WorldWideScience

Sample records for biofilm forming ability

  1. Aeromonas spp.: evaluation of genomic diversity and biofilm forming ability

    OpenAIRE

    Craveiro, Sara Sofia Pereira, 1986-

    2013-01-01

    Tese de mestrado. Biologia (Microbiologia Aplicada). Universidade de Lisboa, Faculdade de Ciências, 2013 Aeromonas spp. are ubiquitous bacteria widely distributed among aquatic environments. Their persistence in water distribution systems is related to their ability to form biofilms, even in the presence of residual chlorine. Once in distribution water systems, aeromonads can contaminate drinking water, food processing facilities and food products. Moreover, members of this genus are known...

  2. Biofilm-Forming Abilities of Listeria monocytogenes Serotypes Isolated from Different Sources.

    Directory of Open Access Journals (Sweden)

    Swapnil P Doijad

    Full Text Available A total of 98 previously characterized and serotyped L. monocytogenes strains, comprising 32 of 1/2a; 20 of 1/2b and 46 of 4b serotype, from clinical and food sources were studied for their capability to form a biofilm. The microtiter plate assay revealed 62 (63.26% strains as weak, 27 (27.55% strains as moderate, and 9 (9.18% strains as strong biofilm formers. Among the strong biofilm formers, 6 strains were of serotype 1/2a and 3 strains were of serotype 1/2b. None of the strain from 4b serotype exhibited strong biofilm formation. No firm correlation (p = 0.015 was noticed between any serotype and respective biofilm formation ability. Electron microscopic studies showed that strong biofilm forming isolates could synthesize a biofilm within 24 h on surfaces important in food industries such as stainless steel, ceramic tiles, high-density polyethylene plastics, polyvinyl chloride pipes, and glass. Cell enumeration of strong, moderate, and weak biofilm was performed to determine if the number of cells correlated with the biofilm-forming capabilities of the isolates. Strong, moderate, and weak biofilm showed 570±127× 103 cells/cm2, 33±26× 103 cells/cm2, 5±3× 103 cells/cm2, respectively, indicating that the number of cells was directly proportional to the strength of the biofilm. The hydrophobicity index (HI analysis revealed higher hydrophobicity with an increased biofilm formation. Fatty acid methyl esterase analysis revealed the amount of certain fatty acids such as iso-C15:0, anteiso-C15:0, and anteiso-C17:0 fatty acids correlated with the biofilm-forming capability of L. monocytogenes. This study showed that different strains of L. monocytogenes form biofilm of different intensities which did not completely correlate with their serotype; however, it correlated with the number of cells, hydrophobicity, and amount of certain fatty acids.

  3. Clinical isolates of Acinetobacter baumannii from a Portuguese hospital: PFGE characterization, antibiotic susceptibility and biofilm-forming ability.

    Science.gov (United States)

    Duarte, Andreia; Ferreira, Susana; Almeida, Sofia; Domingues, Fernanda C

    2016-04-01

    Acinetobacter baumannii is an emerging pathogen associated with nosocomial infections that in addition has shown an increasing resistance to antibiotics. In this work the genetic diversity of A. baumannii isolates from a Portuguese hospital, their antibiotic resistance profiles and ability to form biofilms was studied. Seventy-nine clinical A. baumannii isolates were characterized by pulsed-field gel electrophoresis (PFGE) with 9 different PFGE profiles being obtained. Concerning the antimicrobial susceptibility, all A. baumannii isolates were resistant to 12 of the 17 tested antibiotics and classified as multidrug-resistant (MDR). In addition, 74.7% of the isolates showed biofilm formation ability, however no statistical significance with antibiotic resistance was observed. In contrast, urine samples isolates were more likely to form biofilms than strains isolated from other sources. Our findings highlight the high number of MDR A. baumannii isolates and the importance of the formation of biofilms as a potential virulence factor.

  4. Relationship between clinical site of isolation and ability to form biofilms in vitro in nontypeable Haemophilus influenzae.

    Science.gov (United States)

    Obaid, Najla A; Jacobson, Glenn A; Tristram, Stephen

    2015-03-01

    Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen associated with a range of infections, including various lower respiratory infections, otitis media, and conjunctivitis. There is some debate as to whether or not NTHi produces biofilms and, if so, whether or not this is relevant to pathogenesis. Although many studies have examined the association between in vitro biofilm formation and isolates from a specific infection type, few have made comparisons from isolates from a broad range of isolates grouped by clinical source. In our study 50 NTHi from different clinical sources, otitis media, conjunctivitis, lower respiratory tract infections in both cystic fibrosis and non-cystic fibrosis patients, and nasopharyngeal carriage, plus 10 nasopharyngeal isolates of the commensal Haemophilus haemolyticus were tested for the ability to form biofilm by using a static microtitre plate crystal violet assay. A high degree of variation in biofilm forming ability was observed across all isolates, with no statistically significant differences observed between the groups, with the exception of the isolates from conjunctivitis. These isolates had uniformly lower biofilm forming ability compared with isolates from the other groups (p < 0.005).

  5. Staphylococcus aureus Clinical Isolates: Antibiotic Susceptibility, Molecular Characteristics, and Ability to Form Biofilm

    Directory of Open Access Journals (Sweden)

    N. Indrawattana

    2013-01-01

    Full Text Available Periodic monitoring of Staphylococcus aureus characteristics in a locality is imperative as their drug-resistant variants cause treatment problem. In this study, antibiograms, prevalence of toxin genes (sea-see, seg-ser, seu, tsst-1, eta, etb, and etd, PFGE types, accessory gene regulator (agr groups, and ability to form biofilm of 92 S. aureus Thailand clinical isolates were investigated. They were classified into 10 drug groups: groups 1–7 (56 isolates were methicillin resistant (MRSA and 8–10 (36 isolates were methicillin sensitive (MSSA. One isolate did not have any toxin gene, 4 isolates carried one toxin gene (seq, and 87 isolates had two or more toxin genes. No isolate had see, etb, or tsst-1; six isolates had eta or etd. Combined seg-sei-sem-sen-seo of the highly prevalent egc locus was 26.1%. The seb, sec, sel, seu, and eta associated significantly with MSSA; sek was more in MRSA. The sek-seq association was 52.17% while combined sed-sej was not found. Twenty-three PFGE types were revealed, no association of toxin genes with PFGE types. All four agr groups were present; agr group 1 was predominant (58.70% but agr group 2 strains carried more toxin genes and were more frequent toxin producers. Biofilm formation was found in 72.83% of the isolates but there was no association with antibiograms. This study provides insight information on molecular and phenotypic markers of Thailand S. aureus clinical isolates which should be useful for future active surveillance that aimed to control a spread of existing antimicrobial resistant bacteria and early recognition of a newly emerged variant.

  6. [Investigation of the correlation between biofilm forming ability of urinary Candida isolates with the use of urinary catheters and change of antifungal susceptibility in the presence of biofilm].

    Science.gov (United States)

    Aslan, Hacer; Gülmez, Dolunay

    2016-04-01

    Frequency of Candida species causing urinary tract infections is increasing, and this increase is outstanding in nosocomial urinary tract infections especially in intensive care units. The ability of biofilm formation that is contributed to the virulence of the yeast, plays a role in the pathogenesis of biomaterial-related infections and also constitutes a risk for treatment failure. The aims of this study were to compare biofilm forming abilities of Candida strains isolated from urine cultures of patients with and without urinary catheters, and to investigate the change of antifungal susceptibility in the presence of biofilm. A total of 50 Candida strains isolated from urine cultures of 25 patients with urinary catheters (10 C.tropicalis, 6 C.glabrata, 4 C.albicans, 4 C.parapsilosis, 1 C.krusei) and 25 without urinary catheters (8 C.tropicalis, 6 C.albicans, 4 C.krusei, 3 C.parapsilosis, 2 C.kefyr, 1 C.glabrata, 1 C.lusitaniae) were included in the study. Biofilm forming ability was tested by Congo red agar (CRA) and microplate XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction methods. Fluconazole (FLU) and amphotericin B (AMP-B) susceptibilities of the isolates were determined by reference microdilution method recommended by Clinical and Laboratory Standards Institute for planktonic cells and by XTT reduction assay in case of biofilm presence. Biofilm formation was detected in 12 (24%) by CRA and 50 (100%) of the isolates by XTT reduction method. None of the C.albicans (n= 10) and C.tropicalis (n= 18) strains were detected as biofilm positive by CRA, however, these strains were strongly positive by XTT reduction method. No statistically significant correlation was detected between the presence of urinary catheter and biofilm forming ability of the isolate (p> 0.05). This might be caused by the advantage of biofilm forming strains in adhesion to bladder mucosa at the initial stages of infection. For all of the isolates in

  7. Investigation of the antibiotic resistance and biofilm-forming ability of Staphylococcus aureus from subclinical bovine mastitis cases.

    Science.gov (United States)

    Aslantaş, Özkan; Demir, Cemil

    2016-11-01

    A total of 112 Staphylococcus aureus isolates obtained from subclinical bovine mastitis cases were examined for antibiotic susceptibility and biofilm-forming ability as well as genes responsible for antibiotic resistance, biofilm-forming ability, and adhesin. Antimicrobial susceptibility of the isolates were determined by disk diffusion method. Biofilm forming ability of the isolates were investigated by Congo red agar method, standard tube method, and microplate method. The genes responsible for antibiotic resistance, biofilm-forming ability, and adhesion were examined by PCR. Five isolates (4.5%) were identified as methicillin-resistant Staph. aureus by antibiotic susceptibility testing and confirmed by mecA detection. The resistance rates to penicillin, ampicillin, tetracycline, erythromycin, trimethoprim-sulfamethoxazole, enrofloxacin, and amoxicillin-clavulanic acid were 45.5, 39.3, 33, 26.8, 5.4, 0.9, and 0.9%, respectively. All isolates were susceptible against vancomycin and gentamicin. The blaZ (100%), tetK (67.6%), and ermA (70%) genes were the most common antibiotic-resistance genes. Using Congo red agar, microplate, and standard tube methods, 70.5, 67, and 62.5% of the isolates were found to be biofilm producers, respectively. The percentage rate of icaA, icaD, and bap genes in Staph. aureus isolates were 86.6, 86.6, and 13.4%, respectively. The adhesion molecules fnbA, can, and clfA were detected in 87 (77.7%), 98 (87.5%), and 75 (70%) isolates, respectively. The results indicated that Staph. aureus from sublinical bovine mastitis cases were mainly resistant to β-lactams and, to a lesser extent, to tetracycline and erythromycin. Also, biofilm- and adhesion-related genes, which are increasingly accepted as an important virulence factor in the pathogenesis of Staph. aureus infections, were detected at a high rate.

  8. Biological features of biofilm-forming ability of Acinetobacter baumannii strains derived from 121 elderly patients with hospital-acquired pneumonia.

    Science.gov (United States)

    Zhang, Duchao; Xia, Jingjing; Xu, Yaping; Gong, Meiliang; Zhou, Yu; Xie, Lixin; Fang, Xiangqun

    2016-02-01

    This study is to investigate a biological activity of Acinetobacter baumannii isolates from sputum specimens of 121 elderly patients with hospital-acquired pneumonia. The ability of the isolates to form biofilms was quantitatively assessed by crystal violet staining, and adhesive property was examined using Giemsa staining. Biofilm-forming ability by the isolates was employed to test antimicrobial resistance and examine sources and clinical manifestations. The isolates grew as biofilm on abiotic surface at the indicated temperatures after a 48 h of incubation. 27.3 % of the isolates were strongly biofilm-positive in the samples, and 84.8 % displayed high adhesion ability (P < 0.05). All of the isolates showed antibiotic resistance at different levels, and the isolates produced strong biofilm exhibited low-level resistance to gentamicin, minocycline and ceftazidime (P < 0.05). The patients' experience in ICU, use of antibiotics and estimation of APACHE II (<17) were related to incidence of strong biofilm formation with no clinical manifestations found in the study. All clinical isolates are able to form biofilms which refer to adhesive efficiency and antibiotic resistance. Patient experiences in ICU surveillance, use of antibiotics and APACHE II scores are involved in biofilm-forming ability by the nosocomial pathogen derived from the hospitalized patients.

  9. Prevalence and biofilm-forming ability of Listeria monocytogenes in New Zealand mussel (Perna canaliculus) processing plants.

    Science.gov (United States)

    Cruz, Cristina D; Fletcher, Graham C

    2011-10-01

    Greenshell™ mussels are New Zealand's largest seafood export species. Some export markets require compliance with 'zero' tolerance legislation for Listeria monocytogenes in 25 g of product. Even though individually quick frozen (IQF) mussel products are labeled 'to be cooked', and are not classified as ready-to-eat, some markets still require them to comply with the strict policy. Three mussel processing plants were assessed for the pattern of L. monocytogenes contamination on raw material, environment, food contact surfaces, and in the final product. Cultures (n = 101) obtained from an industrial Listeria monitoring program from August 2007 to June 2009 were characterized by serotyping and pulsed field gel electrophoresis. Using the crystal violet method, isolates were assessed for their ability to form biofilms. This work confirmed the presence of L. monocytogenes in raw and processed product, and the importance of cross-contamination from external and internal environments. Processing plants had L. monocytogenes pulsotypes that were detected more than once over 6 months. No correlation was found between biofilm-forming ability and persistent isolates. Two pulsotypes (including a persistent one), were previously isolated in human cases of listeriosis in New Zealand, but none of the pulsotypes matched those involved in international outbreaks.

  10. [Genetic identification and study of the ability of lactobacilli isolated from the oral cavity of healthy individuals to form biofilms].

    Science.gov (United States)

    Chervinets, Iu V; Botina, S G; Glazova, A A; Koroban, N V; Chervinets, V M; Samoukina, A M; Gavrilova, O A; Lebedev, D V; Mironov, A Iu

    2011-02-01

    The highly antagonistic lactobacillus strains isolated from the oral cavity of human individuals were genetically passported as L. fermentum 39, L. rhamnosus 50, and L. rhamnosus 24, by applying the RAPD-PCR technique with two types of primers (M13, MSP). These lactobacillus strains showed high degrees of autoaggregation, surface hydrophobicity, coaggregation, and adhesion. These characteristics determine the obvious capacity of lactobacilli to form biofilms, which may be used to design new probiotic agents.

  11. Oral Candida albicans isolates from HIV-positive individuals have similar in vitro biofilm-forming ability and pathogenicity as invasive Candida isolates

    Directory of Open Access Journals (Sweden)

    Rasteiro Vanessa MC

    2011-11-01

    , suggesting that Candida isolates have similar biofilm-forming ability and virulence regardless of the infection site from which it was isolated.

  12. Genetic diversity, antibiotic resistance and biofilm-forming ability of Arcobacter butzleri isolated from poultry and environment from a Portuguese slaughterhouse.

    Science.gov (United States)

    Ferreira, Susana; Fraqueza, Maria J; Queiroz, João A; Domingues, Fernanda C; Oleastro, Mónica

    2013-03-01

    The genus Arcobacter is an emerging pathogen associated with several clinical symptoms. This genus is widely distributed and has been isolated from environmental, animal, food and human samples, where poultry is considered the major source. In this study, forty three Arcobacter butzleri strains isolated from poultry and environment of a Portuguese slaughterhouse, were characterized by pulsed field gel electrophoresis (PFGE) and assessed for antimicrobial susceptibility and ability to form biofilms. PFGE patterns obtained using restriction enzymes SmaI and SacII revealed high genetic diversity, with 32 distinct PFGE patterns. Most of A. butzleri isolates presented multiple antimicrobial resistance, exhibiting four different resistance profiles. All 43 isolates were susceptible to gentamicin and 2.3% were resistant to chloramphenicol, in contrast to twenty four (55.8%) that were resistant to ciprofloxacin. Among 36 selected isolates, 26 strains presented biofilm-forming ability, which was dependent on the atmosphere and initial inoculum density. Overall, the results showed that A. butzleri displays a high genetic diversity, and presents resistance to several antibiotics, which together with its biofilm formation ability may represent a potential hazard for foodborne infections and a considerable risk for human health.

  13. Persistent and transient Listeria monocytogenes strains from retail deli environments vary in their ability to adhere and form biofilms and rarely have inlA premature stop codons.

    Science.gov (United States)

    Wang, Jingjin; Ray, Andrea J; Hammons, Susan R; Oliver, Haley F

    2015-02-01

    Based on recent risk assessments, up to 83% of listeriosis cases from deli meat in the United States are predicted to be from ready-to-eat deli meats contaminated during processing at retail grocery stores. Listeria monocytogenes is known to use sanitizer tolerance and biofilm formation to survive, but interplay of these mechanisms along with virulence potential and persistence mechanisms specific to deli environments had yet to be elucidated. In this study, 442 isolates from food and nonfood contact surfaces in 30 retail delis over 9 months were tested for inlA premature stop codons (PMSCs); inlA encodes InlA, which is necessary to cause listeriosis. A total of 96 isolates, composed of 23 persistent and 73 transient strains, were tested for adhesion and biofilm-forming ability and sanitizer tolerance. Only 10/442 isolates had inlA PMSCs (pdelis with other persistent strains. Most (7/10) PMSC-containing isolates were collected from food contact surfaces (pdelis (p<0.05). Persistent strains had enhanced adhesion on day 1 of a 5-day adhesion-biofilm formation assay. However, there was no significant difference in sanitizer tolerance between persistent and transient strains. Results suggest that foods contaminated with persistent L. monocytogenes strains from the retail environment are (1) likely to have wild-type virulence potential and (2) may persist due to increased adhesion and biofilm formation capacity rather than sanitizer tolerance, thus posing a significant public health risk.

  14. Exposure of Escherichia coli ATCC 12806 to sublethal concentrations of food-grade biocides influences its ability to form biofilm, resistance to antimicrobials, and ultrastructure.

    Science.gov (United States)

    Capita, Rosa; Riesco-Peláez, Félix; Alonso-Hernando, Alicia; Alonso-Calleja, Carlos

    2014-02-01

    Escherichia coli ATCC 12806 was exposed to increasing subinhibitory concentrations of three biocides widely used in food industry facilities: trisodium phosphate (TSP), sodium nitrite (SNI), and sodium hypochlorite (SHY). The cultures exhibited an acquired tolerance to biocides (especially to SNI and SHY) after exposure to such compounds. E. coli produced biofilms (as observed by confocal laser scanning microscopy) on polystyrene microtiter plates. Previous adaptation to SNI or SHY enhanced the formation of biofilms (with an increase in biovolume and surface coverage) both in the absence and in the presence (MIC/2) of such compounds. TSP reduced the ability of E. coli to produce biofilms. The concentration of suspended cells in the culture broth in contact with the polystyrene surfaces did not influence the biofilm structure. The increase in cell surface hydrophobicity (assessed by a test of microbial adhesion to solvents) after contact with SNI or SHY appeared to be associated with a strong capacity to form biofilms. Cultures exposed to biocides displayed a stable reduced susceptibility to a range of antibiotics (mainly aminoglycosides, cephalosporins, and quinolones) compared with cultures that were not exposed. SNI caused the greatest increase in resistances (14 antibiotics [48.3% of the total tested]) compared with TSP (1 antibiotic [3.4%]) and SHY (3 antibiotics [10.3%]). Adaptation to SHY involved changes in cell morphology (as observed by scanning electron microscopy) and ultrastructure (as observed by transmission electron microscopy) which allowed this bacterium to persist in the presence of severe SHY challenges. The findings of the present study suggest that the use of biocides at subinhibitory concentrations could represent a public health risk.

  15. Antimicrobial resistance and in vitro biofilm-forming ability of enterococci from intensive and extensive farming broilers.

    Science.gov (United States)

    Oliveira, M; Santos, V; Fernandes, A; Bernardo, F; Vilela, C L

    2010-05-01

    Enterococci, major broiler intestinal colonizers, play a recognized role in antimicrobial resistance transmission. Several virulence mechanisms, such as biofilm expression, have been identified. Minimum inhibitory concentrations of vancomycin, enrofloxacin, oxytetracycline, streptomycin, and gentamicin and biofilm production of 34 isolates from intensive and extensive farming system broilers were evaluated. All isolates were susceptible to vancomycin. In extensive-reared broilers (n = 18), resistance to enrofloxacin, oxytetracycline, streptomycin, and gentamicin was high (83.33, 55.56, 100, and 83.33%, respectively). Intensive farming broilers (n = 16) showed a lower resistance level for enrofloxacin and streptomycin and a higher resistance level for oxytetracycline and gentamicin. The relation between antimicrobial susceptibility and farming system was not significant for all drugs tested (P > or = 0.05). Enterococci produced biofilm at 24 h (47.0%), 48 h (55.9%), and 72 h (58.8%). Resistance to gentamicin and streptomycin was related to biofilm production at all time points (P or = 0.05). Poultry are colonized by biofilm-producing and antimicrobial-resistant enterococci, independently of the farming system. Results show a relation between resistance to the majority of the drugs tested and biofilm production, which reenforces the importance of these virulence factors in animal and public health.

  16. The chemical digestion of Ti6Al7Nb scaffolds produced by Selective Laser Melting reduces significantly ability of Pseudomonas aeruginosa to form biofilm.

    Science.gov (United States)

    Junka, Adam F; Szymczyk, Patrycja; Secewicz, Anna; Pawlak, Andrzej; Smutnicka, Danuta; Ziółkowski, Grzegorz; Bartoszewicz, Marzenna; Chlebus, Edward

    2016-01-01

    In our previous work we reported the impact of hydrofluoric and nitric acid used for chemical polishing of Ti-6Al-7Nb scaffolds on decrease of the number of Staphylococcus aureus biofilm forming cells. Herein, we tested impact of the aforementioned substances on biofilm of Gram-negative microorganism, Pseudomonas aeruginosa, dangerous pathogen responsible for plethora of implant-related infections. The Ti-6Al-7Nb scaffolds were manufactured using Selective Laser Melting method. Scaffolds were subjected to chemical polishing using a mixture of nitric acid and fluoride or left intact (control group). Pseudomonal biofilm was allowed to form on scaffolds for 24 hours and was removed by mechanical vortex shaking. The number of pseudomonal cells was estimated by means of quantitative culture and Scanning Electron Microscopy. The presence of nitric acid and fluoride on scaffold surfaces was assessed by means of IR and rentgen spetorscopy. Quantitative data were analysed using the Mann-Whitney test (P ≤ 0.05). Our results indicate that application of chemical polishing correlates with significant drop of biofilm-forming pseudomonal cells on the manufactured Ti-6Al-7Nb scaffolds ( p = 0.0133, Mann-Whitney test) compared to the number of biofilm-forming cells on non-polished scaffolds. As X-ray photoelectron spectroscopy revealed the presence of fluoride and nitrogen on the surface of scaffold, we speculate that drop of biofilm forming cells may be caused by biofilm-supressing activity of these two elements.

  17. The ability of S.aureus to form biofilm on the Ti-6Al-7Nb scaffolds produced by Selective Laser Melting and subjected to the different types of surface modifications.

    Science.gov (United States)

    Szymczyk, Patrycja; Junka, Adam; Ziółkowski, Grzegorz; Smutnicka, Danuta; Bartoszewicz, Marzenna; Chlebus, Edward

    2013-01-01

    The Gram-positive coccus, Staphylococcus aureus, is the leading etiologic agent of limb and life-threatening biofilm-related infections in the patients following the orthopaedic implantations. The aim of the present paper is to estimate the ability of S. aureus to form biofilm on titanium alloy (Ti-6Al-7Nb) scaffolds produced by Selective Laser Melting (SLM) and subjected to the different types of surface modifications, including ultrasonic cleaning and chemical polishing. The results obtained indicate significantly the decreased ability of S.aureus to form biofilm on the surface of scaffolds subjected to the chemical polishing in comparison to the scaffolds cleaned ultrasonically. The data provided can be useful for future applications of the SLM technology in production of Ti-6Al-7Nb medical implants.

  18. Biofilm forming ability of staphylococcus epidermidis strains isolated from catheters%导管分离表皮葡萄球菌生物被膜形成能力相关研究

    Institute of Scientific and Technical Information of China (English)

    邹自英; 刘媛; 朱冰; 吴丽娟; 胡宗海; 曾平

    2015-01-01

    Objective To explore the biofilm forming ability and the ability to survive in stress environment of staphylococcus epidermidis strains isolated from catheters .Methods Semiquantitative biofilm assay and bacteria cell counting were performed to explore the biofilm forming ability and the ability to survive in stress environment of staphylococcus epidermidis strains .Results Staphylococcus epidermidis strain of 1457 and 5 clinical strains isolated from catheters had the similar ability of biofilm formation (P>0 .05) ,similar growth ability of planktonic and biofilm cells ,similar attachment ability to polystyrene ,similar ability to survive in an oxidative and ethanol stress environment (P>0 .05) .Conclusion The biofilm forming ability and the ability to survive in stress environment of staphylococcus epidermidis strains isolated from catheters were similar to staphylococcus epidermidis 1457 strain .%目的:探讨导管分离表皮葡萄球菌的生物被膜形成能力和耐受应激环境能力。方法采用结晶紫半定量法和细菌计数法检测表皮葡萄球菌的生物被膜形成能力和应激环境耐受能力。结果表皮葡萄球菌1457菌株和5株导管分离菌株均具有生物被膜形成能力,菌株之间生物被膜形成能力差异无统计学意义( P>0.05);导管分离菌株与1457菌株的游离细菌和被膜细菌的生长能力、对高分子材料的黏附能力、对过氧化氢的氧化应激耐受能力和对乙醇耐受能力差异无统计学意义(P>0.05)。结论表皮葡萄球菌导管分离菌株与产生生物被膜的表皮葡萄球菌1457菌株具有相近的生物被膜形成能力和耐受应激环境能力。

  19. Bacteriophages with the Ability to Degrade Uropathogenic Escherichia Coli Biofilms

    Directory of Open Access Journals (Sweden)

    Amee Manges

    2012-04-01

    Full Text Available Escherichia coli-associated urinary tract infections (UTIs are among the most common bacterial infections in humans. UTIs are usually managed with antibiotic therapy, but over the years, antibiotic-resistant strains of uropathogenic E. coli (UPEC have emerged. The formation of biofilms further complicates the treatment of these infections by making them resistant to killing by the host immune system as well as by antibiotics. This has encouraged research into therapy using bacteriophages (phages as a supplement or substitute for antibiotics. In this study we characterized 253 UPEC in terms of their biofilm-forming capabilities, serotype, and antimicrobial resistance. Three phages were then isolated (vB_EcoP_ACG-C91, vB_EcoM_ACG-C40 and vB_EcoS_ACG-M12 which were able to lyse 80.5% of a subset (42 of the UPEC strains able to form biofilms. Correlation was established between phage sensitivity and specific serotypes of the UPEC strains. The phages’ genome sequences were determined and resulted in classification of vB_EcoP_ACG-C91 as a SP6likevirus, vB_EcoM_ACG-C40 as a T4likevirus and vB_EcoS_ACG-M12 as T1likevirus. We assessed the ability of the three phages to eradicate the established biofilm of one of the UPEC strains used in the study. All phages significantly reduced the biofilm within 2–12 h of incubation.

  20. Biofilm formation ability of Salmonella enterica serovar Typhimurium acrAB mutants.

    Science.gov (United States)

    Schlisselberg, Dov B; Kler, Edna; Kisluk, Guy; Shachar, Dina; Yaron, Sima

    2015-10-01

    Recent studies offer contradictory findings about the role of multidrug efflux pumps in bacterial biofilm development. Thus, the aim of this study was to investigate the involvement of the AcrAB efflux pump in biofilm formation by investigating the ability of AcrB and AcrAB null mutants of Salmonella enterica serovar Typhimurium to produce biofilms. Three models were used to compare the ability of S. Typhimurium wild-type and its mutants to form biofilms: formation of biofilm on polystyrene surfaces; production of biofilm (mat model) on the air/liquid interface; and expression of curli and cellulose on Congo red-supplemented agar plates. All three investigated genotypes formed biofilms with similar characteristics. However, upon exposure to chloramphenicol, formation of biofilms on solid surfaces as well as the production of curli were either reduced or were delayed more significantly in both mutants, whilst there was no visible effect on pellicle formation. It can be concluded that when no selective pressure is applied, S. Typhimurium is able to produce biofilms even when the AcrAB efflux pumps are inactivated, implying that the use of efflux pump inhibitors to prevent biofilm formation is not a general solution and that combined treatments might be more efficient. Other factors that affect the ability to produce biofilms depending on efflux pump activity are yet to be identified.

  1. Correlation between biofilm forming ability and antimicrobial resistance of uropathogenic Escherichia coli%尿路致病性大肠埃希菌生物膜形成与耐药性的关系

    Institute of Scientific and Technical Information of China (English)

    吴玉秀; 葛新; 靳颖; 董小青

    2011-01-01

    Objective To study the biofilm forming ability and effect on antimicrobial resistance of 50 uropatho-genic Escherichia coli (UPEC) strains isolated from clinic. Methods Screening of biofilm formation was performed by crystal violet staining, the susceptibility of 50 UPEC isolates to 8 kinds of antimicrobial agents was determined by Kirby-Bauer method , the correlation between antimicrobial resistance and biofilm formation was analyzed statistically. Results Among 50 UPEC isolates, 34(68. 00%) were biofilm-positive strains. All UPEC strains showed different resistance to 8 kinds of antimicrobial agents; the resistant rates of biofilm-positive strains to ampicillin (76.47%) and gentamicin (55.88%) were significantly higher than those of biofilm-negative strains (43.75%, 18.75% respectively) (P<0. 05). Conclusion The formation of biofilm in UPEC is common, the formation of biofilm correlats with its resistance to ampicillin and gentamicin.%目的 研究50株临床分离的尿路致病性大肠埃希菌(UPEC)形成生物膜情况及其对抗菌药物敏感性的影响.方法 采用结晶紫染色法检测生物膜阳性菌株,K-B纸片扩散法分析UPEC对8种抗菌药物的敏感性,再通过统计学方法分析细菌耐药性与生物膜形成之间的关系.结果 50株UPEC中,生物膜阳性34株,占68.00%.UPEC对8种抗菌药物均有不同程度耐药性;经统计学分析,生物膜阳性菌株对氨苄西林和庆大霉素耐药率(76.47%和55.88%)明显高于生物膜阴性菌株(43.75%和18.75%),差异有统计学意义(P<0.05).结论 UPEC产生物膜现象较普遍,生物膜形成与其对氨苄西林和庆大霉素的耐药性具有相关性.

  2. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility.

    Science.gov (United States)

    Yang, Xiaolong; Sha, Kaihui; Xu, Guangya; Tian, Hanwen; Wang, Xiaoying; Chen, Shanze; Wang, Yi; Li, Jingyu; Chen, Junli; Huang, Ning

    2016-06-29

    Uropathogenic Escherichia coli (UPEC) biofilm formation enables the organism to avoid the host immune system, resist antibiotics, and provide a reservoir for persistent infection. Once the biofilm is established, eradication of the infection becomes difficult. Therefore, strategies against UPEC biofilm are urgently required. In this study, we investigated the effect of allicin, isolated from garlic essential oil, on UPEC CFT073 and J96 biofilm formation and dispersal, along with its effect on UPEC adhesion ability and swimming motility. Sub-inhibitory concentrations (sub-MICs) of allicin decreased UPEC biofilm formation and affected its architecture. Allicin was also capable of dispersing biofilm. Furthermore, allicin decreased the bacterial adhesion ability and swimming motility, which are important for biofilm formation. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that allicin decreased the expression of UPEC type 1 fimbriae adhesin gene fimH. Docking studies suggested that allicin was located within the binding pocket of heptyl α-d-mannopyrannoside in FimH and formed hydrogen bonds with Phe1 and Asn135. In addition, allicin decreased the expression of the two-component regulatory systems (TCSs) cognate response regulator gene uvrY and increased the expression of the RNA binding global regulatory protein gene csrA of UPEC CFT073, which is associated with UPEC biofilm. The findings suggest that sub-MICs of allicin are capable of affecting UPEC biofilm formation and dispersal, and decreasing UPEC adhesion ability and swimming motility.

  3. Characterization of biofilms formed by Candida parapsilosis, C. metapsilosis, and C. orthopsilosis.

    Science.gov (United States)

    Lattif, Ali Abdul; Mukherjee, Pranab K; Chandra, Jyotsna; Swindell, Kim; Lockhart, Shawn R; Diekema, Daniel J; Pfaller, Michael A; Ghannoum, Mahmoud A

    2010-04-01

    Infections due to Candida parapsilosis have been associated with the ability of this fungus to form biofilms on indwelling medical devices. Recently, C. parapsilosis isolates were reclassified into 3 genetically non-identical classes: C. parapsilosis, C. orthopsilosis, and C. metapsilosis. Little information is available regarding the ability of these newly reclassified species to form biofilms on biomedical substrates. In this study, we characterized biofilm formation by 10 clinical isolates each of C. parapsilosis, C. orthopsilosis, and C. metapsilosis. Biofilms were allowed to form on silicone elastomer discs to early (6h) or mature (48 h) phases and quantified by tetrazolium (XTT) and dry weight assays. Surface topography and three-dimensional architecture of the biofilms were visualized using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), respectively. Metabolic activity assay revealed strain-dependent biofilm forming ability of the 3 species tested, while biomass determination revealed that all 3 species formed equivalent biofilms (P>0.05 for all comparisons). SEM analyses of representative isolates of these species showed biofilms with clusters of yeast cells adherent to the catheter surface. Additionally, confocal microscopy analyses showed the presence of cells embedded in biofilms ranging in thickness between 62 and 85 microm. These results demonstrate that similar to C. parapsilosis, the 2 newly identified Candida species (C. orthopsilosis and C. metapsilosis) were able to form biofilms.

  4. Oral Candida albicans isolates from HIV-positive individuals have similar in vitro biofilm-forming ability and pathogenicity as invasive Candida isolates

    OpenAIRE

    Rasteiro Vanessa MC; Costa Anna CBP; Vilela Simone FG; Suleiman Jamal MAH; Coleman Jeffrey J; Muhammed Maged; Fuchs Beth B; Junqueira Juliana C; Jorge Antonio OC; Mylonakis Eleftherios

    2011-01-01

    Abstract Background Candida can cause mucocutaneous and/or systemic infections in hospitalized and immunosuppressed patients. Most individuals are colonized by Candida spp. as part of the oral flora and the intestinal tract. We compared oral and systemic isolates for the capacity to form biofilm in an in vitro biofilm model and pathogenicity in the Galleria mellonella infection model. The oral Candida strains were isolated from the HIV patients and included species of C. albicans, C. glabrata...

  5. Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates.

    Science.gov (United States)

    Mori, Miho; Gomi, Mitsuhiro; Matsumune, Norihiko; Niizeki, Kazuma; Sakagami, Yoshikazu

    2013-01-01

    To evaluate the sanitary conditions of toilets, the bacterial counts of the toilet bowl biofilms in 5 Kansai area and 11 Kansai and Kanto area homes in Japan were measured in winter and summer seasons, respectively. Isolates (128 strains) were identified by analyzing 16S ribosomal RNA sequences. The number of colonies and bacterial species from biofilms sampled in winter tended to be higher and lower, respectively, than those in summer. Moreover, the composition of bacterial communities in summer and winter samples differed considerably. In summer samples, biofilms in Kansai and Kanto areas were dominated by Blastomonas sp. and Mycobacterium sp., respectively. Methylobacterium sp. was detected in all toilet bowl biofilms except for one sample. Methylobacterium sp. constituted the major presence in biofilms along with Brevundimonas sp., Sphingomonas sp., and/or Pseudomonas sp. The composition ratio of the sum of their genera was 88.0 from 42.9% of the total bacterial flora. The biofilm formation abilities of 128 isolates were investigated, and results suggested that Methylobacterium sp. and Sphingomonas sp. were involved in biofilm formation in toilet bowls. The biofilm formation of a mixed bacteria system that included bacteria with the highest biofilm-forming ability in a winter sample was greater than mixture without such bacteria. This result suggests that isolates possessing a high biofilm-forming activity are involved in the biofilm formation in the actual toilet bowl. A bactericidal test against 25 strains indicated that the bactericidal activities of didecyldimethylammonium chloride (DDAC) tended to be higher than those of polyhexamethylene biguanide (PHMB) and N-benzyl-N,N-dimethyldodecylammonium chloride (ADBAC). In particular, DDAC showed high bactericidal activity against approximately 90% of tested strains under the 5 h treatment.

  6. Antimicrobial activities against biofilm formed by Proteus mirabilis isolates from wound and urinary tract infections

    Directory of Open Access Journals (Sweden)

    R Wasfi

    2012-01-01

    Full Text Available Background: Bacterial species are capable of living as biofilm and/or planktonic forms. There is increasing evidence for the role of bacterial biofilm in various wound and urinary tract infections (UTIs. The aim of the present study was to evaluate the ability of the bacteria, isolated from urinary tract infections (UTIs and wound infections, to form biofilm and correlate the role of biofilm with their antimicrobial resistance. Materials and Methods: All the isolated bacteria were screened for their ability to form biofilm using the microtitre plate method. Results: Wound isolates of Staphylococcus aureus and Enterobacter sp. had more biofilm forming capacity than the UTI isolates. Proteus mirabilis isolates were among the strongest biofilm forming bacteria and were chosen for antimicrobial study. In sub-MIC concentrations of antimicrobial agents used, ciprofloxacin was found to be the most effective in decreasing biofilm formation. On the other hand, ceftriaxone and ciprofloxacin were effective in partial removal of preformed biofilm biomass. Conclusion: Ciprofloxacin was more effective in killing bacterial cells especially at high antimicrobial concentrations that could be reached in urine levels and can be used in impregenating catheters.

  7. Reduced ability to detect surface-related biofilm bacteria after antibiotic exposure under in vitro conditions

    DEFF Research Database (Denmark)

    Ravn, Christen; Furustrand Tafin, Ulrika; Bétrisey, Bertrand;

    2016-01-01

    Background and purpose - Antibiotic treatment of patients before specimen collection reduces the ability to detect organisms by culture. We investigated the suppressive effect of antibiotics on the growth of non-adherent, planktonic, and surface-related biofilm bacteria in vitro by using sonication......-dependent drugs (i.e. daptomycin and ciprofloxacin) had a strong suppressive effect on bacterial growth and reduced the ability to detect planktonic and biofilm bacteria. Exposure to rifampin rapidly caused emergence of resistance. Our findings indicate that preoperative administration of antibiotics may have...... and microcalorimetry methods. Patients and methods - Biofilms of Staphylococcus aureus, S. epidermidis, Escherichia coli, and Propionibacterium acnes were formed on porous glass beads and exposed for 24 h to antibiotic concentrations from 1 to 1,024 times the minimal inhibitory concentration (MIC) of vancomycin...

