive S. aureus V329 as well as other S. aureus isolates (SA7, SA10, SA33, SA352, but not in bap-mutant M556 and SA392 (a weak biofilm-producing strain. Proteinase K treatment on S. aureus planktonic cells showed that there was no inhibition of planktonic growth up to 32 μg/ml of proteinase K. Proteinase K treatment on 24 h old preformed biofilms showed an enhanced dispersion of bap-positive V329 and SA7, SA10, SA33 and SA352 biofilms; however, proteinase K did not affect the bap-mutant S. aureus M556 and SA392 biofilms. Biofilm compositions study before and after proteinase K treatment indicated that Bap might also be involved in eDNA retention in the biofilm matrix that aids in biofilm stability. When proteinase K was used in combination with antibiotics, a synergistic effect in antibiotic efficacy was observed against all biofilm-forming S. aureus isolates. Interpretation & conclusions: Proteinase K inhibited biofilms growth in S. aureus bovine mastitis isolates but did not affect their planktonic growth. An enhanced dispersion of preformed S. aureus biofilms was observed on proteinase K treatment. Proteinase K treatment with antibiotics showed a synergistic effect against S. aureus biofilms. The study suggests that dispersing S. aureus by protease can be of use while devising strategies againstS. aureus biofilms.

  8. Ciliates as engineers of phototrophic biofilms.

    NARCIS (Netherlands)

    Weerman, E.J.; van der Geest, H.G.; van der Meulen, M.D; Manders, E.M.M.; van de Koppel, J.; Herman, P.M.J.; Admiraal, W.

    2011-01-01

    1. Phototrophic biofilms consist of a matrix of phototrophs, non-photosynthetic bacteria and extracellular polymeric substances (EPS) which is spatially structured. Despite widespread exploitation of algae and bacteria within phototrophic biofilms, for example by protozoans, the ‘engineering’

  9. Ciliates as engineers of phototrophic biofilms.

    NARCIS (Netherlands)

    Weerman, E.J.; Geest, H.G.; Meulen, M.D.; Manders, E.M.M.; Van de Koppel, J.; Herman, P.M.J.; Admiraal, W.

    2011-01-01

    1.Phototrophic biofilms consist of a matrix of phototrophs, non-photosynthetic bacteria and extracellular polymeric substances (EPS) which is spatially structured. Despite widespread exploitation of algae and bacteria within phototrophic biofilms, for example by protozoans, the ‘engineering’ effects

  10. Strategies for prevention and treatment of staphylococcal biofilms

    DEFF Research Database (Denmark)

    Meyer, Rikke Louise

    Biofilm formation by bacteria that colonize biomedical implants cause infections that cannot be eradicated by antibiotic therapy. Bacteria in biofilms are tolerant to every antibiotic known today, and this tolerance is partly due to their low metabolic activity, the occurrence of persister cells...... in biofilms. Innovative biomaterials may at best delay biofilm formation and an important question in this context is to understand how the material can contribute to more successful antibiotic treatment by not providing the cues that trigger the onset of antibiotic tolerance in the attached bacteria...... treatments that more effectively tackle biofilm infections. We have explored how the combination of antibiotic therapy with matrix-targeting enzymes can enhance the efficacy of antibiotics. The matrix composition is highly variable among different bacterial species, and this strategy will not produce a one...

  11. Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones.

    Science.gov (United States)

    Kayumov, Airat R; Khakimullina, Elvina N; Sharafutdinov, Irshad S; Trizna, Elena Y; Latypova, Lilia Z; Thi Lien, Hoang; Margulis, Anna B; Bogachev, Mikhail I; Kurbangalieva, Almira R

    2015-05-01

    Gram-positive bacteria can cause various infections including hospital-acquired infections. While in the biofilm, the resistance of bacteria to both antibiotics and the human immune system is increased causing difficulties in the treatment. Bacillus subtilis, a non-pathogenic Gram-positive bacterium, is widely used as a model organism for studying biofilm formation. Here we investigated the effect of novel synthesized chloro- and bromo-containing 2(5H)-furanones on biofilm formation by B. subtilis. Mucobromic acid (3,4-dibromo-5-hydroxy-2(5H)-furanone) and the two derivatives of mucochloric acid (3,4-dichloro-5-hydroxy-2(5H)-furanone)-F8 and F12-were found to inhibit the growth and to efficiently prevent biofilm formation by B. subtilis. Along with the low production of polysaccharide matrix and repression of the eps operon, strong repression of biofilm-related yqxM also occurred in the presence of furanones. Therefore, our data confirm that furanones affect significantly the regulatory pathway(s) leading to biofilm formation. We propose that the global regulator, Spo0A, is one of the potential putative cellular targets for these compounds.

  12. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans.

    Science.gov (United States)

    Pammi, Mohan; Liang, Rong; Hicks, John; Mistretta, Toni-Ann; Versalovic, James

    2013-11-14

    Polymicrobial infections are responsible for significant mortality and morbidity in adults and children. Staphylococcus epidermidis and Candida albicans are the most frequent combination of organisms isolated from polymicrobial infections. Vascular indwelling catheters are sites for mixed species biofilm formation and pose a significant risk for polymicrobial infections. We hypothesized that enhancement of biofilms in a mixed species environment increases patient mortality and morbidity. Mixed species biofilms of S. epidermidis and C. albicans were evaluated in vitro and in a subcutaneous catheter infection model in vivo. Mixed species biofilms were enhanced compared to single species biofilms of either S. epidermidis or C. albicans. A mixed species environment increased catheter infection and increased dissemination of S. epidermidis in mice. Microarrays were used to explore differential gene expression of S. epidermidis in the mixed species biofilms. In mixed species biofilms, compared to single species S. epidermidis biofilms, 2.7% of S. epidermidis genes were upregulated and 6% were down regulated. Staphylococcal autolysis repressors lrgA and lrgB were down regulated 36-fold and 27-fold respectively. The role of biofilm extracellular DNA was investigated by quantitation and by evaluating the effects of DNAse in a concentration and time dependent manner. S. epidermidis specific eDNA was increased in mixed species biofilms and further confirmed by degradation with DNAse. Mixed-species biofilms are enhanced and associated with increased S. epidermidis-specific eDNA in vitro and greater systemic dissemination of S. epidermidis in vivo. Down regulation of the lrg operon, a repressor of autolysis, associated with increased eDNA suggests a possible role for bacterial autolysis in mixed species biofilms. Enhancement and systemic dissemination of S. epidermidis may explain adverse outcomes after clinical polymicrobial infections of S. epidermidis and C. albicans.

  13. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans

    Science.gov (United States)

    2013-01-01

    Background Polymicrobial infections are responsible for significant mortality and morbidity in adults and children. Staphylococcus epidermidis and Candida albicans are the most frequent combination of organisms isolated from polymicrobial infections. Vascular indwelling catheters are sites for mixed species biofilm formation and pose a significant risk for polymicrobial infections. We hypothesized that enhancement of biofilms in a mixed species environment increases patient mortality and morbidity. Results Mixed species biofilms of S. epidermidis and C. albicans were evaluated in vitro and in a subcutaneous catheter infection model in vivo. Mixed species biofilms were enhanced compared to single species biofilms of either S. epidermidis or C. albicans. A mixed species environment increased catheter infection and increased dissemination of S. epidermidis in mice. Microarrays were used to explore differential gene expression of S. epidermidis in the mixed species biofilms. In mixed species biofilms, compared to single species S. epidermidis biofilms, 2.7% of S. epidermidis genes were upregulated and 6% were down regulated. Staphylococcal autolysis repressors lrgA and lrgB were down regulated 36-fold and 27-fold respectively. The role of biofilm extracellular DNA was investigated by quantitation and by evaluating the effects of DNAse in a concentration and time dependent manner. S. epidermidis specific eDNA was increased in mixed species biofilms and further confirmed by degradation with DNAse. Conclusions Mixed-species biofilms are enhanced and associated with increased S. epidermidis-specific eDNA in vitro and greater systemic dissemination of S. epidermidis in vivo. Down regulation of the lrg operon, a repressor of autolysis, associated with increased eDNA suggests a possible role for bacterial autolysis in mixed species biofilms. Enhancement and systemic dissemination of S. epidermidis may explain adverse outcomes after clinical polymicrobial infections of S

  14. The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Andreas Dötsch

    Full Text Available In this study, we evaluated how gene expression differs in mature Pseudomonas aeruginosa biofilms as opposed to planktonic cells by the use of RNA sequencing technology that gives rise to both quantitative and qualitative information on the transcriptome. Although a large proportion of genes were consistently regulated in both the stationary phase and biofilm cultures as opposed to the late exponential growth phase cultures, the global biofilm gene expression pattern was clearly distinct indicating that biofilms are not just surface attached cells in stationary phase. A large amount of the genes found to be biofilm specific were involved in adaptation to microaerophilic growth conditions, repression of type three secretion and production of extracellular matrix components. Additionally, we found many small RNAs to be differentially regulated most of them similarly in stationary phase cultures and biofilms. A qualitative analysis of the RNA-seq data revealed more than 3000 putative transcriptional start sites (TSS. By the use of rapid amplification of cDNA ends (5'-RACE we confirmed the presence of three different TSS associated with the pqsABCDE operon, two in the promoter of pqsA and one upstream of the second gene, pqsB. Taken together, this study reports the first transcriptome study on P. aeruginosa that employs RNA sequencing technology and provides insights into the quantitative and qualitative transcriptome including the expression of small RNAs in P. aeruginosa biofilms.

  15. Spore formation and toxin production in Clostridium difficile biofilms.

    Science.gov (United States)

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  16. Spore formation and toxin production in Clostridium difficile biofilms.

    Directory of Open Access Journals (Sweden)

    Ekaterina G Semenyuk

    Full Text Available The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA, polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  17. Label-free in situ SERS imaging of biofilms.

    Science.gov (United States)

    Ivleva, Natalia P; Wagner, Michael; Szkola, Agathe; Horn, Harald; Niessner, Reinhard; Haisch, Christoph

    2010-08-12

    Surface-enhanced Raman scattering (SERS) is a promising technique for the chemical characterization of biological systems. It yields highly informative spectra, can be applied directly in aqueous environment, and has high sensitivity in comparison with normal Raman spectroscopy. Moreover, SERS imaging can provide chemical information with spatial resolution in the micrometer range (chemical imaging). In this paper, we report for the first time on the application of SERS for in situ, label-free imaging of biofilms and demonstrate the suitability of this technique for the characterization of the complex biomatrix. Biofilms, being communities of microorganisms embedded in a matrix of extracellular polymeric substances (EPS), represent the predominant mode of microbial life. Knowledge of the chemical composition and the structure of the biofilm matrix is important in different fields, e.g., medicine, biology, and industrial processes. We used colloidal silver nanoparticles for the in situ SERS analysis. Good SERS measurement reproducibility, along with a significant enhancement of Raman signals by SERS (>10(4)) and highly informative SERS signature, enables rapid SERS imaging (1 s for a single spectrum) of the biofilm matrix. Altogether, this work illustrates the potential of SERS for biofilm analysis, including the detection of different constituents and the determination of their distribution in a biofilm even at low biomass concentration.

  18. Matrix regulators in neural stem cell functions.

    Science.gov (United States)

    Wade, Anna; McKinney, Andrew; Phillips, Joanna J

    2014-08-01

    Neural stem/progenitor cells (NSPCs) reside within a complex and dynamic extracellular microenvironment, or niche. This niche regulates fundamental aspects of their behavior during normal neural development and repair. Precise yet dynamic regulation of NSPC self-renewal, migration, and differentiation is critical and must persist over the life of an organism. In this review, we summarize some of the major components of the NSPC niche and provide examples of how cues from the extracellular matrix regulate NSPC behaviors. We use proteoglycans to illustrate the many diverse roles of the niche in providing temporal and spatial regulation of cellular behavior. The NSPC niche is comprised of multiple components that include; soluble ligands, such as growth factors, morphogens, chemokines, and neurotransmitters, the extracellular matrix, and cellular components. As illustrated by proteoglycans, a major component of the extracellular matrix, the NSPC, niche provides temporal and spatial regulation of NSPC behaviors. The factors that control NSPC behavior are vital to understand as we attempt to modulate normal neural development and repair. Furthermore, an improved understanding of how these factors regulate cell proliferation, migration, and differentiation, crucial for malignancy, may reveal novel anti-tumor strategies. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action

    Science.gov (United States)

    Roy, Ranita; Tiwari, Monalisa; Donelli, Gianfranco; Tiwari, Vishvanath

    2018-01-01

    ABSTRACT Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. The biofilm matrix surrounding bacteria makes them tolerant to harsh conditions and resistant to antibacterial treatments. Moreover, the biofilms are responsible for causing a broad range of chronic diseases and due to the emergence of antibiotic resistance in bacteria it has really become difficult to treat them with efficacy. Furthermore, the antibiotics available till date are ineffective for treating these biofilm related infections due to their higher values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), which may result in in-vivo toxicity. Hence, it is critically important to design or screen anti-biofilm molecules that can effectively minimize and eradicate biofilm related infections. In the present article, we have highlighted the mechanism of biofilm formation with reference to different models and various methods used for biofilm detection. A major focus has been put on various anti-biofilm molecules discovered or tested till date which may include herbal active compounds, chelating agents, peptide antibiotics, lantibiotics and synthetic chemical compounds along with their structures, mechanism of action and their respective MICs, MBCs, minimum biofilm inhibitory concentrations (MBICs) as well as the half maximal inhibitory concentration (IC50) values available in the literature so far. Different mode of action of anti biofilm molecules addressed here are inhibition via interference in the quorum sensing pathways, adhesion mechanism, disruption of extracellular DNA, protein, lipopolysaccharides, exopolysaccharides and secondary messengers involved in various signaling pathways. From this study, we conclude that the molecules considered here might be used to treat biofilm-associated infections after significant structural modifications, thereby

  20. Molecular Basis for Saccharomyces cerevisiae Biofilm Development

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz

    In this study, I sought to identify genes regulating the global molecular program for development of sessile multicellular communities, also known as biofilm, of the eukaryotic microorganism, Saccharomyces cerevisiae (yeast). Yeast biofilm has a clinical interest, as biofilms can cause chronic...... infections in humans. Biofilm is also interesting from an evolutionary standpoint, as an example of primitive multicellularity. By using a genome-wide screen of yeast deletion mutants, I show that 71 genes are essential for biofilm formation. Two-thirds of these genes are required for transcription of FLO11......, but only a small subset is previously described as regulators of FLO11. These results reveal that the regulation of biofilm formation and FLO11 is even more complex than what has previously been described. I find that the molecular program for biofilm formation shares many essential components with two...

  1. Pattern formation in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Parsek, Matthew R.; Tolker-Nielsen, Tim

    2008-01-01

    Bacteria are capable of forming elaborate multicellular communities called biofilms. Pattern formation in biofilms depends on cell proliferation and cellular migration in response to the available nutrients and other external cues, as well as on self-generated intercellular signal molecules...... and the production of an extracellular matrix that serves as a structural 'scaffolding' for the biofilm cells. Pattern formation in biofilms allows cells to position themselves favorably within nutrient gradients and enables buildup and maintenance of physiologically distinct subpopulations, which facilitates...... survival of one or more subpopulations upon environmental insult, and therefore plays an important role in the innate tolerance displayed by biofilms toward adverse conditions....

  2. The clinical impact of bacterial biofilms

    DEFF Research Database (Denmark)

    Høiby, Niels; Ciofu, Oana; Johansen, Helle Krogh

    2011-01-01

    Bacteria survive in nature by forming biofilms on surfaces and probably most, if not all, bacteria (and fungi) are capable of forming biofilms. A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and extracellular DNA....... Bacterial biofilms are resistant to antibiotics, disinfectant chemicals and to phagocytosis and other components of the innate and adaptive inflammatory defense system of the body. It is known, for example, that persistence of staphylococcal infections related to foreign bodies is due to biofilm formation....... Likewise, chronic Pseudomonas aeruginosa lung infections in cystic fibrosis patients are caused by biofilm growing mucoid strains. Gradients of nutrients and oxygen exist from the top to the bottom of biofilms and the bacterial cells located in nutrient poor areas have decreased metabolic activity...

  3. The Effectiveness of Voriconazole in Therapy of Candida glabrata's Biofilms Oral Infections and Its Influence on the Matrix Composition and Gene Expression.

    Science.gov (United States)

    Rodrigues, Célia F; Gonçalves, Bruna; Rodrigues, Maria Elisa; Silva, Sónia; Azeredo, Joana; Henriques, Mariana

    2017-08-01

    Candida glabrata is one of most prevalent yeast in fungal infections, especially in immunocompromised patients. Its azole resistance results in a low therapeutic response, particularly when associated with biofilms. The main goal of this work was to study the effectiveness of voriconazole (Vcz) against C. glabrata biofilms oral pathologies, as esophageal or oropharyngeal candidiasis. Antifungal susceptibilities were determined in pre-formed 24-h-biofilms and ERG genes expression was determined by qRT-PCR. Protein quantification was performed using BCA ® Kit, carbohydrate was estimated according to the Dubois assay and β-1,3 glucans concentration were determined using Glucatell ® kit. Finally, ergosterol, Vcz, and fluconazole (Flu) concentrations within the biofilm matrices were determined by RP-HPLC. Results showed that C. glabrata biofilms were more susceptible to Vcz than to Flu and that ERG genes expression evidenced an overexpression of the three ERG genes in the presence of both azoles. The matrix content presented a remarked decrease in proteins and an increase in carbohydrates, namely β-1,3 glucans. Ergosterol was successfully detected and quantified in the biofilm matrices, with no differences in all the considered conditions. Vcz demonstrated better diffusion through the biofilms and better cell penetration capacities, than Flu, indicating that the structure of the drug molecule fully influences its dissemination through the biofilm matrices. This work showed that Vcz is notably more effective than Flu for the treatment of resistant C. glabrata oral biofilms, which demonstrates a clinical relevance in its future use for the treatment of oropharyngeal/esophageal candidiasis caused by this species.

  4. Phosphorylated DegU Manipulates Cell Fate Differentiation in the Bacillus subtilis Biofilm

    Science.gov (United States)

    Marlow, Victoria L.; Porter, Michael; Hobley, Laura; Kiley, Taryn B.; Swedlow, Jason R.; Davidson, Fordyce A.

    2014-01-01

    Cell differentiation is ubiquitous and facilitates division of labor and development. Bacteria are capable of multicellular behaviors that benefit the bacterial community as a whole. A striking example of bacterial differentiation occurs throughout the formation of a biofilm. During Bacillus subtilis biofilm formation, a subpopulation of cells differentiates into a specialized population that synthesizes the exopolysaccharide and the TasA amyloid components of the extracellular matrix. The differentiation process is indirectly controlled by the transcription factor Spo0A that facilitates transcription of the eps and tapA (tasA) operons. DegU is a transcription factor involved in regulating biofilm formation. Here, using a combination of genetics and live single-cell cytological techniques, we define the mechanism of biofilm inhibition at high levels of phosphorylated DegU (DegU∼P) by showing that transcription from the eps and tapA promoter regions is inhibited. Data demonstrating that this is not a direct regulatory event are presented. We demonstrate that DegU∼P controls the frequency with which cells activate transcription from the operons needed for matrix biosynthesis in favor of an off state. Subsequent experimental analysis led us to conclude that DegU∼P functions to increase the level of Spo0A∼P, driving cell fate differentiation toward the terminal developmental process of sporulation. PMID:24123822

  5. Candida Biofilms: Development, Architecture, and Resistance

    Science.gov (United States)

    CHANDRA, JYOTSNA; MUKHERJEE, PRANAB K.

    2015-01-01

    Intravascular device–related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis–associated infections and also are commonly isolated from contact lens–related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms. PMID:26350306

  6. Diagnosis of biofilm infections in cystic fibrosis patients

    DEFF Research Database (Denmark)

    Høiby, Niels; Bjarnsholt, Thomas; Moser, Claus

    2017-01-01

    Chronic Pseudomonas aeruginosa biofilm lung infection in cystic fibrosis patients is the best described biofilm infection in medicine. The initial focus can be the paranasal sinuses and then follows repeated colonization and infection of the lungs by aspiration. The matrix of the biofilms is domi...... by other pathogens e.g., Stenotrophomonas, Burkholderia multivorans, Achromobacter xylosoxidans and Mycobacterium abscessus complex....

  7. Characterization of the effect of serum and chelating agents on Staphylococcus aureus biofilm formation; chelating agents augment biofilm formation through clumping factor B

    Science.gov (United States)

    Abraham, Nabil Mathew

    Staphylococcus aureus is the causative agent of a diverse array of acute and chronic infections, and some these infections, including infective endocarditis, joint infections, and medical device-associated bloodstream infections, depend upon its capacity to form tenacious biofilms on surfaces. Inserted medical devices such as intravenous catheters, pacemakers, and artificial heart valves save lives, but unfortunately, they can also serve as a substrate on which S. aureus can form a biofilm, attributing S. aureus as a leading cause of medical device-related infections. The major aim of this work was take compounds to which S. aureus would be exposed during infection and to investigate their effects on its capacity to form a biofilm. More specifically, the project investigated the effects of serum, and thereafter of catheter lock solutions on biofilm formation by S. aureus. Pre-coating polystyrene with serum is frequently used as a method to augment biofilm formation. The effect of pre-coating with serum is due to the deposition of extracellular matrix components onto the polystyrene, which are then recognized by MSCRAMMs. We therefore hypothesized that the major component of blood, serum, would induce biofilm formation. Surprisingly, serum actually inhibited biofilm formation. The inhibitory activity was due to a small molecular weight, heat-stable, non-proteinaceous component/s of serum. Serum-mediated inhibition of biofilm formation may represent a previously uncharacterized aspect of host innate immunity that targets the expression of a key bacterial virulence factor: the ability to establish a resistant biofilm. Metal ion chelators like sodium citrate are frequently chosen to lock intravenous catheters because they are regarded as potent inhibitors of bacterial biofilm formation and viability. We found that, while chelating compounds abolished biofilm formation in most strains of S. aureus, they actually augmented the phenotype in a subset of strains. We

  8. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains....... Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance...

  9. SaeRS Is Responsive to Cellular Respiratory Status and Regulates Fermentative Biofilm Formation in Staphylococcus aureus.

    Science.gov (United States)

    Mashruwala, Ameya A; Gries, Casey M; Scherr, Tyler D; Kielian, Tammy; Boyd, Jeffrey M

    2017-08-01

    Biofilms are multicellular communities of microorganisms living as a quorum rather than as individual cells. The bacterial human pathogen Staphylococcus aureus uses oxygen as a terminal electron acceptor during respiration. Infected human tissues are hypoxic or anoxic. We recently reported that impaired respiration elicits a p rogrammed c ell l ysis (PCL) phenomenon in S. aureus leading to the release of cellular polymers that are utilized to form biofilms. PCL is dependent upon the AtlA murein hydrolase and is regulated, in part, by the SrrAB two-component regulatory system (TCRS). In the current study, we report that the SaeRS TCRS also governs fermentative biofilm formation by positively influencing AtlA activity. The SaeRS-modulated factor fibronectin-binding protein A (FnBPA) also contributed to the fermentative biofilm formation phenotype. SaeRS-dependent biofilm formation occurred in response to changes in cellular respiratory status. Genetic evidence presented suggests that a high cellular titer of phosphorylated SaeR is required for biofilm formation. Epistasis analyses found that SaeRS and SrrAB influence biofilm formation independently of one another. Analyses using a mouse model of orthopedic implant-associated biofilm formation found that both SaeRS and SrrAB govern host colonization. Of these two TCRSs, SrrAB was the dominant system driving biofilm formation in vivo We propose a model wherein impaired cellular respiration stimulates SaeRS via an as yet undefined signal molecule(s), resulting in increasing expression of AtlA and FnBPA and biofilm formation. Copyright © 2017 American Society for Microbiology.

  10. Bacterial dynamics in a microphytobenthic biofilm: A tidal mesocosm approach

    Science.gov (United States)

    Agogué, Hélène; Mallet, Clarisse; Orvain, Francis; De Crignis, Margot; Mornet, Françoise; Dupuy, Christine

    2014-09-01

    In intertidal mudflats, during low tide exposure, microphytobenthos (MPB) migrate vertically through the surface sediment and form, with the heterotrophic bacteria, a transient biofilm. Inside this biofilm, multiple interactions exist between MPB and bacteria. These micro-organisms secrete a wide range of extracellular polymeric substances (EPS), which are major components of the biofilm matrix. In this study, we used a tidal mesocosm experiment in order to decipher the interactions of the MPB-EPS-bacteria complex within the biofilm. We tried to determine if the EPS could control bacterial activities and/or production and/or richness according to the age of the biofilm and to the immersion/emersion period. The dynamics of biomasses of MPB and prokaryotes, the bacterial production, the hydrolysis of predominating organic constituents in the dissolved organic carbon (DOC) pool (i.e., carbohydrates and polypeptides), and the bacterial structure were studied in relation to the different EPS fractions (carbohydrates and proteins: colloidal and bound) dynamics during 8 days. Our experiment had emphasized the influence of the environmental conditions (light, immersion/emersion) on the interactions within the biofilm and also on the effects on biofilm aging. Bacterial production was always inhibited by the bound EPS-carbohydrate, especially during low tide. Our results suggest that the concentration and composition of EPS had a major role in the bacterial/MPB interactions: these interactions can be either positive or negative in order to regulate the productive phases of MPB and bacteria.

  11. A cathelicidin-2-derived peptide effectively impairs Staphylococcus epidermidis biofilms

    NARCIS (Netherlands)

    Molhoek, E.M.; van Dijk, A.; Veldhuizen, E.J.A.; Haagsman, H.P.; Bikker, F.J.

    2011-01-01

    Staphylococcus epidermidis is a major cause of nosocomial infections owing to its ability to form biofilms on the surface of medical devices. Biofilms are surface-adhered bacterial communities. In mature biofilms these communities are encased in an extracellular matrix composed of bacterial

  12. The protective layer of biofilm : A repellent function for a new class of amphiphilic proteins

    NARCIS (Netherlands)

    Kovacs, Akos T.; van Gestel, Jordi; Kuipers, Oscar P.

    Bacteria can survive harsh conditions when growing in complex communities of cells known as biofilms. The matrix of the biofilm presents a scaffold where cells are attached to each other and to the surface. The biofilm matrix is also a protective barrier that confers tolerance against various

  13. A short history of microbial biofilms and biofilm infections

    DEFF Research Database (Denmark)

    Høiby, Niels

    2017-01-01

    The observation of aggregated microbes surrounded by a self-produced matrix adhering to surfaces or located in tissues or secretions is old since both Leeuwenhoek and Pasteur have described the phenomenon. In environmental and technical microbiology, biofilms, 80–90 years ago, were already shown ...

  14. Modulating bacterial and gut mucosal interactions with engineered biofilm matrix proteins.

    Science.gov (United States)

    Duraj-Thatte, Anna M; Praveschotinunt, Pichet; Nash, Trevor R; Ward, Frederick R; Joshi, Neel S

    2018-02-22

    Extracellular appendages play a significant role in mediating communication between bacteria and their host. Curli fibers are a class of bacterial fimbria that is highly amenable to engineering. We demonstrate the use of engineered curli fibers to rationally program interactions between bacteria and components of the mucosal epithelium. Commensal E. coli strains were engineered to produce recombinant curli fibers fused to the trefoil family of human cytokines. Biofilms formed from these strains bound more mucins than those producing wild-type curli fibers, and modulated mucin rheology as well. When treated with bacteria producing the curli-trefoil fusions mammalian cells behaved identically in terms of their migration behavior as when they were treated with the corresponding soluble trefoil factors. Overall, this demonstrates the potential utility of curli fibers as a scaffold for the display of bioactive domains and an untapped approach to rationally modulating host-microbe interactions using bacterial matrix proteins.

  15. Regulation of corneal stroma extracellular matrix assembly.

    Science.gov (United States)

    Chen, Shoujun; Mienaltowski, Michael J; Birk, David E

    2015-04-01

    The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Srv mediated dispersal of streptococcal biofilms through SpeB is observed in CovRS+ strains.

    Directory of Open Access Journals (Sweden)

    Kristie L Connolly

    Full Text Available Group A Streptococcus (GAS is a human specific pathogen capable of causing both mild infections and severe invasive disease. We and others have shown that GAS is able to form biofilms during infection. That is to say, they form a three-dimensional, surface attached structure consisting of bacteria and a multi-component extracellular matrix. The mechanisms involved in regulation and dispersal of these GAS structures are still unclear. Recently we have reported that in the absence of the transcriptional regulator Srv in the MGAS5005 background, the cysteine protease SpeB is constitutively produced, leading to increased tissue damage and decreased biofilm formation during a subcutaneous infection in a mouse model. This was interesting because MGAS5005 has a naturally occurring mutation that inactivates the sensor kinase domain of the two component regulatory system CovRS. Others have previously shown that strains lacking covS are associated with decreased SpeB production due to CovR repression of speB expression. Thus, our results suggest the inactivation of srv can bypass CovR repression and lead to constitutive SpeB production. We hypothesized that Srv control of SpeB production may be a mechanism to regulate biofilm dispersal and provide a mechanism by which mild infection can transition to severe disease through biofilm dispersal. The question remained however, is this mechanism conserved among GAS strains or restricted to the unique genetic makeup of MGAS5005. Here we show that Srv mediated control of SpeB and biofilm dispersal is conserved in the invasive clinical isolates RGAS053 (serotype M1 and MGAS315 (serotype M3, both of which have covS intact. This work provides additional evidence that Srv regulated control of SpeB may mediate biofilm formation and dispersal in diverse strain backgrounds.

  17. Mechanisms of Candida biofilm drug resistance

    Science.gov (United States)

    Taff, Heather T; Mitchell, Kaitlin F; Edward, Jessica A; Andes, David R

    2013-01-01

    Candida commonly adheres to implanted medical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. As currently available antifungals have minimal activity against biofilms, new drugs to treat these recalcitrant infections are urgently needed. Recent investigations have begun to shed light on the mechanisms behind the profound resistance associated with the biofilm mode of growth. This resistance appears to be multifactorial, involving both mechanisms similar to conventional, planktonic antifungal resistance, such as increased efflux pump activity, as well as mechanisms specific to the biofilm lifestyle. A unique biofilm property is the production of an extracellular matrix. Two components of this material, β-glucan and extracellular DNA, promote biofilm resistance to multiple antifungals. Biofilm formation also engages several stress response pathways that impair the activity of azole drugs. Resistance within a biofilm is often heterogeneous, with the development of a subpopulation of resistant persister cells. In this article we review the molecular mechanisms underlying Candida biofilm antifungal resistance and their relative contributions during various growth phases. PMID:24059922

  18. The cabABC Operon Essential for Biofilm and Rugose Colony Development in Vibrio vulnificus.

    Directory of Open Access Journals (Sweden)

    Jin Hwan Park

    2015-09-01

    Full Text Available A transcriptome analysis identified Vibrio vulnificus cabABC genes which were preferentially expressed in biofilms. The cabABC genes were transcribed as a single operon. The cabA gene was induced by elevated 3',5'-cyclic diguanylic acid (c-di-GMP and encoded a calcium-binding protein CabA. Comparison of the biofilms produced by the cabA mutant and its parent strain JN111 in microtiter plates using crystal-violet staining demonstrated that CabA contributed to biofilm formation in a calcium-dependent manner under elevated c-di-GMP conditions. Genetic and biochemical analyses revealed that CabA was secreted to the cell exterior through functional CabB and CabC, distributed throughout the biofilm matrix, and produced as the biofilm matured. These results, together with the observation that CabA also contributes to the development of rugose colony morphology, indicated that CabA is a matrix-associated protein required for maturation, rather than adhesion involved in the initial attachment, of biofilms. Microscopic comparison of the structure of biofilms produced by JN111 and the cabA mutant demonstrated that CabA is an extracellular matrix component essential for the development of the mature biofilm structures in flow cells and on oyster shells. Exogenously providing purified CabA restored the biofilm- and rugose colony-forming abilities of the cabA mutant when calcium was available. Circular dichroism and size exclusion analyses revealed that calcium binding induces CabA conformational changes which may lead to multimerization. Extracellular complementation experiments revealed that CabA can assemble a functional matrix only when exopolysaccharides coexist. Consequently, the combined results suggested that CabA is a structural protein of the extracellular matrix and multimerizes to a conformation functional in building robust biofilms, which may render V. vulnificus to survive in hostile environments and reach a concentrated infective dose.

  19. The Composition and Metabolic Phenotype of Neisseria gonorrhoeae Biofilms

    Directory of Open Access Journals (Sweden)

    Michael A Apicella

    2011-04-01

    Full Text Available N. gonorrhoeae has been shown to form biofilms during cervical infection. Thus, biofilm formation may play an important role in the infection of women. The ability of N. gonorrhoeae to form membrane blebs is crucial to biofilm formation. Blebs contain DNA and outer membrane structures, which have been shown to be major constituents of the biofilm matrix. The organism expresses a DNA thermonuclease that is involved in remodeling of the biofilm matrix. Comparison of the transcriptional profiles of gonococcal biofilms and planktonic runoff indicate that genes involved in anaerobic metabolism and oxidative stress tolerance are more highly expressed in biofilm. The expression of aniA, ccp, and norB, which encode nitrite reductase, cytochrome c peroxidase, and nitric oxide reductase respectively, is required for mature biofilm formation over glass and human cervical cells. In addition, anaerobic respiration occurs in the substratum of gonococcal biofilms and disruption of the norB gene required for anaerobic respiration, results in a severe biofilm attenuation phenotype. It has been demonstrated that accumulation of nitric oxide (NO contributes to the phenotype of a norB mutant and can retard biofilm formation. However, NO can also enhance biofilm formation, and this is largely dependent on the concentration and donation rate or steady state kinetics of NO. The majority of the genes involved in gonococcal oxidative stress tolerance are also required for normal biofilm formation, as mutations in the following genes result in attenuated biofilm formation over cervical cells and/or glass: oxyR, gor, prx, mntABC, trxB, and estD. Overall, biofilm formation appears to be an adaptation for coping with the environmental stresses present in the female genitourinary tract. Therefore, this review will discuss the studies, which describe the composition and metabolic phenotype of gonococcal biofilms.

  20. Calcium transcriptionally regulates the biofilm machinery of Xylella fastidiosa to promote continued biofilm development in batch cultures.

    Science.gov (United States)

    Parker, Jennifer K; Chen, Hongyu; McCarty, Sara E; Liu, Lawrence Y; De La Fuente, Leonardo

    2016-05-01

    The functions of calcium (Ca) in bacteria are less characterized than in eukaryotes, where its role has been studied extensively. The plant-pathogenic bacterium Xylella fastidiosa has several virulence features that are enhanced by increased Ca concentrations, including biofilm formation. However, the specific mechanisms driving modulation of this feature are unclear. Characterization of biofilm formation over time showed that 4 mM Ca supplementation produced denser biofilms that were still developing at 96 h, while biofilm in non-supplemented media had reached the dispersal stage by 72 h. To identify changes in global gene expression in X. fastidiosa grown in supplemental Ca, RNA-Seq of batch culture biofilm cells was conducted at three 24-h time intervals. Results indicate that a variety of genes are differentially expressed in response to Ca, including genes related to attachment, motility, exopolysaccharide synthesis, biofilm formation, peptidoglycan synthesis, regulatory functions, iron homeostasis, and phages. Collectively, results demonstrate that Ca supplementation induces a transcriptional response that promotes continued biofilm development, while biofilm cells in nonsupplemented media are driven towards dispersion of cells from the biofilm structure. These results have important implications for disease progression in planta, where xylem sap is the source of Ca and other nutrients for X. fastidiosa. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Role of Extracellular DNA during Biofilm Formation by Listeria monocytogenes

    DEFF Research Database (Denmark)

    Harmsen, Morten; Lappann, Martin; Knøchel, S

    2010-01-01

    (eDNA) may be the only central component of the biofilm matrix and that it is necessary for both initial attachment and early biofilm formation for 41 L. monocytogenes strains that were tested. DNase I treatment resulted in dispersal of biofilms, not only in microtiter tray assays but also in flow......Listeria monocytogenes is a food-borne pathogen that is capable of living in harsh environments. It is believed to do this by forming biofilms, which are surface-associated multicellular structures encased in a self-produced matrix. In this paper we show that in L. monocytogenes extracellular DNA...... cell biofilm assays. However, it was also demonstrated that in a culture without eDNA, neither Listeria genomic DNA nor salmon sperm DNA by itself could restore the capacity to adhere. A search for additional necessary components revealed that peptidoglycan (PG), specifically N-acetylglucosamine (NAG...

  2. Bacterial biofilm and associated infections

    Directory of Open Access Journals (Sweden)

    Muhsin Jamal

    2018-01-01

    Full Text Available Microscopic entities, microorganisms that drastically affect human health need to be thoroughly investigated. A biofilm is an architectural colony of microorganisms, within a matrix of extracellular polymeric substance that they produce. Biofilm contains microbial cells adherent to one-another and to a static surface (living or non-living. Bacterial biofilms are usually pathogenic in nature and can cause nosocomial infections. The National Institutes of Health (NIH revealed that among all microbial and chronic infections, 65% and 80%, respectively, are associated with biofilm formation. The process of biofilm formation consists of many steps, starting with attachment to a living or non-living surface that will lead to formation of micro-colony, giving rise to three-dimensional structures and ending up, after maturation, with detachment. During formation of biofilm several species of bacteria communicate with one another, employing quorum sensing. In general, bacterial biofilms show resistance against human immune system, as well as against antibiotics. Health related concerns speak loud due to the biofilm potential to cause diseases, utilizing both device-related and non-device-related infections. In summary, the understanding of bacterial biofilm is important to manage and/or to eradicate biofilm-related diseases. The current review is, therefore, an effort to encompass the current concepts in biofilm formation and its implications in human health and disease.

  3. Biofilm characteristics and evaluation of the sanitation procedures of thermophilic Aeribacillus pallidus E334 biofilms.

    Science.gov (United States)

    Kilic, Tugba; Karaca, Basar; Ozel, Beste Piril; Ozcan, Birgul; Cokmus, Cumhur; Coleri Cihan, Arzu

    2017-04-01

    The ability of Aeribacillus pallidus E334 to produce pellicle and form a biofilm was studied. Optimal biofilm formation occurred at 60 °C, pH 7.5 and 1.5% NaCl. Extra polymeric substances (EPS) were composed of proteins and eDNA (21.4 kb). E334 formed biofilm on many surfaces, but mostly preferred polypropylene and glass. Using CLSM analysis, the network-like structure of the EPS was observed. The A. pallidus biofilm had a novel eDNA content. DNaseI susceptibility (86.8% removal) of eDNA revealed its importance in mature biofilms, but the purified eDNA was resistant to DNaseI, probably due to its extended folding outside the matrix. Among 15 cleaning agents, biofilms could be removed with alkaline protease and sodium dodecyl sulphate (SDS). The removal of cells from polypropylene and biomass on glass was achieved with combined SDS/alkaline protease treatment. Strong A. pallidus biofilms could cause risks for industrial processes and abiotic surfaces must be taken into consideration in terms of sanitation procedures.

  4. Drug Susceptibility of Matrix-Encapsulated Candida albicans Nano-Biofilms

    Science.gov (United States)

    2014-02-01

    Filamentous hyphae can be seen attesting the presence of true biofilms. Figure 2. Kinetics of release of amphotericin B (AMB), caspofungin (CAS) from...the nano-biofilm growth in 3D is similar in the two matrices in the absence of any drugs (Fig. 3A,B). The cell wall along the hyphae appears as...demonstrate a 3D architecture with cell wall from hyphae (blue) superimposed with vacuoles of live cells (yellow). The viability of cells not exposed to any

  5. Modeling of Mesoscale Variability in Biofilm Shear Behavior.

    Directory of Open Access Journals (Sweden)

    Pallab Barai

    Full Text Available Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regimes: a initial increase in stiffness due to strain stiffening of polymer matrix, and b eventual reduction in stiffness because of tear in polymeric substrate.

  6. Alternative Mating Type Configurations (a/α versus a/a or α/α) of Candida albicans Result in Alternative Biofilms Regulated by Different Pathways

    Science.gov (United States)

    Srikantha, Thyagarajan; Huang, Guanghua; Garnaas, Adam M.; Soll, David R.

    2011-01-01

    Similar multicellular structures can evolve within the same organism that may have different evolutionary histories, be controlled by different regulatory pathways, and play similar but nonidentical roles. In the human fungal pathogen Candida albicans, a quite extraordinary example of this has occurred. Depending upon the configuration of the mating type locus (a/α versus a/a or α/α), C. albicans forms alternative biofilms that appear similar morphologically, but exhibit dramatically different characteristics and are regulated by distinctly different signal transduction pathways. Biofilms formed by a/α cells are impermeable to molecules in the size range of 300 Da to 140 kDa, are poorly penetrated by human polymorphonuclear leukocytes (PMNs), and are resistant to antifungals. In contrast, a/a or α/α biofilms are permeable to molecules in this size range, are readily penetrated by PMNs, and are susceptible to antifungals. By mutational analyses, a/α biofilms are demonstrated to be regulated by the Ras1/cAMP pathway that includes Ras1→Cdc35→cAMP(Pde2—|)→Tpk2(Tpk1)→Efg1→Tec1→Bcr1, and a/a biofilms by the MAP kinase pathway that includes Mfα→Ste2→ (Ste4, Ste18, Cag1)→Ste11→Hst7→Cek2(Cek1)→Tec1. These observations suggest the hypothesis that while the upstream portion of the newly evolved pathway regulating a/a and α/α cell biofilms was derived intact from the upstream portion of the conserved pheromone-regulated pathway for mating, the downstream portion was derived through modification of the downstream portion of the conserved pathway for a/α biofilm formation. C. albicans therefore forms two alternative biofilms depending upon mating configuration. PMID:21829325

  7. New weapons to fight old enemies: novel strategies for the (biocontrol of bacterial biofilms in the food industry

    Directory of Open Access Journals (Sweden)

    Laura Maria Coughlan

    2016-10-01

    Full Text Available Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances (EPS, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc., although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses

  8. Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice.

    Directory of Open Access Journals (Sweden)

    Matt S Conover

    2011-02-01

    Full Text Available Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and extracellular DNA (eDNA. In this report, we investigated the function of DNA in Bordetella biofilm development. We show that DNA is a significant component of Bordetella biofilm matrix. Addition of DNase I at the initiation of biofilm growth inhibited biofilm formation. Treatment of pre-established mature biofilms formed under both static and flow conditions with DNase I led to a disruption of the biofilm biomass. We next investigated whether eDNA played a role in biofilms formed in the mouse respiratory tract. DNase I treatment of nasal biofilms caused considerable dissolution of the biofilm biomass. In conclusion, these results suggest that eDNA is a crucial structural matrix component of both in vitro and in vivo formed Bordetella biofilms. This is the first evidence for the ability of DNase I to disrupt bacterial biofilms formed on host organs.

  9. Biofilm inhibitors that target amyloid proteins.

    Science.gov (United States)

    Romero, Diego; Sanabria-Valentín, Edgardo; Vlamakis, Hera; Kolter, Roberto

    2013-01-24

    Bacteria establish stable communities, known as biofilms, that are resistant to antimicrobials. Biofilm robustness is due to the presence of an extracellular matrix, which for several species-among them Bacillus subtilis-includes amyloid-like protein fibers. In this work, we show that B. subtilis biofilms can be a simple and reliable tool for screening of molecules with antiamyloid activity. We identified two molecules, AA-861 and parthenolide, which efficiently inhibited biofilms by preventing the formation of amyloid-like fibers. Parthenolide also disrupted pre-established biofilms. These molecules also impeded the formation of biofilms of other bacterial species that secrete amyloid proteins, such as Bacillus cereus and Escherichia coli. Furthermore, the identified molecules decreased the conversion of the yeast protein New1 to the prion state in a heterologous host, indicating the broad range of activity of the molecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness.

    Science.gov (United States)

    Lee, Keehoon; Yoon, Sang Sun

    2017-06-28

    A biofilm is a community of microbes that typically inhabit on surfaces and are encased in an extracellular matrix. Biofilms display very dissimilar characteristics to their planktonic counterparts. Biofilms are ubiquitous in the environment and influence our lives tremendously in both positive and negative ways. Pseudomonas aeruginosa is a bacterium known to produce robust biofilms. P. aeruginosa biofilms cause severe problems in immunocompromised patients, including those with cystic fibrosis or wound infection. Moreover, the unique biofilm properties further complicate the eradication of the biofilm infection, leading to the development of chronic infections. In this review, we discuss the history of biofilm research and general characteristics of bacterial biofilms. Then, distinct features pertaining to each stage of P. aeruginosa biofilm development are highlighted. Furthermore, infections caused by biofilms on their own or in association with other bacterial species ( i.e. , multispecies biofilms) are discussed in detail.

  11. Biocorrosion: towards understanding interactions between biofilms and metals.

    Science.gov (United States)

    Beech, Iwona B; Sunner, Jan

    2004-06-01

    The term microbially influenced corrosion, or biocorrosion, refers to the accelerated deterioration of metals owing to the presence of biofilms on their surfaces. The detailed mechanisms of biocorrosion are still poorly understood. Recent investigations into biocorrosion have focused on the influence of biomineralization processes taking place on metallic surfaces and the impact of extracellular enzymes, active within the biofilm matrix, on electrochemical reactions at the biofilm-metal interface.

  12. Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11.

    Science.gov (United States)

    Morici, Paola; Fais, Roberta; Rizzato, Cosmeri; Tavanti, Arianna; Lupetti, Antonella

    2016-01-01

    The aim of this study was to evaluate the in vitro activity of the synthetic peptide hLF1-11 against biofilm produced by clinical isolates of Candida albicans with different fluconazole susceptibility. The antibiofilm activity of the peptide hLF1-11 was assessed in terms of reduction of biofilm cellular density, metabolic activity and sessile cell viability. The extent of morphogenesis in hLF1-11 treated and untreated biofilms was also investigated microscopically. Transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production were analysed by qRT-PCR in hLF1-11 treated and untreated biofilms. Exogenous dibutyryl-cAMP (db-cAMP) was used to rescue morphogenesis in cells exposed to the peptide. The results revealed that hLF1-11 exhibited an inhibitory effect on biofilm formation by all C. albicans isolates tested in a dose-dependent manner, regardless of their fluconazole susceptibility. Visual inspection of treated or untreated biofilm cells with an inverted microscope revealed a significant reduction in hyphal formation by hLF1-11 treated cells, as early as 3 hours of incubation. Moreover, hLF1-11 showed a reduced activity on preadherent cells. hLF1-11 induced the down-regulation of biofilm and hyphal-associated genes, which were predominantly regulated via the Ras1-cAMP-Efg1 pathway. Indeed, exogenous db-cAMP restored morphogenesis in hLF1-11 treated cells. The hLF1-11 peptide significantly inhibited biofilm formation by C. albicans mainly at early stages, interfering with biofilm cellular density and metabolic activity, and affected morphogenesis through the Ras1-cAMP-Efg1 pathway. Our findings provide the first evidence that hLF1-11 could represent a potential candidate for the prevention of biofilm formation by C. albicans.

  13. Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11

    Science.gov (United States)

    Morici, Paola; Fais, Roberta; Rizzato, Cosmeri

    2016-01-01

    The aim of this study was to evaluate the in vitro activity of the synthetic peptide hLF1-11 against biofilm produced by clinical isolates of Candida albicans with different fluconazole susceptibility. The antibiofilm activity of the peptide hLF1-11 was assessed in terms of reduction of biofilm cellular density, metabolic activity and sessile cell viability. The extent of morphogenesis in hLF1-11 treated and untreated biofilms was also investigated microscopically. Transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production were analysed by qRT-PCR in hLF1-11 treated and untreated biofilms. Exogenous dibutyryl-cAMP (db-cAMP) was used to rescue morphogenesis in cells exposed to the peptide. The results revealed that hLF1-11 exhibited an inhibitory effect on biofilm formation by all C. albicans isolates tested in a dose-dependent manner, regardless of their fluconazole susceptibility. Visual inspection of treated or untreated biofilm cells with an inverted microscope revealed a significant reduction in hyphal formation by hLF1-11 treated cells, as early as 3 hours of incubation. Moreover, hLF1-11 showed a reduced activity on preadherent cells. hLF1-11 induced the down-regulation of biofilm and hyphal-associated genes, which were predominantly regulated via the Ras1-cAMP-Efg1 pathway. Indeed, exogenous db-cAMP restored morphogenesis in hLF1-11 treated cells. The hLF1-11 peptide significantly inhibited biofilm formation by C. albicans mainly at early stages, interfering with biofilm cellular density and metabolic activity, and affected morphogenesis through the Ras1-cAMP-Efg1 pathway. Our findings provide the first evidence that hLF1-11 could represent a potential candidate for the prevention of biofilm formation by C. albicans. PMID:27902776

  14. Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11.

    Directory of Open Access Journals (Sweden)

    Paola Morici

    Full Text Available The aim of this study was to evaluate the in vitro activity of the synthetic peptide hLF1-11 against biofilm produced by clinical isolates of Candida albicans with different fluconazole susceptibility. The antibiofilm activity of the peptide hLF1-11 was assessed in terms of reduction of biofilm cellular density, metabolic activity and sessile cell viability. The extent of morphogenesis in hLF1-11 treated and untreated biofilms was also investigated microscopically. Transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production were analysed by qRT-PCR in hLF1-11 treated and untreated biofilms. Exogenous dibutyryl-cAMP (db-cAMP was used to rescue morphogenesis in cells exposed to the peptide. The results revealed that hLF1-11 exhibited an inhibitory effect on biofilm formation by all C. albicans isolates tested in a dose-dependent manner, regardless of their fluconazole susceptibility. Visual inspection of treated or untreated biofilm cells with an inverted microscope revealed a significant reduction in hyphal formation by hLF1-11 treated cells, as early as 3 hours of incubation. Moreover, hLF1-11 showed a reduced activity on preadherent cells. hLF1-11 induced the down-regulation of biofilm and hyphal-associated genes, which were predominantly regulated via the Ras1-cAMP-Efg1 pathway. Indeed, exogenous db-cAMP restored morphogenesis in hLF1-11 treated cells. The hLF1-11 peptide significantly inhibited biofilm formation by C. albicans mainly at early stages, interfering with biofilm cellular density and metabolic activity, and affected morphogenesis through the Ras1-cAMP-Efg1 pathway. Our findings provide the first evidence that hLF1-11 could represent a potential candidate for the prevention of biofilm formation by C. albicans.

  15. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo.

    Science.gov (United States)

    Hwang, Geelsu; Liu, Yuan; Kim, Dongyeop; Li, Yong; Krysan, Damian J; Koo, Hyun

    2017-06-01

    Candida albicans is frequently detected with heavy infection by Streptococcus mutans in plaque-biofilms from children with early-childhood caries (ECC). This cross-kingdom biofilm contains an extensive matrix of extracellular α-glucans that is produced by an exoenzyme (GtfB) secreted by S. mutans. Here, we report that mannans located on the outer surface of C. albicans cell-wall mediates GtfB binding, enhancing glucan-matrix production and modulating bacterial-fungal association within biofilms formed in vivo. Using single-molecule atomic force microscopy, we determined that GtfB binds with remarkable affinity to mannans and to the C. albicans surface, forming a highly stable and strong bond (1-2 nN). However, GtfB binding properties to C. albicans was compromised in strains defective in O-mannan (pmt4ΔΔ) or N-mannan outer chain (och1ΔΔ). In particular, the binding strength of GtfB on och1ΔΔ strain was severely disrupted (>3-fold reduction vs. parental strain). In turn, the GtfB amount on the fungal surface was significantly reduced, and the ability of C. albicans mutant strains to develop mixed-species biofilms with S. mutans was impaired. This phenotype was independent of hyphae or established fungal-biofilm regulators (EFG1, BCR1). Notably, the mechanical stability of the defective biofilms was weakened, resulting in near complete biomass removal by shear forces. In addition, these in vitro findings were confirmed in vivo using a rodent biofilm model. Specifically, we observed that C. albicans och1ΔΔ was unable to form cross-kingdom biofilms on the tooth surface of rats co-infected with S. mutans. Likewise, co-infection with S. mutans defective in GtfB was also incapable of forming mixed-species biofilms. Taken together, the data support a mechanism whereby S. mutans-secreted GtfB binds to the mannan layer of C. albicans to promote extracellular matrix formation and their co-existence within biofilms. Enhanced understanding of GtfB-Candida interactions

  16. Relevant Role of Fibronectin-Binding Proteins in Staphylococcus aureus Biofilm-Associated Foreign-Body Infections▿ †

    Science.gov (United States)

    Vergara-Irigaray, Marta; Valle, Jaione; Merino, Nekane; Latasa, Cristina; García, Begoña; Ruiz de los Mozos, Igor; Solano, Cristina; Toledo-Arana, Alejandro; Penadés, José R.; Lasa, Iñigo

    2009-01-01

    Staphylococcus aureus can establish chronic infections on implanted medical devices due to its capacity to form biofilms. Analysis of the factors that assemble cells into a biofilm has revealed the occurrence of strains that produce either a polysaccharide intercellular adhesin/poly-N-acetylglucosamine (PIA/PNAG) exopolysaccharide- or a protein-dependent biofilm. Examination of the influence of matrix nature on the biofilm capacities of embedded bacteria has remained elusive, because a natural strain that readily converts between a polysaccharide- and a protein-based biofilm has not been studied. Here, we have investigated the clinical methicillin (meticillin)-resistant Staphylococcus aureus strain 132, which is able to alternate between a proteinaceous and an exopolysaccharidic biofilm matrix, depending on environmental conditions. Systematic disruption of each member of the LPXTG surface protein family identified fibronectin-binding proteins (FnBPs) as components of a proteinaceous biofilm formed in Trypticase soy broth-glucose, whereas a PIA/PNAG-dependent biofilm was produced under osmotic stress conditions. The induction of FnBP levels due to a spontaneous agr deficiency present in strain 132 and the activation of a LexA-dependent SOS response or FnBP overexpression from a multicopy plasmid enhanced biofilm development, suggesting a direct relationship between the FnBP levels and the strength of the multicellular phenotype. Scanning electron microscopy revealed that cells growing in the FnBP-mediated biofilm formed highly dense aggregates without any detectable extracellular matrix, whereas cells in a PIA/PNAG-dependent biofilm were embedded in an abundant extracellular material. Finally, studies of the contribution of each type of biofilm matrix to subcutaneous catheter colonization revealed that an FnBP mutant displayed a significantly lower capacity to develop biofilm on implanted catheters than the isogenic PIA/PNAG-deficient mutant. PMID:19581398

  17. Single particle tracking reveals spatial and dynamic organization of the Escherichia coli biofilm matrix

    International Nuclear Information System (INIS)

    Birjiniuk, Alona; Doyle, Patrick S; Billings, Nicole; Ribbeck, Katharina; Nance, Elizabeth; Hanes, Justin

    2014-01-01

    Biofilms are communities of surface-adherent bacteria surrounded by secreted polymers known as the extracellular polymeric substance. Biofilms are harmful in many industries, and thus it is of great interest to understand their mechanical properties and structure to determine ways to destabilize them. By performing single particle tracking with beads of varying surface functionalization it was found that charge interactions play a key role in mediating mobility within biofilms. With a combination of single particle tracking and microrheological concepts, it was found that Escherichia coli biofilms display height dependent charge density that evolves over time. Statistical analyses of bead trajectories and confocal microscopy showed inter-connecting micron scale channels that penetrate throughout the biofilm, which may be important for nutrient transfer through the system. This methodology provides significant insight into a particular biofilm system and can be applied to many others to provide comparisons of biofilm structure. The elucidation of structure provides evidence for the permeability of biofilms to microscale objects, and the ability of a biofilm to mature and change properties over time. (paper)

  18. Plasticity of Candida albicans Biofilms

    Science.gov (United States)

    Daniels, Karla J.

    2016-01-01

    SUMMARY Candida albicans, the most pervasive fungal pathogen that colonizes humans, forms biofilms that are architecturally complex. They consist of a basal yeast cell polylayer and an upper region of hyphae encapsulated in extracellular matrix. However, biofilms formed in vitro vary as a result of the different conditions employed in models, the methods used to assess biofilm formation, strain differences, and, in a most dramatic fashion, the configuration of the mating type locus (MTL). Therefore, integrating data from different studies can lead to problems of interpretation if such variability is not taken into account. Here we review the conditions and factors that cause biofilm variation, with the goal of engendering awareness that more attention must be paid to the strains employed, the methods used to assess biofilm development, every aspect of the model employed, and the configuration of the MTL locus. We end by posing a set of questions that may be asked in comparing the results of different studies and developing protocols for new ones. This review should engender the notion that not all biofilms are created equal. PMID:27250770

  19. Enhanced Uranium Immobilization and Reduction by Geobacter sulfurreducens Biofilms

    Science.gov (United States)

    Cologgi, Dena L.; Speers, Allison M.; Bullard, Blair A.; Kelly, Shelly D.

    2014-01-01

    Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. PMID:25128347

  20. Characterisation of Lactobacillus plantarum single and multi-strain biofilms

    NARCIS (Netherlands)

    Fernández Ramírez, Mónica D.

    2016-01-01

    Biofilms consist of microorganisms attached to a surface and embedded in a protective matrix of extracellular polymeric substances. Within a biofilm, micro-organisms are protected from harsh environmental conditions including those resulting from cleaning and disinfecting agents leading to food

  1. New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry.

    Science.gov (United States)

    Coughlan, Laura M; Cotter, Paul D; Hill, Colin; Alvarez-Ordóñez, Avelino

    2016-01-01

    Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated

  2. Direct comparison of phosphate uptake by adnate and loosely attached microalgae within an intact biofilm matrix

    International Nuclear Information System (INIS)

    Burkholder, J.M.; Wetzel, R.G.; Klomparens, K.L.

    1990-01-01

    We report a direct comparison of phosphate uptake by adnate and loosely attached microalgae in an intact biofilm matrix, with resolution at the level of individual cells. Track scanning electron microscope autoradiography enabled assay of [ 33 P]phosphate uptake from the overlying water by adnate algae left undisturbed on mature leaves of the macrophyte Potamogeton illinoensis or on artificial plant mimics. The epiphyte communities developed in either phosphate-poor or moderately phosphate-enriched water, and they were assayed on both natural and artificial plants. All adnate taxa examined from both natural and artificial plants in both habitats took up significantly less radiolabel when assayed beneath the overlying matrix than when they were exposed to the water upon removal of the overstory material. Track scanning electron microscope autoradiography and track light microscope autoradiography were intercalibrated to enable comparison of [ 33 P]phosphate uptake by adnate and loosely attached components of the epiphyte matrix. Loosley attached cells on substrata from both habitats took up significantly more radiolabel than did underlying adnate cells, indicating that access to phosphate supplies from the water depended on the position of microbial cells in the matrix. In this short-term assay, the adnate microalgae were relatively isolated from the water column nutrient source

  3. The Interface between Fungal Biofilms and Innate Immunity

    Directory of Open Access Journals (Sweden)

    John F. Kernien

    2018-01-01

    Full Text Available Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus, and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.

  4. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms.

    Science.gov (United States)

    Romero, Diego; Aguilar, Claudio; Losick, Richard; Kolter, Roberto

    2010-02-02

    Bacillus subtilis forms biofilms whose constituent cells are held together by an extracellular matrix. Previous studies have shown that the protein TasA and an exopolysaccharide are the main components of the matrix. Given the importance of TasA in biofilm formation, we characterized the physicochemical properties of this protein. We report that purified TasA forms fibers of variable length and 10-15 nm in width. Biochemical analyses, in combination with the use of specific dyes and microscopic analyses, indicate that TasA forms amyloid fibers. Consistent with this hypothesis, TasA fibers required harsh treatments (e.g., formic acid) to be depolymerized. When added to a culture of a tasA mutant, purified TasA restored wild-type biofilm morphology, indicating that the purified protein retained biological activity. We propose that TasA forms amyloid fibers that bind cells together in the biofilm.

  5. Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin.

    Science.gov (United States)

    Bruns, Sandra; Seidler, Marc; Albrecht, Daniela; Salvenmoser, Stefanie; Remme, Nicole; Hertweck, Christian; Brakhage, Axel A; Kniemeyer, Olaf; Müller, Frank-Michael C

    2010-09-01

    The opportunistic pathogenic mold Aspergillus fumigatus is an increasing cause of morbidity and mortality in immunocompromised and in part immunocompetent patients. A. fumigatus can grow in multicellular communities by the formation of a hyphal network encased in an extracellular matrix. Here, we describe the proteome and transcriptome of planktonic- and biofilm-grown A. fumigatus mycelium after 24 and 48 h. A biofilm- and time-dependent regulation of many proteins and genes of the primary metabolism indicates a developmental stage of the young biofilm at 24 h, which demands energy. At a matured biofilm phase, metabolic activity seems to be reduced. However, genes, which code for hydrophobins, and proteins involved in the biosynthesis of secondary metabolites were significantly upregulated. In particular, proteins of the gliotoxin secondary metabolite gene cluster were induced in biofilm cultures. This was confirmed by real-time PCR and by detection of this immunologically active mycotoxin in culture supernatants using HPLC analysis. The enhanced production of gliotoxin by in vitro formed biofilms reported here may also play a significant role under in vivo conditions. It may confer A. fumigatus protection from the host immune system and also enable its survival and persistence in chronic lung infections such as aspergilloma.

  6. Investigation of Aspergillus fumigatus biofilm formation by various omics approaches

    Directory of Open Access Journals (Sweden)

    Laetitia eMuszkieta

    2013-02-01

    Full Text Available In the lung, Aspergillus fumigatus usually forms a dense colony of filaments embedded in a polymeric extracellular matrix called biofilm (BF. This extracellular matrix embeds and glues hyphae together and protects the fungus from an outside hostile environment. This extracellular matrix is absent in fungal colonies grown under classical liquid shake conditions (PL which were historically used to understand A. fumigatus pathobiology. Recent works have shown that the fungus in this aerial grown biofilm-like state exhibits reduced susceptibility to antifungal drugs and undergoes major metabolic changes that are thought to be associated to virulence. These differences in pathological and physiological characteristics between biofilm and liquid shake conditions suggest that the PL condition is a poor in vitro disease model. In the laboratory, A. fumigatus mycelium embedded by the extracellular matrix can be produced in vitro in aerial condition using an agar-based medium. To provide a global and accurate understanding of A. fumigatus in vitro biofilm growth, we utilized microarray, RNA-sequencing and proteomic analysis to compare the global gene and protein expression profiles of A. fumigatus grown under BF and PL conditions. In this review, we will present the different signatures obtained with these three omics methods. We will discuss the advantages and limitations of each method and their complementarity.

  7. Identification of Genes Upregulated by the Transcription Factor Bcr1 That Are Involved in Impermeability, Impenetrability, and Drug Resistance of Candida albicans a/α Biofilms

    Science.gov (United States)

    Srikantha, Thyagarajan; Daniels, Karla J.; Pujol, Claude; Kim, Elena

    2013-01-01

    Candida albicans forms two types of biofilm, depending upon the configuration of the mating type locus. Although architecturally similar, a/α biofilms are impermeable, impenetrable, and drug resistant, whereas a/a and α/α biofilms lack these traits. The difference appears to be the result of an alternative matrix. Overexpression in a/a cells of BCR1, a master regulator of the a/α matrix, conferred impermeability, impenetrability, and drug resistance to a/a biofilms. Deletion of BCR1 in a/α cells resulted in the loss of these a/α-specific biofilm traits. Using BCR1 overexpression in a/a cells, we screened 107 genes of interest and identified 8 that were upregulated by Bcr1. When each was overexpressed in a/a biofilms, the three a/α traits were partially conferred, and when each was deleted in a/α cells, the traits were partially lost. Five of the eight genes have been implicated in iron homeostasis, and six encode proteins that are either in the wall or plasma membrane or secreted. All six possess sites for O-linked and N-linked glycosylation that, like glycosylphosphatidylinositol (GPI) anchors, can cross-link to the wall and matrix, suggesting that they may exert a structural role in conferring impermeability, impenetrability, and drug resistance, in addition to their physiological functions. The fact that in a screen of 107 genes, all 8 of the Bcr1-upregulated genes identified play a role in impermeability, impenetrability, and drug resistance suggests that the formation of the a/α matrix is highly complex and involves a larger number of genes than the initial ones identified here. PMID:23563485

  8. From biofilm ecology to reactors: a focused review

    DEFF Research Database (Denmark)

    Boltz, Joshua P.; Smets, Barth F.; Rittmann, Bruce E.

    2017-01-01

    the following three topics: (1) biofilm ecology, (2) biofilm reactor technology and design, and (3) biofilm modeling. In so doing, it addresses the processes occurring in the biofilm, and how these affect and are affected by the broader biofilm system. The symphonic application of a suite of biological methods...... on the performance of various systems, but they can also be used beneficially for the treatment of water (defined herein as potable water, municipal and industrial wastewater, fresh/brackish/salt water bodies, groundwater) as well as in water stream-based biological resource recovery systems. This review addresses...... polymeric substance matrix are somewhat known, but their exact composition and role in the microbial conversion kinetics and biochemical transformations are still to be resolved. Biofilm grown microorganisms may contribute to increased metabolism of micro-pollutants. Several types of biofilm reactors have...

  9. Biofilm formation in Escherichia coli cra mutants is impaired due to down-regulation of curli biosynthesis.

    Science.gov (United States)

    Reshamwala, Shamlan M S; Noronha, Santosh B

    2011-10-01

    Cra is a pleiotropic regulatory protein that controls carbon and energy flux in enteric bacteria. Recent studies have shown that Cra also regulates other cell processes and influences biofilm formation. The purpose of the present study was to investigate the role of Cra in biofilm formation in Escherichia coli. Congo red-binding studies suggested that curli biosynthesis is impaired in cra mutants. Microarray analysis of wild-type and mutant E. coli cultivated in conditions promoting biofilm formation revealed that the curli biosynthesis genes, csgBAC and csgDEFG, are poorly expressed in the mutant, suggesting that transcription of genes required for curli production is regulated by Cra. Four putative Cra-binding sites were identified in the curli intergenic region, which were experimentally validated by performing electromobility shift assays. Site-directed mutagenesis of three Cra-binding sites in the promoter region of the csgDEFG operon suggests that Cra activates transcription of this operon upon binding to operator regions both downstream and upstream of the transcription start site. Based on the Cra-binding sites identified in this and other studies, the Cra consensus sequence is refined.

  10. [Formation of the Pseudomonas aeruginosa PAO1 biofilms in the presence of hydrogen peroxide; the effect of the AiiA gene].

    Science.gov (United States)

    Pliuta, V A; Andreenko, Iu V; Kuznetsov, A E; Khmel', I A

    2013-01-01

    In the natural ecosystems, most bacteria exist as specifically organized biofilms attached to various surfaces; the biofilms have a complex architecture and are surrounded by an exopolymeric matrix. The bacteria in the biofilms are extremely resistant to antibacterial agents. The ability of the pathogenic bacteria to produce biofilms causes serious problems in medicine. Therefore, the study of the action of different compounds with antibacterial activity is of great interest. In this work, we studied the effect of the hydrogen peroxide (H2O2) on the formation of biofilms by Pseudomonas aeruginosa PAO1. It was shown that H2O2 in concentrations that do not suppress bacterial growth (or suppress it only weakly) stimulates the formation of the biofilms. At higher concentrations, H2O2 inhibits the formation of the biofilms. In order to determine if the stimulation of the biofilm formation depends on Quorum Sensing (QS) regulation, the plasmid pME6863 containing the heterologous gene aiiA encoding the N-acyl-homoserine lactonase AiiA was introduced into P. aeruginosa PAO1. The synthesis by cells of this enzyme degrading N-acyl-homoserine lactones (AHL), signaling molecules of the QS systems, led to the absence of the stimulation of the biofilm formation by the action of H2O2. This fact indicates that the stimulation of the biofilm formation in the presence of H2O2 depends on the functioning of the QS systems of the gene expression regulation of P. aeruginosa PAO1.

  11. Anti-biofilm activities from marine cold adapted bacteria against staphylococci and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Rosanna ePapa

    2015-12-01

    Full Text Available Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules.The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules.The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules

  12. Aspartate inhibits Staphylococcus aureus biofilm formation.

    Science.gov (United States)

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases.

    Science.gov (United States)

    Traba, Christian; Liang, Jun F

    2011-08-01

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by discharge gas within minutes of exposure. Under optimal experimental conditions, no bacteria and biofilm re-growth from discharge gas treated biofilms was found. Further studies revealed that the anti-biofilm activity of the discharge gas occurred by two distinct mechanisms: (1) killing bacteria in biofilms by causing severe cell membrane damage, and (2) damaging the extracellular polymeric matrix in the architecture of the biofilm to release biofilm from the surface of the solid substratum. Information gathered from this study provides an insight into the anti-biofilm mechanisms of plasma and confirms the applications of discharge gas in the treatment of biofilms and biofilm related bacterial infections.

  14. Matrix compliance and the regulation of cytokinesis

    Directory of Open Access Journals (Sweden)

    Savitha Sambandamoorthy

    2015-07-01

    Full Text Available Integrin-mediated cell adhesion to the ECM regulates many physiological processes in part by controlling cell proliferation. It is well established that many normal cells require integrin-mediated adhesion to enter S phase of the cell cycle. Recent evidence indicates that integrins also regulate cytokinesis. Mechanical properties of the ECM can dictate entry into S phase; however, it is not known whether they also can affect the successful completion of cell division. To address this issue, we modulated substrate compliance using fibronectin-coated acrylamide-based hydrogels. Soft and hard substrates were generated with approximate elastic moduli of 1600 and 34,000 Pascals (Pa respectively. Our results indicate that dermal fibroblasts successfully complete cytokinesis on hard substrates, whereas on soft substrates, a significant number fail and become binucleated. Cytokinesis failure occurs at a step following the formation of the intercellular bridge connecting presumptive daughter cells, suggesting a defect in abscission. Like dermal fibroblasts, mesenchymal stem cells require cell-matrix adhesion for successful cytokinesis. However, in contrast to dermal fibroblasts, they are able to complete cytokinesis on both hard and soft substrates. These results indicate that matrix stiffness regulates the successful completion of cytokinesis, and does so in a cell-type specific manner. To our knowledge, our study is the first to demonstrate that matrix stiffness can affect cytokinesis. Understanding the cell-type specific contribution of matrix compliance to the regulation of cytokinesis will provide new insights important for development, as well as tissue homeostasis and regeneration.

  15. Effect of Electrolyzed Water on the Disinfection of Bacillus cereus Biofilms: The Mechanism of Enhanced Resistance of Sessile Cells in the Biofilm Matrix.

    Science.gov (United States)

    Hussain, Mohammad Shakhawat; Kwon, Minyeong; Tango, Charles Nkufi; Oh, Deog Hwan

    2018-05-01

    This study examined the disinfection efficacy and mechanism of electrolyzed water (EW) on Bacillus cereus biofilms. B. cereus strains, ATCC 14579 and Korean Collection for Type Cultures (KCTC) 13153 biofilms, were formed on stainless steel (SS) and plastic slide (PS) coupons. Mature biofilms were treated with slightly acidic EW (SAEW), acidic EW (AEW), and basic EW (BEW). SAEW (available chlorine concentration, 25 ± 1.31 mg L -1 ; pH 5.71 ± 0.16; and oxidation reduction potential, 818 to 855 mV) reduced ATCC 14579 biofilms on plastic slides to below the detection limit within 30 s. However, biofilms on SS coupons showed a higher resistance to the SAEW treatment. When the disinfection activities of three types of EW on biofilms were compared, AEW showed a higher bactericidal activity, followed by SAEW and BEW. In contrast, BEW showed a significantly ( P biofilm dispersal activity than AEW and SAEW. SAEW disinfection of the B. cereus biofilms was due to the disruption of the B. cereus plasma membrane. The higher resistance of biofilms formed on the SS coupon might be due to the higher number of attached cells and extracellular polymeric substances formation that reacts with the active chlorine ions, such as hypochlorous acid and hypochlorite ion of SAEW, which decreased the disinfection efficacy of SAEW. This study showed that the EW treatment effectively disinfected B. cereus biofilms, providing insight into the potential use of EW in the food processing industry to control the biofilm formation of B. cereus.

  16. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Margarida Carrolo

    Full Text Available Streptococcus pneumoniae (pneumococcus is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.

  17. Insights into xanthomonas axonopodis pv. Citri biofilm through proteomics

    KAUST Repository

    Zimaro, Tamara

    2013-08-07

    Background: Xanthomonas axonopodis pv. Citri (X. a. pv. Citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. Citri this process is a requirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. Results: In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. Citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. Citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. Citri mature biofilm and planktonic cells were evaluated by

  18. Extracellular DNases of Ralstonia solanacearum modulate biofilms and facilitate bacterial wilt virulence.

    Science.gov (United States)

    Minh Tran, Tuan; MacIntyre, April; Khokhani, Devanshi; Hawes, Martha; Allen, Caitilyn

    2016-11-01

    Ralstonia solanacearum is a soil-borne vascular pathogen that colonizes plant xylem vessels, a flowing, low-nutrient habitat where biofilms could be adaptive. Ralstonia solanacearum forms biofilm in vitro, but it was not known if the pathogen benefits from biofilms during infection. Scanning electron microscopy revealed that during tomato infection, R. solanacearum forms biofilm-like masses in xylem vessels. These aggregates contain bacteria embedded in a matrix including chromatin-like fibres commonly observed in other bacterial biofilms. Chemical and enzymatic assays demonstrated that the bacterium releases extracellular DNA in culture and that DNA is an integral component of the biofilm matrix. An R. solanacearum mutant lacking the pathogen's two extracellular nucleases (exDNases) formed non-spreading colonies and abnormally thick biofilms in vitro. The biofilms formed by the exDNase mutant in planta contained more and thicker fibres. This mutant was also reduced in virulence on tomato plants and did not spread in tomato stems as well as the wild-type strain, suggesting that these exDNases facilitate biofilm maturation and bacterial dispersal. To our knowledge, this is the first demonstration that R. solanacearum forms biofilms in plant xylem vessels, and the first documentation that plant pathogens use DNases to modulate their biofilm structure for systemic spread and virulence. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Medical biofilms--nanotechnology approaches.

    Science.gov (United States)

    Neethirajan, Suresh; Clond, Morgan A; Vogt, Adam

    2014-10-01

    Biofilms are colonies of bacteria or fungi that adhere to a surface, protected by an extracellular polymer matrix composed of polysaccharides and extracellular DNA. They are highly complex and dynamic multicellular structures that resist traditional means of killing planktonic bacteria. Recent developments in nanotechnology provide novel approaches to preventing and dispersing biofilm infections, which are a leading cause of morbidity and mortality. Medical device infections are responsible for approximately 60% of hospital acquired infections. In the United States, the estimated cost of caring for healthcare-associated infections is approximately between $28 billion and $45 billion per year. In this review, we will discuss our current understanding of biofilm formation and degradation, its relevance to challenges in clinical practice, and new technological developments in nanotechnology that are designed to address these challenges.

  20. Effects of Subinhibitory Concentrations of Ceftaroline on Methicillin-Resistant Staphylococcus aureus (MRSA Biofilms.

    Directory of Open Access Journals (Sweden)

    María Lázaro-Díez

    Full Text Available Ceftaroline (CPT is a novel cephalosporin with in vitro activity against Staphylococcus aureus. Ceftaroline exhibits a level of binding affinity for PBPs in S. aureus including PBP2a of methicillin-resistant S. aureus (MRSA. The aims of this study were to investigate the morphological, physiological and molecular responses of MRSA clinical strains and MRSA biofilms to sub-MICs (1/4 and 1/16 MIC of ceftaroline by using transmission, scanning and confocal microscopy. We have also used quantitative Real-Time PCR to study the effect of sub-MICs of ceftaroline on the expression of the staphylococcal icaA, agrA, sarA and sasF genes in MRSA biofilms. In one set of experiments, ceftaroline was able to inhibit biofilm formation in all strains tested at MIC, however, a strain dependent behavior in presence of sub-MICs of ceftaroline was shown. In a second set of experiments, destruction of preformed biofilms by addition of ceftaroline was evaluated. Ceftaroline was able to inhibit biofilm formation at MIC in all strains tested but not at the sub-MICs. Destruction of preformed biofilms was strain dependent because the biofilm formed by a matrix-producing strain was resistant to a challenge with ceftaroline at MIC, whereas in other strains the biofilm was sensitive. At sub-MICs, the impact of ceftaroline on expression of virulence genes was strain-dependent at 1/4 MIC and no correlation between ceftaroline-enhanced biofilm formation and gene regulation was established at 1/16 MIC. Our findings suggest that sub-MICs of ceftaroline enhance bacterial attachment and biofilm formation by some, but not all, MRSA strains and, therefore, stress the importance of maintaining effective bactericidal concentrations of ceftaroline to fight biofilm-MRSA related infections.

  1. Genetic Control of Conventional and Pheromone-Stimulated Biofilm Formation in Candida albicans

    Science.gov (United States)

    Lin, Ching-Hsuan; Kabrawala, Shail; Fox, Emily P.; Nobile, Clarissa J.; Johnson, Alexander D.; Bennett, Richard J.

    2013-01-01

    Candida albicans can stochastically switch between two phenotypes, white and opaque. Opaque cells are the sexually competent form of C. albicans and therefore undergo efficient polarized growth and mating in the presence of pheromone. In contrast, white cells cannot mate, but are induced – under a specialized set of conditions – to form biofilms in response to pheromone. In this work, we compare the genetic regulation of such “pheromone-stimulated” biofilms with that of “conventional” C. albicans biofilms. In particular, we examined a network of six transcriptional regulators (Bcr1, Brg1, Efg1, Tec1, Ndt80, and Rob1) that mediate conventional biofilm formation for their potential roles in pheromone-stimulated biofilm formation. We show that four of the six transcription factors (Bcr1, Brg1, Rob1, and Tec1) promote formation of both conventional and pheromone-stimulated biofilms, indicating they play general roles in cell cohesion and biofilm development. In addition, we identify the master transcriptional regulator of pheromone-stimulated biofilms as C. albicans Cph1, ortholog of Saccharomyces cerevisiae Ste12. Cph1 regulates mating in C. albicans opaque cells, and here we show that Cph1 is also essential for pheromone-stimulated biofilm formation in white cells. In contrast, Cph1 is dispensable for the formation of conventional biofilms. The regulation of pheromone- stimulated biofilm formation was further investigated by transcriptional profiling and genetic analyses. These studies identified 196 genes that are induced by pheromone signaling during biofilm formation. One of these genes, HGC1, is shown to be required for both conventional and pheromone-stimulated biofilm formation. Taken together, these observations compare and contrast the regulation of conventional and pheromone-stimulated biofilm formation in C. albicans, and demonstrate that Cph1 is required for the latter, but not the former. PMID:23637598

  2. Cold Plasmas for Biofilm Control: Opportunities and Challenges.

    Science.gov (United States)

    Gilmore, Brendan F; Flynn, Padrig B; O'Brien, Séamus; Hickok, Noreen; Freeman, Theresa; Bourke, Paula

    2018-06-01

    Bacterial biofilm infections account for a major proportion of chronic and medical device associated infections in humans, yet our ability to control them is compromised by their inherent tolerance to antimicrobial agents. Cold atmospheric plasma (CAP) represents a promising therapeutic option. CAP treatment of microbial biofilms represents the convergence of two complex phenomena: the production of a chemically diverse mixture of reactive species and intermediates, and their interaction with a heterogeneous 3D interface created by the biofilm extracellular polymeric matrix. Therefore, understanding these interactions and physiological responses to CAP exposure are central to effective management of infectious biofilms. We review the unique opportunities and challenges for translating CAP to the management of biofilms. Copyright © 2018. Published by Elsevier Ltd.

  3. Anti-Biofilm Compounds Derived from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Christian Melander

    2011-10-01

    Full Text Available Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues—including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds.

  4. Biofilm mediated decontamination of pollutants from the environment

    Directory of Open Access Journals (Sweden)

    Arindam Mitra

    2016-01-01

    Full Text Available In this review, we highlight beneficial use of microbial biofilms in remediation of environmental pollutants by bioremediation. Bioremediation is an environment friendly, cost effective, sustainable technology that utilizes microbes to decontaminate and degrade a wide variety of pollutants into less harmful products. Relative to free-floating planktonic cells, microbes existing in biofilm mode are advantageous for bioremediation because of greater tolerance to pollutants, environmental stress and ability to degrade varied harsh pollutants via diverse catabolic pathways. In biofilm mode, microbes are immobilized in a self-synthesized matrix which offers protection from stress, contaminants and predatory protozoa. Contaminants ranging from heavy metals, petroleum, explosives, pesticides have been remediated using microbial consortia of biofilms. In the industry, biofilm based bioremediation is used to decontaminate polluted soil and groundwater. Here we discuss conventional and newer strategies utilizing biofilms in environmental remediation.

  5. Atomic force microscopy reveals a morphological differentiation of chromobacterium violaceum cells associated with biofilm development and directed by N-hexanoyl-L-homoserine lactone.

    Directory of Open Access Journals (Sweden)

    Anara A Kamaeva

    Full Text Available Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS system and biofilm formation are essential for C. violaceum's adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum's cell and biofilm morphology were examined by atomic force microscopy (AFM in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL, were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure.

  6. Atomic force microscopy reveals a morphological differentiation of chromobacterium violaceum cells associated with biofilm development and directed by N-hexanoyl-L-homoserine lactone.

    Science.gov (United States)

    Kamaeva, Anara A; Vasilchenko, Alexey S; Deryabin, Dmitry G

    2014-01-01

    Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS) system and biofilm formation are essential for C. violaceum's adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum's cell and biofilm morphology were examined by atomic force microscopy (AFM) in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL), were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure.

  7. Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis.

    Science.gov (United States)

    Chai, Yunrong; Beauregard, Pascale B; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2012-01-01

    Galactose is a common monosaccharide that can be utilized by all living organisms via the activities of three main enzymes that make up the Leloir pathway: GalK, GalT, and GalE. In Bacillus subtilis, the absence of GalE causes sensitivity to exogenous galactose, leading to rapid cell lysis. This effect can be attributed to the accumulation of toxic galactose metabolites, since the galE mutant is blocked in the final step of galactose catabolism. In a screen for suppressor mutants restoring viability to a galE null mutant in the presence of galactose, we identified mutations in sinR, which is the major biofilm repressor gene. These mutations caused an increase in the production of the exopolysaccharide (EPS) component of the biofilm matrix. We propose that UDP-galactose is the toxic galactose metabolite and that it is used in the synthesis of EPS. Thus, EPS production can function as a shunt mechanism for this toxic molecule. Additionally, we demonstrated that galactose metabolism genes play an essential role in B. subtilis biofilm formation and that the expressions of both the gal and eps genes are interrelated. Finally, we propose that B. subtilis and other members of the Bacillus genus may have evolved to utilize naturally occurring polymers of galactose, such as galactan, as carbon sources. Bacteria switch from unicellular to multicellular states by producing extracellular matrices that contain exopolysaccharides. In such aggregates, known as biofilms, bacteria are more resistant to antibiotics. This makes biofilms a serious problem in clinical settings. The resilience of biofilms makes them very useful in industrial settings. Thus, understanding the production of biofilm matrices is an important problem in microbiology. In studying the synthesis of the biofilm matrix of Bacillus subtilis, we provide further understanding of a long-standing microbiological observation that certain mutants defective in the utilization of galactose became sensitive to it. In this

  8. Fractal analysis of Xylella fastidiosa biofilm formation

    Science.gov (United States)

    Moreau, A. L. D.; Lorite, G. S.; Rodrigues, C. M.; Souza, A. A.; Cotta, M. A.

    2009-07-01

    We have investigated the growth process of Xylella fastidiosa biofilms inoculated on a glass. The size and the distance between biofilms were analyzed by optical images; a fractal analysis was carried out using scaling concepts and atomic force microscopy images. We observed that different biofilms show similar fractal characteristics, although morphological variations can be identified for different biofilm stages. Two types of structural patterns are suggested from the observed fractal dimensions Df. In the initial and final stages of biofilm formation, Df is 2.73±0.06 and 2.68±0.06, respectively, while in the maturation stage, Df=2.57±0.08. These values suggest that the biofilm growth can be understood as an Eden model in the former case, while diffusion-limited aggregation (DLA) seems to dominate the maturation stage. Changes in the correlation length parallel to the surface were also observed; these results were correlated with the biofilm matrix formation, which can hinder nutrient diffusion and thus create conditions to drive DLA growth.

  9. Dynamic interactions of neutrophils and biofilms

    Directory of Open Access Journals (Sweden)

    Josefine Hirschfeld

    2014-12-01

    Full Text Available Background: The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. Objective/design: In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. Results/conclusion: Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.

  10. Sticking together: building a biofilm the Bacillus subtilis way

    Science.gov (United States)

    Vlamakis, Hera; Chai, Yunrong; Beauregard, Pascale; Losick, Richard; Kolter, Roberto

    2014-01-01

    Preface Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long-served as a robust model organism to examine the molecular mechanisms of biofilm formation and a number of studies have revealed that this process is subject to a number of integrated regulatory pathways. In this Review, we focus on the molecular mechanisms controlling biofilm assembly and briefly summarize the current state of knowledge regarding their disassembly. We also discuss recent progress that has expanded our understanding of biofilm formation on plant roots, which are a natural habitat for this soil bacterium. PMID:23353768

  11. New approaches to combat Porphyromonas gingivalis biofilms

    Science.gov (United States)

    Gerits, Evelien; Verstraeten, Natalie; Michiels, Jan

    2017-01-01

    ABSTRACT In nature, bacteria predominantly reside in structured, surface-attached communities embedded in a self-produced, extracellular matrix. These so-called biofilms play an important role in the development and pathogenesis of many infections, as they are difficult to eradicate due to their resistance to antimicrobials and host defense mechanisms. This review focusses on the biofilm-forming periodontal bacterium Porphyromonas gingivalis. Current knowledge on the virulence mechanisms underlying P. gingivalis biofilm formation is presented. In addition, oral infectious diseases in which P. gingivalis plays a key role are described, and an overview of conventional and new therapies for combating P. gingivalis biofilms is given. More insight into this intriguing pathogen might direct the development of better strategies to combat oral infections. PMID:28473880

  12. Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis

    Science.gov (United States)

    Habib, Cameron; Yu, Yiyang; Gozzi, Kevin; Ching, Carly; Shemesh, Moshe

    2017-01-01

    The soil bacterium Bacillus subtilis is often found in association with plants in the rhizosphere. Previously, plant polysaccharides have been shown to stimulate formation of root-associated multicellular communities, or biofilms, in this bacterium, yet the underlying mechanism is not fully understood. A five-gene gan operon (ganSPQAB) in B. subtilis has recently been shown to be involved in utilization of the plant-derived polysaccharide galactan. Despite these findings, molecular details about the regulation of the operon and the role of the operon in biofilm formation remain elusive. In this study, we performed comprehensive genetic analyses on the regulation of the gan operon. We show that this operon is regulated both by a LacI-like transcription repressor (GanR), which directly binds to pairs of inverted DNA repeats in the promoter region of the operon, and by the catabolite control protein A (CcpA). Derepression can be triggered by the presence of the inducer β-1,4-galactobiose, a hydrolysis product of galactan, or in situ when B. subtilis cells are associated with plant roots. In addition to the transcriptional regulation, the encoded ß-galactosidase GanA (by ganA), which hydrolyzes ß-1,4-galactobiose into galactose, is inhibited at the enzymatic level by the catalytic product galactose. Thus, the galactan utilization pathway is under complex regulation involving both positive and negative feedback mechanisms in B. subtilis. We discuss about the biological significance of such complex regulation as well as a hypothesis of biofilm induction by galactan via multiple mechanisms. PMID:28617843

  13. Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis.

    Science.gov (United States)

    Habib, Cameron; Yu, Yiyang; Gozzi, Kevin; Ching, Carly; Shemesh, Moshe; Chai, Yunrong

    2017-01-01

    The soil bacterium Bacillus subtilis is often found in association with plants in the rhizosphere. Previously, plant polysaccharides have been shown to stimulate formation of root-associated multicellular communities, or biofilms, in this bacterium, yet the underlying mechanism is not fully understood. A five-gene gan operon (ganSPQAB) in B. subtilis has recently been shown to be involved in utilization of the plant-derived polysaccharide galactan. Despite these findings, molecular details about the regulation of the operon and the role of the operon in biofilm formation remain elusive. In this study, we performed comprehensive genetic analyses on the regulation of the gan operon. We show that this operon is regulated both by a LacI-like transcription repressor (GanR), which directly binds to pairs of inverted DNA repeats in the promoter region of the operon, and by the catabolite control protein A (CcpA). Derepression can be triggered by the presence of the inducer β-1,4-galactobiose, a hydrolysis product of galactan, or in situ when B. subtilis cells are associated with plant roots. In addition to the transcriptional regulation, the encoded ß-galactosidase GanA (by ganA), which hydrolyzes ß-1,4-galactobiose into galactose, is inhibited at the enzymatic level by the catalytic product galactose. Thus, the galactan utilization pathway is under complex regulation involving both positive and negative feedback mechanisms in B. subtilis. We discuss about the biological significance of such complex regulation as well as a hypothesis of biofilm induction by galactan via multiple mechanisms.

  14. [The bacterial biofilm and the possibilities of chemical plaque control. Literature review].

    Science.gov (United States)

    Gera, István

    2008-06-01

    Most microorganisms in the oral cavity attach to surfaces and form matrix-embedded biofilms. Biofilms are structured and spatially organized, composed of consortia of interacting microorganisms. The properties of the mass of biofilm are different from that of the simple sum of the component species. The older the plaque (biofilm) is the more structurally organized and become more resistant to environmental attacks. The bacterial community favors the growth of obligatory anaerobic microorganisms. The most effective means of the elimination of matured biofilm is the mechanical disruption of the interbacterial protective matrix and removal of bacterial colonies. The antiseptic agents are primarily effective in the prevention of biofilm formation and anticipation of the maturation of the bacterial plaque. Bacteria in matured biofilms are less susceptible to antimicrobial agents because several physical and biological factors protect the bacterial consortia. To kill bacteria in a matured, well organized biofilm, significantly higher concentration and longer exposition are required. Antiseptic mouthrinses in a conventional dose and time can only reach the superficial bacteria while the bacteria in the depth of the biofilm remains intact. Therefore, the efficacy of any antiseptic mouthwash depends not just on its microbicidal properties demonstrated in vitro, but also on its ability to penetrate the organized biofilm on the teeth. Recent studies have demonstrated that both bisbiguanid compounds and essential oils are capable of penetrating the biofilm, and reduce established plaque and gingivitis. The essential oils showed high penetrability and were more effective on organized biofilm than stannous fluorides or triclosan copolymer antiplaque agents.

  15. Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides.

    Science.gov (United States)

    Ma, Wenting; Peng, Donghai; Walker, Sharon L; Cao, Bin; Gao, Chun-Hui; Huang, Qiaoyun; Cai, Peng

    2017-01-01

    Clay minerals and metal oxides, as important parts of the soil matrix, play crucial roles in the development of microbial communities. However, the mechanism underlying such a process, particularly on the formation of soil biofilm, remains poorly understood. Here, we investigated the effects of montmorillonite, kaolinite, and goethite on the biofilm formation of the representative soil bacteria Bacillus subtilis . The bacterial biofilm formation in goethite was found to be impaired in the initial 24 h but burst at 48 h in the liquid-air interface. Confocal laser scanning microscopy showed that the biofilm biomass in goethite was 3-16 times that of the control, montmorillonite, and kaolinite at 48 h. Live/Dead staining showed that cells had the highest death rate of 60% after 4 h of contact with goethite, followed by kaolinite and montmorillonite. Atomic force microscopy showed that the interaction between goethite and bacteria may injure bacterial cells by puncturing cell wall, leading to the swarming of bacteria toward the liquid-air interface. Additionally, the expressions of abrB and sinR , key players in regulating the biofilm formation, were upregulated at 24 h and downregulated at 48 h in goethite, indicating the initial adaptation of the cells to minerals. A model was proposed to describe the effects of goethite on the biofilm formation. Our findings may facilitate a better understanding of the roles of soil clays in biofilm development and the manipulation of bacterial compositions through controlling the biofilm in soils.

  16. Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis.

    Directory of Open Access Journals (Sweden)

    Robert C Shields

    Full Text Available BACKGROUND: The persistent colonization of paranasal sinus mucosa by microbial biofilms is a major factor in the pathogenesis of chronic rhinosinusitis (CRS. Control of microorganisms within biofilms is hampered by the presence of viscous extracellular polymers of host or microbial origin, including nucleic acids. The aim of this study was to investigate the role of extracellular DNA in biofilm formation by bacteria associated with CRS. METHODS/PRINCIPAL FINDINGS: Obstructive mucin was collected from patients during functional endoscopic sinus surgery. Examination of the mucous by transmission electron microscopy revealed an acellular matrix punctuated occasionally with host cells in varying states of degradation. Bacteria were observed in biofilms on mucosal biopsies, and between two and six different species were isolated from each of 20 different patient samples. In total, 16 different bacterial genera were isolated, of which the most commonly identified organisms were coagulase-negative staphylococci, Staphylococcus aureus and α-haemolytic streptococci. Twenty-four fresh clinical isolates were selected for investigation of biofilm formation in vitro using a microplate model system. Biofilms formed by 14 strains, including all 9 extracellular nuclease-producing bacteria, were significantly disrupted by treatment with a novel bacterial deoxyribonuclease, NucB, isolated from a marine strain of Bacillus licheniformis. Extracellular biofilm matrix was observed in untreated samples but not in those treated with NucB and extracellular DNA was purified from in vitro biofilms. CONCLUSION/SIGNIFICANCE: Our data demonstrate that bacteria associated with CRS form robust biofilms which can be reduced by treatment with matrix-degrading enzymes such as NucB. The dispersal of bacterial biofilms with NucB may offer an additional therapeutic target for CRS sufferers.

  17. Enzymes in therapy of biofilm-related oral diseases.

    Science.gov (United States)

    Pleszczyńska, Małgorzata; Wiater, Adrian; Bachanek, Teresa; Szczodrak, Janusz

    2017-05-01

    Biofilm-related infections of the oral cavity, including dental caries and periodontitis, represent the most prevalent health problems. For years, the treatment thereof was largely based on antibacterial chemical agents. Recently, however, there has been growing interest in the application of more preventive and minimally invasive biotechnological methods. This review focuses on the potential applications of enzymes in the treatment and prevention of oral diseases. Dental plaque is a microbial community that develops on the tooth surface, embedded in a matrix of extracellular polymeric substances of bacterial and host origin. Both cariogenic microorganisms and the key components of oral biofilm matrix may be the targets of the enzymes. Oxidative salivary enzymes inhibit or limit the growth of oral pathogens, thereby supporting the natural host defense system; polysaccharide hydrolases (mutanases and dextranases) degrade important carbohydrate components of the biofilm matrix, whereas proteases disrupt bacterial adhesion to oral surfaces or affect cell-cell interactions. The efficiency of the enzymes in in vitro and in vivo studies, advantages and limitations, as well as future perspectives for improving the enzymatic strategy are discussed. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  18. Staphylococcal Bap Proteins Build Amyloid Scaffold Biofilm Matrices in Response to Environmental Signals.

    Directory of Open Access Journals (Sweden)

    Agustina Taglialegna

    2016-06-01

    Full Text Available Biofilms are communities of bacteria that grow encased in an extracellular matrix that often contains proteins. The spatial organization and the molecular interactions between matrix scaffold proteins remain in most cases largely unknown. Here, we report that Bap protein of Staphylococcus aureus self-assembles into functional amyloid aggregates to build the biofilm matrix in response to environmental conditions. Specifically, Bap is processed and fragments containing at least the N-terminus of the protein become aggregation-prone and self-assemble into amyloid-like structures under acidic pHs and low concentrations of calcium. The molten globule-like state of Bap fragments is stabilized upon binding of the cation, hindering its self-assembly into amyloid fibers. These findings define a dual function for Bap, first as a sensor and then as a scaffold protein to promote biofilm development under specific environmental conditions. Since the pH-driven multicellular behavior mediated by Bap occurs in coagulase-negative staphylococci and many other bacteria exploit Bap-like proteins to build a biofilm matrix, the mechanism of amyloid-like aggregation described here may be widespread among pathogenic bacteria.

  19. The increasing relevance of biofilms in common dermatological conditions.

    Science.gov (United States)

    Kravvas, G; Veitch, D; Al-Niaimi, F

    2018-03-01

    Biofilms are diverse groups of microorganisms encased in a self-produced matrix that offers protection against unfavorable conditions and antibiotics. We performed a literature search using the MEDLINE electronic database. Only original articles published in English were considered for review. Biofilms have been implicated in the pathogenesis of acne, eczema, hidradenitis suppurativa, onychomycosis, miliaria, and impetigo. Adverse dermal-filler reactions are also linked to biofilms. Strict aseptic technique and prophylactic antibiotics are recommended in order to avoid such complications. Finally, biofilms are implicated in wounds, mainly chronic and diabetic, where they impede healing and cause recurrent infections. Several novel anti-biofilm agents and wound debridement have been shown to be beneficial. Biofilms are a significant cause of disease with wide implications in the field of dermatology. Several novel treatments have been found to be effective against biofilms, depending on the underlying microbes and type of disease.

  20. Periphytic biofilms: A promising nutrient utilization regulator in wetlands.

    Science.gov (United States)

    Wu, Yonghong; Liu, Junzhuo; Rene, Eldon R

    2018-01-01

    Low nutrient utilization efficiency in agricultural ecosystems is the main cause of nonpoint source (NPS) pollution. Therefore, novel approaches should be explored to improve nutrient utilization in these ecosystems. Periphytic biofilms composed of microalgae, bacteria and other microbial organisms are ubiquitous and form a 'third phase' in artificial wetlands such as paddy fields. Periphytic biofilms play critical roles in nutrient transformation between the overlying water and soil/sediment, however, their contributions to nutrient utilization improvement and NPS pollution control have been largely underestimated. This mini review summarizes the contributions of periphytic biofilms to nutrient transformation processes, including assimilating and storing bioavailable nitrogen and phosphorus, fixing nitrogen, and activating occluded phosphorus. Future research should focus on augmenting the nitrogen fixing, phosphate solubilizing and phosphatase producing microorganisms in periphytic biofilms to improve nutrient utilization and thereby reduce NPS pollution production in artificial and natural wetland ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. l-Methionine anti-biofilm activity against Pseudomonas aeruginosa is enhanced by the cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor.

    Science.gov (United States)

    Cho, Do-Yeon; Lim, Dong-Jin; Mackey, Calvin; Weeks, Christopher G; Peña Garcia, Jaime A; Skinner, Daniel; Grayson, Jessica W; Hill, Harrison S; Alexander, David K; Zhang, Shaoyan; Woodworth, Bradford A

    2018-05-01

    Biofilms may contribute to refractory chronic rhinosinusitis (CRS), as they lead to antibiotic resistance and failure of effective clinical treatment. l-Methionine is an amino acid with reported biofilm-inhibiting properties. Ivacaftor is a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator with mild antimicrobial activity via inhibition of bacterial DNA gyrase and topoisomerase IV. The objective of this study was to evaluate whether co-treatment with ivacaftor and l-methionine can reduce the formation of Pseudomonas aeruginosa biofilms. P aeruginosa (PAO-1 strain) biofilms were studied in the presence of l-methionine and/or ivacaftor. For static biofilm assays, PAO-1 was cultured in a 48-well plate for 72 hours with stepwise combinations of these agents. Relative biofilm inhibitions were measured according to optical density of crystal violet stain at 590 nm. Live/dead assays (BacTiter-Glo™ assay, Promega) were imaged with laser scanning confocal microscopy. An agar diffusion test was used to confirm antibacterial effects of the drugs. l-Methionine (0.5 μM) significantly reduced PAO-1 biofilm mass (32.4 ± 18.0%; n = 4; p l-methionine (two-way analysis of variane, p = 0.0415) compared with corresponding concentrations of l-methionine alone. Ivacaftor enhanced the anti-biofilm activity of l-methionine against the PAO-1 strain of P aeruginosa. Further studies evaluating the efficacy of ivacaftor/l-methionine combinations for P aeruginosa sinusitis are planned. © 2018 ARS-AAOA, LLC.

  2. Biofilms in Infections of the Eye

    Directory of Open Access Journals (Sweden)

    Paulo J. M. Bispo

    2015-03-01

    Full Text Available The ability to form biofilms in a variety of environments is a common trait of bacteria, and may represent one of the earliest defenses against predation. Biofilms are multicellular communities usually held together by a polymeric matrix, ranging from capsular material to cell lysate. In a structure that imposes diffusion limits, environmental microgradients arise to which individual bacteria adapt their physiologies, resulting in the gamut of physiological diversity. Additionally, the proximity of cells within the biofilm creates the opportunity for coordinated behaviors through cell–cell communication using diffusible signals, the most well documented being quorum sensing. Biofilms form on abiotic or biotic surfaces, and because of that are associated with a large proportion of human infections. Biofilm formation imposes a limitation on the uses and design of ocular devices, such as intraocular lenses, posterior contact lenses, scleral buckles, conjunctival plugs, lacrimal intubation devices and orbital implants. In the absence of abiotic materials, biofilms have been observed on the capsule, and in the corneal stroma. As the evidence for the involvement of microbial biofilms in many ocular infections has become compelling, developing new strategies to prevent their formation or to eradicate them at the site of infection, has become a priority.

  3. Extracellular DNA contributes to dental biofilm formation: An ex vivo study

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke Louise; Dige, Irene

    2016-01-01

    The extracellular matrix of dental biofilms plays an important role during caries development. It increases the mechanical stability of the biofilm, it prevents desiccation, it serves as a reservoir for nutrients and it contributes to the long-term preservation of acidic microenvironments. Research...

  4. Low Concentrations of Vitamin C Reduce the Synthesis of Extracellular Polymers and Destabilize Bacterial Biofilms

    KAUST Repository

    Pandit, Santosh

    2017-12-26

    Extracellular polymeric substances (EPS) produced by bacteria form a matrix supporting the complex three-dimensional architecture of biofilms. This EPS matrix is primarily composed of polysaccharides, proteins and extracellular DNA. In addition to supporting the community structure, the EPS matrix protects bacterial biofilms from the environment. Specifically, it shields the bacterial cells inside the biofilm, by preventing antimicrobial agents from getting in contact with them, thereby reducing their killing effect. New strategies for disrupting the formation of the EPS matrix can therefore lead to a more efficient use of existing antimicrobials. Here we examined the mechanism of the known effect of vitamin C (sodium ascorbate) on enhancing the activity of various antibacterial agents. Our quantitative proteomics analysis shows that non-lethal concentrations of vitamin C inhibit bacterial quorum sensing and other regulatory mechanisms underpinning biofilm development. As a result, the EPS biosynthesis in reduced, and especially the polysaccharide component of the matrix is depleted. Once the EPS content is reduced beyond a critical point, bacterial cells get fully exposed to the medium. At this stage, the cells are more susceptible to killing, either by vitamin C-induced oxidative stress as reported here, or by other antimicrobials or treatments.

  5. Low Concentrations of Vitamin C Reduce the Synthesis of Extracellular Polymers and Destabilize Bacterial Biofilms

    KAUST Repository

    Pandit, Santosh; Ravikumar, Vaishnavi; Abdel-Haleem, Alyaa M.; Derouiche, Abderahmane; Mokkapati, V. R. S. S.; Sihlbom, Carina; Mineta, Katsuhiko; Gojobori, Takashi; Gao, Xin; Westerlund, Fredrik; Mijakovic, Ivan

    2017-01-01

    Extracellular polymeric substances (EPS) produced by bacteria form a matrix supporting the complex three-dimensional architecture of biofilms. This EPS matrix is primarily composed of polysaccharides, proteins and extracellular DNA. In addition to supporting the community structure, the EPS matrix protects bacterial biofilms from the environment. Specifically, it shields the bacterial cells inside the biofilm, by preventing antimicrobial agents from getting in contact with them, thereby reducing their killing effect. New strategies for disrupting the formation of the EPS matrix can therefore lead to a more efficient use of existing antimicrobials. Here we examined the mechanism of the known effect of vitamin C (sodium ascorbate) on enhancing the activity of various antibacterial agents. Our quantitative proteomics analysis shows that non-lethal concentrations of vitamin C inhibit bacterial quorum sensing and other regulatory mechanisms underpinning biofilm development. As a result, the EPS biosynthesis in reduced, and especially the polysaccharide component of the matrix is depleted. Once the EPS content is reduced beyond a critical point, bacterial cells get fully exposed to the medium. At this stage, the cells are more susceptible to killing, either by vitamin C-induced oxidative stress as reported here, or by other antimicrobials or treatments.

  6. Extracellular DNA Shields against Aminoglycosides in Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Nilsson, Martin; Jensen, Peter Østrup

    2013-01-01

    Within recent years, it has been established that extracellular DNA is a key constituent of the matrix of microbial biofilms. In addition, it has recently been demonstrated that DNA binds positively charged antimicrobials such as aminoglycosides and antimicrobial peptides. In the present study, we...... provide evidence that extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. We show that exogenously supplemented DNA integrates into P. aeruginosa biofilms and increases their tolerance toward aminoglycosides. We provide evidence that biofilms formed by a DNA release......-deficient P. aeruginosa quorum-sensing mutant are more susceptible to aminoglycoside treatment than wild-type biofilms but become rescued from the detrimental action of aminoglycosides upon supplementation with exogenous DNA. Furthermore, we demonstrate that exposure to lysed polymorphonuclear leukocytes...

  7. The transcriptional regulator, CosR, controls compatible solute biosynthesis and transport, motility and biofilm formation in Vibrio cholerae.

    Science.gov (United States)

    Shikuma, Nicholas J; Davis, Kimberly R; Fong, Jiunn N C; Yildiz, Fitnat H

    2013-05-01

    Vibrio cholerae inhabits aquatic environments and colonizes the human digestive tract to cause the disease cholera. In these environments, V. cholerae copes with fluctuations in salinity and osmolarity by producing and transporting small, organic, highly soluble molecules called compatible solutes, which counteract extracellular osmotic pressure. Currently, it is unclear how V. cholerae regulates the expression of genes important for the biosynthesis or transport of compatible solutes in response to changing salinity or osmolarity conditions. Through a genome-wide transcriptional analysis of the salinity response of V. cholerae, we identified a transcriptional regulator we name CosR for compatible solute regulator. The expression of cosR is regulated by ionic strength and not osmolarity. A transcriptome analysis of a ΔcosR mutant revealed that CosR represses genes involved in ectoine biosynthesis and compatible solute transport in a salinity-dependent manner. When grown in salinities similar to estuarine environments, CosR activates biofilm formation and represses motility independently of its function as an ectoine regulator. This is the first study to characterize a compatible solute regulator in V. cholerae and couples the regulation of osmotic tolerance with biofilm formation and motility. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Sexual Biofilm Formation in Candida tropicalis Opaque Cells

    Science.gov (United States)

    Jones, Stephen K.; Hirakawa, Matthew P.; Bennett, Richard J.