  8. In vitro biofilm forming potential of Streptococcus suis isolated from human and swine in China

    Directory of Open Access Journals (Sweden)

    Guo Dawei

    2012-09-01

    Full Text Available Streptococcus suis is a swine pathogen and also a zoonotic agent. The formation of biofilms allows S. suis to become persistent colonizers and resist clearance by the host immune system and antibiotics. In this study, biofilm forming potentials of various S. suis strains were characterized by confocal laser scanning microscopy (CLSM, scanning electron microscopy (SEM and tissue culture plates stained with crystal violet. In addition, the effects of five antimicrobial agents on biofilm formation were assayed in this study. S. suis produced biofilms on smooth and rough surface. The nutritional contents including glucose and NaCl in the growth medium modulated biofilm formation. There was a significant difference in their biofilm-forming ability among all 46 S. suis strains. The biofilm-forming potential of S. suis serotype 9 was stronger than type 2 and all other types. However, biofilm formation was inhibited by five commonly used antimicrobial agents, penicillin, erythromycin, azithromycin, ciprofloxacin, and ofloxacin at subinhibitory concentrations, among which inhibition of ciprofloxacin and ofloxacin was stronger than that of other three antimicrobial agents.Our study provides a detailed analysis of biofilm formation potential in S. suis, which is a step towards understanding its role in pathogenesis, and eventually lead to a better understanding of how to eradicate S. suis growing as biofilms with antibiotic therapy.

  9. 鲍曼不动杆菌生物膜形成能力与生物膜相关基因及耐药性之间的关系%Correlation between the biofilm-forming ability, biofilm-related genes and antimicrobial resistance of Acinetobacter baumannii

    Institute of Scientific and Technical Information of China (English)

    韩欣欣; 李庆淑; 申丽婷; 胡丹; 曲彦

    2014-01-01

    Objective To study the biofilm-forming ability and the distribution of biofilm-related genes in Acinetobacter baumannii clinical isolates as well as antimicrobial resistance,to analyze their relationships with the bacterial resistance phenotype.Methods A prospective study was conducted.Biofilm models of 70 strains Acinetobacter baumannii collected in Chengwu County People's Hospital from October 2012 to October 2013 were constructed using 96-well polystyrene plate.In order to analyze the biofilm-forming ability,a qualitative and quantitative analysis was conduct by crystal violet staining assay.And the antimicrobial resistance of different biofilm-forming ability strains was compared including imipenem,amikacin,meropenem,cefepime,sulbactam cefoperazone,trimethoprim,levofloxacin,gentamicin,ciprofloxacin,cefotaxime,ceftizoxime,aztreonam,piperacillin,ceftriaxone,cefuroxime.In addition,the expressions of biofilm-related gene Bap,bfs and intI1 were tested with polymerase chain reaction (PCR) assay.Results Among 70 strains Acinetobacter baumannii,40 strains were multi-drug resistant (57.14%) and 6 strains were pan-drug resistant (8.57%); 68 strains had biofilm-forming ability (97.14%),14 of which were weakly positive,20 were positive and 34 were strongly positive.The antimicrobial resistant rate of Acinetobacter baumannii to imipenem,amikacin,meropenem and cefepime was decreased,it was 30.00%,32.86%,38.57% and 41.43%,respectively.However,the antimicrobial resistant rates to other commonly used antibiotics were all higher than 50%.The drug resistance of Acinetobacter baumannii to levofloxacin (85.71%,45.00%,38.24%,x2=9.225,P=0.010),cefepime (71.43%,45.00%,29.41%,x2=7.222,P=0.027),gentamicin (78.57%,55.00%,38.24%,x2 =6.601,P=0.037) was significantly decreased when biofilm-forming ability reinforced (weakly positive,positive,hadro-positive).Bap gene positive rate of weakly positive,positive and strong positive biofilm-forming strains

  10. In vitro characterization of biofilms formed by Kingella kingae.

    Science.gov (United States)

    Kaplan, J B; Sampathkumar, V; Bendaoud, M; Giannakakis, A K; Lally, E T; Balashova, N V

    2016-10-07

    The Gram-negative bacterium Kingella kingae is part of the normal oropharyngeal mucosal flora of children kingae can enter the submucosa and cause infections of the skeletal system in children, including septic arthritis and osteomyelitis. The organism is also associated with infective endocarditis in children and adults. Although biofilm formation has been coupled with pharyngeal colonization, osteoarticular infections, and infective endocarditis, no studies have investigated biofilm formation in K. kingae. In this study we measured biofilm formation by 79 K. kingae clinical isolates using a 96-well microtiter plate crystal violet binding assay. We found that 37 of 79 strains (47%) formed biofilms. All strains that formed biofilms produced corroding colonies on agar. Biofilm formation was inhibited by proteinase K and DNase I. DNase I also caused the detachment of pre-formed K. kingae biofilm colonies. A mutant strain carrying a deletion of the pilus gene cluster pilA1pilA2fimB did not produce corroding colonies on agar, autoaggregate in broth, or form biofilms. Biofilm forming strains have higher levels of pilA1 expression. The extracellular components of biofilms contained 490 μg cm(-2) of protein, 0.68 μg cm(-2) of DNA, and 0.4 μg cm(-2) of total carbohydrates. We concluded that biofilm formation is common among K. kingae clinical isolates, and that biofilm formation is dependent on the production of proteinaceous pili and extracellular DNA. Biofilm development may have relevance to the colonization, transmission, and pathogenesis of this bacterium. Extracellular DNA production by K. kingae may facilitate horizontal gene transfer within the oral microbial community.

  11. Biofilm-forming bacteria with varying tolerance to peracetic acid from a paper machine.

    Science.gov (United States)

    Rasimus, Stiina; Kolari, Marko; Rita, Hannu; Hoornstra, Douwe; Salkinoja-Salonen, Mirja

    2011-09-01

    Biofilms cause runnability problems in paper machines and are therefore controlled with biocides. Peracetic acid is usually effective in preventing bulky biofilms. This study investigated the microbiological status of a paper machine where low concentrations (≤ 15 ppm active ingredient) of peracetic acid had been used for several years. The paper machine contained a low amount of biofilms. Biofilm-forming bacteria from this environment were isolated and characterized by 16S rRNA gene sequencing, whole-cell fatty acid analysis, biochemical tests, and DNA fingerprinting. Seventy-five percent of the isolates were identified as members of the subclades Sphingomonas trueperi and S. aquatilis, and the others as species of the genera Burkholderia (B. cepacia complex), Methylobacterium, and Rhizobium. Although the isolation media were suitable for the common paper machine biofoulers Deinococcus, Meiothermus, and Pseudoxanthomonas, none of these were found, indicating that peracetic acid had prevented their growth. Spontaneous, irreversible loss of the ability to form biofilm was observed during subculturing of certain isolates of the subclade S. trueperi. The Sphingomonas isolates formed monoculture biofilms that tolerated peracetic acid at concentrations (10 ppm active ingredient) used for antifouling in paper machines. High pH and low conductivity of the process waters favored the peracetic acid tolerance of Sphingomonas sp. biofilms. This appears to be the first report on sphingomonads as biofilm formers in warm water using industries.

  12. Determining the biofilm penetrating ability of various biocides utilizing an artificial biofilm matrix

    Energy Technology Data Exchange (ETDEWEB)

    McIlwaine, D.B.; Diemer, J.; Grab, L. [Union Carbide Corp., Bound Brook, NJ (United States)

    1997-12-01

    The efficacy of many commonly used biocides is often determined by laboratory evaluations against a variety of planktonic microorganisms. While these tests provide some information as to the performance of a biocide against a particular microorganism, they may not predict how well the biocide will perform under actual field conditions against the more problematic sissile form of the organisms. In order to address the issue of how well a biocide penetrates and kills the problematic microorganisms contained within a biofilm, an artificial biofilm system utilizing microorganisms embedded in alginate beads has been used to compare the efficacy of biocide treatments against both the planktonic and sessile form of the same organism. Pure cultures of Enterobacter aerogenes, as well as mixed field isolates, were used in the experiments. In addition, the alginate beads were prepared with actual system waters taken from a variety of industrial applications. In that way, all of the scale and corrosion inhibitors and other contaminants which are present in the actual system are also present in the model biofilm system. In all cases, the organisms contained within the artificial biofilm were significantly more difficult to kill than the corresponding planktonic microbes.

  13. In vitro biofilm forming capacity on abiotic contact surfaces by outbreak-associated Vibrio harveyi strains

    Institute of Scientific and Technical Information of China (English)

    Pallaval Veera Bramha Chari; Kuchipudi Viswadeepika; Bottu Anand Kumar

    2014-01-01

    Objective:To evaluate the in vitro biofilm forming capacity on abiotic food contact surfaces by Vibrio harveyi (V. harveyi) strains. Methods:Thirty six Gram-negative V. harveyi strains were isolated from various street vended seafood outlets in a food processing line and evaluated for their ability to produce mucoid biofilms on food contact surfaces using a microplate assay. Phenotypic characterization of mucoid biofilm producing V. harveyi strains were screened on Congo red agar, thiosulfate-citrate-bile salts-sucrose agar and tryptic soy agar, respectively. Results: Only five V. harveyi strains (14%) were mucoid biofilm producers characterized by formation of black colonies, whereas the remaining 31 strains (86%) were not capable of producing biofilm characterized by formation of red colonies or pinkish-red colonies with darkening at the centre. The morphological, physiological and biochemical characteristics of these isolates were studied using standard protocols. Strain identification was confirmed by polymerase chain reaction targeted to species-specific polymerase chain reaction primers VH-1 and VH-2 corresponding to variable regions of V. harveyi 16S rRNA sequence. All the biofilm-forming strains showed resistance to at least three antimicrobial compounds tested. V. harveyi strains isolated from various seafood were able to form biofilms of different capacity, and the strains VB267, VB238 and VB166 isolated from cat fish, shrimp and eel fish exhibited significantly greater biofilm forming ability compared to other isolates. Conclusions: It can be concluded from the present study that the strain VB166 was able to better attach and form subsequent biofilms on glass and stainless steel compared to high density polyethylene. These properties allow these bacteria to survive, proliferate and persist in street vended seafood outlets.

  14. In vitro biofilm forming capacity on abiotic contact surfaces by outbreak-associated Vibrio harveyi strains

    Directory of Open Access Journals (Sweden)

    Pallaval Veera Bramha Chari

    2014-02-01

    Full Text Available Objective: To evaluate the in vitro biofilm forming capacity on abiotic food contact surfaces by Vibrio harveyi (V. harveyi strains. Methods: Thirty six Gram-negative V. harveyi strains were isolated from various street vended seafood outlets in a food processing line and evaluated for their ability to produce mucoid biofilms on food contact surfaces using a microplate assay. Phenotypic characterization of mucoid biofilm producing V. harveyi strains were screened on Congo red agar, thiosulfate-citrate-bile salts-sucrose agar and tryptic soy agar, respectively. Results: Only five V. harveyi strains (14% were mucoid biofilm producers characterized by formation of black colonies, whereas the remaining 31 strains (86% were not capable of producing biofilm characterized by formation of red colonies or pinkish-red colonies with darkening at the centre. The morphological, physiological and biochemical characteristics of these isolates were studied using standard protocols. Strain identification was confirmed by polymerase chain reaction targeted to species-specific polymerase chain reaction primers VH-1 and VH-2 corresponding to variable regions of V. harveyi 16S rRNA sequence. All the biofilm-forming strains showed resistance to at least three antimicrobial compounds tested. V. harveyi strains isolated from various seafood were able to form biofilms of different capacity, and the strains VB267, VB238 and VB166 isolated from cat fish, shrimp and eel fish exhibited significantly greater biofilm forming ability compared to other isolates. Conclusions: It can be concluded from the present study that the strain VB166 was able to better attach and form subsequent biofilms on glass and stainless steel compared to high density polyethylene. These properties allow these bacteria to survive, proliferate and persist in street vended seafood outlets.

  15. Candida biofilm disrupting ability of di-rhamnolipid (RL-2) produced from Pseudomonas aeruginosa DSVP20.

    Science.gov (United States)

    Singh, Nivedita; Pemmaraju, Suma C; Pruthi, Parul A; Cameotra, Swaranjit S; Pruthi, Vikas

    2013-04-01

    Biosurfactant produced from Pseudomonas aeruginosa DSVP20 was evaluated for its potential to disrupt Candida albicans biofilm formed on polystyrene (PS) surfaces in this investigation. P. aeruginosa DSVP20 exhibited optimum production of biosurfactant (5.8 g L(-1)) after 96 h of growth with an ability to reduce surface tension of the aqueous solution from 72 to 28 mN m(-1). Analysis of purified biosurfactant with FT-IR, (1)H and (13)C NMR and MALDI-TOF MS revealed it to be di-rhamnolipid (RL-2) in nature. Biofilm disrupting ability of RL-2 (0.16 mg mL(-1)) on Candida cells when checked using XTT reduction assay revealed that about 50 % of the cells remain adhered to 96-well plate after 2 h of treatment, while up to 90 % reduction in pre-formed C. albicans biofilm on PS surface was observed with RL-2 (5.0 mg mL(-1)) in a dose-dependent manner. Microscopic analyses (SEM and CLSM) further confirm the influence of RL-2 on disruption of Candida biofilm extracellular matrix on PS surface which can be exploited as a potential alternative to the available conventional therapies.

  16. Characterization of biofilm formed on intrauterine devices

    Directory of Open Access Journals (Sweden)

    Pruthi V

    2003-01-01

    Full Text Available PURPOSE: Intrauterine device (IUD is one of the most convenient contraceptive procedures used by women of Asian and African countries. Previous surveys have revealed that 75% of the IUDs recovered from patients suffering from reproductive tract infections (RTIs were covered with a consortium of microbes. This study was designed to characterize these microbes and recommend remedial measures. METHODS: Quantitative measurement of biofilm formation was assessed by a microtitre plate assay on 86 samples of microorganisms dislodged from IUDs of patients with RTIs. Susceptibility of biofilm to various antimicrobial agents was also quantified. Scanning electron microscopy (SEM was used to scrutinize the microorganisms adherent to IUDs. RESULTS: The organisms associated with IUDs were predominantly composed of Staphylococcus aureus (16%, Staphylococcus epidermidis (18%, Pseudomonas aeruginosa (5%, Escherichia coli (27%, Neisseria gonorrhoeae (2%, Candida albicans (20% and Candida dubliniesis (12%. SEM studies indicated that these organisms were organized into biofilms. Studies on the in vitro adherence pattern by crystal violet staining on 96 well microtitre plates revealed that the biofilms were stably established after 60 hours. These biofilms are resistant to an array of antibiotics tested. CONCLUSION: Biofilm formation may be one of the major causes for persistent infection and antibiotic resistance in IUD users.

  17. 医院获得性肺炎铜绿假单胞菌生物被膜形成能力与基因型分析%Biofilm-forming ability and genotypes in Pseudomonas aeruginosa causing hospital-acquired pneumonia

    Institute of Scientific and Technical Information of China (English)

    陈列彬; 郭雪君; 陈峰

    2012-01-01

    OBJECTIVE To explore the biofilm-forming ability and genotypes of Pseudomonas aeruginosa causing nosocomial pneumonia. METHODS Forty-two P. aeruginosa strains isolated from nosocomial pneumonia were tested for the biofilm-forming ability using a modified microtiter test. Enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) was used to analyze their genotypes. RESULTS The best time to culture the biofilm of P. aeruginosa isolates in nosocomial pneumonia was 5~6 days. Absorbance value A57O of the biofilm of these strains ranged from —0. 114 to 2. 822 and film area ratio was from 0. 0449 to 0. 9065. Most of these isolates demonstrated different biofilm-forming ability by absorbance and film area ratio test. Among these isolates tested, thirteen clusters(A,B,C, D,E, F,G, II and so on) showed different genotypes in fingerprints by ERIC-PCR. CONCLUSION P. aeruginosa varies in the ability of forming biofilm and shows polymorphism in the genotype, those isolates with the genotypes of A, D, E ,F, or H have stronger ability in forming most of the biofilm.%目的 研究医院获得性肺炎铜绿假单胞菌的生物被膜形成能力及其基因型.方法 用微量平板法对临床分离42株医院获得性肺炎铜绿假单胞菌建立生物被膜模型并测定其形成能力,通过肠杆菌科细菌基因间重复一致序列-PCR(ERIC-PCR)方法进行基因分型.结果 医院获得性肺炎铜绿假单胞菌BF最适培养时间为5~6 d,吸光度值A570为-0.114~2.822,成膜面积比为0.0449~0.9065,绝大多数菌株具有生物被膜形成能力且形成能力不同,用ERIC-PCR法可分为A、B、C、D、E、F、G、H等13个基因型.结论 铜绿假单胞菌生物被膜形成能力不同,在基因型上表现出多态性,基因型为A、D、E、F、H型的菌株大多生物被膜形成能力较强.

  18. Characterization of biofilm formed on intrauterine devices

    OpenAIRE

    2003-01-01

    PURPOSE: Intrauterine device (IUD) is one of the most convenient contraceptive procedures used by women of Asian and African countries. Previous surveys have revealed that 75% of the IUDs recovered from patients suffering from reproductive tract infections (RTIs) were covered with a consortium of microbes. This study was designed to characterize these microbes and recommend remedial measures. METHODS: Quantitative measurement of biofilm formation was assessed by a microtitre plate assa...

  19. Legionella pneumophila persists within biofilms formed by Klebsiella pneumoniae, Flavobacterium sp., and Pseudomonas fluorescens under dynamic flow conditions.

    Directory of Open Access Journals (Sweden)

    Catherine R Stewart

    Full Text Available Legionella pneumophila, the agent of Legionnaires' disease pneumonia, is transmitted to humans following the inhalation of contaminated water droplets. In aquatic systems, L. pneumophila survives much of time within multi-organismal biofilms. Therefore, we examined the ability of L. pneumophila (clinical isolate 130 b to persist within biofilms formed by various types of aquatic bacteria, using a bioreactor with flow, steel surfaces, and low-nutrient conditions. L. pneumophila was able to intercalate into and persist within a biofilm formed by Klebsiella pneumoniae, Flavobacterium sp. or Pseudomonas fluorescens. The levels of L. pneumophila within these biofilms were as much as 4 × 10(4 CFU per cm(2 of steel coupon and lasted for at least 12 days. These data document that K. pneumoniae, Flavobacterium sp., and P. fluorescens can promote the presence of L. pneumophila in dynamic biofilms. In contrast to these results, L. pneumophila 130 b did not persist within a biofilm formed by Pseudomonas aeruginosa, confirming that some bacteria are permissive for Legionella colonization whereas others are antagonistic. In addition to colonizing certain mono-species biofilms, L. pneumophila 130 b persisted within a two-species biofilm formed by K. pneumoniae and Flavobacterium sp. Interestingly, the legionellae were also able to colonize a two-species biofilm formed by K. pneumoniae and P. aeruginosa, demonstrating that a species that is permissive for L. pneumophila can override the inhibitory effect(s of a non-permissive species.

  20. Potentially pathogenic Escherichia coli can form a biofilm under conditions relevant to the food production chain.

    Science.gov (United States)

    Nesse, Live L; Sekse, Camilla; Berg, Kristin; Johannesen, Karianne C S; Solheim, Heidi; Vestby, Lene K; Urdahl, Anne Margrete

    2014-04-01

    The biofilm-producing abilities of potentially human-pathogenic serotypes of Escherichia coli from the ovine reservoir were studied at different temperatures and on different surfaces. A possible influence of the hydrophobicity of the bacterial cells, as well as the presence of two virulence factors, the Shiga toxin-encoding (Stx) bacteriophage and the eae gene, was also studied. A total of 99 E. coli isolates of serotypes O26:H11, O103:H2, and O103:H25 isolated from sheep feces were included. The results show that isolates of all three E. coli serotypes investigated can produce biofilm on stainless steel, glass, and polystyrene at 12, 20, and 37°C. There was a good general correlation between the results obtained on the different surfaces. E. coli O103:H2 isolates produced much more biofilm than those of the other two serotypes at all three temperatures. In addition, isolates of serotype O26:H11 produced more biofilm than those of O103:H25 at 37°C. The hydrophobicity of the isolates varied between serotypes and was also influenced by temperature. The results strongly indicated that hydrophobicity influenced the attachment of the bacteria rather than their ability to form biofilm once attached. Isolates with the eae gene produced less biofilm at 37°C than isolates without this gene. The presence of a Stx bacteriophage did not influence biofilm production. In conclusion, our results show that potentially human-pathogenic E. coli from the ovine reservoir can form biofilm on various surfaces and at several temperatures relevant for food production and handling.

  1. Does Campylobacter jejuni form biofilms in food-related environments?

    Science.gov (United States)

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2014-09-01

    Campylobacter jejuni is one of the most frequent causes of bacterial gastrointestinal food-borne infection worldwide. This species is part of the normal flora of the gastrointestinal tracts of animals used for food production, including poultry, which is regarded as the primary source of human Campylobacter infections. The survival and persistence of C. jejuni in food processing environments, especially in poultry processing plants, represent significant risk factors that contribute to the spread of this pathogen through the food chain. Compared to other food-borne pathogens, C. jejuni is more fastidious in its growth requirements and is very susceptible to various environmental stressors. Biofilm formation is suggested to play a significant role in the survival of C. jejuni in the food production and processing environment. The aims of this minireview were (i) to examine the evidence that C. jejuni forms biofilms and (ii) to establish the extent to which reported and largely laboratory-based studies of C. jejuni biofilms provide evidence for biofilm formation by this pathogen in food processing environments. Overall existing studies do not provide strong evidence for biofilm formation (as usually defined) by most C. jejuni strains in food-related environments under the combined conditions of atmosphere, temperature, and shear that they are likely to encounter. Simple attachment to and survival on surfaces and in existing biofilms of other species are far more likely to contribute to C. jejuni survival in food-related environments based on our current understanding of this species.

  2. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) isolates of swine origin form robust biofilms.

    Science.gov (United States)

    Nicholson, Tracy L; Shore, Sarah M; Smith, Tara C; Frana, Timothy S; Fraena, Timothy S

    2013-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) colonization of livestock animals is common and prevalence rates for pigs have been reported to be as high as 49%. Mechanisms contributing to the persistent carriage and high prevalence rates of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) strains in swine herds and production facilities have not been investigated. One explanation for the high prevalence of MRSA in swine herds is the ability of these organisms to exist as biofilms. In this report, the ability of swine LA-MRSA strains, including ST398, ST9, and ST5, to form biofilms was quantified and compared to several swine and human isolates. The contribution of known biofilm matrix components, polysaccharides, proteins and extracellular DNA (eDNA), was tested in all strains as well. All MRSA swine isolates formed robust biofilms similar to human clinical isolates. The addition of Dispersin B had no inhibitory effect on swine MRSA isolates when added at the initiation of biofilm growth or after pre-established mature biofilms formed. In contrast, the addition of proteinase K inhibited biofilm formation in all strains when added at the initiation of biofilm growth and was able to disperse pre-established mature biofilms. Of the LA-MRSA strains tested, we found ST398 strains to be the most sensitive to both inhibition of biofilm formation and dispersal of pre-formed biofilms by DNaseI. Collectively, these findings provide a critical first step in designing strategies to control or eliminate MRSA in swine herds.

  3. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA isolates of swine origin form robust biofilms.

    Directory of Open Access Journals (Sweden)

    Tracy L Nicholson

    Full Text Available Methicillin-resistant Staphylococcus aureus (MRSA colonization of livestock animals is common and prevalence rates for pigs have been reported to be as high as 49%. Mechanisms contributing to the persistent carriage and high prevalence rates of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA strains in swine herds and production facilities have not been investigated. One explanation for the high prevalence of MRSA in swine herds is the ability of these organisms to exist as biofilms. In this report, the ability of swine LA-MRSA strains, including ST398, ST9, and ST5, to form biofilms was quantified and compared to several swine and human isolates. The contribution of known biofilm matrix components, polysaccharides, proteins and extracellular DNA (eDNA, was tested in all strains as well. All MRSA swine isolates formed robust biofilms similar to human clinical isolates. The addition of Dispersin B had no inhibitory effect on swine MRSA isolates when added at the initiation of biofilm growth or after pre-established mature biofilms formed. In contrast, the addition of proteinase K inhibited biofilm formation in all strains when added at the initiation of biofilm growth and was able to disperse pre-established mature biofilms. Of the LA-MRSA strains tested, we found ST398 strains to be the most sensitive to both inhibition of biofilm formation and dispersal of pre-formed biofilms by DNaseI. Collectively, these findings provide a critical first step in designing strategies to control or eliminate MRSA in swine herds.

  4. Pseudomonas aeruginosa forms Biofilms in Acute InfectionIndependent of Cell-to-Cell Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N.; Rumbaugh, Kendra P.

    2006-09-20

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 hours of infection in thermally-injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections. P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild type and QS-deficient P. aeruginosa formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independent of QS.

  5. Reduced ability to detect surface-related biofilm bacteria after antibiotic exposure under in vitro conditions

    DEFF Research Database (Denmark)

    Ravn, Christen; Furustrand Tafin, Ulrika; Bétrisey, Bertrand

    2016-01-01

    -dependent drugs (i.e. daptomycin and ciprofloxacin) had a strong suppressive effect on bacterial growth and reduced the ability to detect planktonic and biofilm bacteria. Exposure to rifampin rapidly caused emergence of resistance. Our findings indicate that preoperative administration of antibiotics may have......Background and purpose - Antibiotic treatment of patients before specimen collection reduces the ability to detect organisms by culture. We investigated the suppressive effect of antibiotics on the growth of non-adherent, planktonic, and surface-related biofilm bacteria in vitro by using sonication...... heterogeneous effects on the ability to detect biofilm bacteria....

  6. Anti-Biofilm and Immunomodulatory Activities of Peptides That Inhibit Biofilms Formed by Pathogens Isolated from Cystic Fibrosis Patients.

    Science.gov (United States)

    de la Fuente-Núñez, César; Mansour, Sarah C; Wang, Zhejun; Jiang, Lucy; Breidenstein, Elena B M; Elliott, Melissa; Reffuveille, Fany; Speert, David P; Reckseidler-Zenteno, Shauna L; Shen, Ya; Haapasalo, Markus; Hancock, Robert E W

    2014-01-01

    Cystic fibrosis (CF) patients often acquire chronic respiratory tract infections due to Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) species. In the CF lung, these bacteria grow as multicellular aggregates termed biofilms. Biofilms demonstrate increased (adaptive) resistance to conventional antibiotics, and there are currently no available biofilm-specific therapies. Using plastic adherent, hydroxyapatite and flow cell biofilm models coupled with confocal and scanning electron microscopy, it was demonstrated that an anti-biofilm peptide 1018 prevented biofilm formation, eradicated mature biofilms and killed biofilms formed by a wide range of P. aeruginosa and B. cenocepacia clinical isolates. New peptide derivatives were designed that, compared to their parent peptide 1018, showed similar or decreased anti-biofilm activity against P. aeruginosa biofilms, but increased activity against biofilms formed by the Gram-positive bacterium methicillin resistant Staphylococcus aureus. In addition, some of these new peptide derivatives retained the immunomodulatory activity of 1018 since they induced the production of the chemokine monocyte chemotactic protein-1 (MCP-1) and suppressed lipopolysaccharide-mediated tumor necrosis factor-α (TNF-α) production by human peripheral blood mononuclear cells (PBMC) and were non-toxic towards these cells. Peptide 1018 and its derivatives provide promising leads for the treatment of chronic biofilm infections and hyperinflammatory lung disease in CF patients.

  7. Anti-Biofilm and Immunomodulatory Activities of Peptides That Inhibit Biofilms Formed by Pathogens Isolated from Cystic Fibrosis Patients

    Directory of Open Access Journals (Sweden)

    César de la Fuente-Núñez

    2014-10-01

    Full Text Available Cystic fibrosis (CF patients often acquire chronic respiratory tract infections due to Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc species. In the CF lung, these bacteria grow as multicellular aggregates termed biofilms. Biofilms demonstrate increased (adaptive resistance to conventional antibiotics, and there are currently no available biofilm-specific therapies. Using plastic adherent, hydroxyapatite and flow cell biofilm models coupled with confocal and scanning electron microscopy, it was demonstrated that an anti-biofilm peptide 1018 prevented biofilm formation, eradicated mature biofilms and killed biofilms formed by a wide range of P. aeruginosa and B. cenocepacia clinical isolates. New peptide derivatives were designed that, compared to their parent peptide 1018, showed similar or decreased anti-biofilm activity against P. aeruginosa biofilms, but increased activity against biofilms formed by the Gram-positive bacterium methicillin resistant Staphylococcus aureus. In addition, some of these new peptide derivatives retained the immunomodulatory activity of 1018 since they induced the production of the chemokine monocyte chemotactic protein-1 (MCP-1 and suppressed lipopolysaccharide-mediated tumor necrosis factor-α (TNF-α production by human peripheral blood mononuclear cells (PBMC and were non-toxic towards these cells. Peptide 1018 and its derivatives provide promising leads for the treatment of chronic biofilm infections and hyperinflammatory lung disease in CF patients.

  8. Escherichia coli O157:H7 strains isolated from High-Event Period beef contamination have strong biofilm-forming ability and low sanitizer susceptibility, which are associated with high pO157 plasmid copy number

    Science.gov (United States)

    In the meat industry, a “High Event Period” (HEP) is defined as a time period when beef processing establishments experience an increased occurrence of product contamination by E. coli O157:H7. Our previous studies suggested that bacterial biofilm formation and sanitizer resistance might contribute...

  9. The inhibitory effect of Thymus vulgaris extracts on the planktonic form and biofilm structures of six human pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Zinab Mohsenipour

    2015-06-01

    Full Text Available Objective: Microorganisms are responsible for many problems in industry and medicine because of biofilm formation. Therefore, this study was aimed to examine the effect of Thymus vulgaris (T. vulgaris extracts on the planktonic form and biofilm structures of six pathogenic bacteria. Materials and methods: Antimicrobial activities of the plant extracts against the planktonic form of the bacteria were determined using the disc diffusion method. MIC and MBC values were evaluated using macrobroth dilution technique. Anti-biofilm effects were assessed by microtiter plate method. Results: According to disc diffusion test (MIC and MBC, the ability of Thymus vulgaris (T. vulgaris extracts for inhibition of bacteria in planktonic form was confirmed. In dealing with biofilm structures, the inhibitory effect of the extracts was directly correlated to their concentration. Except for the inhibition of biofilm formation, efficacy of each extract was independent from type of solvent. Conclusion: According to the potential of Thymus vulgaris (T. vulgaris extracts to inhibit the test bacteria in planktonic and biofilm form, it can be suggested that Thymus vulgaris(T. vulgaris extracts can be applied as antimicrobial agents against the pathogenic bacteria particularly in biofilm forms.

  10. Bad to the Bone: On In Vitro and Ex Vivo Microbial Biofilm Ability to Directly Destroy Colonized Bone Surfaces without Participation of Host Immunity or Osteoclastogenesis

    Science.gov (United States)

    Junka, Adam; Szymczyk, Patrycja; Ziółkowski, Grzegorz; Karuga-Kuzniewska, Ewa; Smutnicka, Danuta; Bil-Lula, Iwona; Bartoszewicz, Marzenna; Mahabady, Susan; Sedghizadeh, Parish Paymon

    2017-01-01

    Bone infections are a significant public health burden associated with morbidity and mortality in patients. Microbial biofilm pathogens are the causative agents in chronic osteomyelitis. Research on the pathogenesis of osteomyelitis has focused on indirect bone destruction by host immune cells and cytokines secondary to microbial insult. Direct bone resorption by biofilm pathogens has not yet been seriously considered. In this study, common osteomyelitis pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and Streptococcus mutans) were grown as biofilms in multiple in vitro and ex vivo experiments to analyze quantitative and qualitative aspects of bone destruction during infection. Pathogens were grown as single or mixed species biofilms on the following substrates: hydroxyapatite, rat jawbone, or polystyrene wells, and in various media. Biofilm growth was evaluated by scanning electron microscopy and pH levels were monitored over time. Histomorphologic and quantitative effects of biofilms on tested substrates were analyzed by microcomputed tomography and quantitative cultures. All tested biofilms demonstrated significant damage to bone. Scanning electron microscopy indicated that all strains formed mature biofilms within 7 days on all substrate surfaces regardless of media. Experimental conditions impacted pH levels, although this had no impact on biofilm growth or bone destruction. Presence of biofilm led to bone dissolution with a decrease of total volume by 20.17±2.93% upon microcomputed tomography analysis, which was statistically significant as compared to controls (p <0.05, ANOVA). Quantitative cultures indicated that media and substrate did not impact biofilm formation (Kruskall-Wallis test, post-hoc Dunne’s test; p <0.05). Overall, these results indicate that biofilms associated with osteomyelitis have the ability to directly resorb bone. These findings should lead to a more complete understanding of the etiopathogenesis of

  11. Genotypic and phenotypic analysis of S. mutans isolated from dental biofilms formed in vivo under high cariogenic conditions.

    Science.gov (United States)

    Arthur, Rodrigo Alex; Cury, Altair Antoninha Del Bel; Graner, Renata Oliveira Mattos; Rosalen, Pedro Luiz; Vale, Gláuber Campos; Paes Leme, Adriana Franco; Cury, Jaime Aparecido; Tabchoury, Cínthia Pereira Machado

    2011-01-01

    The oral cavity harbors several Streptococcus mutans genotypes, which could present distinct virulence properties. However, little is known about the diversity and virulence traits of S. mutans genotypes isolated in vivo under controlled conditions of high cariogenic challenge. This study evaluated the genotypic diversity of S. mutans isolated from dental biofilms formed in vivo under sucrose exposure, as well as their acidogenicity and aciduricity. To form biofilms, subjects rinsed their mouths with distilled water or sucrose solution 8 times/day for 3 days. S. mutans collected from saliva and biofilms were genotyped by arbitrarily-primed PCR. Genotypes identified in the biofilms were evaluated regarding their ability to lower the suspension pH through glycolysis and their acid susceptibility and F-ATPase activity. Most subjects harbored only one genotype in saliva, which was detected in almost all biofilm samples at high proportions. Genotypes isolated only in the presence of sucrose had higher acidogenicity than those isolated only in the presence of water. Genotypes from biofilms formed with sucrose were more aciduric after 30 and 60 min of incubation at pH 2.8 and 5.0, respectively. The present results suggest that biofilms formed under high cariogenic conditions may harbor more aciduric and acidogenic S. mutans genotypes.

  12. Coryneform bacteria in human semen: inter-assay variability in species composition detection and biofilm production ability

    Directory of Open Access Journals (Sweden)

    Silver Türk

    2014-02-01

    Full Text Available Background: Coryneform bacteria constitute an important segment of male urogenital microbiota. They have been generally considered as saprophytes, although some species have been associated with prostatitis as well. At the same time, biofilm infections have been suspected as a cause of prostatitis. Objective: To identify a set of coryneform bacteria isolated from semen of either healthy men or prostatitis patients applying different methods to reveal inter-assay variability and to determine their ability of adhesion and biofilm production. Design: Coryneform bacteria were identified by API Coryne 2.0 biochemical identification system and 16S rDNA sequencing using different primer sets. Quantitative assessment of biofilm production was performed using crystal violet binding assay method. Results: The most common species were Corynebacterium seminale, C. minutissimum, and Dermabacter hominis. Altogether 14 species and related genera were found. We observed the best inter-assay agreement when identifying C. seminale. Biofilm was observed in 7 out of 24 strains. The biofilm-producing strains belonged to Arthrobacter cumminsii, Dermabacter hominis, C. minutissimum, and Actinomyces neuii. No differences were found between the strains originating from prostatitis patients and healthy men. Dermabacter hominis strains were more potent biofilm producers than C. seminale strains (p=0.048. Conclusions: We can conclude that a wide variety of coryneform bacteria can be found from the male genital tract, although their exact identification is problematic due to insufficient representation in databases. Nearly one third of the strains are able to form biofilm that may give them an advantage for surviving several host- and treatment-related conditions.

  13. Biofilm-Forming Methicillin-Resistant Staphylococcus aureus Survive in Kupffer Cells and Exhibit High Virulence in Mice

    Directory of Open Access Journals (Sweden)

    Takuto Oyama

    2016-06-01

    Full Text Available Although Staphylococcus aureus is part of the normal body flora, heavy usage of antibiotics has resulted in the emergence of methicillin-resistant strains (MRSA. MRSA can form biofilms and cause indwelling foreign body infections, bacteremia, soft tissue infections, endocarditis, and osteomyelitis. Using an in vitro assay, we screened 173 clinical blood isolates of MRSA and selected 20 high-biofilm formers (H-BF and low-biofilm formers (L-BF. These were intravenously administered to mice and the general condition of mice, the distribution of bacteria, and biofilm in the liver, lung, spleen, and kidney were investigated. MRSA count was the highest in the liver, especially within Kupffer cells, which were positive for acid polysaccharides that are associated with intracellular biofilm. After 24 h, the general condition of the mice worsened significantly in the H-BF group. In the liver, bacterial deposition and aggregation and the biofilm-forming spot number were all significantly greater for H-BF group than for L-BF. CFU analysis revealed that bacteria in the H-BF group survived for long periods in the liver. These results indicate that the biofilm-forming ability of MRSA is a crucial factor for intracellular persistence, which could lead to chronic infections.

  14. Control of the Biofilms Formed by Curli- and Cellulose-Expressing Shiga Toxin-Producing Escherichia coli Using Treatments with Organic Acids and Commercial Sanitizers.

    Science.gov (United States)

    Park, Yoen Ju; Chen, Jinru

    2015-05-01

    Biofilms are a mixture of bacteria and extracellular products secreted by bacterial cells and are of great concern to the food industry because they offer physical, mechanical, and biological protection to bacterial cells. This study was conducted to quantify biofilms formed by different Shiga toxin-producing Escherichia coli (STEC) strains on polystyrene and stainless steel surfaces and to determine the effectiveness of sanitizing treatments in control of these biofilms. STEC producing various amounts of cellulose (n = 6) or curli (n = 6) were allowed to develop biofilms on polystyrene and stainless steel surfaces at 28°C for 7 days. The biofilms were treated with 2% acetic or lactic acid and manufacturer-recommended concentrations of acidic or alkaline sanitizers, and residual biofilms were quantified. Treatments with the acidic and alkaline sanitizers were more effective than those with the organic acids for removing the biofilms. Compared with their counterparts, cells expressing a greater amount of cellulose or curli formed more biofilm mass and had greater residual mass after sanitizing treatments on polystyrene than on stainless steel. Research suggests that the organic acids and sanitizers used in the present study differed in their ability to control biofilms. Bacterial surface components and cell contact surfaces can influence both biofilm formation and the efficacy of sanitizing treatments. These results provide additional information on control of biofilms formed by STEC.

  15. Synergistic effect of amphotericin B and tyrosol on biofilm formed by Candida krusei and Candida tropicalis from intrauterine device users.