    2014-01-01

    Summary Candida albicans and Candida tropicalis are opportunistic fungal pathogens that can transition between white and opaque phenotypic states. White and opaque cells differ both morphologically and in their responses to environmental signals. In C. albicans, opaque cells respond to sexual pheromones by undergoing conjugation, while white cells are induced by pheromones to form sexual biofilms. Here, we show that sexual biofilm formation also occurs in C. tropicalis but, unlike C. albicans, biofilms are formed exclusively by opaque cells. C. tropicalis biofilm formation was dependent on the pheromone receptors Ste2 and Ste3, confirming the role of pheromone signaling in sexual biofilm development. Structural analysis of C. tropicalis sexual biofilms revealed stratified communities consisting of a basal layer of yeast cells and an upper layer of filamentous cells, together with an extracellular matrix. Transcriptional profiling showed that genes involved in pheromone signaling and conjugation were upregulated in sexual biofilms. Furthermore, FGR23, which encodes an agglutinin-like protein, was found to enhance both mating and sexual biofilm formation. Together, these studies reveal that C. tropicalis opaque cells form sexual biofilms with a complex architecture, and suggest a conserved role for sexual agglutinins in mediating mating, cell cohesion and biofilm formation. PMID:24612417

  9. Mycoalgae biofilm: development of a novel platform technology using algae and fungal cultures.

    Science.gov (United States)

    Rajendran, Aravindan; Hu, Bo

    2016-01-01

    Microalgae is considered a promising source for biofuel and bioenergy production, bio-remediation and production of high-value bioactive compounds, but harvesting microalgae is a major bottleneck in the algae based processes. The objective of this research is to mimic the growth of natural lichen and develop a novel biofilm platform technology using filamentous fungi and microalgae to form a lichen type of biofilm "mycoalgae" in a supporting polymer matrix. The possibility of co-existence of Chlorella vulgaris with various fungal cultures was tested to identify the best strain combination for high algae harvest efficiency. The effect of different matrices for cell attachment and biofilm formation, cell surface characterization of mycoalgae biofilm, kinetics of the process with respect to the algae-fungi cell distribution and total biomass production was studied. Mycoalgae biofilm with algae attachment efficiency of 99.0 % and above was achieved in a polymer-cotton composite matrix with glucose concentration of 2 g/L in the growth medium and agitation intensity of 150 rpm at 27 °C. The total biomass in the co-culture with the selected strain combination (Mucor sp. and Chlorella sp.) was higher than the axenic cultures of fungi and algae at the conditions tested. The results show that algae can be grown with complete attachment to a bio-augmenting fungal surface and can be harvested readily as a biofilm for product extraction from biomass. Even though, interaction between heterotrophic fungi and phototrophic algae was investigated in solid media after prolonged contact in a report, this research is the first of its kind in developing an artificial lichen type biofilm called "mycoalgae" biofilm completely attached on a matrix in liquid cultures. The mycoalgae biofilm based processes, propounds the scope for exploring new avenues in the bio-production industry and bioremediation.

  10. Cell death in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Webb, J.S.; Thompson, L.S.; James, S.

    2003-01-01

    Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids....... However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death...... occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development...

  11. Pseudomonas aeruginosa forms Biofilms in Acute InfectionIndependent of Cell-to-Cell Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N.; Rumbaugh, Kendra P.

    2006-09-20

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 hours of infection in thermally-injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections. P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild type and QS-deficient P. aeruginosa formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independent of QS.

  12. [Nitrogen oxide is involved in the regulation of the Fe-S cluster assembly in proteins and the formation of biofilms by Escherichia coli cells].

    Science.gov (United States)

    Vasil'eva, S V; Streltsova, D A; Starostina, I A; Sanina, N A

    2013-01-01

    The functions of nitrogen oxide (NO) in the regulation of the reversible processes of Fe-S cluster assembly in proteins and the formation of Escherichia coli biofilms have been investigated. S-nitrosoglutathione (GSNO) and crystalline nitrosyl complexes of iron with sulfur-containing aliphatic ligands cisaconite (CisA) and penaconite have been used as NO donors for the first time. Wild-type E. coli cells of the strain MC4100, mutants deltaiscA and deltasufA, and the double paralog mutant deltaiscA/sufA with deletions in the alternative pathways of Fe2+ supply for cluster assembly (all derived from the above-named strain) were used in this study. Plankton growth of bacterial cultures, the mass of mature biofilms, and the expression of the SoxRS[2Fe-2S] regulon have been investigated and shown to depend on strain genotype, the process of Fe-S cluster assembly in iron-sulfur proteins, NO donor structure, and the presence of Fe2+ chelator ferene in the incubation medium. The antibiotic ciprofloxacine (CF) was used as an inhibitor of E. coli biofilm formation in the positive control. NO donors regulating Fe-S cluster assembly in E. coli have been shown to control plankton growth of the cultures and the process of mature biofilm formation; toxic doses of NO caused a dramatic (3- to 4-fold) stimulation of cell entry into biofilms as a response to nitrosative stress; NO donors CisA and GSNO in physiological concentrations suppressed the formation of mature biofilms, and the activity of these compounds was comparable to that of CE Regulation of both Fe-S cluster assembly in iron-sulfur proteins and biofilm formation by NO is indicative of the connection between these processes in E. coli.

  13. Detection of Pathogenic Biofilms with Bacterial Amyloid Targeting Fluorescent Probe, CDy11

    DEFF Research Database (Denmark)

    Kim, Jun Young; Sahu, Srikanta; Yau, Yin Hoe

    2016-01-01

    Bacterial biofilms are responsible for a wide range of persistent infections. In the clinic, diagnosis of biofilm-associated infections relies heavily on culturing methods, which fail to detect nonculturable bacteria. Identification of novel fluorescent probes for biofilm imaging will greatly...... facilitate diagnosis of pathogenic bacterial infection. Herein, we report a novel fluorescent probe, CDy11 (compound of designation yellow 11), which targets amyloid in the Pseudomonas aeruginosa biofilm matrix through a diversity oriented fluorescent library approach (DOFLA). CDy11 was further demonstrated...

  14. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress.

    Science.gov (United States)

    Mathieu, L; Bertrand, I; Abe, Y; Angel, E; Block, J C; Skali-Lami, S; Francius, G

    2014-05-15

    Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τw (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. When rapidly increasing the hydrodynamic constraint, biofilm removal was found to be dependent on a dual process of erosion and coalescence of the biofilm clusters. Indeed, 56% of the biofilm cells were removed with, concomitantly, a decrease in the number of the 50-300 μm(3) clusters and an increase in the number of the smaller (i.e., 600 μm(3)) ones. Moreover, AFM evidenced the strengthening of the biofilm structure along with the doubling of the number of contact points, NC, per cluster volume unit following the hydrodynamic disturbance. This suggests that the compactness of the biofilm exopolymers increases with hydrodynamic stress. Shock chlorination removed cells (-75%) from the biofilm while reducing the volume of biofilm clusters. Oxidation stress resulted in a decrease in the cohesive strength profile of the remaining drinking water biofilms linked to a reduction in the number of contact points within the biofilm network structure in particular for the largest biofilm cluster volumes (>200 μm(3)). Changes in the cohesive

  15. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Vad, Brian S; Dueholm, Morten S

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered...... that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm...... hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm...

  16. Fluorescence lifetime imaging of oxygen in dental biofilm

    Science.gov (United States)

    Gerritsen, Hans C.; de Grauw, Cees J.

    2000-12-01

    Dental biofilm consists of micro-colonies of bacteria embedded in a matrix of polysaccharides and salivary proteins. pH and oxygen concentration are of great importance in dental biofilm. Both can be measured using fluorescence techniques. The imaging of dental biofilm is complicated by the thickness of the biofilms that can be up to several hundred micrometers thick. Here, we employed a combination of two-photon excitation microscopy with fluorescence lifetime imaging to quantify the oxygen concentration in dental biofilm. Collisional quenching of fluorescent probes by molecular oxygen leads to a reduction of the fluorescence lifetime of the probe. We employed this mechanism to measure the oxygen concentration distribution in dental biofilm by means of fluorescence lifetime imaging. Here, TRIS Ruthenium chloride hydrate was used as an oxygen probe. A calibration procedure on buffers was use to measure the lifetime response of this Ruthenium probe. The results are in agreement with the Stern-Volmer equation. A linear relation was found between the ratio of the unquenched and the quenched lifetime and the oxygen concentration. The biofilm fluorescence lifetime imaging results show a strong oxygen gradient at the buffer - biofilm interface and the average oxygen concentration in the biofilm amounted to 50 μM.

  17. Microscopic monitoring of extracellular pH in dental biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Garcia, Javier; Greve, Matilde

    pH in dental biofilm is a key virulence factor for the development of caries lesions. The complex three-dimensional architecture of dental biofilms leads to steep gradients of nutrients and metabolites, including organic acids, across the biofilm. For decades, measuring pH in dental biofilm has...... been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit to monitor horizontal pH gradients in real-time. Quantitative fluorescent microscopic techniques, such as fluorescence lifetime imaging or pH...... ratiometry, can be employed to map the pH landscape in dental biofilm with more detail. However, when pH sensitive fluorescent probes are used to visualize pH in biofilms, it is crucial to differentiate between extracellular and intracellular pH. Intracellular microbial pH and pH in the extracellular matrix...

  18. Heavy metals-bioremediation by highly radioresistant Deinococcus radiodurans biofilm prospective use in nuclear reactor decontamination

    International Nuclear Information System (INIS)

    Shukla, Sudhir K.; Subba Rao, T.

    2015-01-01

    Over the past few decades, rapid growth of chemical industries have enhanced the heavy metal contamination in water, thereby raising environmental concerns. In the nuclear power industry, decontamination procedure also generates radioactive heavy metal containing wastes. Radio-resistant Deinococcus radiodurans R1 is reported to be a potential candidate for the treatment of low active waste material. To use any bacterium for bioremediation purpose, knowledge about its biofilm production characteristics is a prerequisite. This is because biofilm-mediated bioremediation processes are more efficient as compared to processes mediated by their planktonic counterparts. However, so far there are no reports on the biofilm producing capability of D. radiodurans. We observed that tagging of D. radiodurans by a plasmid harbouring gfp and kan R conferred significant biofilm producing property to the bacterium. Chemical analysis of biofilm matrix components produced by D. radiodurans showed that the matrix consists primarily of proteins and carbohydrates with small amount of extracellular DNA (eDNA). Further, we studied the effect of Ca 2+ on D. radiodurans biofilm formation and it was observed that D. radiodurans biofilm formation was enhanced at higher concentrations of Ca 2+ . We investigated the capability of D. radiodurans biofilm to remove the heavy metals Co and Ni from synthetic waste streams. Results showed that Ca 2+ enhanced the bioremediation of both heavy metals (Co, Ni) by D. radiodurans biofilms in a highly significant manner. In the presence of 50 mM Ca 2+ 35% Co removal and 25% Ni removal was observed, when compared to biofilm grown in the absence of Ca 2+ , which showed mere 7% Co and 3% Ni removal, respectively. The results showed that the presence of Ca 2+ significantly enhanced exopolysaccharide and eDNA (both negatively charged) production in the biofilm matrix. This indicated adsorption could be the major mechanism behind enhanced biofilm mediated removal

  19. DNA builds and strengthens the extracellular matrix in Myxococcus xanthus biofilms by interacting with exopolysaccharides.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available One intriguing discovery in modern microbiology is the extensive presence of extracellular DNA (eDNA within biofilms of various bacterial species. Although several biological functions have been suggested for eDNA, including involvement in biofilm formation, the detailed mechanism of eDNA integration into biofilm architecture is still poorly understood. In the biofilms formed by Myxococcus xanthus, a Gram-negative soil bacterium with complex morphogenesis and social behaviors, DNA was found within both extracted and native extracellular matrices (ECM. Further examination revealed that these eDNA molecules formed well organized structures that were similar in appearance to the organization of exopolysaccharides (EPS in ECM. Biochemical and image analyses confirmed that eDNA bound to and colocalized with EPS within the ECM of starvation biofilms and fruiting bodies. In addition, ECM containing eDNA exhibited greater physical strength and biological stress resistance compared to DNase I treated ECM. Taken together, these findings demonstrate that DNA interacts with EPS and strengthens biofilm structures in M. xanthus.

  20. The role of biofilms in persistent infections and factors involved in ica-independent biofilm development and gene regulation in Staphylococcus aureus.

    Science.gov (United States)

    Figueiredo, Agnes Marie Sá; Ferreira, Fabienne Antunes; Beltrame, Cristiana Ossaille; Côrtes, Marina Farrel

    2017-09-01

    Staphylococcus aureus biofilms represent a unique micro-environment that directly contribute to the bacterial fitness within hospital settings. The accumulation of this structure on implanted medical devices has frequently caused the development of persistent and chronic S. aureus-associated infections, which represent an important social and economic burden worldwide. ica-independent biofilms are composed of an assortment of bacterial products and modulated by a multifaceted and overlapping regulatory network; therefore, biofilm composition can vary among S. aureus strains. In the microniches formed by biofilms-produced by a number of bacterial species and composed by different structural components-drug refractory cell subpopulations with distinct physiological characteristics can emerge and result in therapeutic failures in patients with recalcitrant bacterial infections. In this review, we highlight the importance of biofilms in the development of persistence and chronicity in some S. aureus diseases, the main molecules associated with ica-independent biofilm development and the regulatory mechanisms that modulate ica-independent biofilm production, accumulation, and dispersion.

  1. Biofilm growth program and architecture revealed by single-cell live imaging

    Science.gov (United States)

    Yan, Jing; Sabass, Benedikt; Stone, Howard; Wingreen, Ned; Bassler, Bonnie

    Biofilms are surface-associated bacterial communities. Little is known about biofilm structure at the level of individual cells. We image living, growing Vibrio cholerae biofilms from founder cells to ten thousand cells at single-cell resolution, and discover the forces underpinning the architectural evolution of the biofilm. Mutagenesis, matrix labeling, and simulations demonstrate that surface-adhesion-mediated compression causes V. cholerae biofilms to transition from a two-dimensional branched morphology to a dense, ordered three-dimensional cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture, and this growth pattern is controlled by a single gene. Competition analyses reveal the advantages of the dense growth mode in providing the biofilm with superior mechanical properties. We will further present continuum theory to model the three-dimensional growth of biofilms at the solid-liquid interface as well as solid-air interface.

  2. Diversification of gene expression during formation of static submerged biofilms by Escherichia coli

    Directory of Open Access Journals (Sweden)

    Olga Besharova

    2016-10-01

    Full Text Available Many bacteria primarily exist in nature as structured multicellular communities, so called biofilms. Biofilm formation is a highly regulated process that includes the transition from the motile planktonic to sessile biofilm lifestyle. Cellular differentiation within a biofilm is a commonly accepted concept but it remains largely unclear when, where and how exactly such differentiation arises. Here we used fluorescent transcriptional reporters to quantitatively analyze spatio-temporal expression patterns of several groups of genes during the formation of submerged Escherichia coli biofilms in an open static system. We first confirm that formation of such submerged biofilms as well as pellicles at the liquid-air interface requires the major matrix component, curli, and flagella-mediated motility. We further demonstrate that in this system, diversification of gene expression leads to emergence of at least three distinct subpopulations of E. coli, which differ in their levels of curli and flagella expression, and in the activity of the stationary phase sigma factor σS. Our study reveals mutually exclusive expression of curli fibers and flagella at the single cell level, with high curli levels being confined to dense cell aggregates/microcolonies and flagella expression showing an opposite expression pattern. Interestingly, despite the known σS-dependence of curli induction, there was only a partial correlation between the σS activity and curli expression, with subpopulations of cells having high σS activity but low curli expression and vice versa. Finally, consistent with different physiology of the observed subpopulations, we show striking differences between the growth rates of cells within and outside of aggregates.

  3. Production of gold nanoparticles by electrode-respiring Geobacter sulfurreducens biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Tanzil, Abid H.; Sultana, Sujala T.; Saunders, Steven R.; Dohnalkova, Alice C.; Shi, Liang; Davenport, Emily; Ha, Phuc; Beyenal, Haluk

    2016-12-01

    Current chemical syntheses of nanoparticles (NP) has had limited success due to the relatively high environmental cost caused by the use of harsh chemicals requiring necessary purification and size-selective fractionation. Therefore, biological approaches have received recent attention for their potential to overcome these obstacles as a benign synthetic approach. The intrinsic nature of biomolecules present in microorganisms has intrigued researchers to design bottom-up approaches to biosynthesize metal nanoparticles using microorganisms. Most of the literature work has focused on NP synthesis using planktonic cells while the use of biofilms are limited. The goal of this work was to synthesize gold nanoparticles (AuNPs) using electrode respiring Geobacter sulfurreducens biofilms. We found that most of the AuNPs are generated in the extracellular matrix of Geobacter biofilms with an average particle size of 20 nm. The formation of AuNPs was verified using TEM, FTIR and EDX. We also found that the extracellular substances extracted from electrode respiring G. sulfurreducens biofilms can reduce Au3+ to AuNPs. It appears that reducing sugars were involved in bioreduction and synthesis of AuNPs and amine groups acted as the major biomolecules involved in binding. This is first demonstration of AuNPs formation from the extracellular matrix of electrode respiring biofilms.

  4. Natural antimicrobial peptide complexes in the fighting of antibiotic resistant biofilms: Calliphora vicina medicinal maggots.

    Directory of Open Access Journals (Sweden)

    Natalia Gordya

    Full Text Available Biofilms, sedimented microbial communities embedded in a biopolymer matrix cause vast majority of human bacterial infections and many severe complications such as chronic inflammatory diseases and cancer. Biofilms' resistance to the host immunity and antibiotics makes this kind of infection particularly intractable. Antimicrobial peptides (AMPs are a ubiquitous facet of innate immunity in animals. However, AMPs activity was studied mainly on planktonic bacteria and little is known about their effects on biofilms. We studied structure and anti-biofilm activity of AMP complex produced by the maggots of blowfly Calliphora vicina living in environments extremely contaminated by biofilm-forming germs. The complex exhibits strong cell killing and matrix destroying activity against human pathogenic antibiotic resistant Escherichia coli, Staphylococcus aureus and Acinetobacter baumannii biofilms as well as non-toxicity to human immune cells. The complex was found to contain AMPs from defensin, cecropin, diptericin and proline-rich peptide families simultaneously expressed in response to bacterial infection and encoded by hundreds mRNA isoforms. All the families combine cell killing and matrix destruction mechanisms, but the ratio of these effects and antibacterial activity spectrum are specific to each family. These molecules dramatically extend the list of known anti-biofilm AMPs. However, pharmacological development of the complex as a whole can provide significant advantages compared with a conventional one-component approach. In particular, a similar level of activity against biofilm and planktonic bacteria (MBEC/MIC ratio provides the complex advantage over conventional antibiotics. Available methods of the complex in situ and in vitro biosynthesis make this idea practicable.

  5. Natural antimicrobial peptide complexes in the fighting of antibiotic resistant biofilms: Calliphora vicina medicinal maggots.

    Science.gov (United States)

    Gordya, Natalia; Yakovlev, Andrey; Kruglikova, Anastasia; Tulin, Dmitry; Potolitsina, Evdokia; Suborova, Tatyana; Bordo, Domenico; Rosano, Camillo; Chernysh, Sergey

    2017-01-01

    Biofilms, sedimented microbial communities embedded in a biopolymer matrix cause vast majority of human bacterial infections and many severe complications such as chronic inflammatory diseases and cancer. Biofilms' resistance to the host immunity and antibiotics makes this kind of infection particularly intractable. Antimicrobial peptides (AMPs) are a ubiquitous facet of innate immunity in animals. However, AMPs activity was studied mainly on planktonic bacteria and little is known about their effects on biofilms. We studied structure and anti-biofilm activity of AMP complex produced by the maggots of blowfly Calliphora vicina living in environments extremely contaminated by biofilm-forming germs. The complex exhibits strong cell killing and matrix destroying activity against human pathogenic antibiotic resistant Escherichia coli, Staphylococcus aureus and Acinetobacter baumannii biofilms as well as non-toxicity to human immune cells. The complex was found to contain AMPs from defensin, cecropin, diptericin and proline-rich peptide families simultaneously expressed in response to bacterial infection and encoded by hundreds mRNA isoforms. All the families combine cell killing and matrix destruction mechanisms, but the ratio of these effects and antibacterial activity spectrum are specific to each family. These molecules dramatically extend the list of known anti-biofilm AMPs. However, pharmacological development of the complex as a whole can provide significant advantages compared with a conventional one-component approach. In particular, a similar level of activity against biofilm and planktonic bacteria (MBEC/MIC ratio) provides the complex advantage over conventional antibiotics. Available methods of the complex in situ and in vitro biosynthesis make this idea practicable.

  6. Potential coupling effects of ammonia-oxidizing and anaerobic ammonium-oxidizing bacteria on completely autotrophic nitrogen removal over nitrite biofilm formation induced by the second messenger cyclic diguanylate.

    Science.gov (United States)

    Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhao, Chuanqi; Yang, Fenglin; Wang, Dong

    2017-05-01

    The objective of this study was to investigate the influence of extracellular polymeric substance (EPS) on the coupling effects between ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) bacteria for the completely autotrophic nitrogen removal over nitrite (CANON) biofilm formation in a moving bed biofilm reactor (MBBR). Analysis of the quantity of EPS and cyclic diguanylate (c-di-GMP) confirmed that the contents of polysaccharides and c-di-GMP were correlated in the AOB sludge, anammox sludge, and CANON biofilm. The anammox sludge secreted more EPS (especially polysaccharides) than AOB with a markedly higher c-di-GMP content, which could be used by the bacteria to regulate the synthesis of exopolysaccharides that are ultimately used as a fixation matrix, for the adhesion of biomass. Indeed, increased intracellular c-di-GMP concentrations in the anammox sludge enhanced the regulation of polysaccharides to promote the adhesion of AOB and formation of the CANON biofilm. Overall, the results of this study provide new comprehensive information regarding the coupling effects of AOB and anammox bacteria for the nitrogen removal process.

  7. Anti-biofilm efficacy of low temperature processed AgCl–TiO2 nanocomposite coating

    International Nuclear Information System (INIS)

    Naik, Kshipra; Kowshik, Meenal

    2014-01-01

    Biofilms are a major concern in the medical settings and food industries due to their high tolerance to antibiotics, biocides and mechanical stress. Currently, the development of novel methods to control biofilm formation is being actively pursued. In the present study, sol–gel coatings of AgCl–TiO 2 nanoparticles are presented as potential anti-biofilm agents, wherein TiO 2 acts as a good supporting matrix to prevent aggregation of silver and facilitates its controlled release. Low-temperature processed AgCl–TiO 2 nanocomposite coatings inhibit biofilm formation by Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa. In vitro biofilm assay experiments demonstrated that AgCl–TiO 2 nanocomposite coated surfaces, inhibited the development of biofilms over a period of 10 days as confirmed by scanning electron microscopy. The silver release kinetics exhibited an initial high release, followed by a slow and sustained release. The anti-biofilm efficacy of the coatings could be attributed to the release of silver, which prevents the initial bacterial adhesion required for biofilm formation. - Highlights: • Potential of AgCl–TiO 2 nanocomposite coating to inhibit biofilm formation is exhibited. • Initial rapid release followed by later slow and sustained release of silver obtained. • TiO 2 being porous and inorganic in nature acts as a good supporting matrix

  8. Biodegradation and attenuation of steroidal hormones and alkylphenols by stream biofilms and sediments

    Science.gov (United States)

    Writer, Jeffrey; Barber, Larry B.; Ryan, Joseph N.; Bradley, Paul M.

    2011-01-01

    Biodegradation of select endocrine-disrupting compounds (17β-estradiol, estrone, 17α-ethynylestradiol, 4-nonylphenol, 4-nonylphenolmonoexthoylate, and 4-nonylphenoldiethoxylate) was evaluated in stream biofilm, sediment, and water matrices collected from locations upstream and downstream from a wastewater treatment plant effluent discharge. Both biologically mediated transformation to intermediate metabolites and biologically mediated mineralization were evaluated in separate time interval experiments. Initial time intervals (0–7 d) evaluated biodegradation by the microbial community dominant at the time of sampling. Later time intervals (70 and 185 d) evaluated the biodegradation potential as the microbial community adapted to the absence of outside energy sources. The sediment matrix was more effective than the biofilm and water matrices at biodegrading 4-nonylphenol and 17β-estradiol. Biodegradation by the sediment matrix of 17α-ethynylestradiol occurred at later time intervals (70 and 185 d) and was not observed in the biofilm or water matrices. Stream biofilms play an important role in the attenuation of endocrine-disrupting compounds in surface waters due to both biodegradation and sorption processes. Because sorption to stream biofilms and bed sediments occurs on a faster temporal scale (185 d), these compounds can accumulate in stream biofilms and sediments.

  9. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics.

    Science.gov (United States)

    Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng; Shah, Vijay H

    2014-10-01

    Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl(-/-); or Yes, Src, and Fyn knockout mice (YSF(-/-))] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl(-/-) MEF showed impaired matrix endocytosis, YSF(-/-) MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9

  10. Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Alhede, Maria; Bjarnsholt, Thomas; Givskov, Michael

    2014-01-01

    biofilms, which protect the aggregated, biopolymer-embedded bacteria from the detrimental actions of antibiotic treatments and host immunity. A key component in the protection against innate immunity is rhamnolipid, which is a quorum sensing (QS)-regulated virulence factor. QS is a cell-to-cell signaling...... mechanism used to coordinate expression of virulence and protection of aggregated biofilm cells. Rhamnolipids are known for their ability to cause hemolysis and have been shown to cause lysis of several cellular components of the human immune system, for example, macrophages and polymorphonuclear leukocytes...

  11. Glutathione-Disrupted Biofilms of Clinical Pseudomonas aeruginosa Strains Exhibit an Enhanced Antibiotic Effect and a Novel Biofilm Transcriptome

    Science.gov (United States)

    Das, Theerthankar; Ibugo, Amaye; Buckle, Edwina; Manefield, Mike; Manos, Jim

    2016-01-01

    Pseudomonas aeruginosa infections result in high morbidity and mortality rates for individuals with cystic fibrosis (CF), with premature death often occurring. These infections are complicated by the formation of biofilms in the sputum. Antibiotic therapy is stymied by antibiotic resistance of the biofilm matrix, making novel antibiofilm strategies highly desirable. Within P. aeruginosa biofilms, the redox factor pyocyanin enhances biofilm integrity by intercalating with extracellular DNA. The antioxidant glutathione (GSH) reacts with pyocyanin, disrupting intercalation. This study investigated GSH disruption by assaying the physiological effects of GSH and DNase I on biofilms of clinical CF isolates grown in CF artificial sputum medium (ASMDM+). Confocal scanning laser microscopy showed that 2 mM GSH, alone or combined with DNase I, significantly disrupted immature (24-h) biofilms of Australian epidemic strain (AES) isogens AES-1R and AES-1M. GSH alone greatly disrupted mature (72-h) AES-1R biofilms, resulting in significant differential expression of 587 genes, as indicated by RNA-sequencing (RNA-seq) analysis. Upregulated systems included cyclic diguanylate and pyoverdine biosynthesis, the type VI secretion system, nitrate metabolism, and translational machinery. Biofilm disruption with GSH revealed a cellular physiology distinct from those of mature and dispersed biofilms. RNA-seq results were validated by biochemical and quantitative PCR assays. Biofilms of a range of CF isolates disrupted with GSH and DNase I were significantly more susceptible to ciprofloxacin, and increased antibiotic effectiveness was achieved by increasing the GSH concentration. This study demonstrated that GSH, alone or with DNase I, represents an effective antibiofilm treatment when combined with appropriate antibiotics, pending in vivo studies. PMID:27161630

  12. CdTe–TiO2 nanocomposite: an impeder of bacterial growth and biofilm

    International Nuclear Information System (INIS)

    Gholap, Haribhau; Yadav, Prasad; Ogale, Satishchandra; Patil, Rajendra; Gade, Wasudeo; Banpurkar, Arun

    2013-01-01

    The resurgence of infectious diseases and associated issues related to antibiotic resistance has raised enormous challenges which may possibly be confronted primarily by nanotechnology routes. One key need of critical significance in this context is the development of an agent capable of inhibiting quorum sensing mediated biofilm formation in pathogenic organisms. In this work we examine the possible use of a nanocomposite, CdTe–TiO 2 , as an impeder of growth and biofilm. In the presence of CdTe–TiO 2 , scanning electron microscopy (SEM) analysis shows exposed cells without the surrounding matrix. Confocal laser scanning microscopy shows spatially distributed fluorescence, a typical indication of an impeded biofilm, as opposed to the control which shows matrix-covered cells and continuous fluorescence, typical of biofilm formation. Quantitatively, the inhibition of biofilm was ∼57%. CdTe–TiO 2 also exhibits good antibacterial properties against Gram positive and Gram negative organisms by virtue of the generation of reactive oxygen species inside the cells, reflected by a ruptured appearance in the SEM analysis. (paper)

  13. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors.

    Directory of Open Access Journals (Sweden)

    Dana Ziuzina

    Full Text Available The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS-regulated virulence factors, such as pyocyanin, elastase (Las B and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated 'inpack' using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence

  14. The N-Terminus of Human Lactoferrin Displays Anti-biofilm Activity on Candida parapsilosis in Lumen Catheters.

    Science.gov (United States)

    Fais, Roberta; Di Luca, Mariagrazia; Rizzato, Cosmeri; Morici, Paola; Bottai, Daria; Tavanti, Arianna; Lupetti, Antonella

    2017-01-01

    Candida parapsilosis is a major cause of hospital-acquired infection, often related to parenteral nutrition administered via catheters and hand colonization of health care workers, and its peculiar biofilm formation ability on plastic surfaces. The mortality rate of 30% points to the pressing need for new antifungal drugs. The present study aimed at analyzing the inhibitory activity of the N-terminal lactoferrin-derived peptide, further referred to as hLF 1-11, against biofilms produced by clinical isolates of C. parapsilosis characterized for their biofilm forming ability and fluconazole susceptibility. hLF 1-11 anti-biofilm activity was assessed in terms of reduction of biofilm biomass, metabolic activity, and observation of sessile cell morphology on polystyrene microtiter plates and using an in vitro model of catheter-associated C. parapsilosis biofilm production. Moreover, fluctuation in transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production upon peptide exposure were evaluated by quantitative real time RT-PCR. The results revealed that hLF 1-11 exhibits an inhibitory effect on biofilm formation by all the C. parapsilosis isolates tested, in a dose-dependent manner, regardless of their fluconazole susceptibility. In addition, hLF 1-11 induced a statistically significant dose-dependent reduction of preformed-biofilm cellular density and metabolic activity at high peptide concentrations only. Interestingly, when assessed in a catheter lumen, hLF 1-11 was able to induce a 2-log reduction of sessile cell viability at both the peptide concentrations used in RPMI diluted in NaPB. A more pronounced anti-biofilm effect was observed (3.5-log reduction) when a 10% glucose solution was used as experimental condition on both early and preformed C. parapsilosis biofilm. Quantitative real time RT-PCR experiments confirmed that hLF 1-11 down-regulates key biofilm related genes. The overall findings suggest hLF 1-11 as a

  15. Staphylococcus aureus sarA regulates inflammation and colonization during central nervous system biofilm formation.

    Directory of Open Access Journals (Sweden)

    Jessica N Snowden

    Full Text Available Infection is a frequent and serious complication following the treatment of hydrocephalus with CSF shunts, with limited therapeutic options because of biofilm formation along the catheter surface. Here we evaluated the possibility that the sarA regulatory locus engenders S. aureus more resistant to immune recognition in the central nervous system (CNS based on its reported ability to regulate biofilm formation. We utilized our established model of CNS catheter-associated infection, similar to CSF shunt infections seen in humans, to compare the kinetics of bacterial titers, cytokine production and inflammatory cell influx elicited by wild type S. aureus versus an isogenic sarA mutant. The sarA mutant was more rapidly cleared from infected catheters compared to its isogenic wild type strain. Consistent with this finding, several pro-inflammatory cytokines and chemokines, including IL-17, CXCL1, and IL-1β were significantly increased in the brain following infection with the sarA mutant versus wild type S. aureus, in agreement with the fact that the sarA mutant displayed impaired biofilm growth and favored a planktonic state. Neutrophil influx into the infected hemisphere was also increased in the animals infected with the sarA mutant compared to wild type bacteria. These changes were not attributable to extracellular protease activity, which is increased in the context of SarA mutation, since similar responses were observed between sarA and a sarA/protease mutant. Overall, these results demonstrate that sarA plays an important role in attenuating the inflammatory response during staphylococcal biofilm infection in the CNS via a mechanism that remains to be determined.

  16. The ATP-Dependent Protease ClpP Inhibits Biofilm Formation by Regulating Agr and Cell Wall Hydrolase Sle1 in Staphylococcus aureus

    Science.gov (United States)

    Liu, Qian; Wang, Xing; Qin, Juanxiu; Cheng, Sen; Yeo, Won-Sik; He, Lei; Ma, Xiaowei; Liu, Xiaoyun; Li, Min; Bae, Taeok

    2017-01-01

    Biofilm causes hospital-associated infections on indwelling medical devices. In Staphylococcus aureus, Biofilm formation is controlled by intricately coordinated network of regulating systems, of which the ATP-dependent protease ClpP shows an inhibitory effect. Here, we demonstrate that the inhibitory effect of ClpP on biofilm formation is through Agr and the cell wall hydrolase Sle1. Biofilm formed by clpP mutant consists of proteins and extracellular DNA (eDNA). The increase of the protein was, at least in part, due to the reduced protease activity of the mutant, which was caused by the decreased activity of agr. On the other hand, the increase of eDNA was due to increased cell lysis caused by the higher level of Sle1. Indeed, as compared with wild type, the clpP mutant excreted an increased level of eDNA, and showed higher sensitivity to Triton-induced autolysis. The deletion of sle1 in the clpP mutant decreased the biofilm formation, the level of eDNA, and the Triton-induced autolysis to wild-type levels. Despite the increased biofilm formation capability, however, the clpP mutant showed significantly reduced virulence in a murine model of subcutaneous foreign body infection, indicating that the increased biofilm formation capability cannot compensate for the intrinsic functions of ClpP during infection. PMID:28555174

  17. The ATP-Dependent Protease ClpP Inhibits Biofilm Formation by Regulating Agr and Cell Wall Hydrolase Sle1 in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2017-05-01

    Full Text Available Biofilm causes hospital-associated infections on indwelling medical devices. In Staphylococcus aureus, Biofilm formation is controlled by intricately coordinated network of regulating systems, of which the ATP-dependent protease ClpP shows an inhibitory effect. Here, we demonstrate that the inhibitory effect of ClpP on biofilm formation is through Agr and the cell wall hydrolase Sle1. Biofilm formed by clpP mutant consists of proteins and extracellular DNA (eDNA. The increase of the protein was, at least in part, due to the reduced protease activity of the mutant, which was caused by the decreased activity of agr. On the other hand, the increase of eDNA was due to increased cell lysis caused by the higher level of Sle1. Indeed, as compared with wild type, the clpP mutant excreted an increased level of eDNA, and showed higher sensitivity to Triton-induced autolysis. The deletion of sle1 in the clpP mutant decreased the biofilm formation, the level of eDNA, and the Triton-induced autolysis to wild-type levels. Despite the increased biofilm formation capability, however, the clpP mutant showed significantly reduced virulence in a murine model of subcutaneous foreign body infection, indicating that the increased biofilm formation capability cannot compensate for the intrinsic functions of ClpP during infection.

  18. Sucrose substitutes affect the cariogenic potential of Streptococcus mutans biofilms.

    Science.gov (United States)

    Durso, S C; Vieira, L M; Cruz, J N S; Azevedo, C S; Rodrigues, P H; Simionato, M R L

    2014-01-01

    Streptococcus mutans is considered the primary etiologic agent of dental caries and contributes significantly to the virulence of dental plaque, especially in the presence of sucrose. To avoid the role of sucrose on the virulence factors of S. mutans, sugar substitutes are commonly consumed because they lead to lower or no production of acids and interfere with biofilm formation. This study aimed to investigate the contribution of sugar substitutes in the cariogenic potential of S. mutans biofilms. Thus, in the presence of sucrose, glucose, sucralose and sorbitol, the biofilm mass was quantified up to 96 h, the pH of the spent culture media was measured, the expression of biofilm-related genes was determined, and demineralization challenge experiments were conduct in enamel fragments. The presence of sugars or sugar substitutes profoundly affected the expression of spaP, gtfB, gtfC, gbpB, ftf, vicR and vicX in either biofilm or planktonic cells. The substitution of sucrose induced a down-regulation of most genes involved in sucrose-dependent colonization in biofilm cells. When the ratio between the expression of biofilm and planktonic cells was considered, most of those genes were down-regulated in biofilm cells in the presence of sugars and up-regulated in the presence of sugar substitutes. However, sucralose but not sorbitol fulfilled the purpose of reducing the cariogenic potential of the diet since it induced the biofilm formation with the lowest biomass, did not change the pH of the medium and led to the lowest lesion depth in the cariogenic challenge.

  19. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges

    Science.gov (United States)

    Peterson, Brandon W.; He, Yan; Ren, Yijin; Zerdoum, Aidan; Libera, Matthew R.; Sharma, Prashant K.; van Winkelhoff, Arie-Jan; Neut, Danielle; Stoodley, Paul; van der Mei, Henny C.; Busscher, Henk J.

    2015-01-01

    We summarize different studies describing mechanisms through which bacteria in a biofilm mode of growth resist mechanical and chemical challenges. Acknowledging previous microscopic work describing voids and channels in biofilms that govern a biofilms response to such challenges, we advocate a more quantitative approach that builds on the relation between structure and composition of materials with their viscoelastic properties. Biofilms possess features of both viscoelastic solids and liquids, like skin or blood, and stress relaxation of biofilms has been found to be a corollary of their structure and composition, including the EPS matrix and bacterial interactions. Review of the literature on viscoelastic properties of biofilms in ancient and modern environments as well as of infectious biofilms reveals that the viscoelastic properties of a biofilm relate with antimicrobial penetration in a biofilm. In addition, also the removal of biofilm from surfaces appears governed by the viscoelasticity of a biofilm. Herewith, it is established that the viscoelasticity of biofilms, as a corollary of structure and composition, performs a role in their protection against mechanical and chemical challenges. Pathways are discussed to make biofilms more susceptible to antimicrobials by intervening with their viscoelasticity, as a quantifiable expression of their structure and composition. PMID:25725015

  20. Curcumin Quantum Dots Mediated Degradation of Bacterial Biofilms

    Directory of Open Access Journals (Sweden)

    Ashish K. Singh

    2017-08-01

    Full Text Available Bacterial biofilm has been reported to be associated with more than 80% of bacterial infections. Curcumin, a hydrophobic polyphenol compound, has anti-quorum sensing activity apart from having antimicrobial action. However, its use is limited by its poor aqueous solubility and rapid degradation. In this study, we attempted to prepare quantum dots of the drug curcumin in order to achieve enhanced solubility and stability and investigated for its antimicrobial and antibiofilm activity. We utilized a newer two-step bottom up wet milling approach to prepare Curcumin Quantum Dots (CurQDs using acetone as a primary solvent. Minimum inhibitory concentration against select Gram-positive and Gram-negative bacteria was performed. The antibiofilm assay was performed at first using 96-well tissue culture plate and subsequently validated by Confocal Laser Scanning Microscopy. Further, biofilm matrix protein was isolated using formaldehyde sludge and TCA/Acetone precipitation method. Protein extracted was incubated with varying concentration of CurQDs for 4 h and was subjected to SDS–PAGE. Molecular docking study was performed to observe interaction between curcumin and phenol soluble modulins as well as curli proteins. The biophysical evidences obtained from TEM, SEM, UV-VIS, fluorescence, Raman spectroscopy, and zeta potential analysis confirmed the formation of curcumin quantum dots with increased stability and solubility. The MICs of curcumin quantum dots, as observed against both select gram positive and negative bacterial isolates, was observed to be significantly lower than native curcumin particles. On TCP assay, Curcumin observed to be having antibiofilm as well as biofilm degrading activity. Results of SDS–PAGE and molecular docking have shown interaction between biofilm matrix proteins and curcumin. The results indicate that aqueous solubility and stability of Curcumin can be achieved by preparing its quantum dots. The study also demonstrates

  1. Anti-biofilm efficacy of low temperature processed AgCl–TiO{sub 2} nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Kshipra, E-mail: kshipra_naik21@yahoo.co.in; Kowshik, Meenal, E-mail: meenal@goa.bits-pilani.ac.in

    2014-01-01

    Biofilms are a major concern in the medical settings and food industries due to their high tolerance to antibiotics, biocides and mechanical stress. Currently, the development of novel methods to control biofilm formation is being actively pursued. In the present study, sol–gel coatings of AgCl–TiO{sub 2} nanoparticles are presented as potential anti-biofilm agents, wherein TiO{sub 2} acts as a good supporting matrix to prevent aggregation of silver and facilitates its controlled release. Low-temperature processed AgCl–TiO{sub 2} nanocomposite coatings inhibit biofilm formation by Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa. In vitro biofilm assay experiments demonstrated that AgCl–TiO{sub 2} nanocomposite coated surfaces, inhibited the development of biofilms over a period of 10 days as confirmed by scanning electron microscopy. The silver release kinetics exhibited an initial high release, followed by a slow and sustained release. The anti-biofilm efficacy of the coatings could be attributed to the release of silver, which prevents the initial bacterial adhesion required for biofilm formation. - Highlights: • Potential of AgCl–TiO{sub 2} nanocomposite coating to inhibit biofilm formation is exhibited. • Initial rapid release followed by later slow and sustained release of silver obtained. • TiO{sub 2} being porous and inorganic in nature acts as a good supporting matrix.

  2. Proteomic and genetics insights on the response of the bacteriocinogenic Lactobacillus sakei CRL1862 during biofilm formation on stainless steel surface at 10°C.

    Science.gov (United States)

    Pérez-Ibarreche, Mariana; Mendoza, Lucía M; Vignolo, Graciela; Fadda, Silvina

    2017-10-03

    Some lactic acid bacteria have the ability to form biofilms on food-industry surfaces and this property could be used to control food pathogens colonization. Lactobacillus sakei CR1862 was selected considering its bacteriocinogenic nature and ability to adhere to abiotic surfaces at low temperatures. In this study, the proteome of L. sakei CRL1862 grown either under biofilm on stainless steel surface and planktonic modes of growth at 10°C, was investigated. Using two-dimensional gel electrophoresis, 29 out of 43 statistically significant spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Ten proteins resulted up-regulated whereas 16 were down-regulated during biofilm formation. Differentially expressed proteins were found to belong to carbohydrate, nucleotide, aminoacid and lipid metabolisms as well as translation, peptide hydrolysis, cell envelope/cell wall biosynthesis, adaption to atypical conditions and protein secretion. Some proteins related to carbohydrate and nucleotide metabolisms, translation and peptide degradation were overexpressed whereas those associated to stress conditions were synthesized in lower amounts. It seems that conditions for biofilm development would not imply a stressful environment for L. sakei CRL1862 cells, directing its growth strategy towards glycolytic flux regulation and reinforcing protein synthesis. In addition, L. sakei CRL1862 showed to harbor nine out of ten assayed genes involved in biofilm formation and protein anchoring. By applying qRT-PCR analysis, four of these genes showed to be up regulated, srtA2 being the most remarkable. The results of this study contribute to the knowledge of the physiology of L. sakei CRL1862 growing in biofilm on a characteristic food contact surface. The use of this strain as green biocide preventing L. monocytogenes post-processing contamination on industrial surfaces may be considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis.

    Science.gov (United States)

    Bleich, Rachel; Watrous, Jeramie D; Dorrestein, Pieter C; Bowers, Albert A; Shank, Elizabeth A

    2015-03-10

    Bacteria have evolved the ability to produce a wide range of structurally complex natural products historically called "secondary" metabolites. Although some of these compounds have been identified as bacterial communication cues, more frequently natural products are scrutinized for antibiotic activities that are relevant to human health. However, there has been little regard for how these compounds might otherwise impact the physiology of neighboring microbes present in complex communities. Bacillus cereus secretes molecules that activate expression of biofilm genes in Bacillus subtilis. Here, we use imaging mass spectrometry to identify the thiocillins, a group of thiazolyl peptide antibiotics, as biofilm matrix-inducing compounds produced by B. cereus. We found that thiocillin increased the population of matrix-producing B. subtilis cells and that this activity could be abolished by multiple structural alterations. Importantly, a mutation that eliminated thiocillin's antibiotic activity did not affect its ability to induce biofilm gene expression in B. subtilis. We go on to show that biofilm induction appears to be a general phenomenon of multiple structurally diverse thiazolyl peptides and use this activity to confirm the presence of thiazolyl peptide gene clusters in other bacterial species. Our results indicate that the roles of secondary metabolites initially identified as antibiotics may have more complex effects--acting not only as killing agents, but also as specific modulators of microbial cellular phenotypes.

  4. Fur is a repressor of biofilm formation in Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Fengjun Sun

    Full Text Available BACKGROUND: Yersinia pestis synthesizes the attached biofilms in the flea proventriculus, which is important for the transmission of this pathogen by fleas. The hmsHFRS operons is responsible for the synthesis of exopolysaccharide (the major component of biofilm matrix, which is activated by the signaling molecule 3', 5'-cyclic diguanylic acid (c-di-GMP synthesized by the only two diguanylate cyclases HmsT, and YPO0449 (located in a putative operonYPO0450-0448. METHODOLOGY/PRINCIPAL FINDINGS: The phenotypic assays indicated that the transcriptional regulator Fur inhibited the Y. pestis biofilm production in vitro and on nematode. Two distinct Fur box-like sequences were predicted within the promoter-proximal region of hmsT, suggesting that hmsT might be a direct Fur target. The subsequent primer extension, LacZ fusion, electrophoretic mobility shift, and DNase I footprinting assays disclosed that Fur specifically bound to the hmsT promoter-proximal region for repressing the hmsT transcription. In contrast, Fur had no regulatory effect on hmsHFRS and YPO0450-0448 at the transcriptional level. The detection of intracellular c-di-GMP levels revealed that Fur inhibited the c-di-GMP production. CONCLUSIONS/SIGNIFICANCE: Y. pestis Fur inhibits the c-di-GMP production through directly repressing the transcription of hmsT, and thus it acts as a repressor of biofilm formation. Since the relevant genetic contents for fur, hmsT, hmsHFRS, and YPO0450-0448 are extremely conserved between Y. pestis and typical Y. pseudotuberculosis, the above regulatory mechanisms can be applied to Y. pseudotuberculosis.

  5. The ABC of Biofilm Drug Tolerance: the MerR-Like Regulator BrlR Is an Activator of ABC Transport Systems, with PA1874-77 Contributing to the Tolerance of Pseudomonas aeruginosa Biofilms to Tobramycin.

    Science.gov (United States)

    Poudyal, Bandita; Sauer, Karin

    2018-02-01

    A hallmark of biofilms is their tolerance to killing by antimicrobial agents. In Pseudomonas aeruginosa , biofilm drug tolerance requires the c-di-GMP-responsive MerR transcriptional regulator BrlR. However, the mechanism by which BrlR mediates biofilm drug tolerance has not been elucidated. Here, we demonstrate that BrlR activates the expression of at least 7 ABC transport systems, including the PA1874-PA1875-PA1876-PA1877 (PA1874-77) operon, with chromatin immunoprecipitation and DNA binding assays confirming BrlR binding to the promoter region of PA1874-77. Insertional inactivation of the 7 ABC transport systems rendered P. aeruginosa PAO1 biofilms susceptible to tobramycin or norfloxacin. Susceptibility was linked to drug accumulation, with BrlR contributing to norfloxacin accumulation in a manner dependent on multidrug efflux pumps and the PA1874-77 ABC transport system. Inactivation of the respective ABC transport system, furthermore, eliminated the recalcitrance of biofilms to killing by tobramycin but not norfloxacin, indicating that drug accumulation is not linked to biofilm drug tolerance. Our findings indicate for the first time that BrlR, a MerR-type transcriptional activator, activates genes encoding several ABC transport systems, in addition to multiple multidrug efflux pump genes. Moreover, our data confirm a BrlR target contributing to drug tolerance, likely countering the prevailing dogma that biofilm tolerance arises from a multiplicity of factors. Copyright © 2018 American Society for Microbiology.

  6. Modulation of Candida albicans virulence by bacterial biofilms on titanium surfaces.

    Science.gov (United States)

    Cavalcanti, Yuri Wanderley; Wilson, Melanie; Lewis, Michael; Del-Bel-Cury, Altair Antoninha; da Silva, Wander José; Williams, David W

    2016-01-01

    Whilst Candida albicans occurs in peri-implant biofilms, its role in peri-implantitis remains unclear. This study therefore examined the virulence of C. albicans in mixed-species biofilms on titanium surfaces. Biofilms of C. albicans (Ca), C. albicans with streptococci (Streptococcus sanguinis, S. mutans) (Ca-Ss-Sm) and those incorporating Porphyromonas gingivalis (Ca-Pg and Ca-Ss-Sm-Pg) were developed. Expression of C. albicans genes associated with adhesion (ALS1, ALS3, HWP1) and hydrolytic enzymes (SAP2, SAP4, SAP6, PLD1) was measured and hyphal production by C. albicans quantified. Compared with Ca biofilms, significant (pbiofilms containing streptococci (Ca-Ss-Sm). In Ca-Pg biofilms, down-regulation of HWP1 and SAP4 expression, with reduced hyphal production occurred. Ca-Ss-Sm-Pg biofilms had increased hyphal proportions and up-regulation of ALS3, SAP2 and SAP6. In conclusion, C. albicans expressed virulence factors in biofilms that could contribute to peri-implantitis, but this was dependent on associated bacterial species.

  7. Mycobacterium avium Possesses Extracellular DNA that Contributes to Biofilm Formation, Structural Integrity, and Tolerance to Antibiotics.

    Directory of Open Access Journals (Sweden)

    Sasha J Rose

    Full Text Available Mycobacterium avium subsp. hominissuis is an opportunistic pathogen that is associated with biofilm-related infections of the respiratory tract and is difficult to treat. In recent years, extracellular DNA (eDNA has been found to be a major component of bacterial biofilms, including many pathogens involved in biofilm-associated infections. To date, eDNA has not been described as a component of mycobacterial biofilms. In this study, we identified and characterized eDNA in a high biofilm-producing strain of Mycobacterium avium subsp. hominissuis (MAH. In addition, we surveyed for presence of eDNA in various MAH strains and other nontuberculous mycobacteria. Biofilms of MAH A5 (high biofilm-producing strain and MAH 104 (reference strain were established at 22°C and 37°C on abiotic surfaces. Acellular biofilm matrix and supernatant from MAH A5 7 day-old biofilms both possess abundant eDNA, however very little eDNA was found in MAH 104 biofilms. A survey of MAH clinical isolates and other clinically relevant nontuberculous mycobacterial species revealed many species and strains that also produce eDNA. RAPD analysis demonstrated that eDNA resembles genomic DNA. Treatment with DNase I reduced the biomass of MAH A5 biofilms when added upon biofilm formation or to an already established biofilm both on abiotic surfaces and on top of human pharyngeal epithelial cells. Furthermore, co-treatment of an established biofilm with DNase 1 and either moxifloxacin or clarithromycin significantly increased the susceptibility of the bacteria within the biofilm to these clinically used antimicrobials. Collectively, our results describe an additional matrix component of mycobacterial biofilms and a potential new target to help treat biofilm-associated nontuberculous mycobacterial infections.

  8. Biofilm architecture of Phanerozoic cryptic carbonate marine veneers

    Science.gov (United States)

    Riding, Robert

    2002-01-01

    Thin (mushrooms, and plumes. All can be interpreted as characteristics of attached bacterial communities, i.e., aggregates as microcolonies, originally embedded in a matrix of extracellular polymeric substances; channels as water conduits and/or uncolonized nutrient-poor spaces; external protuberances as localized growths; and plumes as surface streamers. Cryptic habitat favored pristine biofilm preservation by precluding disturbance and overgrowth, and suggests aphotic and anoxic conditions. These examples provide diagnostic morphologic criteria for wider recognition of biofilm in Phanerozoic and older carbonates.

  9. Nanostructured coatings for controlling bacterial biofilms and antibiotic resistance

    OpenAIRE

    Ivanova, Kristina Dimitrova

    2017-01-01

    The accelerated emergence of drug resistant bacteria is one of the most serious problems in healthcare and the difficulties in finding new antibiotics make it even more challenging. To overcome the action of antibiotics bacteria develop effective resistance mechanisms including the formation of biofilms. Biofilms are bacterial communities of cells embedded in a self-produced polymeric matrix commonly found on medical devices such as indwelling catheters. When pathogens adopt this mode of grow...

  10. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms

    DEFF Research Database (Denmark)

    Gjermansen, Morten; Ragas, Paula Cornelia; Sternberg, Claus

    2005-01-01

    The biofilm lifestyle, where microbial cells are aggregated because of expression of cell-to-cell interconnecting compounds, is believed to be of paramount importance to microbes in the environment. Because microbes must be able to alternate between sessile and planktonic states, it is anticipated...... that they must be able to regulate their ability to form biofilm and to dissolve biofilm. We present an investigation of a biofilm dissolution process occurring in flow-chamber-grown Pseudomonas putida biofilms. Local starvation-induced biofilm dissolution appears to be an integrated part of P. putida biofilm...... development that causes characteristic structural rearrangements. Rapid global dissolution of entire P. putida biofilms was shown to occur in response to carbon starvation. Genetic analysis suggested that the adjacent P. putida genes PP0164 and PP0165 play a role in P. putida biofilm formation and dissolution...

  11. Pneumococci in biofilms are non-invasive: implications on nasopharyngeal colonization

    Directory of Open Access Journals (Sweden)

    Ryan Paul Gilley

    2014-11-01

    Full Text Available Streptococcus pneumoniae (the pneumococcus is an opportunistic pathogen that colonizes the human nasopharynx asymptomatically. Invasive pneumococcal disease develops following bacterial aspiration into the lungs. Pneumococci within the nasopharynx exist as biofilms, a growth phenotype characterized by surface attachment, encasement within an extracellular matrix, and antimicrobial resistance. Experimental evidence indicates that biofilm pneumococci are attenuated versus their planktonic counterpart. Biofilm pneumococci failed to cause invasive disease in experimentally challenged mice and in vitro were shown to be non-invasive despite being hyper-adhesive. This attenuated phenotype corresponds with observations that biofilm pneumococci elicit significantly less cytokine and chemokine production from host cells than their planktonic counterparts. Microarray and proteomic studies show that pneumococci within biofilms have decreased metabolism, less capsular polysaccharide, and reduced production of the pore-forming toxin pneumolysin. Biofilm pneumococci are predominately in the transparent phenotype, which has elevated cell wall phosphorylcholine, an adhesin subject to C-reactive protein mediated opsonization. Herein, we review these changes in virulence, interpret their impact on colonization and transmission, and discuss the notion that non-invasive biofilms are principal lifestyle of S. pneumoniae.

  12. Extracellular matrix formation enhances the ability of Streptococcus pneumoniae to cause invasive disease.

    Directory of Open Access Journals (Sweden)

    Claudia Trappetti

    Full Text Available During infection, pneumococci exist mainly in sessile biofilms rather than in planktonic form, except during sepsis. However, relatively little is known about how biofilms contribute to pneumococcal pathogenesis. Here, we carried out a biofilm assay on opaque and transparent variants of a clinical serotype 19F strain WCH159. After 4 days incubation, scanning electron microscopy revealed that opaque biofilm bacteria produced an extracellular matrix, whereas the transparent variant did not. The opaque biofilm-derived bacteria translocated from the nasopharynx to the lungs and brain of mice, and showed 100-fold greater in vitro adherence to A549 cells than transparent bacteria. Microarray analysis of planktonic and sessile bacteria from transparent and opaque variants showed differential gene expression in two operons: the lic operon, which is involved in choline uptake, and in the two-component system, ciaRH. Mutants of these genes did not form an extracellular matrix, could not translocate from the nasopharynx to the lungs or the brain, and adhered poorly to A549 cells. We conclude that only the opaque phenotype is able to form extracellular matrix, and that the lic operon and ciaRH contribute to this process. We propose that during infection, extracellular matrix formation enhances the ability of pneumococci to cause invasive disease.

  13. Candida glabrata Biofilms: How Far Have We Come?

    Directory of Open Access Journals (Sweden)

    Célia F. Rodrigues

    2017-03-01

    Full Text Available Infections caused by Candida species have been increasing in the last decades and can result in local or systemic infections, with high morbidity and mortality. After Candida albicans, Candida glabrata is one of the most prevalent pathogenic fungi in humans. In addition to the high antifungal drugs resistance and inability to form hyphae or secret hydrolases, C. glabrata retain many virulence factors that contribute to its extreme aggressiveness and result in a low therapeutic response and serious recurrent candidiasis, particularly biofilm formation ability. For their extraordinary organization, especially regarding the complex structure of the matrix, biofilms are very resistant to antifungal treatments. Thus, new approaches to the treatment of C. glabrata’s biofilms are emerging. In this article, the knowledge available on C. glabrata’s resistance will be highlighted, with a special focus on biofilms, as well as new therapeutic alternatives to control them.

  14. Candida glabrata Biofilms: How Far Have We Come?

    Science.gov (United States)

    Rodrigues, Célia F.; Rodrigues, Maria Elisa; Silva, Sónia; Henriques, Mariana

    2017-01-01

    Infections caused by Candida species have been increasing in the last decades and can result in local or systemic infections, with high morbidity and mortality. After Candida albicans, Candida glabrata is one of the most prevalent pathogenic fungi in humans. In addition to the high antifungal drugs resistance and inability to form hyphae or secret hydrolases, C. glabrata retain many virulence factors that contribute to its extreme aggressiveness and result in a low therapeutic response and serious recurrent candidiasis, particularly biofilm formation ability. For their extraordinary organization, especially regarding the complex structure of the matrix, biofilms are very resistant to antifungal treatments. Thus, new approaches to the treatment of C. glabrata’s biofilms are emerging. In this article, the knowledge available on C. glabrata’s resistance will be highlighted, with a special focus on biofilms, as well as new therapeutic alternatives to control them. PMID:29371530

  15. Effect of antibacterial dental adhesive on multispecies biofilms formation.

    Science.gov (United States)

    Zhang, K; Wang, S; Zhou, X; Xu, H H K; Weir, M D; Ge, Y; Li, M; Wang, S; Li, Y; Xu, X; Zheng, L; Cheng, L

    2015-04-01

    Antibacterial adhesives have favorable prospects to inhibit biofilms and secondary caries. The objectives of this study were to investigate the antibacterial effect of dental adhesives containing dimethylaminododecyl methacrylate (DMADDM) on different bacteria in controlled multispecies biofilms and its regulating effect on development of biofilm for the first time. Antibacterial material was synthesized, and Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis were chosen to form multispecies biofilms. Lactic acid assay and pH measurement were conducted to study the acid production of controlled multispecies biofilms. Anthrone method and exopolysaccharide (EPS):bacteria volume ratio measured by confocal laser scanning microscopy were performed to determine the EPS production of biofilms. The colony-forming unit counts, scanning electron microscope imaging, and dead:live volume ratio decided by confocal laser scanning microscopy were used to study the biomass change of controlled multispecies biofilms. The TaqMan real-time polymerase chain reaction and fluorescent in situ hybridization imaging were used to study the proportion change in multispecies biofilms of different groups. The results showed that DMADDM-containing adhesive groups slowed the pH drop and decreased the lactic acid production noticeably, especially lactic acid production in the 5% DMADDM group, which decreased 10- to 30-fold compared with control group (P biofilms compared with control group (P biofilm had a more healthy development tendency after the regulation of DMADDM. In conclusion, the adhesives containing DMADDM had remarkable antimicrobial properties to serve as "bioactive" adhesive materials and revealed its potential value for antibiofilm and anticaries clinical applications. © International & American Associations for Dental Research 2015.

  16. Identification of Genes Involved in Polysaccharide-Independent Staphylococcus aureus Biofilm Formation

    Science.gov (United States)

    Boles, Blaise R.; Thoendel, Matthew; Roth, Aleeza J.; Horswill, Alexander R.

    2010-01-01

    Staphylococcus aureus is a potent biofilm former on host tissue and medical implants, and biofilm growth is a critical virulence determinant for chronic infections. Recent studies suggest that many clinical isolates form polysaccharide-independent biofilms. However, a systematic screen for defective mutants has not been performed to identify factors important for biofilm formation in these strains. We created a library of 14,880 mariner transposon mutants in a S. aureus strain that generates a proteinaceous and extracellular DNA based biofilm matrix. The library was screened for biofilm defects and 31 transposon mutants conferred a reproducible phenotype. In the pool, 16 mutants overproduced extracellular proteases and the protease inhibitor α2-macroglobulin restored biofilm capacity to 13 of these mutants. The other 15 mutants in the pool displayed normal protease levels and had defects in genes involved in autolysis, osmoregulation, or uncharacterized membrane proteins. Two transposon mutants of interest in the GraRS two-component system and a putative inositol monophosphatase were confirmed in a flow cell biofilm model, genetically complemented, and further verified in a community-associated methicillin-resistant S. aureus (CA-MRSA) isolate. Collectively, our screen for biofilm defective mutants identified novel loci involved in S. aureus biofilm formation and underscored the importance of extracellular protease activity and autolysis in biofilm development. PMID:20418950

  17. Implications of Biofilm Formation on Urological Devices

    Science.gov (United States)

    Cadieux, Peter A.; Wignall, Geoffrey R.; Carriveau, Rupp; Denstedt, John D.

    2008-09-01

    Despite millions of dollars and several decades of research targeted at their prevention and eradication, biofilm-associated infections remain the major cause of urological device failure. Numerous strategies have been aimed at improving device design, biomaterial composition, surface properties and drug delivery, but have been largely circumvented by microbes and their plethora of attachment, host evasion, antimicrobial resistance, and dissemination strategies. This is not entirely surprising since natural biofilm formation has been going on for millions of years and remains a major part of microorganism survival and evolution. Thus, the fact that biofilms develop on and in the biomaterials and tissues of humans is really an extension of this natural tendency and greatly explains why they are so difficult for us to combat. Firstly, biofilm structure and composition inherently provide a protective environment for microorganisms, shielding them from the shear stress of urine flow, immune cell attack and some antimicrobials. Secondly, many biofilm organisms enter a metabolically dormant state that renders them tolerant to those antibiotics and host factors able to penetrate the biofilm matrix. Lastly, the majority of organisms that cause biofilm-associated urinary tract infections originate from our own oral cavity, skin, gastrointestinal and urogenital tracts and therefore have already adapted to many of our host defenses. Ultimately, while biofilms continue to hold an advantage with respect to recurrent infections and biomaterial usage within the urinary tract, significant progress has been made in understanding these dynamic microbial communities and novel approaches offer promise for their prevention and eradication. These include novel device designs, antimicrobials, anti-adhesive coatings, biodegradable polymers and biofilm-disrupting compounds and therapies.

  18. Intrinsic and Extrinsic Aspects on Campylobacter jejuni Biofilms

    Directory of Open Access Journals (Sweden)

    Roberta T. Melo

    2017-07-01

    Full Text Available Biofilm represents a way of life that allows greater survival of microorganisms in hostile habitats. Campylobacter jejuni is able to form biofilms in vitro and on surfaces at several points in the poultry production chain. Genetic determinants related to their formation are expressed differently between strains and external conditions are decisive in this respect. Our approach combines phylogenetic analysis and the presence of seven specific genes linked to biofilm formation in association with traditional microbiology techniques, using Mueller Hinton and chicken juice as substrates in order to quantify, classify, determine the composition and morphology of the biomass of simple and mixed biofilms of 30 C. jejuni strains. It also evaluates the inhibition of its formation by biocides commonly used in industry and also by zinc oxide nanoparticles. Genetic analysis showed high heterogeneity with the identification of 23 pulsotypes. Despite the diversity, the presence of flaA, cadF, luxS, dnaJ, htrA, cbrA, and sodB genes in all strains shows the high potential for biofilm formation. This ability was only expressed in chicken juice, where they presented phenotype of a strong biofilm producer, with a mean count of 7.37 log CFU/mL and an ultrastructure characteristic of mature biofilm. The composition of simple and mixed biofilms was predominantly composed by proteins. The exceptions were found in mixed biofilms with Pseudomonas aeruginosa, which includes a carbohydrate-rich matrix, lower ability to sessile form in chicken juice and compact architecture of the biofilm, this aspects are intrinsic to this species. Hypochlorite, chlorhexidine, and peracetic acid were more effective in controlling viable cells of C. jejuni in biofilm, but the existence of tolerant strains indicates exposure to sublethal concentrations and development of adaptation mechanisms. This study shows that in chicken juice C. jejuni presents greater potential in producing mature

  19. [Biofilms and their significance in medical microbiology].

    Science.gov (United States)

    Cernohorská, L; Votava, M

    2002-11-01

    Microorganisms are able to adhere to various surfaces and to form there a three-dimensional structure known as biofilm. In biofilms, microbial cells show characteristics and behaviours different from those of plankton cells. Intercellular signalizations of the quorum-sensing type regulate interaction between members of the biofilm. Bacteria embedded in the biofilm can escape and form well known planktonic forms, that are obviously only a part of the bacterial life cycle. Bacteria adhere also to medically important surfaces such as catheters, either urinary or intravenous ones, artificial heart valves, orthopedic implants and so on and contribute to device-related infections like cystitis, catheter-related sepsis, endocarditis etc. Once a biofilm has been established on a surface, the bacteria harboured inside are less exposed to the host's immune response and less susceptible to antibiotics. As an important cause of nosocomial infections the biofilm must remain in the centre of the microbiologist's attention.

  20. Printing of Patterned, Engineered E. coli Biofilms with a Low-Cost 3D Printer.

    Science.gov (United States)

    Schmieden, Dominik T; Basalo Vázquez, Samantha J; Sangüesa, Héctor; van der Does, Marit; Idema, Timon; Meyer, Anne S

    2018-05-18

    Biofilms can grow on virtually any surface available, with impacts ranging from endangering the lives of patients to degrading unwanted water contaminants. Biofilm research is challenging due to the high degree of biofilm heterogeneity. A method for the production of standardized, reproducible, and patterned biofilm-inspired materials could be a boon for biofilm research and allow for completely new engineering applications. Here, we present such a method, combining 3D printing with genetic engineering. We prototyped a low-cost 3D printer that prints bioink, a suspension of bacteria in a solution of alginate that solidifies on a calcium-containing substrate. We 3D-printed Escherichia coli in different shapes and in discrete layers, after which the cells survived in the printing matrix for at least 1 week. When printed bacteria were induced to form curli fibers, the major proteinaceous extracellular component of E. coli biofilms, they remained adherent to the printing substrate and stably spatially patterned even after treatment with a matrix-dissolving agent, indicating that a biofilm-mimicking structure had formed. This work is the first demonstration of patterned, biofilm-inspired living materials that are produced by genetic control over curli formation in combination with spatial control by 3D printing. These materials could be used as living, functional materials in applications such as water filtration, metal ion sequestration, or civil engineering, and potentially as standardizable models for certain curli-containing biofilms.

  1. Differential growth of wrinkled biofilms

    Science.gov (United States)

    Espeso, D. R.; Carpio, A.; Einarsson, B.

    2015-02-01

    Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste, and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Föppl-Von Kármán equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to reproduce wrinkled structures often formed by biofilms on air-agar interfaces, as well as spatial distributions of differentiated cells commonly observed with B. subtilis.

  2. Characterization of the Vibrio cholerae extracellular matrix: a top-down solid-state NMR approach.

    Science.gov (United States)

    Reichhardt, Courtney; Fong, Jiunn C N; Yildiz, Fitnat; Cegelski, Lynette

    2015-01-01

    Bacterial biofilms are communities of bacterial cells surrounded by a self-secreted extracellular matrix. Biofilm formation by Vibrio cholerae, the human pathogen responsible for cholera, contributes to its environmental survival and infectivity. Important genetic and molecular requirements have been identified for V. cholerae biofilm formation, yet a compositional accounting of these parts in the intact biofilm or extracellular matrix has not been described. As insoluble and non-crystalline assemblies, determinations of biofilm composition pose a challenge to conventional biochemical and biophysical analyses. The V. cholerae extracellular matrix composition is particularly complex with several proteins, complex polysaccharides, and other biomolecules having been identified as matrix parts. We developed a new top-down solid-state NMR approach to spectroscopically assign and quantify the carbon pools of the intact V. cholerae extracellular matrix using ¹³C CPMAS and ¹³C{(¹⁵N}, ¹⁵N{³¹P}, and ¹³C{³¹P}REDOR. General sugar, lipid, and amino acid pools were first profiled and then further annotated and quantified as specific carbon types, including carbonyls, amides, glycyl carbons, and anomerics. In addition, ¹⁵N profiling revealed a large amine pool relative to amide contributions, reflecting the prevalence of molecular modifications with free amine groups. Our top-down approach could be implemented immediately to examine the extracellular matrix from mutant strains that might alter polysaccharide production or lipid release beyond the cell surface; or to monitor changes that may accompany environmental variations and stressors such as altered nutrient composition, oxidative stress or antibiotics. More generally, our analysis has demonstrated that solid-state NMR is a valuable tool to characterize complex biofilm systems. Copyright © 2014. Published by Elsevier B.V.

  3. The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia

    DEFF Research Database (Denmark)

    Fazli, Mustafa; O'Connell, Aileen; Nilsson, Martin

    2011-01-01

    Burkholderia cenocepacia is an opportunistic respiratory pathogen that can cause severe infections in immune-compromised individuals and is associated with poor prognosis for patients suffering from cystic fibrosis. The second messenger cyclic diguanosine monophosphate (c-di-GMP) has been shown...... to control a wide range of functions in bacteria, but little is known about these regulatory mechanisms in B. cenocepacia. Here we investigated the role that c-di-GMP plays in the regulation of biofilm formation and virulence in B. cenocepacia. Elevated intracellular levels of c-di-GMP promoted wrinkly...... colony, pellicle and biofilm formation in B. cenocepacia. A screen for transposon mutants unable to respond to elevated levels of c-di-GMP led to the identification of the mutant bcam1349 that did not display increased biofilm and pellicle formation with excessive c-di-GMP levels, and displayed a biofilm...

  4. Caenorhabditis elegans BAH-1 is a DUF23 protein expressed in seam cells and required for microbial biofilm binding to the cuticle.

    Directory of Open Access Journals (Sweden)

    Kevin Drace

    2009-08-01

    Full Text Available The cuticle of Caenorhabditis elegans, a complex, multi-layered extracellular matrix, is a major interface between the animal and its environment. Biofilms produced by the bacterial genus Yersinia attach to the cuticle of the worm, providing an assay for surface characteristics. A C. elegans gene required for biofilm attachment, bah-1, encodes a protein containing the domain of unknown function DUF23. The DUF23 domain is found in 61 predicted proteins in C. elegans, which can be divided into three distinct phylogenetic clades. bah-1 is expressed in seam cells, which are among the hypodermal cells that synthesize the cuticle, and is regulated by a TGF-beta signaling pathway.

  5. Study on biofilm-forming properties of clinical isolates of Staphylococcus aureus.

    Science.gov (United States)

    Taj, Yasmeen; Essa, Farhan; Aziz, Faisal; Kazmi, Shahana Urooj

    2012-05-14

    The purpose of this study was to observe the formation of biofilm, an important virulence factor, by isolates of Staphylococcus aureus (S. aureus) in Pakistan by different conventional methods and through electron microscopy. We screened 115 strains of S. aureus isolated from different clinical specimens by tube method (TM), air-liquid interface coverslip assay method, Congo red agar (CRA) method, and scanning electron microscopy (SEM). Out of 115 S. aureus isolates, 63 (54.78%) showed biofilm formation by tube method. Biofilm forming bacteria were further categorized as high producers (n = 23, 20%) and moderate producers (n = 40, 34.78%). TM coordinated well with the coverslip assay for strong biofilm-producing strains in 19 (16.5%) isolates. By coverslip method, weak producers were difficult to differentiate from biofilm negative isolates. Screening on CRA showed biofilm formation only in four (3.47%) strains. Scanning electron micrographs showed the biofilm-forming strains of S. aureus arranged in a matrix on the propylene surface and correlated well with the TM. Biofilm production is a marker of virulence for clinically relevant staphylococcal infections. It can be studied by various methods but screening on CRA is not recommended for investigation of biofilm formation in Staphylococcus aureus. Electron micrograph images correlate well with the biofilm production as observed by TM.

  6. A 3D Hydrodynamic Model for Heterogeneous Biofilms with Antimicrobial Persistence

    Science.gov (United States)

    2014-01-01

    David A. Weitz, and Michael P. Brenner. Osmotic spreading of bacillus subtilis biofilms driven by an extracellular matrix. PNAS, 2012. [38] Zhiya...Currently, the environmental impact of biocide or side-effect of antibiotics have become common concerns, which makes the derivation of an optimal...biofilms to penetration of antibiotics . To our best knowledge, there has yet been a mathematical model which takes into account both the hydrodynamic

  7. The EAL domain protein YciR acts as a trigger enzyme in a c-di-GMP signalling cascade in E. coli biofilm control

    Science.gov (United States)

    Lindenberg, Sandra; Klauck, Gisela; Pesavento, Christina; Klauck, Eberhard; Hengge, Regine

    2013-01-01

    C-di-GMP—which is produced by diguanylate cyclases (DGC) and degraded by specific phosphodiesterases (PDEs)—is a ubiquitous second messenger in bacterial biofilm formation. In Escherichia coli, several DGCs (YegE, YdaM) and PDEs (YhjH, YciR) and the MerR-like transcription factor MlrA regulate the transcription of csgD, which encodes a biofilm regulator essential for producing amyloid curli fibres of the biofilm matrix. Here, we demonstrate that this system operates as a signalling cascade, in which c-di-GMP controlled by the DGC/PDE pair YegE/YhjH (module I) regulates the activity of the YdaM/YciR pair (module II). Via multiple direct interactions, the two module II proteins form a signalling complex with MlrA. YciR acts as a connector between modules I and II and functions as a trigger enzyme: its direct inhibition of the DGC YdaM is relieved when it binds and degrades c-di-GMP generated by module I. As a consequence, YdaM then generates c-di-GMP and—by direct and specific interaction—activates MlrA to stimulate csgD transcription. Trigger enzymes may represent a general principle in local c-di-GMP signalling. PMID:23708798

  8. Development of a high-throughput Candida albicans biofilm chip.

    Directory of Open Access Journals (Sweden)

    Anand Srinivasan

    2011-04-01

    Full Text Available We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B. Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  9. To be or not to be planktonic? Self-inhibition of biofilm development.

    Science.gov (United States)

    Nagar, Elad; Schwarz, Rakefet

    2015-05-01

    The transition between planktonic growth and biofilm formation represents a tightly regulated developmental shift that has substantial impact on cell fate. Here, we highlight different mechanisms through which bacteria limit their own biofilm development. The mechanisms involved in these self-inhibition processes include: (i) regulation by secreted small molecules, which govern intricate signalling cascades that eventually decrease biofilm development, (ii) extracellular polysaccharides capable of modifying the physicochemical properties of the substratum and (iii) extracellular DNA that masks an adhesive structure. These mechanisms, which rely on substances produced by the bacterium and released into the extracellular milieu, suggest regulation at the communal level. In addition, we provide specific examples of environmental cues (e.g. blue light or glucose level) that trigger a cellular response reducing biofilm development. All together, we describe a diverse array of mechanisms underlying self-inhibition of biofilm development in different bacteria and discuss possible advantages of these processes. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Apolar Bioactive Fraction of Melipona scutellaris Geopropolis on Streptococcus mutans Biofilm.

    Science.gov (United States)

    da Cunha, Marcos Guilherme; Franchin, Marcelo; Galvão, Lívia Câmara de Carvalho; Bueno-Silva, Bruno; Ikegaki, Masaharu; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2013-01-01

    The aim of this study was to evaluate the influence of the bioactive nonpolar fraction of geopropolis on Streptococcus mutans biofilm. The ethanolic extract of Melipona scutellaris geopropolis was subjected to a liquid-liquid partition, thus obtaining the bioactive hexane fraction (HF) possessing antimicrobial activity. The effects of HF on S. mutans UA159 biofilms generated on saliva-coated hydroxyapatite discs were analyzed by inhibition of formation, killing assay, and glycolytic pH-drop assays. Furthermore, biofilms treated with vehicle control and HF were analyzed by scanning electron microscopy (SEM). HF at 250  μ g/mL and 400  μ g/mL caused 38% and 53% reduction in the biomass of biofilm, respectively, when compared to vehicle control (P 0.05). In conclusion, the bioactive HF of geopropolis was promising to control the S. mutans biofilm formation, without affecting the microbial population but interfering with its structure by reducing the biochemical content of biofilm matrix.

  11. Apolar Bioactive Fraction of Melipona scutellaris Geopropolis on Streptococcus mutans Biofilm

    Directory of Open Access Journals (Sweden)

    Marcos Guilherme da Cunha

    2013-01-01

    Full Text Available The aim of this study was to evaluate the influence of the bioactive nonpolar fraction of geopropolis on Streptococcus mutans biofilm. The ethanolic extract of Melipona scutellaris geopropolis was subjected to a liquid-liquid partition, thus obtaining the bioactive hexane fraction (HF possessing antimicrobial activity. The effects of HF on S. mutans UA159 biofilms generated on saliva-coated hydroxyapatite discs were analyzed by inhibition of formation, killing assay, and glycolytic pH-drop assays. Furthermore, biofilms treated with vehicle control and HF were analyzed by scanning electron microscopy (SEM. HF at 250 μg/mL and 400 μg/mL caused 38% and 53% reduction in the biomass of biofilm, respectively, when compared to vehicle control (P0.05. In conclusion, the bioactive HF of geopropolis was promising to control the S. mutans biofilm formation, without affecting the microbial population but interfering with its structure by reducing the biochemical content of biofilm matrix.

  12. Atomic Force Microscopy (AFM) for In-Situ Biofilm Surface Characterization during Free Chlorine and Monochloramine Exposure

    Science.gov (United States)

    Drinking water distribution system biofilm are attached to pipe walls and found in sediments. These biofilms are complex and contain a variety of microorganisms embedded in a matrix with extracellular polymeric substances (EPS), providing protection from disinfection. Without pro...

  13. Investigating electrochemical removal of bacterial biofilms from stainless steel substrates.

    Science.gov (United States)

    Dargahi, Mahdi; Hosseinidoust, Zeinab; Tufenkji, Nathalie; Omanovic, Sasha

    2014-05-01

    Electrochemical removal of biofilms deserves attention because of its ease of use and environmentally friendly nature. We investigated the influence of electrode potential and treatment time on the removal of a 10-day old Pseudomonas aeruginosa biofilm formed on stainless steel 316 L substrates. At electrode potentials more positive than -1.5 V vs. Ag/AgCl, lower removal rates were observed and only partial removal of the biofilm was achieved during a 1-min time interval. Electrostatic repulsion between the film and electrode surface is believed to drive biofilm detachment under these conditions. However, when the biofilm-coated substrates were treated at potentials negative of -1.5 V vs. Ag/AgCl, complete removal of a biofilm was achieved within seconds. Under these conditions, vigorous evolution of hydrogen gas is believed to be responsible for the film removal, mechanically detaching the bacteria and extracellular polymeric matrix from the substrate. Stainless steel substrates were also subjected to repeated cycles of biofilm formation and electrochemical removal. High removal efficiencies were maintained throughout this process suggesting the potential of the proposed technology for application on conductive surfaces in various industrial settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms

    Directory of Open Access Journals (Sweden)

    Joaquín eCaro-Astorga

    2015-01-01

    Full Text Available Bacillus cereus is a bacterial pathogen that is responsible for many recurrent disease outbreaks due to food contamination. Spores and biofilms are considered the most important reservoirs of B. cereus in contaminated fresh vegetables and fruits. Biofilms are bacterial communities that are difficult to eradicate from biotic and abiotic surfaces because of their stable and extremely strong extracellular matrix. These extracellular matrixes contain exopolysaccharides, proteins, extracellular DNA, and other minor components. Although B. cereus can form biofilms, the bacterial features governing assembly of the protective extracellular matrix are not known. Using the well-studied bacterium B. subtilis as a model, we identified two genomic loci in B. cereus, which encodes two orthologs of the amyloid-like protein TasA of B. subtilis and a SipW signal peptidase. Deletion of this genomic region in B. cereus inhibited biofilm assembly; notably, mutation of the putative signal peptidase SipW caused the same phenotype. However, mutations in tasA or calY did not completely prevent biofilm formation; strains that were mutated for either of these genes formed phenotypically different surface attached biofilms. Electron microscopy studies revealed that TasA polymerizes to form long and abundant fibers on cell surfaces, whereas CalY does not aggregate similarly. Heterologous expression of this amyloid-like cassette in a B. subtilis strain lacking the factors required for the assembly of TasA amyloid-like fibers revealed i the involvement of this B. cereus genomic region in formation of the air-liquid interphase pellicles and ii the intrinsic ability of TasA to form fibers similar to the amyloid-like fibers produced by its B. subtilis ortholog.

  15. Phosphorylation of the Bacillus subtilis Replication Controller YabA Plays a Role in Regulation of Sporulation and Biofilm Formation.

    Science.gov (United States)

    García García, Tránsito; Ventroux, Magali; Derouiche, Abderahmane; Bidnenko, Vladimir; Correia Santos, Sara; Henry, Céline; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise; Poncet, Sandrine

    2018-01-01

    Bacillus subtilis cells can adopt different life-styles in response to various environmental cues, including planktonic cells during vegetative growth, sessile cells during biofilm formation and sporulation. While switching life-styles, bacteria must coordinate the progression of their cell cycle with their physiological status. Our current understanding of the regulatory pathways controlling the decision-making processes and triggering developmental switches highlights a key role of protein phosphorylation. The regulatory mechanisms that integrate the bacterial chromosome replication status with sporulation involve checkpoint proteins that target the replication initiator DnaA or the kinase phosphorelay controlling the master regulator Spo0A. B. subtilis YabA is known to interact with DnaA to prevent over-initiation of replication during vegetative growth. Here, we report that YabA is phosphorylated by YabT, a Ser/Thr kinase expressed during sporulation and biofilm formation. The phosphorylation of YabA has no effect on replication initiation control but hyper-phosphorylation of YabA leads to an increase in sporulation efficiency and a strong inhibition of biofilm formation. We also provide evidence that YabA phosphorylation affects the level of Spo0A-P in cells. These results indicate that YabA is a multifunctional protein with a dual role in regulating replication initiation and life-style switching, thereby providing a potential mechanism for cross-talk and coordination of cellular processes during adaptation to environmental change.

  16. Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation.

    Directory of Open Access Journals (Sweden)

    Blaise R Boles

    2010-04-01

    Full Text Available Staphylococcus aureus is a potent biofilm former on host tissue and medical implants, and biofilm growth is a critical virulence determinant for chronic infections. Recent studies suggest that many clinical isolates form polysaccharide-independent biofilms. However, a systematic screen for defective mutants has not been performed to identify factors important for biofilm formation in these strains. We created a library of 14,880 mariner transposon mutants in a S. aureus strain that generates a proteinaceous and extracellular DNA based biofilm matrix. The library was screened for biofilm defects and 31 transposon mutants conferred a reproducible phenotype. In the pool, 16 mutants overproduced extracellular proteases and the protease inhibitor alpha(2-macroglobulin restored biofilm capacity to 13 of these mutants. The other 15 mutants in the pool displayed normal protease levels and had defects in genes involved in autolysis, osmoregulation, or uncharacterized membrane proteins. Two transposon mutants of interest in the GraRS two-component system and a putative inositol monophosphatase were confirmed in a flow cell biofilm model, genetically complemented, and further verified in a community-associated methicillin-resistant S. aureus (CA-MRSA isolate. Collectively, our screen for biofilm defective mutants identified novel loci involved in S. aureus biofilm formation and underscored the importance of extracellular protease activity and autolysis in biofilm development.

  17. Streptococcus suis Serotype 2 Biofilms Inhibit the Formation of Neutrophil Extracellular Traps.

    Science.gov (United States)

    Ma, Fang; Yi, Li; Yu, Ningwei; Wang, Guangyu; Ma, Zhe; Lin, Huixing; Fan, Hongjie

    2017-01-01

    Invasive infections caused by Streptococcus suis serotype 2 (SS2) has emerged as a clinical problem in recent years. Neutrophil extracellular traps (NETs) are an important mechanism for the trapping and killing of pathogens that are resistant to phagocytosis. Biofilm formation can protect bacteria from being killed by phagocytes. Until now, there have only been a few studies that focused on the interactions between bacterial biofilms and NETs. SS2 in both a biofilm state and a planktonic cell state were incubated with phagocytes and NETs, and bacterial survival was assessed. DNase I and cytochalasin B were used to degrade NET DNA or suppress phagocytosis, respectively. Extracellular DNA was stained with impermeable fluorescent dye to quantify NET formation. Biofilm formation increased up to 6-fold in the presence of neutrophils, and biofilms were identified in murine tissue. Both planktonic and biofilm cells induced neutrophils chemotaxis to the infection site, with neutrophils increasing by 85.1 and 73.8%, respectively. The bacteria in biofilms were not phagocytized. The bactericidal efficacy of NETs on the biofilms and planktonic cells were equal; however, the biofilm extracellular matrix can inhibit NET release. Although biofilms inhibit NETs release, NETs appear to be an important mechanism to eliminate SS2 biofilms. This knowledge advances the understanding of biofilms and may aid in the development of treatments for persistent infections with a biofilm component.

  18. Culturing Toxic Benthic Blooms: The Fate of Natural Biofilms in a Microcosm System

    Directory of Open Access Journals (Sweden)

    Francesca Di Pippo

    2017-08-01

    Full Text Available A microcosm designed for culturing aquatic phototrophic biofilms on artificial substrata was used to perform experiments with microphytobenthos sampled during summer toxic outbreaks of Ostreopsis cf. ovata along the Middle Tyrrhenian coast. This dynamic approach aimed at exploring the unique and complex nature of O. cf. ovata bloom development in the benthic system. Epibenthic assemblages were used as inocula for co-cultures of bloom organisms on polycarbonate slides at controlled environmental conditions. Biofilm surface adhesion, growth, and spatial structure were evaluated along with shifts in composition and matrix production in a low disturbance regime, simulating source habitat. Initial adhesion and substratum colonisation appeared as stochastic processes, then community structure and physiognomy markedly changed with time. Dominance of filamentous cyanobacteria and diatoms, and dense clusters of Amphidinium cf. carterae at the mature biofilm phases, were recorded by light and confocal microscopy, whilst O. cf. ovata growth was visibly limited in the late culture phases. Life-form strategies, competitiveness for resources, and possibly allelopathic interactions shaped biofilm structure during culture growth. HPLC (High Performance Liquid Chromatography analysis of exopolysaccharidic matrix revealed variations in sugar total amounts and composition. No toxic compounds were detected in the final communities tested by LC-MS (Liquid Chromatography- Mass Spectrometry and MALDI-TOF MS (Matrix Assisted Laser Desorption Ionization Time OF Flight Mass Spectroscopy techniques.

  19. Lysinibacillus fusiformis M5 Induces Increased Complexity in Bacillus subtilis 168 Colony Biofilms via Hypoxanthine.

    Science.gov (United States)

    Gallegos-Monterrosa, Ramses; Kankel, Stefanie; Götze, Sebastian; Barnett, Robert; Stallforth, Pierre; Kovács, Ákos T

    2017-11-15

    In recent years, biofilms have become a central subject of research in the fields of microbiology, medicine, agriculture, and systems biology, among others. The sociomicrobiology of multispecies biofilms, however, is still poorly understood. Here, we report a screening system that allowed us to identify soil bacteria which induce architectural changes in biofilm colonies when cocultured with Bacillus subtilis We identified the soil bacterium Lysinibacillus fusiformis M5 as an inducer of wrinkle formation in B. subtilis colonies mediated by a diffusible signaling molecule. This compound was isolated by bioassay-guided chromatographic fractionation. The elicitor was identified to be the purine hypoxanthine using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. We show that the induction of wrinkle formation by hypoxanthine is not dependent on signal recognition by the histidine kinases KinA, KinB, KinC, and KinD, which are generally involved in phosphorylation of the master regulator Spo0A. Likewise, we show that hypoxanthine signaling does not induce the expression of biofilm matrix-related operons epsABCDEFGHIJKLMNO and tasA-sipW-tapA Finally, we demonstrate that the purine permease PbuO, but not PbuG, is necessary for hypoxanthine to induce an increase in wrinkle formation of B. subtilis biofilm colonies. Our results suggest that hypoxanthine-stimulated wrinkle development is not due to a direct induction of biofilm-related gene expression but rather is caused by the excess of hypoxanthine within B. subtilis cells, which may lead to cell stress and death. IMPORTANCE Biofilms are a bacterial lifestyle with high relevance regarding diverse human activities. Biofilms can be beneficial, for instance, in crop protection. In nature, biofilms are commonly found as multispecies communities displaying complex social behaviors and characteristics. The study of interspecies interactions will thus lead to a better understanding and use of biofilms as they

  20. Intracellular Calreticulin Regulates Multiple Steps in Fibrillar Collagen Expression, Trafficking, and Processing into the Extracellular Matrix*

    OpenAIRE

    Van Duyn Graham, Lauren; Sweetwyne, Mariya T.; Pallero, Manuel A.; Murphy-Ullrich, Joanne E.

    2009-01-01

    Calreticulin (CRT), a chaperone and Ca2+ regulator, enhances wound healing, and its expression correlates with fibrosis in animal models, suggesting that CRT regulates production of the extracellular matrix. However, direct regulation of collagen matrix by CRT has not been previously demonstrated. We investigated the role of CRT in the regulation of fibrillar collagen expression, secretion, processing, and deposition in the extracellular matrix by fibroblasts. Mouse embryonic fibroblasts defi...

  1. Wound biofilms: lessons learned from oral biofilms

    OpenAIRE

    Mancl, Kimberly A.; Kirsner, Robert S.; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque,are a primary cause of oral diseases including caries, gingivitis and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible, thus biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well-elucidated. In contrast, wound research has relati...

  2. Methicillin-Resistant Staphylococcus aureus Biofilms and Their Influence on Bacterial Adhesion and Cohesion

    Directory of Open Access Journals (Sweden)

    Khulood Hamid Dakheel

    2016-01-01

    Full Text Available Twenty-five methicillin-resistant Staphylococcus aureus (MRSA isolates were characterized by staphylococcal protein A gene typing and the ability to form biofilms. The presence of exopolysaccharides, proteins, and extracellular DNA and RNA in biofilms was assessed by a dispersal assay. In addition, cell adhesion to surfaces and cell cohesion were evaluated using the packed-bead method and mechanical disruption, respectively. The predominant genotype was spa type t127 (22 out of 25 isolates; the majority of isolates were categorized as moderate biofilm producers. Twelve isolates displayed PIA-independent biofilm formation, while the remaining 13 isolates were PIA-dependent. Both groups showed strong dispersal in response to RNase and DNase digestion followed by proteinase K treatment. PIA-dependent biofilms showed variable dispersal after sodium metaperiodate treatment, whereas PIA-independent biofilms showed enhanced biofilm formation. There was no correlation between the extent of biofilm formation or biofilm components and the adhesion or cohesion abilities of the bacteria, but the efficiency of adherence to glass beads increased after biofilm depletion. In conclusion, nucleic acids and proteins formed the main components of the MRSA clone t127 biofilm matrix, and there seems to be an association between adhesion and cohesion in the biofilms tested.

  3. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Swearingen, Matthew C; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J; Falzarano, Anthony R; Wozniak, Daniel J; Hall-Stoodley, Luanne; Stoodley, Paul

    2016-02-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. An individual-based model for biofilm formation at liquid surfaces.

    Science.gov (United States)

    Ardré, Maxime; Henry, Hervé; Douarche, Carine; Plapp, Mathis

    2015-12-10

    The bacterium Bacillus subtilis frequently forms biofilms at the interface between the culture medium and the air. We present a mathematical model that couples a description of bacteria as individual discrete objects to the standard advection-diffusion equations for the environment. The model takes into account two different bacterial phenotypes. In the motile state, bacteria swim and perform a run-and-tumble motion that is biased toward regions of high oxygen concentration (aerotaxis). In the matrix-producer state they excrete extracellular polymers, which allows them to connect to other bacteria and to form a biofilm. Bacteria are also advected by the fluid, and can trigger bioconvection. Numerical simulations of the model reproduce all the stages of biofilm formation observed in laboratory experiments. Finally, we study the influence of various model parameters on the dynamics and morphology of biofilms.

  5. Application of biofilm bioreactors in white biotechnology.

    Science.gov (United States)

    Muffler, K; Lakatos, M; Schlegel, C; Strieth, D; Kuhne, S; Ulber, R

    2014-01-01

    The production of valuable compounds in industrial biotechnology is commonly done by cultivation of suspended cells or use of (immobilized) enzymes rather than using microorganisms in an immobilized state. Within the field of wastewater as well as odor treatment the application of immobilized cells is a proven technique. The cells are entrapped in a matrix of extracellular polymeric compounds produced by themselves. The surface-associated agglomerate of encapsulated cells is termed biofilm. In comparison to common immobilization techniques, toxic effects of compounds used for cell entrapment may be neglected. Although the economic impact of biofilm processes used for the production of valuable compounds is negligible, many prospective approaches were examined in the laboratory and on a pilot scale. This review gives an overview of biofilm reactors applied to the production of valuable compounds. Moreover, the characteristics of the utilized materials are discussed with respect to support of surface-attached microbial growth.

  6. Hydrodynamic dispersion within porous biofilms

    KAUST Repository

    Davit, Y.; Byrne, H.; Osborne, J.; Pitt-Francis, J.; Gavaghan, D.; Quintard, M.

    2013-01-01

    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate

  7. Role of biofilms in sorptive removal of steroidal hormones and 4-nonylphenol compounds from streams

    Science.gov (United States)

    Writer, Jeffrey H.; Ryan, Joseph N.; Barber, Larry B.

    2011-01-01

    Stream biofilms play an important role in geochemical processing of organic matter and nutrients, however, the significance of this matrix in sorbing trace organic contaminants is less understood. This study focused on the role of stream biofilms in sorbing steroidal hormones and 4-nonylphenol compounds from surface waters using biofilms colonized in situ on artificial substrata and subsequently transferred to the laboratory for controlled batch sorption experiments. Steroidal hormones and 4-nonylphenol compounds readily sorb to stream biofilms as indicated by organic matter partition coefficients (Kom, L kg–1) for 17β-estradiol (102.5–2.8 L kg–1), 17α-ethynylestradiol (102.5–2.9 L kg–1), 4-nonylphenol (103.4–4.6 L kg–1), 4-nonylphenolmonoethoxylate (103.5–4.0 L kg–1), and 4-nonylphenoldiethoxylate (103.9–4.3 L kg–1). Experiments using water quality differences to induce changes in the relative composition of periphyton and heterotrophic bacteria in the stream biofilm did not significantly affect the sorptive properties of the stream biofilm, providing additional evidence that stream biofilms will sorb trace organic compounds under of variety of environmental conditions. Because sorption of the target compounds to stream biofilms was linearly correlated with organic matter content, hydrophobic partition into organic matter appears to be the dominant mechanism. An analysis of 17β-estradiol and 4-nonylphenol hydrophobic partition into water, biofilm, sediment, and dissolved organic matter matrices at mass/volume ratios typical of smaller rivers showed that the relative importance of the stream biofilm as a sorptive matrix was comparable to bed sediments. Therefore, stream biofilms play a primary role in attenuating these compounds in surface waters. Because the stream biofilm represents the base of the stream ecosystem, accumulation of steroidal hormones and 4-nonylphenol compounds in the stream biofilm may be an exposure pathway for

  8. Biofilms associated with bowel necrosis: A newly recognised ...

    African Journals Online (AJOL)

    All specimens showed varying degrees of bowel necrosis and an organising acute peritoneal reaction. In addition, all showed colonies of Gram-negative bacteria within a mucopolysaccharide matrix. Conclusions. The identification of biofilms in necrotic bowel has raised questions regarding their clinical implications. Further ...

  9. Set potential regulation reveals additional oxidation peaks of Geobacter sulfurreducens anodic biofilms

    KAUST Repository

    Zhu, Xiuping; Yates, Matthew D.; Logan, Bruce E.

    2012-01-01

    larger range of set potentials was used to acclimate electroactive biofilms. The potentials of oxidation peaks obtained with G. sulfurreducens biofilms acclimated at 0.60 V (vs. Ag/AgCl) were different from those that developed at - 0.46 V, and both

  10. Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis.

    Directory of Open Access Journals (Sweden)

    Laurent Marsollier

    2007-05-01

    Full Text Available The role of biofilms in the pathogenesis of mycobacterial diseases remains largely unknown. Mycobacterium ulcerans, the etiological agent of Buruli ulcer, a disfiguring disease in humans, adopts a biofilm-like structure in vitro and in vivo, displaying an abundant extracellular matrix (ECM that harbors vesicles. The composition and structure of the ECM differs from that of the classical matrix found in other bacterial biofilms. More than 80 proteins are present within this extracellular compartment and appear to be involved in stress responses, respiration, and intermediary metabolism. In addition to a large amount of carbohydrates and lipids, ECM is the reservoir of the polyketide toxin mycolactone, the sole virulence factor of M. ulcerans identified to date, and purified vesicles extracted from ECM are highly cytotoxic. ECM confers to the mycobacterium increased resistance to antimicrobial agents, and enhances colonization of insect vectors and mammalian hosts. The results of this study support a model whereby biofilm changes confer selective advantages to M. ulcerans in colonizing various ecological niches successfully, with repercussions for Buruli ulcer pathogenesis.

  11. Study of biofilm in bacteria from water pipelines.

    Science.gov (United States)

    Mahapatra, Ashoka; Padhi, Nupur; Mahapatra, Dharitri; Bhatt, Mamta; Sahoo, Debasish; Jena, Swetlina; Dash, Debabrata; Chayani, Nirupama

    2015-03-01

    A biofilm is a layer of microorganisms contained in a matrix (slime layer), which forms on surfaces in contact with water. Their presence in drinking water pipe networks can be responsible for a wide range of water quality and operational problems. To identify the bacterial isolates, obtained from water pipelines of kitchens, to evaluate the water quality & to study the biofilm producing capacity of the bacterial isolates from various sources. A prospective study using water samples from aqua guard & pipelines to kitchens of S.C.B Medical College hostels. Standard biochemical procedures for bacterial identification, multiple tube culture & MPN count to evaluate water quality & tissue culture plate (TCP) method for biofilm detection was followed. STATA software version 9.2 from STATA Corporation, College station road, 90 Houston, Texas was used for statistical analysis. One hundred eighty seven isolates were obtained from 45 water samples cultured. The isolates were Acinetobacter spp. (44), Pseudomonas spp.(41), Klebsiella spp.(36) & others . Biofilm was detected in (37) 19.78 % of the isolates (95% CI 30.08% -43.92%) including Acinetobacter spp.-10, Klebsiella spp. - 9, Pseudomonas spp. - 9, & others, majority (34) of which were from kitchen pipelines. Water from pipeline sources was unsatisfactory for consumption as the MPN counts were > 10. Most of the biofilm producers were gram negative bacilli & Pseudomonas & Acinetobacter spp. were strong (4+) biofilm producers.

  12. Characterization of mixed-culture biofilms established in microbial fuel cells

    International Nuclear Information System (INIS)

    Yang, Suling; Du, Fangzhou; Liu, Hong

    2012-01-01

    For the successful operation of a microbial fuel cell, it is important to characterize the biofilm on the anode. The behavior of MFCs during initial biofilm growth and characterization of anodic biofilm were studied using two-chamber MFCs with activated sludge as inoculum. After three times' replacement of the anodic growth medium, the biofilms were well developed, and a maximum closed circuit potential of 0.41 V and 0.37 V (1000 Ω resistor) was achieved using acetate and glucose, respectively. Electron microscopy revealed that there were rod-shaped cells 0.2–0.3 μm wide by 1.5–2.5 μm long in the anode biofilm in the acetate-fed MFC, and these cells were mainly arranged by monolayer. The biofilm in the glucose-fed MFC was made of cocci-shaped cells in chains and a thick matrix. Both using acetate and glucose, the anodic bacterial communities were different than those of the activated sludge. Cyclic voltammograms suggested that extracellular electron transfer in these MFCs was accomplished mainly by the biofilms on the anode and not by bacteria-produced mediators. -- Highlights: ► The mixed-culture biofilms established in MFCs were characterized. ► The possible electron transfer mechanism was presented. ► In these MFCs the anodic area should be much larger.

  13. Continuous Drip Flow System to Develop Biofilm of E. faecalis under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Ana Maria Gonzalez

    2014-01-01

    Full Text Available Purpose. To evaluate a structurally mature E. faecalis biofilm developed under anaerobic/dynamic conditions in an in vitro system. Methods. An experimental device was developed using a continuous drip flow system designed to develop biofilm under anaerobic conditions. The inoculum was replaced every 24 hours with a fresh growth medium for up to 10 days to feed the system. Gram staining was done every 24 hours to control the microorganism purity. Biofilms developed under the system were evaluated under the scanning electron microscope (SEM. Results. SEM micrographs demonstrated mushroom-shaped structures, corresponding to a mature E. faecalis biofilm. In the mature biofilm bacterial cells are totally encased in a polymeric extracellular matrix. Conclusions. The proposed in vitro system model provides an additional useful tool to study the biofilm concept in endodontic microbiology, allowing for a better understanding of persistent root canal infections.

  14. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.

    Science.gov (United States)

    Ivleva, Natalia P; Kubryk, Patrick; Niessner, Reinhard

    2017-07-01

    Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other

  15. Differential effects of antifungal agents on expression of genes related to formation of Candida albicans biofilms.

    Science.gov (United States)

    Chatzimoschou, Athanasios; Simitsopoulou, Maria; Antachopoulos, Charalampos; Walsh, Thomas J; Roilides, Emmanuel

    2016-01-01

    The purpose of this study was to analyse specific molecular mechanisms involved in the intrinsic resistance of C. albicans biofilms to antifungals. We investigated the transcriptional profile of three genes (BGL2, SUN41, ECE1) involved in Candida cell wall formation in response to voriconazole or anidulafungin after the production of intermediate and mature biofilms. C. albicans M61, a well-documented biofilm producer strain, was used for the development of intermediate (12 h and 18 h) and completely mature biofilms (48 h). After exposure of cells from each biofilm growth mode to voriconazole (128 and 512 mg l(-1)) or anidulafungin (0.25 and 1 mg l(-1)) for 12-24 h, total RNA samples extracted from biofilm cells were analysed by RT-PCR. The voriconazole and anidulafungin biofilm MIC was 512 and 0.5 mg l(-1) respectively. Anidulafungin caused significant up-regulation of SUN41 (3.7-9.3-fold) and BGL2 (2.2-2.8 fold) in intermediately mature biofilms; whereas, voriconazole increased gene expression in completely mature biofilms (SUN41 2.3-fold, BGL2 2.1-fold). Gene expression was primarily down-regulated by voriconazole in intermediately, but not completely mature biofilms. Both antifungals caused down-regulation of ECE1 in intermediately mature biofilms. © 2015 Blackwell Verlag GmbH.

  16. Mechanics governs single-cell signaling and multi-cell robustness in biofilm infections

    Science.gov (United States)

    Gordon, Vernita

    In biofilms, bacteria and other microbes are embedded in extracellular polymers (EPS). Multiple types of EPS can be produced by a single bacterial strain - the reasons for this redundancy are not well-understood. Our work suggests that different polymers may confer distinct mechanical benefits. Our model organism is Pseudomonas aeruginosa, an opportunistic human pathogen that forms chronic biofilm infections associated with increased antibiotic resistance and evasion of the immune defense. Biofilms initiate when bacteria attach to a surface, sense the surface, and change their gene expression. Changes in gene expression are regulated by a chemical signal, cyclic-di-GMP. We find that one EPS material, called ``PEL,'' enhances surface sensing by increasing mechanical coupling of single bacteria to the surface. Measurements of bacterial motility suggest that PEL may increase frictional interactions between the surface and the bacteria. Consistent with this, we show that bacteria increase cyclic-di-GMP signaling in response to mechanical shear stress. Mechanosensing has long been known to be important to the function of cells in higher eukaryotes, but this is one of only a handful of studies showing that bacteria can sense and respond to mechanical forces. For the mature biofilm, the embedding polymer matrix can protect bacteria both chemically and mechanically. P. aeruginosa infections in the cystic fibrosis (CF) lung often last for decades, ample time for the infecting strain(s) to evolve. Production of another EPS material, alginate, is well-known to tend to increase over time in CF infections. Alginate chemically protects biofilms, but also makes them softer and weaker. Recently, it is being increasingly recognized that bacteria in chronic CF infections also evolve to increase PSL production. We use oscillatory bulk rheology to determine the unique contributions of EPS materials to biofilm mechanics. Unlike alginate, increased PSL stiffens biofilms. Increasing both

  17. Biofilm as a bioindicator of Cr VI pollution in the Lotic Ecosystems

    Science.gov (United States)

    Kurniawan, A.; Sukandar; Satriya, C.; Guntur

    2018-04-01

    Biofilm is ubiquitous in aquatic ecosystems such as river. Biofilm have been reported to have high sorption capacities that promote the accumulation of nutrient ions inside biofilm matrix. The ion that can be accumulated inside the biofilm is not only nutrient ions but also other ions such as heavy metal ions. The pollution of heavy metal ions emerge as one of the biggest aquatic ecosystem problems. Thus, the effort to monitor the heavy metal pollution in the aquatic ecosystem in the aquatic ecosystems is needed. The difficulty to monitor the water pollution particularly in the lotic ecosystems is mainly related to the water flow. Therefore, the utilization of indicator of pollution in such ecosystem is fundamentally important. The present study investigated the accumulation of Cr VI inside biofilm matrices in the river ecosystems in order to develop biofilm as a bioindicator for pollution in the lotic ecosystems. The result indicates that biofilm can accumulate Cr VI from the surrounding water and reserve the ion. According to the result of this study, biofilm is a promising bioindicator to monitor the Cr VI pollution in the lotic ecosystems.

  18. Phosphorylation of the Bacillus subtilis Replication Controller YabA Plays a Role in Regulation of Sporulation and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Tránsito García García

    2018-03-01

    Full Text Available Bacillus subtilis cells can adopt different life-styles in response to various environmental cues, including planktonic cells during vegetative growth, sessile cells during biofilm formation and sporulation. While switching life-styles, bacteria must coordinate the progression of their cell cycle with their physiological status. Our current understanding of the regulatory pathways controlling the decision-making processes and triggering developmental switches highlights a key role of protein phosphorylation. The regulatory mechanisms that integrate the bacterial chromosome replication status with sporulation involve checkpoint proteins that target the replication initiator DnaA or the kinase phosphorelay controlling the master regulator Spo0A. B. subtilis YabA is known to interact with DnaA to prevent over-initiation of replication during vegetative growth. Here, we report that YabA is phosphorylated by YabT, a Ser/Thr kinase expressed during sporulation and biofilm formation. The phosphorylation of YabA has no effect on replication initiation control but hyper-phosphorylation of YabA leads to an increase in sporulation efficiency and a strong inhibition of biofilm formation. We also provide evidence that YabA phosphorylation affects the level of Spo0A-P in cells. These results indicate that YabA is a multifunctional protein with a dual role in regulating replication initiation and life-style switching, thereby providing a potential mechanism for cross-talk and coordination of cellular processes during adaptation to environmental change.

  19. Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo.

    Directory of Open Access Journals (Sweden)

    Heidi Mulcahy

    2011-10-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in susceptible hosts. Chronic P. aeruginosa infections are thought to be caused by bacterial biofilms. Biofilms are highly structured, multicellular, microbial communities encased in an extracellular matrix that enable long-term survival in the host. The aim of this research was to develop an animal model that would allow an in vivo study of P. aeruginosa biofilm infections in a Drosophila melanogaster host. At 24 h post oral infection of Drosophila, P. aeruginosa biofilms localized to and were visualized in dissected Drosophila crops. These biofilms had a characteristic aggregate structure and an extracellular matrix composed of DNA and exopolysaccharide. P. aeruginosa cells recovered from in vivo grown biofilms had increased antibiotic resistance relative to planktonically grown cells. In vivo, biofilm formation was dependent on expression of the pel exopolysaccharide genes, as a pelB::lux mutant failed to form biofilms. The pelB::lux mutant was significantly more virulent than PAO1, while a hyperbiofilm strain (PAZHI3 demonstrated significantly less virulence than PAO1, as indicated by survival of infected flies at day 14 postinfection. Biofilm formation, by strains PAO1 and PAZHI3, in the crop was associated with induction of diptericin, cecropin A1 and drosomycin antimicrobial peptide gene expression 24 h postinfection. In contrast, infection with the non-biofilm forming strain pelB::lux resulted in decreased AMP gene expression in the fly. In summary, these results provide novel insights into host-pathogen interactions during P. aeruginosa oral infection of Drosophila and highlight the use of Drosophila as an infection model that permits the study of P. aeruginosa biofilms in vivo.

  20. Fate of deposited cells in an aerobic binary bacterial biofilm

    International Nuclear Information System (INIS)

    Banks, M.K.