    Science.gov (United States)

    Shanmughapriya, Santhanam; Sornakumari, Haridevvenkatesan; Lency, Arumugam; Kavitha, Senthil; Natarajaseenivasan, Kalimuthusamy

    2014-11-01

    The presence of intrauterine contraceptive devices (IUDs) provides a solid surface for attachment of microorganisms and an ideal niche for the biofilm to form and flourish. Vaginal candidiasis is often associated with the use of IUDs. Treatment of vaginal candidiasis that develops in connection with IUD use requires their immediate removal. Here, we present in vitro evidence to support the use of combination therapy to inhibit Candida biofilm. Twenty-three clinical Candida isolates (10 C. krusei and 13 C. tropicalis) recovered from endocervical swabs obtained from IUD and non-IUD users were assessed for biofilm-formation ability. The rate of isolation of Candida did not differ significantly among IUD and non-IUD users (P = 0.183), but the biofilm-formation ability of isolates differed significantly (P = 0.02). An in vitro biofilm model with the obtained isolates was subjected to treatment with amphotericin B, tyrosol, and a combination of amphotericin B and tyrosol. Inhibition of biofilm by amphotericin B or tyrosol was found to be concentration dependent, with 50% reduction (P tyrosol and amphotericin B was studied. Interestingly, approximately 90% reduction in biofilm was observed with use of 80 μM tyrosol combined with 4 mg/l amphotericin B (P < 0.001). This represents a first step in establishing an appropriate antibiofilm therapy when yeasts are present.

  16. Glass forming ability of calcium aluminosilicate melts

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Yue, Yuanzheng

    2011-01-01

    The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite-wollastonite-tridymite and that of......The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite......-wollastonite-tridymite and that of anorthite-wollastonite-gehlenite. The series includes the eutectic compositions as end members. The second series consists of five compositions on a line parallel to the joining line on the alumina rich side. In the present work, GFA is described in terms of glass stability, i.e., the ability of a glass....... However, this proportionality is only valid for comparison of the glasses in the same series of compositions. The eutectic composition of anorthite-wollastonite-tridymite is found to exhibit the highest GFA of the melts under investigation....

  17. XML The Ability of Cellulose Polysaccharide and Curli Pili Production in Uropathogenic Escherichia Coli and its Association with Biofilm Formation Intensity

    Directory of Open Access Journals (Sweden)

    Zahra Khozein (MSc

    2016-01-01

    Full Text Available Background and Objective: the Formation of urinary infection by uropathogenic E.coli needs numerous virulence factors and biofilm formation is among these factors. Bacteria that form biofilms express phenotype traits that appear according to the bacteria type. Cellulose is an important compound on the outside of E.coli causing bacterial cell-cell reactions and connection to nonliving surfaces. Curli pili cause the reaction between cell-cell and surface-cell in biofilms and lead to bacteria aggregation. Microorganisms’ ability to form biofilm on a surface depends on the surface nature and its conditions. This study aimed at determining the production ability of cellulose polysaccharide and curli pili in UPEC strains, and its correlation with formation and intensity of biofilm. Methods: In this study carried out to compare the ability of cellulose and pili curli production ability in 40 uropathogenic E.coli isolates ,by morphotype method in Congo Red medium (CR, each isolate was incubated at 37 oC, for 24 hours. After 24 hours, all colonies’ morphology characteristics were studied Results: It was shown that 67.5% of strains produced cellulose and 72.5% produced curli pili. In addition, 92.6% and 89% of isolates that produce cellulose and curli, respectively, had a moderate to strong biofilm. Moreover, it was shown that there is a significant correlation between cellulose and / or curli pili production with biofilm intensity. Conclusion: About 70% of E.coli isolates from patients' urine are able to produce cellulose or curli pili; therefore, it can be concluded that the production of these two combinations is effective in amount and intensity of biofilm formation.

  18. Analysis of Serotype, Biofilm-forming Ability and Antimicrobial Resistance of Salmonella Strains Isolated from Animals%动物源性沙门菌的血清型、生物被膜形成能力和耐药性分析

    Institute of Scientific and Technical Information of China (English)

    孙化露; 彭大新; 姜逸; 李树纯; 陈素娟; 张华; 张晓平; 田艳娜; 吴艳涛; 焦库华

    2012-01-01

    The objective of this study was to investigate the distribution of serotypes, biofilm-forming ability and antimicrobial resistance of salmonella strains isolated from animals. Salmo-nella strains were isolated from diseased animals, identified by PCR combination with slide agglu-tination test and sequence analysis of 16S rRNA gene. Biofilm-forming ability of the isolates was detected by crystal violet assay, and antimicrobial resistance was determined by antibiotic suscep-tibility test. Fifty-eight strains were identified as Salmonella and belonged to seven subtypes, including Pullorum, Typhimurium, Enteritidis, Paratyphi-C, Paratyphi-B, Dublin and Agona. The chickens were mainly infected by S. pullorum, secondly by S. enteritidis, whereas the waterfowls were mainly infected by S. typhimurium. The results of biofilm formation test showed that 51. 72% of the salmonella isolates could form biofilm, in which 83. 3% of S. typhi-murium could form biofilm. The susceptibility test of 20 antibiotics (including Aminoglycosides, Sulfonamides, Quinolones, Lincosamides, Amphenicols, Penicillins, Tetracyclines and Cephalo-sporins) revealed that all of the strains were resistant to lincomycin, and 51. 72% of them were resistant to four and more than four antimicrobials, in which a strain of S. typhimurium dis-played a high level of resistance to all test antibiotics. The results indicate that the dominant se-rotypes of Salmonella isolated from poultry are S. pullorum, S. typhimurium and S. enteriti-dis. The Salmonella with both biofilm-forming ability and multiple drug resistance will bring more serious threat to the control of poultry diseases and public health.%本研究旨在探讨动物源性沙门菌的血清型分布、生物被膜形成能力及其耐药性.从不同动物病料中分离细菌,以PCR方法鉴定沙门菌,结合玻片凝集法和16S rRNA序列测定确定沙门菌的血清型和分布,结晶紫染色定量法检测分离株的生物被膜形成能力,药

  19. Growth and virulence properties of biofilm-forming Salmonella enterica serovar typhimurium under different acidic conditions.

    Science.gov (United States)

    Xu, Hua; Lee, Hyeon-Yong; Ahn, Juhee

    2010-12-01

    This study was designed to characterize the viability and potential virulence of bofilm-forming Salmonella enterica serovar Typhimurium under different pH levels, ranging from 5 to 7. The plate count method and real-time reverse transcription-PCR (RT-PCR) were used to evaluate the survival of S. Typhimurium grown in Trypticase soy broth (TSB) adjusted to pH 5, 6, and 7 (TSB-5, TSB-6, and TSB-7, respectively) at 37°C for 10 days. In TSB-5 and TSB-6, the numbers of viable cells estimated by using the real-time RT-PCR were greater than the culturable counts enumerated by the plate count method. Reflectance micro-Fourier transform infrared (micro-FTIR) spectroscopy was used to evaluate the biochemical changes in biofilm cells. Considerable changes in chemical components were observed in the biofilm cells grown in TSB-5 and TSB-6 when compared to the cells grown in TSB-7. The enterotoxin production and invasive ability of planktonic and biofilm S. Typhimurium cells were inferred by the relative levels of expression of stn and invA. The levels of expression of stn and invA were significantly increased in biofilm S. Typhimurium cells grown in TSB-5 (1.9-fold and 3.2-fold) and TSB-6 (2.1-fold and 22.3-fold) after 10 days of incubation. These results suggest that the biofilm-forming S. Typhimurium under different pH levels might change the virulence production and stress response mechanisms.

  20. Studies on formation, control and application of biofilm formed by food related microorganisms.

    Science.gov (United States)

    Furukawa, Soichi

    2015-01-01

    Biofilms are sessile microbial aggregates on the interfaces, and they were usually considered as microbial contamination sources in medical care and various industries. We studied the control and application of biofilms formed by food-related microorganisms, and mechanism of the biofilm formation was also investigated. We studied the biofilm formation in mixed cultures using various combinations of two strains of food-related microorganisms. There were various microorganisms that showed decreased or increased biofilm formation in the mixed culture in comparison with that in a single culture. Biofilm formed by lactic acid bacteria and yeast isolated from traditional fermented food, Fukuyama pot vinegar, exhibited unique feature in that structure and formation mechanism, and expected to be used as an immobilized microorganism in fermentation production. Here our studies on the control and application of biofilms and the mechanisms of its formation were described.

  1. Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance

    Directory of Open Access Journals (Sweden)

    Salme eTimmusk

    2015-05-01

    Full Text Available Paenibacillus polymyxa is a common soil bacterium with broad range of practical applications. An important group of secondary metabolites in P. polymyxa are nonribosomal peptide and polyketide derived metabolites (NRP/PK. Modular nonribosomal peptide synthetases catalyse main steps in the biosynthesis of the complex secondary metabolites. Here we report on the inactivation of an A26 sfp-type phosphopantetheinyl transferase. The inactivation of the gene resulted in loss of NRP/PK production. In contrast to the former Bacillus spp. model the mutant strain compared to wild type showed greatly enhanced biofilm formation ability. Its biofilm promotion is directly mediated by NRP/PK, as exogenous addition of the wild type metabolite extracts restores its biofilm formation level. Wheat inoculation with bacteria that had lost their sfp-type PPTase gene resulted in two times higher plant survival and about three times increased biomass under severe drought stress compared to wild type.

  2. Increased biofilm formation ability and accelerated transport of Staphylococcus aureus along a catheter during reciprocal movements.

    Science.gov (United States)

    Haraga, Isao; Abe, Shintaro; Jimi, Shiro; Kiyomi, Fumiaki; Yamaura, Ken

    2017-01-01

    Staphylococcus spp. is a major cause of device-related infections. However, the mechanisms of deep-tissue infection by staphylococci from the skin surface remain unclear. We performed in vitro experiments to determine how staphylococci are transferred from the surface to the deeper layers of agar along the catheter for different strains of Staphylococcus aureus with respect to bacterial concentrations, catheter movements, and biofilm formation. We found that when 5-mm reciprocal movements of the catheter were repeated every 8h, all catheter samples of S. aureus penetrated the typical distance of 50mm from the skin to the epidural space. The number of reciprocal catheter movements and the depth of bacterial growth were correlated. A greater regression coefficient for different strains implied faster bacterial growth. Enhanced biofilm formation by different strains implied larger regression coefficients. Increased biofilm formation ability may accelerate S. aureus transport along a catheter due to physical movements by patients.

  3. Biofilm-Forming Staphylococcus epidermidis Expressing Vancomycin Resistance Early after Adhesion to a Metal Surface

    Directory of Open Access Journals (Sweden)

    Toshiyuki Sakimura

    2015-01-01

    Full Text Available We investigated biofilm formation and time of vancomycin (VCM resistance expression after adhesion to a metal surface in Staphylococcus epidermidis. Biofilm-forming Staphylococcus epidermidis with a VCM MIC of 1 μg/mL was used. The bacteria were made to adhere to a stainless steel washer and treated with VCM at different times and concentrations. VCM was administered 0, 2, 4, and 8 hours after adhesion. The amount of biofilm formed was evaluated based on the biofilm coverage rates (BCRs before and after VCM administration, bacterial viability in biofilm was visually observed using the fluorescence staining method, and the viable bacterial count in biofilm was measured. The VCM concentration required to decrease BCR significantly compared with that of VCM-untreated bacteria was 4 μg/mL, even in the 0 hr group. In the 4 and 8 hr groups, VCM could not inhibit biofilm growth even at 1,024 μg/mL. In the 8 hr group, viable bacteria remained in biofilm at a count of 104 CFU even at a high VCM concentration (1,024 μg/mL. It was suggested that biofilm-forming Staphylococcus epidermidis expresses resistance to VCM early after adhesion to a metal surface. Resistance increased over time after adhesion as the biofilm formed, and strong resistance was expressed 4–8 hours after adhesion.

  4. Polysaccharides serve as scaffold of biofilms formed by mucoid Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Yang, Liang; Hengzhuang, Wang; Wu, Hong

    2012-01-01

    Chronic lung infection by mucoid Pseudomonas aeruginosa is one of the major pathologic features in patients with cystic fibrosis. Mucoid P. aeruginosa is notorious for its biofilm forming capability and resistance to immune attacks. In this study, the roles of extracellular polymeric substances...... from biofilms formed by mucoid P. aeruginosa were investigated. Alginate is not an essential structure component for mucoid P. aeruginosa biofilms. Genetic studies revealed that Pel and Psl polysaccharides serve as essential scaffold and mediate macrocolony formation in mucoid P. aeruginosa biofilms...

  5. Rifampicin fails to eradicate mature biofilm formed by methicillin-resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Keli Cristine Reiter

    2012-08-01

    Full Text Available INTRODUCTION: Antimicrobial activity on biofilms depends on their molecular size, positive charges, permeability coefficient, and bactericidal activity. Vancomycin is the primary choice for methicillin-resistant Staphylococcus aureus (MRSA infection treatment; rifampicin has interesting antibiofilm properties, but its effectivity remains poorly defined. METHODS: Rifampicin activity alone and in combination with vancomycin against biofilm-forming MRSA was investigated, using a twofold serial broth microtiter method, biofilm challenge, and bacterial count recovery. RESULTS: Minimal inhibitory concentration (MIC and minimal bactericidal concentration for vancomycin and rifampicin ranged from 0.5 to 1mg/l and 0.008 to 4mg/l, and from 1 to 4mg/l and 0.06 to 32mg/l, respectively. Mature biofilms were submitted to rifampicin and vancomycin exposure, and minimum biofilm eradication concentration ranged from 64 to 32,000 folds and from 32 to 512 folds higher than those for planktonic cells, respectively. Vancomycin (15mg/l in combination with rifampicin at 6 dilutions higher each isolate MIC did not reach in vitro biofilm eradication but showed biofilm inhibitory capacity (1.43 and 0.56log10 CFU/ml reduction for weak and strong biofilm producers, respectively; p<0.05. CONCLUSIONS: In our setting, rifampicin alone failed to effectively kill biofilm-forming MRSA, demonstrating stronger inability to eradicate mature biofilm compared with vancomycin.

  6. Characterisation of biofilms formed by Lactobacillus plantarum WCFS1 and food spoilage isolates.

    Science.gov (United States)

    Fernández Ramírez, Mónica D; Smid, Eddy J; Abee, Tjakko; Nierop Groot, Masja N

    2015-08-17

    Lactobacillus plantarum has been associated with food spoilage in a wide range of products and the biofilm growth mode has been implicated as a possible source of contamination. In this study we analysed the biofilm forming capacity of L. plantarum WCFS1 and six food spoilage isolates. Biofilm formation as quantified by crystal violet staining and colony forming units was largely affected by the medium composition, growth temperature and maturation time and by strain specific features. All strains showed highest biofilm formation in Brain Heart Infusion medium supplemented with manganese and glucose. For L. plantarum biofilms the crystal violet (CV) assay, that is routinely used to quantify total biofilm formation, correlates poorly with the number of culturable cells in the biofilm. This can in part be explained by cell death and lysis resulting in CV stainable material, conceivably extracellular DNA (eDNA), contributing to the extracellular matrix. The strain to strain variation may in part be explained by differences in levels of eDNA, likely as result of differences in lysis behaviour. In line with this, biofilms of all strains tested, except for one spoilage isolate, were sensitive to DNase treatment. In addition, biofilms were highly sensitive to treatment with Proteinase K suggesting a role for proteins and/or proteinaceous material in surface colonisation. This study shows the impact of a range of environmental factors and enzyme treatments on biofilm formation capacity for selected L. plantarum isolates associated with food spoilage, and may provide clues for disinfection strategies in food industry.

  7. Unsaturated fatty acid, cis-2-decenoic acid, in combination with disinfectants or antibiotics removes pre-established biofilms formed by food-related bacteria.

    Science.gov (United States)

    Sepehr, Shayesteh; Rahmani-Badi, Azadeh; Babaie-Naiej, Hamta; Soudi, Mohammad Reza

    2014-01-01

    Biofilm formation by food-related bacteria and food-related pathogenesis are significant problems in the food industry. Even though much disinfection and mechanical procedure exist for removal of biofilms, they may fail to eliminate pre-established biofilms. cis-2 decenoic acid (CDA), an unsaturated fatty acid messenger produced by Pseudomonas aeruginosa, is reportedly capable of inducing the dispersion of established biofilms by multiple types of microorganisms. However, whether CDA has potential to boost the actions of certain antimicrobials is unknown. Here, the activity of CDA as an inducer of pre-established biofilms dispersal, formed by four main food pathogens; Staphylococcus aureus, Bacillus cereus, Salmonella enterica and E. coli, was measured using both semi-batch and continuous cultures bioassays. To assess the ability of CDA combined biocides treatments to remove pre-established biofilms formed on stainless steel discs, CFU counts were performed for both treated and untreated cultures. Eradication of the biofilms by CDA combined antibiotics was evaluated using crystal violet staining. The effect of CDA combined treatments (antibiotics and disinfectants) on biofilm surface area and bacteria viability was evaluated using fluorescence microscopy, digital image analysis and LIVE/DEAD staining. MICs were also determined to assess the probable inhibitory effects of CDA combined treatments on the growth of tested microorganisms' planktonic cells. Treatment of pre-established biofilms with only 310 nM CDA resulted in at least two-fold increase in the number of planktonic cells in all cultures. While antibiotics or disinfectants alone exerted a trivial effect on CFU counts and percentage of surface area covered by the biofilms, combinational treatments with both 310 nM CDA and antibiotics or disinfectants led to approximate 80% reduction in biofilm biomass. These data suggests that combined treatments with CDA would pave the way toward developing new strategies

  8. A bioaugmentation failure caused by phage infection and weak biofilm formation ability

    Institute of Scientific and Technical Information of China (English)

    FU Songzhe; FAN Hongxia; LIU Shuangjiang; LIU Ying; LIU Zhipei

    2009-01-01

    Two biological aerated filters (BAF) were setup for ammonia removal treatment of the circulation water in a marine aquaculture.One of the BAFs was bioaugmented with a heterotrophic nitrifying bacterium, Lutimonas sp.H10, but the ammonia removal was not improved; the massive inoculation was even followed by a nitrification breakdown from day 9 to 18, while nitrification remained stable in the control BAF operated under the same conditions.Fluorescent in situ hybridization (FISH) with rRNA-targeted probes and cultivable method revealed that Lutimonas sp.H10 almost disappeared from the bioaugomented BAF within 3 d, and this was mainly due to the infection of a specific phage as revealed by flask experiment, plaque assay and transmission electron observation.Analyses of 16S rRNA gene libraries showed that bacterial groups from two reactors evolved differently and an overgrowth of protozoa was observed in the bioaugmented BAF.Therefore, phage infection and poor biofilm forming ability of the inoculated strain are the main reasons for bioaugmentation failure.In addition, grazing by protozoa of the bacteria might be the reason for the nitrification breakdown in bioaugmented BAF during day 9-18.

  9. [The evaluation of relationship between the origin of Candida sp. and the ability of biofilm formation on surface of different biomaterials].

    Science.gov (United States)

    Ciok-Pater, Emilia; Gospodarek, Eugenia; Prazyńska, Małgorzata; Bogiel, Tomasz

    2009-01-01

    The increase of fungal infections in recent years is connected with the progress in medicine. The vast usage of biomaterials is an inseparable element of contemporary medicine but it also leads to development of infections. The ability to produce biofilm by those yeasts plays an important role in the pathogenesis of candidiasis. Candida biofilm can form on the surface of plastic materials (silicon, polychloride vinyl, polymethacrylate methyl) used to catheters, drains and dentures production that is why it is a serious problem in case of fungal infections in patients who during the diagnosis and treatment have contact with biomaterials. The aim of the study was the assessment of ability to form biofilm on the surface of different biomaterials (latex silicon, polychloride vinyl, polystyrene, nylon and polymethacrylate methyl). 150 strains of Candida sp. were examined: 85 (56.7%) C. albicans and 65 (43.3%) C. non-albicans. The examined yeasts produced biofilm on the surface of polymethacrylate methyl in 39.3%, latex silicone in 38.7%, polychloride vinyl in 38.0%, polystyrene in 35.3% and nylon in 30.7%. Biofilm was most frequently produced by the strains of C. albicans, C. tropicalis, C. glabrata, C. parapsilosis, C. krusei and C. lusitaniae species.

  10. Mixed biofilms formed by C. albicans and non-albicans species: a study of microbial interactions.

    Science.gov (United States)

    Santos, Jéssica Diane dos; Piva, Elisabete; Vilela, Simone Furgeri Godinho; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Most Candida infections are related to microbial biofilms often formed by the association of different species. The objective of this study was to evaluate the interactions between Candida albicans and non-albicans species in biofilms formed in vitro. The non-albicans species studied were:Candida tropicalis, Candida glabrata and Candida krusei. Single and mixed biofilms (formed by clinical isolates of C. albicans and non-albicans species) were developed from standardized suspensions of each strain (10(7) cells/mL), on flat-bottom 96-well microtiter plates for 48 hour. These biofilms were analyzed by counting colony-forming units (CFU/mL) in Candida HiChrome agar and by determining cell viability, using the XTT 2,3-bis (2-methoxy-4-nitro-5-sulphophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide colorimetric assay. The results for both the CFU/mL count and the XTT colorimetric assay showed that all the species studied were capable of forming high levels of in vitro biofilm. The number of CFU/mL and the metabolic activity of C. albicans were reduced in mixed biofilms with non-albicans species, as compared with a single C. albicans biofilm. Among the species tested, C. krusei exerted the highest inhibitory action against C. albicans. In conclusion, C. albicans established antagonistic interactions with non-albicans Candida species in mixed biofilms.

  11. Inhibition of Staphylococcus aureus by antimicrobial biofilms formed by competitive exclusion microorganisms on stainless steel.

    Science.gov (United States)

    Son, Hyeri; Park, Sunhyung; Beuchat, Larry R; Kim, Hoikyung; Ryu, Jee-Hoon

    2016-12-05

    The goal of this study was to develop a desiccation resistant antimicrobial surface using biofilm of competitive exclusion (CE) microorganism inhibitory to Staphylococcus aureus. We isolated 161 microorganisms from soils, foods, and food-contact surfaces that are inhibitory to S. aureus. Among them, three CE microorganisms (Streptomyces spororaveus strain Gaeunsan-18, Bacillus safensis strain Chamnamu-sup 5-25, and Pseudomonas azotoformans strain Lettuce-9) exhibiting strong antibacterial activity and high growth rates were selected for evaluation. These isolates formed biofilms within 24h on stainless steel coupons (SSCs) immersed in Bennet's broth and tryptic soy broth at 25°C. Cells in these biofilms showed significantly (P≤0.05) enhanced resistance to a desiccation (43% relative humidity [RH]) compared to those attached to SSCs but not in biofilms. The antimicrobial activities of biofilms formed by these isolates on SSCs against S. aureus at 25°C and 43% RH were determined. Compared to SSCs lacking biofilms formed by CE microorganisms, populations of S. aureus on SSCs harboring CE biofilms were significantly lower (P≤0.05). Results indicate that persistent antimicrobial activity against S. aureus on stainless steel surfaces can be achieved by the presence of biofilms of CE microorganisms. This information will be useful when developing strategies to improve the microbiological safety of foods during storage, processing, and distribution by facilitating the development of effective antimicrobial food-contact surfaces.

  12. Helicobacter pylori-coccoid forms and biofilm formation

    DEFF Research Database (Denmark)

    Andersen, Leif Percival; Rasmussen, Lone

    2009-01-01

    be detected by PCR in water supplies. There is no substantial evidence for viable H. pylori persisting in water supplies. Epidemiological studies suggest that environmental water is a risk factor for H. pylori infection when compared with tap water, and formation of H. pylori biofilm cannot be excluded....... Helicobacter pylori does not seem to take part in biofilm formation in the oral cavity even though the bacterium may be detected....

  13. Genotypic diversity of S. mutans in dental biofilm formed in situ under sugar stress exposure.

    Science.gov (United States)

    Arthur, Rodrigo Alex; Tabchoury, Cínthia Pereira Machado; Mattos-Graner, Renata de Oliveira; Del Bel Cury, Altair A; Paes Leme, Adriana Franco; Vale, Gláuber Campos; Cury, Jaime Aparecido

    2007-01-01

    In situ dental biofilm composition under sugar exposure is well known, but sugar effect on the genotypic diversity of S. mutans in dental biofilm has not been explored. This study evaluated S. mutans genotypic diversity in dental biofilm formed in situ under frequent exposure to sucrose and its monosaccharide constituents (glucose and fructose). Saliva of 7 volunteers was collected for isolation of S. mutans and the same volunteers wore intraoral palatal appliances, containing enamel slabs, which were submitted to the following treatments: distilled and deionized water (negative control), 10% glucose + 10% fructose (fermentable carbohydrates) solution or 20% sucrose (fermentable and EPS inductor) solution, 8x/day. After 3, 7 and 14 days, the biofilms were collected and S. mutans colonies were isolated. Arbitrarily primed polymerase chain reaction (AP-PCR) of S. mutans showed that salivary genotypes were also detected in almost all biofilm samples, independently of the treatment, and seemed to reflect those genotypes present at higher proportion in biofilms. In addition to the salivary genotypes, others were found in biofilms but in lower proportions and were distinct among treatment. The data suggest that the in situ model seems to be useful to evaluate genotypic diversity of S. mutans, but, under the tested conditions, it was not possible to clearly show that specific genotypes were selected in the biofilm due to the stress induced by sucrose metabolism or simple fermentation of its monosaccharides.

  14. The influence of oral Veillonella species on biofilms formed by Streptococcus species.

    Science.gov (United States)

    Mashima, Izumi; Nakazawa, Futoshi

    2014-08-01

    Oral Veillonella, Veillonella atypica, Veillonella denticariosi, Veillonella dispar, Veillonella parvula, Veillonella rogosae, and Veillonella tobetsuensis are known as early colonizers in oral biofilm formation. To investigate the role of oral Veillonella, biofilms formed by the co-culture of Streptococcus gordonii, Streptococcus mutans, Streptococcus salivarius, or Streptococcus sanguinis, with oral Veillonella were examined at the species level. The amount of biofilm formed by S. mutans, S. gordonii, and S. salivarius in the presence of the six Veillonella species was greater than that formed in the control experiments, with the exception of S. mutans with V. dispar. In contrast, in the case of biofilm formation by S. sanguinis, the presence of Veillonella species reduced the amount of the biofilm, with the exception of V. parvula and V. dispar. The time-dependent changes in the amount of biofilm and the number of planktonic cells were grouped into four patterns over the 24 combinations. Only that of S. gordonii with V. tobetsuensis showed a unique pattern. These results indicate that the mode of action of this combination differed from that of the other combinations with respect to biofilm formation. It is possible that there may be several factors involved in the interaction between Streptococcus and Veillonella species.

  15. Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis.

    Directory of Open Access Journals (Sweden)

    Robert C Shields

    Full Text Available BACKGROUND: The persistent colonization of paranasal sinus mucosa by microbial biofilms is a major factor in the pathogenesis of chronic rhinosinusitis (CRS. Control of microorganisms within biofilms is hampered by the presence of viscous extracellular polymers of host or microbial origin, including nucleic acids. The aim of this study was to investigate the role of extracellular DNA in biofilm formation by bacteria associated with CRS. METHODS/PRINCIPAL FINDINGS: Obstructive mucin was collected from patients during functional endoscopic sinus surgery. Examination of the mucous by transmission electron microscopy revealed an acellular matrix punctuated occasionally with host cells in varying states of degradation. Bacteria were observed in biofilms on mucosal biopsies, and between two and six different species were isolated from each of 20 different patient samples. In total, 16 different bacterial genera were isolated, of which the most commonly identified organisms were coagulase-negative staphylococci, Staphylococcus aureus and α-haemolytic streptococci. Twenty-four fresh clinical isolates were selected for investigation of biofilm formation in vitro using a microplate model system. Biofilms formed by 14 strains, including all 9 extracellular nuclease-producing bacteria, were significantly disrupted by treatment with a novel bacterial deoxyribonuclease, NucB, isolated from a marine strain of Bacillus licheniformis. Extracellular biofilm matrix was observed in untreated samples but not in those treated with NucB and extracellular DNA was purified from in vitro biofilms. CONCLUSION/SIGNIFICANCE: Our data demonstrate that bacteria associated with CRS form robust biofilms which can be reduced by treatment with matrix-degrading enzymes such as NucB. The dispersal of bacterial biofilms with NucB may offer an additional therapeutic target for CRS sufferers.

  16. Forming of a functional biofilm on wood surfaces

    NARCIS (Netherlands)

    Sailer, M.F.; Nieuwenhuijzen, E.J. van; Knol, W.

    2010-01-01

    The protecting and staining properties of biofilms grown on oil-treated surfaces of Pinus sylvestris L. sapwood were investigated with respect to their potential to create homogeneous coloured surfaces. Linseed oil pressure-treated blocks of P. sylvestris L. were evaluated after 36 months of outdoor

  17. The role of biofilms in the sedimentology of actively forming gypsum deposits at Guerrero Negro, Mexico.

    Science.gov (United States)

    Vogel, Marilyn B; Des Marais, David J; Turk, Kendra A; Parenteau, Mary N; Jahnke, Linda L; Kubo, Michael D Y

    2009-11-01

    Actively forming gypsum deposits at the Guerrero Negro sabkha and saltern system provided habitats for stratified, pigmented microbial communities that exhibited significant morphological and phylogenetic diversity. These deposits ranged from meter-thick gypsum crusts forming in saltern seawater concentration ponds to columnar microbial mats with internally crystallized gypsum granules developing in natural anchialine pools. Gypsum-depositing environments were categorized as forming precipitation surfaces, biofilm-supported surfaces, and clastic surfaces. Each surface type was described in terms of depositional environment, microbial diversity, mineralogy, and sedimentary fabrics. Precipitation surfaces developed in high-salinity subaqueous environments where rates of precipitation outpaced the accumulation of clastic, organic, and/or biofilm layers. These surfaces hosted endolithic biofilms comprised predominantly of oxygenic and anoxygenic phototrophs, sulfate-reducing bacteria, and bacteria from the phylum Bacteroidetes. Biofilm-supported deposits developed in lower-salinity subaqueous environments where light and low water-column turbulence supported dense benthic microbial communities comprised mainly of oxygenic phototrophs. In these settings, gypsum granules precipitated in the extracellular polymeric substance (EPS) matrix as individual granules exhibiting distinctive morphologies. Clastic surfaces developed in sabkha mudflats that included gypsum, carbonate, and siliclastic particles with thin gypsum/biofilm components. Clastic surfaces were influenced by subsurface brine sheets and capillary evaporation and precipitated subsedimentary gypsum discs in deeper regions. Biofilms appeared to influence both chemical and physical sedimentary processes in the various subaqueous and subaerially exposed environments studied. Biofilm interaction with chemical sedimentary processes included dissolution and granularization of precipitation surfaces, formation of

  18. Biofilm forming and leaching mechanism during bioleaching chalcopyrite by Thiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    傅建华; 胡岳华; 邱冠周; 柳建设; 徐竞

    2004-01-01

    The mechanism of attachment and leaching of thiobacillus ferrooxcidans (T. f. ) on chalcopyrite were studied. The shaking flasks with bacteria were observed by SEM. The process of T. f attached to the surface of the mineral sample and the biofilm forming were described. The promoting role of the biofilm for bioleaching was discussed. The existence of Fe2+ in the exopolysaccharide layer of T. f was demonstrated by EM(electronic microscope)cell-chemistry analysis. These results show that under the proper growth condition of bacteria, bioleaching of chalcopyrite results in the formation of complete biofilm after 2 - 3 weeks. There are iron ions in the outer layer polymer of T. f. , which provides the micro-environment for themselves, and can guaruntee the energy needed for the bacteria growth in the biofilm. At the same time, Fe3+ ions produced oxidize sulfide which brings about the increase of both growth rate of the bacterial and leaching rate of sulfide minerals.

  19. Functional analysis of stress protein data in a flor yeast subjected to a biofilm forming condition

    Science.gov (United States)

    Moreno-García, Jaime; Mauricio, Juan Carlos; Moreno, Juan; García-Martínez, Teresa

    2016-01-01

    In this data article, an OFFGEL fractionator coupled to LTQ Orbitrap XL MS equipment and a SGD filtering were used to detect in a biofilm-forming flor yeast strain, the maximum possible number of stress proteins under the first stage of a biofilm formation conditions (BFC) and under an initial stage of fermentation used as reference, so-called non-biofilm formation condition (NBFC). Protein functional analysis – based on cellular components and biological process GO terms – was performed for these proteins through the SGD Gene Ontology Slim Mapper tool. A detailed analysis and interpretation of the data can be found in “Stress responsive proteins of a flor yeast strain during the early stages of biofilm formation” [1]. PMID:27104213

  20. Functional analysis of stress protein data in a flor yeast subjected to a biofilm forming condition

    Directory of Open Access Journals (Sweden)

    Jaime Moreno-García

    2016-06-01

    Full Text Available In this data article, an OFFGEL fractionator coupled to LTQ Orbitrap XL MS equipment and a SGD filtering were used to detect in a biofilm-forming flor yeast strain, the maximum possible number of stress proteins under the first stage of a biofilm formation conditions (BFC and under an initial stage of fermentation used as reference, so-called non-biofilm formation condition (NBFC. Protein functional analysis – based on cellular components and biological process GO terms – was performed for these proteins through the SGD Gene Ontology Slim Mapper tool. A detailed analysis and interpretation of the data can be found in “Stress responsive proteins of a flor yeast strain during the early stages of biofilm formation” [1].

  1. Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode.

    Science.gov (United States)

    Jain, Anand; Zhang, Xiaoming; Pastorella, Gabriele; Connolly, Jack O; Barry, Niamh; Woolley, Robert; Krishnamurthy, Satheesh; Marsili, Enrico

    2012-10-01

    Electron transfer mechanisms in Shewanella loihica PV-4 viable biofilms formed at graphite electrodes were investigated in potentiostat-controlled electrochemical cells poised at oxidative potentials (0.2V vs. Ag/AgCl). Chronoamperometry (CA) showed a repeatable biofilm growth of S. loihica PV-4 on graphite electrode. CA, cyclic voltammetry (CV) and its first derivative shows that both direct electron transfer (DET) mediated electron transfer (MET) mechanism contributes to the overall anodic (oxidation) current. The maximum anodic current density recorded on graphite was 90 μA cm(-2). Fluorescence emission spectra shows increased concentration of quinone derivatives and riboflavin in the cell-free supernatant as the biofilm grows. Differential pulse voltammetry (DPV) show accumulation of riboflavin at the graphite interface, with the increase in incubation period. This is the first study to observe a gradual shift from DET to MET mechanism in viable S. loihica PV-4 biofilms.

  2. Biofilm-forming capacity in biogenic amine-producing bacteria isolated from dairy products.

    Directory of Open Access Journals (Sweden)

    Maria eDiaz

    2016-05-01

    Full Text Available Biofilms on the surface of food industry equipment are reservoirs of potentially food-contaminating bacteria - both spoilage and pathogenic. However, the capacity of biogenic amine (BA-producers to form biofilms has remained largely unexamined. BAs are low molecular weight, biologically active compounds that in food can reach concentrations high enough to be a toxicological hazard. Fermented foods, especially some types of cheese, accumulate the highest BA concentrations of all. The present work examines the biofilm-forming capacity of 56 BA-producing strains belonging to three genera and 10 species (12 Enterococcus faecalis, 6 Enterococcus faecium, 6 Enterococcus durans, 1 Enterococcus hirae, 12 Lactococcus lactis, 7 Lactobacillus vaginalis, 2 Lactobacillus curvatus, 2 Lactobacillus brevis, 1 Lactobacillus reuteri and 7 Lactobacillus parabuchneri, all isolated from dairy products. Strains of all the tested species - except for L. vaginalis - were able to produce biofilms on polystyrene and adhered to stainless steel. However, the biomass produced in biofilms was strain-dependent. These results suggest that biofilms may provide a route via which fermented foods can become contaminated by BA-producing microorganisms.

  3. Influence of Amphibian Antimicrobial Peptides and Short Lipopeptides on Bacterial Biofilms Formed on Contact Lenses

    Directory of Open Access Journals (Sweden)

    Magdalena Maciejewska

    2016-10-01

    Full Text Available The widespread use of contact lenses is associated with several complications, including ocular biofilm-related infections. They are very difficult to manage with standard antimicrobial therapies, because bacterial growth in a biofilm is associated with an increased antibiotic resistance. The principal aim of this study was to evaluate the efficacy of antimicrobial peptides (AMPs in eradication of bacterial biofilms formed on commercially available contact lenses. AMPs were synthesized according to Fmoc/tBu chemistry using the solid-phase method. Minimum inhibitory concentration (MIC and minimum biofilm eradication concentration (MBEC of the compounds were determined. Anti-biofilm activity of the antimicrobial peptides determined at different temperatures (25 °C and 37 °C were compared with the effectiveness of commercially available contact lens solutions. All of the tested compounds exhibited stronger anti-biofilm properties as compared to those of the tested lens solutions. The strongest activity of AMPs was noticed against Gram-positive strains at a temperature of 25 °C. Conclusions: The results of our experiments encourage us toward further studies on AMPs and their potential application in the prophylaxis of contact lens-related eye infections.

  4. The biofilm formation ability of Listeria monocytogenes isolated from meat, poultry, fish and processing plant environments is related to serotype and pathogenic profile of the strains

    Directory of Open Access Journals (Sweden)

    Domenico Meloni

    2012-10-01

    Full Text Available In the present study, the relationships between serotype, pathogenic profile and in vitro biofilm formation of 106 Listeria monocytogenes strains, having no epidemiological correlation and isolated from different environmental and food sources, were analyzed. The quantitative assessment of the in vitro biofilm formation was carried out by using a microtiter plate assay with spectrophotometric reading (OD620. The isolates were also submitted to serogrouping using the target genes lmo0737, lmo1118, ORF2819, ORF2110, prs, and to the evaluation of the presence of the following virulence genes: prfA, hlyA, rrn, inlA, inlB, iap, plcA, plcB, actA and mpl, by multiplex PCRs. The 62% of the strains showed weak or moderate in vitro ability in biofilm formation, in particular serotypes 1/2b and 4b, frequently associated with sporadic or epidemic listeriosis cases. The 25% of these isolates showed polymorphism for the actA gene, producing a fragment of 268-bp instead of the expected 385-bp. The deletion of nucleotides in this gene seems to be related to enhanced virulence properties among these strains. Strains belonging to serotypes associated with human infections and characterized by pathogenic potential are capable to persist within the processing plants forming biofilm.

  5. A study on the ability of quaternary ammonium groups attached to a polyurethane foam wound dressing to inhibit bacterial attachment and biofilm formation.

    Science.gov (United States)

    Tran, Phat L; Hamood, Abdul N; de Souza, Anselm; Schultz, Gregory; Liesenfeld, Bernd; Mehta, Dilip; Reid, Ted W

    2015-01-01

    Bacterial infection of acute and chronic wounds impedes wound healing significantly. Part of this impediment is the ability of bacterial pathogens to grow in wound dressings. In this study, we examined the effectiveness of a polyurethane (PU) foam wound dressings coated with poly diallyl-dimethylammonium chloride (pDADMAC-PU) to inhibit the growth and biofilm development by three main wound pathogens, Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, within the wound dressing. pDADMAC-PU inhibited the growth of all three pathogens. Time-kill curves were conducted both with and without serum to determine the killing kinetic of pDADMAC-PU. pDADMAC-PU killed S. aureus, A. baumannii, and P. aeruginosa. The effect of pDADMAC-PU on biofilm development was analyzed quantitatively and qualitatively. Quantitative analysis, colony-forming unit assay, revealed that pDADMAC-PU dressing produced more than eight log reduction in biofilm formation by each pathogen. Visualization of the biofilms by either confocal laser scanning microscopy or scanning electron microscopy confirmed these findings. In addition, it was found that the pDADMAC-PU-treated foam totally inhibited migration of bacteria through the foam for all three bacterial strains. These results suggest that pDADMAC-PU is an effective wound dressing that inhibits the growth of wound pathogens both within the wound and in the wound dressing.