    1989-01-01

    A biofilm is a matrix of microbial cells and their extracellular products that is associated with a solid surface. Previous studies on biofilm development have employed only dissolved compounds as growth limiting substrates, without the influence of microbial species invading from the bulk liquid. The goal of this research project was to quantify the kinetics of processes governing suspended biomass turnover in biofilm systems, and the accompanying effects of suspended cell deposition on biofilm population dynamics. Experiments were conducted with two species of bacteria, Pseudomonas putida ATCC 11172 grown on glucose, and Hyphomicrobium ZV620 grown on methanol. Cryptic growth and particulate hydrolysis studies were evaluated, using combinations of these two bacteria, by measuring the uptake of radiolabelled cell lysis products, under batch conditions. Biofilms studies were performed to investigate bacterial deposition, continual biofilm removal by shear induced erosion, and biofilm ecology. Biofilms were developed in a flow cell reactor, under laminar flow conditions. Bacterial species were differentiated by radioactively labelling each species with their carbon substrate. A mathematical model was developed to predict the biofilm ecology of mixed cultures. The equations developed predict biofilm accumulation, as well as substrate and oxygen consumption. Results indicate that cryptic growth will occur for bacteria growing on their own species soluble lysis products and in some cases, bacteria growing on the soluble lysis products of other species. Particulate hydrolysis only occurred for Pseudomonas putida growing on Pseudomonas putida lysis products, but the lack of particulate hydrolysis occurring in the other studies may have been due to the short experimental period

  1. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda

  2. VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metalloprotease, pigment, and biofilm production in Vibrio anguillarum.

    Science.gov (United States)

    Croxatto, Antony; Chalker, Victoria J; Lauritz, Johan; Jass, Jana; Hardman, Andrea; Williams, Paul; Cámara, Miguel; Milton, Debra L

    2002-03-01

    Vibrio anguillarum possesses at least two N-acylhomoserine lactone (AHL) quorum-sensing circuits, one of which is related to the luxMN system of Vibrio harveyi. In this study, we have cloned an additional gene of this circuit, vanT, encoding a V. harveyi LuxR-like transcriptional regulator. A V. anguillarum Delta vanT null mutation resulted in a significant decrease in total protease activity due to loss of expression of the metalloprotease EmpA, but no changes in either AHL production or virulence. Additional genes positively regulated by VanT were identified from a plasmid-based gene library fused to a promoterless lacZ. Three lacZ fusions (serA::lacZ, hpdA-hgdA::lacZ, and sat-vps73::lacZ) were identified which exhibited decreased expression in the Delta vanT strain. SerA is similar to 3-phosphoglycerate dehydrogenases and catalyzes the first step in the serine-glycine biosynthesis pathway. HgdA has identity with homogentisate dioxygenases, and HpdA is homologous to 4-hydroxyphenylpyruvate dioxygenases (HPPDs) involved in pigment production. V. anguillarum strains require an active VanT to produce high levels of an L-tyrosine-induced brown color via HPPD, suggesting that VanT controls pigment production. Vps73 and Sat are related to Vibrio cholerae proteins encoded within a DNA locus required for biofilm formation. A V. anguillarum Delta vanT mutant and a mutant carrying a polar mutation in the sat-vps73 DNA locus were shown to produce defective biofilms. Hence, a new member of the V. harveyi LuxR transcriptional activator family has been characterized in V. anguillarum that positively regulates serine, metalloprotease, pigment, and biofilm production.

  3. Listeria monocytogenes impact on mature or old Pseudomonas fluorescens biofilms during growth at 4 and 20ºC

    Directory of Open Access Journals (Sweden)

    Puga eCH

    2016-02-01

    Full Text Available Changes in spatial organization, as observed by confocal laser scanning microscopy (CLSM, viable cell content, biovolume and substratum surface coverage of the biofilms formed on glass by Pseudomonas fluorescens resulting from co-culture with Listeria monocytogenes, were examined. Two strains of L. monocytogenes, two culture temperatures and two biofilm developmental stages were investigated. Both L. monocytogenes strains, a persistently sampled isolate (collected repeatedly along 3 years from a meat factory and Scott A, induced shrinkage in matrix volume, both at 20ºC and 4ºC, in mature or old biofilms, without loss of P. fluorescens cell count per surface unit. The nearly homogeneous pattern of surface coverage shown by mono-species P. fluorescens biofilms, turned into more irregular layouts in co-culture with L. monocytogenes. The upper layer of both mono and dual-species biofilms turned to predominantly consist of matrix, with plenty of viable cells underneath, in old biofilms cultured at 20ºC, but not in those grown at 4ºC. Between 15 and 56% of the substratum area was covered by biofilm, the extent depending on temperature, time and L. monocytogenes strain. Real biofilms in food-related surfaces may thus be very heterogeneous regarding their superficial components, i.e. those more accessible to disinfectants. It is therefore a hygienic challenge to choose an adequate agent to disrupt them.

  4. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms.

    LENUS (Irish Health Repository)

    Hamilton, Shea

    2009-12-11

    Abstract Background Biofilm formation enhances the capacity of pathogenic Salmonella bacteria to survive stresses that are commonly encountered within food processing and during host infection. The persistence of Salmonella within the food chain has become a major health concern, as biofilms can serve as a reservoir for the contamination of food products. While the molecular mechanisms required for the survival of bacteria on surfaces are not fully understood, transcriptional studies of other bacteria have demonstrated that biofilm growth triggers the expression of specific sets of genes, compared with planktonic cells. Until now, most gene expression studies of Salmonella have focused on the effect of infection-relevant stressors on virulence or the comparison of mutant and wild-type bacteria. However little is known about the physiological responses taking place inside a Salmonella biofilm. Results We have determined the transcriptomic and proteomic profiles of biofilms of Salmonella enterica serovar Typhimurium. We discovered that 124 detectable proteins were differentially expressed in the biofilm compared with planktonic cells, and that 10% of the S. Typhimurium genome (433 genes) showed a 2-fold or more change in the biofilm compared with planktonic cells. The genes that were significantly up-regulated implicated certain cellular processes in biofilm development including amino acid metabolism, cell motility, global regulation and tolerance to stress. We found that the most highly down-regulated genes in the biofilm were located on Salmonella Pathogenicity Island 2 (SPI2), and that a functional SPI2 secretion system regulator (ssrA) was required for S. Typhimurium biofilm formation. We identified STM0341 as a gene of unknown function that was needed for biofilm growth. Genes involved in tryptophan (trp) biosynthesis and transport were up-regulated in the biofilm. Deletion of trpE led to decreased bacterial attachment and this biofilm defect was restored by

  5. DNA-microarrays identification of Streptococcus mutans genes associated with biofilm thickness

    Directory of Open Access Journals (Sweden)

    Feldman Mark

    2008-12-01

    Full Text Available Abstract Background A biofilm is a complex community of microorganisms that develop on surfaces in diverse environments. The thickness of the biofilm plays a crucial role in the physiology of the immobilized bacteria. The most cariogenic bacteria, mutans streptococci, are common inhabitants of a dental biofilm community. In this study, DNA-microarray analysis was used to identify differentially expressed genes associated with the thickness of S. mutans biofilms. Results Comparative transcriptome analyses indicated that expression of 29 genes was differentially altered in 400- vs. 100-microns depth and 39 genes in 200- vs. 100-microns biofilms. Only 10 S. mutans genes showed differential expression in both 400- vs. 100-microns and 200- vs. 100-microns biofilms. All of these genes were upregulated. As sucrose is a predominant factor in oral biofilm development, its influence was evaluated on selected genes expression in the various depths of biofilms. The presence of sucrose did not noticeably change the regulation of these genes in 400- vs. 100-microns and/or 200- vs. 100-microns biofilms tested by real-time RT-PCR. Furthermore, we analyzed the expression profile of selected biofilm thickness associated genes in the luxS- mutant strain. The expression of those genes was not radically changed in the mutant strain compared to wild-type bacteria in planktonic condition. Only slight downregulation was recorded in SMU.2146c, SMU.574, SMU.609, and SMU.987 genes expression in luxS- bacteria in biofilm vs. planktonic environments. Conclusion These findings reveal genes associated with the thickness of biofilms of S. mutans. Expression of these genes is apparently not regulated directly by luxS and is not necessarily influenced by the presence of sucrose in the growth media.

  6. Recent advances in dental biofilm: impacts of microbial interactions on the biofilm ecology and pathogenesis

    Directory of Open Access Journals (Sweden)

    Yung-Hua Li

    2017-05-01

    Full Text Available The human oral cavity is a complex ecosystem harboring hundreds species of microbes that are largely living on the tooth surfaces as dental biofilms. Most microbes in dental biofilms promote oral health by stimulating the immune system or by preventing invasion of pathogens. Species diversity, high cell density and close proximity of cells are typical of life in dental biofilms, where microbes interact with each other and develop complex interactions that can be either competitive or cooperative. Competition between species is a well-recognized ecological force to drive microbial metabolism, species diversity and evolution. However, it was not until recently that microbial cooperative activities are also recognized to play important roles in microbial physiology and ecology. Importantly, these interactions profoundly affect the overall biomass, function, diversity and the pathogenesis in dental biofilms. It is now recognized that every human body contains a personalized oral microbiome that is essential to maintaining the oral health. Remarkably, the indigenous species in dental biofilms often maintain a relatively stable and harmless relationship with the host, despite regular exposure to environmental perturbations and the host defense factors. Such stability or homeostasis results from a dynamic balance of microbial-microbial and microbial-host interactions. Under certain circumstances, however, the homeostasis may breakdown, predisposing a site to diseases. In this review, we describe several examples of microbial interactions and their impacts on the homeostasis and pathogenesis of dental biofilms. We hope to encourage research on microbial interactions in the regulation of the homeostasis in biofilms.

  7. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2009-07-01

    Full Text Available Extracellular polymeric substances (EPS produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  8. Recolonization of laser-ablated bacterial biofilm.

    Science.gov (United States)

    Nandakumar, Kanavillil; Obika, Hideki; Utsumi, Akihiro; Toshihiko, Ooie; Yano, Tetsuo

    2004-01-20

    The recolonization of laser-ablated bacterial monoculture biofilm was studied in the laboratory by using a flow-cytometer system. The marine biofilm-forming bacterium Pseudoalteromonas carrageenovora was used to develop biofilms on titanium coupons. Upon exposure to a low-power pulsed irradiation from an Nd:YAG laser, the coupons with biofilm were significantly reduced both in terms of total viable count (TVC) and area cover. The energy density used for a pulse of 5 ns was 0.1 J/cm(2) and the durations of irradiation exposure were 5 and 10 min. When placed in a flow of dilute ZoBell marine broth medium (10%) the laser-destructed bacterial film in a flow-cytometer showed significant recovery over a period of time. The flow of medium was regulated at 3.2 ml/min. The increase in area cover and TVC, however, was significantly less than that observed for nonirradiated control (t-test, Precolonization compared to control was thought be due to the lethal and sublethal impacts of laser irradiation on bacteria. This observation thus provided data on the online recolonization speed of biofilm, which is important when considering pulsed laser irradiation as an ablating technique of biofilm formation and removal in natural systems. Copyright 2003 Wiley Periodicals, Inc.

  9. Response of Vibrio cholerae to Low-Temperature Shifts: CspV Regulation of Type VI Secretion, Biofilm Formation, and Association with Zooplankton.

    Science.gov (United States)

    Townsley, Loni; Sison Mangus, Marilou P; Mehic, Sanjin; Yildiz, Fitnat H

    2016-07-15

    The ability to sense and adapt to temperature fluctuation is critical to the aquatic survival, transmission, and infectivity of Vibrio cholerae, the causative agent of the disease cholera. Little information is available on the physiological changes that occur when V. cholerae experiences temperature shifts. The genome-wide transcriptional profile of V. cholerae upon a shift in human body temperature (37°C) to lower temperatures, 15°C and 25°C, which mimic those found in the aquatic environment, was determined. Differentially expressed genes included those involved in the cold shock response, biofilm formation, type VI secretion, and virulence. Analysis of a mutant lacking the cold shock gene cspV, which was upregulated >50-fold upon a low-temperature shift, revealed that it regulates genes involved in biofilm formation and type VI secretion. CspV controls biofilm formation through modulation of the second messenger cyclic diguanylate and regulates type VI-mediated interspecies killing in a temperature-dependent manner. Furthermore, a strain lacking cspV had significant defects for attachment and type VI-mediated killing on the surface of the aquatic crustacean Daphnia magna Collectively, these studies reveal that cspV is a major regulator of the temperature downshift response and plays an important role in controlling cellular processes crucial to the infectious cycle of V. cholerae Little is known about how human pathogens respond and adapt to ever-changing parameters of natural habitats outside the human host and how environmental adaptation alters dissemination. Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, experiences fluctuations in temperature in its natural aquatic habitats and during the infection process. Furthermore, temperature is a critical environmental signal governing the occurrence of V. cholerae and cholera outbreaks. In this study, we showed that V. cholerae reprograms its transcriptome in response to

  10. Leaf Extracts of Mangifera indica L. Inhibit Quorum Sensing – Regulated Production of Virulence Factors and Biofilm in Test Bacteria

    Directory of Open Access Journals (Sweden)

    Iqbal Ahmad

    2017-04-01

    Full Text Available Quorum sensing (QS is a global gene regulatory mechanism in bacteria for various traits including virulence factors. Disabling QS system with anti-infective agent is considered as a potential strategy to prevent bacterial infection. Mangifera indica L. (mango has been shown to possess various biological activities including anti-QS. This study investigates the efficacy of leaf extracts on QS-regulated virulence factors and biofilm formation in Gram negative pathogens. Mango leaf (ML extract was tested for QS inhibition and QS-regulated virulence factors using various indicator strains. It was further correlated with the biofilm inhibition and confirmed by electron microscopy. Phytochemical analysis was carried out using ultra performance liquid chromatography (UPLC and gas chromatography–mass spectrometry (GC-MS analysis. In vitro evaluation of anti-QS activity of ML extracts against Chromobacterium violaceum revealed promising dose-dependent interference in violacein production, by methanol extract. QS inhibitory activity is also demonstrated by reduction in elastase (76%, total protease (56%, pyocyanin (89%, chitinase (55%, exopolysaccharide production (58% and swarming motility (74% in Pseudomonas aeruginosa PAO1 at 800 μg/ml concentration. Biofilm formation by P. aeruginosa PAO1 and Aeromonas hydrophila WAF38 was reduced considerably (36–82% over control. The inhibition of biofilm was also observed by scanning electron microscopy. Moreover, ML extracts significantly reduced mortality of Caenorhabditis elegans pre-infected with PAO1 at the tested concentration. Phytochemical analysis of active extracts revealed very high content of phenolics in methanol extract and a total of 14 compounds were detected by GC-MS and UPLC. These findings suggest that phytochemicals from the ML could provide bioactive anti-infective and needs further investigation to isolate and uncover their therapeutic efficacy.

  11. Leaf Extracts of Mangifera indica L. Inhibit Quorum Sensing – Regulated Production of Virulence Factors and Biofilm in Test Bacteria

    Science.gov (United States)

    Husain, Fohad M.; Ahmad, Iqbal; Al-thubiani, Abdullah S.; Abulreesh, Hussein H.; AlHazza, Ibrahim M.; Aqil, Farrukh

    2017-01-01

    Quorum sensing (QS) is a global gene regulatory mechanism in bacteria for various traits including virulence factors. Disabling QS system with anti-infective agent is considered as a potential strategy to prevent bacterial infection. Mangifera indica L. (mango) has been shown to possess various biological activities including anti-QS. This study investigates the efficacy of leaf extracts on QS-regulated virulence factors and biofilm formation in Gram negative pathogens. Mango leaf (ML) extract was tested for QS inhibition and QS-regulated virulence factors using various indicator strains. It was further correlated with the biofilm inhibition and confirmed by electron microscopy. Phytochemical analysis was carried out using ultra performance liquid chromatography (UPLC) and gas chromatography–mass spectrometry (GC-MS) analysis. In vitro evaluation of anti-QS activity of ML extracts against Chromobacterium violaceum revealed promising dose-dependent interference in violacein production, by methanol extract. QS inhibitory activity is also demonstrated by reduction in elastase (76%), total protease (56%), pyocyanin (89%), chitinase (55%), exopolysaccharide production (58%) and swarming motility (74%) in Pseudomonas aeruginosa PAO1 at 800 μg/ml concentration. Biofilm formation by P. aeruginosa PAO1 and Aeromonas hydrophila WAF38 was reduced considerably (36–82%) over control. The inhibition of biofilm was also observed by scanning electron microscopy. Moreover, ML extracts significantly reduced mortality of Caenorhabditis elegans pre-infected with PAO1 at the tested concentration. Phytochemical analysis of active extracts revealed very high content of phenolics in methanol extract and a total of 14 compounds were detected by GC-MS and UPLC. These findings suggest that phytochemicals from the ML could provide bioactive anti-infective and needs further investigation to isolate and uncover their therapeutic efficacy. PMID:28484444

  12. STABILITY AND CHANGE IN ESTUARINE BIOFILM BACTERIAL COMMUNITY DIVERSITY

    Science.gov (United States)

    Biofilms develop on all surfaces in aquatic environments and are defined as matrix-enclosed microbial populations adherent to each other and/or surfaces (1, 31). A substantial part of the microbial activity in nature is associated with surfaces (12). Surface association (biofou...

  13. Foliar biofilms of Burkholderia pyrrocinia FP62 on geraniums

    Science.gov (United States)

    Biofilm formation on foliar surfaces is commonly associated with plants in water-saturated environments (e.g. tropics or modified environments). On most leaf surfaces bacteria are thought to reside in aggregates with limited production of an exopolysaccharide (EPS) matrix. However, the biocontrol ag...

  14. Inactivation kinetics of various chemical disinfectants on Aeromonas hydrophila planktonic cells and biofilms.

    Science.gov (United States)

    Jahid, Iqbal Kabir; Ha, Sang-Do

    2014-05-01

    The present article focuses on the inactivation kinetics of various disinfectants including ethanol, sodium hypochlorite, hydrogen peroxide, peracetic acid, and benzalkonium chloride against Aeromonas hydrophila biofilms and planktonic cells. Efficacy was determined by viable plate count and compared using a modified Weibull model. The removal of the biofilms matrix was determined by the crystal violet assay and was confirmed by field-emission scanning electron microscope. The results revealed that all the experimental data and calculated Weibull α (scale) and β (shape) parameters had a good fit, as the R(2) values were between 0.88 and 0.99. Biofilms are more resistant to disinfectants than planktonic cells. Ethanol (70%) was the most effective in killing cells in the biofilms and significantly reduced (preduction as well as the effectiveness of chemical disinfectants on biofilms. The study showed that the Weibull model could successfully be used on food and food contact surfaces to determine the exact contact time for killing biofilms-forming foodborne pathogens.

  15. Diffusion Retardation by Binding of Tobramycin in an Alginate Biofilm Model

    DEFF Research Database (Denmark)

    Cao, Bao; Christophersen, Lars; Kolpen, Mette

    2016-01-01

    Microbial cells embedded in a self-produced extracellular biofilm matrix cause chronic infections, e. g. by Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. The antibiotic killing of bacteria in biofilms is generally known to be reduced by 100–1000 times relative to planktonic...... bacteria. This makes such infections difficult to treat. We have therefore proposed that biofilms can be regarded as an independent compartment with distinct pharmacokinetics. To elucidate this pharmacokinetics we have measured the penetration of the tobramycin into seaweed alginate beads which serve...... to be uniformly distributed throughout the volume of the alginate bead. The power-law appears to be a consequence of binding to a multitude of different binding sites. In a diffusion model these results are shown to produce pronounced retardation of the penetration of tobramycin into the biofilm. This filtering...

  16. Microbial pathogenesis and biofilm development

    DEFF Research Database (Denmark)

    Reisner, A.; Høiby, N.; Tolker-Nielsen, Tim

    2004-01-01

    been termed 'maturation', which is thought to be mediated by a differentiation process. Maturation into late stages of biofilm development resulting in stable and robust structures may require the formation of a matrix of extracellular polymeric substances (EPS), which are most often assumed to consist...... a highly significant role in connection with chronic infections [1]. Bacterial growth on surfaces depends on several factors [2]. In nature, surfaces are probably often conditioned with a thin film of organic molecules, which may serve as attractants for bacterial chemotactic systems and which subsequently...... permit bacterial growth to occur. In laboratory model systems the growth of the surface-associated bacteria is supported by the nutrient supply in the moving or standing liquid. A benchmark of biofilm formation by several organisms in vitro is the development of three-dimensional structures that have...

  17. Genotypic and Phenotypic Characteristics Associated with Biofilm Formation by Human Clinical Escherichia coli Isolates of Different Pathotypes.

    Science.gov (United States)

    Schiebel, Juliane; Böhm, Alexander; Nitschke, Jörg; Burdukiewicz, Michał; Weinreich, Jörg; Ali, Aamir; Roggenbuck, Dirk; Rödiger, Stefan; Schierack, Peter

    2017-12-15

    Bacterial biofilm formation is a widespread phenomenon and a complex process requiring a set of genes facilitating the initial adhesion, maturation, and production of the extracellular polymeric matrix and subsequent dispersal of bacteria. Most studies on Escherichia coli biofilm formation have investigated nonpathogenic E. coli K-12 strains. Due to the extensive focus on laboratory strains in most studies, there is poor information regarding biofilm formation by pathogenic E. coli isolates. In this study, we genotypically and phenotypically characterized 187 human clinical E. coli isolates representing various pathotypes (e.g., uropathogenic, enteropathogenic, and enteroaggregative E. coli ). We investigated the presence of biofilm-associated genes ("genotype") and phenotypically analyzed the isolates for motility and curli and cellulose production ("phenotype"). We developed a new screening method to examine the in vitro biofilm formation ability. In summary, we found a high prevalence of biofilm-associated genes. However, we could not detect a biofilm-associated gene or specific phenotype correlating with the biofilm formation ability. In contrast, we did identify an association of increased biofilm formation with a specific E. coli pathotype. Enteroaggregative E. coli (EAEC) was found to exhibit the highest capacity for biofilm formation. Using our image-based technology for the screening of biofilm formation, we demonstrated the characteristic biofilm formation pattern of EAEC, consisting of thick bacterial aggregates. In summary, our results highlight the fact that biofilm-promoting factors shown to be critical for biofilm formation in nonpathogenic strains do not reflect their impact in clinical isolates and that the ability of biofilm formation is a defined characteristic of EAEC. IMPORTANCE Bacterial biofilms are ubiquitous and consist of sessile bacterial cells surrounded by a self-produced extracellular polymeric matrix. They cause chronic and device

  18. Communication between a Matrix Converter Modulator and a Superset Regulator

    Directory of Open Access Journals (Sweden)

    P. Pošta

    2008-01-01

    Full Text Available This work deals with the modulator of a matrix converter and its communication with the superset regulator. A switching algorithm is briefly introduced. The input voltage measurement method is presented. In the last part of the paper, the testing of communication between the superset regulator and the modulator in FPGA technology are also presented. 

  19. In vitro biofilm formation by methicillin susceptible and resistant Staphylococcus aureus strains isolated from cystic fibrosis patients

    Directory of Open Access Journals (Sweden)

    Antonietta Lambiase

    2008-12-01

    Full Text Available Staphylococcus aureus is one of the most common pathogens isolated from respiratory tracts of Cystic Fibrosis patients (CF. The infection by this pathogen starts in early infancy, often preceding chronic infections by Pseudomonas aeruginosa. The infection and colonization by methicillin-resistant Staphylococcus aureus (MRSA are, by then, events very frequent among CF patients and this bacterial isolation leads to complications in therapeutic management because of the limited treatment options. Strains of Staphylococcus aureus are able to produce biofilms on natural or synthetic surfaces. Biofilms are sophisticated communities of matrix-encased bacteria and infections by biofilm-producing bacteria are particularly problematic because sessile bacteria can often withstand host immune responses and are generally much more tolerant to antibiotics. The first aim of this work is to evaluate the ability of MRSA strains isolated from respiratory secretions of CF patients to develop biofilms in comparison with methicillin-sensitive Staphylococcus aureus (MSSA strains obtained from respiratory secretions of CF patients.Therefore, our second aim is to evaluate the environmental influence on this ability. To evaluate the development of biofilm on solid matrix and the possible environmental influence,we applied the method described by Christensen et al. We found that a significantly higher number of MRSA strains were biofilm positive compared with MSSA strains (p<0.05.The presence of glucose did not influence the ability to form biofilm in our MRSA strains (p=0.165. MSSA strains are not strong biofilm-producers, but, when grown in TSB added with 0.25% glucose, the number of biofilm-forming strains increases, as expected. These data suggest a possible association between methicillin-resistance and biofilm formation.

  20. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm.

    Directory of Open Access Journals (Sweden)

    Morten Alhede

    Full Text Available For a chronic infection to be established, bacteria must be able to cope with hostile conditions such as low iron levels, oxidative stress, and clearance by the host defense, as well as antibiotic treatment. It is generally accepted that biofilm formation facilitates tolerance to these adverse conditions. However, microscopic investigations of samples isolated from sites of chronic infections seem to suggest that some bacteria do not need to be attached to surfaces in order to establish chronic infections. In this study we employed scanning electron microscopy, confocal laser scanning microscopy, RT-PCR as well as traditional culturing techniques to study the properties of Pseudomonas aeruginosa aggregates. We found that non-attached aggregates from stationary-phase cultures have comparable growth rates to surface attached biofilms. The growth rate estimations indicated that, independently of age, both aggregates and flow-cell biofilm had the same slow growth rate as a stationary phase shaking cultures. Internal structures of the aggregates matrix components and their capacity to survive otherwise lethal treatments with antibiotics (referred to as tolerance and resistance to phagocytes were also found to be strikingly similar to flow-cell biofilms. Our data indicate that the tolerance of both biofilms and non-attached aggregates towards antibiotics is reversible by physical disruption. We provide evidence that the antibiotic tolerance is likely to be dependent on both the physiological states of the aggregates and particular matrix components. Bacterial surface-attachment and subsequent biofilm formation are considered hallmarks of the capacity of microbes to cause persistent infections. We have observed non-attached aggregates in the lungs of cystic fibrosis patients; otitis media; soft tissue fillers and non-healing wounds, and we propose that aggregated cells exhibit enhanced survival in the hostile host environment, compared with non

  1. Susceptibility of metallic magnesium implants to bacterial biofilm infections.

    Science.gov (United States)

    Rahim, Muhammad Imran; Rohde, Manfred; Rais, Bushra; Seitz, Jan-Marten; Mueller, Peter P

    2016-06-01

    Magnesium alloys have promising mechanical and biological properties as biodegradable medical implant materials for temporary applications during bone healing or as vascular stents. Whereas conventional implants are prone to colonization by treatment resistant microbial biofilms in which bacteria are embedded in a protective matrix, magnesium alloys have been reported to act antibacterial in vitro. To permit a basic assessment of antibacterial properties of implant materials in vivo an economic but robust animal model was established. Subcutaneous magnesium implants were inoculated with bacteria in a mouse model. Contrary to the expectations, bacterial activity was enhanced and prolonged in the presence of magnesium implants. Systemic antibiotic treatments were remarkably ineffective, which is a typical property of bacterial biofilms. Biofilm formation was further supported by electron microscopic analyses that revealed highly dense bacterial populations and evidence for the presence of extracellular matrix material. Bacterial agglomerates could be detected not only on the implant surface but also at a limited distance in the peri-implant tissue. Therefore, precautions may be necessary to minimize risks of metallic magnesium-containing implants in prospective clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1489-1499, 2016. © 2016 Wiley Periodicals, Inc.

  2. Dynamic energy budget approach to evaluate antibiotic effects on biofilms

    Science.gov (United States)

    Birnir, Bjorn; Carpio, Ana; Cebrián, Elena; Vidal, Perfecto

    2018-01-01

    Quantifying the action of antibiotics on biofilms is essential to devise therapies against chronic infections. Biofilms are bacterial communities attached to moist surfaces, sheltered from external aggressions by a polymeric matrix. Coupling a dynamic energy budget based description of cell metabolism to surrounding concentration fields, we are able to approximate survival curves measured for different antibiotics. We reproduce numerically stratified distributions of cell types within the biofilm and introduce ways to incorporate different resistance mechanisms. Qualitative predictions follow that are in agreement with experimental observations, such as higher survival rates of cells close to the substratum when employing antibiotics targeting active cells or enhanced polymer production when antibiotics are administered. The current computational model enables validation and hypothesis testing when developing therapies.

  3. Symbiotic Relationship between Streptococcus mutans and Candida albicans Synergizes Virulence of Plaque Biofilms In Vivo

    Science.gov (United States)

    Falsetta, Megan L.; Klein, Marlise I.; Colonne, Punsiri M.; Scott-Anne, Kathleen; Gregoire, Stacy; Pai, Chia-Hua; Gonzalez-Begne, Mireya; Watson, Gene; Krysan, Damian J.; Bowen, William H.

    2014-01-01

    Streptococcus mutans is often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC). S. mutans may not act alone; Candida albicans cells are frequently detected along with heavy infection by S. mutans in plaque biofilms from ECC-affected children. It remains to be elucidated whether this association is involved in the enhancement of biofilm virulence. We showed that the ability of these organisms together to form biofilms is enhanced in vitro and in vivo. The presence of C. albicans augments the production of exopolysaccharides (EPS), such that cospecies biofilms accrue more biomass and harbor more viable S. mutans cells than single-species biofilms. The resulting 3-dimensional biofilm architecture displays sizeable S. mutans microcolonies surrounded by fungal cells, which are enmeshed in a dense EPS-rich matrix. Using a rodent model, we explored the implications of this cross-kingdom interaction for the pathogenesis of dental caries. Coinfected animals displayed higher levels of infection and microbial carriage within plaque biofilms than animals infected with either species alone. Furthermore, coinfection synergistically enhanced biofilm virulence, leading to aggressive onset of the disease with rampant carious lesions. Our in vitro data also revealed that glucosyltransferase-derived EPS is a key mediator of cospecies biofilm development and that coexistence with C. albicans induces the expression of virulence genes in S. mutans (e.g., gtfB, fabM). We also found that Candida-derived β1,3-glucans contribute to the EPS matrix structure, while fungal mannan and β-glucan provide sites for GtfB binding and activity. Altogether, we demonstrate a novel mutualistic bacterium-fungus relationship that occurs at a clinically relevant site to amplify the severity of a ubiquitous infectious disease. PMID:24566629

  4. Laboratory evaluation of anti-biofilm agents for use in dental unit waterlines.

    Science.gov (United States)

    Meiller, T F; Kelley, J I; Baqui, A A; DePaola, L G

    2001-01-01

    Dental unit waterline biofilm has been recognized as a potential point of contamination and a risk to patients with any level of immunocompromise. Biofilm in dental unit waterlines, once established, has proven formidable to efforts in disinfection/disruption. This project compared standardized evaluation techniques by assessing the efficacy of a variety of agents that have been reported or suggested as useful in surface disinfection and/or antiseptic protocols. The zones of inhibition, minimum inhibitory/bactericidal concentrations and use-dilution with stainless steel carrier replicates tests assessed the disinfection of planktonic organisms using standardized microbial testing procedures. The disruption and/or disinfection of planktonic and biofilm organisms within naturally occurring dental unit waterlines were evaluated by culture and scanning electron microscopy. The six commercially available antimicrobial agents used to assess the techniques were bleach (sodium hypochlorite), Cavicide, glutaraldehyde, Listerine Antiseptic, Peridex and Sterilex Ultra. Comparisons between the results for each technique evaluated were determined for each product. All six agents demonstrated antimicrobial efficacy at the working concentrations designated by the manufacturers. Biofilm matrix elimination evaluated by scanning electron microscopy found virtually 0% elimination by glutaraldehyde to an estimated 90% elimination by Sterilex Ultra and bleach after one treatment. Treatment with Cavicide, Listerine Antiseptic and Peridex resulted in negligible elimination of the biofilm matrix. For comparability, the use of standardized testing techniques to evaluate a disinfection agent's efficacy against dental unit waterline contamination is essential. This project demonstrates a model system for evaluating disinfection agents potentially useful in the management of dental unit waterline biofilm, and should assist in educating the dental clinician in the appraisal of existing and

  5. Environmental scanning electron microscopy analysis of Proteus mirabilis biofilms grown on chitin and stainless steel.

    Science.gov (United States)

    Fernández-Delgado, Milagro; Duque, Zoilabet; Rojas, Héctor; Suárez, Paula; Contreras, Monica; García-Amado, María A; Alciaturi, Carlos

    Proteus mirabilis is a human pathogen able to form biofilms on the surface of urinary catheters. Little is known about P. mirabilis biofilms on natural or industrial surfaces and the potential consequences for these settings. The main aim of this work was to assess and compare the adhesion and biofilm formation of P. mirabilis strains from different origins on chitin and stainless steel surfaces within 4 to 96 h. Using environmental scanning electron microscopy, the biofilms of a clinical strain grown on chitin at 4 h showed greater adhesion, aggregation, thickness, and extracellular matrix production than those grown on stainless steel, whereas biofilms of an environmental strain had less aggregation on both surfaces. Biofilms of both P. mirabilis strains developed different structures on chitin, such as pillars, mushrooms, channels, and crystalline-like precipitates between 24 and 96 h, in contrast with flat-layer biofilms produced on stainless steel. Significant differences ( p  biofilm formation. This represents the first study of P. mirabilis showing adhesion, biofilm formation, and development of different structures on surfaces found outside the human host.

  6. Proteomics of drug resistance in Candida glabrata biofilms.

    Science.gov (United States)

    Seneviratne, C Jayampath; Wang, Yu; Jin, Lijian; Abiko, Y; Samaranayake, Lakshman P

    2010-04-01

    Candida glabrata is a fungal pathogen that causes a variety of mucosal and systemic infections among compromised patient populations with higher mortality rates. Previous studies have shown that biofilm mode of the growth of the fungus is highly resistant to antifungal agents compared with the free-floating or planktonic mode of growth. Therefore, in the present study, we used 2-D DIGE to evaluate the differential proteomic profiles of C. glabrata under planktonic and biofilm modes of growth. Candida glabrata biofilms were developed on polystyrene surfaces and age-matched planktonic cultures were obtained in parallel. Initially, biofilm architecture, viability, and antifungal susceptibility were evaluated. Differentially expressed proteins more than 1.5-fold in DIGE analysis were subjected to MS/MS. The transcriptomic regulation of these biomarkers was evaluated by quantitative real-time PCR. Candida glabrata biofilms were highly resistant to the antifungals and biocides compared with the planktonic mode of growth. Candida glabrata biofilm proteome when compared with its planktonic proteome showed upregulation of stress response proteins, while glycolysis enzymes were downregulated. Similar trend could be observed at transcriptomic level. In conclusion, C. glabrata biofilms possess higher amount of stress response proteins, which may potentially contribute to the higher antifungal resistance seen in C. glabrata biofilms.

  7. From Nanowires to Biofilms: An Exploration of Novel Mechanisms of Uranium Transformation Mediated by Geobacter Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    REGUERA, GEMMA [Michigan State University

    2014-01-16

    One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilms than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.

  8. Anti-biofilm activity: a function of Klebsiella pneumoniae capsular polysaccharide.

    Directory of Open Access Journals (Sweden)

    Marina Dos Santos Goncalves

    Full Text Available Competition and cooperation phenomena occur within highly interactive biofilm communities and several non-biocides molecules produced by microorganisms have been described as impairing biofilm formation. In this study, we investigated the anti-biofilm capacities of an ubiquitous and biofilm producing bacterium, Klebsiella pneumoniae. Cell-free supernatant from K. pneumoniae planktonic cultures showed anti-biofilm effects on most Gram positive bacteria tested but also encompassed some Gram negative bacilli. The anti-biofilm non-bactericidal activity was further investigated on Staphylococcus epidermidis, by determining the biofilm biomass, microscopic observations and agglutination measurement through a magnetic bead-mediated agglutination test. Cell-free extracts from K. pneumoniae biofilm (supernatant and acellular matrix also showed an influence, although to a lesser extend. Chemical analyses indicated that the active molecule was a high molecular weight polysaccharide composed of five monosaccharides: galactose, glucose, rhamnose, glucuronic acid and glucosamine and the main following sugar linkage residues [→ 2-α-L-Rhap-(1 →]; [→ 4-α-L-Rhap-(1 →]; [α-D-Galp-(1 →]; [→ 2,3-α-D-Galp-(1 →]; [→ 3-β-D-Galp-(1 →] and, [→ 4-β-D-GlcAp-(1 →]. Characterization of this molecule indicated that this component was more likely capsular polysaccharide (CPS and precoating of abiotic surfaces with CPS extracts from different serotypes impaired the bacteria-surface interactions. Thus the CPS of Klebsiella would exhibit a pleiotropic activity during biofilm formation, both stimulating the initial adhesion and maturation steps as previously described, but also repelling potential competitors.

  9. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis.

    Science.gov (United States)

    Kalishwaralal, Kalimuthu; BarathManiKanth, Selvaraj; Pandian, Sureshbabu Ram Kumar; Deepak, Venkataraman; Gurunathan, Sangiliyandi

    2010-09-01

    Biofilms are ensued due to bacteria that attach to surfaces and aggregate in a hydrated polymeric matrix. Formation of these sessile communities and their inherent resistance to anti-microbial agents are the source of many relentless and chronic bacterial infections. Such biofilms are responsible play a major role in development of ocular related infectious diseases in human namely microbial keratitis. Different approaches have been used for preventing biofilm related infections in health care settings. Many of these methods have their own demerits that include chemical based complications; emergent antibiotic resistant strains, etc. silver nanoparticles are renowned for their influential anti-microbial activity. Hence the present study over the biologically synthesized silver nanoparticles, exhibited a potential anti-biofilm activity that was tested in vitro on biofilms formed by Pseudomonas aeruginosa and Staphylococcus epidermidis during 24-h treatment. Treating these organisms with silver nanoparticles resulted in more than 95% inhibition in biofilm formation. The inhibition was known to be invariable of the species tested. As a result this study demonstrates the futuristic application of silver nanoparticles in treating microbial keratitis based on its potential anti-biofilm activity. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

    Science.gov (United States)

    Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

    2014-10-20

    The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1

    DEFF Research Database (Denmark)

    Labbate, M.; Queek, S.Y.; Koh, K.S.

    2004-01-01

    aggregates and differentiated cell chains. Signal-based complementation of this mutant resulted in a biofilm with the wild-type architecture. Two quorum-sensing-regulated genes (bsmA and bsmB) involved in biofilm development were identified, and we propose that these genes are engaged in fine...

  12. Regulation of pituitary hormones and cell proliferation by components of the extracellular matrix

    Directory of Open Access Journals (Sweden)

    M. Paez-Pereda

    2005-10-01

    Full Text Available The extracellular matrix is a three-dimensional network of proteins, glycosaminoglycans and other macromolecules. It has a structural support function as well as a role in cell adhesion, migration, proliferation, differentiation, and survival. The extracellular matrix conveys signals through membrane receptors called integrins and plays an important role in pituitary physiology and tumorigenesis. There is a differential expression of extracellular matrix components and integrins during the pituitary development in the embryo and during tumorigenesis in the adult. Different extracellular matrix components regulate adrenocorticotropin at the level of the proopiomelanocortin gene transcription. The extracellular matrix also controls the proliferation of adrenocorticotropin-secreting tumor cells. On the other hand, laminin regulates the production of prolactin. Laminin has a dynamic pattern of expression during prolactinoma development with lower levels in the early pituitary hyperplasia and a strong reduction in fully grown prolactinomas. Therefore, the expression of extracellular matrix components plays a role in pituitary tumorigenesis. On the other hand, the remodeling of the extracellular matrix affects pituitary cell proliferation. Matrix metalloproteinase activity is very high in all types of human pituitary adenomas. Matrix metalloproteinase secreted by pituitary cells can release growth factors from the extracellular matrix that, in turn, control pituitary cell proliferation and hormone secretion. In summary, the differential expression of extracellular matrix components, integrins and matrix metalloproteinase contributes to the control of pituitary hormone production and cell proliferation during tumorigenesis.

  13. The catabolite repression control protein Crc plays a role in the development of antimicrobial-tolerant subpopulations in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Zhang, Lianbo; Chiang, Wen-Chi; Gao, Qingguo

    2012-01-01

    Bacteria form complex surface-attached biofilm communities in nature. Biofilm cells differentiate into subpopulations which display tolerance towards antimicrobial agents. However, the signal transduction pathways regulating subpopulation differentiation in biofilms are largely unelucidated. In t....... In the present study, we show that the catabolite repression control protein Crc regulates the metabolic state of Pseudomonas aeruginosa cells in biofilms, and plays an important role in the development of antimicrobial-tolerant subpopulations in P. aeruginosa biofilms....

  14. Two group A streptococcal peptide pheromones act through opposing Rgg regulators to control biofilm development.

    Directory of Open Access Journals (Sweden)

    Jennifer C Chang

    2011-08-01

    Full Text Available Streptococcus pyogenes (Group A Streptococcus, GAS is an important human commensal that occasionally causes localized infections and less frequently causes severe invasive disease with high mortality rates. How GAS regulates expression of factors used to colonize the host and avoid immune responses remains poorly understood. Intercellular communication is an important means by which bacteria coordinate gene expression to defend against host assaults and competing bacteria, yet no conserved cell-to-cell signaling system has been elucidated in GAS. Encoded within the GAS genome are four rgg-like genes, two of which (rgg2 and rgg3 have no previously described function. We tested the hypothesis that rgg2 or rgg3 rely on extracellular peptides to control target-gene regulation. We found that Rgg2 and Rgg3 together tightly regulate two linked genes encoding new peptide pheromones. Rgg2 activates transcription of and is required for full induction of the pheromone genes, while Rgg3 plays an antagonistic role and represses pheromone expression. The active pheromone signals, termed SHP2 and SHP3, are short and hydrophobic (DI[I/L]IIVGG, and, though highly similar in sequence, their ability to disrupt Rgg3-DNA complexes were observed to be different, indicating that specificity and differential activation of promoters are characteristics of the Rgg2/3 regulatory circuit. SHP-pheromone signaling requires an intact oligopeptide permease (opp and a metalloprotease (eep, supporting the model that pro-peptides are secreted, processed to the mature form, and subsequently imported to the cytoplasm to interact directly with the Rgg receptors. At least one consequence of pheromone stimulation of the Rgg2/3 pathway is increased biogenesis of biofilms, which counteracts negative regulation of biofilms by RopB (Rgg1. These data provide the first demonstration that Rgg-dependent quorum sensing functions in GAS and substantiate the role that Rggs play as peptide

  15. Transported biofilms and their influence on subsequent macrofouling colonization.

    Science.gov (United States)

    Sweat, L Holly; Swain, Geoffrey W; Hunsucker, Kelli Z; Johnson, Kevin B

    2017-05-01

    Biofilm organisms such as diatoms are potential regulators of global macrofouling dispersal because they ubiquitously colonize submerged surfaces, resist antifouling efforts and frequently alter larval recruitment. Although ships continually deliver biofilms to foreign ports, it is unclear how transport shapes biofilm microbial structure and subsequent macrofouling colonization. This study demonstrates that different ship hull coatings and transport methods change diatom assemblage composition in transported coastal marine biofilms. Assemblages carried on the hull experienced significant cell losses and changes in composition through hydrodynamic stress, whereas those that underwent sheltered transport, even through freshwater, were largely unaltered. Coatings and their associated biofilms shaped distinct macrofouling communities and affected recruitment for one third of all species, while biofilms from different transport treatments had little effect on macrofouling colonization. These results demonstrate that transport conditions can shape diatom assemblages in biofilms carried by ships, but the properties of the underlying coatings are mainly responsible for subsequent macrofouling. The methods by which organisms colonize and are transferred by ships have implications for their distribution, establishment and invasion success.

  16. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors

    Directory of Open Access Journals (Sweden)

    Jones Sara E

    2009-02-01

    Full Text Available Abstract Background Commensal-derived probiotic bacteria inhibit enteric pathogens and regulate host immune responses in the gastrointestinal tract, but studies examining specific functions of beneficial microbes in the context of biofilms have been limited in scope. Results Lactobacillus reuteri formed biofilms that retained functions potentially advantageous to the host including modulation of cytokine output and the production of the antimicrobial agent, reuterin. Immunomodulatory activities of biofilms were demonstrated by the abilities of specific L. reuteri strains to suppress human TNF production by LPS-activated monocytoid cells. Quantification of the antimicrobial glycerol derivative, reuterin, was assessed in order to document the antipathogenic potential of probiotic biofilms. L. reuteri biofilms differed in the quantities of reuterin secreted in this physiological state. Conclusion L. reuteri biofilms secreted factors that confer specific health benefits such as immunomodulation and pathogen inhibition. Future probiotic selection strategies should consider a strain's ability to perform beneficial functions as a biofilm.

  17. Sustained prevention of biofilm formation on a novel silicone matrix suitable for medical devices

    DEFF Research Database (Denmark)

    Steffensen, Søren Langer; Merete H., Vestergaard,; Jensen, Minna Grønning

    2015-01-01

    Bacterial colonization and biofilm formation on medical devices constitute major challenges in clinical long-term use of e.g. catheters due to the risk of (re)infection of patients, which would result in additional use of antibiotics risking bacterial resistance development. The aim of the present...... in the range of 1–20 mg/mL. Devices containing 25% (w/w) hydrogel and loaded with ciprofloxacin displayed a strong antibacterial effect against Staphylococcus aureus bacterial colonization and subsequent biofilm formation on the device material was inhibited for 29 days. In conclusion, the hydrogel...

  18. Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation

    Directory of Open Access Journals (Sweden)

    Mohammad Hassani Sangani

    2015-04-01

    Full Text Available Objective(s: Bacterial biofilm formation causes many persistent and chronic infections. The matrix protects biofilm bacteria from exposure to innate immune defenses and antibiotic treatments. The purpose of this study was to evaluate the biofilm formation of clinical isolates of Pseudomonas aeruginosa and the activity of zinc oxide nanoparticles (ZnO NPs on biofilm. Materials and Methods: After collecting bacteria from clinical samples of hospitalized patients, the ability of organisms were evaluated to create biofilm by tissue culture plate (TCP assay. ZnO NPs were synthesized by sol gel method and the efficacy of different concentrations (50- 350 µg/ml of ZnO NPs was assessed on biofilm formation and also elimination of pre-formed biofilm by using TCP method. Results:The average diameter of synthesized ZnO NPs was 20 nm. The minimum inhibitory concentration of nanoparticles was 150- 158 μg/ml and the minimum bactericidal concentration was higher (325 µg/ml. All 15 clinical isolates of P. aeruginosa were able to produce biofilm. Treating the organisms with nanoparticles at concentrations of 350 μg/ml resulted in more than 94% inhibition in OD reduction%. Molecular analysis showed that the presence of mRNA of pslA gene after treating bacteria with ZnO NPs for 30 minutes. Conclusion: The results showed that ZnO NPs can inhibit the establishment of P. aeruginosa biofilms and have less effective in removing pre-formed biofilm. However the tested nanoparticles exhibited anti-biofilm effect, but mRNA of pslA gene could be still detected in the medium by RT-PCR technique after 30 minutes treatment with ZnO.

  19. Biofilm generation by Piscirickettsia salmonis under growth stress conditions: a putative in vivo survival/persistence strategy in marine environments.

    Science.gov (United States)

    Marshall, Sergio H; Gómez, Fernando A; Ramírez, Ramón; Nilo, Luis; Henríquez, Vitalia

    2012-01-01

    Piscirickettsia salmonis is a bacterial fish pathogen seriously threatening the sustainability of the Chilean salmon industry. The biology and life cycle of this bacterium is not completely understood and there are no reports explaining how it survives or persists in marine environments. This work provides descriptive data of P. salmonis behavior when it is exposed to stress conditions, producing large cell aggregates closely resembling typical biofilm structures. In order to track this putative biofilm, we used indirect fluorescence and scanning electron microscopy. Complex masses were observed over time; the bacteria appear to be embedded within a matrix which disappears when it is exposed to cellulase, suggesting a polysaccharide nature typical of biofilm formation. Two lectins (ConA and WGA) were used to characterize the matrix. Both lectins showed a strong reaction with the structure, validating the exopolysaccharide nature of the matrix. Recently, several studies have demonstrated a correlation between toxin/anti-toxin system expression at initial stages of biofilm formation. In this report, QRT-PCR analysis was used with the P. salmonis toxin/anti-toxin mazEF operon, showing induction of these genes at early stages of biofilm formation, suggesting that said formation may be an adaptive strategy for survival and persistence under stress conditions in marine environments. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal.

    Science.gov (United States)

    McDougald, Diane; Rice, Scott A; Barraud, Nicolas; Steinberg, Peter D; Kjelleberg, Staffan

    2011-11-28

    In most environments, bacteria reside primarily in biofilms, which are social consortia of cells that are embedded in an extracellular matrix and undergo developmental programmes resulting in a predictable biofilm 'life cycle'. Recent research on many different bacterial species has now shown that the final stage in this life cycle includes the production and release of differentiated dispersal cells. The formation of these cells and their eventual dispersal is initiated through diverse and remarkably sophisticated mechanisms, suggesting that there are strong evolutionary pressures for dispersal from an otherwise largely sessile biofilm. The evolutionary aspect of biofilm dispersal is now being explored through the integration of molecular microbiology with eukaryotic ecological and evolutionary theory, which provides a broad conceptual framework for the diversity of specific mechanisms underlying biofilm dispersal. Here, we review recent progress in this emerging field and suggest that the merging of detailed molecular mechanisms with ecological theory will significantly advance our understanding of biofilm biology and ecology.

  1. Characterization of PPMUCL1/2/3, three members of a new oomycete-specific mucin-like protein family residing in Phytophthora parasitica biofilm.

    Science.gov (United States)

    Larousse, Marie; Govetto, Benjamin; Séassau, Aurélie; Etienne, Catherine; Industri, Benoit; Theodorakopoulos, Nicolas; Deleury, Emeline; Ponchet, Michel; Panabières, Franck; Galiana, Eric

    2014-05-01

    The plant pathogen Phytophthora parasitica forms a biofilm on the host surface. The biofilm transcriptome is characterized by the expression of PPMUCL1/2/3 (PHYTOPHTHORA PARASITICA MUCIN-LIKE) genes, which we report here to be members of a new, large mucin-like gene family restricted to the oomycete lineage. These genes encode secreted proteins organized into two domains. The NH2-terminal domain is highly conserved, but of unknown function. The second domain is a mucin-like domain enriched in threonine and serine residues, with a large number of putative O-glycosylation sites and a repeated motif defining 15 subgroups among the 315 members of the family. The second domain was found to be glycosylated in the recombinant rPPMUCL1 and rPPMUCL2 proteins. An analysis of PPMUCL1/2/3 gene expression indicated that these genes were expressed in a specific and coordinated manner in the biofilm. A novel cis-motif (R) bound to nuclear proteins, suggesting a possible role in PPMUCL1/2/3 gene regulation. Immunohistochemical staining revealed that the PPMUCL1/2 proteins were secreted and accumulated on the surface of the biofilm. Our data demonstrate that PPMUCL1/2/3 belong to a new oomycete-specific family of mucin-like proteins playing a structural role in the biofilm extracellular matrix. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. A coverslip-based technique for evaluating Staphylococcus aureus biofilm formation on human plasma

    Directory of Open Access Journals (Sweden)

    Jennifer N Walker

    2012-03-01

    Full Text Available The ability of the opportunistic pathogen, Staphylococcus aureus, to form biofilms is increasingly being viewed as an important contributor to chronic infections. In vitro methods for analyzing S. aureus biofilm formation have focused on bacterial attachment and accumulation on abiotic surfaces, such as in microtiter plate and flow cell assays. Microtiter plates provide a rapid measure of relative biomass levels, while flow cells have limited experimental throughput but are superior for confocal microscopy biofilm visualization. Although these assays have proven effective at identifying mechanisms involved in cell attachment and biofilm accumulation, the significance of these assays in vivo remains unclear. Studies have shown that when medical devices are implanted they are coated with host factors, such as matrix proteins, that facilitate S. aureus attachment and biofilm formation. To address the challenge of integrating existing biofilm assay features with a biotic surface, we have established an in vitro biofilm technique utilizing UV-sterilized coverslips coated with human plasma. The substratum more closely resembles the in vivo state and provides a platform for S. aureus to establish a robust biofilm. Importantly, these coverslips are amenable to confocal microscopy imaging to provide a visual reference of the biofilm growth stage, effectively merging the benefits of the microtiter and flow cell assays. We confirmed the approach using clinical S. aureus isolates and mutants with known biofilm phenotypes. Altogether, this new biofilm assay can be used to assess the function of S. aureus virulence factors associated with biofilm formation and for monitoring the efficacy of biofilm treatment modalities.

  3. Tolerance of Clostridium perfringens biofilms to disinfectants commonly used in the food industry.

    Science.gov (United States)

    Charlebois, Audrey; Jacques, Mario; Boulianne, Martine; Archambault, Marie

    2017-04-01

    Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxemia in animal species. Recently, it was shown to form mono-species biofilms, a structured community of bacterial cells enclosed in a self-produced extracellular matrix. Biofilms have been associated with tolerance to antibiotics, disinfectants, and physical and environmental stresses. Very little is known about the tolerance of C. perfringens biofilm toward disinfectants. In the present study, susceptibilities of C. perfringens biofilms to five types of commonly used disinfectants on farms and in food processing environments were analysed. In this paper, we show that C. perfringens mono-species biofilms can protect the bacterial cells from the action of potassium monopersulfate, quaternary ammonium chloride, hydrogen peroxide and glutaraldehyde solutions. However, sodium hypochlorite solution was shown to be effective on C. perfringens biofilms. Our investigation of dual-species biofilms of C. perfringens with the addition of Staphylococcus aureus or Escherichia coli demonstrated that overall, the mono-species biofilm of C. perfringens was more tolerant to all disinfectants than the dual-species biofilms. For the anaerobic grown biofilms, the mono-species biofilm of C. perfringens was more tolerant to sodium hypochlorite and quaternary ammonium chloride than the dual-species biofilms of C. perfringens with S. aureus or E. coli. This study demonstrates that C. perfringens biofilm is an effective protection mechanism to disinfectants commonly used on farms and in food processing environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Biofilm Risks

    DEFF Research Database (Denmark)

    Wirtanen, Gun Linnea; Salo, Satu

    2016-01-01

    This chapter on biofilm risks deals with biofilm formation of pathogenic microbes, sampling and detection methods, biofilm removal, and prevention of biofilm formation. Several common pathogens produce sticky and/or slimy structures in which the cells are embedded, that is, biofilms, on various...... surfaces in food processing. Biofilms of common foodborne pathogens are reviewed. The issue of persistent and nonpersistent microbial contamination in food processing is also discussed. It has been shown that biofilms can be difficult to remove and can thus cause severe disinfection and cleaning problems...... in food factories. In the prevention of biofilm formation microbial control in process lines should both limit the number of microbes on surfaces and reduce microbial activity in the process. Thus the hygienic design of process equipment and process lines is important in improving the process hygiene...