  6. Repeated applications of photodynamic therapy on Candida glabrata biofilms formed in acrylic resin polymerized.

    Science.gov (United States)

    de Figueiredo Freitas, Lírian Silva; Rossoni, Rodnei Dennis; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2017-04-01

    Previous studies have been suggested that photodynamic therapy (PDT) can be used as an adjuvant treatment for denture stomatitis. In this study, we evaluated the effects of multiple sessions of PDT on Candida glabrata biofilms in specimens of polymerized acrylic resin formed after 5 days. Subsequently, four applications of PDT were performed on biofilms in 24-h intervals (days 6-9). Also, we evaluated two types of PDT, including application of laser and methylene blue or light-emitting diode (LED) and erythrosine. The control groups were treated with physiological solution. The effects of PDT on biofilm were evaluated after the first and fourth application of PDT. The biofilm analysis was performed by counting the colony-forming units. The results showed that between the days 6 and 9, the biofilms not treated by PDT had an increase of 5.53 to 6.05 log (p = 0.0271). Regarding the treatments, after one application of PDT, the biofilms decreased from 5.53 to 0.89 log. When it was done four applications, the microbial reduction ranged from 6.05 log to 0.11 log. We observed that one application of PDT with laser or LED caused a reduction of 3.36 and 4.64 compared to the control groups, respectively (p = 0.1708). When it was done four applications of PDT, the reductions achieved were 1.57 for laser and 5.94 for LED (p = 0.0001). It was concluded that repeated applications of PDT on C. glabrata biofilms showed higher antimicrobial activity compared to single application. PDT mediated by LED and erythrosine was more efficient than the PDT mediated by laser and methylene blue.

  7. Recent progress in criterions for glass forming ability

    Institute of Scientific and Technical Information of China (English)

    YANG Bing; DU Yong; LIU Yong

    2009-01-01

    The glass-forming ability(GFA) is an important factor in studying metallic glasses. So far, there are several criteria for evaluating the glass-forming ability. For predicting compositions for bulk metallic glasses, however, they show more or less accuracy and versatility for different cases. In this work, four types of criteria for the glass-forming ability are categorized and reviewed: 1) Indicators with characteristic temperatures; 2) Indicators involving structural factors; 3) Indicators based on Miedema's model; and 4) Indictors based on phase diagram. It is pointed out that a single indicator cannot be used to predict GFA of all the metallic glass systems correctly due to its limited theoretical framework, and the combination of multiple indicators shows more efficiency and accuracy. Though it is still very difficult to develop a universal indicator for GFA, recent indicators seem to be of more reliable physical meaning than those previously suggested.

  8. Silver colloidal nanoparticle stability: influence on Candida biofilms formed on denture acrylic.

    Science.gov (United States)

    Monteiro, Douglas Roberto; Takamiya, Aline Satie; Feresin, Leonardo Perina; Gorup, Luiz Fernando; de Camargo, Emerson Rodrigues; Delbem, Alberto Carlos Botazzo; Henriques, Mariana; Barbosa, Debora Barros

    2014-08-01

    Our aim in this study was to evaluate how the chemical stability of silver nanoparticles (SNs) influences their efficacy against Candida albicans and C. glabrata biofilms. Several parameters of SN stability were tested, namely, temperature (50ºC, 70ºC, and 100ºC), pH (5.0 and 9.0), and time of contact (5 h and 24 h) with biofilms. The control was defined as SNs without temperature treatment, pH 7, and 24 h of contact. These colloidal suspensions at 54 mg/L were used to treat mature Candida biofilms (48 h) formed on acrylic. Their efficacy was determined by total biomass and colony-forming unit quantification. Data were analyzed using analysis of variance and the Bonferroni post hoc test (α = 0.05). The temperature and pH variations of SNs did not affect their efficacy against the viable cells of Candida biofilms (P > 0.05). Moreover, the treatment periods were not decisive in terms of the susceptibility of Candida biofilms to SNs. These findings provide an important advantage of SNs that may be useful in the treatment of Candida-associated denture stomatitis.

  9. Coliform retention and release in biofilms formed on new and weathered irrigation pipes

    Science.gov (United States)

    Irrigation waters have come under increasing scrutiny as a source of pathogenic microorganisms contaminating fresh produce. It is generally assumed that the microbial concentrations entering and leaving irrigation pipe networks are identical. However, this may not be true if biofilms form on the i...

  10. Biofilm-Forming Capability of Highly Virulent, Multidrug-Resistant Candida auris

    Science.gov (United States)

    Sherry, Leighann; Ramage, Gordon; Kean, Ryan; Borman, Andrew; Johnson, Elizabeth M.; Richardson, Malcolm D.

    2017-01-01

    The emerging multidrug-resistant yeast pathogen Candida auris has attracted considerable attention as a source of healthcare–associated infections. We report that this highly virulent yeast has the capacity to form antifungal resistant biofilms sensitive to the disinfectant chlorhexidine in vitro. PMID:28098553

  11. The roles of biofilm matrix polysaccharide Psl in mucoid Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Ma, Luyan; Wang, Shiwei; Wang, Di; Parsek, Matthew R; Wozniak, Daniel J

    2012-07-01

    The opportunistic pathogen Pseudomonas aeruginosa causes life-threatening, persistent infections in patients with cystic fibrosis (CF). Persistence is attributed to the ability of these bacteria to form structured communities (biofilms). Biofilms rely on an extracellular polymeric substances matrix to maintain structure. Psl exopolysaccharide is a key matrix component of nonmucoid biofilms, yet the role of Psl in mucoid biofilms is unknown. In this report, using a variety of mutants in a mucoid P. aeruginosa background, we found that deletion of Psl-encoding genes dramatically decreased their biofilm formation ability, indicating that Psl is also a critical matrix component of mucoid biofilms. Our data also suggest that the overproduction of alginate leads to mucoid biofilms, which occupy more space, whereas Psl-dependent biofilms are densely packed. These data suggest that Psl polysaccharide may have significant contributions in biofilm persistence in patients with CF and may be helpful for designing therapies for P. aeruginosa CF infection.

  12. Cell surface hydrophobicity and biofilm formation ability of Vibrio splendidus%灿烂弧菌的疏水性和生物被膜形成能力

    Institute of Scientific and Technical Information of China (English)

    李华; 王扬; 李强; 乔帼

    2011-01-01

    the motility of the flagellum and measured pill and cell surface hydrophobicity using tests for salt-aggregation (SAT) and microbial adherence to hydrocarbons (MATH). V. Splendidus AP622 possesses a high ability to form a biofilm. The biofilm formation cycle was 24 h in length and the optimal formation conditions consisted of polyvinyl chloride (PVC) and LB medium with 0.5% glucose. Swarming and twitching motilities played an important role in biofilm formation. The resistance of re-suspended biofilm bacteria to antibiotics was significantly higher than in planktonic bacteria (P50%. In conclusion, the hydrophobicity and biofilm formation properties suggest that V. Splendidus AP622 has strong adhesion properties. Resistance to antibiotics as a result of biofilm formation will reduce the effectiveness of treatments in aquaculture facilities. Thus, cell surface hydrophobicity and biofilm formation play an important role in the pathogenesis of V. Splendidus.

  13. Assessing Algebraic Solving Ability Of Form Four Students

    Directory of Open Access Journals (Sweden)

    Lim Hooi Lian

    2006-10-01

    Full Text Available Mathematics researchers generally agree that algebra is a tool for problem solving, a method of expressing relationship, analyzing and representing patterns, and exploring mathematical properties in a variety of problem situations. Thus, several mathematics researchers and educators have focused on investigating the introduction and the development of algebraic solving abilities. However research works on assessing students' algebraic solving ability is sparse in literature. The purpose of this study was to use the SOLO model as a theoretical framework for assessing Form Four students' algebraic solving abilities in using linear equation. The content domains incorporated in this framework were linear pattern (pictorial, direct variations, concepts of function and arithmetic sequence. This study was divided into two phases. In the first phase, students were given a pencil-and-paper test. The test comprised of eight superitems of four items each. Results were analyzed using a Partial Credit model. In the second phase, clinical interviews were conducted to seek the clarification of the students' algebraic solving processes. Results of the study indicated that 62% of the students have less than 50% probability of success at relational level. The majority of the students in this study could be classified into unistructural and multistructural. Generally, most of the students encountered difficulties in generalizing their arithmetic thinking through the use of algebraic symbols. The qualitative data analysis found that the high ability students seemed to be more able to seek the recurring linear pattern and identify the linear relationship between variables. They were able to co-ordinate all the information given in the question to form the algebraic expression and linear equations. Whereas, the low ability students showed an ability more on drawing and counting method. They lacked understanding of algebraic concepts to express the relationship

  14. Role of biofilm in protection of the replicative form of Legionella pneumophila.

    Science.gov (United States)

    Andreozzi, Elisa; Di Cesare, Andrea; Sabatini, Luigia; Chessa, Elisa; Sisti, Davide; Rocchi, Marco; Citterio, Barbara

    2014-12-01

    The dual nature of Legionella pneumophila enables its survival in free and intracellular environments and underpins its infection and spread mechanisms. Experiments using bacterial cultures and improved RTqPCR protocols were devised to gain fresh insights into the role of biofilm in protecting the replicative form of L. pneumophila. mip gene expression was used as a marker of virulence in sessile (biofilm-bound) and planktonic (free-floating) cells of L. pneumophila serotype 1 ATCC 33152. The ratio of mip gene expression to transcriptionally active Legionella cells increased both in sessile and free-floating cells demonstrating an up-regulation of mip gene under nutrient depletion. However, a different trend was observed between the two forms, in planktonic cells the mip gene expression/transcriptionally active Legionella cells increased until the end of the experiment, while in the biofilm such increase was observed at the end of the experiment. These findings suggest a possible association between the switch to the transmissive phase of Legionella and a mip up-regulation and a role for biofilm in preserving Legionella cells in replicative form. Moreover, it has been shown that improved RTqPCR protocols are valuable tools to explore bacterial virulence.

  15. Long-term succession of structure and diversity of a biofilm formed in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Martiny, A.C.; Jørgensen, T.M.; Albrechtsen, Hans-Jørgen

    2003-01-01

    In this study, we examined the long-term development of the overall structural morphology and community composition of a biofilm formed in a model drinking water distribution system with biofilms from 1 day to 3 years old. Visualization and subsequent quantification showed how the biofilm developed...... length polymorphisms showed a correlation between the population profile and the age of the sample, separating the samples into young (1 to 94 days) and old (571 to 1,093 days) biofilms, whereas a limited spatial variation in the biofilm was observed. A more detailed analysis with cloning and sequencing......% of the community by day 256, and which resulted in a reduction in the overall richness. After 500 days, the biofilm entered a stable population state, which was characterized by a greater richness of bacteria, including Nitrospira, Planctomyces, Acidobacterium, and Pseudomonas. The combination of different...

  16. Meningococcal biofilm formation

    DEFF Research Database (Denmark)

    Lappann, M.; Haagensen, Janus Anders Juul; Claus, H.

    2006-01-01

    We show that in a standardized in vitro flow system unencapsulated variants of genetically diverse lineages of Neisseria meningitidis formed biofilms, that could be maintained for more than 96 h. Biofilm cells were resistant to penicillin, but not to rifampin or ciprofloxacin. For some strains......, microcolony formation within biofilms was observed. Microcolony formation in strain MC58 depended on a functional copy of the pilE gene encoding the pilus subunit pilin, and was associated with twitching of cells. Nevertheless, unpiliated pilE mutants formed biofilms showing that attachment and accumulation......X alleles was identified among genetically diverse meningococcal strains. PilX alleles differed in their propensity to support autoaggregation of cells in suspension, but not in their ability to support microcolony formation within biofilms in the continuous flow system....

  17. Chemical sanitizers to control biofilms formed by two Pseudomonas species on stainless steel surface

    Directory of Open Access Journals (Sweden)

    Danila Soares Caixeta

    2012-03-01

    Full Text Available The biofilm formation of Pseudomonas aeruginosa and Pseudomonas fluorescens on AISI 304 stainless steel in the presence of reconstituted skim milk under different temperatures was conducted, and the potential of three chemical sanitizers in removing the mono-species biofilms formed was compared. Pseudomonas aeruginosa cultivated in skim milk at 28 °C presented better growth rate (10.4 log CFU.mL-1 when compared with 3.7 and 4.2 log CFU.mL-1 for P. aeruginosa and P. fluorescens cultivated at 7 °C, respectively. Pseudomonas aeruginosa formed biofilm when cultivated at 28 °C. However, only the adhesion of P. aeruginosa and P. fluorescens was observed when incubated at 7 °C. The sodium dichloroisocyanurate was the most efficient sanitizer in the reduction of the adhered P. aeruginosa cells at 7 and 28 °C and those on the biofilm, respectively. The hydrogen peroxide was more effective in the reduction of adhered cells of P. fluorescens at 7 °C.

  18. Application of alkaliphilic biofilm-forming bacteria to improve compressive strength of cement-sand mortar.

    Science.gov (United States)

    Park, Sung-Jin; Chun, Woo-Young; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-03-01

    The application of microorganisms in the field of construction material is rapidly increasing worldwide; however, almost all studies that were investigated were bacterial sources with mineral-producing activity and not with organic substances. The difference in the efficiency of using bacteria as an organic agent is that it could improve the durability of cement material. This study aimed to assess the use of biofilm-forming microorganisms as binding agents to increase the compressive strength of cement-sand material. We isolated 13 alkaliphilic biofilmforming bacteria (ABB) from a cement tetrapod block in the West Sea, Korea. Using 16S RNA sequence analysis, the ABB were partially identified as Bacillus algicola KNUC501 and Exiguobacterium marinum KNUC513. KNUC513 was selected for further study following analysis of pH and biofilm formation. Cement-sand mortar cubes containing KNUC513 exhibited greater compressive strength than mineral-forming bacteria (Sporosarcina pasteurii and Arthrobacter crystallopoietes KNUC403). To determine the biofilm effect, Dnase I was used to suppress the biofilm formation of KNUC513. Field emission scanning electron microscopy image revealed the direct involvement of organic-inorganic substance in cement-sand mortar.

  19. Glass-Forming Ability of Soda Lime Borate Liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, J.C.; Smedskjær, Morten Mattrup;

    2012-01-01

    We investigate the composition dependence of glass-forming ability (GFA) of a series of iron-containing soda lime borate liquids by substituting Na2O for B2O3. We have characterized GFA by measuring the glass stability against crystallization using a differential scanning calorimeter (DSC......). The results show that the GFA decreases when substituting Na2O for B2O3. Moreover, we find that there is no direct link between the kinetic fragility and GFA for the soda lime borate series studied herein. We have also discovered and clarified a striking thermal history dependence of the glass stability...

  20. Application of bacteriophages to reduce biofilms formed by hydrogen sulfide producing bacteria on surfaces in a rendering plant.

    Science.gov (United States)

    Gong, Chao; Jiang, Xiuping

    2015-08-01

    Hydrogen sulfide producing bacteria (SPB) in raw animal by-products are likely to grow and form biofilms in the rendering processing environments, resulting in the release of harmful hydrogen sulfide (H2S) gas. The objective of this study was to reduce SPB biofilms formed on different surfaces typically found in rendering plants by applying a bacteriophage cocktail. Using a 96-well microplate method, we determined that 3 SPB strains of Citrobacter freundii and Hafnia alvei are strong biofilm formers. Application of 9 bacteriophages (10(7) PFU/mL) from families of Siphoviridae and Myoviridae resulted in a 33%-70% reduction of biofilm formation by each SPB strain. On stainless steel and plastic templates, phage treatment (10(8) PFU/mL) reduced the attached cells of a mixed SPB culture (no biofilm) by 2.3 and 2.7 log CFU/cm(2) within 6 h at 30 °C, respectively, as compared with 2 and 1.5 log CFU/cm(2) reductions of SPB biofilms within 6 h at 30 °C. Phage treatment was also applied to indigenous SPB biofilms formed on the environmental surface, stainless steel, high-density polyethylene plastic, and rubber templates in a rendering plant. With phage treatment (10(9) PFU/mL), SPB biofilms were reduced by 0.7-1.4, 0.3-0.6, and 0.2-0.6 log CFU/cm(2) in spring, summer, and fall trials, respectively. Our study demonstrated that bacteriophages could effectively reduce the selected SPB strains either attached to or in formed biofilms on various surfaces and could to some extent reduce the indigenous SPB biofilms on the surfaces in the rendering environment.

  1. Effects of environmental parameters on the dual-species biofilms formed by Escherichia coli O157:H7 and Ralstonia insidiosa, a strong biofilm producer isolated from a fresh-cut processing plant

    Science.gov (United States)

    Biofilm forming bacteria resident to food processing facilities are a food safety concern due to the potential of biofilms to harbor foodborne bacterial pathogens. When cultured together, Ralstonia insidiosa, a strong biofilm former frequently isolated from produce processing environments, has been ...

  2. Efficacy of Various Chemical Disinfectants on Biofilms Formed in Spacecraft Potable Water System Component

    Science.gov (United States)

    Wong, Willy; Garcia, Veronica; Castro, Victoria; Ott, Mark; Duane

    2009-01-01

    As the provision of potable water is critical for successful habitation of the International Space Station (ISS), life support systems were installed in December 2008 to recycle both humidity from the atmosphere and urine to conserve available water in the vehicle. Pre-consumption testing from the dispensing needle at the Potable Water Dispenser (PWD) indicated that bacterial concentrations exceeded the current ISS specifications of 50 colony forming units (CFU) per ml. Subsequent investigations revealed that a corrugated stainless steel flex hose upstream of the dispensing needle in the PWD was filled with non-sterile water and left at room temperature for over one month before launch. To simulate biofilm formation that was suspected in the flight system, sterile flex hoses were seeded with a consortium of bacterial isolates previously recovered from other ISS water systems, which included Ralstonia pickettii, Burkholderia multivorans, Caulobacter vibrioides., and Cupriavidus pauculus. After 5 days of incubation, these hoses were challenged with various chemical disinfectants including hydrogen peroxide, colloidal silver, and buffered pH solutions to determine the ability of the disinfectants to decrease and maintain bacterial concentrations below ISS specifications. Disinfection efficacy over time was measured by collecting daily heterotrophic plate counts following exposure to the disinfectants. A single flush with either 6% hydrogen peroxide solution or a mixture of 3% hydrogen peroxide and 400 ppb colloidal silver effectively reduced the bacterial concentrations to less than 1 CFU/ml for a period of up to 2 months. Testing results indicated that hydrogen peroxide and mixtures of hydrogen peroxide and colloidal silver have tremendous potential as alternative disinfectants for ISS water systems.

  3. The inhibitory effect of Thymus vulgaris extracts on the planktonic form and biofilm structures of six human pathogenic bacteria

    OpenAIRE

    Zinab Mohsenipour; Mehdi Hassanshahian

    2015-01-01

    Objective: Microorganisms are responsible for many problems in industry and medicine because of biofilm formation. Therefore, this study was aimed to examine the effect of Thymus vulgaris (T. vulgaris) extracts on the planktonic form and biofilm structures of six pathogenic bacteria. Materials and methods: Antimicrobial activities of the plant extracts against the planktonic form of the bacteria were determined using the disc diffusion method. MIC and MBC values were evaluated using macrobrot...

  4. The Activity of Cotinus coggygria Scop. Leaves on Staphylococcus aureus Strains in Planktonic and Biofilm Growth Forms

    Directory of Open Access Journals (Sweden)

    Katarína Rendeková

    2015-12-01

    Full Text Available The purpose of this study was to detect the effectiveness of Cotinus coggygria Scop. leaves methanol extract against planktonic and biofilm growth forms of Staphylococcus aureus. The antimicrobial activity was determined by the broth microdilution test. Minimal inhibitory concentrations and minimal bactericidal concentrations were detected against two collection and ten clinical S. aureus strains. Anti-biofilm activity of the tested extract was detected using 24 h bacterial biofilm on the surface of microtiter plate wells. The biofilm inhibitory activity was evaluated visually after 24 h interaction of extract with biofilm, and the eradicating activity by a regrowth method. The tested extract showed bactericidal activity against all S. aureus strains (methicillin susceptible or methicillin resistant in concentrations ranging from 0.313 to 0.625 mg·mL−1. Biofilm inhibitory concentrations were 10-times higher and biofilm eradicating concentrations 100-times higher (8 and 32 mg·mL−1, respectively. The phytochemical analysis of C. coggygria leaves 60% methanol extract performed by LC-DAD-MS/MS revealed quercetin rhamnoside, methyl gallate, and methyl trigallate as main constituents. Results of our study indicate that C. coggygria, rich in tannins and flavonoids, seems to be a prospective topical antibacterial agent with anti-biofilm activity.

  5. A cathelicidin-2-derived peptide effectively impairs Staphylococcus epidermidis biofilms

    NARCIS (Netherlands)

    Molhoek, E.M.; Dijk, A. van; Veldhuizen, E.J.A.; Haagsman, H.P.; Bikker, F.J.

    2011-01-01

    Staphylococcus epidermidis is a major cause of nosocomial infections owing to its ability to form biofilms on the surface of medical devices. Biofilms are surface-adhered bacterial communities. In mature biofilms these communities are encased in an extracellular matrix composed of bacterial polysacc

  6. Influence of Streptococcus mutans on Enterococcus faecalis Biofilm Formation

    NARCIS (Netherlands)

    Deng, Dong Mei; Hoogenkamp, Michel A.; Exterkate, Rob A. M.; Jiang, Lei Meng; van der Sluis, Lucas W. M.; ten Cate, Jacob M.; Crielaard, Wim

    2009-01-01

    Introduction: An important virulence factor of Enterococcus faecalis is its ability to form biofilms. Most studies on biofilm formation have been carried out by using E. faecalis monocultures. Given the polymicrobial nature of root canal infections, it is important to understand biofilm formation of

  7. Novel entries in a fungal biofilm matrix encyclopedia

    Science.gov (United States)

    Virulence of Candida albicans is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we conduc...

  8. Influence of Streptococcus mutans on enterococcus faecalis biofilm formation

    NARCIS (Netherlands)

    Deng, D.M.; Hoogenkamp, M.A.; Exterkate, R.A.M.; Jiang, L.M.; van der Sluis, L.W.M.; ten Cate, J.M.; Crielaard, W.

    2009-01-01

    Introduction: An important virulence factor of Enterococcus faecalis is its ability to form biofilms. Most studies on biofilm formation have been carried out by using E. faecalis monocultures. Given the polymicrobial nature of root canal infections, it is important to understand biofilm formation of

  9. Extracellular DNA formation during biofilm development by freshwater bacteria

    DEFF Research Database (Denmark)

    Tang, Lone; Schramm, Andreas; Revsbech, Niels Peter

    2011-01-01

    of eDNA is most important. In this study, we investigated the significance of eDNA during biofilm formation in four freshwater isolates. The aim was to relate the quantity and timing of eDNA production to the isolates’ ability to form biofilms. eDNA and biofilm biomass was quantified over time during...

  10. In Vitro Antifungal Activity of Sertraline and Synergistic Effects in Combination with Antifungal Drugs against Planktonic Forms and Biofilms of Clinical Trichosporon asahii Isolates

    Science.gov (United States)

    Cong, Lin; Liao, Yong; Yang, Suteng

    2016-01-01

    Trichosporon asahii (T. asahii) is the major pathogen of invasive trichosporonosis which occurred mostly in immunocompromised patients. The biofilms formation ability of T. asahii may account for resistance to antifungal drugs and results a high mortality rate. Sertraline, a commonly prescribed antidepressant, has been demonstrated to show in vitro and in vivo antifungal activities against many kinds of pathogenic fungi, especially Cryptococcus species. In the present study, the in vitro activities of sertraline alone or combined with fluconazole, voriconazole, itraconazole, caspofungin and amphotericin B against planktonic forms and biofilms of 21 clinical T. asahii isolates were evaluated using broth microdilution checkerboard method and XTT reduction assay, respectively. The fractional inhibitory concentration index (FICI) was used to interpret drug interactions. Sertraline alone exhibited antifungal activities against both T. asahii planktonic cells (MICs, 4–8 μg/ml) and T. asahii biofilms (SMICs, 16–32 μg/ml). Furthermore, SRT exhibited synergistic effects against T. asahii planktonic cells in combination with amphotericin B, caspofungin or fluconazole (FICI≤0.5) and exhibited synergistic effects against T. asahii biofilms in combination with amphotericin B (FICI≤0.5). SRT exhibited mostly indifferent interactions against T. asahii biofilms in combination with three azoles in this study. Sertraline-amphotericin B combination showed the highest percentage of synergistic effects against both T. asahii planktonic cells (90.5%) and T. asahii biofilms (81.0%). No antagonistic interaction was observed. Our study suggests the therapeutic potential of sertraline against invasive T. asahii infection, especially catheter-related T. asahii infection. Further in vivo studies are needed to validate our findings. PMID:27930704

  11. The capacity of Listeria monocytogenes mutants with in-frame deletions in putative ATP-binding cassette transporters to form biofilms and comparison with the wild type

    Directory of Open Access Journals (Sweden)

    Marina Ceruso

    2014-02-01

    Full Text Available Listeria monocytogenes (Lm is a food-borne pathogen responsible for human listeriosis, an invasive infection with high mortality rates. Lm has developed efficient strategies for survival under stress conditions such as starvation and wide variations in temperature, pH, and osmolarity. Therefore, Lm can survive in food under multiple stress conditions. Detailed studies to determine the mode of action of this pathogen for survival under stress conditions are important to control Lm in food. It has been shown that genes encoding for ATP-binding cassette (ABC transporters are induced in Lm in food, in particular under stress conditions. Previous studies showed that these genes are involved in sensitivity to nisin, acids, and salt. The aim of this study was to determine the involvement of some ABC transporters in biofilm formation. Therefore, deletion mutants of ABC transporter genes (LMOf2365_1875 and LMOf2365_1877 were created in Lm F2365, and then were compared to the wild type for their capacity to form biofilms. Lm strain F2365 was chosen as reference since the genome is fully sequenced and furthermore this strain is particularly involved in food-borne outbreaks of listeriosis. Our results showed that DLMOf2365_1875 had an increased capacity to form biofilms compared to the wild type, indicating that LMOf2365_1875 negatively regulates biofilm formation. A deeper knowledge on the ability to form biofilms in these mutants may help in the development of intervention strategies to control Lm in food and in the environment.

  12. The Capacity of Listeria Monocytogenes Mutants with In-Frame Deletions in Putative ATP-Binding Cassette Transporters to form Biofilms and Comparison with the Wild Type

    Science.gov (United States)

    Ceruso, Marina; Fratamico, Pina; Chirollo, Claudia; Taglialatela, Rosanna; Cortesi, Maria Luisa

    2014-01-01

    Listeria monocytogenes (Lm) is a food-borne pathogen responsible for human listeriosis, an invasive infection with high mortality rates. Lm has developed efficient strategies for survival under stress conditions such as starvation and wide variations in temperature, pH, and osmolarity. Therefore, Lm can survive in food under multiple stress conditions. Detailed studies to determine the mode of action of this pathogen for survival under stress conditions are important to control Lm in food. It has been shown that genes encoding for ATP-binding cassette (ABC) transporters are induced in Lm in food, in particular under stress conditions. Previous studies showed that these genes are involved in sensitivity to nisin, acids, and salt. The aim of this study was to determine the involvement of some ABC transporters in biofilm formation. Therefore, deletion mutants of ABC transporter genes (LMOf2365_1875 and LMOf2365_1877) were created in Lm F2365, and then were compared to the wild type for their capacity to form biofilms. Lm strain F2365 was chosen as reference since the genome is fully sequenced and furthermore this strain is particularly involved in food-borne outbreaks of listeriosis. Our results showed that ΔLMOf2365_1875 had an increased capacity to form biofilms compared to the wild type, indicating that LMOf2365_1875 negatively regulates biofilm formation. A deeper knowledge on the ability to form biofilms in these mutants may help in the development of intervention strategies to control Lm in food and in the environment. PMID:27800311

  13. Interactions of Pseudomonas aeruginosa in predominant biofilm or planktonic forms of existence in mixed culture with Escherichia coli in vitro.

    Science.gov (United States)

    Kuznetsova, Marina V; Maslennikova, Irina L; Karpunina, Tamara I; Nesterova, Larisa Yu; Demakov, Vitaly A

    2013-09-01

    Pseudomonas aeruginosa and Escherichia coli are known to be involved in mixed communities in diverse niches. In this study we examined the influence of the predominant form of cell existence of and the exometabolite production by P. aeruginosa strains on interspecies interactions, in vitro. Bacterial numbers of P. aeruginosa and E. coli in mixed plankton cultures and biofilms compared with their numbers in single plankton cultures and biofilms changed in a different way, but were in accordance with the form of P. aeruginosa cell existence. The mass of a mixed-species biofilm was greater than the mass of a single-species biofilm. Among the mixed biofilms, the one with the "planktonic" P. aeruginosa strain had the least biomass. The total pyocyanin and pyoverdin levels were found to be lower in all mixed plankton cultures. Despite this, clinical P. aeruginosa strains irrespective of the predominant form of existence ("biofilm" or "planktonic") had a higher total concentration of exometabolites than did the reference strain in 12-24 h mixed cultures. The metabolism of E. coli, according to its bioluminescence, was reduced in mixed cultures, and the decrease was by 20- to 100-fold greater with the clinical Pseudomonas strains than the reference Pseudomonas strain. Thus, both the predominant form of existence of and the exometabolite production by distinct P. aeruginosa strains should be considered to fully understand the interspecies relationship and bacteria survival in natural communities.

  14. 食源性金黄色葡萄球菌的生物被膜形成能力及其基质组成研究%Formation ability and matrix composition of food-borne Staphylococcus aureus biofilm

    Institute of Scientific and Technical Information of China (English)

    石文琪; 桑亚新; 于宏伟; 孙纪录

    2015-01-01

    为了控制食品生产环境中金黄色葡萄球菌生物被膜污染,对分离自河北省不同食物样品的33株金黄色葡萄球菌的生物被膜形成能力及其基质组成进行了研究。首先,使用微效价板培养生物被膜,结果表明,在培养24和48 h后,分别有13和16个菌株形成了强弱不同的生物被膜,其中,生牛乳来源的菌株产生物被膜能力较强。然后,分别使用蛋白酶K和DNase Ⅰ处理不同菌株的生物被膜,结果表明,在所有菌株的生物被膜基质中,都含有蛋白质和DNA组分,但是在大多数菌株的生物被膜基质中,蛋白质是一种重要的组分,而DNA不是一种主要组分。%In order to make scientific strategies to control the pollution of Staphylococcus au‐reus biofilm in the environment of food production ,the biofilm formation ability and matrix composition of 33 S .aureus isolates from food samples of Hebei province were studied .First‐ly ,the strains were cultivated in microtiter plates to form biofilms ,and it was found that 13 and 16 strains formed biofilms after cultivation for 24 h and 48 h ,respectively .Among them , the strains from raw milk had stronger biofilm forming ability .Then ,the preformed biofilms were treated with proteinase K and DNase I ,respectively .The results showed that there were protein and DNA components in the biofilm matrix of all the strains .However ,protein was an important component but DNA was not a major component in the biofilm matrix of most strains .

  15. Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregulare DAOM 197198.

    Science.gov (United States)

    Taktek, Salma; St-Arnaud, Marc; Piché, Yves; Fortin, J André; Antoun, Hani

    2017-01-01

    Biofilm formation on abiotic and biotic surfaces was studied with two hyphobacteria, strongly attached to the surface of the arbuscular mycorrhizal fungus (AMF) Rhizoglomus irregulare (Ri) DAOM 197198 and two mycorrhizobacteria, loosely attached to the roots of different mycorrhizal plants. When the sparingly soluble igneous phosphate rock (PR) from Quebec, or when the chemical hydroxyapatite were used as sole phosphorus (P) source, hyphobacteria Rhizobium miluonense Rm3 and Burkholderia anthina Ba8 produced significantly more biofilms than mycorrhizobacteria Rahnella sp. Rs11 and Burkholderia phenazinium Bph12, as indicated by the crystal violet assay or by quantifying biofilm exopolysaccharides. As previously observed with planktonic bacteria, biofilms mobilized P by lowering the pH and releasing gluconic acid. The high efficiency of P mobilization by the hyphobacteria Ba8 was linked to the presence of more viable cells in its biofilm as revealed by the hydrolysis of fluorescein diacetate. Scanning electron microscopy micrographs showed a high adherence of the best P-solubilizer hyphobacteria Ba8 on the surface of Quebec PR. Hydroxyapatite porous structure did not allow a good adherence of Ba8. Ba8 formed an important biofilm on the hyphae of Ri DAOM 197198 with low reactive Quebec PR while no biofilm was observed with the high reactive hydroxyapatite. Results confirm the possible presence of specificity between the Ri DAOM 197198 and the hyphobacteria and suggest that the interaction would be regulated by the availability of P.

  16. Characterization of biofilm-like structures formed by Pseudomonas aeruginosa in a synthetic mucus medium

    Directory of Open Access Journals (Sweden)

    Haley Cecily L

    2012-08-01

    Full Text Available Abstract Background The accumulation of thick stagnant mucus provides a suitable environment for the growth of Pseudomonas aeruginosa and Staphylococcus aureus within the lung alveoli of cystic fibrosis (CF patients. These infections cause significant lung damage, leading to respiratory failure and death. In an artificial mucin containing medium ASM+, P. aeruginosa forms structures that resemble typical biofilms but are not attached to any surface. We refer to these structures as biofilm like structures (BLS. Using ASM+ in a static microtiter plate culture system, we examined the roles of mucin, extracellular DNA, environmental oxygen (EO2, and quorum sensing (QS in the development of biofilm-like structures (BLS by P. aeruginosa; and the effect of EO2 and P. aeruginosa on S. aureus BLS. Results Under 20% EO2, P. aeruginosa strain PAO1 produced BLS that resemble typical biofilms but are confined to the ASM+ and not attached to the surface. Levels of mucin and extracellular DNA within the ASM+ were optimized to produce robust well developed BLS. At 10% EO2, PAO1 produced thicker, more developed BLS, while under 0% EO2, BLS production was diminished. In contrast, the S. aureus strain AH133 produced well-developed BLS only under 20% EO2. In PAO1, loss of the QS system genes rhlI and rhlR affected the formation of BLS in ASM+ in terms of both structure and architecture. Whether co-inoculated into ASM+ with AH133, or added to established AH133 BLS, PAO1 eliminated AH133 within 48–56 h. Conclusions The thick, viscous ASM+, which contains mucin and extracellular DNA levels similar to those found in the CF lung, supports the formation of biofilm-like structures similar to the aggregates described within CF airways. Alterations in environmental conditions or in the QS genes of P. aeruginosa, as occurs naturally during the progression of CF lung infection, affect the architecture and quantitative structural features of these BLS. Thus, ASM+ provides an

  17. Bacteriophages and Biofilms

    Directory of Open Access Journals (Sweden)

    David R. Harper

    2014-06-01

    Full Text Available Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.

  18. Diarrhea-associated biofilm formed by enteroaggregative Escherichia coli and aggregative Citrobacter freundii: a consortium mediated by putative F pili

    Directory of Open Access Journals (Sweden)

    Araújo Ana CG

    2010-02-01

    Full Text Available Abstract Background Enteroaggregative Escherichia coli (EAEC are enteropathogenic strains identified by the aggregative adhesion (AA pattern that share the capability to form biofilms. Citrobacter freundii is classically considered as an indigenous intestinal species that is sporadically associated with diarrhea. Results During an epidemiologic study focusing on infantile diarrhea, aggregative C. freundii (EACF and EAEC strains were concomitantly recovered from a severe case of mucous diarrhea. Thereby, the occurrence of synergic events involving these strains was investigated. Coinfection of HeLa cells with EACF and EAEC strains showed an 8-fold increase in the overall bacterial adhesion compared with single infections (P traA were capable of forming bacterial aggregates only in the presence of EACF. Scanning electronic microscopy analyses revealed that bacterial aggregates as well as enhanced biofilms formed by EACF and traA-positive EAEC were mediated by non-bundle forming, flexible pili. Moreover, mixed biofilms formed by EACF and traA-positive EAEC strains were significantly reduced using nonlethal concentration of zinc, a specific inhibitor of F pili. In addition, EAEC strains isolated from diarrheic children frequently produced single biofilms sensitive to zinc. Conclusions Putative F pili expressed by EAEC strains boosted mixed biofilm formation when in the presence of aggregative C. freundii.

  19. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms

    DEFF Research Database (Denmark)

    Gjermansen, Morten; Ragas, Paula Cornelia; Sternberg, Claus;

    2005-01-01

    that they must be able to regulate their ability to form biofilm and to dissolve biofilm. We present an investigation of a biofilm dissolution process occurring in flow-chamber-grown Pseudomonas putida biofilms. Local starvation-induced biofilm dissolution appears to be an integrated part of P. putida biofilm...... development that causes characteristic structural rearrangements. Rapid global dissolution of entire P. putida biofilms was shown to occur in response to carbon starvation. Genetic analysis suggested that the adjacent P. putida genes PP0164 and PP0165 play a role in P. putida biofilm formation and dissolution....... PP0164 encodes a putative periplasmic protein of previously unknown function, and PP0164 mutant bacteria are sticky, and unable to reduce their adhesiveness and dissolve their biofilm in response to carbon starvation. PP0165 encodes a putative transmembrane protein containing GGDEF and EAL domains...

  20. Paradoxical antifungal activity and structural observations in biofilms formed by echinocandin-resistant Candida albicans clinical isolates.

    Science.gov (United States)

    Walraven, Carla J; Bernardo, Stella M; Wiederhold, Nathan P; Lee, Samuel A

    2014-02-01

    Echinocandin-resistant clinical isolates of Candida albicans have been reported, and key-hot spot mutations in the FKS1 gene, which encodes a major glucan synthase subunit, have been identified in these (caspofungin-resistant [CAS-R]) strains. Although these mutations result in phenotypic resistance to echinocandins in planktonic cells, there is little data on antifungal susceptibilities of CAS-R C. albicans strains within biofilms. Thus, we analyzed biofilms formed by 12 C. albicans CAS-R clinical strains in which we previously identified FKS1 hot-spot mutations and compared the sessile antifungal and paradoxical activity of anidulafungin (ANID), caspofungin (CAS), and micafungin (MICA). Biofilms were formed in a 96-well static microplate model and assayed using both tetrazolium-salt reduction and crystal violet assays, as well as examination by scanning electron microscopy. We first sought to assess biofilm formation and structure in these fks1 mutants and found that the biofilm mass and metabolic activities were reduced in most of the fks1 mutants as compared with reference strain SC5314. Structural analyses revealed that the fks1 mutant biofilms were generally less dense and had a clear predominance of yeast and pseudohyphae, with unusual "pit"-like cell surface structures. We also noted that sessile minimum inhibitory concentrations (MICs) to ANID, CAS, and MICA were higher than planktonic MICs of all but one strain. The majority of strains demonstrated a paradoxical effect (PE) to particular echinocandins, in either planktonic or sessile forms. Overall, biofilms formed by echinocandin-resistant clinical isolates demonstrated varied PEs to echinocandins and were structurally characterized by a preponderance of yeast, pseudohyphae, and pit-like structures.

  1. The effect of Streptococcus mutans and Candida glabrata on Candida albicans biofilms formed on different surfaces

    NARCIS (Netherlands)

    Pereira-Cenci, T.; Deng, D.M.; Kraneveld, E.A.; Manders, E.M.M.; Del Bel Cury, A.A.; ten Cate, J.M.; Crielaard, W.

    2008-01-01

    Although Candida containing biofilms contribute to the development of oral candidosis, the characteristics of multi-species Candida biofilms and how oral bacteria modulate these biofilms is poorly understood. The aim of this study was to investigate interactions between Candida albicans and either C

  2. Atypical Enteropathogenic Escherichia coli Strains form Biofilm on Abiotic Surfaces Regardless of Their Adherence Pattern on Cultured Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Hebert F. Culler

    2014-01-01

    Full Text Available The aim of this study was to determine the capacity of biofilm formation of atypical enteropathogenic Escherichia coli (aEPEC strains on abiotic and biotic surfaces. Ninety-one aEPEC strains, isolated from feces of children with diarrhea, were analyzed by the crystal violet (CV assay on an abiotic surface after 24 h of incubation. aEPEC strains representing each HEp-2 cell type of adherence were analyzed after 24 h and 6, 12, and 18 days of incubation at 37°C on abiotic and cell surfaces by CFU/cm2 counting and confocal laser scanning microscopy (CLSM. Biofilm formation on abiotic surfaces occurred in 55 (60.4% of the aEPEC strains. There was no significant difference in biofilm biomass formation on an abiotic versus prefixed cell surface. The biofilms could be visualized by CLSM at various developmental stages. aEPEC strains are able to form biofilm on an abiotic surface with no association with their adherence pattern on HEp-2 cells with the exception of the strains expressing UND (undetermined adherence. This study revealed the capacity of adhesion and biofilm formation by aEPEC strains on abiotic and biotic surfaces, possibly playing a role in pathogenesis, mainly in cases of persistent diarrhea.

  3. Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression.

    Science.gov (United States)

    Vidal, O; Longin, R; Prigent-Combaret, C; Dorel, C; Hooreman, M; Lejeune, P

    1998-05-01

    Classical laboratory strains of Escherichia coli do not spontaneously colonize inert surfaces. However, when maintained in continuous culture for evolution studies or industrial processes, these strains usually generate adherent mutants which form a thick biofilm, visible with the naked eye, on the wall of the culture apparatus. Such a mutant was isolated to identify the genes and morphological structures involved in biofilm formation in the very well characterized E. coli K-12 context. This mutant acquired the ability to colonize hydrophilic (glass) and hydrophobic (polystyrene) surfaces and to form aggregation clumps. A single point mutation, resulting in the replacement of a leucine by an arginine residue at position 43 in the regulatory protein OmpR, was responsible for this phenotype. Observations by electron microscopy revealed the presence at the surfaces of the mutant bacteria of fibrillar structures looking like the particular fimbriae described by the Olsén group and designated curli (A. Olsén, A. Jonsson, and S. Normark, Nature 338:652-655, 1989). The production of curli (visualized by Congo red binding) and the expression of the csgA gene encoding curlin synthesis (monitored by coupling a reporter gene to its promoter) were significantly increased in the presence of the ompR allele described in this work. Transduction of knockout mutations in either csgA or ompR caused the loss of the adherence properties of several biofilm-forming E. coli strains, including all those which were isolated in this work from the wall of a continuous culture apparatus and two clinical strains isolated from patients with catheter-related infections. These results indicate that curli are morphological structures of major importance for inert surface colonization and biofilm formation and demonstrate that their synthesis is under the control of the EnvZ-OmpR two-component regulatory system.

  4. Histamine-producing Lactobacillus parabuchneri strains isolated from grated cheese can form biofilms on stainless steel.

    Science.gov (United States)

    Diaz, Maria; Del Rio, Beatriz; Sanchez-Llana, Esther; Ladero, Victor; Redruello, Begoña; Fernández, María; Martin, M Cruz; Alvarez, Miguel A

    2016-10-01

    The consumption of food containing large amounts of histamine can lead to histamine poisoning. Cheese is one of the most frequently involved foods. Histamine, one of the biogenic amines (BAs) exhibiting the highest safety risk, accumulates in food contaminated by microorganisms with histidine decarboxylase activity. The origin of these microorganisms may be very diverse with contamination likely occurring during post-ripening processing, but the microorganisms involved during this manufacturing step have never been identified. The present work reports the isolation of 21 histamine-producing Lactobacillus parabuchneri strains from a histamine-containing grated cheese. PCR revealed that every isolate carried the histidine decarboxylase gene (hdcA). Eight lineages were identified based on the results of genome PFGE restriction analysis plus endonuclease restriction profile analysis of the carried plasmids. Members of all lineages were able to form biofilms on polystyrene and stainless steel surfaces. L. parabuchneri is therefore an undesirable species in the dairy industry; the biofilms it can produce on food processing equipment represent a reservoir of histamine-producing bacteria and thus a source of contamination of post-ripening-processed cheeses.

  5. THE COMPLEX EXTRACELLULAR POLYSACCHARIDES OF MAINLY CHAIN-FORMING FRESHWATER DIATOM SPECIES FROM EPILITHIC BIOFILMS(1).

    Science.gov (United States)

    Bahulikar, Rahul A; Kroth, Peter G

    2008-12-01

    Diatoms are dominant organisms in phototrophic biofilms in aquatic habitats. They produce copious amounts of extracellular polymeric substances (EPS), which mainly consist of carbohydrates and traces of proteins and glycoproteins. This study focuses on the characterization of EPS from a total of 14 diatoms belonging to the six genera Achnanthes, Cymbella, Fragilaria, Punctastriata, Staurosira, and Pseudostaurosira, all of which were isolated from epilithic biofilms of the littoral zone of Lake Constance. EPS from all isolates were extracted by a sequential extraction procedure resulting in five different fractions. The monosaccharide composition of each fraction was analyzed by HPLC equipped with a pulse amperiometric detector, yielding results similar to those obtained by probing the EPS structures with monomer-specific fluorophore-linked lectins. Significant differences in carbohydrate composition occurred in the different fractions of single isolates. Most of the diatom isolates in our study form chain-like colonies in which the cells are attached to each other by intercellular pads. Here we demonstrate that these pads can be dissolved in hot bicarbonate and that they show a heterogeneous composition of monosaccharides in contrast to other fractions, which mostly were dominated by one or two monosaccharides. Principal component analysis indicates a correlation between carbohydrate composition of EPS fractions and the phylogenetic relationship of the respective species, indicating that EPS analyses under defined culture conditions may support taxonomic analyses.

  6. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG.

    Science.gov (United States)

    Formosa-Dague, Cécile; Speziale, Pietro; Foster, Timothy J; Geoghegan, Joan A; Dufrêne, Yves F

    2016-01-12

    Staphylococcus aureus surface protein SasG promotes cell-cell adhesion during the accumulation phase of biofilm formation, but the molecular basis of this interaction remains poorly understood. Here, we unravel the mechanical properties of SasG on the surface of living bacteria, that is, in its native cellular environment. Nanoscale multiparametric imaging of living bacteria reveals that Zn(2+) strongly increases cell wall rigidity and activates the adhesive function of SasG. Single-cell force measurements show that SasG mediates cell-cell adhesion via specific Zn(2+)-dependent homophilic bonds between β-sheet-rich G5-E domains on neighboring cells. The force required to unfold individual domains is remarkably strong, up to ∼500 pN, thus explaining how SasG can withstand physiological shear forces. We also observe that SasG forms homophilic bonds with the structurally related accumulation-associated protein of Staphylococcus epidermidis, suggesting the possibility of multispecies biofilms during host colonization and infection. Collectively, our findings support a model in which zinc plays a dual role in activating cell-cell adhesion: adsorption of zinc ions to the bacterial cell surface increases cell wall cohesion and favors the projection of elongated SasG proteins away from the cell surface, thereby enabling zinc-dependent homophilic bonds between opposing cells. This work demonstrates an unexpected relationship between mechanics and adhesion in a staphylococcal surface protein, which may represent a general mechanism among bacterial pathogens for activating cell association.

  7. Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration.

    Science.gov (United States)

    Emtiazi, Farahnaz; Schwartz, Thomas; Marten, Silke Mareike; Krolla-Sidenstein, Peter; Obst, Ursula

    2004-03-01

    Populations of bacteria in biofilms from different sites of a drinking water production system were analysed. Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) analyses revealed changing DNA band patterns, suggesting a population shift during bank filtration and processing at the waterworks. In addition, common DNA bands that were attributed to ubiquitous bacteria were found. Biofilms even developed directly after UV disinfection (1-2m distance). Their DNA band patterns only partly agreed with those of the biofilms from the downstream distribution system. Opportunistic pathogenic bacteria in biofilms were analysed using PCR and Southern blot hybridisation (SBH). Surface water appeared to have a direct influence on the composition of biofilms in the drinking water distribution system. In spite of preceding filtration and UV disinfection, opportunistic pathogens such as atypical mycobacteria and Legionella spp. were found in biofilms of drinking water, and Pseudomonas aeruginosa was detected sporadically. Enterococci were not found in any biofilm. Bacterial cell counts in the biofilms from surface water to drinking water dropped significantly, and esterase and alanine-aminopeptidase activity decreased. beta-glucosidase activity was not found in the biofilms. Contrary to the results for planktonic bacteria, inhibitory effects were not observed in biofilms. This suggested an increased tolerance of biofilm bacteria against toxic compounds.

  8. Effects of environmental parameters on the dual-species biofilms formed by Escherichia coli O157:H7 and Ralstonia insidiosa, a strong biofilm producer isolated from a fresh-cut produce processing plant.

    Science.gov (United States)

    Liu, Nancy T; Nou, Xiangwu; Bauchan, Gary R; Murphy, Charles; Lefcourt, Alan M; Shelton, Daniel R; Lo, Y Martin

    2015-01-01

    Biofilm-forming bacteria resident to food processing facilities are a food safety concern due to the potential of biofilms to harbor foodborne bacterial pathogens. When cultured together, Ralstonia insidiosa, a strong biofilm former frequently isolated from produce processing environments, has been shown to promote the incorporation of Escherichia coli O157:H7 into dual-species biofilms. In this study, interactions between E. coli O157:H7 and R. insidiosa were examined under different incubating conditions. Under static culture conditions, the incorporation of E. coli O157:H7 into biofilms with R. insidiosa was not significantly affected by either low incubating temperature (10°C) or by limited nutrient availability. Greater enhancement of E. coli O157:H7 incorporation in dual-species biofilms was observed by using a continuous culture system with limited nutrient availability. Under the continuous culture conditions used in this study, E coli O157:H7 cells showed a strong tendency of colocalizing with R. insidiosa on a glass surface at the early stage of biofilm formation. As the biofilms matured, E coli O157:H7 cells were mostly found at the bottom layer of the dual-species biofilms, suggesting an effective protection by R. insidiosa in the mature biofilms.

  9. Assessment of Changes in Biodiversity when a Community of Ultramicrobacteria Isolated from Groundwater Is Stimulated to Form a Biofilm.

    Science.gov (United States)

    Ross, N.; Villemur, R.; Marcandella, E.; Deschênes, L.

    2001-07-01

    The stimulation of groundwater bacteria to form biofilms, for the remediation of polluted aquifers, is subjected to environmental regulations that include measurement of effects on microbial biodiversity. Groundwater microorganisms contain a proportion of unidentified and uncharacterized ultramicrobacteria (UMB) that might play a major role in the bioclogging of geological materials. This study aimed to assess the changes in genetic and metabolic biodiversity when a community of UMB, isolated from groundwater, is stimulated to form biofilms on a ceramic surface. UMB were stimulated with aerobic conditions and injection of molasses, in reactors reproducing groundwater composition and temperature. Concentration of planktonic viable UMB, secretion of extracellular polymeric substances (EPS), and biofilm thickness were monitored. The assessment of changes in biodiversity was achieved by comparing the initial UMB community to the biofilm community, using the single strand conformational polymorphism (SSCP) method, the cloning and sequencing of 16S rRNA gene (16S rDNA) sequences, and the Biolog microplate system. The hypothesis stating that indigenous UMB would play a significant role of in the biofilm development was corroborated. Within 13 days of stimulation, the UMB produced 700 mg L?1 of planktonic EPS and formed a biofilm up to a thickness of 1100 mm. This stimulation led to a decrease in genetic diversity and an increase in metabolic diversity. The decrease in genetic diversity was shown by a reduced number of single strand DNA fragments in the SSCP profiles. As such, 16S rDNA sequences from the biofilm revealed the predominance of four bacterial groups: Zoogloea, Bacillus/Paenibacillus, Enterobacteriaceae, and Pseudomonads. A significant increase in metabolic diversity was shown by a highest substrate richness profile and a lower substrate evenness profile of the biofilm bacterial population (p = 0.0 and p = 0.09, respectively). This higher metabolic diversity

  10. Effect of peracetic acid on biofilms formed by Staphylococcus aureus and Listeria monocytogenes isolated from dairy plants.

    Science.gov (United States)

    Lee, S H I; Cappato, L P; Corassin, C H; Cruz, A G; Oliveira, C A F

    2016-03-01

    This research investigated the removal of adherent cells of 4 strains of Staphylococcus aureus and 1 Listeria monocytogenes strain (previously isolated from dairy plants) from polystyrene microtiter plates using peracetic acid (PAA, 0.5%) for 15, 30, 60, and 120 s, and the inactivation of biofilms formed by those strains on stainless steel coupons using the same treatment times. In the microtiter plates, PAA removed all S. aureus at 15 s compared with control (no PAA treatment). However, L. monocytogenes biofilm was not affected by any PAA treatment. On the stainless steel surface, epifluorescence microscopy using LIVE/DEAD staining (BacLight, Molecular Probes/Thermo Fisher Scientific, Eugene, OR) showed that all strains were damaged within 15 s, with almost 100% of cells inactivated after 30 s. Results of this trial indicate that, although PAA was able to inactivate both S. aureus and L. monocytogenes monospecies biofilms on stainless steel, it was only able to remove adherent cells of S. aureus from polystyrene microplates. The correct use of PAA is critical for eliminating biofilms formed by S. aureus strains found in dairy plants, although further studies are necessary to determine the optimal PAA treatment for removing biofilms of L. monocytogenes.

  11. Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil

    Directory of Open Access Journals (Sweden)

    Wu Siva

    2009-05-01

    Full Text Available Abstract Background Microbial biofilms represent an incompletely understood, but fundamental mode of bacterial growth. These sessile communities typically consist of stratified, morphologically-distinct layers of extracellular material, where numerous metabolic processes occur simultaneously in close proximity. Limited reports on environmental isolates have revealed highly ordered, three-dimensional organization of the extracellular matrix, which may hold important implications for biofilm physiology in vivo. Results A Pseudomonas spp. isolated from a natural soil environment produced flocculent, nonmucoidal biofilms in vitro with unique structural features. These mature biofilms were made up of numerous viable bacteria, even after extended culture, and contained up to 50% of proteins and accumulated 3% (by dry weight calcium, suggesting an important role for the divalent metal in biofilm formation. Ultrastructurally, the mature biofilms contained structural motifs consisting of dense, fibrillary clusters, nanofibers, and ordered, honeycomb-like chambers enveloped in thin sheets. Conclusion Mature biofilms contained living bacteria and were structurally, chemically, and physiologically heterogeneous. The principal architectural elements observed by electron microscopy may represent useful morphological clues for identifying bacterial biofilms in vivo. The complexity and reproducibility of the structural motifs observed in bacterial biofilms appear to be the result of organized assembly, suggesting that this environmental isolate may possess ecological advantages in its natural habitat.

  12. Detection of bacteria bearing resistant biofilm forms, by using the universal and specific PCR is still unhelpful in the diagnosis of periprosthetic joint infections(PJI.

    Directory of Open Access Journals (Sweden)

    Batool eZegaer

    2014-09-01

    Full Text Available Intraoperative conventional bacteriological cultures were compared with different polymerase chain reaction (PCR methods in patients with total joint arthroplasties. The isolated bacteria were investigated for biofilm formation, and the biofilm forming strains, in their planktonic and biofilm forms, were further tested for their antimicrobial resistance against several clinically important antimicrobials. Forty four bone and joint samples were included and classified as infected or non-infected according to standard criteria for periprosthetic hip and knee infections. For the bacteriological diagnosis, conventional culture, two types of universal PCR and species specific PCR for three selected pathogens (S. aureus, S. epidermidis, P. aeruginosa were applied. Biofilm formation determination was performed by the tissue culture plate method. Antimicrobial susceptibility of the planktonic bacteria was performed by the minimal inhibitory concentration determination and, of the biofilm forms, by the minimal inhibitory concentration for bacterial regrowth from the biofilm. Twenty samples were culture positive, with S. epidermidis, S. aureus or P. aeruginosa. All PCR methods were very ineffective in detecting only one pathogen. All isolates were biofilm positive and their biofilm forms, were highly resistant. In this study, compared to PCR, culture remains the gold standard. The biofilm formation by the causative bacteria and the concomitant manifold increased antimicrobial resistance may explain the clinical failure of treatment in some cases and should be considered in the future for therapeutic planning.

  13. Particulate Bioglass reduces the viability of bacterial biofilms formed on its surface in an in vitro model.

    Science.gov (United States)

    Allan, Iain; Newman, Hubert; Wilson, Michael

    2002-02-01

    45S5 Bioglass is a bioactive implant material which, in its particulate form, is used in the repair of periodontal defects. The surface reactions undergone by this material in an aqueous environment may exert an antibacterial effect that would be beneficial to periodontal surgical treatment. Biofilms of Streptococcus sanguis, an early plaque former, and mixed species biofilms from a salivary inoculum grown under conditions similar to those associated with periodontal implants, were grown on particulate Bioglass in a constant depth film fermenter (CDFF). Control biofilms were grown on inert glass particulates. At sample times of 3, 24 and 48 hours the viability of biofilms of S. sanguis grown on Bioglass was significantly lower than for those grown on inert glass. In the experiments with subgingivally-modelled mixed species biofilms, the total anaerobic counts were significantly lower on Bioglass after 24 and 48 hours, but not 96 or 168 hours, compared to inert glass. Thus, particulate Bioglass has the potential to reduce bacterial colonisation of its surface in vivo, a feature relevant to post-surgical periodontal wound healing.

  14. Capillary isoelectric focusing--useful tool for detection of the biofilm formation in Staphylococcus epidermidis.

    Science.gov (United States)

    Ruzicka, Filip; Horka, Marie; Hola, Veronika; Votava, Miroslav

    2007-03-01

    The biofilm formation is an important factor of S. epidermidis virulence. Biofilm-positive strains might be clinically more important than biofilm-negative ones. Unlike biofilm-negative staphylococci, biofilm-positive staphylococci are surrounded with an extracellular polysaccharide substance. The presence of this substance on the surface can affect physico-chemical properties of the bacterial cell, including surface charge. 73 S. epidermidis strains were examined for the presence of ica operon, for the ability to form biofilm by Christensen test tube method and for the production of slime by Congo red agar method. Isoelectric points (pI) of these strains were determined by means of Capillary Isoelectric Focusing. The biofilm negative strains focused near pI value 2.3, while the pI values of the biofilm positive strains were near 2.6. Isoelectric point is a useful criterion for the differentiation between biofilm-positive and biofilm-negative S. epidermidis strains.

  15. Biofilm formation by environmental isolates of Salmonella and their sensitivity to natural antimicrobials

    Science.gov (United States)

    We evaluated 15 Salmonella isolates; S. Derby (2), S. Infantis (4), and S. Typhimurium (9) from conventional swine farm environment (soil and lagoon) for biofilm formation. Biofilm forming ability was determined by 96-well microtitre plate Crystal-Violet and Minimum Biofilm Eradication Concentration...

  16. Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Markussen, Trine;

    2011-01-01

    important for understanding of biofilm physiology and the treatment of biofilm-related infectious diseases. Here, we have investigated interactions of two of the major bacterial species of cystic fibrosis lung microbial communities -Pseudomonas aeruginosa and Staphylococcus aureus- when grown in co...

  17. Sanitizer resistance of biofilm-forming Salmonella isolated from meat products

    OpenAIRE

    Milan, C.; Agostinetto,A.; R.C.S. Conceição; H.L. Gonzalez; Timm, C. D.

    2015-01-01

    Este estudo avaliou a capacidade de Salmonella enterica subsp. enterica isolada de produtos cárneos formar biofilme e testou sua resistência a diferentes sanitizantes. Vinte cepas foram avaliadas quanto à capacidade de formar biofilme em placas de microtitulação. As cepas formadoras de biofilme foram testadas em superfícies de polietileno de alta densidade, aço inoxidável e vidro e tiveram a sensibilidade ao hipoclorito de sódio e ao iodo avaliada. Duas cepas de Salmonella Enteritidis isolada...

  18. Resistance of non-typeable Haemophilus influenzae biofilms is independent of biofilm size.

    Science.gov (United States)

    Reimche, Jennifer L; Kirse, Daniel J; Whigham, Amy S; Swords, W Edward

    2017-02-01

    The inflammatory middle ear disease known as otitis media can become chronic or recurrent in some cases due to failure of the antibiotic treatment to clear the bacterial etiological agent. Biofilms are known culprits of antibiotic-resistant infections; however, the mechanisms of resistance for non-typeable Haemophilus influenzae biofilms have not been completely elucidated. In this study, we utilized in vitro static biofilm assays to characterize clinical strain biofilms and addressed the hypothesis that biofilms with greater biomass and/or thickness would be more resistant to antimicrobial-mediated eradication than thinner and/or lower biomass biofilms. Consistent with previous studies, antibiotic concentrations required to eliminate biofilm bacteria tended to be drastically higher than concentrations required to kill planktonic bacteria. The size characterizations of the biofilms formed by the clinical isolates were compared to their minimum biofilm eradication concentrations for four antibiotics. This revealed no correlation between biofilm thickness or biomass and the ability to resist eradication by antibiotics. Therefore, we concluded that biofilm size does not play a role in antibiotic resistance, suggesting that reduction of antibiotic penetration may not be a significant mechanism for antibiotic resistance for this bacterial opportunist.

  19. Career adapt-abilities scale - Netherlands form: psychometric properties and relationships to ability, personality, and regulatory focus

    NARCIS (Netherlands)

    van Vianen, A.E.M.; Klehe, U.-C.; Koen, J.; Dries, N.

    2012-01-01

    The Career Adapt-Abilities Scale (CAAS) — Netherlands Form consists of four scales, each with six items, which measure concern, control, curiosity, and confidence as psychosocial resources for managing occupational transitions, developmental tasks, and work traumas. Internal consistency estimates fo

  20. Chemical analysis of cellular and extracellular carbohydrates of a biofilm-forming strain Pseudomonas aeruginosa PA14.

    Directory of Open Access Journals (Sweden)

    Charlène Coulon

    Full Text Available BACKGROUND: Pseudomonas aeruginosa is a gram-negative bacterium and an opportunistic pathogen, which causes persisting life-threatening infections in cystic fibrosis (CF patients. Biofilm mode of growth facilitates its survival in a variety of environments. Most P. aeruginosa isolates, including the non-mucoid laboratory strain PA14, are able to form a thick pellicle, which results in a surface-associated biofilm at the air-liquid (A-L interface in standing liquid cultures. Exopolysaccharides (EPS are considered as key components in the formation of this biofilm pellicle. In the non-mucoid P. aeruginosa strain PA14, the "scaffolding" polysaccharides of the biofilm matrix, and the molecules responsible for the structural integrity of rigid A-L biofilm have not been identified. Moreover, the role of LPS in this process is unclear, and the chemical structure of the LPS O-antigen of PA14 has not yet been elucidated. PRINCIPAL FINDINGS: In the present work we carried out a systematic analysis of cellular and extracellular (EC carbohydrates of P. aeruginosa PA14. We also elucidated the chemical structure of the LPS O-antigen by chemical methods and 2-D NMR spectroscopy. Our results showed that it is composed of linear trisaccharide repeating units, identical to those described for P. aeruginosa Lanýi type O:2a,c (Lanýi-Bergman O-serogroup 10a, 10c; IATS serotype 19 and having the following structure: -4-α-L-GalNAcA-(1-3-α-D-QuiNAc-(1-3- α-L-Rha-(1-. Furthermore, an EC O-antigen polysaccharide (EC O-PS and the glycerol-phosphorylated cyclic β-(1,3-glucans were identified in the culture supernatant of PA14, grown statically in minimal medium. Finally, the extracellular matrix of the thick biofilm formed at the A-L interface contained, in addition to eDNA, important quantities (at least ∼20% of dry weight of LPS-like material. CONCLUSIONS: We characterized the chemical structure of the LPS O-antigen and showed that the O-antigen polysaccharide is

  1. Ability of chitosan gels to disrupt bacterial biofilms and their applications in the treatment of bacterial vaginosis.

    Science.gov (United States)

    Kandimalla, Karunya K; Borden, Emma; Omtri, Rajesh S; Boyapati, Siva Prasad; Smith, Michael; Lebby, Kimberly; Mulpuru, Maanavi; Gadde, Mounika

    2013-07-01

    Recurrence of bacterial vaginosis is attributed to the inability of various formulations to disrupt bacterial biofilms. A negatively charged polysaccharide matrix coats the bacterial communities in the biofilm and restricts the penetration of antibiotics. Therefore, bacteria in the deeper segments of the biofilm persist and perpetuate the infection. In this study, we have tested the efficacy of two bioadhesive polymers, cationic chitosan and anionic polycarbophil, to disrupt Pseudomonas aeruginosa biofilms grown in the Center for Disease Control bioreactor as well as on the 96-well plates. The biofilms were treated with various concentrations of polycarbophil and chitosan at pH 4 or 6. Biofilm integrity following various treatments was evaluated by crystal violet stain and laser confocal microscopy employing Syto9 (live-cell stain) and propidium iodide (dead-cell stain). These studies demonstrated that chitosan gel disrupts the P. aeruginosa biofilm more effectively than does polycarbophil; and this effect is independent of the pH and charge densities on either polymers.

  2. Role of the two-component regulatory system arlRS in ica operon and aap positive but non-biofilm-forming Staphylococcus epidermidis isolates from hospitalized patients.

    Science.gov (United States)

    Wu, Yang; Liu, Jingran; Jiang, Juan; Hu, Jian; Xu, Tao; Wang, Jiaxue; Qu, Di

    2014-11-01

    The ica operon and aap gene are important factors for Staphylococcus epidermidis biofilm formation. However, we found 15 out of 101 S. epidermidis strains isolated from patients had both the ica operon and the aap gene in the genome but could not form biofilms (ica(+)aap(+)/BF(-) isolates). Compared with standard strain RP62A, the 15 ica(+)aap(+)/BF(-) isolates had similar growth curves and initial attachment abilities, but had much lower apparent transcription levels of the icaA gene and significantly less production of polysaccharide intercellular adhesion (PIA). Furthermore, the expression of accumulation-associated protein in ica(+)aap(+)/BF(-) isolates was much weaker than in RP62A. The mRNA levels of icaADBC transcription-related regulatory genes, including icaR, sarA, rsbU, srrA, arlRS and luxS, were measured in the 15 ica(+)aap(+)/BF(-) clinical isolates. The mRNA levels of arlR and rsbU in all of the ica(+)aap(+)/BF(-) isolates were lower than in RP62A at 4 h. At 10 h, 14/15 of the isolates showed lower mRNA levels of arlR and rsbU than shown by RP62A. However, expression of sarA, luxS, srrA and icaR varied in different ica(+)aap(+)/BF(-) isolates. To further investigate the role of arlRS in biofilm formation, we analyzed icaA, sarA and rsbU transcription, PIA synthesis, Aap expression and biofilm formation in an arlRS deletion mutant of S. epidermidis strain 1457 and all were much less than in the wild type strain. This is consistent with the hypothesis that ArlRS may play an important role in regulating biofilm formation by the ica(+)aap(+)/BF(-)S. epidermidis clinical isolates and operate via both ica-dependent and Aap-dependent pathways.

  3. Mammary Gland Pathology Subsequent to Acute Infection with Strong versus Weak Biofilm Forming Staphylococcus aureus Bovine Mastitis Isolates: A Pilot Study Using Non-Invasive Mouse Mastitis Model

    Science.gov (United States)

    Gogoi-Tiwari, Jully; Williams, Vincent; Waryah, Charlene Babra; Costantino, Paul; Al-Salami, Hani; Mathavan, Sangeetha; Wells, Kelsi; Tiwari, Harish Kumar; Hegde, Nagendra; Isloor, Shrikrishna; Al-Sallami, Hesham; Mukkur, Trilochan

    2017-01-01

    Background Biofilm formation by Staphylococcus aureus is an important virulence attribute because of its potential to induce persistent antibiotic resistance, retard phagocytosis and either attenuate or promote inflammation, depending upon the disease syndrome, in vivo. This study was undertaken to evaluate the potential significance of strength of biofilm formation by clinical bovine mastitis-associated S. aureus in mammary tissue damage by using a mouse mastitis model. Methods Two S. aureus strains of the same capsular phenotype with different biofilm forming strengths were used to non-invasively infect mammary glands of lactating mice. Biofilm forming potential of these strains were determined by tissue culture plate method, ica typing and virulence gene profile per detection by PCR. Delivery of the infectious dose of S. aureus was directly through the teat lactiferous duct without invasive scraping of the teat surface. Both bacteriological and histological methods were used for analysis of mammary gland pathology of mice post-infection. Results Histopathological analysis of the infected mammary glands revealed that mice inoculated with the strong biofilm forming S. aureus strain produced marked acute mastitic lesions, showing profuse infiltration predominantly with neutrophils, with evidence of necrosis in the affected mammary glands. In contrast, the damage was significantly less severe in mammary glands of mice infected with the weak biofilm-forming S. aureus strain. Although both IL-1β and TNF-α inflammatory biomarkers were produced in infected mice, level of TNF-α produced was significantly higher (p<0.05) in mice inoculated with strong biofilm forming S. aureus than the weak biofilm forming strain. Conclusion This finding suggests an important role of TNF-α in mammary gland pathology post-infection with strong biofilm-forming S. aureus in the acute mouse mastitis model, and offers an opportunity for the development of novel strategies for reduction of

  4. The Composition and Metabolic Phenotype of Neisseria gonorrhoeae Biofilms

    Directory of Open Access Journals (Sweden)

    Michael A Apicella

    2011-04-01

    Full Text Available N. gonorrhoeae has been shown to form biofilms during cervical infection. Thus, biofilm formation may play an important role in the infection of women. The ability of N. gonorrhoeae to form membrane blebs is crucial to biofilm formation. Blebs contain DNA and outer membrane structures, which have been shown to be major constituents of the biofilm matrix. The organism expresses a DNA thermonuclease that is involved in remodeling of the biofilm matrix. Comparison of the transcriptional profiles of gonococcal biofilms and planktonic runoff indicate that genes involved in anaerobic metabolism and oxidative stress tolerance are more highly expressed in biofilm. The expression of aniA, ccp, and norB, which encode nitrite reductase, cytochrome c peroxidase, and nitric oxide reductase respectively, is required for mature biofilm formation over glass and human cervical cells. In addition, anaerobic respiration occurs in the substratum of gonococcal biofilms and disruption of the norB gene required for anaerobic respiration, results in a severe biofilm attenuation phenotype. It has been demonstrated that accumulation of nitric oxide (NO contributes to the phenotype of a norB mutant and can retard biofilm formation. However, NO can also enhance biofilm formation, and this is largely dependent on the concentration and donation rate or steady state kinetics of NO. The majority of the genes involved in gonococcal oxidative stress tolerance are also required for normal biofilm formation, as mutations in the following genes result in attenuated biofilm formation over cervical cells and/or glass: oxyR, gor, prx, mntABC, trxB, and estD. Overall, biofilm formation appears to be an adaptation for coping with the environmental stresses present in the female genitourinary tract. Therefore, this review will discuss the studies, which describe the composition and metabolic phenotype of gonococcal biofilms.

  5. Type III Secretion System Translocon Component EseB Forms Filaments on and Mediates Autoaggregation of and Biofilm Formation by Edwardsiella tarda.

    Science.gov (United States)

    Gao, Zhi Peng; Nie, Pin; Lu, Jin Fang; Liu, Lu Yi; Xiao, Tiao Yi; Liu, Wei; Liu, Jia Shou; Xie, Hai Xia

    2015-09-01

    The type III secretion system (T3SS) of Edwardsiella tarda plays an important role in infection by translocating effector proteins into host cells. EseB, a component required for effector translocation, is reported to mediate autoaggregation of E. tarda. In this study, we demonstrate that EseB forms filamentous appendages on the surface of E. tarda and is required for biofilm formation by E. tarda in Dulbecco's modified Eagle's medium (DMEM). Biofilm formation by E. tarda in DMEM does not require FlhB, an essential component for assembling flagella. Dynamic analysis of EseB filament formation, autoaggregation, and biofilm formation shows that the formation of EseB filaments occurs prior to autoaggregation and biofilm formation. The addition of an EseB antibody to E. tarda cultures before bacterial autoaggregation prevents autoaggregation and biofilm formation in a dose-dependent manner, whereas the addition of the EseB antibody to E. tarda cultures in which biofilm is already formed does not destroy the biofilm. Therefore, EseB filament-mediated bacterial cell-cell interaction is a prerequisite for autoaggregation and biofilm formation.

  6. Destruction of oral biofilms formed in situ on machined titanium (Ti) surfaces by cold atmospheric plasma.

    Science.gov (United States)

    Idlibi, Ahmad Nour; Al-Marrawi, Fuad; Hannig, Matthias; Lehmann, Antje; Rueppell, Andre; Schindler, Axel; Jentsch, Holger; Rupf, Stefan

    2013-01-01

    The decontamination of implant surfaces represents the basic procedure in the management of peri-implant diseases, but it is still a challenge. The study aimed to evaluate the degradation of oral biofilms grown in situ on machined titanium (Ti) discs by cold atmospheric plasma (CAP). ~200 Ti discs were exposed to the oral cavities of five healthy human volunteers for 72 h. The resulting biofilms were divided randomly between the following treatments: CAP (which varied in mean power, treatment duration, and/or the gas mixture), and untreated and treated controls (diode laser, air-abrasion, chlorhexidine). The viability, quantity, and morphology of the biofilms were determined by live/dead staining, inoculation onto blood agar, quantification of the total protein content, and scanning electron microscopy. Exposure to CAP significantly reduced the viability and quantity of biofilms compared with the positive control treatments. The efficacy of treatment with CAP correlated with the treatment duration and plasma power. No single method achieved complete biofilm removal; however, CAP may provide an effective support to established decontamination techniques for treatment of peri-implant diseases.

  7. The effect of glutaraldehyde on the development of marine biofilms formed on surfaces of AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Tapper, R.C.; Smith, J.R.; Beech, I.B. [Univ. of Portsmouth (United Kingdom). School of Chemistry, Physics, and Radiography; Viera, M.R.; Guiamet, P.S.; Videla, H. [Univ. of La Plata (Argentina); Swords, C.L.; Edyvean, R.G.J. [Univ. of Sheffield (United Kingdom). Dept. of Mechanical and Process Engineering

    1997-08-01

    The effect of pre-conditioning polished and unpolished AISI 304 stainless steel surfaces with glutaraldehyde on the attachment, growth and morphology of an aerobic consortium of marine bacteria was investigated using total cell number counts, epifluorescence microscopy, Atomic Force Microscopy (AFM), Environmental Scanning Electron Microscopy (ESEM) and grazing-angle Fourier Transform Infrared (FTIR) spectroscopy. Both fully hydrated and dehydrated biofilms were studied using AFM and ESEM. Formation of the conditioning layer on steel surfaces from the culture medium, in the presence and absence of glutaraldehyde was monitored in-situ employing AFM and Grazing Angle FTIR spectroscopy. The influence of both surface area and surface energy upon the numbers of bacteria attached to polished and unpolished coupons was determined. This study has shown the influence of pretreatment of AISI 304 stainless steel with glutaraldehyde upon biofilm formation and has demonstrated the ability of AFM, ESEM and FTIR to be used as valuable tools for the in-situ investigation of the effect of biocides on bacterial biofilms.

  8. Pseudomonas aeruginosa and Saccharomyces cerevisiae Biofilm in Flow Cells

    DEFF Research Database (Denmark)

    Weiss Nielsen, Martin; Sternberg, Claus; Molin, Søren;

    2011-01-01

    Many microbial cells have the ability to form sessile microbial communities defined as biofilms that have altered physiological and pathological properties compared to free living microorganisms. Biofilms in nature are often difficult to investigate and reside under poorly defined conditions(1). ...

  9. 乳酸菌在不同食品包装材料生物膜形成特性%Spectrophotometer and scanning electron microscopy study of lactic acid bacteria biofilm forming on different materials

    Institute of Scientific and Technical Information of China (English)

    黄宝威; 许佳晶; 刘彦兰; 郑添信; 吴金玉; 谢丽斯; 张宏梅

    2012-01-01

    Objective: To study the lactic acid bacteria forming on different materials. Methods, Plastics Packaging Materials(HDPE) ,aluminum composite inner carton packaging,composite metal materials and glass were added into liquid mediums respectively. Strains grow at the same temperature and time for 6d.Spectrophotometer and scanning electron microscopy were used for testing the biofilm formation. Results. Lactic acid bacteria had weak biofilm formation ability.Strains showed the best biofilm formation ability on composite plastic packaging materials (HDPE)than on the other materials.The second level biofilm formation ability was on the glass, and the most difficult biofilm formation was on the aluminum composite metal. Similar result could be observed by scanning electron microscopy. Conclusion. The lactic acid bacteria biofilm could form easier on the plastic packaging material than on the other materials,the most difficult bacteria biofilm formation was on metal.%目的:研究乳酸茵在不同材料成膜情况。方法:用液体培养基在同一温度、时间,分别加入复合塑料包装材料(HDPE)、纸盒包装内层的复合铝膜、复合金属铝包装材料、玻璃4种不同包装材料上进行培养,6d后分别用分光光度计法和扫描电镜法检测成膜情况。结果:实验菌株乳酸菌有相对较弱的戚膜能力:用分光光度法测得复合塑料包装材料(HDPE)上的茵膜吸光度相对较大,玻璃次之,复合金属铝包装材料数值最小;通过扫描电镜观察得出相似结果。结论:乳酸茵在复合塑料包装材料上成膜最好;在金属铝上成膜最差。

  10. Biofilm formation by Staphylococcus aureus isolates from skin and soft tissue infections.

    Science.gov (United States)

    Kwiecinski, Jakub; Kahlmeter, Gunnar; Jin, Tao

    2015-05-01

    Many diseases caused by Staphylococcus aureus are associated with biofilm formation. However, the ability of S. aureus isolates from skin and soft tissue infections to form biofilms has not yet been investigated. We tested 160 isolates from patients with various skin infections for biofilm-forming capacity in different growth media. All the isolates formed biofilms, the extent of which depended on the type of growth medium. The thickest biofilms were formed when both plasma and glucose were present in the broth; in this case, S. aureus incorporated host fibrin into the biofilm's matrix. There were no differences in the biofilm formation between isolates from different types of skin infections, except for a particularly good biofilm formation by isolates from diabetic wounds and a weaker biofilm formation by isolates from impetigo. In conclusion, biofilm formation is a universal behavior of S. aureus isolates from skin infections. In some cases, such as in diabetic wounds, a particularly strong biofilm formation most likely contributes to the chronic and recurrent character of the infection. Additionally, as S. aureus apparently uses host fibrin as part of the biofilm structure, we suggest that plasma should be included more frequently in in vitro biofilm studies.