  5. The role of biofilms as environmental reservoirs of antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Jose Luis eBalcazar

    2015-10-01

    Full Text Available Antibiotic resistance has become a significant and growing threat to public and environmental health. To face this problem both at local and global scales, a better understanding of the sources and mechanisms that contribute to the emergence and spread of antibiotic resistance is required. Recent studies demonstrate that aquatic ecosystems are reservoirs of resistant bacteria and antibiotic resistance genes as well as potential conduits for their transmission to human pathogens. Despite the wealth of information about antibiotic pollution and its effect on the aquatic microbial resistome, the contribution of environmental biofilms to the acquisition and spread of antibiotic resistance has not been fully explored in aquatic systems. Biofilms are structured multicellular communities embedded in a self-produced extracellular matrix that acts as a barrier to antibiotic diffusion. High population densities and proximity of cells in biofilms also increases the chances for genetic exchange among bacterial species converting biofilms in hot spots of antibiotic resistance. This review focuses on the potential effect of antibiotic pollution on biofilm microbial communities, with special emphasis on ecological and evolutionary processes underlying acquired resistance to these compounds.

  6. Biofilms Formed by Gram-Negative Bacteria Undergo Increased Lipid A Palmitoylation, Enhancing In Vivo Survival

    Science.gov (United States)

    Chalabaev, Sabina; Chauhan, Ashwini; Novikov, Alexey; Iyer, Pavithra; Szczesny, Magdalena; Beloin, Christophe; Caroff, Martine

    2014-01-01

    ABSTRACT Bacterial biofilm communities are associated with profound physiological changes that lead to novel properties compared to the properties of individual (planktonic) bacteria. The study of biofilm-associated phenotypes is an essential step toward control of deleterious effects of pathogenic biofilms. Here we investigated lipopolysaccharide (LPS) structural modifications in Escherichia coli biofilm bacteria, and we showed that all tested commensal and pathogenic E. coli biofilm bacteria display LPS modifications corresponding to an increased level of incorporation of palmitate acyl chain (palmitoylation) into lipid A compared to planktonic bacteria. Genetic analysis showed that lipid A palmitoylation in biofilms is mediated by the PagP enzyme, which is regulated by the histone-like protein repressor H-NS and the SlyA regulator. While lipid A palmitoylation does not influence bacterial adhesion, it weakens inflammatory response and enhances resistance to some antimicrobial peptides. Moreover, we showed that lipid A palmitoylation increases in vivo survival of biofilm bacteria in a clinically relevant model of catheter infection, potentially contributing to biofilm tolerance to host immune defenses. The widespread occurrence of increased lipid A palmitoylation in biofilms formed by all tested bacteria suggests that it constitutes a new biofilm-associated phenotype in Gram-negative bacteria. PMID:25139899

  7. High beta-Lactamase Levels Change the Pharmacodynamics of beta-Lactam Antibiotics in Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Wang, Hengzhuang; Ciofu, Oana; Yang, Liang

    2013-01-01

    the role of beta-lactamase in the pharmacokinetics (PK) and pharmacodynamics (PD) of ceftazidime and imipenem on P. aeruginosa biofilms. P. aeruginosa PAO1 and its corresponding beta-lactamase-overproducing mutant, PA Delta DDh2Dh3, were used in this study. Biofilms of these two strains in flow chambers......, microtiter plates, and on alginate beads were treated with different concentrations of ceftazidime and imipenem. The kinetics of antibiotics on the biofilms was investigated in vitro by time-kill methods. Time-dependent killing of ceftazidime was observed in PAO1 biofilms, but concentration-dependent killing...... activity of ceftazidime was observed for beta-lactamase-overproducing biofilms of P. aeruginosa in all three models. Ceftazidime showed time-dependent killing on planktonic PAO1 and PA Delta DDh2Dh3. This difference is probably due to the special distribution and accumulation in the biofilm matrix of beta...

  8. Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Lee, Mi Hee; Park, Bong Joo; Jin, Soo Chang; Kim, Dohyun; Kim, Jungsung; Park, Jong-Chul; Han, Inho; Hyun, Soon O; Chung, Kie-Hyung

    2009-01-01

    Microbial biofilms are a functional matrix of microbial cells, enveloped in polysaccharides, enzymes and virulence factors secreted by them that can develop on indwelling medical devices and biomaterials. Plasma sterilization has been widely studied in recent years for biological applications. In this study, we evaluated the possibility of removal and anti-recovery of biofilms by microwave-induced argon plasma at atmospheric pressure. We observed that all bacterial biofilms formatted by Gram-negative and Gram-positive bacteria are removed in less than 20 s, and the growth inhibitions of planktonic bacteria within biofilms are also confirmed by plasma exposure for 5 s. These results suggest that our plasma system can be applied to medical and biological fields where the removal of biofilms and their debris is required.

  9. The implication of Pseudomonas aeruginosa biofilms in infections

    DEFF Research Database (Denmark)

    Rybtke, Morten T; Jensen, Peter Østrup; Høiby, Niels

    2011-01-01

    Biofilm formation by bacteria is recognized as a major problem in chronic infections due to their recalcitrance against the immune defense and available antibiotic treatment schemes. The opportunistic pathogen Pseudomonas aeruginosa has drawn special attention in this regard due to its severity o...... treatment strategies where the underlying targets are less prone for resistance development as bacteria, in retrospect, have a unique ability to evade the actions of classic antibiotics.......Biofilm formation by bacteria is recognized as a major problem in chronic infections due to their recalcitrance against the immune defense and available antibiotic treatment schemes. The opportunistic pathogen Pseudomonas aeruginosa has drawn special attention in this regard due to its severity......-up of the extracellular matrix encasing the biofilm-associated bacteria as well as the elaborate signaling mechanisms employed by the bacterium enables it to withstand the continuous stresses imposed by the immune defense and administered antibiotics resulting in a state of chronic inflammation that damages the host...

  10. Helicobacter pylori Biofilm Formation and Its Potential Role in Pathogenesis.

    Science.gov (United States)

    Hathroubi, Skander; Servetas, Stephanie L; Windham, Ian; Merrell, D Scott; Ottemann, Karen M

    2018-06-01

    Despite decades of effort, Helicobacter pylori infections remain difficult to treat. Over half of the world's population is infected by H. pylori , which is a major cause of duodenal and gastric ulcers as well as gastric cancer. During chronic infection, H. pylori localizes within the gastric mucosal layer, including deep within invaginations called glands; thanks to its impressive ability to survive despite the harsh acidic environment, it can persist for the host's lifetime. This ability to survive and persist in the stomach is associated with urease production, chemotactic motility, and the ability to adapt to the fluctuating environment. Additionally, biofilm formation has recently been suggested to play a role in colonization. Biofilms are surface-associated communities of bacteria that are embedded in a hydrated matrix of extracellular polymeric substances. Biofilms pose a substantial health risk and are key contributors to many chronic and recurrent infections. This link between biofilm-associated bacteria and chronic infections likely results from an increased tolerance to conventional antibiotic treatments as well as immune system action. The role of this biofilm mode in antimicrobial treatment failure and H. pylori survival has yet to be determined. Furthermore, relatively little is known about the H. pylori biofilm structure or the genes associated with this mode of growth. In this review, therefore, we aim to highlight recent findings concerning H. pylori biofilms and the molecular mechanism of their formation. Additionally, we discuss the potential roles of biofilms in the failure of antibiotic treatment and in infection recurrence. Copyright © 2018 American Society for Microbiology.

  11. Candida albicans Biofilms Do Not Trigger Reactive Oxygen Species and Evade Neutrophil Killing

    Science.gov (United States)

    Xie, Zhihong; Thompson, Angela; Sobue, Takanori; Kashleva, Helena; Xu, Hongbin; Vasilakos, John; Dongari-Bagtzoglou, Anna

    2012-01-01

    Neutrophils are found within Candida albicans biofilms in vivo and could play a crucial role in clearing the pathogen from biofilms forming on catheters and mucosal surfaces. Our goal was to compare the antimicrobial activity of neutrophils against developing and mature C. albicans biofilms and identify biofilm-specific properties mediating resistance to immune cells. Antibiofilm activity was measured with the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)2H-tetrazolium-5-carboxanilide assay and a molecular Candida viability assay. Reactive oxygen species generation was assessed by measuring fluorescence of 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester in preloaded neutrophils. We found that mature biofilms were resistant to leukocytic killing and did not trigger reactive oxygen species, even though neutrophils retained their viability and functional activation potential. Beta-glucans found in the extracellular matrix negatively affected antibiofilm activities. We conclude that these polymers act as a decoy mechanism to prevent neutrophil activation and that this represents an important innate immune evasion mechanism of C. albicans biofilms. PMID:23033146

  12. Pseudomonas aeruginosa Exhibits Deficient Biofilm Formation in the Absence of Class II and III Ribonucleotide Reductases Due to Hindered Anaerobic Growth.

    Science.gov (United States)

    Crespo, Anna; Pedraz, Lucas; Astola, Josep; Torrents, Eduard

    2016-01-01

    Chronic lung infections by the ubiquitous and extremely adaptable opportunistic pathogen Pseudomonas aeruginosa correlate with the formation of a biofilm, where bacteria grow in association with an extracellular matrix and display a wide range of changes in gene expression and metabolism. This leads to increased resistance to physical stress and antibiotic therapies, while enhancing cell-to-cell communication. Oxygen diffusion through the complex biofilm structure generates an oxygen concentration gradient, leading to the appearance of anaerobic microenvironments. Ribonucleotide reductases (RNRs) are a family of highly sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides, and they constitute the only de novo pathway for the formation of the building blocks needed for DNA synthesis and repair. P. aeruginosa is one of the few bacteria encoding all three known RNR classes (Ia, II, and III). Class Ia RNRs are oxygen dependent, class II are oxygen independent, and class III are oxygen sensitive. A tight control of RNR activity is essential for anaerobic growth and therefore for biofilm development. In this work we explored the role of the different RNR classes in biofilm formation under aerobic and anaerobic initial conditions and using static and continuous-flow biofilm models. We demonstrated the importance of class II and III RNR for proper cell division in biofilm development and maturation. We also determined that these classes are transcriptionally induced during biofilm formation and under anaerobic conditions. The molecular mechanism of their anaerobic regulation was also studied, finding that the Anr/Dnr system is responsible for class II RNR induction. These data can be integrated with previous knowledge about biofilms in a model where these structures are understood as a set of layers determined by oxygen concentration and contain cells with different RNR expression profiles, bringing us a step closer to the understanding of this

  13. Analysis of Dissolved Organic Nutrients in the Interstitial Water of Natural Biofilms.

    Science.gov (United States)

    Tsuchiya, Yuki; Eda, Shima; Kiriyama, Chiho; Asada, Tomoya; Morisaki, Hisao

    2016-07-01

    In biofilms, the matrix of extracellular polymeric substances (EPSs) retains water in the interstitial region of the EPS. This interstitial water is the ambient environment for microorganisms in the biofilms. The nutrient condition in the interstitial water may affect microbial activity in the biofilms. In the present study, we measured the concentrations of dissolved organic nutrients, i.e., saccharides and proteins, contained in the interstitial water of biofilms formed on the stones. We also analyzed the molecular weight distribution, chemical species, and availability to bacteria of some saccharides in the interstitial water. Colorimetric assays showed that the concentrations of saccharides and proteins in the biofilm interstitial water were significantly higher (ca. 750 times) than those in the surrounding lake waters (p Chromatographic analyses demonstrated that the saccharides in the interstitial waters were mainly of low molecular-weight saccharides such as glucose and maltose, while proteins in the interstitial water were high molecular-weight proteins (over 7000 Da). Bacterial growth and production of EPS occurred simultaneously with the decrease in the low molecular-weight saccharide concentrations when a small portion of biofilm suspension was inoculated to the collected interstitial water, suggesting that the dissolved saccharides in the interstitial water support bacterial growth and formation of biofilms.

  14. Biofilms in the Food Industry: Health Aspects and Control Methods

    Directory of Open Access Journals (Sweden)

    Serena Galié

    2018-05-01

    Full Text Available Diverse microorganisms are able to grow on food matrixes and along food industry infrastructures. This growth may give rise to biofilms. This review summarizes, on the one hand, the current knowledge regarding the main bacterial species responsible for initial colonization, maturation and dispersal of food industry biofilms, as well as their associated health issues in dairy products, ready-to-eat foods and other food matrixes. These human pathogens include Bacillus cereus (which secretes toxins that can cause diarrhea and vomiting symptoms, Escherichia coli (which may include enterotoxigenic and even enterohemorrhagic strains, Listeria monocytogenes (a ubiquitous species in soil and water that can lead to abortion in pregnant women and other serious complications in children and the elderly, Salmonella enterica (which, when contaminating a food pipeline biofilm, may induce massive outbreaks and even death in children and elderly, and Staphylococcus aureus (known for its numerous enteric toxins. On the other hand, this review describes the currently available biofilm prevention and disruption methods in food factories, including steel surface modifications (such as nanoparticles with different metal oxides, nanocomposites, antimicrobial polymers, hydrogels or liposomes, cell-signaling inhibition strategies (such as lactic and citric acids, chemical treatments (such as ozone, quaternary ammonium compounds, NaOCl and other sanitizers, enzymatic disruption strategies (such as cellulases, proteases, glycosidases and DNAses, non-thermal plasma treatments, the use of bacteriophages (such as P100, bacteriocins (such us nisin, biosurfactants (such as lichenysin or surfactin and plant essential oils (such as citral- or carvacrol-containing oils.

  15. Biofilms in the Food Industry: Health Aspects and Control Methods

    Science.gov (United States)

    Galié, Serena; García-Gutiérrez, Coral; Miguélez, Elisa M.; Villar, Claudio J.; Lombó, Felipe

    2018-01-01

    Diverse microorganisms are able to grow on food matrixes and along food industry infrastructures. This growth may give rise to biofilms. This review summarizes, on the one hand, the current knowledge regarding the main bacterial species responsible for initial colonization, maturation and dispersal of food industry biofilms, as well as their associated health issues in dairy products, ready-to-eat foods and other food matrixes. These human pathogens include Bacillus cereus (which secretes toxins that can cause diarrhea and vomiting symptoms), Escherichia coli (which may include enterotoxigenic and even enterohemorrhagic strains), Listeria monocytogenes (a ubiquitous species in soil and water that can lead to abortion in pregnant women and other serious complications in children and the elderly), Salmonella enterica (which, when contaminating a food pipeline biofilm, may induce massive outbreaks and even death in children and elderly), and Staphylococcus aureus (known for its numerous enteric toxins). On the other hand, this review describes the currently available biofilm prevention and disruption methods in food factories, including steel surface modifications (such as nanoparticles with different metal oxides, nanocomposites, antimicrobial polymers, hydrogels or liposomes), cell-signaling inhibition strategies (such as lactic and citric acids), chemical treatments (such as ozone, quaternary ammonium compounds, NaOCl and other sanitizers), enzymatic disruption strategies (such as cellulases, proteases, glycosidases and DNAses), non-thermal plasma treatments, the use of bacteriophages (such as P100), bacteriocins (such us nisin), biosurfactants (such as lichenysin or surfactin) and plant essential oils (such as citral- or carvacrol-containing oils). PMID:29867809

  16. Cannibalism enhances biofilm development in Bacillus subtilis.

    Science.gov (United States)

    López, Daniel; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2009-11-01

    Cannibalism is a mechanism to delay sporulation in Bacillus subtilis. Cannibal cells express the skf and sdp toxin systems to lyse a fraction of their sensitive siblings. The lysed cells release nutrients that serve to feed the community, effectively delaying spore formation. Here we provide evidence that the subpopulation of cells that differentiates into cannibals is the same subpopulation that produces the extracellular matrix that holds cells together in biofilms. Cannibalism and matrix formation are both triggered in response to the signalling molecule surfactin. Nutrients released by the cannibalized cells are preferentially used by matrix-producing cells, as they are the only cells expressing resistance to the Skf and Sdp toxins. As a result this subpopulation increases in number and matrix production is enhanced when cannibalism toxins are produced. The cannibal/matrix-producing subpopulation is also generated in response to antimicrobials produced by other microorganisms and may thus constitute a defense mechanism to protect B. subtilis from the action of antibiotics in natural settings.

  17. In situ characterization and analysis of Salmonella biofilm formation under meat processing environments using a combined microscopic and spectroscopic approach.

    Science.gov (United States)

    Wang, Huhu; Ding, Shijie; Wang, Guangyu; Xu, Xinglian; Zhou, Guanghong

    2013-11-01

    Salmonella biofilm on food-contact surfaces present on food processing facilities may serve as a source of cross-contamination. In our work, biofilm formation by multi-strains of meat-borne Salmonella incubated at 20 °C, as well as the composition and distribution of extracellular polymeric substances (EPS), were investigated in situ by combining confocal laser scanning microscopy (CLSM), scanning electron microscope (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and Raman spectroscopy. A standard laboratory culture medium (tryptic soy broth, TSB) was used and compared with an actual meat substrate (meat thawing-loss broth, MTLB). The results indicated that Salmonella grown in both media were able to form biofilms on stainless steel surfaces via building a three-dimensional structure with multilayers of cells. Although the number of biofilm cells grown in MTLB was less than that in TSB, the cell numbers in MTLB was adequate to form a steady and mature biofilm. Salmonella grown in MTLB showed "cloud-shaped" morphology in the mature biofilm, whereas when grown in TSB appeared "reticular-shaped". The ATR-FTIR and Raman analysis revealed a completely different chemical composition between biofilms and the corresponding planktonic cells, and some important differences in biofilms grown in MTLB and in TSB. Importantly, our findings suggested that the progress towards a mature Salmonella biofilm on stainless steel surfaces may be associated with the production of the EPS matrix, mainly consisting of polysaccharides and proteins, which may serve as useful markers of biofilm formation. Our work indicated that a combination of these non-destructive techniques provided new insights into the formation of Salmonella biofilm matrix. © 2013.

  18. Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model.

    Science.gov (United States)

    Byrd, Matthew S; Pang, Bing; Hong, Wenzhou; Waligora, Elizabeth A; Juneau, Richard A; Armbruster, Chelsie E; Weimer, Kristen E D; Murrah, Kyle; Mann, Ethan E; Lu, Haiping; Sprinkle, April; Parsek, Matthew R; Kock, Nancy D; Wozniak, Daniel J; Swords, W Edward

    2011-08-01

    Biofilms contribute to Pseudomonas aeruginosa persistence in a variety of diseases, including cystic fibrosis, burn wounds, and chronic suppurative otitis media. However, few studies have directly addressed P. aeruginosa biofilms in vivo. We used a chinchilla model of otitis media, which has previously been used to study persistent Streptococcus pneumoniae and Haemophilus influenzae infections, to show that structures formed in vivo are biofilms of bacterial and host origin within a matrix that includes Psl, a P. aeruginosa biofilm polysaccharide. We evaluated three biofilm and/or virulence mediators of P. aeruginosa known to affect biofilm formation in vitro and pathogenesis in vivo--bis-(3',5')-cyclic dimeric GMP (c-di-GMP), flagella, and quorum sensing--in a chinchilla model. We show that c-di-GMP overproduction has a positive impact on bacterial persistence, while quorum sensing increases virulence. We found no difference in persistence attributed to flagella. We conclude from these studies that a chinchilla otitis media model provides a means to evaluate pathogenic mediators of P. aeruginosa and that in vitro phenotypes should be examined in multiple infection systems to fully understand their role in disease.

  19. Effect of synthetic vernix biofilms on barrier recovery of damaged mouse skin.

    Science.gov (United States)

    Oudshoorn, Marion H M; Rissmann, Robert; van der Coelen, Dennis; Hennink, Wim E; Ponec, Maria; Bouwstra, Joke A

    2009-08-01

    The aim of this work was to investigate whether topical application of synthetic biofilms supports and accelerates the recovery of the murine skin barrier, disrupted by sequential tape stripping. Therefore, various biofilms were applied topically on disrupted mouse skin to determine which formulation could improve barrier function, as was observed previously for the natural biofilm vernix caseosa (VC). The biofilms [i.e. particles (synthetic corneocytes) embedded in a synthetic lipid matrix] mimic closely the physicochemical properties and structure of VC. Various formulations were prepared using different particle:lipid ratios, particles with different initial water content and uncoated or lipid-coated particles. It was observed that application of all tested formulations improved the skin barrier recovery rate and reduced crust formation and epidermal hyperproliferation. However, only one of the biofilms [i.e. B1; composed of uncoated particles with 50% (w/w) initial water content and particle:lipid ratio of 2:1] mimicked the effects of native VC most closely. This indicates the importance of the presence of individual components, i.e. barrier lipids and water, as well as the ratio of these components. Consequently, these observations suggest the potential use of this biofilm treatment clinically.

  20. Effect of alcohols on filamentation, growth, viability and biofilm development in Candida albicans.

    Science.gov (United States)

    Chauhan, Nitin M; Shinde, Ravikumar B; Karuppayil, S Mohan

    2013-12-01

    In this study we report the potential of alcohols as morphogenetic regulators in Candida albicans. All the alcohols tested influenced various modes of growth like planktonic as well as biofilm forms. Viability was affected at high concentrations. Among the alcohols, the response of C. albicans to amyl alcohol (pentanol) was noteworthy. Amyl alcohol at a concentration 0.5% which was not inhibitory to growth and viability specifically inhibited morphogenetic switching from yeast to hyphal forms. It also inhibited normal biofilm development favoring yeast dominated biofilms. Based on this study we hypothesize that alcohols produced under anaerobic conditions may not favor biofilm development and support dissemination of yeast cells. Since anaerobic conditions are not found to favor production of quorum sensing molecules like farnesol, the alcohols may play a role in morphogenetic regulation.

  1. Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix.

    Science.gov (United States)

    Kubow, Kristopher E; Vukmirovic, Radmila; Zhe, Lin; Klotzsch, Enrico; Smith, Michael L; Gourdon, Delphine; Luna, Sheila; Vogel, Viola

    2015-08-14

    Despite the crucial role of extracellular matrix (ECM) in directing cell fate in healthy and diseased tissues--particularly in development, wound healing, tissue regeneration and cancer--the mechanisms that direct the assembly and regulate hierarchical architectures of ECM are poorly understood. Collagen I matrix assembly in vivo requires active fibronectin (Fn) fibrillogenesis by cells. Here we exploit Fn-FRET probes as mechanical strain sensors and demonstrate that collagen I fibres preferentially co-localize with more-relaxed Fn fibrils in the ECM of fibroblasts in cell culture. Fibre stretch-assay studies reveal that collagen I's Fn-binding domain is responsible for the mechano-regulated interaction. Furthermore, we show that Fn-collagen interactions are reciprocal: relaxed Fn fibrils act as multivalent templates for collagen assembly, but once assembled, collagen fibres shield Fn fibres from being stretched by cellular traction forces. Thus, in addition to the well-recognized, force-regulated, cell-matrix interactions, forces also tune the interactions between different structural ECM components.

  2. A putative ABC transporter is involved in negative regulation of biofilm formation by Listeria monocytogenes

    DEFF Research Database (Denmark)

    Zhu, Xinna; Long, Fei; Chen, Yonghui

    2008-01-01

    Listeria monocytogenes may persist for long periods in food processing environments. In some instances, this may be due to aggregation or biofilm formation. To investigate the mechanism controlling biofilm formation in the food-borne pathogen L. monocytogenes, we characterized LM-49, a mutant...... with enhanced ability of biofilm-formation generated via transposon Tn917 mutagenesis of L. monocytogenes 4b G. In this mutant, a Tn917 insertion has disrupted the coding region of the gene encoding a putative ATP binding cassette (ABC) transporter permease identical to Lmof2365_1771 (a putative ABC...... the same amount of biofilm biomass as the wild-type strain. Furthermore, transcription of the downstream lm.G_1770 was not influenced by the upstream Tn917 insertion, and the presence of Tn917 has no effect on biofilm formation. These results suggest that lm.G_1771 was solely responsible for the negative...

  3. Quorum-sensing and cheating in bacterial biofilms

    Science.gov (United States)

    Popat, Roman; Crusz, Shanika A.; Messina, Marco; Williams, Paul; West, Stuart A.; Diggle, Stephen P.

    2012-01-01

    The idea from human societies that self-interest can lead to a breakdown of cooperation at the group level is sometimes termed the public goods dilemma. We tested this idea in the opportunistic bacterial pathogen, Pseudomonas aeruginosa, by examining the influence of putative cheats that do not cooperate via cell-to-cell signalling (quorum-sensing, QS). We found that: (i) QS cheating occurs in biofilm populations owing to exploitation of QS-regulated public goods; (ii) the thickness and density of biofilms was reduced by the presence of non-cooperative cheats; (iii) population growth was reduced by the presence of cheats, and this reduction was greater in biofilms than in planktonic populations; (iv) the susceptibility of biofilms to antibiotics was increased by the presence of cheats; and (v) coercing cooperator cells to increase their level of cooperation decreases the extent to which the presence of cheats reduces population productivity. Our results provide clear support that conflict over public goods reduces population fitness in bacterial biofilms, and that this effect is greater than in planktonic populations. Finally, we discuss the clinical implications that arise from altering the susceptibility to antibiotics. PMID:23034707

  4. Adenoid Reservoir for Pathogenic Biofilm Bacteria▿

    Science.gov (United States)

    Nistico, L.; Kreft, R.; Gieseke, A.; Coticchia, J. M.; Burrows, A.; Khampang, P.; Liu, Y.; Kerschner, J. E.; Post, J. C.; Lonergan, S.; Sampath, R.; Hu, F. Z.; Ehrlich, G. D.; Stoodley, P.; Hall-Stoodley, L.

    2011-01-01

    Biofilms of pathogenic bacteria are present on the middle ear mucosa of children with chronic otitis media (COM) and may contribute to the persistence of pathogens and the recalcitrance of COM to antibiotic treatment. Controlled studies indicate that adenoidectomy is effective in the treatment of COM, suggesting that the adenoids may act as a reservoir for COM pathogens. To investigate the bacterial community in the adenoid, samples were obtained from 35 children undergoing adenoidectomy for chronic OM or obstructive sleep apnea. We used a novel, culture-independent molecular diagnostic methodology, followed by confocal microscopy, to investigate the in situ distribution and organization of pathogens in the adenoids to determine whether pathogenic bacteria exhibited criteria characteristic of biofilms. The Ibis T5000 Universal Biosensor System was used to interrogate the extent of the microbial diversity within adenoid biopsy specimens. Using a suite of 16 broad-range bacterial primers, we demonstrated that adenoids from both diagnostic groups were colonized with polymicrobial biofilms. Haemophilus influenzae was present in more adenoids from the COM group (P = 0.005), but there was no significant difference between the two patient groups for Streptococcus pneumoniae or Staphylococcus aureus. Fluorescence in situ hybridization, lectin binding, and the use of antibodies specific for host epithelial cells demonstrated that pathogens were aggregated, surrounded by a carbohydrate matrix, and localized on and within the epithelial cell surface, which is consistent with criteria for bacterial biofilms. PMID:21307211

  5. A new rabbit model of implant-related biofilm infection: development and evaluation

    Science.gov (United States)

    Chu, Cheng-Bing; Zeng, Hong; Shen, Ding-Xia; Wang, Hui; Wang, Ji-Fang; Cui, Fu-Zhai

    2016-03-01

    This study is to establish a rabbit model for human prosthetic joint infection and biofilm formation. Thirty-two healthy adult rabbits were randomly divided into four groups and implanted with stainless steel screws and ultra-high molecular weight polyethylene (UHMWPE) washers in the non-articular surface of the femoral lateral condyle of the right hind knees. The rabbit knee joints were inoculated with 1 mL saline containing 0, 102, 103, 104 CFU of Staphylococcus epidermidis ( S. epidermidis) isolated from the patient with total knee arthroplasty (TKA) infection, respectively. On the 14th postoperative day, the UHMWPE washers from the optimal 103 CFU group were further examined. The SEM examination showed a typical biofilm construction that circular S. epidermidis were embedded in a mucous-like matrix. In addition, the LCSM examination showed that the biofilm consisted of the polysaccharide stained bright green fluorescence and S. epidermidis radiating red fluorescence. Thus, we successfully create a rabbit model for prosthetic joint infection and biofilm formation, which should be valuable for biofilm studies.

  6. Influence of methylene blue-mediated photodynamic therapy on the resistance to detachment of streptococcus mutans biofilms from titanium substrata

    Science.gov (United States)

    Sharab, Lina Y.

    delaminate from titanium while PDT-treated companion biofilms were removed at 90 to 140 dynes/cm2, depending on water flow rate. In comparison, it required only between 57 and 68 dynes/cm2 shear stress to separate microbial layers from within the exopolymer matrix of control biofilms, and between 39 and 51 dynes/cm2 to delaminate PDT-treated matrix sections of varying thickness biofilms, again depending on water flow rate. Multiple Attenuated Internal Reflection InfraRed spectra of identical biofilms, grown on germanium prisms having surface properties similar to those of cpTi, confirmed these differences in film-removal susceptibility for shear stresses as low as 10 dynes/cm2, and illustrated the PDT-induced preferential removal of predominantly the polysaccharide biofilm components. Scanning Electron Microscopy of Control and PDT-treated biofilms before and after water-jet impingement also confirmed these findings. These results are consistent with proposals that PDT induces oxidative embrittlement and fragmentation of plaque/biofilm matrix biopolymers, allowing easier release by hydrodynamic (rinsing) forces.

  7. Time-Resolved Analysis of Cytosolic and Surface-Associated Proteins of Staphylococcus aureus HG001 under Planktonic and Biofilm Conditions.

    Science.gov (United States)

    Moche, Martin; Schlüter, Rabea; Bernhardt, Jörg; Plate, Kristina; Riedel, Katharina; Hecker, Michael; Becher, Dörte

    2015-09-04

    Staphylococcal biofilms are associated with persistent infections due to their capacity to protect bacteria against the host's immune system and antibiotics. Cell-surface-associated proteins are of great importance during biofilm formation. In the present study, an optimized biotinylation approach for quantitative GeLC-MS-based analysis of the staphylococcal cell-surface proteome was applied and the cytoplasmic protein fraction was analyzed to elucidate proteomic differences between colony biofilms and planktonic cells. The experimental setup enabled a time-resolved monitoring of the proteome under both culture conditions and the comparison of biofilm cells to planktonic cells at several time points. This allowed discrimination of differences attributed to delayed growth phases from responses provoked by biofilm conditions. Biofilm cells expressed CcpA-dependent catabolic proteins earlier than planktonic cells and strongly accumulated proteins that belong to the SigB stress regulon. The amount of the cell-surface protein and virulence gene regulator Rot decreased within biofilms and MgrA-dependent regulations appeared more pronounced. Biofilm cells simultaneously up-regulated activators (e.g., SarZ) as well as repressors (e.g., SarX) of RNAIII. A decreased amount of high-affinity iron uptake systems and an increased amount of the iron-storage protein FtnA possibly indicated a lower demand of iron in biofilms.

  8. VANGL2 interacts with integrin αv to regulate matrix metalloproteinase activity and cell adhesion to the extracellular matrix.

    Science.gov (United States)

    Jessen, Tammy N; Jessen, Jason R

    2017-12-15

    Planar cell polarity (PCP) proteins are implicated in a variety of morphogenetic processes including embryonic cell migration and potentially cancer progression. During zebrafish gastrulation, the transmembrane protein Vang-like 2 (VANGL2) is required for PCP and directed cell migration. These cell behaviors occur in the context of a fibrillar extracellular matrix (ECM). While it is thought that interactions with the ECM regulate cell migration, it is unclear how PCP proteins such as VANGL2 influence these events. Using an in vitro cell culture model system, we previously showed that human VANGL2 negatively regulates membrane type-1 matrix metalloproteinase (MMP14) and activation of secreted matrix metalloproteinase 2 (MMP2). Here, we investigated the functional relationship between VANGL2, integrin αvβ3, and MMP2 activation. We provide evidence that VANGL2 regulates cell surface integrin αvβ3 expression and adhesion to fibronectin, laminin, and vitronectin. Inhibition of MMP14/MMP2 activity suppressed the cell adhesion defect in VANGL2 knockdown cells. Furthermore, our data show that MMP14 and integrin αv are required for increased proteolysis by VANGL2 knockdown cells. Lastly, we have identified integrin αvβ3 as a novel VANGL2 binding partner. Together, these findings begin to dissect the molecular underpinnings of how VANGL2 regulates MMP activity and cell adhesion to the ECM. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Focusing on Environmental Biofilms With Variable-Pressure Scanning Electron Microscopy

    Science.gov (United States)

    Joubert, L.; Wolfaardt, G. M.; Du Plessis, K.

    2006-12-01

    Since the term biofilm has been coined almost 30 years ago, visualization has formed an integral part of investigations on microbial attachment. Electron microscopic (EM) biofilm studies, however, have been limited by the hydrated extracellular matrix which loses structural integrity with conventional preparative techniques, and under required high-vacuum conditions, resulting in a loss of information on spatial relationships and distribution of biofilm microbes. Recent advances in EM technology enable the application of Variable Pressure Scanning Electron Microscopy (VP SEM) to biofilms, allowing low vacuum and hydrated chamber atmosphere during visualization. Environmental biofilm samples can be viewed in situ, unfixed and fully hydrated, with application of gold-sputter-coating only, to increase image resolution. As the impact of microbial biofilms can be both hazardous and beneficial to man and his environment, recognition of biofilms as a natural form of microbial existence is needed to fully assess the potential role of microbial communities on technology. The integration of multiple techniques to elucidate biofilm processes has become imperative for unraveling complex phenotypic adaptations of this microbial lifestyle. We applied VP SEM as integrative technique with traditional and novel analytical techniques to (1)localize lignocellulosic microbial consortia applied for producing alternative bio-energy sources in the mining wastewater industry, (2) characterize and visualize wetland microbial communities in the treatment of winery wastewater, and (3)determine the impact of recombinant technology on yeast biofilm behavior. Visualization of microbial attachment to a lignocellulose substrate, and degradation of exposed plant tissue, gave insight into fiber degradation and volatile fatty acid production for biological sulphate removal from mining wastewater. Also, the 3D-architecture of complex biofilms developing in constructed wetlands was correlated with

  10. Immune Evasion Mechanisms of Staphylococcus epidermidis Biofilm Infection

    Directory of Open Access Journals (Sweden)

    Katherine Y. Le

    2018-02-01

    Full Text Available The primary virulence factor of the skin commensal and opportunistic pathogen, Staphylococcus epidermidis, is the ability to form biofilms on surfaces of implanted materials. Much of this microorganism’s pathogenic success has been attributed to its ability to evade the innate immune system. The primary defense against S. epidermidis biofilm infection consists of complement activation, recruitment and subsequent killing of the pathogen by effector cells. Among pathogen-derived factors, the biofilm exopolysaccharide polysaccharide intercellular adhesion (PIA, as well as the accumulation-associated protein (Aap, and the extracellular matrix binding protein (Embp have been shown to modulate effector cell-mediated killing of S. epidermidis. Phenol-soluble modulins (PSMs constitute the only class of secreted toxins by S. epidermidis, at least one type of which (PSMδ possesses strong cytolytic properties toward leukocytes. However, through selective production of non-cytolytic subtypes of PSMs, S. epidermidis is able to maintain a low inflammatory infection profile and avoid eradication by the host immune system. Taken together, our emerging understanding of the mechanisms behind immune modulation by S. epidermidis elucidates the microorganism’s success in the initial colonization of device surfaces as well as the maintenance of a chronic and indolent course of biofilm infection.

  11. Extracellular DNA Release Acts as an Antifungal Resistance Mechanism in Mature Aspergillus fumigatus Biofilms

    Science.gov (United States)

    Rajendran, Ranjith; Williams, Craig; Lappin, David F.; Millington, Owain; Martins, Margarida

    2013-01-01

    Aspergillus fumigatus has been shown to form biofilms that are associated with adaptive antifungal resistance mechanisms. These include multidrug efflux pumps, heat shock proteins, and extracellular matrix (ECM). ECM is a key structural and protective component of microbial biofilms and in bacteria has been shown to contain extracellular DNA (eDNA). We therefore hypothesized that A. fumigatus biofilms also possess eDNA as part of the ECM, conferring a functional role. Fluorescence microscopy and quantitative PCR analyses demonstrated the presence of eDNA, which was released phase dependently (8 autolysis, were significantly upregulated as the biofilm matured and that inhibition of chitinases affected biofilm growth and stability, indicating mechanistically that autolysis was possibly involved. Finally, using checkerboard assays, it was shown that combinational treatment of biofilms with DNase plus amphotericin B and caspofungin significantly improved antifungal susceptibility. Collectively, these data show that eDNA is an important structural component of A. fumigatus ECM that is released through autolysis, which is important for protection from environmental stresses, including antifungal therapy. PMID:23314962

  12. Comparison of RNA extraction methods from biofilm samples of Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    França Angela

    2011-12-01

    Full Text Available Abstract Background Microbial biofilms are communities of bacteria adhered to a surface and surrounded by an extracellular polymeric matrix. Biofilms have been associated with increased antibiotic resistance and tolerance to the immune system. Staphylococcus epidermidis is the major bacterial species found in biofilm-related infections on indwelling medical devices. Obtaining high quality mRNA from biofilms is crucial to validate the transcriptional measurements associated with the switching to the biofilm mode of growth. Therefore, we selected three commercially available RNA extraction kits with distinct characteristics, including those using silica membrane or organic extraction methods, and enzymatic or mechanical cell lysis, and evaluated the RNA quality obtained from two distinct S. epidermidis bacterial biofilms. Results RNA extracted using the different kits was evaluated for quantity, purity, integrity, and functionally. All kits were able to extract intact and functional total RNA from the biofilms generated from each S. epidermidis strain. The results demonstrated that the kit based on mechanical lysis and organic extraction (FastRNA® Pro Blue was the only one that was able to isolate pure and large quantities of RNA. Normalized expression of the icaA virulence gene showed that RNA extracted with PureLink™ had a significant lower concentration of icaA mRNA transcripts than the other kits tested. Conclusions When working with complex samples, such as biofilms, that contain a high content extracellular polysaccharide and proteins, special care should be taken when selecting the appropriate RNA extraction system, in order to obtain accurate, reproducible, and biologically significant results. Among the RNA extraction kits tested, FastRNA® Pro Blue was the best option for both S. epidermidis biofilms used.

  13. Type III methyltransferase M.NgoAX from Neisseria gonorrhoeae FA1090 regulates biofilm formation and human cell invasion

    Directory of Open Access Journals (Sweden)

    Agnieszka eKwiatek

    2015-12-01

    , but more easily penetrate inside the host cells. All these data suggest that the NgoAX methyltransferase, may be implicated in N. gonorrhoeae pathogenicity, involving regulation of biofilm formation, adhesion to host cells and epithelial cell invasion.

  14. Comparison of transcriptional heterogeneity of eight genes between batch Desulfovibrio vulgaris biofilm and planktonic culture at a single-cell level

    Directory of Open Access Journals (Sweden)

    Zhenhua eQi

    2016-04-01

    Full Text Available Sulfate-reducing bacteria (SRB biofilm formed on metal surfaces can change the physicochemical properties of metals and cause metal corrosion. To enhance understanding of differential gene expression in Desulfovibrio vulgaris under planktonic and biofilm growth modes, a single-cell based RT-qPCR approach was applied to determine gene expression levels of 8 selected target genes in four sets of the 31 individual cells isolated from each growth condition (i.e., biofilm formed on a stainless steel (SS) and planktonic cultures, exponential and stationary phases. The results showed obvious gene-expression heterogeneity for the target genes among D. vulgaris single cells of both biofilm and planktonic cultures. In addition, an increased gene-expression heterogeneity in the D. vulgaris biofilm when compared with the planktonic culture was also observed for seven out of eight selected genes, which may be contributing to the increased complexity in terms of structures and morphology in the biofilm. Moreover, the results showed up-regulation of DVU0281 gene encoding exopolysaccharide biosynthesis protein, and down-regulation of genes involved in energy metabolism (i.e., DVU0434 and DVU0588, stress responses (i.e., DVU2410 and response regulator (i.e., DVU3062 in the D. vulgaris biofilm cells. Finally, the gene (DVU2571 involved in iron transportation was found down-regulated, and two genes (DVU1340 and DVU1397 involved in ferric uptake repressor and iron storage were up-regulated in D. vulgaris biofilm, suggesting their possible roles in maintaining normal metabolism of the D. vulgaris biofilm under environments of high concentration of iron. This study showed that the single-cell based analysis could be a useful approach in deciphering metabolism of microbial biofilms.

  15. Bacillus subtilis Biofilm Development – A Computerized Study of Morphology and Kinetics

    Directory of Open Access Journals (Sweden)

    Sarah Gingichashvili

    2017-11-01

    Full Text Available Biofilm is commonly defined as accumulation of microbes, embedded in a self-secreted extra-cellular matrix, on solid surfaces or liquid interfaces. In this study, we analyze several aspects of Bacillus subtilis biofilm formation using tools from the field of image processing. Specifically, we characterize the growth kinetics and morphological features of B. subtilis colony type biofilm formation and compare these in colonies grown on two different types of solid media. Additionally, we propose a model for assessing B. subtilis biofilm complexity across different growth conditions. GFP-labeled B. subtilis cells were cultured on agar surfaces over a 4-day period during which microscopic images of developing colonies were taken at equal time intervals. The images were used to perform a computerized analysis of few aspects of biofilm development, based on features that characterize the different phenotypes of B. subtilis colonies. Specifically, the analysis focused on the segmented structure of the colonies, consisting of two different regions of sub-populations that comprise the biofilm – a central “core” region and an “expanding” region surrounding it. Our results demonstrate that complex biofilm of B. subtillis grown on biofilm-promoting medium [standard lysogeny broth (LB supplemented with manganese and glycerol] is characterized by rapidly developing three-dimensional complex structure observed at its core compared to biofilm grown on standard LB. As the biofilm develops, the core size remains largely unchanged during development and colony expansion is mostly attributed to the expansion in area of outer cell sub-populations. Moreover, when comparing the bacterial growth on biofilm-promoting agar to that of colonies grown on LB, we found a significant decrease in the GFP production of colonies that formed a more complex biofilm. This suggests that complex biofilm formation has a diminishing effect on cell populations at the biofilm

  16. Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode.

    Science.gov (United States)

    Torres, César I; Marcus, Andrew Kato; Parameswaran, Prathap; Rittmann, Bruce E

    2008-09-01

    Anode-respiring bacteria (ARB) are able to transfer electrons from reduced substrates to a solid electrode. Previously, we developed a biofilm model based on the Nernst-Monod equation to describe the anode potential losses of ARB that transfer electrons through a solid conductive matrix. In this work, we develop an experimental setup to demonstrate how well the Nernst-Monod equation is able to represent anode potential losses in an ARB biofilm. We performed low-scan cyclic voltammetry (LSCV) throughout the growth phase of an ARB biofilm on a graphite electrode growing on acetate in continuous mode. The (j)V response of 9 LSCVs corresponded well to the Nernst-Monod equation, and the half-saturation potential (E(KA)) was -0.425 +/- 0.002 V vs Ag/AgCl at 30 degrees C (-0.155 +/- 0.002 V vs SHE). Anode-potential losses from the potential of acetate reached approximately 0.225 V at current density saturation, and this loss was determined by our microbial community's E(KA) value. The LSCVs at high current densities showed no significant deviation from the Nernst-Monod ideal shape, indicating that the conductivity of the biofilm matrix (kappa(bio)) was high enough (> or = 0.5 mS/cm) that potential loss did not affect the performance of the biofilm anode. Our results confirm the applicability of the Nernst-Monod equation for a conductive biofilm anode and give insights of the processes that dominate anode potential losses in microbial fuel cells.

  17. Evaluation of biofilm formation by bacterial strains isolated from milking equipment and milk samples from cows with mastitis

    Directory of Open Access Journals (Sweden)

    Laura Gonçalves da Silva Chagas

    2017-08-01

    Full Text Available The presence of biofilm-forming bacteria from the mammary gland of dairy cows adhered to equipment in the milking environment represents one of the major causes of bacterial resistance during mastitis treatment. The aim of this study was to identify strains of Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli in milk samples from cows with mastitis, as well as in the expansion tank and milking set liners. We aimed to quantify the extracellular proteins and polysaccharides in the biofilm produced by each strain. A total of 294 samples were collected from a dairy farm in the municipality of Uberlândia, Minas Gerais. To identify the S. aureus, S. epidermidis and E. coli isolates responsible for biofilm production, we tested the phenotype using the Congo red agar (CRA and microplate adhesion tests. Protein quantification was performed with a Bicinchoninic Acid Protein Assay Kit (BCA kit, and polysaccharides were quantified by the phenol sulfuric acid method. We identified eight strains of S. aureus, one strain of S. epidermidis and 11 strains of E. coli responsible for biofilm production, all of which showed a higher concentration of polysaccharides than proteins in the matrix. Escherichia coli was considered the most prevalent bacterium among the samples, and S. aureus was determined to be the largest biofilm producer. The results of the CRA and microplate adhesion tests were similar in regard to identification of the biofilm-producing strains according to their phenotype and matrix composition. The classification of S. aureus strains as major biofilm producers is of great concern for producers, as such bacteria are considered one of the predominant contagious etiological agents that cause bovine mastitis. In addition, our observation that E. coli and S. epidermidis can produce biofilms highlights the need to reassess prophylactic measures to avoid the adhesion of biofilm-producing bacteria.

  18. Growth, viability and architecture of biofilms of Listeria monocytogenes formed on abiotic surfaces

    Directory of Open Access Journals (Sweden)

    Fernanda Barbosa dos Reis-Teixeira

    Full Text Available Abstract The pathogenic bacterium Listeria monocytogenes can persist in food processing plants for many years, even when appropriate hygienic measures are in place, with potential for contaminating ready-to-eat products and, its ability to form biofilms on abiotic surfaces certainly contributes for the environmental persistence. In this research, L. monocytogenes was grown in biofilms up 8 days attached to stainless steel and glass surfaces, contributing for advancing the knowledge on architecture of mature biofilms, since many literature studies carried out on this topic considered only early stages of cell adhesion. In this study, biofilm populations of two strains of L. monocytogenes (serotypes 1/2a and 4b on stainless steel coupons and glass were examined using regular fluorescence microscopy, confocal laser scanning microscopy and classic culture method. The biofilms formed were not very dense and microscopic observations revealed uneven biofilm structures, with presence of exopolymeric matrix surrounding single cells, small aggregates and microcolonies, in a honeycomb-like arrangement. Moreover, planktonic population of L. monocytogenes (present in broth media covering the abiotic surface remained stable throughout the incubation time, which indicates an efficient dispersal mechanism, since the culture medium was replaced daily. In conclusion, even if these strains of L. monocytogenes were not able to form thick multilayer biofilms, it was noticeable their high persistence on abiotic surfaces, reinforcing the need to focus on measures to avoid biofilm formation, instead of trying to eradicate mature biofilms.

  19. Growth, viability and architecture of biofilms of Listeria monocytogenes formed on abiotic surfaces.

    Science.gov (United States)

    Reis-Teixeira, Fernanda Barbosa Dos; Alves, Virgínia Farias; de Martinis, Elaine Cristina Pereira

    The pathogenic bacterium Listeria monocytogenes can persist in food processing plants for many years, even when appropriate hygienic measures are in place, with potential for contaminating ready-to-eat products and, its ability to form biofilms on abiotic surfaces certainly contributes for the environmental persistence. In this research, L. monocytogenes was grown in biofilms up 8 days attached to stainless steel and glass surfaces, contributing for advancing the knowledge on architecture of mature biofilms, since many literature studies carried out on this topic considered only early stages of cell adhesion. In this study, biofilm populations of two strains of L. monocytogenes (serotypes 1/2a and 4b) on stainless steel coupons and glass were examined using regular fluorescence microscopy, confocal laser scanning microscopy and classic culture method. The biofilms formed were not very dense and microscopic observations revealed uneven biofilm structures, with presence of exopolymeric matrix surrounding single cells, small aggregates and microcolonies, in a honeycomb-like arrangement. Moreover, planktonic population of L. monocytogenes (present in broth media covering the abiotic surface) remained stable throughout the incubation time, which indicates an efficient dispersal mechanism, since the culture medium was replaced daily. In conclusion, even if these strains of L. monocytogenes were not able to form thick multilayer biofilms, it was noticeable their high persistence on abiotic surfaces, reinforcing the need to focus on measures to avoid biofilm formation, instead of trying to eradicate mature biofilms. Copyright © 2017. Published by Elsevier Editora Ltda.

  20. Regulation of Initial Attachment of P. aeruginosa

    Science.gov (United States)

    2010-12-08

    shown to play a role in promoting biofilm formation in diverse P. aeruginosa strains (Friedman and Kolter , 2004; Jackson et al., 2004; Ryder et al...34House of Biofilm Cells". J. Bacteriol. 189: 7945-7947. Friedman, L., and Kolter , R. (2004) Genes involved in matrix formation in Pseudomonas

  1. Extracellular dextran and DNA affect the formation of Enterococcus faecalis biofilms and their susceptibility to 2% chlorhexidine.

    Science.gov (United States)

    Li, Weilan; Liu, Hongyan; Xu, Qiong

    2012-07-01

    Enterococcus faecalis is frequently recovered from root-filled teeth with refractory apical periodontitis. The ability of E. faecalis to form a matrix-encased biofilm contributes to its pathogenicity; however, the role of extracellular dextran and DNA in biofilm formation and its effect on the susceptibility of the biofilm to chlorhexidine remains poorly understood. E. faecalis biofilms were incubated on dentin blocks. The effect of a dextran-degrading enzyme (dextranase) and DNase I on the adhesion of E. faecalis to dentin was measured using the colony-forming unit (CFU) counting method. CFU assays and confocal laser scanning microscopy were used to investigate the influence of dextranase and DNase I on the antimicrobial activity of 2% chlorhexidine. The CFU count assays indicated that the formation of biofilms by E. faecalis was reduced in cells treated with dextranase or DNase I compared with that in untreated cells (P biofilms with dextranase or DNase I effectively sensitized the biofilms to 2% chlorhexidine (P biofilms to 2% chlorhexidine. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Application of fluorescently labelled lectins for the study of polysaccharides in biofilms with a focus on biofouling of nanofiltration membranes

    Directory of Open Access Journals (Sweden)

    Patrick Di Martino

    2016-07-01

    Full Text Available The biofilm state is the dominant microbial lifestyle in nature. A biofilm can be defined as cells organised as microcolonies embedded in an organic polymer matrix of microbial origin living at an interface between two different liquids, air and liquid, or solid and liquid. The biofilm matrix is made of extracellular polymeric substances, polysaccharides being considered as the major structural components of the matrix. Fluorescently labelled lectins have been widely used to stain microbial extracellular glycoconjugates in natural and artificial environments, and to study specific bacterial species or highly complex environments. Biofilm development at the membrane surface conducting to biofouling is one of the major problems encountered during drinking water production by filtration. Biofouling affects the durability and effectiveness of filtration membranes. Biofouling can be reduced by pretreatments in order to control two key parameters of water, the bioavailable organic matter concentration and the concentration of live bacteria. Nanofiltration (NF is a high technology process particularly suited to the treatment of surface waters to produce drinking water that is highly sensitive to biofouling. The development of strategies for fouling prevention and control requires characterizing the fouling material composition and organisation before and after NF membrane cleaning. The aim of this review is to present basics of biofilm analyses after staining with fluorescently labelled lectins and to focus on the use of fluorescent lectins and confocal laser scanning microscopy to analyse NF membrane biofouling.

  3. Chemical Analysis of Cellular and Extracellular Carbohydrates of a Biofilm-Forming Strain Pseudomonas aeruginosa PA14

    Science.gov (United States)

    Coulon, Charlène; Vinogradov, Evgeny; Filloux, Alain; Sadovskaya, Irina

    2010-01-01

    Background Pseudomonas aeruginosa is a Gram-negative bacterium and an opportunistic pathogen, which causes persisting life-threatening infections in cystic fibrosis (CF) patients. Biofilm mode of growth facilitates its survival in a variety of environments. Most P. aeruginosa isolates, including the non-mucoid laboratory strain PA14, are able to form a thick pellicle, which results in a surface-associated biofilm at the air-liquid (A–L) interface in standing liquid cultures. Exopolysaccharides (EPS) are considered as key components in the formation of this biofilm pellicle. In the non-mucoid P. aeruginosa strain PA14, the “scaffolding” polysaccharides of the biofilm matrix, and the molecules responsible for the structural integrity of rigid A–L biofilm have not been identified. Moreover, the role of LPS in this process is unclear, and the chemical structure of the LPS O-antigen of PA14 has not yet been elucidated. Principal Findings In the present work we carried out a systematic analysis of cellular and extracellular (EC) carbohydrates of P. aeruginosa PA14. We also elucidated the chemical structure of the LPS O-antigen by chemical methods and 2-D NMR spectroscopy. Our results showed that it is composed of linear trisaccharide repeating units, identical to those described for P. aeruginosa Lanýi type O:2a,c (Lanýi-Bergman O-serogroup 10a, 10c; IATS serotype 19) and having the following structure: -4)-α-L-GalNAcA-(1–3)-α-D-QuiNAc-(1–3)- α-L-Rha-(1-. Furthermore, an EC O-antigen polysaccharide (EC O-PS) and the glycerol-phosphorylated cyclic β-(1,3)-glucans were identified in the culture supernatant of PA14, grown statically in minimal medium. Finally, the extracellular matrix of the thick biofilm formed at the A-L interface contained, in addition to eDNA, important quantities (at least ∼20% of dry weight) of LPS-like material. Conclusions We characterized the chemical structure of the LPS O-antigen and showed that the O-antigen polysaccharide is

  4. Biofilm roughness determines Cryptosporidium parvum retention in environmental biofilms.

    Science.gov (United States)

    DiCesare, E A Wolyniak; Hargreaves, B R; Jellison, K L

    2012-06-01

    The genus Cryptosporidium is a group of waterborne protozoan parasites that have been implicated in significant outbreaks of gastrointestinal infections throughout the world. Biofilms trap these pathogens and can contaminate water supplies through subsequent release. Biofilm microbial assemblages were collected seasonally from three streams in eastern Pennsylvania and used to grow biofilms in laboratory microcosms. Daily oocyst counts in the influx and efflux flow allowed the calculation of daily oocyst retention in the biofilm. Following the removal of oocysts from the influx water, oocyst attachment to the biofilm declined to an equilibrium state within 5 days that was sustained for at least 25 days. Varying the oocyst loading rate for the system showed that biofilm retention could be saturated, suggesting that discrete binding sites determined the maximum number of oocysts retained. Oocyst retention varied seasonally but was consistent across all three sites; however, seasonal oocyst retention was not consistent across years at the same site. No correlation between oocyst attachment and any measured water quality parameter was found. However, oocyst retention was strongly correlated with biofilm surface roughness and roughness varied among seasons and across years. We hypothesize that biofilm roughness and oocyst retention are dependent on environmentally driven changes in the biofilm community rather than directly on water quality conditions. It is important to understand oocyst transport dynamics to reduce risks of human infection. Better understanding of factors controlling biofilm retention of oocysts should improve our understanding of oocyst transport at different scales.