  11. Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice.

    Directory of Open Access Journals (Sweden)

    Matt S Conover

    Full Text Available Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and extracellular DNA (eDNA. In this report, we investigated the function of DNA in Bordetella biofilm development. We show that DNA is a significant component of Bordetella biofilm matrix. Addition of DNase I at the initiation of biofilm growth inhibited biofilm formation. Treatment of pre-established mature biofilms formed under both static and flow conditions with DNase I led to a disruption of the biofilm biomass. We next investigated whether eDNA played a role in biofilms formed in the mouse respiratory tract. DNase I treatment of nasal biofilms caused considerable dissolution of the biofilm biomass. In conclusion, these results suggest that eDNA is a crucial structural matrix component of both in vitro and in vivo formed Bordetella biofilms. This is the first evidence for the ability of DNase I to disrupt bacterial biofilms formed on host organs.

  12. Investigations of Biofilm-Forming Bacterial Cells by Atomic Force Microscopy Prior to and Following Treatment from Gas Discharge Plasmas

    Science.gov (United States)

    Vandervoort, K. G.; Joaquin, J. C.; Kwan, C.; Bray, J. D.; Torrico, R.; Abramzon, N.; Brelles-Marino, G.

    2007-03-01

    We present investigations of biofilm-forming bacteria before and after treatment from gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve bacteria in biofilm communities, where cooperative interactions between cells make organisms less susceptible to standard killing methods. Rhizobium gallicum and Chromobacterium violaceum were imaged before and after plasma treatment using an atomic force microscope (AFM). In addition, cell wall elasticity was studied by measuring force distance curves as the AFM tip was pressed into the cell surface. Results for cell surface morphology and micromechanical properties for plasma treatments lasting from 5 to 60 minutes were obtained and will be presented.

  13. Candida/Candida biofilms. First description of dual-species Candida albicans/C. rugosa biofilm.

    Science.gov (United States)

    Martins, Carlos Henrique Gomes; Pires, Regina Helena; Cunha, Aline Oliveira; Pereira, Cristiane Aparecida Martins; Singulani, Junya de Lacorte; Abrão, Fariza; Moraes, Thais de; Mendes-Giannini, Maria José Soares

    2016-04-01

    Denture liners have physical properties that favour plaque accumulation and colonization by Candida species, irritating oral tissues and causing denture stomatitis. To isolate and determine the incidence of oral Candida species in dental prostheses, oral swabs were collected from the dental prostheses of 66 patients. All the strains were screened for their ability to form biofilms; both monospecies and dual-species combinations were tested. Candida albicans (63 %) was the most frequently isolated microorganism; Candida tropicalis (14 %), Candida glabrata (13 %), Candida rugosa (5 %), Candida parapsilosis (3 %), and Candida krusei (2 %) were also detected. The XTT assay showed that C. albicans SC5314 possessed a biofilm-forming ability significantly higher (p albicans Candida strains, after 6 h 37 °C. The total C. albicans CFU from a dual-species biofilm was less than the total CFU of a monospecies C. albicans biofilm. In contrast to the profuse hyphae verified in monospecies C. albicans biofilms, micrographies showed that the C. albicans/non-albicans Candida biofilms consisted of sparse yeast forms and profuse budding yeast cells that generated a network. These results suggested that C. albicans and the tested Candida species could co-exist in biofilms displaying apparent antagonism. The study provide the first description of C. albicans/C. rugosa mixed biofilm.

  14. Analysis of hyper-baric biofilms on engineering surfaces formed in the Deep Sea

    Science.gov (United States)

    Meier, A.; Tsaloglou, N. M.; Connelly, D.; Keevil, B.; Mowlem, M.

    2012-04-01

    Long-term monitoring of the environment is essential to our understanding of global processes, such as global warming, and their impact. As biofilm formation occurs after only short deployment periods in the marine environment, it is a major problem in long-term operation of environmental sensors. This makes the development of anti-fouling strategies for in situ sensors critical to their function. The effects on sensors can range from measurement drift, which can be compensated, to blockage of channels and material degradation, rendering them inoperative. In general, the longer the deployment period the more severe the effects of the biofouling become. Until now, biofilm research has focused mainly on the eutrophic and euphotic zones of the oceans. Hyper-baric biofilms are poorly understood due to difficulties in experimental setup and the assumption that biofouling in these oligotrophic regions could be regarded as insignificant. Our study shows significant biofilm formation occurs in the deep sea. We deployed a variety of materials, typically used in engineering structures, on a 4500 metre deep mooring during a cruise to the Cayman Trough, for 10 days. The materials were clear plain glass, poly-methyl methacrylate (PMMA), Delrin™, and copper, a known antifouling agent. The biofilms were studied by fluorescence microscopy and molecular analysis. For microscopy the nucleic acid stain, SYTO©9, was used and surface coverage was quantified by using a custom MATLAB™ program. Further molecular analyses, including UV Vis spectrometric quantification of DNA, nucleic acid amplification using Polymerase Chain Reaction (PCR), and Denaturing Gradient Gel Electrophoresis (DGGE), were utilised for the analysis of the microbial community composition of these biofilms. Six 16S/18S universal primer sets representative for the three kingdoms, Archea, Bacteria, and Eukarya were used for the PCR and DGGE. Preliminary results from fluorescence microscopy showed that the biofilm

  15. A mucosal model to study microbial biofilm development and anti-biofilm therapeutics

    Science.gov (United States)

    Anderson, Michele J.; Parks, Patrick J.; Peterson, Marnie L.

    2013-01-01

    Biofilms are a sessile colony of bacteria which adhere to and persist on surfaces. The ability of bacteria to form biofilms is considered a virulence factor, and in fact is central to the pathogenesis of some organisms. Biofilms are inherently resistant to chemotherapy and host immune responses. Clinically, biofilms are considered a primary cause of a majority of infections, such as otitis media, pneumonia in cystic fibrosis patients and endocarditis. However, the vast majority of the data on biofilm formation comes from traditional microtiter-based or flow displacement assays with no consideration given to host factors. These assays, which have been a valuable tool in high-throughput screening for biofilm-related factors, do not mimic a host-pathogen interaction and may contribute to an inappropriate estimation of the role of some factors in clinical biofilm formation. We describe the development of a novel ex vivo model of biofilm formation on a mucosal surface by an important mucosal pathogen, methicillin resistant S. aureus (MRSA). This model is being used for the identification of microbial virulence factors important in mucosal biofilm formation and novel anti-biofilm therapies. PMID:23246911

  16. The differences in the isoelectric points of biofilm-positive and biofilm-negative Candida parapsilosis strains.

    Science.gov (United States)

    Ruzicka, Filip; Horka, Marie; Hola, Veronika; Kubesova, Anna; Pavlik, Tomas; Votava, Miroslav

    2010-03-01

    The isoelectric points of 39 Candida parapsilosis strains were determined by means of capillary isoelectric focusing. The value of the isoelectric point corresponded well with cell surface hydrophobicity, as well as with the ability to form biofilm in these yeasts.

  17. The in vivo biofilm

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Maria; Alhede, Morten

    2013-01-01

    Bacteria can grow and proliferate either as single, independent cells or organized in aggregates commonly referred to as biofilms. When bacteria succeed in forming a biofilm within the human host, the infection often becomes very resistant to treatment and can develop into a chronic state. Biofilms...... have been studied for decades using various in vitro models, but it remains debatable whether such in vitro biofilms actually resemble in vivo biofilms in chronic infections. In vivo biofilms share several structural characteristics that differ from most in vitro biofilms. Additionally, the in vivo...... experimental time span and presence of host defenses differ from chronic infections and the chemical microenvironment of both in vivo and in vitro biofilms is seldom taken into account. In this review, we discuss why the current in vitro models of biofilms might be limited for describing infectious biofilms...

  18. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14.

    Science.gov (United States)

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39-56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3'-5')-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor.

  19. Sporulation of Bacillus spp. within biofilms: a potential source of contamination in food processing environments.

    Science.gov (United States)

    Faille, C; Bénézech, T; Midelet-Bourdin, G; Lequette, Y; Clarisse, M; Ronse, G; Ronse, A; Slomianny, C

    2014-06-01

    Bacillus strains are often isolated from biofilms in the food industries. Previous works have demonstrated that sporulation could occur in biofilms, suggesting that biofilms would be a significant source of food contamination with spores. In this study, we investigated the properties of mono-species and mixed Bacillus biofilms and the ability of Bacillus strains to sporulate inside biofilms. Bacillus strains were able to form mono-species biofilms on stainless steel coupons, with up to 90% spores after a 48 h-incubation. These spores were highly resistant to cleaning but were easily transferred to agar, mimicking the cross-contamination of food, thereby suggesting that biofilms would be of particular concern due to a potential for Bacillus spore food contamination. This hypothesis was strengthened by the fact that Bacillus strains were able to form mixed biofilms with resident strains and that sporulation still occurred easily in these complex structures.

  20. A novel assay of biofilm antifungal activity reveals that amphotericin B and caspofungin lyse Candida albicans cells in biofilms.

    Science.gov (United States)

    DiDone, Louis; Oga, Duana; Krysan, Damian J

    2011-08-01

    The ability of Candida albicans to form drug-resistant biofilms is an important factor in its contribution to human disease. Assays to identify and characterize molecules with activity against fungal biofilms are crucial for the development of drugs with improved anti-biofilm activity. Here we report the application of an adenylate kinase (AK)-based cytotoxicity assay of fungal cell lysis to the characterization of agents active against C. albicans biofilms. We have developed three protocols for the AK assay. The first measures AK activity in the supernatants of biofilms treated with antifungal drugs and can be performed in parallel with a standard 2,3-bis-(2-methoxy-4-nitro-5-sulphophenyl)-2H-tetrazolium-5-caboxanilide-based biofilm susceptibility assay; a second, more sensitive protocol measures the AK activity present within the biofilm matrix; and a third procedure allows the direct visualization of lytic activity toward biofilms formed on catheter material. Amphotericin B and caspofungin, the two most effective anti-biofilm drugs currently used to treat fungal infections, both directly lyse planktonic C. albicans cells in vitro, leading to the release of AK into the culture medium. These studies serve to validate the AK-based lysis assay as a useful addition to the methods for the characterization of antifungal agents active toward biofilms and provide insights into the mode of action of amphotericin B and caspofungin against C. albicans biofilms.

  1. The Antistaphylococcal Activity of Citropin 1.1 and Temporin A against Planktonic Cells and Biofilms Formed by Isolates from Patients with Atopic Dermatitis: An Assessment of Their Potential to Induce Microbial Resistance Compared to Conventional Antimicrobials

    Directory of Open Access Journals (Sweden)

    Malgorzata Dawgul

    2016-05-01

    Full Text Available Staphylococcus aureus (SA colonizes the vast majority of patients with atopic dermatitis (AD. Its resistance to antibiotics and ability to form biofilms are the main origins of therapeutic complications. Endogenous antimicrobial peptides (AMPs exhibit strong activity against SA, including antibiotic resistant strains as well as bacteria existing in biofilm form. The purpose of the present work was to determine the antistaphylococcal activity of two amphibian peptides against SA isolated from patients with AD. The AMPs demonstrated permanent activity towards strains exposed to sublethal concentrations of the compounds and significantly stronger antibiofilm activity in comparison to that of conventional antimicrobials. The results suggest the potential application of amphibian AMPs as promising antistaphylococcal agents for the management of skin infections.

  2. Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition.

    Science.gov (United States)

    Silva, Sónia; Henriques, Mariana; Martins, António; Oliveira, Rosário; Williams, David; Azeredo, Joana

    2009-11-01

    Most cases of candidiasis have been attributed to C. albicans, but recently, non- Candida albicans Candida (NCAC) species have been identified as common pathogens. The ability of Candida species to form biofilms has important clinical repercussions due to their increased resistance to antifungal therapy and the ability of yeast cells within the biofilms to withstand host immune defenses. Given this clinical importance of the biofilm growth form, the aim of this study was to characterize biofilms produced by three NCAC species, namely C. parapsilosis, C. tropicalis and C. glabrata. The biofilm forming ability of clinical isolates of C. parapsilosis, C. tropicalis and C. glabrata recovered from different sources, was evaluated by crystal violet staining. The structure and morphological characteristics of the biofilms were also assessed by scanning electron microscopy and the biofilm matrix composition analyzed for protein and carbohydrate content. All NCAC species were able to form biofilms although these were less extensive for C. glabrata compared with C. parapsilosis and C. tropicalis. It was evident that C. parapsilosis biofilm production was highly strain dependent, a feature not evident with C. glabrata and C. tropicalis. Scanning electron microscopy revealed structural differences for biofilms with respect to cell morphology and spatial arrangement. Candida parapsilosis biofilm matrices had large amounts of carbohydrate with less protein. Conversely, matrices extracted from C. tropicalis biofilms had low amounts of carbohydrate and protein. Interestingly, C. glabrata biofilm matrix was high in both protein and carbohydrate content. The present work demonstrates that biofilm forming ability, structure and matrix composition are highly species dependent with additional strain variability occurring with C. parapsilosis.

  3. Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis

    DEFF Research Database (Denmark)

    Lee, Baoleri; Haagensen, Janus Anders Juul; Ciofu, O.;

    2005-01-01

    Biofilms are thought to play a key role in the occurrence of lung infections by Pseudomonas aeruginosa in patients with cystic fibrosis (CF). In this study, 20 nonmucoid P. aeruginosa isolates collected during different periods of chronic infection from eight CF patients were assessed with respect...

  4. Screening of Compounds against Gardnerella vaginalis Biofilms.

    Directory of Open Access Journals (Sweden)

    Cornelia Gottschick

    Full Text Available Bacterial vaginosis (BV is a common infection in reproductive age woman and is characterized by dysbiosis of the healthy vaginal flora which is dominated by Lactobacilli, followed by growth of bacteria like Gardnerella vaginalis. The ability of G. vaginalis to form biofilms contributes to the high rates of recurrence that are typical for BV and which unfortunately make repeated antibiotic therapy inevitable. Here we developed a biofilm model for G. vaginalis and screened a large spectrum of compounds for their ability to prevent biofilm formation and to resolve an existing G. vaginalis biofilm. The antibiotics metronidazole and tobramycin were highly effective in preventing biofilm formation, but had no effect on an established biofilm. The application of the amphoteric tenside sodium cocoamphoacetate (SCAA led to disintegration of existing biofilms, reducing biomass by 51% and viability by 61% and it was able to increase the effect of metronidazole by 40% (biomass and 61% (viability. Our data show that attacking the biofilm and the bacterial cells by the combination of an amphoteric tenside with the antibiotic metronidazole might be a useful strategy against BV.

  5. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Margarida Carrolo

    Full Text Available Streptococcus pneumoniae (pneumococcus is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.

  6. Activity of ciprofloxacin and azithromycin on biofilms produced in vitro by Haemophilus influenzae

    Institute of Scientific and Technical Information of China (English)

    WANG Dong; WANG Ying; LIU You-ning

    2009-01-01

    Background It is recognized that Haemophilus influenzae isolated from patients with otitis media forms biofilms both in vitro and in vivo, suggesting that biofilm formation in vivo might play an important role in the pathogenesis and chronicity of otitis media, but the effect of antibiotics on biofilm has not been well studied. We investigated the impact of ciprofloxacin and azithromycin on bacterial biofilms formed by Haemophilus influenzae in vitro in this study.Methods Eleven strains of Haemophilus influenzae were isolated from sputum specimens collected from patients with acute exacerbation of chronic obstructive pulmonary diseases. Formation of bacterial biofilm was examined by crystal violet assay and a scanning electron microscope. Alterations of biofilms were measured under varying concentrations of azithromycin and ciprofloxacin.Results Striking differences were observed among strains with regard to the ability to form biofilm. Typical membrane-like structure formed by bacterial cells and extracellular matrix was detected. Initial biofilm synthesis was inhibited by azithromycin and ciprofloxacin at concentrations higher than two-fold minimal inhibitory concentration.Disruption of mature biofilms could be achieved at relatively higher concentration, and ciprofloxacin displayed more powerful activity.Conclusions Haemophilus influenzae is capable of forming biofilm in vitro. Sufficient dosage might control early formation of biofilms. Ciprofloxacin exerts better effects on breakdown of biofilm than azithromycin at conventional concentration in clinics.

  7. Biofilm Formation and the Presence of the Intercellular Adhesion Locus ica among Staphylococci from Food and Food Processing Environments

    OpenAIRE

    Møretrø, Trond; Hermansen, Lene; Holck, Askild L.; Sidhu, Maan S.; Rudi, Knut; Langsrud, Solveig

    2003-01-01

    In clinical staphylococci, the presence of the ica genes and biofilm formation are considered important for virulence. Biofilm formation may also be of importance for survival and virulence in food-related staphylococci. In the present work, staphylococci from the food industry were found to differ greatly in their abilities to form biofilms on polystyrene. A total of 7 and 21 of 144 food-related strains were found to be strong and weak biofilm formers, respectively. Glucose and sodium chlori...

  8. Influence of medium composition on the characteristics of a denitrifying biofilm formed by Alcaligenes denitrificans in a fluidised bed reactor

    OpenAIRE

    Alves, C. F.; Melo, L. F.; Vieira, M. J.

    2002-01-01

    The influence of the ratio carbon/nitrogen and phosphorus concentration on the performance of a biofilm fluidised bed reactor used for denitrification and on the properties of the biofilm was studied. Although the removal efficiencies of C and N reached steady-state values, the thickness of the biofilm steadily increased. The dry density of the biofilm did not seem to be dependent on the loading conditions, although a denser biofilm was obtained when there was no nutrient limitation ...

  9. Polymicrobial biofilms by diabetic foot clinical isolates.

    Science.gov (United States)

    Mottola, Carla; Mendes, João J; Cristino, José Melo; Cavaco-Silva, Patrícia; Tavares, Luís; Oliveira, Manuela

    2016-01-01

    Diabetes mellitus is a major chronic disease that continues to increase significantly. One of the most important and costly complications of diabetes is foot ulceration that may be colonized by pathogenic and antimicrobial resistant bacteria, which may express several virulence factors that could impair treatment success. These bacterial communities can be organized in polymicrobial biofilms, which may be responsible for diabetic foot ulcer (DFU) chronicity. We evaluated the influence of polymicrobial communities in the ability of DFU isolates to produce biofilm, using a microtiter plate assay and a multiplex fluorescent in situ hybridization, at three time points (24, 48, 72 h), after evaluating biofilm formation by 95 DFU isolates belonging to several bacterial genera (Staphylococcus, Corynebacterium, Enterococcus, Pseudomonas and Acinetobacter). All isolates were biofilm-positive at 24 h, and the amount of biofilm produced increased with incubation time. Pseudomonas presented the higher biofilm production, followed by Corynebacterium, Acinetobacter, Staphylococcus and Enterococcus. Significant differences were found in biofilm formation between the three time points. Polymicrobial communities produced higher biofilm values than individual species. Pseudomonas + Enterococcus, Acinetobacter + Staphylococcus and Corynebacterium + Staphylococcus produced higher biofilm than the ones formed by E. faecalis + Staphylococcus and E. faecalis + Corynebacterium. Synergy between bacteria present in dual or multispecies biofilms has been described, and this work represents the first report on time course of biofilm formation by polymicrobial communities from DFUs including several species. The biological behavior of different bacterial species in polymicrobial biofilms has important clinical implications for the successful treatment of these infections.

  10. A novel strategy for acetonitrile wastewater treatment by using a recombinant bacterium with biofilm-forming and nitrile-degrading capability.

    Science.gov (United States)

    Li, Chunyan; Yue, Zhenlei; Feng, Fengzhao; Xi, Chuanwu; Zang, Hailian; An, Xuejiao; Liu, Keran

    2016-10-01

    There is a great need for efficient acetonitrile removal technology in wastewater treatment to reduce the discharge of this pollutant in untreated wastewater. In this study, a nitrilase gene (nit) isolated from a nitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was cloned and transformed into a biofilm-forming bacterium (Bacillus subtilis N4) that expressed the recombinant protein upon isopropylthio-β-galactoside (IPTG) induction. The recombinant bacterium (B. subtilis N4-pHT01-nit) formed strong biofilms and had nitrile-degrading capability. Further testing demonstrated that biofilms formed by B. subtilis N4-pHT01-nit were highly resistant to loading shock from acetonitrile and almost completely degraded the initial concentration of acetonitrile (800 mg L(-1)) within 24 h in a moving bed biofilm reactor (MBBR) after operation for 35 d. The bacterial composition of the biofilm, identified by high-throughput sequencing, in a reactor in which the B. subtilis N4-pHT01-nit bacterium was introduced indicated that the engineered bacterium was successfully immobilized in the reactor and became dominant genus. This work demonstrates that an engineered bacterium with nitrile-degrading and biofilm-forming capacity can improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing the biological oxidation of toxic pollutants in wastewater.

  11. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Vad, Brian Stougaard; Dueholm, Morten Simonsen

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered...... that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm...

  12. Community Composition of Bacterial Biofilms Formed on Simple Soil Based Bioelectrochemical Cell Anodes and Cathodes

    Science.gov (United States)

    2012-04-01

    3 Table 2. Relative molar percentages and absolute abundances of prokaryotic and eukaryotic fatty acid (FA...density for the three soils varied from 5 to 8 × 108 cells per gram of soil. 3.1 Anode biofilms Although eukaryotic biomarkers were detected on the...percentages and absolute abundances of prokaryotic and eukaryotic fatty acid (FA) biomarkers detected in the soils, top middle and bottom fractions, on the

  13. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni.

    Science.gov (United States)

    Brown, Helen L; Reuter, Mark; Hanman, Kate; Betts, Roy P; van Vliet, Arnoud H M

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.

  14. A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms

    Science.gov (United States)

    Seghal Kiran, George; Nishanth Lipton, Anuj; Kennedy, Jonathan; Dobson, Alan DW; Selvin, Joseph

    2014-01-01

    A halotolerant thermostable lipase was purified and characterized from the marine bacterium Oceanobacillus sp. PUMB02. This lipase displayed a high degree of stability over a wide range of conditions including pH, salinity, and temperature. It was optimally active at 30 °C and pH 8.0 respectively and was stable at higher temperatures (50–70 °C) and alkaline pH. The molecular mass of the lipase was approximately 31 kDa based on SDS-PAGE and MALDI-ToF fingerprint analysis. Conditions for enhanced production of lipase by Oceanobacillus sp. PUMB02 were attained in response surface method-guided optimization with factors such as olive oil, sucrose, potassium chromate, and NaCl being evaluated, resulting in levels of 58.84 U/ml being achieved. The biofilm disruption potential of the PUMB02 lipase was evaluated and compared with a marine sponge metagenome derived halotolerant lipase Lpc53E1. Good biofilm disruption activity was observed with both lipases against potential food pathogens such as Bacillus cereus MTCC1272, Listeria sp. MTCC1143, Serratia sp. MTCC4822, Escherichia coli MTCC443, Pseudomonas fluorescens MTCC1748, and Vibrio parahemolyticus MTCC459. Phase contrast microscopy, scanning electron microscopy, and confocal laser scanning microscopy showed very effective disruption of pathogenic biofilms. This study reveals that marine derived hydrolytic enzymes such as lipases may have potential utility in inhibiting biofilm formation in a food processing environment and is the first report of the potential application of lipases from the genus Oceanobacillus in biofilm disruption strategies. PMID:25482232

  15. Glass Forming Ability of Amorphous Drugs Investigated by Continuous Cooling and Isothermal Transformation.

    Science.gov (United States)

    Blaabjerg, Lasse I; Lindenberg, Eleanor; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas

    2016-09-06

    The aim of this study was to investigate the glass forming ability of 12 different drugs by the determination of continuous cooling and isothermal transformation diagrams in order to elucidate if an inherent differentiation between the drugs with respect to their the glass forming ability can be made. Continuous-cooling-transformation (CCT) and time-temperature-transformation (TTT) diagrams of the drugs were developed in order to predict the critical cooling rate necessary to convert the drug from the melt into an amorphous form. While TTT diagrams overestimated the actual critical cooling rate, they allowed an inherent differentiation of glass forming ability for the investigated drugs into drugs that are extremely difficult to amorphize (>750 °C/min), drugs that require modest cooling rates (>10 °C/min), and drugs that can be made amorphous even at very slow cooling rates (>2 °C/min). Thus, the glass forming ability can be predicted by the use of TTT diagrams. In contrast to TTT diagrams, CCT diagrams may not be suitable for small organic molecules due to poor separation of exothermic events, which makes it difficult to determine the zone of recrystallization. In conclusion, this study shows that glass forming ability of drugs can be predicted by TTT diagrams.

  16. Novel Targets for Treatment of Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Alhede, Morten; Alhede, Maria; Bjarnsholt, Thomas

    2014-01-01

    Pseudomonas aeruginosa causes infection in all parts of the human body. The bacterium is naturally resistant to a wide range of antibiotics. In addition to resistance mechanisms such as efflux pumps, the ability to form aggregates, known as biofilm, further reduces Pseudomonas aeruginosa’s suscep......Pseudomonas aeruginosa causes infection in all parts of the human body. The bacterium is naturally resistant to a wide range of antibiotics. In addition to resistance mechanisms such as efflux pumps, the ability to form aggregates, known as biofilm, further reduces Pseudomonas aeruginosa......’s susceptibility to antibiotics. The presence of such biofilms is acknowledged to equal a persistent infection due to their inherent high tolerance to all antimicrobials and immune cells. In this chapter we discuss the mechanisms of biofilm tolerance. The latest biofilm research is reviewed and future treatment...

  17. A novel model of chronic wounds: importance of redox imbalance and biofilm-forming bacteria for establishment of chronicity.

    Directory of Open Access Journals (Sweden)

    Sandeep Dhall

    Full Text Available Chronic wounds have a large impact on health, affecting ∼6.5 M people and costing ∼$25B/year in the US alone. We previously discovered that a genetically modified mouse model displays impaired healing similar to problematic wounds in humans and that sometimes the wounds become chronic. Here we show how and why these impaired wounds become chronic, describe a way whereby we can drive impaired wounds to chronicity at will and propose that the same processes are involved in chronic wound development in humans. We hypothesize that exacerbated levels of oxidative stress are critical for initiation of chronicity. We show that, very early after injury, wounds with impaired healing contain elevated levels of reactive oxygen and nitrogen species and, much like in humans, these levels increase with age. Moreover, the activity of anti-oxidant enzymes is not elevated, leading to buildup of oxidative stress in the wound environment. To induce chronicity, we exacerbated the redox imbalance by further inhibiting the antioxidant enzymes and by infecting the wounds with biofilm-forming bacteria isolated from the chronic wounds that developed naturally in these mice. These wounds do not re-epithelialize, the granulation tissue lacks vascularization and interstitial collagen fibers, they contain an antibiotic-resistant mixed bioflora with biofilm-forming capacity, and they stay open for several weeks. These findings are highly significant because they show for the first time that chronic wounds can be generated in an animal model effectively and consistently. The availability of such a model will significantly propel the field forward because it can be used to develop strategies to regain redox balance that may result in inhibition of biofilm formation and result in restoration of healthy wound tissue. Furthermore, the model can lead to the understanding of other fundamental mechanisms of chronic wound development that can potentially lead to novel therapies.

  18. Fungal Biofilms: In Vivo Models for Discovery of Anti-Biofilm Drugs.

    Science.gov (United States)

    Nett, Jeniel E; Andes, David R

    2015-06-01

    During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate, and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections: oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to the development of new strategies for the eradication of fungal biofilm infections.

  19. Frequency of biofilm formation in toothbrushes and wash basin junks

    Directory of Open Access Journals (Sweden)

    Abdulazeez A Abubakar

    2013-01-01

    Full Text Available Background: Biofilms are known to be resistant to several antibiotics once they are allowed to form on any surface. Aim: To investigate the biofilm forming ability of some bacterial isolates in toothbrushes and wash basin junks. Materials and Methods: A total of 606 students of Federal University of Technology, Yola were provided with new toothbrushes, which were collected after 1 month of usage and screened for biofilm formation. Another 620 swabs were collected from the wash basins of Federal Medical Centre, Specialist Hospital, Federal University of Technology, and students′ hostels in Yola and from some residence in Jimeta, Yola Metropolis; they were all screened for biofilm formation. Results: A total of 38.3% biofilm formation rate was recorded. Three types of bacterial isolates were identified in the biofilms of toothbrushes and wash basin junks, namely Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa at the prevalence rate of 48.0%, 29.1%, and 22.6%, respectively. Overall, 83.3% of the toothbrush biofilm were identified from female students, while 16.7% were from their male counterparts. Statistically, the frequency of biofilm formation showed a significant difference by gender (X 2 = 10.242, P 0.05. Conclusion: This study identified three microorganisms namely S. aureus, E. coli, and P. aeruginosa that were involved in wash basin junk biofilm formation. The findings also showed that occurrence of biofilm in females′ toothbrushes were significantly higher than in males′ (X 2 = 10.242, P < 0.05.

  20. Atomic force microscopy study of the structure function relationships of the biofilm-forming bacterium Streptococcus mutans

    Science.gov (United States)

    Cross, Sarah E.; Kreth, Jens; Zhu, Lin; Qi, Fengxia; Pelling, Andrew E.; Shi, Wenyuan; Gimzewski, James K.

    2006-02-01

    Atomic force microscopy (AFM) has garnered much interest in recent years for its ability to probe the structure, function and cellular nanomechanics inherent to specific biological cells. In particular, we have used AFM to probe the important structure-function relationships of the bacterium Streptococcus mutans. S. mutans is the primary aetiological agent in human dental caries (tooth decay), and is of medical importance due to the virulence properties of these cells in biofilm initiation and formation, leading to increased tolerance to antibiotics. We have used AFM to characterize the unique surface structures of distinct mutants of S. mutans. These mutations are located in specific genes that encode surface proteins, thus using AFM we have resolved characteristic surface features for mutant strains compared to the wild type. Ultimately, our characterization of surface morphology has shown distinct differences in the local properties displayed by various S. mutans strains on the nanoscale, which is imperative for understanding the collective properties of these cells in biofilm formation.

  1. Characterization of Mannheimia haemolytica biofilm formation in vitro.

    Science.gov (United States)

    Boukahil, Ismail; Czuprynski, Charles J

    2015-01-30

    Mannheimia haemolytica is the primary bacterial agent in the bovine respiratory disease complex. It is thought that M. haemolytica colonizes the tonsillar crypts of cattle as a commensal and subsequently descends into the lungs to cause disease. Many bacterial species persist in the host as biofilms. There is limited information about the ability of M. haemolytica to form biofilms. The aim of this study was to develop an in vitro model for M. haemolytica biofilm formation. We found that M. haemolytica required at least 36 h to form robust biofilms on plastic in vitro when incubated in RPMI-1640 tissue culture medium at 37 °C, with maximal biofilm formation being evident at 48 h. Biofilm formation was inhibited by adding the monosaccharides d(+) galactose and d(+) mannose to the growth medium. Addition of antibodies to the M. haemolytica surface protein OmpA also reduced biofilm formation. Upon evaluating the macromolecules within the biofilm extracellular polymeric substance we found it contained 9.7 μg/cm(2) of protein, 0.81 μg/cm(2) of total carbohydrate, and 0.47 μg/cm(2) of extracellular DNA. Furthermore, proteinase K treatment significantly decreased biofilms (P<0.05) while α-amylase and micrococcal nuclease decreased biofilms to a lesser extent. M. haemolytica biofilm cells were more resistant than planktonic cells to the antibiotics florfenicol, gentamicin, and tulathromycin. These results provide evidence that M. haemolytica can form biofilms, which could contribute to its ability to persist as a commensal in the bovine upper respiratory tract.

  2. Rapid evaluation of the antibiotic susceptibility of fuel ethanol contaminant biofilms.

    Science.gov (United States)

    Rich, Joseph O; Leathers, Timothy D; Nunnally, Melinda S; Bischoff, Kenneth M

    2011-01-01

    Bacterial contaminants from commercial fuel ethanol production facilities were previously shown to form biofilms as mixed cultures under laboratory conditions. In this study, a rapid assay was developed to simultaneously compare isolates for their ability to form biofilms as pure cultures. A total of 10 strains were isolated from a dry-grind fuel ethanol plant that routinely doses with virginiamycin. These were identified by sequence analysis as six strains of Lactobacillus fermentum, two strains of L. johnsonii, and one strain each of L. mucosae and L. amylovorus. Isolates exhibited a range of susceptibility to virginiamycin in a planktonic assay, with MIC's (minimum inhibitory concentration) of ≤0.5-16 μg/ml. Even though all strains were isolated from a mixed culture biofilm, they varied greatly in their ability to form biofilms as pure cultures. Surprisingly, growth as biofilms did not appear to provide resistance to virginiamycin, even if biofilms were grown for 144 h prior to antibiotic challenge.

  3. The Biofilm Challenge

    DEFF Research Database (Denmark)

    Alhede, Maria; Alhede, Morten

    2014-01-01

    The concept of biofilms has emerged in the clinical setting during the last decade. Infections involving biofilms have been documented in all parts of the human body, and it is currently believed that the presence of biofilm-forming bacteria is equivalent to chronic infection. A quick Pubmed search...

  4. Microbiota formed on attached stainless steel coupons correlates with the natural biofilm of the sink surface in domestic kitchens.

    Science.gov (United States)

    Moen, Birgitte; Røssvoll, Elin; Måge, Ingrid; Møretrø, Trond; Langsrud, Solveig

    2016-02-01

    Stainless steel coupons are frequently used in biofilm studies in the laboratory, as this material is commonly used in the food industry. The coupons are attached to different surfaces to create a "natural" biofilm to be studied further in laboratory trials. However, little has been done to investigate how well the microbiota on such coupons represents the surrounding environment. The microbiota on sink wall surfaces and on new stainless steel coupons attached to the sink wall for 3 months in 8 domestic kitchen sinks was investigated by next-generation sequencing (MiSeq) of the 16S rRNA gene derived from DNA and RNA (cDNA), and by plating and identification of colonies. The mean number of colony-forming units was about 10-fold higher for coupons than sink surfaces, and more variation in bacterial counts between kitchens was seen on sink surfaces than coupons. The microbiota in the majority of biofilms was dominated by Moraxellaceae (genus Moraxella/Enhydrobacter) and Micrococcaceae (genus Kocuria). The results demonstrated that the variation in the microbiota was mainly due to differences between kitchens (38.2%), followed by the different nucleic acid template (DNA vs RNA) (10.8%), and that only 5.1% of the variation was a result of differences between coupons and sink surfaces. The microbiota variation between sink surfaces and coupons was smaller for samples based on their RNA than on their DNA. Overall, our results suggest that new stainless steel coupons are suited to model the dominating part of the natural microbiota of the surrounding environment and, furthermore, are suitable for different downstream studies.

  5. Molecular Characterisation and Co-cultivation of Bacterial Biofilm Communities Associated with the Mat-Forming Diatom Didymosphenia geminata.

    Science.gov (United States)

    Brandes, Josephin; Kuhajek, Jeanne M; Goodwin, Eric; Wood, Susanna A

    2016-10-01

    Didymosphenia geminata (Lyngbye) M. Schmidt is a stalked freshwater diatom that is expanding its range globally. In some rivers, D. geminata forms thick and expansive polysaccharide-dominated mats. Like other stalked diatoms, D. geminata cells attach to the substratum with a pad of adhesive extracellular polymeric substance. Research on D. geminata and other diatoms suggests that bacterial biofilm composition may contribute to successful attachment. The aim of this study was to investigate the composition and role of bacterial biofilm communities in D. geminata attachment and survival. Bacterial biofilms were collected at four sites in the main stem of a river (containing D. geminata) and in four tributaries (free of D. geminata). Samples were characterised using automated rRNA intergenic spacer analysis and high-throughput sequencing (HTS). Mat-associated bacteria were isolated and their effect on the early establishment of D. geminata cells assessed using co-culturing experiments. ARISA and HTS data showed differences in bacterial communities between samples with and without D. geminata at two of the four sites. Samples with D. geminata had a higher relative abundance of Sphingobacteria (p < 0.01) and variability in community composition was reduced. Analysis of the 76 bacteria isolated from the mat revealed 12 different strains representing 8 genera. Co-culturing of a Carnobacterium sp. with D. geminata reduced survival (p < 0.001) and attachment (p < 0.001) of D. geminata. Attachment was enhanced by Micrococcus sp. and Pseudomonas sp. (p < 0.001 and p < 0.01, respectively). These data provide evidence that bacteria play a role in the initial attachment and on-going survival of D. geminata, and may partly explain observed distribution patterns.

  6. Application of a biofilm formed by a mixture of yeasts isolated in Vietnam to degrade aromatic hydrocarbon polluted wastewater collected from petroleum storage.

    Science.gov (United States)

    Nhi Cong, Le Thi; Ngoc Mai, Cung Thi; Thanh, Vu Thi; Nga, Le Phi; Minh, Nghiem Ngoc

    2014-01-01

    In this study, three good biofilm-forming yeast strains, including Candida viswanathii TH1, Candida tropicalis TH4 and Trichosporon asahii B1, were isolated from oil-contaminated water and sediment samples collected in coastal zones of Vietnam. These strains were registered in the GenBank database with the accession numbers JX129175, JX129176 and KC139404 for strain TH1, TH4 and B1, respectively. The biofilm formed by a mixture of these organisms degraded 90, 85, 82 and 67% of phenol, naphthalene, anthracene and pyrene, respectively, after a 7-day incubation period using an initial concentration of 600 ppm phenol and 200 ppm of each of the other compounds. In addition, this biofilm completely degraded these aromatic compounds, which were from wastewater collected from petroleum tanks in Do Xa, Hanoi after 14 days of incubation based on gas chromatography mass spectrometry analysis. To the best of our knowledge, reports on polycyclic aromatic hydrocarbon and phenol degradation by biofilm-forming yeasts are limited. The results obtained indicate that the biofilm formed by multiple yeast strains may considerably increase the degradation efficiency of aromatic hydrocarbon compounds, and may lead to a new approach for eliminating petroleum oil-contaminated water in Vietnam.

  7. Nasopharyngeal and Adenoid Colonization by Haemophilus influenzae and Haemophilus parainfluenzae in Children Undergoing Adenoidectomy and the Ability of Bacterial Isolates to Biofilm Production.

    Science.gov (United States)

    Kosikowska, Urszula; Korona-Głowniak, Izabela; Niedzielski, Artur; Malm, Anna

    2015-05-01

    Haemophili are pathogenic or opportunistic bacteria often colonizing the upper respiratory tract mucosa. The prevalence of Haemophilus influenzae (with serotypes distribution), and H. parainfluenzae in the nasopharynx and/or the adenoid core in children with recurrent pharyngotonsillitis undergoing adenoidectomy was assessed. Haemophili isolates were investigated for their ability to biofilm production.Nasopharyngeal swabs and the adenoid core were collected from 164 children who underwent adenoidectomy (2-5 years old). Bacteria were identified by the standard methods. Serotyping of H. influenzae was performed using polyclonal and monoclonal antisera. Biofilm formation was detected spectrophotometrically using 96-well microplates and 0.1% crystal violet.Ninety seven percent (159/164) children who underwent adenoidectomy were colonized by Haemophilus spp. The adenoid core was colonized in 99.4% (158/159) children, whereas the nasopharynx in 47.2% (75/159) children (P influenzae were identified, in 22.6% (36/159) children only (nonencapsulated) H. influenzae NTHi (nonencapsulated) isolates were present, whereas 7.5% (12/159) children were colonized by both types. 14.5% (23/159) children were colonized by untypeable (rough) H. influenzae. In 22% (35/159) children H. influenzae serotype d was isolated. Totally, 192 isolates of H. influenzae, 96 isolates of H. parainfluenzae and 14 isolates of other Haemophilus spp. were selected. In 20.1% (32/159) children 2 or 3 phenotypically different isolates of the same species (H. influenzae or H. parainfluenzae) or serotypes (H. influenzae) were identified in 1 child. 67.2% (129/192) isolates of H. influenzae, 56.3% (54/96) isolates of H. parainfluenzae and 85.7% (12/14) isolates of other Haemophilus spp. were positive for biofilm production. Statistically significant differences (P = 0.0029) among H. parainfluenzae biofilm producers and nonproducers in the adenoid core and the nasopharynx were detected.H. influenzae and H

  8. In vitro study of biofilm growth on biologic prosthetics.

    Science.gov (United States)

    Bellows, Charles; Smith, Alison

    2014-01-01

    Biologic prosthetics are increasingly used for the repair of abdominal wall hernia defects but can become infected as a result of peri- or early post-operative bacterial contamination. Data evaluating biofilm formation on biologic prosthetics is lacking. The aim of this study was to investigate the influence of different biologic prosthetics on the growth behavior of two different bacterial species and their ability to form biofilms. Methicillin resistant Staphylococcus aureus (MRSA) or Pseudomrnonas aeruginosa were incubated on disks of two biologic prosthetics-human acellular dermis (ADM), and porcine small intestinal submucosa (SIS). The bacteria were allowed to attach to the prosthetics and propagate into mature biofilms for 24 hours at 370C. Images of biofilms were obtained using confocal microscopy and scanning electron microscopy (SEM). The number of viable cells and the biofilm biomass were quantified by colony forming units (CFUs) and crystal violet staining respectively. Analysis of variance was performed to compare the mean values for the different prosthetics. Each biologic matrix had a distinct surface characteristic. SEM visualized mature biofilms characterized by highly organized multi-cellular structures on surface of both biologic prosthetics. Quantification of bacterial growth over time showed that ADM had the lowest CFUs and biofilm biomass at 24 hours post-inoculation compared to SIS for both bacterial strains. MRSA and P. aeruginosa can form mature biofilms on biologic prosthetics but the relative abundance of the biofilm varies on different prosthetic constructs. Biologic material composition and manufacturing methods may influence bacterial adherence.

  9. Density and glass forming ability in amorphous atomic alloys: The role of the particle softness

    Science.gov (United States)

    Douglass, Ian; Hudson, Toby; Harrowell, Peter

    2016-04-01

    A key property of glass forming alloys, the anomalously small volume difference with respect to the crystal, is shown to arise as a direct consequence of the soft repulsive potentials between metals. This feature of the inter-atomic potential is demonstrated to be responsible for a significant component of the glass forming ability of alloys due to the decrease in the enthalpy of fusion and the associated depression of the freezing point.

  10. Spore formation and toxin production in Clostridium difficile biofilms.

    Science.gov (United States)

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  11. Spore formation and toxin production in Clostridium difficile biofilms.

    Directory of Open Access Journals (Sweden)

    Ekaterina G Semenyuk

    Full Text Available The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA, polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  12. Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria.

    Science.gov (United States)

    Simões, Lúcia Chaves; Simões, Manuel; Vieira, Maria João

    2010-10-01

    This study was performed in order to characterize the relationship between adhesion and biofilm formation abilities of drinking water-isolated bacteria (Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata and Staphylococcus sp.). Adhesion was assessed by two distinct methods: thermodynamic prediction of adhesion potential by quantifying hydrophobicity and the free energy of adhesion; and by microtiter plate assays. Biofilms were developed in microtiter plates for 24, 48 and 72 h. Polystyrene (PS) was used as adhesion substratum. The tested bacteria had negative surface charge and were hydrophilic. PS had negative surface charge and was hydrophobic. The free energy of adhesion between the bacteria and PS was > 0 mJ/m(2) (thermodynamic unfavorable adhesion). The thermodynamic approach was inappropriate for modelling adhesion of the tested drinking water bacteria, underestimating adhesion to PS. Only three (B. cepacia, Sph. capsulata and Staphylococcus sp.) of the six bacteria were non-adherent to PS. A. calcoaceticus, Methylobacterium sp. and M. mucogenicum were weakly adherent. This adhesion ability was correlated with the biofilm formation ability when comparing with the results of 24 h aged biofilms. Methylobacterium sp. and M. mucogenicum formed large biofilm amounts, regardless the biofilm age. Given time, all the bacteria formed biofilms; even those non-adherents produced large amounts of matured (72 h aged) biofilms. The overall results indicate that initial adhesion did not predict the ability of the tested drinking water-isolated bacteria to form a mature biofilm, suggesting that other events such as phenotypic and genetic switching during biofilm development and the production of extracellular polymeric substances (EPS), may play a significant role on biofilm formation and differentiation. This understanding of the relationship between adhesion and biofilm formation is important for

  13. Career Adapt-Abilities Scale-Belgium Form: psychometric characteristics and construct validity

    NARCIS (Netherlands)

    Dries, N.; van Esbroeck, R.; van Vianen, A.E.M.; de Cooman, R.; Pepermans, R.

    2012-01-01

    The Dutch version of the Career Adapt-Abilities Scale-Belgium Form (CAAS-Belgium) consists of four scales, each with six items, which measure concern, control, curiosity, and confidence as psychosocial resources for managing occupational transitions, developmental tasks, and work traumas. A pilot su

  14. An Assessment of Binary Metallic Glasses: Correlations Between Structure, Glass Forming Ability and Stability (Preprint)

    Science.gov (United States)

    2011-07-01

    release; distribution unlimited. 1. Introduction It has long been suggested that metallic glass stability and glass-forming ability (GFA) are... magnetostriction of Co-Cr-Zr amorphous alloys’, Rapidly Quenched Metals, Proc. 4th International Conference on Rapidly Quenched Metals, Sendai, Japan, 861-864

  15. Biofilms in Infections of the Eye

    Directory of Open Access Journals (Sweden)

    Paulo J. M. Bispo

    2015-03-01

    Full Text Available The ability to form biofilms in a variety of environments is a common trait of bacteria, and may represent one of the earliest defenses against predation. Biofilms are multicellular communities usually held together by a polymeric matrix, ranging from capsular material to cell lysate. In a structure that imposes diffusion limits, environmental microgradients arise to which individual bacteria adapt their physiologies, resulting in the gamut of physiological diversity. Additionally, the proximity of cells within the biofilm creates the opportunity for coordinated behaviors through cell–cell communication using diffusible signals, the most well documented being quorum sensing. Biofilms form on abiotic or biotic surfaces, and because of that are associated with a large proportion of human infections. Biofilm formation imposes a limitation on the uses and design of ocular devices, such as intraocular lenses, posterior contact lenses, scleral buckles, conjunctival plugs, lacrimal intubation devices and orbital implants. In the absence of abiotic materials, biofilms have been observed on the capsule, and in the corneal stroma. As the evidence for the involvement of microbial biofilms in many ocular infections has become compelling, developing new strategies to prevent their formation or to eradicate them at the site of infection, has become a priority.

  16. Warming-induced changes in denitrifier community structure modulate the ability of phototrophic river biofilms to denitrify

    Energy Technology Data Exchange (ETDEWEB)

    Boulêtreau, Stéphanie, E-mail: stephanie.bouletreau@univ-tlse3.fr [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Lyautey, Emilie [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Dubois, Sophie [Université de Bordeaux, EPOC - OASU, UMR 5805, Station Marine d' Arcachon, 2 rue du Professeur Jolyet, 33120 Arcachon (France); Compin, Arthur [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Delattre, Cécile; Touron-Bodilis, Aurélie [EDF Recherche et Développement, LNHE (Laboratoire National d' Hydraulique et Environnement), 6 quai Watier, F-78401 Chatou (France); Mastrorillo, Sylvain [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Garabetian, Frédéric [Université de Bordeaux, EPOC - OASU, UMR 5805, Station Marine d' Arcachon, 2 rue du Professeur Jolyet, 33120 Arcachon (France)

    2014-01-01

    Microbial denitrification is the main nitrogen removing process in freshwater ecosystems. The aim of this study was to show whether and how water warming (+ 2.5 °C) drives bacterial diversity and structuring and how bacterial diversity affects denitrification enzymatic activity in phototrophic river biofilms (PRB). We used water warming associated to the immediate thermal release of a nuclear power plant cooling circuit to produce natural PRB assemblages on glass slides while testing 2 temperatures (mean temperature of 17 °C versus 19.5 °C). PRB were sampled at 2 sampling times during PRB accretion (6 and 21 days) in both temperatures. Bacterial community composition was assessed using ARISA. Denitrifier community abundance and denitrification gene mRNA levels were estimated by q-PCR and qRT-PCR, respectively, of 5 genes encoding catalytic subunits of the denitrification key enzymes. Denitrification enzyme activity (DEA) was measured by the acetylene-block assay at 20 °C. A mean water warming of 2.5 °C was sufficient to produce contrasted total bacterial and denitrifier communities and, therefore, to affect DEA. Indirect temperature effect on DEA may have varied between sampling time, increasing by up to 10 the denitrification rate of 6-day-old PRB and decreasing by up to 5 the denitrification rate of 21-day-old PRB. The present results suggest that indirect effects of warming through changes in bacterial community composition, coupled to the strong direct effect of temperature on DEA already demonstrated in PRB, could modulate dissolved nitrogen removal by denitrification in rivers and streams. - Highlights: •We produced river biofilms in 2 mean temperature conditions: 17 vs 19.5 °C. •We compared their denitrifiers' structuring and functioning in 6d- and 21d-old biofilms. •A difference of 2.5 °C produced contrasted denitrifier communities. •The indirect temperature effect on denitrification activity shifted between biofilm age.

  17. [The influence of cell surface hydrophobicity Candida sp. on biofilm formation on different biomaterials].

    Science.gov (United States)

    Ciok-Pater, Emilia; Gospodarek, Eugenia; Prazyńska, Małgorzata; Bogiel, Tomasz

    2009-01-01

    The ability of yeasts to form biofilm is believed to play an important role in patomechanism of fungal infection. Candida sp. is considered to form biofilm on surfaces of biomaterials used in production of catheters, drains and prosthesis. Therefore this may lead to serious problems in patients with biomaterials used for diagnostic or therapeutic purposes. The aim of the study was to evaluate the influence of cell surface hydrophobicity (CSH) of Candida sp. on biofilm formation on different biomaterials. CSH was evaluated by two methods: Salt Aggregation Test (SAT) and Microbe Adhesion to Hydrocarbon Test (MATH). Biofilm formation on different biomaterials was measured by Richard's method after 72 hour incubation at 37 degrees C. Candida biofilm formation occurred more frequently in case of strains exhibiting hydrophobic than hydrophilic properties of cell surface. The statistically significant correlation between CSH and ability of biofilm formation on different biomaterials was observed (p < 0.05).

  18. 生物膜形成与发展二维动态模拟%Two-Dimension Dynamic Simulations on Biofilm Forming and Developing

    Institute of Scientific and Technical Information of China (English)

    李天成; 李鑫钢; 朱慎林

    2005-01-01

    It played an important role for biofilm microstructure and morphology on wastewater biological treatments. Multi-species microorganisms were able to form varieties of biofilm on adaptive carriers, and the process of biofilm to form and develop on carriers was multi-dimensional and dynamic. In this article, substrate transfer, biofilm formation and development in a two-dimension space were dynamically simulated with a combined discrete-differential method. The micro structural and morphological characteristics, such as biofilm thickness, density and porosity, were obtained as model output by using this new-type model. Meanwhile, the effects of the growing time and initial inoculation number of microorganisms on biofilm microstructure and morphology were also discussed. Firstly, the thickness of biofilm was increasing along with the growing time of biomass extending. At the time of 30 h for biofilm formation and development, it was not completely covered for carrier by biomass, and the fluctuation of biofilm was very ambient; but at the time of 60 h, biomass had covered the carrier entirely, and the fluctuation of biofilm tended to gentleness. Secondly, as biomass growing time was 30 h, it was not covered completely for carrier by biomass with different initial inoculating number of 50, 150 and 250. And the covering degree of biomass was improving along with initial inoculating number increasing. Especially, as initial inoculating number was 250, it was nearly covered for carrier by biomass.%生物膜微观结构与形态特征直接影响废水生物处理效果.混合微生物可在适宜载体表面形成各种各样的生物膜,且其形成与发展是一个动态过程.采用差分-离散复合法动态模拟二维区域上的基质传递、生物膜形成与发展过程,并探讨生物质生长时间与初始接种数等对生物膜结构与形态造成的影响.与传统生物膜模型不同之处在于其结构特性包括孔隙率、厚度和密度等都是模型输出量.

  19. Volatile sulphur compounds-forming abilities of lactic acid bacteria: C-S lyase activities.

    Science.gov (United States)

    Bustos, Irene; Martínez-Bartolomé, Miguel A; Achemchem, Fouad; Peláez, Carmen; Requena, Teresa; Martínez-Cuesta, M Carmen

    2011-08-01

    Volatile sulphur compounds (VSCs) are of prime importance in the overall aroma of cheese and make a significant contribution to their typical flavours. Thus, the control of VSCs formation offers considerable potential for industrial applications. Here, lactic acid bacteria (LAB) from different ecological origins were screened for their abilities to produce VSCs from L-methionine. From the data presented, VSC-forming abilities were shown to be strain-specific and were correlated with the C-S lyase enzymatic activities determined using different approaches. High VSCs formation were detected for those strains that were also shown to possess high thiol-producing abilities (determined either by agar plate or spectrophotometry assays). Moreover, differences in C-S lyase activities were shown to correspond with the enzymatic potential of the strains as determined by in situ gel visualization. Therefore, the assessment of the C-S lyase enzymatic potential, by means of either of these techniques, could be used as a valuable approach for the selection of LAB strains with high VSC-producing abilities thus, representing an effective way to enhance cheese sulphur aroma compounds synthesis. In this regard, this study highlights the flavour forming potential of the Streptococcus thermophilus STY-31, that therefore could be used as a starter culture in cheese manufacture. Furthermore, although C-S lyases are involved in both biosynthetic and catabolic pathways, an association between methionine and cysteine auxotrophy of the selected strains and their VSCs-producing abilities could not be found.

  20. 临床分离鲍曼不动杆菌生物被膜形成能力研究%Biofilm formation ability of clinically isolated acinetobacter baumannii

    Institute of Scientific and Technical Information of China (English)

    邹自英; 朱冰; 熊杰; 曾平; 汪璐; 吴艾霖; 陈莉

    2012-01-01

    Objective To study the biofilm formation ability of clinically isolated strains of acinetobacter baumannii (AB) in order to provide basis for the construction of AB biofilm detection platform and provide evidence for the prevention and control of hospital AB infection. Methods Semiquantitative crystal violet staining was used to detect the biofilm formation ability of AB isolated from clinical specimens. Results ( 1) Among 100 strains of AB, 81 ones had the ability of biofilm formation, in which the ability was weakly positive in 14 ones (17. 28% ) , positive in 21 ones (25. 93% ) and strongly positive in 46 ones (56. 79% ). The biofilm formation ability in other 19 strains was negative. (2) All AB isolated from different specimens had the ability of biofilm formation. (3) There was a negative correlation between the ability of bilfilm formation and drug resistance against antibacterials in vitro. Conclusion AB has strong ability of biofilm formation. Semiquantitative crystal violet staining is simple and convenient, which is a conventional method to detect biofilm formation ability of hospital AB infection.%目的 研究鲍曼不动杆菌(AB)临床分离菌株生物被膜形成能力,为医院感染AB生物被膜检测平台的建立奠定基础,为AB医院感染的预防和控制提供依据.方法 采用半定量结晶紫染色法,检测临床标本分离的AB生物被膜形成能力.结果 (1)100株AB中,81株具有生物被膜形成能力,其中形成能力弱阳性14株(17.28%),阳性21株(25.93%),强阳性46株(56.79%);另19株生物被膜形成检测试验阴性.(2)不同标本来源的AB均具有生物被膜形成能力.(3)AB生物被膜形成能力与体外抗菌药物耐药性呈负相关.结论 AB生物被膜形成能力较强.半定量结晶紫染色法简便易操作,无需特殊设备,可以作为监测医院感染AB生物被膜形成能力的常规方法.

  1. A semi-quantitative approach to assess biofilm formation using wrinkled colony development.

    Science.gov (United States)

    Ray, Valerie A; Morris, Andrew R; Visick, Karen L

    2012-06-07

    Biofilms, or surface-attached communities of cells encapsulated in an extracellular matrix, represent a common lifestyle for many bacteria. Within a biofilm, bacterial cells often exhibit altered physiology, including enhanced resistance to antibiotics and other environmental stresses. Additionally, biofilms can play important roles in host-microbe interactions. Biofilms develop when bacteria transition from individual, planktonic cells to form complex, multi-cellular communities. In the laboratory, biofilms are studied by assessing the development of specific biofilm phenotypes. A common biofilm phenotype involves the formation of wrinkled or rugose bacterial colonies on solid agar media. Wrinkled colony formation provides a particularly simple and useful means to identify and characterize bacterial strains exhibiting altered biofilm phenotypes, and to investigate environmental conditions that impact biofilm formation. Wrinkled colony formation serves as an indicator of biofilm formation in a variety of bacteria, including both Gram-positive bacteria, such as Bacillus subtilis, and Gram-negative bacteria, such as Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Vibrio fischeri. The marine bacterium V. fischeri has become a model for biofilm formation due to the critical role of biofilms during host colonization: biofilms produced by V. fischeri promote its colonization of the Hawaiian bobtail squid Euprymna scolopes. Importantly, biofilm phenotypes observed in vitro correlate with the ability of V. fischeri cells to effectively colonize host animals: strains impaired for biofilm formation in vitro possess a colonization defect, while strains exhibiting increased biofilm phenotypes are enhanced for colonization. V. fischeri therefore provides a simple model system to assess the mechanisms by which bacteria regulate biofilm formation and how biofilms impact host colonization. In this report, we describe a semi-quantitative method to assess

  2. Proteus mirabilis biofilm - Qualitative and quantitative colorimetric methods-based evaluation

    OpenAIRE

    2014-01-01

    Proteus mirabilis strains ability to form biofilm is a current topic of a number of research worldwide. In this study the biofilm formation of P. mirabilis strains derived from urine of the catheterized and non-catheterized patients has been investigated. A total number of 39 P. mirabilis strains isolated from the urine samples of the patients of dr Antoni Jurasz University Hospital No. 1 in Bydgoszcz clinics between 2011 and 2012 was used. Biofilm formation was evaluated using two independen...

  3. Acidic pH strongly enhances in vitro biofilm formation by a subset of hypervirulent ST-17 Streptococcus agalactiae strains.

    Science.gov (United States)

    D'Urzo, Nunzia; Martinelli, Manuele; Pezzicoli, Alfredo; De Cesare, Virginia; Pinto, Vittoria; Margarit, Immaculada; Telford, John Laird; Maione, Domenico

    2014-04-01

    Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a primary colonizer of the anogenital mucosa of up to 40% of healthy women and an important cause of invasive neonatal infections worldwide. Among the 10 known capsular serotypes, GBS type III accounts for 30 to 76% of the cases of neonatal meningitis. In recent years, the ability of GBS to form biofilm attracted attention for its possible role in fitness and virulence. Here, a new in vitro biofilm formation protocol was developed to guarantee more stringent conditions, to better discriminate between strong-, low-, and non-biofilm-forming strains, and to facilitate interpretation of data. This protocol was used to screen the biofilm-forming abilities of 366 GBS clinical isolates from pregnant women and from neonatal infections of different serotypes in relation to medium composition and pH. The results identified a subset of isolates of serotypes III and V that formed strong biofilms under acidic conditions. Importantly, the best biofilm formers belonged to serotype III hypervirulent clone ST-17. Moreover, the abilities of proteinase K to strongly inhibit biofilm formation and to disaggregate mature biofilms suggested that proteins play an essential role in promoting GBS biofilm initiation and contribute to biofilm structural stability.

  4. Raman spectroscopic differentiation of planktonic bacteria and biofilms.

    Science.gov (United States)

    Kusić, Dragana; Kampe, Bernd; Ramoji, Anuradha; Neugebauer, Ute; Rösch, Petra; Popp, Jürgen

    2015-09-01

    Both biofilm formations as well as planktonic cells of water bacteria such as diverse species of the Legionella genus as well as Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli were examined in detail by Raman microspectroscopy. Production of various molecules involved in biofilm formation of tested species in nutrient-deficient media such as tap water was observed and was particularly evident in the biofilms formed by six Legionella species. Biofilms of selected species of the Legionella genus differ significantly from the planktonic cells of the same organisms in their lipid amount. Also, all Legionella species have formed biofilms that differ significantly from the biofilms of the other tested genera in the amount of lipids they produced. We believe that the significant increase in the synthesis of this molecular species may be associated with the ability of Legionella species to form biofilms. In addition, a combination of Raman microspectroscopy with chemometric approaches can distinguish between both planktonic form and biofilms of diverse bacteria and could be used to identify samples which were unknown to the identification model. Our results provide valuable data for the development of fast and reliable analytic methods based on Raman microspectroscopy, which can be applied to the analysis of tap water-adapted microorganisms without any cultivation step.

  5. Biofilm formation enhances Helicobacter pylori survivability in vegetables.

    Science.gov (United States)

    Ng, Chow Goon; Loke, Mun Fai; Goh, Khean Lee; Vadivelu, Jamuna; Ho, Bow

    2017-04-01

    To date, the exact route and mode of transmission of Helicobacter pylori remains elusive. The detection of H. pylori in food using molecular approaches has led us to postulate that the gastric pathogen may survive in the extragastric environment for an extended period. In this study, we show that H. pylori prolongs its survival by forming biofilm and micro-colonies on vegetables. The biofilm forming capability of H. pylori is both strain and vegetable dependent. H. pylori strains were classified into high and low biofilm formers based on their highest relative biofilm units (BU). High biofilm formers survived longer on vegetables compared to low biofilm formers. The bacteria survived better on cabbage compared to other vegetables tested. In addition, images captured on scanning electron and confocal laser scanning microscopes revealed that the bacteria were able to form biofilm and reside as micro-colonies on vegetable surfaces, strengthening the notion of possible survival of H. pylori on vegetables for an extended period of time. Taken together, the ability of H. pylori to form biofilm on vegetables (a common food source for human) potentially plays an important role in its survival, serving as a mode of transmission of H. pylori in the extragastric environment.

  6. Comparison of Listeria monocytogenes Exoproteomes from biofilm and planktonic state: Lmo2504, a protein associated with biofilms.

    Science.gov (United States)

    Lourenço, António; de Las Heras, Aitor; Scortti, Mariela; Vazquez-Boland, Jose; Frank, Joseph F; Brito, Luisa

    2013-10-01

    The food-borne pathogen Listeria monocytogenes is the causative agent of the severe human and animal disease listeriosis. The persistence of this bacterium in food processing environments is mainly attributed to its ability to form biofilms. The search for proteins associated with biofilm formation is an issue of great interest, with most studies targeting the whole bacterial proteome. Nevertheless, exoproteins constitute an important class of molecules participating in various physiological processes, such as cell signaling, pathogenesis, and matrix remodeling. The aim of this work was to quantify differences in protein abundance between exoproteomes from a biofilm and from the planktonic state. For this, two field strains previously evaluated to be good biofilm producers (3119 and J311) were used, and a procedure for the recovery of biofilm exoproteins was optimized. Proteins were resolved by two-dimensional difference gel electrophoresis and identified by electrospray ionization-tandem mass spectrometry. One of the proteins identified in higher abundance in the biofilm exoproteomes of both strains was the putative cell wall binding protein Lmo2504. A mutant strain with deletion of the gene for Lmo2504 was produced (3119Δlmo2504), and its biofilm-forming ability was compared to that of the wild type using the crystal violet and the ruthenium red assays as well as scanning electron microscopy. The results confirmed the involvement of Lmo2504 in biofilm formation, as strain 3119Δlmo2504 showed a significantly (P biofilm-forming ability than the wild type. The identification of additional exoproteins associated with biofilm formation may lead to new strategies for controlling this pathogen in food processing facilities.

  7. Extracellular electron transfer mechanism in Shewanella loihica PV- 4 biofilms formed at indium tin oxide and graphite electrodes

    OpenAIRE

    2013-01-01

    Electroactive biofilms are capable of extracellular electron transfer to insoluble metal oxides and electrodes; such biofilms are relevant to biogeochemistry, bioremediation, and bioelectricity production. We investigated the extracellular electron transfer mechanisms in Shewanella loihica PV-4 viable biofilms grown at indium tin oxide (ITO) and graphite electrodes in potentiostat-controlled electrochemical cells poised at 0.2 V vs. Ag/AgCl. Chronoamperometry and confocal microscopy showed hi...

  8. The Influence of Prior Modes of Growth, Temperature, Medium, and Substrate Surface on Biofilm Formation by Antibiotic-Resistant Campylobacter jejuni.

    Science.gov (United States)

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2016-12-01

    Campylobacter jejuni is one of the most common causes of bacterial gastrointestinal food-borne infection worldwide. It has been suggested that biofilm formation may play a role in survival of these bacteria in the environment. In this study, the influence of prior modes of growth (planktonic or sessile), temperatures (37 and 42 °C), and nutrient conditions (nutrient broth and Mueller-Hinton broth) on biofilm formation by eight C. jejuni strains with different antibiotic resistance profiles was examined. The ability of these strains to form biofilm on different abiotic surfaces (stainless steel, glass, and polystyrene) as well as factors potentially associated with biofilm formation (bacterial surface hydrophobicity, auto-aggregation, and initial attachment) was also determined. The results showed that cells grown as sessile culture generally have a greater ability to form biofilm (P < 0.05) compared to their planktonic counterparts. Biofilm was also greater (P < 0.05) in lower nutrient media, while growth at different temperatures affects biofilm formation in a strain-dependent manner. The strains were able to attach and form biofilms on different abiotic surfaces, but none of them demonstrated strong, complex, or structured biofilm formation. There were no clear trends between the bacterial surface hydrophobicity, auto-aggregation, attachment, and biofilm formation by the strains. This finding suggests that environmental factors did affect biofilm formation by C. jejuni, and they are more likely to persist in the environment in the form of mixed-species rather than monospecies biofilms.

  9. Comparative pyrosequencing analysis of bacterial community change in biofilm formed on seawater reverse osmosis membrane.

    Science.gov (United States)

    Kim, In S; Lee, Jinwook; Kima, Sung-Jo; Yu, Hye-Weon; Jang, Am

    2014-01-01

    The change in bacterial community structure induced by bacterial competition and succession was investigated during seawater reverse osmosis (SWRO) in order to elucidate a possible link between the bacterial consortium on SWRO membranes and biofouling. To date, there has been no definitive characterization of the microbial diversity in SWRO in terms of distinguishing time-dependent changes in the richness or abundance of bacterial species. For bacterial succession within biofilms on the membrane surface, SWRO using a cross-flow filtration membrane test unit was operated for 5 and 100h, respectively. As results of the pyrosequencing analysis, bacterial communities differed considerably among seawater and the 5 and 100 h samples. From a total of 33,876 pyrosequences (using a 95% sequence similarity), there were less than 1% of shared species, confirming the influence of the operational time factor and lack of similarity of these communities. During SWRO operation, the abundance of Pseudomonas stutzeri BBSPN3 (GU594474) belonging to gamma-Proteobacteria suggest that biofouling of SWRO membrane might be driven by the dominant influence of a specific species. In addition, among the bacterial competition of five bacterial species (Pseudomonas aeruginosa, Bacillus sp., Rhodobacter sp., Flavobacterium sp., and Mycobacterium sp.) competing for bacterial colonization on the SWRO membrane surfaces, it was exhibited that Bacillus sp. was the most dominant. The dominant influences ofPseudomonas sp. and Bacillus sp. on biofouling during actual SWRO is decisive depending on higher removal efficiency of the seawater pretreatment.

  10. Diversity assessment of Listeria monocytogenes biofilm formation: Impact of growth condition, serotype and strain origin

    NARCIS (Netherlands)

    Kadam, S.R.; Besten, den H.M.W.; Veen, van der S.; Zwietering, M.H.; Moezelaar, R.; Abee, T.

    2013-01-01

    The foodborne pathogen Listeria monocytogenes has the ability to produce biofilms in food-processing environments and then contaminate food products, which is a major concern for food safety. The biofilm forming behavior of 143 L. monocytogenes strains was determined in four different media that wer

  11. Streptokinase Treatment Reverses Biofilm-Associated Antibiotic Resistance in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Jørgensen, Nis Pedersen; Zobek, Natalia; Dreier, Cindy;

    2016-01-01

    Biofilms formed by Staphylococcus aureus is a serious complication to the use of medical implants. A central part of the pathogenesis relies on S. aureus’ ability to adhere to host extracellular matrix proteins, which adsorb to medical implants and stimulate biofilm formation. Being coagulase...

  12. The differentiated approach in forming swimming abilities and skills of students

    Directory of Open Access Journals (Sweden)

    Nikolskiy A.U.

    2010-09-01

    Full Text Available It is considered the directions of organization and methods of conducting of lessons with students. In experiment took part students of the 17-20 years old. The criteria of forming of typological educational groups are presented on the initial stage of teaching swimming of students. The degree of connection of the hereditarily conditioned swimming coordinating inclination is certain with the indexes of formed swimming abilities and skills of students. It is well-proven that a process of capture motive habits is under unreserved influence of conservative heredity of individual.

  13. Iron and Acinetobacter baumannii Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Valentina Gentile

    2014-08-01

    Full Text Available Acinetobacter baumannii is an emerging nosocomial pathogen, responsible for infection outbreaks worldwide. The pathogenicity of this bacterium is mainly due to its multidrug-resistance and ability to form biofilm on abiotic surfaces, which facilitate long-term persistence in the hospital setting. Given the crucial role of iron in A. baumannii nutrition and pathogenicity, iron metabolism has been considered as a possible target for chelation-based antibacterial chemotherapy. In this study, we investigated the effect of iron restriction on A. baumannii growth and biofilm formation using different iron chelators and culture conditions. We report substantial inter-strain variability and growth medium-dependence for biofilm formation by A. baumannii isolates from veterinary and clinical sources. Neither planktonic nor biofilm growth of A. baumannii was affected by exogenous chelators. Biofilm formation was either stimulated by iron or not responsive to iron in the majority of isolates tested, indicating that iron starvation is not sensed as an overall biofilm-inducing stimulus by A. baumannii. The impressive iron withholding capacity of this bacterium should be taken into account for future development of chelation-based antimicrobial and anti-biofilm therapies.

  14. Complete genome sequence of the biofilm-forming Curtobacterium sp. strain BH-2-1-1, isolated from lettuce (Lactuca sativa) originating from a conventional field in Norway.

    Science.gov (United States)

    Dees, Merete Wiken; Brurberg, May Bente; Lysøe, Erik

    2016-12-01

    Here, we present the 3,795,952 bp complete genome sequence of the biofilm-forming Curtobacterium sp. strain BH-2-1-1, isolated from conventionally grown lettuce (Lactuca sativa) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017580.

  15. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism.

    Science.gov (United States)

    Vital-Lopez, Francisco G; Reifman, Jaques; Wallqvist, Anders

    2015-10-01

    A hallmark of Pseudomonas aeruginosa is its ability to establish biofilm-based infections that are difficult to eradicate. Biofilms are less susceptible to host inflammatory and immune responses and have higher antibiotic tolerance than free-living planktonic cells. Developing treatments against biofilms requires an understanding of bacterial biofilm-specific physiological traits. Research efforts have started to elucidate the intricate mechanisms underlying biofilm development. However, many aspects of these mechanisms are still poorly understood. Here, we addressed questions regarding biofilm metabolism using a genome-scale kinetic model of the P. aeruginosa metabolic network and gene expression profiles. Specifically, we computed metabolite concentration differences between known mutants with altered biofilm formation and the wild-type strain to predict drug targets against P. aeruginosa biofilms. We also simulated the altered metabolism driven by gene expression changes between biofilm and stationary growth-phase planktonic cultures. Our analysis suggests that the synthesis of important biofilm-related molecules, such as the quorum-sensing molecule Pseudomonas quinolone signal and the exopolysaccharide Psl, is regulated not only through the expression of genes in their own synthesis pathway, but also through the biofilm-specific expression of genes in pathways competing for precursors to these molecules. Finally, we investigated why mutants defective in anthranilate degradation have an impaired ability to form biofilms. Alternative to a previous hypothesis that this biofilm reduction is caused by a decrease in energy production, we proposed that the dysregulation of the synthesis of secondary metabolites derived from anthranilate and chorismate is what impaired the biofilms of these mutants. Notably, these insights generated through our kinetic model-based approach are not accessible from previous constraint-based model analyses of P. aeruginosa biofilm

  16. Glass-forming ability analysis of selected Fe-based bulk amorphous alloys

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2010-09-01

    Full Text Available Purpose: The paper mainly aims to present the structure and thermal stability of selected Fe-based bulk metallic glasses: Fe72B20Si4Nb4 and Fe43Co14Ni14B20Si5Nb4.Design/methodology/approach: The investigated samples were cast in form of the rods by the pressure die casting method. The structure analysis of the studied materials in as-cast state was carried out using XRD and TEM methods. The thermal stability associated with glass transition temperature (Tg, onset (Tx and peak (Tp crystallization temperature was examined by differential scanning calorimetry (DSC. Several parameters have been used to determine the glass-forming ability of studied alloys. The parameters of GFA included reduced glass transition temperature (Trg, supercooled liquid region (ΔTx, the stability (S and (Kgl parameter.Findings: The XRD and TEM investigations revealed that the studied as-cast metallic glasses were fully amorphous. Changes of the onset and peak crystallization temperature and the glass transition temperature as a function of glassy samples thickness were stated. The good glass-forming ability (GFA enabled casting of the Fe72B20Si4Nb4 and Fe43Co14Ni14B20Si5Nb4 glassy rods.Practical implications: The obtained examination results confirm the utility of applied investigation methods in the thermal stability analysis of examined bulk amorphous alloys. It is evident that parameters Trg, ΔTx, Kgl, S could be used to determine glass-forming ability of studied bulk metallic glasses.Originality/value: The success of fabrication of studied Fe-based bulk metallic glasses in form of rods with diameter up to 3 mm is important for the future progress in research of this group of materials.

  17. Enhanced uranium immobilization and reduction by Geobacter sulfurreducens biofilms.

    Science.gov (United States)

    Cologgi, Dena L; Speers, Allison M; Bullard, Blair A; Kelly, Shelly D; Reguera, Gemma

    2014-11-01

    Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination.

  18. Native interaction of Escherichia coli O157:H7 and Ralstonia insidiosa in forming dual-species biofilms

    Science.gov (United States)

    Biofilm formation by native microflora in food processing environments can increase the risk of foodborne outbreaks by providing a protective microenvironment to foodborne pathogens. Hence the presence of strong biofilm producing bacteria in such an environment can be regarded as a risk factor. In t...

  19. Correlation between liquid structure and glass forming ability in glassy Ag-based binary alloys

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The atomic structures of liquid Ag-based binary alloys have been investigated in the solidification process by means of X-ray diffraction. The results of liquid structure show that there is a break point in the mean nearest neighbor distance r1 and the coordination number Nmin for glass-forming liquid, while the correlation radius rc and the coordination number Nmin display a monotone variational trend above the break point. It means glass-forming liquids have a steady changing in structure above liquidus and more inhomogeneous state at liquidus. We conclude that there is a strong correlation between liquid structure and glass forming ability in Ag-based binary alloys.

  20. Ambroxol influences voriconazole resistance of Candida parapsilosis biofilm.

    Science.gov (United States)

    Pulcrano, Giovanna; Panellis, Dimitrios; De Domenico, Giovanni; Rossano, Fabio; Catania, Maria Rosaria

    2012-06-01

    The ability to form biofilm on different surfaces is typical of most Candida species. Microscopic structure and genetic aspects of fungal biofilms have been the object of many studies because of very high resistance to antimycotic agents because of the scarce permeability of the external matrix and to the alterations in cell metabolism. In our study, 31 isolates of Candida parapsilosis, isolated from bloodstream infections, were tested for their ability to produce biofilm and were found to be good producers. The susceptibility to voriconazole, assayed by colorimetrical XTT assay, revealed a very elevated minimum inhibitory concentrations for sessile cells in comparison with planktonic ones. The addition of ambroxol, a mucolytic agent, increased the susceptibility of biofilm forming cells to voriconazole. Expression of the efflux pump genes CDR and MDR was analyzed in biofilms alone or treated with ambroxol, evidencing a role of ambroxol in the expression of genes involved in azole resistance mechanisms of C. parapsilosis biofilms. In conclusion, our data seem to encourage the use of different substances in combination with classical antimycotics, with the aim of finding a solution to the increasing problem of the resistance of biofilms formed on medical devices by nonalbicans Candida species.