  5. Set potential regulation reveals additional oxidation peaks of Geobacter sulfurreducens anodic biofilms

    KAUST Repository

    Zhu, Xiuping

    2012-08-01

    Higher current densities produced in microbial fuel cells and other bioelectrochemical systems are associated with the presence of various Geobacter species. A number of electron transfer components are involved in extracellular electron transfer by the model exoelectrogen, Geobacter sulfurreducens. It has previously been shown that 5 main oxidation peaks can be identified in cyclic voltammetry scans. It is shown here that 7 separate oxidation peaks emerged over relatively long periods of time when a larger range of set potentials was used to acclimate electroactive biofilms. The potentials of oxidation peaks obtained with G. sulfurreducens biofilms acclimated at 0.60 V (vs. Ag/AgCl) were different from those that developed at - 0.46 V, and both of their peaks were different from those obtained for biofilms incubated at - 0.30 V, 0 V, and 0.30 V. These results expand the known range of potentials for which G. sulfurreducens produces identifiable oxidation peaks that could be important for extracellular electron transfer. © 2012 Elsevier B.V.

  6. A Bacillus subtilis Sensor Kinase Involved in Triggering Biofilm Formation on the Roots of Tomato Plants

    Science.gov (United States)

    Chen, Yun; Cao, Shugeng; Chai, Yunrong; Clardy, Jon; Kolter, Roberto; Guo, Jian-hua; Losick, Richard

    2012-01-01

    SUMMARY The soil bacterium Bacillus subtilis is widely used in agriculture as a biocontrol agent able to protect plants from a variety of pathogens. Protection is thought to involve the formation of bacterial communities - biofilms - on the roots of the plants. Here we used confocal microscopy to visualize biofilms on the surface of the roots of tomato seedlings and demonstrated that biofilm formation requires genes governing the production of the extracellular matrix that holds cells together. We further show that biofilm formation was dependent on the sensor histidine kinase KinD and in particular on an extracellular CACHE domain implicated in small molecule sensing. Finally, we report that exudates of tomato roots strongly stimulated biofilm formation ex planta and that an abundant small molecule in the exudates, l-malic acid, was able to stimulate biofilm formation at high concentrations in a manner that depended on the KinD CACHE domain. We propose that small signaling molecules released by the roots of tomato plants are directly or indirectly recognized by KinD, triggering biofilm formation. PMID:22716461

  7. Going beyond the Control of Quorum-Sensing to Combat Biofilm Infections

    Directory of Open Access Journals (Sweden)

    Wolf-Rainer Abraham

    2016-01-01

    Full Text Available Most bacteria attach to surfaces where they form a biofilm, cells embedded in a complex matrix of polymers. Cells in biofilms are much better protected against noxious agents than free-living cells. As a consequence it is very difficult to control pathogens with antibiotics in biofilm infections and novel targets are urgently needed. One approach aims at the communication between cells to form and to maintain a biofilm, a process called quorum-sensing. Water soluble small-sized molecules mediate this process and a number of antagonists of these compounds have been found. In this review natural compounds and synthetic drugs which do not interfere with the classical quorum-sensing compounds are discussed. For some of these compounds the targets are still not known, but others interfere with the formation of exopolysaccharides, virulence factors, or cell wall synthesis or they start an internal program of biofilm dispersal. Some of their targets are more conserved among pathogens than the receptors for quorum sensing autoinducers mediating quorum-sensing, enabling a broader application of the drug. The broad spectrum of mechanisms, the diversity of bioactive compounds, their activity against several targets, and the conservation of some targets among bacterial pathogens are promising aspects for several clinical applications of this type of biofilm-controlling compound in the future.

  8. Inhibiting effects of Streptococcus salivarius on competence-stimulating peptide-dependent biofilm formation by Streptococcus mutans.

    Science.gov (United States)

    Tamura, S; Yonezawa, H; Motegi, M; Nakao, R; Yoneda, S; Watanabe, H; Yamazaki, T; Senpuku, H

    2009-04-01

    The effects of Streptococcus salivarius on the competence-stimulating peptide (CSP)-dependent biofilm formation by Streptococcus mutans were investigated. Biofilms were grown on 96-well microtiter plates coated with salivary components in tryptic soy broth without dextrose supplemented with 0.25% sucrose. Biofilm formations were stained using safranin and quantification of stained biofilms was performed by measuring absorbance at 492 nm. S. mutans formed substantial biofilms, whereas biofilms of S. salivarius were formed poorly in the medium conditions used. Furthermore, in combination cultures, S. salivarius strongly inhibited biofilm formation when cultured with S. mutans. This inhibition occurred in the early phase of biofilm formation and was dependent on inactivation of the CSP of S. mutans, which is associated with competence, biofilm formation, and antimicrobial activity of the bacterium, and is induced by expression of the comC gene. Comparisons between the S. mutans clinical strains FSC-3 and FSC-3DeltaglrA in separate dual-species cultures with S. salivarius indicated that the presence of the bacitracin transport ATP-binding protein gene glrA caused susceptibility to inhibition of S. mutans biofilm formation by S. salivarius, and was also associated with the regulation of CSP production by com gene-dependent quorum sensing systems. It is considered that regulation of CSP by glrA in S. mutans and CSP inactivation by S. salivarius are important functions for cell-to-cell communication between biofilm bacteria and oral streptococci such as S. salivarius. Our results provide useful information for understanding the ecosystem of oral streptococcal biofilms, as well as the competition between and coexistence of multiple species in the oral cavity.

  9. Hydrodynamic dispersion within porous biofilms

    KAUST Repository

    Davit, Y.

    2013-01-23

    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher\\'s equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels\\' network; (2) the solute\\'s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. © 2013 American Physical Society.

  10. Osmotic Compounds Enhance Antibiotic Efficacy against Acinetobacter baumannii Biofilm Communities.

    Science.gov (United States)

    Falghoush, Azeza; Beyenal, Haluk; Besser, Thomas E; Omsland, Anders; Call, Douglas R

    2017-10-01

    Biofilm-associated infections are a clinical challenge, in part because a hydrated matrix protects the bacterial community from antibiotics. Herein, we evaluated how different osmotic compounds (maltodextrin, sucrose, and polyethylene glycol [PEG]) enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities. Established (24-h) test tube biofilms (strain ATCC 17978) were treated with osmotic compounds in the presence or absence of 10× the MIC of different antibiotics (50 μg/ml tobramycin, 20 μg/ml ciprofloxacin, 300 μg/ml chloramphenicol, 30 μg/ml nalidixic acid, or 100 μg/ml erythromycin). Combining antibiotics with hypertonic concentrations of the osmotic compounds for 24 h reduced the number of biofilm bacteria by 5 to 7 log ( P baumannii strains were similarly treated with 400-Da PEG and tobramycin, resulting in a mean 2.7-log reduction in recoverable bacteria compared with tobramycin treatment alone. Multivariate regression models with data from different osmotic compounds and nine antibiotics demonstrated that the benefit from combining hypertonic treatments with antibiotics is a function of antibiotic mass and lipophilicity ( r 2 > 0.82; P baumannii and Escherichia coli K-12. Augmenting topical antibiotic therapies with a low-mass hypertonic treatment may enhance the efficacy of antibiotics against wound biofilms, particularly when using low-mass hydrophilic antibiotics. IMPORTANCE Biofilms form a barrier that protects bacteria from environmental insults, including exposure to antibiotics. We demonstrated that multiple osmotic compounds can enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities, but viscosity is a limiting factor, and the most effective compounds have lower molecular mass. The synergism between osmotic compounds and antibiotics is also dependent on the hydrophobicity and mass of the antibiotics. The statistical models presented herein provide a basis for predicting the optimal combination of

  11. Surprisingly high substrate specificities observed in complex biofilms

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Kindaichi, Tomonori; Kragelund, Caroline

    The behavior of microorganisms in natural ecosystems (e.g. biofilms) differs significantly from laboratory studies. In nature microorganisms experience alternating periods of surplus nutrients, nutrient-limitation, and starvation. Literature data suggests that to survive and compete successfully......, microorganisms can regulate their metabolism expressing wide range of uptake and catabolic systems. However, ecophysiological studies of natural biofilms indicate that bacteria are very specialized in their choice of substrate, so even minor changes in substrate composition can affect the community composition...... by selection for different specialized species. We hypothesized that bacteria growing in natural environment express strongly conserved substrate specificity which is independent on short-term (few hours) variations in growth conditions. In this study, biofilm from Aalborg wastewater treatment plant was used...

  12. Preliminary Transcriptome Analysis of Mature Biofilm and Planktonic Cells of Salmonella Enteritidis Exposure to Acid Stress

    Directory of Open Access Journals (Sweden)

    Kun Jia

    2017-09-01

    Full Text Available Salmonella has emerged as a well-recognized food-borne pathogen, with many strains able to form biofilms and thus cause cross-contamination in food processing environments where acid-based disinfectants are widely encountered. In the present study, RNA sequencing was employed to establish complete transcriptome profiles of Salmonella Enteritidis in the forms of planktonic and biofilm-associated cells cultured in Tryptic Soytone Broth (TSB and acidic TSB (aTSB. The gene expression patterns of S. Enteritidis significantly differed between biofilm-associated and planktonic cells cultivated under the same conditions. The assembled transcriptome of S. Enteritidis in this study contained 5,442 assembled transcripts, including 3,877 differentially expressed genes (DEGs identified in biofilm and planktonic cells. These DEGs were enriched in terms such as regulation of biological process, metabolic process, macromolecular complex, binding and transferase activity, which may play crucial roles in the biofilm formation of S. Enteritidis cultivated in aTSB. Three significant pathways were observed to be enriched under acidic conditions: bacterial chemotaxis, porphyrin-chlorophyll metabolism and sulfur metabolism. In addition, 15 differentially expressed novel non-coding small RNAs (sRNAs were identified, and only one was found to be up-regulated in mature biofilms. This preliminary study of the S. Enteritidis transcriptome serves as a basis for future investigations examining the complex network systems that regulate Salmonella biofilm in acidic environments, which provide information on biofilm formation and acid stress interaction that may facilitate the development of novel disinfection procedures in the food processing industry.

  13. Biofilm Infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Jensen, Peter Østrup; Moser, Claus Ernst

    A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized...... as being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections...... such as diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well...

  14. "It's a gut feeling" - Escherichia coli biofilm formation in the gastrointestinal tract environment

    DEFF Research Database (Denmark)

    Rossi, Elio; Cimdins, Annika; Luthje, Petra

    2018-01-01

    Escherichia coli can commonly be found, either as a commensal, probiotic or a pathogen, in the human gastrointestinal (GI) tract. Biofilm formation and its regulation is surprisingly variable, although distinct regulatory pattern of red, dry and rough (rdar) biofilm formation arise in certain pat...

  15. Bacterial biofilms, resistance mechanisms to disinfection; Biopeliculas bacterianas (biofilms), mecanismos de resistencia a la desinfeccion

    Energy Technology Data Exchange (ETDEWEB)

    Codony Iglesias, F.; Morato Farreras, J.

    2002-07-01

    Biofilm is a cell community attached to a support surface, frequently enmeshed within a polymeric matrix secreted by the bacteria. Usually, such structures are developed in a wide range of materials. This development as attached to surfaces or forming suspended aggregates, greatly improve the microbial growth and their survival. This fact may be responsible of adverse effects over equipment and may constitute a public health hazard. In this work are reviewed the basis of the different microbial resistance mechanisms to disinfection from the cellular level to more complex microbial structure. (Author) 16 refs.

  16. Mini-review: Biofilm responses to oxidative stress.

    Science.gov (United States)

    Gambino, Michela; Cappitelli, Francesca

    2016-01-01

    Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.

  17. Effect of Negative Pressure on Proliferation, Virulence Factor Secretion, Biofilm Formation, and Virulence-Regulated Gene Expression of Pseudomonas aeruginosa In Vitro

    Directory of Open Access Journals (Sweden)

    Guo-Qi Wang

    2016-01-01

    Full Text Available Objective. To investigate the effect of negative pressure conditions induced by NPWT on P. aeruginosa. Methods. P. aeruginosa was cultured in a Luria–Bertani medium at negative pressure of −125 mmHg for 24 h in the experimental group and at atmospheric pressure in the control group. The diameters of the colonies of P. aeruginosa were measured after 24 h. ELISA kit, orcinol method, and elastin-Congo red assay were used to quantify the virulence factors. Biofilm formation was observed by staining with Alexa Fluor® 647 conjugate of concanavalin A (Con A. Virulence-regulated genes were determined by quantitative RT-PCR. Results. As compared with the control group, growth of P. aeruginosa was inhibited by negative pressure. The colony size under negative pressure was significantly smaller in the experimental group than that in the controls (p<0.01. Besides, reductions in the total amount of virulence factors were observed in the negative pressure group, including exotoxin A, rhamnolipid, and elastase. RT-PCR results revealed a significant inhibition in the expression level of virulence-regulated genes. Conclusion. Negative pressure could significantly inhibit the growth of P. aeruginosa. It led to a decrease in the virulence factor secretion, biofilm formation, and a reduction in the expression level of virulence-regulated genes.

  18. Dynamics Analysis for Hydroturbine Regulating System Based on Matrix Model

    Directory of Open Access Journals (Sweden)

    Jiafu Wei

    2017-01-01

    Full Text Available The hydraulic turbine model is the key factor which affects the analysis precision of the hydraulic turbine governing system. This paper discusses the basic principle of the hydraulic turbine matrix model and gives two methods to realize. Using the characteristic matrix to describe unit flow and torque and their relationship with the opening and unit speed, it can accurately represent the nonlinear characteristics of the turbine, effectively improve the convergence of simulation process, and meet the needs of high precision real-time simulation of power system. Through the simulation of a number of power stations, it indicates that, by analyzing the dynamic process of the hydraulic turbine regulating with 5-order matrix model, the calculation results and field test data will have good consistency, and it can better meet the needs of power system dynamic simulation.

  19. The Extracellular Matrix Regulates Granuloma Necrosis in Tuberculosis.

    Science.gov (United States)

    Al Shammari, Basim; Shiomi, Takayuki; Tezera, Liku; Bielecka, Magdalena K; Workman, Victoria; Sathyamoorthy, Tarangini; Mauri, Francesco; Jayasinghe, Suwan N; Robertson, Brian D; D'Armiento, Jeanine; Friedland, Jon S; Elkington, Paul T

    2015-08-01

    A central tenet of tuberculosis pathogenesis is that caseous necrosis leads to extracellular matrix destruction and bacterial transmission. We reconsider the underlying mechanism of tuberculosis pathology and demonstrate that collagen destruction may be a critical initial event, causing caseous necrosis as opposed to resulting from it. In human tuberculosis granulomas, regions of extracellular matrix destruction map to areas of caseous necrosis. In mice, transgenic expression of human matrix metalloproteinase 1 causes caseous necrosis, the pathological hallmark of human tuberculosis. Collagen destruction is the principal pathological difference between humanised mice and wild-type mice with tuberculosis, whereas the release of proinflammatory cytokines does not differ, demonstrating that collagen breakdown may lead to cell death and caseation. To investigate this hypothesis, we developed a 3-dimensional cell culture model of tuberculosis granuloma formation, using bioelectrospray technology. Collagen improved survival of Mycobacterium tuberculosis-infected cells analyzed on the basis of a lactate dehydrogenase release assay, propidium iodide staining, and measurement of the total number of viable cells. Taken together, these findings suggest that collagen destruction is an initial event in tuberculosis immunopathology, leading to caseous necrosis and compromising the immune response, revealing a previously unappreciated role for the extracellular matrix in regulating the host-pathogen interaction. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Poly-P storage by natural biofilms in streams with varying biogeochemistry

    Science.gov (United States)

    Carrick, H. J.

    2015-12-01

    Anthropogenic inputs of nitrogen (N) and phosphorus (P) have increased in many watersheds throughout the world; these inputs have been linked to the eutrophication of inland and coastal waters worldwide. We selected and surveyed 20, third-order streams that supported a range of water column biogeochemical conditions (conductivity, nutrient concentrations) located in the mid-Atlantic region, USA. Biofilm biomass, algal taxonomic composition, and nutrient stoichiometry (C, N, P, and poly-P) were measured at all stream sites. Pulse-amplitude modulation fluorometry (PAM) was used to estimate photosynthetic parameters for stream biofilms (e.g., alpha, Pmax), while microbiology techniques were used to verify poly-P storage by pro- and eukaryotic components of the biofilm (e.g., epi-fluorescent staining). As anticipated, chlorophyll ranged over 2 orders of magnitude among the streams (range 10-1,000 mg/m2). Biofilm chlorophyll and algal biovolume levels increased with water column nutrient contents, while the C:P ratio within the biofilm decreased. Both pro and eukaryotic organisms were present in resident biofilms and actively stored intracellular poly-P. Finally, the rate of photosynthetic within the biofilms appeared to be driven the nutritional condition of the biofilms; pmax and alpha values increased with significantly with stream biofilm poly-P content (r2 = 0.35 and 0.44, respectively). These results indicated that where nutrients are plentiful, biofilms P storage is favored, and this is likely a key regulator of stream biofilm biomass and productivity.

  1. Magnesium limitation is an environmental trigger of the Pseudomonas aeruginosa biofilm lifestyle.

    Directory of Open Access Journals (Sweden)

    Heidi Mulcahy

    Full Text Available Biofilm formation is a conserved strategy for long-term bacterial survival in nature and during infections. Biofilms are multicellular aggregates of cells enmeshed in an extracellular matrix. The RetS, GacS and LadS sensors control the switch from a planktonic to a biofilm mode of growth in Pseudomonas aeruginosa. Here we detail our approach to identify environmental triggers of biofilm formation by investigating environmental conditions that repress expression of the biofilm repressor RetS. Mg(2+ limitation repressed the expression of retS leading to increased aggregation, exopolysaccharide (EPS production and biofilm formation. Repression of retS expression under Mg(2+ limitation corresponded with induced expression of the GacA-controlled small regulatory RNAs rsmZ and rsmY and the EPS biosynthesis operons pel and psl. We recently demonstrated that extracellular DNA sequesters Mg(2+ cations and activates the cation-sensing PhoPQ two-component system, which leads to increased antimicrobial peptide resistance in biofilms. Here we show that exogenous DNA and EDTA, through their ability to chelate Mg(2+, promoted biofilm formation. The repression of retS in low Mg(2+ was directly controlled by PhoPQ. PhoP also directly controlled expression of rsmZ but not rsmY suggesting that PhoPQ controls the equilibrium of the small regulatory RNAs and thus fine-tunes the expression of genes in the RetS pathway. In summary, Mg(2+ limitation is a biologically relevant environmental condition and the first bonafide environmental signal identified that results in transcriptional repression of retS and promotes P. aeruginosa biofilm formation.

  2. Characterization of Desulfovibrio desulfuricans biofilm on high-alloyed stainless steel: XPS and electrochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Dec, Weronika [Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna Street 27, 43-200 Pszczyna (Poland); Mosiałek, Michał; Socha, Robert P. [Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Niezapominajek Street 8, 30-239 Kraków (Poland); Jaworska-Kik, Marzena [Department of Biopharmacy, Medical University of Silesia, Jedności Street 8, 41-200 Sosnowiec (Poland); Simka, Wojciech [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice (Poland); Michalska, Joanna, E-mail: joanna.k.michalska@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice (Poland)

    2017-07-01

    Results on D. desulfuricans biofilm formation on austenitic-ferritic duplex (2205 DSS) and superaustenitic (904L) stainless steels are presented. Surface characterization including the structure, configuration and chemical composition of biofilms were carried out using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS) measurements were used to monitor the attachment activity of bacteria on the steels' surface and to determine the effect of bacteria on passivity. It was proved that investigated steels are rapidly colonized by bacteria. The presence of biofilm caused significant ennoblement of 904L steel surface, while retarded the attainment of high passive state of 2205 DSS. XPS analysis revealed significant sulphidation of the biofilm and its layered structure. Accumulation of sulphides and hydroxides was proved in the outermost layer, while the increasing contents of disulphides, organometallic and C-N bonds were detected in the internal part of the biofilm. Irreversible bondings between steel matrix and biofilm had also been observed. - Highlights: • High-alloyed steels are rapidly colonized by sulphate-reducing bacteria. • Higher Ni content stimulates more intensive biofilm growth. • Extracellular polymeric substances indelibly bind to the high-alloyed steels. • Sulphate-reducing bacteria caused irreversible sulphidation of passive films.

  3. Characterization of Desulfovibrio desulfuricans biofilm on high-alloyed stainless steel: XPS and electrochemical studies

    International Nuclear Information System (INIS)

    Dec, Weronika; Mosiałek, Michał; Socha, Robert P.; Jaworska-Kik, Marzena; Simka, Wojciech; Michalska, Joanna

    2017-01-01

    Results on D. desulfuricans biofilm formation on austenitic-ferritic duplex (2205 DSS) and superaustenitic (904L) stainless steels are presented. Surface characterization including the structure, configuration and chemical composition of biofilms were carried out using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS) measurements were used to monitor the attachment activity of bacteria on the steels' surface and to determine the effect of bacteria on passivity. It was proved that investigated steels are rapidly colonized by bacteria. The presence of biofilm caused significant ennoblement of 904L steel surface, while retarded the attainment of high passive state of 2205 DSS. XPS analysis revealed significant sulphidation of the biofilm and its layered structure. Accumulation of sulphides and hydroxides was proved in the outermost layer, while the increasing contents of disulphides, organometallic and C-N bonds were detected in the internal part of the biofilm. Irreversible bondings between steel matrix and biofilm had also been observed. - Highlights: • High-alloyed steels are rapidly colonized by sulphate-reducing bacteria. • Higher Ni content stimulates more intensive biofilm growth. • Extracellular polymeric substances indelibly bind to the high-alloyed steels. • Sulphate-reducing bacteria caused irreversible sulphidation of passive films.

  4. Biophysics of biofilm infection.

    Science.gov (United States)

    Stewart, Philip S

    2014-04-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could (1) allow prevailing hydrodynamic shear to remove biofilm, (2) increase the efficacy of designed interventions for removing biofilms, (3) enable phagocytic engulfment of softened biofilm aggregates, and (4) improve phagocyte mobility and access to biofilm. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Imaging biofilm in porous media using X-ray computed microtomography.

    Science.gov (United States)

    Davit, Y; Iltis, G; Debenest, G; Veran-Tissoires, S; Wildenschild, D; Gerino, M; Quintard, M

    2011-04-01

    In this study, a new technique for three-dimensional imaging of biofilm within porous media using X-ray computed microtomography is presented. Due to the similarity in X-ray absorption coefficients for the porous media (plastic), biofilm and aqueous phase, an X-ray contrast agent is required to image biofilm within the experimental matrix using X-ray computed tomography. The presented technique utilizes a medical suspension of barium sulphate to differentiate between the aqueous phase and the biofilm. Potassium iodide is added to the suspension to aid in delineation between the biofilm and the experimental porous medium. The iodide readily diffuses into the biofilm while the barium sulphate suspension remains in the aqueous phase. This allows for effective differentiation of the three phases within the experimental systems utilized in this study. The behaviour of the two contrast agents, in particular of the barium sulphate, is addressed by comparing two-dimensional images of biofilm within a pore network obtained by (1) optical visualization and (2) X-ray absorption radiography. We show that the contrast mixture provides contrast between the biofilm, the aqueous-phase and the solid-phase (beads). The imaging method is then applied to two three-dimensional packed-bead columns within which biofilm was grown. Examples of reconstructed images are provided to illustrate the effectiveness of the method. Limitations and applications of the technique are discussed. A key benefit, associated with the presented method, is that it captures a substantial amount of information regarding the topology of the pore-scale transport processes. For example, the quantification of changes in porous media effective parameters, such as dispersion or permeability, induced by biofilm growth, is possible using specific upscaling techniques and numerical analysis. We emphasize that the results presented here serve as a first test of this novel approach; issues with accurate segmentation of

  6. Biofilms of a Bacillus subtilis hospital isolate protect Staphylococcus aureus from biocide action.

    Directory of Open Access Journals (Sweden)

    Arnaud Bridier

    Full Text Available The development of a biofilm constitutes a survival strategy by providing bacteria a protective environment safe from stresses such as microbicide action and can thus lead to important health-care problems. In this study, biofilm resistance of a Bacillus subtilis strain (called hereafter ND(medical recently isolated from endoscope washer-disinfectors to peracetic acid was investigated and its ability to protect the pathogen Staphylococcus aureus in mixed biofilms was evaluated. Biocide action within Bacillus subtilis biofilms was visualised in real time using a non-invasive 4D confocal imaging method. The resistance of single species and mixed biofilms to peracetic acid was quantified using standard plate counting methods and their architecture was explored using confocal imaging and electronic microscopy. The results showed that the ND(medical strain demonstrates the ability to make very large amount of biofilm together with hyper-resistance to the concentration of PAA used in many formulations (3500 ppm. Evidences strongly suggest that the enhanced resistance of the ND(medical strain was related to the specific three-dimensional structure of the biofilm and the large amount of the extracellular matrix produced which can hinder the penetration of peracetic acid. When grown in mixed biofilm with Staphylococcus aureus, the ND(medical strain demonstrated the ability to protect the pathogen from PAA action, thus enabling its persistence in the environment. This work points out the ability of bacteria to adapt to an extremely hostile environment, and the necessity of considering multi-organism ecosystems instead of single species model to decipher the mechanisms of biofilm resistance to antimicrobials agents.

  7. Investigation of biofilm formation on contact eye lenses caused by methicillin resistant Staphylococcus aureus.

    Science.gov (United States)

    Khalil, M A; Sonbol, F I

    2014-01-01

    The objective was to investigate the biofilm-forming capacity of methicillin resistant Staphylococcus aureus (MRSA) isolated from eye lenses of infected patients. A total of 32 MRSA isolated from contact lenses of patients with ocular infections were screened for their biofilm-forming capacity using tube method (TM), Congo red agar (CRA), and microtiter plate (MtP) methods. The effect of some stress factor on the biofilm formation was studied. The biofilm-forming related genes, icaA, icaD and 10 microbial surface components that recognize adhesive matrix molecule (MSCRAMM), of the selected MRSA were also detected using polymerase chain reaction. Of 32 MRSA isolates, 34.37%, 59.37%, and 81.25% showed positive results using CRA, TM or MtP, respectively. Biofilm production was found to be reduced in the presence of ethanol or ethylenediaminetetraacetic acid and at extreme pH values. On the other hand, glucose or heparin leads to a concentration dependent increase of biofilm production by the isolates. The selected biofilm producing MRSA isolate was found to harbor the icaA, icaD and up to nine of 10 tested MSCRAMM genes, whereas the selected non biofilm producing MRSA isolate did not carry any of the tested genes. The MtP method was found to be the most effective phenotypic screening method for detection of biofilm formation by MRSA. Furthermore, the molecular approach should be taken into consideration for the rapid and correct diagnosis of virulent bacteria associated with contact eye lenses.

  8. [Bacterial biofilms and infection].

    Science.gov (United States)

    Lasa, I; Del Pozo, J L; Penadés, J R; Leiva, J

    2005-01-01

    In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths) and cancer (7.1 million deaths) (WHO report 2004). The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  9. Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization.

    Science.gov (United States)

    Dzamba, Bette J; Jakab, Karoly R; Marsden, Mungo; Schwartz, Martin A; DeSimone, Douglas W

    2009-03-01

    In this study we demonstrate that planar cell polarity signaling regulates morphogenesis in Xenopus embryos in part through the assembly of the fibronectin (FN) matrix. We outline a regulatory pathway that includes cadherin adhesion and signaling through Rac and Pak, culminating in actin reorganization, myosin contractility, and tissue tension, which, in turn, directs the correct spatiotemporal localization of FN into a fibrillar matrix. Increased mechanical tension promotes FN fibril assembly in the blastocoel roof (BCR), while reduced BCR tension inhibits matrix assembly. These data support a model for matrix assembly in tissues where cell-cell adhesions play an analogous role to the focal adhesions of cultured cells by transferring to integrins the tension required to direct FN fibril formation at cell surfaces.

  10. Biofilm-Associated Gene Expression in Staphylococcus pseudintermedius on a Variety of Implant Materials.

    Science.gov (United States)

    Crawford, Evan C; Singh, Ameet; Gibson, Thomas W G; Scott Weese, J

    2016-05-01

    To evaluate the expression of biofilm-associated genes in Staphylococcus pseudintermedius on multiple clinically relevant surfaces. In vitro experimental study. Two strains of methicillin-resistant S. pseudintermedius isolated from clinical infections representing the most common international isolates. A quantitative polymerase chain reaction (qPCR) assay for expression of genes related to biofilm initial adhesion, formation/maturation, antimicrobial resistance, and intracellular communication was developed and validated. S. pseudintermedius biofilms were grown on 8 clinically relevant surfaces (polymethylmethacrylate, stainless steel, titanium, latex, silicone, polydioxanone, polystyrene, and glass) and samples of logarithmic and stationary growth phases were collected. Gene expression in samples was measured by qPCR. Significant differences in gene expression were identified between surfaces and between bacterial strains for most gene/strain/surface combinations studied. Expression of genes responsible for production of extracellular matrix were increased in biofilms. Expression of genes responsible for initial adhesion and intracellular communication was markedly variable. Antimicrobial resistance gene expression was increased on multiple surfaces, including stainless steel and titanium. A method for evaluation of expression of multiple biofilm-associated genes in S. pseudintermedius was successfully developed and applied to the study of biofilms on multiple surfaces. Variations in expression of these genes have a bearing on understanding the development and treatment of implant-associated biofilm infections and will inform future clinical research. © Copyright 2016 by The American College of Veterinary Surgeons.

  11. The impact of shearing flows on electroactive biofilm formation, structure, and current generation

    Science.gov (United States)

    Jones, A.-Andrew; Buie, Cullen

    2016-11-01

    A special class of bacteria exist that directly produce electricity. First explored in 1911, these electroactive bacteria catalyze hydrocarbons and transport electrons directly to a metallic electron acceptor forming thicker biofilms than other species. Electroactive bacteria biofilms are thicker because they are not limited by transport of oxygen or other terminal electron acceptors. Electroactive bacteria can produce power in fuel cells. Power production is limited in fuel cells by the bacteria's inability to eliminate protons near the insoluble electron acceptor not utilized in the wild. To date, they have not been successfully evolved or engineered to overcome this limit. This limitation may be overcome by enhancing convective mass transport while maintaining substantial biomass within the biofilm. Increasing convective mass transport increases shear stress. A biofilm may respond to increased shear by changing biomass, matrix, or current production. In this study, a rotating disk electrode is used to separate nutrient from physical stress. This phenomenon is investigated using the model electroactive bacterium Geobacter sulfurreducens at nutrient loads comparable to flow-through microbial fuel cells. We determine biofilm structure experimentally by measuring the porosity and calculating the tortuosity from confocal microscope images. Biofilm adaptation for electron transport is quantified using electrical impedance spectroscopy. Our ultimate objective is a framework relating biofilm thickness, porosity, shear stress and current generation for the optimization of bioelectrochemical systems The Alfred P Sloan Foundation MPHD Program.

  12. Microbial Biofilms: Persisters, Tolerance and Dosing

    Science.gov (United States)

    Cogan, N. G.

    2005-03-01

    Almost all moist surfaces are colonized by microbial biofilms. Biofilms are implicated in cross-contamination of food products, biofouling, medical implants and various human infections such as dental cavities, ulcerative colitis and chronic respiratory infections. Much of current research is focused on the recalcitrance of biofilms to typical antibiotic and antimicrobial treatments. Although the polymer component of biofilms impedes the penetration of antimicrobials through reaction-diffusion limitation, this does not explain the observed tolerance, it merely delays the action of the agent. Heterogeneities in growth-rate also slow the eradication of the bacteria since most antimicrobials are far less effective for non-growing, or slowly growing bacteria. This also does not fully describe biofilm tolerance, since heterogeneities arr primairly a result of nutrient consumption. In this investigation, we describe the formation of `persister' cells which neither grow nor die in the presence of antibiotics. We propose that the cells are of a different phenotype than typical bacterial cells and the expression of the phenotype is regulated by the growth rate and the antibiotic concentration. We describe several experiments which describe the dynamics of persister cells and which motivate a dosing protocol that calls for periodic dosing of the population. We then introduce a mathematical model, which describes the effect of such a dosing regiment and indicates that the relative dose/withdrawal times are important in determining the effectiveness of such a treatment. A reduced model is introduced and the similar behavior is demonstrated analytically.

  13. Kaffir lime leaves extract inhibits biofilm formation by Streptococcus mutans.

    Science.gov (United States)

    Kooltheat, Nateelak; Kamuthachad, Ludthawun; Anthapanya, Methinee; Samakchan, Natthapon; Sranujit, Rungnapa Pankla; Potup, Pachuen; Ferrante, Antonio; Usuwanthim, Kanchana

    2016-04-01

    Although kaffir lime has been reported to exhibit antioxidant and antileukemic activity, little is known about the antimicrobial effect of kaffir lime extract. Because Streptococcus mutans has been known to cause biofilm formation, it has been considered the most important causative pathogen of dental caries. Thus, the effective control of its effects on the oral biofilm is the key to the prevention of dental caries. The aims of the present study were to investigate the effect of kaffir lime leaves extract on biofilm formation and its antibacterial activity on S. mutans. We examined the effect of kaffir lime leaves extract on growth and biofilm formation of S. mutans. For the investigation we used a kaffir lime extract with high phenolic content. The minimum inhibitory concentration of the extract was determined by broth microdilution assay. The inhibitory effect of the test substances on biofilm formation was also investigated by biofilm formation assay and qRT-PCR of biofilm formation-associated genes. Kaffir lime leaves extract inhibits the growth of S. mutans, corresponding to the activity of an antibiotic, ampicillin. Formation of biofilm by S. mutans was also inhibited by the extract. These results were confirmed by the down-regulation of genes associated with the biofilm formation. The findings highlight the ability of kaffir lime leaves extract to inhibit S. mutans activity, which may be beneficial in the prevention of biofilm formation on dental surface, reducing dental plaque and decreasing the chance of dental carries. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. [Bacterial biofilms as a natural form of existence of bacteria in the environment and host organism].

    Science.gov (United States)

    Romanova, Iu M; Gintsburg, A L

    2011-01-01

    Advances in microscopic analysis and molecular genetics research methods promoted the acquisition of evidence that natural bacteria populations exist predominately as substrate attached biofilms. Bacteria in biofilms are able to exchange signals and display coordinated activity that is inherent to multicellular organisms. Formation of biofilm communities turned out to be one of the main survival strategies of bacteria in their ecological niche. Bacteria in attached condition in biofilm are protected from the environmental damaging factors and effects of antibacterial substances in the environment and host organism during infection. According to contemporary conception, biofilm is a continuous layer of bacterial cells that are attached to a surface and each other, and contained in a biopolymer matrix. Such bacterial communities may be composed of bacteria of one or several species, and composed of actively functioning cells as well as latent and uncultured forms. Particular attention has recently been paid to the role of biofilms in the environment and host organism. Microorganisms form biofilm on any biotic and abiotic surfaces which creates serious problems in medicine and various areas of economic activity. Currently, it is established that biofilms are one of the pathogenetic factors of chronic inflection process formation. The review presents data on ubiquity of bacteria existence as biofilms, contemporary methods of microbial community analysis, structural-functional features of bacterial biofilms. Particular attention is paid to the role of biofilm in chronic infection process formation, heightened resistance to antibiotics of bacteria in biofilms and possible mechanisms of resistance. Screening approaches for agents against biofilms in chronic infections are discussed.

  15. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense.

    Science.gov (United States)

    Arruebarrena Di Palma, Andrés; Pereyra, Cintia M; Moreno Ramirez, Lizbeth; Xiqui Vázquez, María L; Baca, Beatriz E; Pereyra, María A; Lamattina, Lorenzo; Creus, Cecilia M

    2013-01-01

    Azospirillum brasilense is a rhizobacterium that provides beneficial effects on plants when they colonize roots. The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with surfaces in response to appropriate signals. Nitric oxide (NO) is a signaling molecule implicated in numerous processes in bacteria, including biofilm formation or dispersion, depending on genera and lifestyle. Azospirillum brasilense Sp245 produces NO by denitrification having a role in root growth promotion. We analyzed the role of endogenously produced NO on biofilm formation in A. brasilense Sp245 and in a periplasmic nitrate reductase mutant (napA::Tn5; Faj164) affected in NO production. Cells were statically grown in media with nitrate or ammonium as nitrogen sources and examined for biofilm formation using crystal violet and by confocal laser microscopy. Both strains formed biofilms, but the mutant produced less than half compared with the wild type in nitrate medium showing impaired nitrite production in this condition. NO measurements in biofilm confirmed lower values in the mutant strain. The addition of a NO donor showed that NO influences biofilm formation in a dose-dependent manner and reverses the mutant phenotype, indicating that Nap positively regulates the formation of biofilm in A. brasilense Sp245. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Response of Muddy Sediments and Benthic Diatom-based Biofilms to Repeated Erosion Events

    Science.gov (United States)

    Valentine, K.; Mariotti, G.; Fagherazzi, S.

    2016-02-01

    Benthic biofilms, microbes aggregated within a matrix of Extracellular Polymeric Substances (EPS), are commonly found in shallow coastal areas and intertidal environments. Biofilms have the potential to stabilize sediments, hence reducing erosion and possibly mitigating land loss. The purpose of this study is to determine how repeated flow events that rework the bed affect biofilm growth and its ability to stabilize cohesive sediments. Natural mud devoid of grazers was used to create placed beds in four annular flumes; biofilms were allowed to grow on the sediment surface. Each flume was eroded at different time intervals (1 or 12 days) to allow for varied levels of biofilm growth and adjustment following erosion. In addition, experiments with abiotic mud were performed by adding bleach to the tank. Each erosion test consisted of step-wise increases in flow that were used to measured erodibility. In the experiments where the bed was eroded every day both the abiotic and biotic flumes exhibited a decrease in erodibility with time, likely due to consolidation, but the decrease in erodibility was greater in the flume with a biofilm. Specifically the presence of biofilm reduced bed erosion at low shear stresses ( 0.1 Pa). We attribute this progressive decrease in erodibility to the accumulation of EPS over time: even though the biofilm was eroded during each erosion event, the EPS was retained within the flume, mixed with the eroded sediment and eventually settled. Less frequent erosion allowed the growth of a stronger biofilm that decreased bed erosion at higher shear stresses ( 0.4 Pa). We conclude that the time between destructive flow events influences the ability of biofilms to stabilize sediments. This influence will likely be affected by biofilm growth conditions such as light, temperature, nutrients, salinity, and the microbial community.

  17. Cellulose as an Architectural Element in Spatially Structured Escherichia coli Biofilms

    Science.gov (United States)

    Serra, Diego O.; Richter, Anja M.

    2013-01-01

    Morphological form in multicellular aggregates emerges from the interplay of genetic constitution and environmental signals. Bacterial macrocolony biofilms, which form intricate three-dimensional structures, such as large and often radially oriented ridges, concentric rings, and elaborate wrinkles, provide a unique opportunity to understand this interplay of “nature and nurture” in morphogenesis at the molecular level. Macrocolony morphology depends on self-produced extracellular matrix components. In Escherichia coli, these are stationary phase-induced amyloid curli fibers and cellulose. While the widely used “domesticated” E. coli K-12 laboratory strains are unable to generate cellulose, we could restore cellulose production and macrocolony morphology of E. coli K-12 strain W3110 by “repairing” a single chromosomal SNP in the bcs operon. Using scanning electron and fluorescence microscopy, cellulose filaments, sheets and nanocomposites with curli fibers were localized in situ at cellular resolution within the physiologically two-layered macrocolony biofilms of this “de-domesticated” strain. As an architectural element, cellulose confers cohesion and elasticity, i.e., tissue-like properties that—together with the cell-encasing curli fiber network and geometrical constraints in a growing colony—explain the formation of long and high ridges and elaborate wrinkles of wild-type macrocolonies. In contrast, a biofilm matrix consisting of the curli fiber network only is brittle and breaks into a pattern of concentric dome-shaped rings separated by deep crevices. These studies now set the stage for clarifying how regulatory networks and in particular c-di-GMP signaling operate in the three-dimensional space of highly structured and “tissue-like” bacterial biofilms. PMID:24097954

  18. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Science.gov (United States)

    Wang, Zhejun; de la Fuente-Núñez, Cesar; Shen, Ya; Haapasalo, Markus; Hancock, Robert E W

    2015-01-01

    Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM), peptide 1018 was able to significantly (pbiofilm formation over 3 days. The activity of the peptide on preformed biofilms was found to be concentration-dependent since more than 60% of the total plaque biofilm cell population was killed by 10 μg/ml of peptide 1018 in 3 days, while at 5 μg/ml 50% of cells were dead and at 1 μg/ml the peptide triggered cell death in around 30% of the total bacterial population, as revealed by confocal microscopy. The presence of saliva did not affect peptide activity, since no statistically significant difference was found in the ability of peptide 1018 to kill oral biofilms using either saliva coated and non-saliva coated hydroxyapatite surfaces. Scanning electron microscopy experiments indicated that peptide 1018 induced cell lysis in plaque biofilms. Furthermore, combined treatment using peptide 1018 and chlorhexidine (CHX) increased the anti-biofilm activity of each compound compared to when these were used alone, resulting in >50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  19. Evaluation of anti-Listeria meat borne Lactobacillus for biofilm formation on selected abiotic surfaces.

    Science.gov (United States)

    Pérez Ibarreche, Mariana; Castellano, Patricia; Vignolo, Graciela

    2014-01-01

    The ability of meat borne anti-Listeria Lactobacillus to form biofilms under different in vitro conditions and on abiotic surfaces was investigated. Biofilm formation by the adhesion to polystyrene microtiter plates was determined, this being higher for Lactobacillus curvatus CRL1532 and CRL705 and Lactobacillus sakei CRL1862. The physicochemical properties of the cell surface were relatively hydrophilic and acidic in character; L. sakei CRL1862 exhibiting the strongest autoaggregation. The adhesion of lactobacilli to stainless steel (SS) and polytetrafluoroethylene (PTFE) supports at 10°C was found to be maximal for L. sakei CRL1862 on SS after 6 days. When biofilm architecture was characterized by epifluorescence and SEM, L. sakei CRL1862 homogeneously covered the SS surface while cell clusters were observed on PTFE; the extracellular polymeric substance matrix adapted to the topography and hydrophilic/hydrophobic characteristics of each material. The feasibility of L. sakei CRL1862 to form biofilm on materials used in meat processing highlights its potential as a control strategy for Listeria monocytogenes biofilms. © 2013. Published by Elsevier Ltd. All rights reserved.

  20. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA isolates of swine origin form robust biofilms.

    Directory of Open Access Journals (Sweden)

    Tracy L Nicholson

    Full Text Available Methicillin-resistant Staphylococcus aureus (MRSA colonization of livestock animals is common and prevalence rates for pigs have been reported to be as high as 49%. Mechanisms contributing to the persistent carriage and high prevalence rates of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA strains in swine herds and production facilities have not been investigated. One explanation for the high prevalence of MRSA in swine herds is the ability of these organisms to exist as biofilms. In this report, the ability of swine LA-MRSA strains, including ST398, ST9, and ST5, to form biofilms was quantified and compared to several swine and human isolates. The contribution of known biofilm matrix components, polysaccharides, proteins and extracellular DNA (eDNA, was tested in all strains as well. All MRSA swine isolates formed robust biofilms similar to human clinical isolates. The addition of Dispersin B had no inhibitory effect on swine MRSA isolates when added at the initiation of biofilm growth or after pre-established mature biofilms formed. In contrast, the addition of proteinase K inhibited biofilm formation in all strains when added at the initiation of biofilm growth and was able to disperse pre-established mature biofilms. Of the LA-MRSA strains tested, we found ST398 strains to be the most sensitive to both inhibition of biofilm formation and dispersal of pre-formed biofilms by DNaseI. Collectively, these findings provide a critical first step in designing strategies to control or eliminate MRSA in swine herds.

  1. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ryan, Robert P.; Lucey, Jean; O'Donovan, Karen

    2009-01-01

    residues (YN-GYP). Here we have investigated the role of these proteins in biofilm formation, virulence factor synthesis and virulence of P. aeruginosa. Mutation of PA4108 and PA4781 led to an increase in the level of cyclic-di-GMP in P. aeruginosa, consistent with the predicted activity of the encoded......2572 had a negative influence on swarming that was cryptic and was revealed only after removal of an uncharacterized C-terminal domain. Mutation of PA4108, PA4781 and PA2572 had distinct effects on biofilm formation and architecture of P. aeruginosa. All three proteins contributed to virulence of P...

  2. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Directory of Open Access Journals (Sweden)

    Zhejun Wang

    Full Text Available Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM, peptide 1018 was able to significantly (p50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  3. Bacterial biofilms and quorum sensing: fidelity in bioremediation technology.

    Science.gov (United States)

    Mangwani, Neelam; Kumari, Supriya; Das, Surajit

    Increased contamination of the environment with toxic pollutants has paved the way for efficient strategies which can be implemented for environmental restoration. The major problem with conventional methods used for cleaning of pollutants is inefficiency and high economic costs. Bioremediation is a growing technology having advanced potential of cleaning pollutants. Biofilm formed by various micro-organisms potentially provide a suitable microenvironment for efficient bioremediation processes. High cell density and stress resistance properties of the biofilm environment provide opportunities for efficient metabolism of number of hydrophobic and toxic compounds. Bacterial biofilm formation is often regulated by quorum sensing (QS) which is a population density-based cell-cell communication process via signaling molecules. Numerous signaling molecules such as acyl homoserine lactones, peptides, autoinducer-2, diffusion signaling factors, and α-hydroxyketones have been studied in bacteria. Genetic alteration of QS machinery can be useful to modulate vital characters valuable for environmental applications such as biofilm formation, biosurfactant production, exopolysaccharide synthesis, horizontal gene transfer, catabolic gene expression, motility, and chemotaxis. These qualities are imperative for bacteria during degradation or detoxification of any pollutant. QS signals can be used for the fabrication of engineered biofilms with enhanced degradation kinetics. This review discusses the connection between QS and biofilm formation by bacteria in relation to bioremediation technology.

  4. Pathology and biofilm formation in a porcine model of staphylococcal osteomyelitis

    DEFF Research Database (Denmark)

    Johansen, L K; Koch, J; Frees, D

    2012-01-01

    A porcine model was used to examine the potential of human and porcine Staphylococcus aureus isolates to induce haematogenously spread osteomyelitis. Pigs were inoculated in the right femoral artery with one of the following S. aureus strains: S54F9 (from a porcine lung abscess; n = 3 animals), N...... dependent on the strain of bacteria inoculated and on the formation of a biofilm....... with colonies of S. aureus as demonstrated immunohistochemically. By peptide nucleic acid fluorescence in situ hybridization bacterial aggregates were demonstrated to be embedded in an opaque matrix, indicating that the bacteria had formed a biofilm. Development of experimental osteomyelitis was therefore...

  5. Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: Survival and transfer to salmon products.

    Science.gov (United States)

    Hansen, Lisbeth Truelstrup; Vogel, Birte Fonnesbech

    2011-03-15

    The foodborne bacterial pathogen, Listeria monocytogenes, commonly contaminates foods during processing, where the microorganisms are potentially subjected to low relative humidity (RH) conditions for extended periods of time. The objective of this study was to examine survival during desiccation (43% RH and 15 °C) of biofilm L. monocytogenes N53-1 cells on stainless steel coupons and to assess subsequent transfer to salmon products. Formation of static biofilm (2 days at 100% RH and 15 °C) prior to desiccation for 23 days significantly (Pbiofilm cells also desiccated in low salt, indicating the protective effect of the biofilm matrix. Osmoadaptation of cells in 5% NaCl before formation of the static biofilm significantly (Pbiofilm cells was significantly (Pbiofilm bacteria, however, as biofilm formation enhanced desiccation survival more bacteria were still transferred to smoked and fresh salmon. In conclusion, the current work shows the protective effect of biofilm formation, salt and osmoadaptation on the desiccation survival of L. monocytogenes, which in turn increases the potential for cross-contamination during food processing. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. The in vivo biofilm

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Maria; Alhede, Morten

    2013-01-01

    Bacteria can grow and proliferate either as single, independent cells or organized in aggregates commonly referred to as biofilms. When bacteria succeed in forming a biofilm within the human host, the infection often becomes very resistant to treatment and can develop into a chronic state. Biofilms...... have been studied for decades using various in vitro models, but it remains debatable whether such in vitro biofilms actually resemble in vivo biofilms in chronic infections. In vivo biofilms share several structural characteristics that differ from most in vitro biofilms. Additionally, the in vivo...... experimental time span and presence of host defenses differ from chronic infections and the chemical microenvironment of both in vivo and in vitro biofilms is seldom taken into account. In this review, we discuss why the current in vitro models of biofilms might be limited for describing infectious biofilms...

  7. Salmonella biofilms

    NARCIS (Netherlands)

    Castelijn, G.A.A.

    2013-01-01

    Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm

  8. Streptococcus mutans copper chaperone, CopZ, is critical for biofilm formation and competitiveness.

    Science.gov (United States)

    Garcia, S S; Du, Q; Wu, H

    2016-12-01

    The oral cavity is a dynamic environment characterized by hundreds of bacterial species, saliva, and an influx of nutrients and metal ions such as copper. Although there is a physiologic level of copper in the saliva, the oral cavity is often challenged with an influx of copper ions. At high concentrations copper is toxic and must therefore be strictly regulated by pathogens for them to persist and cause disease. The cariogenic pathogen Streptococcus mutans manages excess copper using the copYAZ operon that encodes a negative DNA-binding repressor (CopY), the P1-ATPase copper exporter (CopA), and the copper chaperone (CopZ). These hypothetical roles of the copYAZ operon in regulation and copper transport to receptors led us to investigate their contribution to S. mutans virulence. Mutants defective in the copper chaperone CopZ, but not CopY or CopA, were impaired in biofilm formation and competitiveness against commensal streptococci. Characterization of the CopZ mutant biofilm revealed a decreased secretion of glucosyltransferases and reduced expression of mutacin genes. These data suggest that the function of copZ on biofilm and competitiveness is independent of copper resistance and CopZ is a global regulator for biofilm and other virulence factors. Further characterization of CopZ may lead to the identification of new biofilm pathways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment.

    Science.gov (United States)

    Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L

    2017-10-01

    Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease. NEW & NOTEWORTHY A new methodology has been developed to measure O 2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix

  10. Physics of biofilms: the initial stages of biofilm formation and dynamics

    International Nuclear Information System (INIS)

    Lambert, Guillaume; Bergman, Andrew; Zhang, Qiucen; Bortz, David; Austin, Robert

    2014-01-01

    One of the physiological responses of bacteria to external stress is to assemble into a biofilm. The formation of a biofilm greatly increases a bacterial population's resistance to a hostile environment by shielding cells, for example, from antibiotics. In this paper, we describe the conditions necessary for the emergence of biofilms in natural environments and relate them to the emergence of biofilm formation inside microfluidic devices. We show that competing species of Escherichia coli bacteria form biofilms to spatially segregate themselves in response to starvation stress, and use in situ methods to characterize the physical properties of the biofilms. Finally, we develop a microfluidic platform to study the inter-species interactions and show how biofilm-mediated genetic interactions can improve a species’ resistance to external stress. (paper)

  11. Mechanical confinement regulates cartilage matrix formation by chondrocytes

    Science.gov (United States)

    Lee, Hong-Pyo; Gu, Luo; Mooney, David J.; Levenston, Marc E.; Chaudhuri, Ovijit

    2017-12-01

    Cartilage tissue equivalents formed from hydrogels containing chondrocytes could provide a solution for replacing damaged cartilage. Previous approaches have often utilized elastic hydrogels. However, elastic stresses may restrict cartilage matrix formation and alter the chondrocyte phenotype. Here we investigated the use of viscoelastic hydrogels, in which stresses are relaxed over time and which exhibit creep, for three-dimensional (3D) culture of chondrocytes. We found that faster relaxation promoted a striking increase in the volume of interconnected cartilage matrix formed by chondrocytes. In slower relaxing gels, restriction of cell volume expansion by elastic stresses led to increased secretion of IL-1β, which in turn drove strong up-regulation of genes associated with cartilage degradation and cell death. As no cell-adhesion ligands are presented by the hydrogels, these results reveal cell sensing of cell volume confinement as an adhesion-independent mechanism of mechanotransduction in 3D culture, and highlight stress relaxation as a key design parameter for cartilage tissue engineering.

  12. Fungal Biofilms: In Vivo Models for Discovery of Anti-Biofilm Drugs.

    Science.gov (United States)

    Nett, Jeniel E; Andes, David R

    2015-06-01

    During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate, and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections: oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to the development of new strategies for the eradication of fungal biofilm infections.

  13. Haemophilus parainfluenzae Strain ATCC 33392 Forms Biofilms In Vitro and during Experimental Otitis Media Infections.

    Science.gov (United States)

    Pang, Bing; Swords, W Edward

    2017-09-01

    Haemophilus parainfluenzae is a nutritionally fastidious, Gram-negative bacterium with an oropharyngeal/nasopharyngeal carriage niche that is associated with a range of opportunistic infections, including infectious endocarditis and otitis media (OM). These infections are often chronic/recurrent in nature and typically involve bacterial persistence within biofilm communities that are highly resistant to host clearance. This study addresses the primary hypothesis that H. parainfluenzae forms biofilm communities that are important determinants of persistence in vivo The results from in vitro biofilm studies confirmed that H. parainfluenzae formed biofilm communities within which the polymeric matrix was mainly composed of extracellular DNA and proteins. Using a chinchilla OM infection model, we demonstrated that H. parainfluenzae formed surface-associated biofilm communities containing bacterial and host components that included neutrophil extracellular trap (NET) structures and that the bacteria mainly persisted in these biofilm communities. We also used this model to examine the possible interaction between H. parainfluenzae and its close relative Haemophilus influenzae , which is also commonly carried within the same host environments and can cause OM. The results showed that coinfection with H. influenzae promoted clearance of H. parainfluenzae from biofilm communities during OM infection. The underlying mechanisms for bacterial persistence and biofilm formation by H. parainfluenzae and knowledge about the survival defects of H. parainfluenzae during coinfection with H. influenzae are topics for future work. Copyright © 2017 American Society for Microbiology.

  14. Distinct roles of long/short fimbriae and gingipains in homotypic biofilm development by Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Tribble Gena D

    2009-05-01

    Full Text Available Abstract Background Porphyromonas gingivalis, a periodontal pathogen, expresses a number of virulence factors, including long (FimA and short (Mfa fimbriae as well as gingipains comprised of arginine-specific (Rgp and lysine-specific (Kgp cysteine proteinases. The aim of this study was to examine the roles of these components in homotypic biofilm development by P. gingivalis, as well as in accumulation of exopolysaccharide in biofilms. Results Biofilms were formed on saliva-coated glass surfaces in PBS or diluted trypticase soy broth (dTSB. Microscopic observation showed that the wild type strain formed biofilms with a dense basal monolayer and dispersed microcolonies in both PBS and dTSB. A FimA deficient mutant formed patchy and small microcolonies in PBS, but the organisms proliferated and formed a cohesive biofilm with dense exopolysaccharides in dTSB. A Mfa mutant developed tall and large microcolonies in PBS as well as dTSB. A Kgp mutant formed markedly thick biofilms filled with large clumped colonies under both conditions. A RgpA/B double mutant developed channel-like biofilms with fibrillar and tall microcolonies in PBS. When this mutant was studied in dTSB, there was an increase in the number of peaks and the morphology changed to taller and loosely packed biofilms. In addition, deletion of FimA reduced the autoaggregation efficiency, whereas autoaggregation was significantly increased in the Kgp and Mfa mutants, with a clear association with alteration of biofilm structures under the non-proliferation condition. In contrast, this association was not observed in the Rgp-null mutants. Conclusion These results suggested that the FimA fimbriae promote initial biofilm formation but exert a restraining regulation on biofilm maturation, whereas Mfa and Kgp have suppressive and regulatory roles during biofilm development. Rgp controlled microcolony morphology and biovolume. Collectively, these molecules seem to act coordinately to regulate

  15. Dendrimers and polyamino-phenolic ligands: activity of new molecules against Legionella pneumophila biofilms.

    Directory of Open Access Journals (Sweden)

    Elisa eAndreozzi

    2016-03-01

    Full Text Available Legionnaires’ disease is a potentially fatal pneumonia caused by Legionella pneumophila, an aquatic bacterium often found within the biofilm niche. In man-made water systems microbial biofilms increase the resistance of legionella to disinfection, posing a significant threat to public health. Disinfection methods currently used in water systems have been shown to be ineffective against legionella over the long-term, allowing recolonization by the biofilm-protected microorganisms. In this study, the anti-biofilm activity of previously fabricated polyamino-phenolic ligands and polyamidoamine dendrimers was investigated against legionella mono-species and multi-species biofilms formed by L. pneumophila in association with other bacteria that can be found in tap water (Aeromonas hydrophila, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae. Bacterial ability to form biofilms was verified using a crystal violet colorimetric assay and testing cell viability by real-time quantitative PCR and Plate Count assay. The concentration of the chemicals tested as anti-biofilm agents was chosen based on cytotoxicity assays: the highest non-cytotoxic chemical concentration was used for biofilm inhibition assays, with dendrimer concentration ten-fold higher than polyamino-phenolic ligands. While Macrophen and Double Macrophen were the most active substances among polyamino-phenolic ligands, dendrimers were overall two-fold more effective than all other compounds with a reduction up to 85% and 73% of legionella and multi-species biofilms, respectively. Chemical interaction with matrix molecules is hypothesized, based on SEM images and considering the low or absent anti-microbial activity on planktonic bacteria showed by flow cytometry. These data suggest that the studied compounds, especially dendrimers, could be considered as novel molecules in the design of research projects aimed at the development of efficacious anti-biofilm disinfection

  16. Formation of Biofilms by Foodborne Pathogens and Development of Laboratory In Vitro Model for the Study of Campylobacter Genus Bacteria Based on These Biofilms.

    Science.gov (United States)

    Efimochkina, N R; Bykova, I B; Markova, Yu M; Korotkevich, Yu V; Stetsenko, V V; Minaeva, L P; Sheveleva, S A

    2017-02-01

    We analyzed the formation of biofilms by 7 strains of Campylobacter genus bacteria and 18 strains of Enterobacteriaceae genus bacteria that were isolated from plant and animal raw materials, from finished products, and swabs from the equipment of the food industry. Biofilm formation on glass plates, slides and coverslips, microtubes made of polymeric materials and Petri dishes, and polystyrene plates of different profiles were analyzed. When studying the process of films formation, different effects on bacterial populations were simulated, including variation of growth factor composition of culture media, technique of creating of anaerobiosis, and biocide treatment (active chlorine solutions in a concentration of 100 mg/dm 3 ). The formation of biofilms by the studied cultures was assessed by the formation of extracellular matrix stained with aniline dyes on glass and polystyrene surfaces after incubation; 0.1% crystal violet solution was used as the dye. The presence and density of biomatrix were assessed by staining intensity of the surfaces of contact with broth cultures or by optical density of the stained inoculum on a spectrophotometer. Biofilms were formed by 57% Campylobacter strains and 44% Enterobacteriaceae strains. The intensity of the film formation depended on culturing conditions and protocols, species and genus of studied isolates, and largely on adhesion properties of abiotic surfaces. In 30% of Enterobacteriaceae strains, the biofilm formation capacity tended to increase under the influence of chlorine-containing biocide solutions. Thus, we developed and tested under laboratory conditions a plate version of in vitro chromogenic model for evaluation of biofilm formation capacity of C. jejuni strains and studied stress responses to negative environmental factors.

  17. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis.

    Science.gov (United States)

    Calabro, Sarah R; Maczurek, Annette E; Morgan, Alison J; Tu, Thomas; Wen, Victoria W; Yee, Christine; Mridha, Auvro; Lee, Maggie; d'Avigdor, William; Locarnini, Stephen A; McCaughan, Geoffrey W; Warner, Fiona J; McLennan, Susan V; Shackel, Nicholas A

    2014-01-01

    The classical paradigm of liver injury asserts that hepatic stellate cells (HSC) produce, remodel and turnover the abnormal extracellular matrix (ECM) of fibrosis via matrix metalloproteinases (MMPs). In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC. Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention. In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14) increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls. We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be targeted by

  18. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis.

    Directory of Open Access Journals (Sweden)

    Sarah R Calabro

    Full Text Available The classical paradigm of liver injury asserts that hepatic stellate cells (HSC produce, remodel and turnover the abnormal extracellular matrix (ECM of fibrosis via matrix metalloproteinases (MMPs. In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC.Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention.In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14 increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls.We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be

  19. Assessment and characterization of biofilm formation among human isolates of Streptococcus dysgalactiae subsp. equisimilis.

    Science.gov (United States)

    Genteluci, Gabrielle Limeira; Silva, Ligia Guedes; Souza, Maria Clara; Glatthardt, Thaís; de Mattos, Marcos Corrêa; Ejzemberg, Regina; Alviano, Celuta Sales; Figueiredo, Agnes Marie Sá; Ferreira-Carvalho, Bernadete Teixeira

    2015-12-01

    The capacity to form biofilm is considered a protective mechanism that allows the bacteria to survive and proliferate in hostile environments, facilitating the maintenance of the infectious process. Recently, biofilm has become a topic of interest in the study of the human pathogen group A Streptococcus (GAS). Although GAS has not been associated with infection on medical implants, the presence of microcolonies embedded in an extracellular matrix on infected tissues has been reported. Despite the similarity between GAS and Streptococcus dysgalactiae subspecies equisimilis (SDSE), there are no studies in the literature describing the production of biofilm by SDSE. In this work, we assessed and characterized biofilm development among SDSE human isolates of group C. The in vitro data showed that 59.3% of the 118 isolates tested were able to form acid-induced biofilm on glass, and 28% formed it on polystyrene surfaces. More importantly, biofilm was also formed in a foreign body model in mice. The biofilm structure was analyzed by confocal laser scanning microscopy, transmission electron microscopy, and scanning electron microscopy. Long fibrillar-like structures were observed by scanning electron microscopy. Additionally, the expression of a pilus associated gene of SDSE was increased for in vitro sessile cells compared with planktonics, and when sessile cells were collected from biofilms formed in the animal model compared with that of in vitro model. Results obtained from the immunofluorescence microscopy indicated the biofilm was immunogenic. Our data also suggested a role for proteins, exopolysaccharide and extracellular DNA in the formation and accumulation of biofilm by SDSE. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Miltefosine inhibits Candida albicans and non-albicans Candida spp. biofilms and impairs the dispersion of infectious cells.

    Science.gov (United States)

    Vila, Taissa; Ishida, Kelly; Seabra, Sergio Henrique; Rozental, Sonia

    2016-11-01

    Candida spp. can adhere to and form biofilms over different surfaces, becoming less susceptible to antifungal treatment. Resistance of biofilms to antifungal agents is multifactorial and the extracellular matrix (ECM) appears to play an important role. Among the few available antifungals for treatment of candidaemia, only the lipid formulations of amphotericin B (AmB) and the echinocandins are effective against biofilms. Our group has previously demonstrated that miltefosine has an important effect against Candida albicans biofilms. Thus, the aim of this work was to expand the analyses of the in vitro antibiofilm activity of miltefosine to non-albicans Candida spp. Miltefosine had significant antifungal activity against planktonic cells and the development of biofilms of C. albicans, Candida parapsilosis, Candida tropicalis and Candida glabrata. The activity profile in biofilms was superior to fluconazole and was similar to that of AmB and caspofungin. Biofilm-derived cells with their ECM extracted became as susceptible to miltefosine as planktonic cells, confirming the importance of the ECM in the biofilm resistant behaviour. Miltefosine also inhibited biofilm dispersion of cells at the same concentration needed to inhibit planktonic cell growth. The data obtained in this work reinforce the potent inhibitory activity of miltefosine on biofilms of the four most pathogenic Candida spp. and encourage further studies for the utilisation of this drug and/or structural analogues on biofilm-related infections. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  1. High-resolution visualization of Pseudomonas aeruginosa PAO1 biofilms by freeze-substitution transmission electron microscopy.

    Science.gov (United States)

    Hunter, Ryan C; Beveridge, Terry J

    2005-11-01

    High-pressure freeze-substitution and transmission electron microscopy have been used for high-resolution imaging of the natural structure of a gram-negative biofilm. Unlike more conventional embedding techniques, this method confirms many of the observations seen by confocal microscopy but with finer structural detail. It further reveals that there is a structural complexity to biofilms at both the cellular and extracellular matrix levels that has not been seen before. Different domains of healthy and lysed cells exist randomly dispersed within a single biofilm as well as different structural organizations of exopolymers. Particulate matter is suspended within this network of fibers and appears to be an integral part of the exopolymeric substance (EPS). O-side chains extending from the outer membrane are integrated into EPS polymers so as to form a continuum. Together, the results support the concept of physical microenvironments within biofilms and show a complexity that was hitherto unknown.

  2. Fluorescence and NMR spectroscopy together with molecular simulations reveal amphiphilic characteristics of a Burkholderia biofilm exopolysaccharide.

    Science.gov (United States)

    Kuttel, Michelle M; Cescutti, Paola; Distefano, Marco; Rizzo, Roberto

    2017-06-30

    Biofilms are a collective mode of bacterial life in which a self-produced matrix confines cells in close proximity to each other. Biofilms confer many advantages, including protection from chemicals (including antibiotics), entrapment of useful extracellular enzymes and nutrients, as well as opportunities for efficient recycling of molecules from dead cells. Biofilm matrices are aqueous gel-like structures composed of polysaccharides, proteins, and DNA stabilized by intermolecular interactions that may include non-polar connections. Recently, polysaccharides extracted from biofilms produced by species of the Burkholderia cepacia complex were shown to possess clusters of rhamnose, a 6-deoxy sugar with non-polar characteristics. Molecular dynamics simulations are well suited to characterizing the structure and dynamics of polysaccharides, but only relatively few such studies exist of their interaction with non-polar molecules. Here we report an investigation into the hydrophobic properties of the exopolysaccharide produced by Burkholderia multivorans strain C1576. Fluorescence experiments with two hydrophobic fluorescent probes established that this polysaccharide complexes hydrophobic species, and NMR experiments confirmed these interactions. Molecular simulations to model the hydrodynamics of the polysaccharide and the interaction with guest species revealed a very flexible, amphiphilic carbohydrate chain that has frequent dynamic interactions with apolar molecules; both hexane and a long-chain fatty acid belonging to the quorum-sensing system of B. multivorans were tested. A possible role of the non-polar domains of the exopolysaccharide in facilitating the diffusion of aliphatic species toward specific targets within the biofilm aqueous matrix is proposed. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Pseudomonas aeruginosa Biofilm Infections

    DEFF Research Database (Denmark)

    Rybtke, Morten; Hultqvist, Louise Dahl; Givskov, Michael

    2015-01-01

    Studies of biopsies from infectious sites, explanted tissue and medical devises have provided evidence that biofilms are the underlying cause of a variety of tissue-associated and implant-associated recalcitrant human infections. With a need for novel anti-biofilm treatment strategies, research...... in biofilm infection microbiology, biofilm formation mechanisms and biofilm-associated antimicrobial tolerance has become an important area in microbiology. Substantial knowledge about biofilm formation mechanisms, biofilm-associated antimicrobial tolerance and immune evasion mechanisms has been obtained...... through work with biofilms grown in in vitro experimental setups, and the relevance of this information in the context of chronic infections is being investigated by the use of animal models of infection. Because our current in vitro experimental setups and animal models have limitations, new advanced...

  4. Enterococcus faecium biofilm formation: identification of major autolysin AtlAEfm, associated Acm surface localization, and AtlAEfm-independent extracellular DNA Release.

    Science.gov (United States)

    Paganelli, Fernanda L; Willems, Rob J L; Jansen, Pamela; Hendrickx, Antoni; Zhang, Xinglin; Bonten, Marc J M; Leavis, Helen L

    2013-04-16

    Enterococcus faecium is an important multidrug-resistant nosocomial pathogen causing biofilm-mediated infections in patients with medical devices. Insight into E. faecium biofilm pathogenesis is pivotal for the development of new strategies to prevent and treat these infections. In several bacteria, a major autolysin is essential for extracellular DNA (eDNA) release in the biofilm matrix, contributing to biofilm attachment and stability. In this study, we identified and functionally characterized the major autolysin of E. faecium E1162 by a bioinformatic genome screen followed by insertional gene disruption of six putative autolysin genes. Insertional inactivation of locus tag EfmE1162_2692 resulted in resistance to lysis, reduced eDNA release, deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and significant chaining compared to that of the wild type. Therefore, locus tag EfmE1162_2692 was considered the major autolysin in E. faecium and renamed atlAEfm. In addition, AtlAEfm was implicated in cell surface exposure of Acm, a virulence factor in E. faecium, and thereby facilitates binding to collagen types I and IV. This is a novel feature of enterococcal autolysins not described previously. Furthermore, we identified (and localized) autolysin-independent DNA release in E. faecium that contributes to cell-cell interactions in the atlAEfm mutant and is important for cell separation. In conclusion, AtlAEfm is the major autolysin in E. faecium and contributes to biofilm stability and Acm localization, making AtlAEfm a promising target for treatment of E. faecium biofilm-mediated infections. IMPORTANCE Nosocomial infections caused by Enterococcus faecium have rapidly increased, and treatment options have become more limited. This is due not only to increasing resistance to antibiotics but also to biofilm-associated infections. DNA is released in biofilm matrix via cell lysis, caused by autolysin, and acts as a matrix stabilizer. In this study

  5. Regulation of proximal tubular cell differentiation and proliferation in primary culture by matrix stiffness and ECM components.

    Science.gov (United States)

    Chen, Wan-Chun; Lin, Hsi-Hui; Tang, Ming-Jer

    2014-09-15

    To explore whether matrix stiffness affects cell differentiation, proliferation, and transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) in primary cultures of mouse proximal tubular epithelial cells (mPTECs), we used a soft matrix made from monomeric collagen type I-coated polyacrylamide gel or matrigel (MG). Both kinds of soft matrix benefited primary mPTECs to retain tubular-like morphology with differentiation and growth arrest and to evade TGF-β1-induced EMT. However, the potent effect of MG on mPTEC differentiation was suppressed by glutaraldehyde-induced cross-linking and subsequently stiffening MG or by an increasing ratio of collagen in the soft mixed gel. Culture media supplemented with MG also helped mPTECs to retain tubular-like morphology and a differentiated phenotype on stiff culture dishes as soft MG did. We further found that the protein level and activity of ERK were scaled with the matrix stiffness. U-0126, a MEK inhibitor, abolished the stiff matrix-induced dedifferentiation and proliferation. These data suggest that the ERK signaling pathway plays a vital role in matrix stiffness-regulated cell growth and differentiation. Taken together, both compliant property and specific MG signals from the matrix are required for the regulation of epithelial differentiation and proliferation. This study provides a basic understanding of how physical and chemical cues derived from the extracellular matrix regulate the physiological function of proximal tubules and the pathological development of renal fibrosis. Copyright © 2014 the American Physiological Society.

  6. Biofilm vs. Planktonic Lifestyle: Consequences for Pesticide 2,4-D Metabolism by Cupriavidus necator JMP134

    Directory of Open Access Journals (Sweden)

    Thomas Z. Lerch

    2017-05-01

    Full Text Available The development of bacterial biofilms in natural environments may alter important functions, such as pollutant bioremediation by modifying both the degraders' physiology and/or interactions within the matrix. The present study focuses on the influence of biofilm formation on the metabolism of a pesticide, 2,4-dichlorophenoxyacetic acid (2,4-D, by Cupriavidus necator JMP134. Pure cultures were established in a liquid medium with 2,4-D as a sole carbon source with or without sand grains for 10 days. Bacterial numbers and 2,4-D concentrations in solution were followed by spectrophotometry, the respiration rate by gas chromatography and the surface colonization by electron microscopy. In addition, isotopic techniques coupled with Fatty Acid Methyl Ester (FAME profiling were used to determine possible metabolic changes. After only 3 days, approximately 80% of the cells were attached to the sand grains and microscopy images showed that the porous medium was totally clogged by the development of a biofilm. After 10 days, there was 25% less 2,4-D in the solution in samples with sand than in control samples. This difference was due to (1 a higher (+8% mineralization of 2,4-D by sessile bacteria and (2 a retention (15% of 2,4-D in the biofilm matrix. Besides, the amount of carbohydrates, presumably constituting the biofilm polysaccharides, increased by 63%. Compound-specific isotope analysis revealed that the FAME isotopic signature was less affected by the biofilm lifestyle than was the FAME composition. These results suggest that sessile bacteria differ more in their anabolism than in their catabolism compared to their planktonic counterparts. This study stresses the importance of considering interactions between microorganisms and their habitat when studying pollutant dynamics in porous media.

  7. 3D Chlorine and Monochloramine Penetration and Nitrifying Biofilm Activity and Viability: Periodic Chlorine Switch Implications

    Science.gov (United States)

    Biofilm formation in drinking water distribution systems has been associated with water quality degradation and may result in non-compliance with existing regulations. United States water utilities report biofilm survival and regrowth despite disinfectant presence, and systems t...

  8. Klebsiella pneumoniae yfiRNB operon affects biofilm formation, polysaccharide production and drug susceptibility.

    Science.gov (United States)

    Huertas, Mónica G; Zárate, Lina; Acosta, Iván C; Posada, Leonardo; Cruz, Diana P; Lozano, Marcela; Zambrano, María M

    2014-12-01

    Klebsiella pneumoniae is an opportunistic pathogen important in hospital-acquired infections, which are complicated by the rise of drug-resistant strains and the capacity of cells to adhere to surfaces and form biofilms. In this work, we carried out an analysis of the genes in the K. pneumoniae yfiRNB operon, previously implicated in biofilm formation. The results indicated that in addition to the previously reported effect on type 3 fimbriae expression, this operon also affected biofilm formation due to changes in cellulose as part of the extracellular matrix. Deletion of yfiR resulted in enhanced biofilm formation and an altered colony phenotype indicative of cellulose overproduction when grown on solid indicator media. Extraction of polysaccharides and treatment with cellulase were consistent with the presence of cellulose in biofilms. The enhanced cellulose production did not, however, correlate with virulence as assessed using a Caenorhabditis elegans assay. In addition, cells bearing mutations in genes of the yfiRNB operon varied with respect to the WT control in terms of susceptibility to the antibiotics amikacin, ciprofloxacin, imipenem and meropenem. These results indicated that the yfiRNB operon is implicated in the production of exopolysaccharides that alter cell surface characteristics and the capacity to form biofilms--a phenotype that does not necessarily correlate with properties related with survival, such as resistance to antibiotics. © 2014 The Authors.

  9. Stress Tolerance-Related Genetic Traits of Fish Pathogen Flavobacterium psychrophilum in a Mature Biofilm

    Directory of Open Access Journals (Sweden)

    Héctor A. Levipan

    2018-01-01

    Full Text Available Flavobacterium psychrophilum is the causative agent of bacterial cold-water disease and rainbow trout fry syndrome, and hence this bacterium is placed among the most important salmonid pathogens in the freshwater aquaculture industry. Since bacteria in biofilms differ substantially from free-living counterparts, this study sought to find the main differences in gene expression between sessile and planktonic states of F. psychrophilum LM-02-Fp and NCMB1947T, with focus on stress-related changes in gene expression occurring during biofilm formation. To this end, biofilm and planktonic samples were analyzed by RNA sequencing to detect differentially expressed candidate genes (DECGs between the two growth states, and decreasing the effects of interstrain variation by considering only genes with log2-fold changes ≤ −2 and ≥ 2 at Padj-values ≤ 0.001 as DECGs. Overall, 349 genes accounting for ~15% of total number of genes expressed in transcriptomes of F. psychrophilum LM-02-Fp and NCMB1947T (n = 2327 were DECGs between biofilm and planktonic states. Approximately 83 and 81% of all up- and down-regulated candidate genes in mature biofilms, respectively, were assigned to at least one gene ontology term; these were primarily associated with the molecular function term “catalytic activity.” We detected a potential stress response in mature biofilms, characterized by a generalized down-regulation of DECGs with roles in the protein synthesis machinery (n = 63, primarily ribosomal proteins and energy conservation (seven ATP synthase subunit genes, as well as an up-regulation of DECGs involved in DNA repair (ruvC, recO, phrB1, smf, and dnaQ and oxidative stress response (cytochrome C peroxidase, probable peroxiredoxin, and a probable thioredoxin. These results support the idea of a strategic trade-off between growth-related processes and cell homeostasis to preserve biofilm structure and metabolic functioning. In addition, LDH-based cytotoxicity

  10. Candida albicans biofilm development in vitro for photodynamic therapy study

    International Nuclear Information System (INIS)

    Suzuki, Luis Claudio

    2009-01-01

    biofilm (less than 1 log reduction). OCT was performed for visualization and measurement of the thickness of the biofilm formed. The composition of the extracellular matrix of the biofilm polymer hindered the diffusion of PS inside, requiring higher concentrations of MB to disseminate it and to obtain satisfactory reduction for PDT. HBL a+3 group, in higher concentration, formed aggregates difficulting its use for PDT. We conclude that the organism C. albicans was organized in bio films in a standardized way using elastomeric discs from catheters and the OCT showed that the biofilm measured 110μm at thickness, showing an optical change when subjected to the PDT with MB 1mM. (author)

  11. MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression.

    Directory of Open Access Journals (Sweden)

    Jonathan J Wilksch

    2011-08-01

    Full Text Available Klebsiella pneumoniae causes significant morbidity and mortality worldwide, particularly amongst hospitalized individuals. The principle mechanism for pathogenesis in hospital environments involves the formation of biofilms, primarily on implanted medical devices. In this study, we constructed a transposon mutant library in a clinical isolate, K. pneumoniae AJ218, to identify the genes and pathways implicated in biofilm formation. Three mutants severely defective in biofilm formation contained insertions within the mrkABCDF genes encoding the main structural subunit and assembly machinery for type 3 fimbriae. Two other mutants carried insertions within the yfiN and mrkJ genes, which encode GGDEF domain- and EAL domain-containing c-di-GMP turnover enzymes, respectively. The remaining two isolates contained insertions that inactivated the mrkH and mrkI genes, which encode for novel proteins with a c-di-GMP-binding PilZ domain and a LuxR-type transcriptional regulator, respectively. Biochemical and functional assays indicated that the effects of these factors on biofilm formation accompany concomitant changes in type 3 fimbriae expression. We mapped the transcriptional start site of mrkA, demonstrated that MrkH directly activates transcription of the mrkA promoter and showed that MrkH binds strongly to the mrkA regulatory region only in the presence of c-di-GMP. Furthermore, a point mutation in the putative c-di-GMP-binding domain of MrkH completely abolished its function as a transcriptional activator. In vivo analysis of the yfiN and mrkJ genes strongly indicated their c-di-GMP-specific function as diguanylate cyclase and phosphodiesterase, respectively. In addition, in vitro assays showed that purified MrkJ protein has strong c-di-GMP phosphodiesterase activity. These results demonstrate for the first time that c-di-GMP can function as an effector to stimulate the activity of a transcriptional activator, and explain how type 3 fimbriae

  12. SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity.

    Science.gov (United States)

    Barker, Thomas H; Baneyx, Gretchen; Cardó-Vila, Marina; Workman, Gail A; Weaver, Matt; Menon, Priya M; Dedhar, Shoukat; Rempel, Sandra A; Arap, Wadih; Pasqualini, Renata; Vogel, Viola; Sage, E Helene

    2005-10-28

    SPARC, a 32-kDa matricellular glycoprotein, mediates interactions between cells and their extracellular matrix, and targeted deletion of Sparc results in compromised extracellular matrix in mice. Fibronectin matrix provides provisional tissue scaffolding during development and wound healing and is essential for the stabilization of mature extracellular matrix. Herein, we report that SPARC expression does not significantly affect fibronectin-induced cell spreading but enhances fibronectin-induced stress fiber formation and cell-mediated partial unfolding of fibronectin molecules, an essential process in fibronectin matrix assembly. By phage display, we identify integrin-linked kinase as a potential binding partner of SPARC and verify the interaction by co-immunoprecipitation and colocalization in vitro. Cells lacking SPARC exhibit diminished fibronectin-induced integrin-linked kinase activation and integrin-linked kinase-dependent cell-contractile signaling. Furthermore, induced expression of SPARC in SPARC-null fibroblasts restores fibronectin-induced integrin-linked kinase activation, downstream signaling, and fibronectin unfolding. These data further confirm the function of SPARC in extracellular matrix organization and identify a novel mechanism by which SPARC regulates extracellular matrix assembly.

  13. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation.

    Science.gov (United States)

    Janissen, Richard; Murillo, Duber M; Niza, Barbara; Sahoo, Prasana K; Nobrega, Marcelo M; Cesar, Carlos L; Temperini, Marcia L A; Carvalho, Hernandes F; de Souza, Alessandra A; Cotta, Monica A

    2015-04-20

    Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation.

  14. Light Regimes Shape Utilization of Extracellular Organic C and N in a Cyanobacterial Biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Rhona K.; Mayali, Xavier; Boaro, Amy A.; Zemla, Adam; Everroad, R. Craig; Nilson, Daniel; Weber, Peter K.; Lipton, Mary; Bebout, Brad M.; Pett-Ridge, Jennifer; Thelen, Michael P.

    2016-06-28

    >IMPORTANCECyanobacteria are globally distributed primary producers, and the fate of their fixed C influences microbial biogeochemical cycling. This fate is complicated by cyanobacterial degradation and assimilation of organic matter, but because cyanobacteria are assumed to be poor competitors for organic matter consumption, regulation of this process is not well tested. In mats and biofilms, this is especially relevant because cyanobacteria produce an extensive organic extracellular matrix, providing the community with a rich source of nutrients. Light is a well-known regulator of cyanobacterial metabolism, so we characterized the effects of light availability on the incorporation of organic matter. Using stable isotope tracing at the single-cell level, we quantified photoautotroph assimilation under different metabolic conditions and integrated the results with proteomics to elucidate metabolic status. We found that cyanobacteria effectively compete for organic matter in the light and the dark and that nutrient requirements and community interactions contribute to cycling of extracellular organic matter.

  15. Study of mass transfer in artificial biofilm to enhance prodn. with immobilized microorganism

    NARCIS (Netherlands)

    Beuling, E.E.; Ottengraf, S.P.P.; Heuvel, van den J.C.

    1994-01-01

    To study the effect of the cell fraction f on diffusion an artificial biofilm was developed, consisting of an agar matrix contg. monodisperse impenetrable polystyrene particles with the same diam. as bacteria (1 mm). Diffusion of glucose at different polystyrene fractions was measured in two ways:

  16. Quorum-Quenching Human Designer Cells for Closed-Loop Control of Pseudomonas aeruginosa Biofilms.

    Science.gov (United States)

    Sedlmayer, Ferdinand; Jaeger, Tina; Jenal, Urs; Fussenegger, Martin

    2017-08-09

    Current antibiotics gradually lose their efficacy against chronic Pseudomonas aeruginosa infections due to development of increased resistance mediated by biofilm formation, as well as the large arsenal of microbial virulence factors that are coordinated by the cell density-dependent phenomenon of quorum sensing. Here, we address this issue by using synthetic biology principles to rationally engineer quorum-quencher cells with closed-loop control to autonomously dampen virulence and interfere with biofilm integrity. Pathogen-derived signals dynamically activate a synthetic mammalian autoinducer sensor driving downstream expression of next-generation anti-infectives. Engineered cells were able to sensitively score autoinducer levels from P. aeruginosa clinical isolates and mount a 2-fold defense consisting of an autoinducer-inactivating enzyme to silence bacterial quorum sensing and a bipartite antibiofilm effector to dissolve the biofilm matrix. The self-guided cellular device fully cleared autoinducers, potentiated bacterial antibiotic susceptibility, substantially reduced biofilms, and alleviated cytotoxicity to lung epithelial cells. We believe this strategy of dividing otherwise coordinated pathogens and breaking up their shielded stronghold represents a blueprint for cellular anti-infectives in the postantibiotic era.

  17. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae.

    Science.gov (United States)

    Brown, Lindsey R; Caulkins, Rachel C; Schartel, Tyler E; Rosch, Jason W; Honsa, Erin S; Schultz-Cherry, Stacey; Meliopoulos, Victoria A; Cherry, Sean; Thornton, Justin A

    2017-01-01

    Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H 2 O 2 . Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms.

  18. Biofilms and planktonic cells of Deinococcus geothermalis in extreme environments

    Science.gov (United States)

    Panitz, Corinna; Reitz, Guenther; Rabbow, Elke; Rettberg, Petra; Flemming, Hans-Curt; Wingender, Jost; Froesler, Jan

    In addition to the several extreme environments on Earth, Space can be considered as just another exceptional environment with a unique mixture of stress factors comprising UV radiation, vacuum, desiccation, temperature, ionizing radiation and microgravity. Life that processes in these environments can depend on the life forms and their state of living. The question is whether there are different strategies for individual microorganisms compared to communities of the same organisms to cope with the different factors of their surroundings. Comparative studies of the survi-val of these communities called biofilms and planktonic cell samples of Deinococcus geothermalis stand at the focal point of the presented investigations. A biofilm is a structured community of microorganisms that live encapsulated in a matrix of extracellular polymeric substances on a surface. Microorganisms living in a biofilm usually have significantly different properties to cooperate than individually living microorganisms of the same species. An advantage of the biofilm is increased resistance to various chemical and physical effects, while the dense extracellular matrix and the outer layer of the cells protect the interior of the microbial consortium. The space experiment BOSS (Biofilm organisms surfing Space) as part the ESA experimental unit EXPOSE R-2 with a planned launch date in July 2014 will be subsequently mounted on the Russian Svesda module outside the ISS. An international team of scientists coordinated by Dr. P. Rettberg will investigate the hypothesis whether microorganisms organized as biofilm outmatch the same microorganisms exposed individually in the long-term survival of the harsh environmental conditions as they occur in space and on Mars. Another protective function in the samples could be dust par-ticles for instance Mars regolith simulant contained inside the biofilms or mixed with the planktonic cells, as additional shelter especially against the extraterrestrial UV

  19. In-situ, time-lapse study of extracellular polymeric substance discharge in Streptococcus mutans biofilm.

    Science.gov (United States)

    Liu, Bernard Haochih; Yu, Li-Chieh

    2017-02-01

    Streptococcus mutans is one of the main pathogens that cause tooth decay. By metabolizing carbohydrates, S. mutans emits extracellular polymeric substance (EPS) that adheres to the tooth surface and forms layers of biofilm. Periodontal disease occurs due to the low pH environment created by S. mutans biofilm, and such an acidic environment gradually erodes tooth enamel. Since the existence of EPS is essential in the formation of biofilm, the in-situ investigation of its generation and distribution in real time is the key to the control and suppression of S. mutans biofilm. Prior studies of the biofilm formation process by fluorescence microscope, scanning electron microscope, or spectroscope have roughly divided the mechanism into three stages: (1) initial attachment; (2) microcolonies; and (3) maturation. However, these analytical methods are incapable to observe real-time changes in different locations of the extracellular matrix, and to analyze mechanical properties for single bacteria in micro and nanoscale. Since atomic force microscopy (AFM) operates by precise control of tip-sample interaction forces in liquid and in air, living microorganisms can be analyzed under near-physiological conditions. Thus, analytical techniques based on AFM constitute powerful tools for the study of biological samples, both qualitatively and quantitatively. In this study, we used AFM to quantitatively track the changes of multiple nanomechanical properties of S. mutans, including dissipation energy, adhesion force, deformation, and elastic modulus at different metabolic stages. The data revealed that the bacterial extracellular matrix has a gradient distribution in stickiness, in which different stickiness indicates the variation of EPS compositions, freshness, and metabolic stages. In-situ, time-lapse AFM images showed the local generation and distribution of EPS at different times, in which the highest adhesion distributed along sides of the S. mutans cells. Through time

  20. Antibacterial Effect of Dental Adhesive Containing Dimethylaminododecyl Methacrylate on the Development of Streptococcus mutans Biofilm

    Directory of Open Access Journals (Sweden)

    Suping Wang

    2014-07-01

    Full Text Available Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05. In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives.

  1. Insights into xanthomonas axonopodis pv. Citri biofilm through proteomics

    KAUST Repository

    Zimaro, Tamara; Thomas, Ludivine; Marondedze, Claudius; Garavaglia, Betiana S; Gehring, Christoph A; Ottado, Jorgelina; Gottig, Natalia

    2013-01-01

    in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up

  2. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  3. High β-Lactamase Levels Change the Pharmacodynamics of β-Lactam Antibiotics in Pseudomonas aeruginosa Biofilms

    Science.gov (United States)

    Ciofu, Oana; Yang, Liang; Wu, Hong; Song, Zhijun; Oliver, Antonio; Høiby, Niels

    2013-01-01

    Resistance to β-lactam antibiotics is a frequent problem in Pseudomonas aeruginosa lung infection of cystic fibrosis (CF) patients. This resistance is mainly due to the hyperproduction of chromosomally encoded β-lactamase and biofilm formation. The purpose of this study was to investigate the role of β-lactamase in the pharmacokinetics (PK) and pharmacodynamics (PD) of ceftazidime and imipenem on P. aeruginosa biofilms. P. aeruginosa PAO1 and its corresponding β-lactamase-overproducing mutant, PAΔDDh2Dh3, were used in this study. Biofilms of these two strains in flow chambers, microtiter plates, and on alginate beads were treated with different concentrations of ceftazidime and imipenem. The kinetics of antibiotics on the biofilms was investigated in vitro by time-kill methods. Time-dependent killing of ceftazidime was observed in PAO1 biofilms, but concentration-dependent killing activity of ceftazidime was observed for β-lactamase-overproducing biofilms of P. aeruginosa in all three models. Ceftazidime showed time-dependent killing on planktonic PAO1 and PAΔDDh2Dh3. This difference is probably due to the special distribution and accumulation in the biofilm matrix of β-lactamase, which can hydrolyze the β-lactam antibiotics. The PK/PD indices of the AUC/MBIC and Cmax/MBIC (AUC is the area under concentration-time curve, MBIC is the minimal biofilm-inhibitory concentration, and Cmax is the maximum concentration of drug in serum) are probably the best parameters to describe the effect of ceftazidime in β-lactamase-overproducing P. aeruginosa biofilms. Meanwhile, imipenem showed time-dependent killing on both PAO1 and PAΔDDh2Dh3 biofilms. An inoculum effect of β-lactams was found for both planktonic and biofilm P. aeruginosa cells. The inoculum effect of ceftazidime for the β-lactamase-overproducing mutant PAΔDDh2Dh3 biofilms was more obvious than for PAO1 biofilms, with a requirement of higher antibiotic concentration and a longer period of treatment

  4. Enzymatic degradation of in vitro Staphylococcus aureus biofilms supplemented with human plasma

    Directory of Open Access Journals (Sweden)

    Watters CM

    2016-04-01

    Full Text Available Chase M Watters,1,2 Tarea Burton,1 Dickson K Kirui,1 Nancy J Millenbaugh1 1Maxillofacial Injury and Disease Department, Naval Medical Research Unit San Antonio, Joint Base San Antonio-Fort Sam Houston, TX, USA; 2Wound Infections Department, Naval Medical Research Center, Silver Spring, MD, USA Abstract: Enzymatic debridement is a therapeutic strategy used clinically to remove necrotic tissue from wounds. Some of the enzymes utilized for debridement have been tested against bacterial pathogens, but the effectiveness of these agents in dispersing clinically relevant biofilms has not been fully characterized. Here, we developed an in vitro Staphylococcus aureus biofilm model that mimics wound-like conditions and employed this model to investigate the antibiofilm activity of four enzymatic compounds. Human plasma at concentrations of 0%–50% was supplemented into growth media and used to evaluate biofilm biomass accumulation over 24 hours and 48 hours in one methicillin-sensitive and five methicillin-resistant strains of S. aureus. Supplementation of media with 10% human plasma resulted in the most robust biofilms in all six strains. The enzymes α-amylase, bromelain, lysostaphin, and papain were then tested against S. aureus biofilms cultured in 10% human plasma. Quantification of biofilms after 2 hours and 24 hours of treatment using the crystal violet assay revealed that lysostaphin decreased biomass by up to 76%, whereas a-amylase, bromelain, and papain reduced biomass by up to 97%, 98%, and 98%, respectively. Scanning electron microscopy confirmed that the dispersal agents detached the biofilm exopolysaccharide matrix and bacteria from the growth surface. Lysostaphin caused less visible dispersal of the biofilms, but unlike the other enzymes, induced morphological changes indicative of bacterial cell damage. Overall, our results indicate that use of enzymes may be an effective means of eradicating biofilms and a promising strategy to improve

  5. Characterization and fluorescence of yellow biofilms in karst caves, southwest Slovenia

    Directory of Open Access Journals (Sweden)

    Janez Mulec

    2015-05-01

    Full Text Available Biofilms of different colours that colonize surfaces within karst caves represent a source of nutrients. They occur commonly and abundantly at sites with sediments, and close to seepages or underground rivers. Golden-yellow subaerial biofilms are particularly well observed because of their contrast with their surroundings, the characteristics of the pigment and recently, even more, due to the characteristics of light-emitting diode (LED illumination. Yellow microbial biofilms were sampled from three caves in southwestern Slovenia, Dimnice, Križna jama and Sveta jama. The highest concentration of cultivable microbes (2.33×108 CFU/g and the biggest number of identified bacteria (66.0% were retrieved from a sample from Sveta jama. Using MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight for bacterial identification showed that different species of Pseudomonas prevailed in all samples. Yellow biofilms showed an absorption peak around 400 nm, and two emission peaks, a major in the blue (~460 nm and a minor in the orange (~600 nm parts of the spectrum when excited at 405 nm. Microbial mats that colonize surfaces are probably frequently overlooked in caves because they are difficult to observe when they have no pigmentation and the contrast with their surroundings is low. Additional studies are needed to aid the understanding of the role of pigmented biofilms and their interactions with underlying substrata in respect of the evolution of substrate micromorphology.

  6. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus

    Science.gov (United States)

    Mashruwala, Ameya A; van de Guchte, Adriana; Boyd, Jeffrey M

    2017-01-01

    Biofilms are communities of microorganisms attached to a surface or each other. Biofilm-associated cells are the etiologic agents of recurrent Staphylococcus aureus infections. Infected human tissues are hypoxic or anoxic. S. aureus increases biofilm formation in response to hypoxia, but how this occurs is unknown. In the current study we report that oxygen influences biofilm formation in its capacity as a terminal electron acceptor for cellular respiration. Genetic, physiological, or chemical inhibition of respiratory processes elicited increased biofilm formation. Impaired respiration led to increased cell lysis via divergent regulation of two processes: increased expression of the AtlA murein hydrolase and decreased expression of wall-teichoic acids. The AltA-dependent release of cytosolic DNA contributed to increased biofilm formation. Further, cell lysis and biofilm formation were governed by the SrrAB two-component regulatory system. Data presented support a model wherein SrrAB-dependent biofilm formation occurs in response to the accumulation of reduced menaquinone. DOI: http://dx.doi.org/10.7554/eLife.23845.001 PMID:28221135

  7. An Essential Role for Coagulase in Staphylococcus aureus Biofilm Development Reveals New Therapeutic Possibilities for Device-Related Infections.

    Science.gov (United States)

    Zapotoczna, Marta; McCarthy, Hannah; Rudkin, Justine K; O'Gara, James P; O'Neill, Eoghan

    2015-12-15

    High-level resistance to antimicrobial drugs is a major factor in the pathogenesis of chronic Staphylococcus aureus biofilm-associated, medical device-related infections. Antimicrobial susceptibility analysis revealed that biofilms grown for ≤ 24 hours on biomaterials conditioned with human plasma under venous shear in iron-free cell culture medium were significantly more susceptible to antistaphylococcal antibiotics. Biofilms formed under these physiologically relevant conditions were regulated by SaeRS and dependent on coagulase-catalyzed conversion of fibrinogen into fibrin. In contrast, SarA-regulated biofilms formed on uncoated polystyrene in nutrient-rich bacteriological medium were mediated by the previously characterized biofilm factors poly-N-acetyl glucosamine, fibronectin-binding proteins, or autolytic activity and were antibiotic resistant. Coagulase-mediated biofilms exhibited increased antimicrobial resistance over time (>48 hours) but were always susceptible to dispersal by the fibrinolytic enzymes plasmin or nattokinase. Biofilms recovered from infected central venous catheters in a rat model of device-related infection were dispersed by nattokinase, supporting the important role of the biofilm phenotype and identifying a potentially new therapeutic approach with antimicrobials and fibrinolytic drugs, particularly during the early stages of device-related infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Baldry, Mara; Nielsen, Anita; Bojer, Martin S.

    2016-01-01

    characterise the mode of action of norlichexanthone and its effect on biofilm formation. We find that norlichexanthone reduces expression of both hla and RNAIII also in strain USA300. Structurally, norlichexanthone resembles ω-hydroxyemodin that recently was shown to bind the agr two component response......-hydroxyemodin however, norlichexanthone reduces staphylococcal biofilm formation. Transcriptomic analysis revealed that genes regulated by the SaeRS two-component system are repressed by norlichexanthone when compared to untreated cells, an effect that was mitigated in strain Newman carrying a partially constitutive...... SaeRS system. Our data show that norlichexanthone treatment reduces expression of key virulence factors in CA-MRSA strain USA300 via AgrA binding and represses biofilm formation....

  9. Biofilm Fixed Film Systems

    Directory of Open Access Journals (Sweden)

    Dipesh Das

    2011-09-01

    Full Text Available The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, rotating biological contactors, fluidized bed bioreactors, submerged bed biofilm reactors, biological granular activated carbon, membrane bioreactors, and immobilized cell reactors. Innovative reactors, not easily classified, are then presented, followed by a section on biofilms on sand, soil and sediment.

  10. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation

    DEFF Research Database (Denmark)

    Schroll, C.; Barken, Kim Bundvig; Krogfelt, K.A.

    2010-01-01

    nosocomial infections. Most clinical K. pneumoniae isolates express two types of fimbrial adhesins, type 1 fimbriae and type 3 fimbriae. In this study, we characterized the role of type 1 and type 3 fimbriae in K. pneumoniae biofilm formation. Results: Isogenic fimbriae mutants of the clinical K. pneumoniae...... of planktonic cells. Type 1 fimbriae did not influence biofilm formation and the expression of type 1 fimbriae was found to be down-regulated in biofilm forming cells. In contrast, expression of type 3 fimbriae was found to strongly promote biofilm formation. Conclusion: By use of well defined isogenic mutants...... we found that type 3 fimbriae, but not type 1 fimbriae, strongly promote biofilm formation in K. pneumoniae C3091. As the vast majority of clinical K. pneumoniae isolates express type 3 fimbriae, this fimbrial adhesin may play a significant role in development of catheter associated K. pneumoniae...

  11. The Biofilm Challenge

    DEFF Research Database (Denmark)

    Alhede, Maria; Alhede, Morten

    2014-01-01

    The concept of biofilms has emerged in the clinical setting during the last decade. Infections involving biofilms have been documented in all parts of the human body, and it is currently believed that the presence of biofilm-forming bacteria is equivalent to chronic infection. A quick Pubmed search...

  12. Compaction and relaxation of biofilms

    KAUST Repository

    Valladares Linares, R.

    2015-06-18

    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  13. Manipulatiaon of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Burkhalter, R.; Macnaughton, S.J.; Palmer, R.J.; Smith, C.A.; Whitaker, K.W.; White, D.C.; Zinn, M.; kirkegaard, R.

    1998-08-09

    The Biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms by generated. The most effective monitoring of biofilm formation, succession and desquamation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in the distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  14. Manipulation of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  15. Anti-Biofilm and Antivirulence Activities of Metabolites from Plectosphaerella cucumerina against Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Jinwei Zhou

    2017-05-01

    Full Text Available This study reported the efficacy of the metabolites of Plectosphaerella cucumerina, one phyllosphere fungus from Orychophragmus violaceus, against Pseudomonas aeruginosa quorum sensing (QS and QS-regulated biofilms. The minimum inhibitory concentration (MIC of the ethyl acetate (EtOAc extract from P. cucumerina against P. aeruginosa PAO1 was 1.25 mg mL−1. At sub-MIC concentrations, P. cucumerina extract (0.25–1 mg mL−1 not only inhibited biofilm formation but also disrupted preformed biofilms of P. aeruginosa PAO1 without affecting its growth. Fluorescence and scanning electron microscope (SEM showed architectural disruption of the biofilms when treated with P. cucumerina metabolites. Further investigation demonstrated that metabolites in P. cucumerina attenuated the QS-dependent virulence factors. LC-MS/MS spectra coupled with experimentally standard samples suggested that patulin and emodin might act as the principal components possessing anti-biofilm and antivirulence activities. This is the first report of (1 the isolation of P. cucumerina from the phyllosphere of O. violaceus and (2 anti-biofilm, antivirulence, and biofilm disruption activities of this fungus. Thus, this study provides fascinating new pathways for screening antipathogenic agents.

  16. Increased resistance of contact lens related bacterial biofilms to antimicrobial activity of soft contact lens care solutions

    Science.gov (United States)

    Szczotka-Flynn, Loretta B.; Imamura, Yoshifumi; Chandra, Jyotsna; Yu, Changping; Mukherjee, Pranab K.; Pearlman, Eric; Ghannoum, Mahmoud A.

    2014-01-01

    PURPOSE To determine if clinical and reference strains of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus form biofilms on silicone hydrogel contact lenses, and ascertain antimicrobial activities of contact lens care solutions. METHODS Clinical and American Type Culture Collection (ATCC) reference strains of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus were incubated with lotrafilcon A lenses under conditions that facilitate biofilm formation. Biofilms were quantified by quantitative culturing (colony forming units, CFUs), and gross morphology and architecture were evaluated using scanning electron microscopy (SEM) and confocal microscopy. Susceptibilities of the planktonic and biofilm growth phases of the bacteria to five common multipurpose contact lens care solutions and one hydrogen peroxide care solution were assessed. RESULTS P. aeruginosa, S. marcescens, and S. aureus reference and clinical strains formed biofilms on lotrafilcon A silicone hydrogel contact lenses, as dense networks of cells arranged in multiple layers with visible extracellular matrix. The biofilms were resistant to commonly used biguanide preserved multipurpose care solutions. P. aeruginosa and S. aureus biofilms were susceptible to a hydrogen peroxide and a polyquaternium preserved care solution, whereas S. marcescens biofilm was resistant to a polyquaternium preserved care solution but susceptible to hydrogen peroxide disinfection. In contrast, the planktonic forms were always susceptible. CONCLUSIONS P. aeruginosa, S. marcescens, and S. aureus form biofilms on lotrafilcon A contact lenses, which in contrast to planktonic cells, are resistant to the antimicrobial activity of several soft contact lens care products. PMID:19654521

  17. Delivery of cyclodextrin polymers to bacterial biofilms - An exploratory study using rhodamine labelled cyclodextrins and multiphoton microscopy.

    Science.gov (United States)

    Thomsen, Hanna; Benkovics, Gábor; Fenyvesi, Éva; Farewell, Anne; Malanga, Milo; Ericson, Marica B

    2017-10-15

    Cyclodextrin (CD) polymers are interesting nanoparticulate systems for pharmaceutical delivery; however, knowledge regarding their applications towards delivery into complex microbial biofilm structures is so far limited. The challenge is to demonstrate penetration and transport through the biofilm and its exopolysaccharide matrix. The ideal functionalization for penetration into mature biofilms is unexplored. In this paper, we present a novel set of rhodamine labelled βCD-polymers, with different charge moieties, i.e., neutral, anionic, and cationic, and explore their potential delivery into mature Staphylococcus epidermidis biofilms using multiphoton laser scanning microscopy (MPM). The S. epidermidis biofilms, being a medically relevant model organism, were stained with SYTO9. By using MPM, three-dimensional imaging and spectral investigation of the distribution of the βCD-polymers could be obtained. It was found that the cationic βCD-polymers showed significantly higher integration into the biofilms, compared to neutral and anionic functionalized βCDs. None of the carriers presented any inherent toxicity to the biofilms, meaning that the addition of rhodamine moiety does not affect the inertness of the delivery system. Taken together, this study demonstrates a novel approach by which delivery of fluorescently labelled CD nanoparticles to bacterial biofilms can be explored using MPM. Future studies should be undertaken investigating the potential in using cationic functionalization of CD based delivery systems for targeting anti-microbial effects in biofilms. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections

    DEFF Research Database (Denmark)

    Burmølle, Mette; Thomsen, Trine Rolighed; Fazli, Mustafa

    2010-01-01

    It has become evident that aggregation or biofilm formation is an important survival mechanism for bacteria in almost any environment. In this review, we summarize recent visualizations of bacterial aggregates in several chronic infections (chronic otitis media, cystic fibrosis, infection due...... to permanent tissue fillers and chronic wounds) both as to distribution (such as where in the wound bed) and organization (monospecies or multispecies microcolonies). We correlate these biofilm observations to observations of commensal biofilms (dental and intestine) and biofilms in natural ecosystems (soil......). The observations of the chronic biofilm infections point toward a trend of low bacterial diversity and sovereign monospecies biofilm aggregates even though the infection in which they reside are multispecies. In contrast to this, commensal and natural biofilm aggregates contain multiple species that are believed...

  19. Laminin and Matrix metalloproteinase 11 regulate Fibronectin levels in the zebrafish myotendinous junction.

    Science.gov (United States)

    Jenkins, Molly H; Alrowaished, Sarah S; Goody, Michelle F; Crawford, Bryan D; Henry, Clarissa A

    2016-01-01

    Remodeling of the extracellular matrix (ECM) regulates cell adhesion as well as signaling between cells and their microenvironment. Despite the importance of tightly regulated ECM remodeling for normal muscle development and function, mechanisms underlying ECM remodeling in vivo remain elusive. One excellent paradigm in which to study ECM remodeling in vivo is morphogenesis of the myotendinous junction (MTJ) during zebrafish skeletal muscle development. During MTJ development, there are dramatic shifts in the primary components comprising the MTJ matrix. One such shift involves the replacement of Fibronectin (Fn)-rich matrix, which is essential for both somite and early muscle development, with laminin-rich matrix essential for normal function of the myotome. Here, we investigate the mechanism underlying this transition. We show that laminin polymerization indirectly promotes Fn downregulation at the MTJ, via a matrix metalloproteinase 11 (Mmp11)-dependent mechanism. Laminin deposition and organization is required for localization of Mmp11 to the MTJ, where Mmp11 is both necessary and sufficient for Fn downregulation in vivo. Furthermore, reduction of residual Mmp11 in laminin mutants promotes a Fn-rich MTJ that partially rescues skeletal muscle architecture. These results identify a mechanism for Fn downregulation at the MTJ, highlight crosstalk between laminin and Fn, and identify a new in vivo function for Mmp11. Taken together, our data demonstrate a novel signaling pathway mediating Fn downregulation. Our data revealing new regulatory mechanisms that guide ECM remodeling during morphogenesis in vivo may inform pathological conditions in which Fn is dysregulated.

  20. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Science.gov (United States)

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation. PMID:25438014