  1. Crude fatty acid extracts of Streptomyces sps inhibits the biofilm forming Streptococcus pyogenes ATCC 19615

    Directory of Open Access Journals (Sweden)

    Rajalakshm Manickam

    2014-01-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Crude fatty acid extract of soil Streptomyces sps on the biofilm formation by Streptococcus pyogenes ATCC 19615 was investigated. Totally, 25 Streptomyces sps were isolated identified from the soil samples collected from Nilgiris hill station. All the isolates were subjected to hydrogen peroxide assay, fatty acid extraction and antibiofilm assay. The fatty acid extracts of S8, S9, and S15 inhibited S. pyogenes at MIC 10 µg/ml. The BIC was observed as 84.6% , 96.41%, 80.5% at 50 µg/ml concentration. Streptolysin S assay showed that the crude lipid extracts have the capability of inhibiting the Streptolysin S activity. There were changes in extracellular protein of the pathogen exposed to the S8, S9 and S15 crude fatty acid extracts (50 µg/ml at the range of 100-120 kDa which elucidates that the fatty acid extracts have a significant role in altering the extracellular protein which might be responsible for virulence of the pathogen. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  2. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation

    DEFF Research Database (Denmark)

    Schroll, C.; Barken, Kim Bundvig; Krogfelt, K.A.

    2010-01-01

    isolate C3091 were constructed, and their ability to form biofilm was investigated in a flow cell system by confocal scanning laser microscopy. The wild type strain was found to form characteristic biofilm and development of K. pneumoniae biofilm occurred primarily by clonal growth, not by recruitment...... we found that type 3 fimbriae, but not type 1 fimbriae, strongly promote biofilm formation in K. pneumoniae C3091. As the vast majority of clinical K. pneumoniae isolates express type 3 fimbriae, this fimbrial adhesin may play a significant role in development of catheter associated K. pneumoniae......Background: Klebsiella pneumoniae is an important gram-negative opportunistic pathogen causing primarily urinary tract infections, respiratory infections, and bacteraemia. The ability of bacteria to form biofilms on medical devices, e. g. catheters, has a major role in development of many...

  3. Thermodynamic and relative approach to compute glass-forming ability of oxides

    Indian Academy of Sciences (India)

    Nouar Boubata; Abdelmalek Roula; Islam Moussaoui

    2013-06-01

    This study deals with the evaluation of glass-forming ability (GFA) of oxides and is a critical reading of Sun and Rawson thermodynamic approach to quantify this aptitude. Both approaches are adequate but ambiguous regarding the behaviour of some oxides (tendency to amorphization or crystallization). Indeed, ZrO2 and Al2O3 were inappropriately listed by Sun and Rawson to be glassformer oxides while being intermediate ones.We present a non-dimensional approach to value GFA of single oxide by affecting to each one of the coefficients (without measuring units). Obeying to the non-dimensional analysis rules, we introduce a neglected (in all prior thermodynamic models) characteristic: the isobaric heat capacity (p) of oxides, and execute a mathematical treatment of oxides thermodynamic data.We note this coefficient as thermodynamical relative glass-forming ability (ThRGFA) and formulate a model to compute it. Computed values of 2nd, 3rd, 4th and 5th period metal oxides reveal a clear differentiation between them. Indeed, all glass former oxides are characterized by ThRGFA values over 1.709. Moreover, the value intervals confirm the oxides classification into three groups (forming, intermediate and modifier) and sorting of the former ones in distinctive strong and fragile oxides.

  4. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: influence of calcium on EPS production and biofilm formation by these isolates.

    Science.gov (United States)

    López-Moreno, Angélica; Sepúlveda-Sánchez, José David; Mercedes Alonso Guzmán, Elia Mercedes; Le Borgne, Sylvie

    2014-01-01

    Heterotrophic CaCO3-precipitating bacteria were isolated from biofilms on deteriorated ignimbrites, siliceous acidic rocks, from Morelia Cathedral (Mexico) and identified as Enterobacter cancerogenus (22e), Bacillus sp. (32a) and Bacillus subtilis (52g). In solid medium, 22e and 32a precipitated calcite and vaterite while 52g produced calcite. Urease activity was detected in these isolates and CaCO3 precipitation increased in the presence of urea in the liquid medium. In the presence of calcium, EPS production decreased in 22e and 32a and increased in 52g. Under laboratory conditions, ignimbrite colonization by these isolates only occurred in the presence of calcium and no CaCO3 was precipitated. Calcium may therefore be important for biofilm formation on stones. The importance of the type of stone, here a siliceous stone, on biological colonization is emphasized. This calcium effect has not been reported on calcareous materials. The importance of the effect of calcium on EPS production and biofilm formation is discussed in relation to other applications of CaCO3 precipitation by bacteria.

  5. Evidence for inter- and intraspecies biofilm formation variability among a small group of coagulase-negative staphylococci.

    Science.gov (United States)

    Oliveira, Fernando; Lima, Cláudia Afonso; Brás, Susana; França, Ângela; Cerca, Nuno

    2015-10-01

    Coagulase-negative staphylococci (CoNS) are common bacterial colonizers of the human skin. They are often involved in nosocomial infections due to biofilm formation in indwelling medical devices. While biofilm formation has been extensively studied in Staphylococcus epidermidis, little is known regarding other CoNS species. Here, biofilms from six different CoNS species were characterized in terms of biofilm composition and architecture. Interestingly, the ability to form a thick biofilm was not associated with any particular species, and high variability on biofilm accumulation was found within the same species. Cell viability assays also revealed different proportions of live and dead cells within biofilms formed by different species, although this parameter was particularly similar at the intraspecies level. On the other hand, biofilm disruption assays demonstrated important inter- and intraspecies differences regarding extracellular matrix composition. Lastly, confocal laser scanning microscopy experiments confirmed this variability, highlighting important differences and common features of CoNS biofilms. We hypothesized that the biofilm formation heterogeneity observed was rather associated with biofilm matrix composition than with cells themselves. Additionally, our results indicate that polysaccharides, DNA and proteins are fundamental pieces in the process of CoNS biofilm formation.

  6. Composition dependence of the glass forming ability in binary mixtures: The role of demixing entropy.

    Science.gov (United States)

    Nandi, Ujjwal Kumar; Banerjee, Atreyee; Chakrabarty, Suman; Bhattacharyya, Sarika Maitra

    2016-07-21

    We present a comparative study of the glass forming ability of binary systems with varying composition, where the systems have similar global crystalline structure (CsCl+fcc). Biased Monte Carlo simulations using umbrella sampling technique show that the free energy cost to create a CsCl nucleus increases as the composition of the smaller particles is decreased. We find that systems with comparatively lower free energy cost to form CsCl nucleus exhibit more pronounced pre-crystalline demixing near the liquid/crystal interface. The structural frustration between the CsCl and fcc crystal demands this demixing. We show that closer to the equimolar mixture, the entropic penalty for demixing is lower and a glass forming system may crystallize when seeded with a nucleus. This entropic penalty as a function of composition shows a non-monotonic behaviour with a maximum at a composition similar to the well known Kob-Anderson (KA) model. Although the KA model shows the maximum entropic penalty and thus maximum frustration against CsCl formation, it also shows a strong tendency towards crystallization into fcc lattice of the larger "A" particles which can be explained from the study of the energetics. Thus for systems closer to the equimolar mixture although it is the requirement of demixing which provides their stability against crystallization, for KA model it is not demixing but slow dynamics and the presence of the "B" particles make it a good glass former. The locally favoured structure around "B" particles is quite similar to the CsCl structure and the incompatibility of CsCl and fcc hinders the fcc structure growth in the KA model. Although the glass forming binary systems studied here are quite similar, differing only in composition, we find that their glass forming ability cannot be attributed to a single phenomenon.

  7. Composition dependence of the glass forming ability in binary mixtures: The role of demixing entropy

    Science.gov (United States)

    Nandi, Ujjwal Kumar; Banerjee, Atreyee; Chakrabarty, Suman; Bhattacharyya, Sarika Maitra

    2016-07-01

    We present a comparative study of the glass forming ability of binary systems with varying composition, where the systems have similar global crystalline structure (CsCl+fcc). Biased Monte Carlo simulations using umbrella sampling technique show that the free energy cost to create a CsCl nucleus increases as the composition of the smaller particles is decreased. We find that systems with comparatively lower free energy cost to form CsCl nucleus exhibit more pronounced pre-crystalline demixing near the liquid/crystal interface. The structural frustration between the CsCl and fcc crystal demands this demixing. We show that closer to the equimolar mixture, the entropic penalty for demixing is lower and a glass forming system may crystallize when seeded with a nucleus. This entropic penalty as a function of composition shows a non-monotonic behaviour with a maximum at a composition similar to the well known Kob-Anderson (KA) model. Although the KA model shows the maximum entropic penalty and thus maximum frustration against CsCl formation, it also shows a strong tendency towards crystallization into fcc lattice of the larger "A" particles which can be explained from the study of the energetics. Thus for systems closer to the equimolar mixture although it is the requirement of demixing which provides their stability against crystallization, for KA model it is not demixing but slow dynamics and the presence of the "B" particles make it a good glass former. The locally favoured structure around "B" particles is quite similar to the CsCl structure and the incompatibility of CsCl and fcc hinders the fcc structure growth in the KA model. Although the glass forming binary systems studied here are quite similar, differing only in composition, we find that their glass forming ability cannot be attributed to a single phenomenon.

  8. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development.

    Science.gov (United States)

    Alem, Mohammed A S; Oteef, Mohammed D Y; Flowers, T Hugh; Douglas, L Julia

    2006-10-01

    Tyrosol and farnesol are quorum-sensing molecules produced by Candida albicans which accelerate and block, respectively, the morphological transition from yeasts to hyphae. In this study, we have investigated the secretion of tyrosol by C. albicans and explored its likely role in biofilm development. Both planktonic (suspended) cells and biofilms of four C. albicans strains, including three mutants with defined defects in the Efg 1 and Cph 1 morphogenetic signaling pathways, synthesized extracellular tyrosol during growth at 37 degrees C. There was a correlation between tyrosol production and biomass for both cell types. However, biofilm cells secreted at least 50% more tyrosol than did planktonic cells when tyrosol production was related to cell dry weight. The addition of exogenous farnesol to a wild-type strain inhibited biofilm formation by up to 33% after 48 h. Exogenous tyrosol appeared to have no effect, but scanning electron microscopy revealed that tyrosol stimulated hypha production during the early stages (1 to 6 h) of biofilm development. Experiments involving the simultaneous addition of tyrosol and farnesol at different concentrations suggested that the action of farnesol was dominant, and 48-h biofilms formed in the presence of both compounds consisted almost entirely of yeast cells. When biofilm supernatants were tested for their abilities to inhibit or enhance germ tube formation by planktonic cells, the results indicated that tyrosol activity exceeds that of farnesol after 14 h, but not after 24 h, and that farnesol activity increases significantly during the later stages (48 to 72 h) of biofilm development. Overall, our results support the conclusion that tyrosol acts as a quorum-sensing molecule for biofilms as well as for planktonic cells and that its action is most significant during the early and intermediate stages of biofilm formation.

  9. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease.

    Science.gov (United States)

    Chao, Yashuan; Marks, Laura R; Pettigrew, Melinda M; Hakansson, Anders P

    2014-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over one million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo. In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of pneumococcal biofilm

  10. The fluidity and molding ability of glass-forming Zr-based alloy melt

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The fluidity and filling ability of glass-forming Zr-based alloy melt in copper mould were investigated both theoretically and experimentally. The major factors which affected the flowing behavior of the metallic melt in the mold were determined,which provides the foundation for overcoming the contradiction between the filling and formation of amorphous alloy during the rapid cooling process of the metallic melts. The casting factors to prepare a metallic ring were discussed and selected. As a result,a Zr-based bulk metallic glass ring was prepared successfully.

  11. Ferromagnetic Fe-based Amorphous Alloy with High Glass-forming Ability

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A ferromagnetic amorphous Fe73Al4Ge2Nb1P10C6B4 alloy with highglass-forming ability was synthesized by melt spinning. The supercooled liquid region before crystallization reaches about 65.7 K. The crystallized structure consists of α-Fe, Fe3B, FeB, Fe3P and Fe3C phases. The Febased amorphous alloy exhibits good magnetic properties with a high saturation magnetization and a low saturated magnetostriction. The crystallization leads to an obvious decrease in the soft magnetic properties.

  12. Glass Forming Ability of Metallic Glasses Evaluated by a New Criterion

    Institute of Scientific and Technical Information of China (English)

    CAO Qing-Ping; LI Jin-Fu; ZHOU Yao-He

    2008-01-01

    The glass-forming ability (GFA) of Cu-Zr binary alloys is evaluated using the existing criteria based on calorimetric parameters, and poor relations are found. Therefore, another parameter Trk defined as Tk/Tl, in which Tk is the Kauzmann temperature and Tl the equilibrium liquidus temperature, is proposed. It exhibits good agreements with the experimental data of the Cu-Zr system and other representative bulk metallic glass formers so long as classifying them into strong or fragile category. It is suggested that kinetic effects are irrelevantly incorporated in the GFA analysis in the previous work.

  13. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins.

    Science.gov (United States)

    Kuhn, D M; George, T; Chandra, J; Mukherjee, P K; Ghannoum, M A

    2002-06-01

    Biofilms, likely the predominant mode of device-related microbial infection, exhibit resistance to antimicrobial agents. Evidence suggests that Candida biofilms have dramatically reduced susceptibility to antifungal drugs. We examined antifungal susceptibilities of Candida albicans and Candida parapsilosis biofilms grown on a bioprosthetic model. In addition to conventional agents, we determined if new antifungal agents (triazoles, amphotericin B lipid formulations, and echinocandins) have activities against Candida biofilms. We also explored effects of preincubation of C. albicans cells with subinhibitory concentrations (sub-MICs) of drugs to see if they could modify subsequent biofilm formation. Finally, we used confocal scanning laser microscopy (CSLM) to image planktonic- and biofilm-exposed blastospores to examine drug effects on cell structure. Candida biofilms were formed on silicone elastomer and quantified by tetrazolium and dry weight (DW) assays. Susceptibility testing of fluconazole, nystatin, chlorhexidine, terbenafine, amphotericin B (AMB), and the triazoles voriconazole (VRC) and ravuconazole revealed resistance in all Candida isolates examined when grown as biofilms, compared to planktonic forms. In contrast, lipid formulations of AMB (liposomal AMB and AMB lipid complex [ABLC]) and echinocandins (caspofungin [Casp] and micafungin) showed activity against Candida biofilms. Preincubation of C. albicans cells with sub-MIC levels of antifungals decreased the ability of cells to subsequently form biofilm (measured by DW; P formulations.

  14. In vitro prevention of Pseudomonas aeruginosa early biofilm formation with antibiotics used in cystic fibrosis patients.

    Science.gov (United States)

    Fernández-Olmos, Ana; García-Castillo, María; Maiz, Luis; Lamas, Adelaida; Baquero, Fernando; Cantón, Rafael

    2012-08-01

    The ability of antibiotics used in bronchopulmonary infections in cystic fibrosis (CF) patients to prevent Pseudomonas aeruginosa early biofilm formation was studied using a biofilm microtitre assay with 57 non-mucoid P. aeruginosa isolates (44 first colonisers and 13 recovered during the initial intermittent colonisation stage) obtained from 35 CF patients. Minimum biofilm inhibitory concentrations (BICs) of levofloxacin, ciprofloxacin, imipenem, ceftazidime, tobramycin, colistin and azithromycin were determined by placing a peg lid with a formed biofilm onto microplates containing antibiotics. A modification of this protocol consisting of antibiotic challenge during biofilm formation was implemented in order to determine the biofilm prevention concentration (BPC), i.e. the minimum concentration able to prevent biofilm formation. The lowest BPCs were for fluoroquinolones, tobramycin and colistin and the highest for ceftazidime and imipenem. The former antibiotics had BPCs identical to or only slightly higher than their minimum inhibitory concentrations (MICs) determined by standard Clinical and Laboratory Standards Institute (CLSI) microdilution and were also active on formed biofilms as reflected by their low BIC values. In contrast, ceftazidime and imipenem were less effective for prevention of biofilm formation and on formed biofilms. In conclusion, the new BPC parameter determined in non-mucoid P. aeruginosa isolates recovered during early colonisation stages in CF patients supports early aggressive antimicrobial treatment guidelines in first P. aeruginosa-colonised CF patients.

  15. Evaluation of Antimicrobial and Antifungal efficacy of Chitosan as endodontic irrigant against Enterococcus Faecalis and Candida Albicans Biofilm formed on tooth substrate

    Science.gov (United States)

    Yadav, Pankaj; Saxena, Rajendra K.; Talwar, Sangeeta; Yadav, Sudha

    2017-01-01

    Background Bacterial biofilms formed on the root canal wall are often difficult to remove. This study aimed to evaluate the cytotoxic effect and antibacterial efficacy of chitosan when used as root canal irrigant against E. Faecalis and Candida albicans biofilm formed on tooth substrate. Material and Methods The present study evaluated antibacterial effect of 0.25% Chitosan, 0.5% Chitosan, 2% chlorhexidine and 3% sodium hypochlorite against Enterococcus faecalis and Candida Albicans. Agar-well diffusion methods, minimal inhibitory concentration tests and biofilm susceptibility assays were used to determine antibacterial activity. Teeth specimens were sectioned to obtain a standardized tooth length of 12mm. Specimens were inoculated with 10 mL of the freshly prepared E. Faecalis suspension and Candida albicans for 4 weeks. The specimens were then instrumented with ProTaper rotary files F3 size. After irrigation with test solution, three sterile paper points were placed into one canal, left for 60 s and transferred to a test tube containing 1 mL of reduced transport fluid. The number of CFU in 1 mL was determined. Results 3-week biofilm qualitative assay showed complete inhibition of bacterial growth with 3% Sodium hypochlorite, 2% Chlorhexidine and Chitosan except saline, which showed presence of bacterial growth. Significant reduction of colony forming units (CFU)/mL was observed for the chitosan groups and the antibacterial activity of the chitosan groups was at par with 3% NaOCl and 2% Chlorhexidine. It was observed that the chitosan showed no cytotoxicity at 3mg/ml and 10% cytotoxicity at 6mg/ml. Conclusions The use of chitosan as a root canal irrigant might be an alternative considering the various undesirable properties of NaOCl and chlorhexidine. Key words:Biofilm, Candida albicans, Chitosan, Cytotoxicity, Enterococcus faecalis. PMID:28298975

  16. Proteolysis produced within biofilms of bacterial isolates from raw milk tankers.

    Science.gov (United States)

    Teh, Koon Hoong; Flint, Steve; Palmer, Jon; Andrewes, Paul; Bremer, Phil; Lindsay, Denise

    2012-06-15

    In this study, six bacterial isolates that produced thermo-resistant enzymes isolated from the internal surfaces of raw milk tankers were evaluated for their ability to produce proteolysis within either single culture biofilms or co-culture biofilms. Biofilms were formed in an in vitro model system that simulated the upper internal surface of a raw milk tanker during a typical summer's day of milk collection in New Zealand. The bacterial isolates were further evaluated for their ability to form biofilms at 25, 30 and 37°C. Mutual and competitive effects were observed in some of the co-culture biofilms, with all isolates being able to form biofilms in either single culture or co-culture at the three temperatures. The proteolysis was also evaluated in both biofilms and corresponding planktonic cultures. The proteolysis per cell decreased as the temperature of incubation (20-37°C) increased. Furthermore, mutualistic interactions in terms of proteolysis were observed when cultures were grown as co-culture biofilms. This is the first study to show that proteolytic enzymes can be produced in biofilms on the internal surfaces of raw milk tankers. This has important implications for the cleaning and the temperature control of raw milk transport tankers.

  17. Photodynamic antibacterial and antibiofilm activity of RLP068/Cl against Staphylococcus aureus and Pseudomonas aeruginosa forming biofilms on prosthetic material.

    Science.gov (United States)

    Vassena, Christian; Fenu, Simone; Giuliani, Francesco; Fantetti, Lia; Roncucci, Gabrio; Simonutti, Giulio; Romanò, Carlo Luca; De Francesco, Raffaele; Drago, Lorenzo

    2014-07-01

    Prosthetic joint infections (PJIs) are becoming a growing public health concern in developed countries as more people undergo arthroplasty for bone fixation or joint replacement. Because a wide range of bacterial strains responsible for PJIs can produce biofilms on prosthetic implants and because the biofilm structure confers elevated bacterial resistance to antibiotic therapy, new drugs and therapies are needed to improve the clinical outcome of treatment of PJIs. Antimicrobial photodynamic therapy (APDT), a non-antibiotic broad-spectrum antimicrobial treatment, is also active against multidrug-resistant micro-organisms such as meticillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. APDT uses a photosensitiser that targets bacterial cells following exposure to visible light. APDT with RLP068/Cl, a novel photosensitiser, was studied by confocal laser scanning microscopy (CLSM) to evaluate the disruption of MRSA and P. aeruginosa biofilms on prosthetic material. Quantitative CLSM studies showed a reduction in biofilm biomass (biofilm disruption) and a decrease in viable cell numbers, as determined by standard plate counting, in the S. aureus and P. aeruginosa biofilms exposed to APDT with the photosensitiser RLP068/Cl. APDT with RLP068/Cl may be a useful approach to the treatment of PJI-associated biofilms.

  18. Bacteriophages as an alternative strategy for fighting biofilm development.

    Science.gov (United States)

    Parasion, Sylwia; Kwiatek, Magdalena; Gryko, Romuald; Mizak, Lidia; Malm, Anna

    2014-01-01

    The ability of microbes to form biofilms is an important element of their pathogenicity, and biofilm formation is a serious challenge for today's medicine. Fighting the clinical complications associated with biofilm formation is very difficult and linked to a high risk of failure, especially in a time of increasing bacterial resistance to antibiotics. Bacterial species most commonly isolated from biofilms include coagulase-negative staphylococci, Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. The frequent failure of antibiotic therapy led researchers to look for alternative methods and experiment with the use of antibacterial factors with a mechanism of action different from that of antibiotics. Experimental studies with bacteriophages and mixtures thereof, expressing lytic properties against numerous biofilm-forming bacterial species showed that bacteriophages may both prevent biofilm formation and contribute to eradication of biofilm bacteria. A specific role is played here by phage depolymerases, which facilitate the degradation of extracellular polymeric substances (EPS) and thus the permeation of bacteriophages into deeper biofilm layers and lysis of the susceptible bacterial cells. Much hope is placed in genetic modifications of bacteriophages that would allow the equipping bacteriophages with the function of depolymerase synthesis. The use of phage cocktails prevents the development of phage-resistant bacteria.

  19. Correlations between biochemical characteristics and foam-forming and -stabilizing ability of whey and casein hydrolysates.

    Science.gov (United States)

    van der Ven, Cornelly; Gruppen, Harry; de Bont, Dries B A; Voragen, Alphons G J

    2002-05-08

    Whey protein and casein were hydrolyzed with 11 commercially available enzymes. Foam properties of 44 samples were measured and were related to biochemical properties of the hydrolysates using statistical data analysis. All casein hydrolysates formed high initial foam levels, whereas whey hydrolysates differed in their foam-forming abilities. Regression analysis using the molecular weight distribution of whey hydrolysates as predictors showed that the hydrolysate fraction containing peptides of 3-5 kDa was most strongly related to foam formation. Foam stability of whey hydrolysates and of most casein hydrolysates was inferior to that of the intact proteins. The foam stability of casein hydrolysate foams was correlated to the molecular weight distribution of the hydrolysates; a high proportion of peptides >7 kDa, composed of both intact casein and high molecular weight peptides, was positively related to foam stability.

  20. Characterization of Biofilm Formation in [Pasteurella] pneumotropica and [Actinobacillus] muris Isolates of Mouse Origin.

    Science.gov (United States)

    Sager, Martin; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Benga, Laurentiu

    2015-01-01

    [Pasteurella] pneumotropica biotypes Jawetz and Heyl and [Actinobacillus] muris are the most prevalent Pasteurellaceae species isolated from laboratory mouse. However, mechanisms contributing to their high prevalence such as the ability to form biofilms have not been studied yet. In the present investigation we analyze if these bacterial species can produce biofilms in vitro and investigate whether proteins, extracellular DNA and polysaccharides are involved in the biofilm formation and structure by inhibition and dispersal assays using proteinase K, DNase I and sodium periodate. Finally, the capacity of the biofilms to confer resistance to antibiotics is examined. We demonstrate that both [P.] pneumotropica biotypes but not [A.] muris are able to form robust biofilms in vitro, a phenotype which is widely spread among the field isolates. The biofilm inhibition and dispersal assays by proteinase and DNase lead to a strong inhibition in biofilm formation when added at the initiation of the biofilm formation and dispersed pre-formed [P.] pneumotropica biofilms, revealing thus that proteins and extracellular DNA are essential in biofilm formation and structure. Sodium periodate inhibited the bacterial growth when added at the beginning of the biofilm formation assay, making difficult the assessment of the role of β-1,6-linked polysaccharides in the biofilm formation, and had a biofilm stimulating effect when added on pre-established mature biofilms of [P.] pneumotropica biotype Heyl and a majority of [P.] pneumotropica biotype Jawetz strains, suggesting that the presence of β-1,6-linked polysaccharides on the bacterial surface might attenuate the biofilm production. Conversely, no effect or a decrease in the biofilm quantity was observed by biofilm dispersal using sodium periodate on further biotype Jawetz isolates, suggesting that polysaccharides might be incorporated in the biofilm structure. We additionally show that [P.] pneumotropica cells enclosed in biofilms

  1. A study of different genotypes of streptococcus mutans clinical isolates film-forming ability in vitro%不同基因型变形链球菌临床分离株体外成膜能力研究

    Institute of Scientific and Technical Information of China (English)

    胡丹阳; 李新颖; 崔伟; 王成龙

    2016-01-01

    目的 探讨不同基因型变形链球菌菌株的致龋特性及其体外成膜规律.方法 采用微孔板培养法,对10株不同基因型菌株进行7个不同时间点成膜量的测定.结果 (1)课题小组前期分离获得的5株变链菌临床分离株,除2号菌株外,其余4株的成膜能力检测结果与前期进行的高、低致龋性的鉴定结果一致;(2)携带9号基因型菌株并不是2名儿童高发龋病的直接原因;(3)变形链球菌的体外成膜量在培养16~36 h逐渐增加,36 h达最大值,之后成膜量下降.结论 本研究验证了不同基因型变链菌临床分离株的致龋特性,为下一步研究提供了不同致龋特性的可靠菌株;分析携带有相同基因型菌株的2名儿童高发龋病的原因;分析变链菌体外成膜规律,为变链菌致龋特性的研究提供新的依据.%Objective To explore the cariogenic ability and the rule of biofilm forming of streptococcus mutans strains of different gen-otypes. Methods The microporous plate culture method was adopted to detect the amount of biofilm forming for 10 streptococcus mu-tans strains of different genotypes in seven different periods. Results (1)In addition to strain 2,the abilities of biofilm forming of the other 4 strains were in accordance with the highly or poorly cariogenic abilities. (2)Gene 9 which was carried by both of two children was not the direct reason for their high incidence of caries. (3) The vitro biofilm forming of streptococcus mutans gradually increased from 16 hours to 36 hours,reached the maximum at the 36 hours,then decreased afterwards. Conclusion Through biofilm formation assay,the cariogenic ability of 9 streptococcus mutans is identified clinical isolated strains,which offers reliable strains of different cari-ogenic abilities for further studies. The possible reason for the susceptibility of dental caries in two children who carries the same geno-type is analyzed the rule of biofilm forming of streptococcus mutans

  2. Concomitant detection of biofilm and metallo-beta-lactamases production in gram-negative bacilli

    Directory of Open Access Journals (Sweden)

    Monil Singhai

    2013-01-01

    Full Text Available Carbapenems are mainstay of treating serious multidrug resistant gram-negative biofilm-based infections. However, recent emergence of metallo-beta-lactamases (MbL producing gram-negative bacilli in different parts of world may be related to gain of virulence factors associated with biofilm production. Objectives: To explore the association of MbL and biofilm production in various gram-negative bacilli. Materials and Methods: In this study, 110 non-repetitive ceftazidime resistant gram-negative bacilli were evaluated for biofilm and MβL production. Biofilm forming ability of isolates obtained from various specimens was tested by the tube method. Disks of ceftazidime (30 μg and ceftazidime with ethylenediaminetetraacetic acid (30 μg + 750 μg, prepared in house for MβL detection were used. Chi-square test was used to study the association between biofilm and MβL production. P value <0.05 was considered significant. Results: 88 (80% bacilli had shown biofilm producing ability. The association of biofilm and MβL was significant in cases of non-fermenters as compared to enterobacteriaceae members. Conclusion: The particular combination of virulence factors (biofilm and MβL in bacteria may be a species specific effect which needs to be investigated at molecular level in detail. This may help in designing newer therapies based on interference with biofilm formation and thus countering clinical episodes of antibiotic resistance.

  3. Selection of compositions with high glass forming ability in the Ni-Nb-B alloy system

    Directory of Open Access Journals (Sweden)

    Marcio Andreato Batista Mendes

    2012-10-01

    Full Text Available A combination of an extension of the topological instability "λ criterion" and the "average electronegativity" has been recently reported in the literature to predict compositions with high glass-forming ability (GFA. In the present work, both criteria have been applied to select the Ni61.0Nb36.0B3 alloy with a high glass-forming ability. Ingots were prepared by arc-melting and were used to produce ribbons processed by the melt-spinning technique further characterized by differential scanning calorimetry (DSC, X-ray diffraction (XRD and scanning electron microscopy (SEM. The Ni61.0Nb36.0B3 alloy revealed a complete amorphization and supercooled liquid region ΔTx = 68 K. In addition, wedge-shaped samples were prepared using copper mold casting in order to determine the critical thickness for amorphous formation. Scanning electron microscopy (SEM revealed that fully amorphous samples could be obtained, reaching up to ~800 µm in thickness.

  4. Accuracy of a selection criterion for glass forming ability in the Ni–Nb–Zr system

    Energy Technology Data Exchange (ETDEWEB)

    Déo, L.P., E-mail: leonardopratavieira@gmail.com; Oliveira, M.F. de, E-mail: falcao@sc.usp.br

    2014-12-05

    Highlights: • We applied a selection in the Ni–Nb–Zr system to find alloys with high GFA. • We used the thermal parameter γ{sub m} to evaluate the GFA of alloys. • The correlation between the γ{sub m} parameter and R{sub c} in the studied system is poor. • The effect of oxygen impurity reduced dramatically the GFA of alloys. • Unknown intermetallic compounds reduced the accuracy of the criterion. - Abstract: Several theories have been developed and applied in metallic systems in order to find the best stoichiometries with high glass forming ability; however there is no universal theory to predict the glass forming ability in metallic systems. Recently a selection criterion was applied in the Zr–Ni–Cu system and it was found some correlation between experimental and theoretical data. This criterion correlates critical cooling rate for glass formation with topological instability of stable crystalline structures; average work function difference and average electron density difference among the constituent elements of the alloy. In the present work, this criterion was applied in the Ni–Nb–Zr system. It was investigated the influence of factors not considered in the calculation and on the accuracy of the criterion, such as unknown intermetallic compounds and oxygen contamination. Bulk amorphous specimens were produced by injection casting. The amorphous nature was analyzed by X-ray diffraction and differential scanning calorimetry; oxygen contamination was quantified by the inert gas fusion method.

  5. Biofilm formation of the black yeast-like fungus Exophiala dermatitidis and its susceptibility to antiinfective agents

    Science.gov (United States)

    Kirchhoff , Lisa; Olsowski, Maike; Zilmans, Katrin; Dittmer, Silke; Haase, Gerhard; Sedlacek, Ludwig; Steinmann, Eike; Buer, Jan; Rath, Peter-Michael; Steinmann, Joerg

    2017-01-01

    Various fungi have the ability to colonize surfaces and to form biofilms. Fungal biofilm-associated infections are frequently refractory to targeted treatment because of resistance to antifungal drugs. One fungus that frequently colonises the respiratory tract of cystic fibrosis (CF) patients is the opportunistic black yeast–like fungus Exophiala dermatitidis. We investigated the biofilm-forming ability of E. dermatitidis and its susceptibility to various antiinfective agents and natural compounds. We tested 58 E. dermatitidis isolates with a biofilm assay based on crystal violet staining. In addition, we used three isolates to examine the antibiofilm activity of voriconazole, micafungin, colistin, farnesol, and the plant derivatives 1,2,3,4,6-penta-O-galloyl-b-D-glucopyranose (PGG) and epigallocatechin-3-gallate (EGCG) with an XTT reduction assay. We analysed the effect of the agents on cell to surface adhesion, biofilm formation, and the mature biofilm. The biofilms were also investigated by confocal laser scan microscopy. We found that E. dermatitidis builds biofilm in a strain-specific manner. Invasive E. dermatitidis isolates form most biomass in biofilm. The antiinfective agents and the natural compounds exhibited poor antibiofilm activity. The greatest impact of the compounds was detected when they were added prior cell adhesion. These findings suggest that prevention may be more effective than treatment of biofilm-associated E. dermatitidis infections. PMID:28211475

  6. Regulation of Acinetobacter baumannii biofilm formation.

    Science.gov (United States)

    Gaddy, Jennifer A; Actis, Luis A

    2009-04-01

    Acinetobacter baumannii is a Gram-negative opportunistic nosocomial pathogen. This microorganism survives in hospital environments despite unfavorable conditions such as desiccation, nutrient starvation and antimicrobial treatments. It is hypothesized that its ability to persist in these environments, as well as its virulence, is a result of its capacity to form biofilms. A. baumannii forms biofilms on abiotic surfaces such as polystyrene and glass as well as biotic surfaces such as epithelial cells and fungal filaments. Pili assembly and production of the Bap surface-adhesion protein play a role in biofilm initiation and maturation after initial attachment to abiotic surfaces. Furthermore, the adhesion and biofilm phenotypes of some clinical isolates seem to be related to the presence of broad-spectrum antibiotic resistance. The regulation of the formation and development of these biofilms is as diverse as the surfaces on which this bacterium persists and as the cellular components that participate in this programmed multistep process. The regulatory processes associated with biofilm formation include sensing of bacterial cell density, the presence of different nutrients and the concentration of free cations available to bacterial cells. Some of these extracellular signals may be sensed by two-component regulatory systems such as BfmRS. This transcriptional regulatory system activates the expression of the usher-chaperone assembly system responsible for the production of pili, needed for cell attachment and biofilm formation on polystyrene surfaces. However, such a system is not required for biofilm formation on abiotic surfaces when cells are cultured in chemically defined media. Interestingly, the BfmRS system also controls cell morphology under particular culture conditions.

  7. Candida tropicalis Biofilms: Biomass, Metabolic Activity and Secreted Aspartyl Proteinase Production.

    Science.gov (United States)

    Negri, Melyssa; Silva, Sónia; Capoci, Isis Regina Grenier; Azeredo, Joana; Henriques, Mariana

    2016-04-01

    According to epidemiological data, Candida tropicalis has been related to urinary tract infections and haematological malignancy. Several virulence factors seem to be responsible for C. tropicalis infections, for example: their ability to adhere and to form biofilms onto different indwelling medical devices; their capacity to adhere, invade and damage host human tissues due to enzymes production such as proteinases. The main aim of this work was to study the behaviour of C. tropicalis biofilms of different ages (24-120 h) formed in artificial urine (AU) and their ability to express aspartyl proteinase (SAPT) genes. The reference strain C. tropicalis ATCC 750 and two C. tropicalis isolates from urine were used. Biofilms were evaluated in terms of culturable cells by colony-forming units enumeration; total biofilm biomass was evaluated using the crystal violet staining method; metabolic activity was evaluated by XTT assay; and SAPT gene expression was determined by real-time PCR. All strains of C. tropicalis were able to form biofilms in AU, although with differences between strains. Candida tropicalis biofilms showed a decrease in terms of the number of culturable cells from 48 to 72 h. Generally, SAPT3 was highly expressed. C. tropicalis strains assayed were able to form biofilms in the presence of AU although in a strain- and time-dependent way, and SAPT genes are expressed during C. tropicalis biofilm formation.

  8. Fluid dynamic effects on staphylococci bacteria biofilms

    Science.gov (United States)

    Sherman, Erica; Bayles, Kenneth; Endres, Jennifer; Wei, Timothy

    2016-11-01

    Staphylococcus aureus bacteria are able to form biofilms and distinctive tower structures that facilitate their ability to tolerate treatment and to spread within the human body. The formation of towers, which break off, get carried downstream and serve to initiate biofilms in other parts of the body are of particular interest here. It is known that flow conditions play a role in the development, dispersion and propagation of biofilms in general. The influence of flow on tower formation, however, is not at all understood. This work is focused on the effect of applied shear on tower development. The hypothesis being examined is that tower structures form within a specific range of shear stresses and that there is an as yet ill defined fluid dynamic phenomenon that occurs hours before a tower forms. In this study, a range of shear stresses is examined that brackets 0.6 dynes/cm2, the nominal shear stress where towers seem most likely to form. This talk will include µPTV measurements and cell density data indicating variations in flow and biofilm evolution as a function of the applied shear. Causal relations between flow and biofilm development will be discussed.

  9. Dentinal Tubule Disinfection with Propolis & Two Extracts of Azadirachta indica Against Candida albicans Biofilm Formed on Tooth Substrate

    Science.gov (United States)

    Joy Sinha, Dakshita; Garg, Paridhi; Verma, Anurag; Malik, Vibha; Maccune, Edgar Richard; Vasudeva, Agrima

    2015-01-01

    Aim: This study evaluates the disinfection of dentinal tubules using Propolis, Azadirachta indica (alcoholic and aqueous extracts), 2% chlorhexidine gel and calcium hydroxide against Candida albicans biofilm formed on tooth substrate. Materials & Method: One hundred and five human teeth were infected with Candida albicans for 2 days. Samples were divided into 7 groups. Group I- Propolis, Group II- Alcoholic extract of Azadirachta indica, Group III- Aqueous extract of Azadirachta indica, Group IV- 2% Chlorhexidine, Group V- Calcium hydroxide, Group VI- Ethanol and Group VII- Saline (negative control). At the end of 1,3 and 5 days, the antimicrobial efficacy of medicaments against Candida albicans was assessed at the depths of 200 µm and 400 µm. Results: The overall percentage inhibition of fungal growth (at 200 µm and 400 µm depth) was 99.2% with 2% chlorhexidine gel. There was no statistical difference between propolis, alcoholic extract of Azadirachta indica (neem) and 2% chlorhexidine. Conclusion: Propolis and alcoholic extract of Azadirachta indica performed equally well as that of 2% Chlorhexidine. PMID:26962368

  10. Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228).

    Science.gov (United States)

    Zhang, Yue-Qing; Ren, Shuang-Xi; Li, Hua-Lin; Wang, Yong-Xiang; Fu, Gang; Yang, Jian; Qin, Zhi-Qiang; Miao, You-Gang; Wang, Wen-Yi; Chen, Run-Sheng; Shen, Yan; Chen, Zhu; Yuan, Zheng-Hong; Zhao, Guo-Ping; Qu, Di; Danchin, Antoine; Wen, Yu-Mei

    2003-09-01

    Staphylococcus epidermidis strains are diverse in their pathogenicity; some are invasive and cause serious nosocomial infections, whereas others are non-pathogenic commensal organisms. To analyse the implications of different virulence factors in Staphylococcus epidermidis infections, the complete genome of Staphylococcus epidermidis strain ATCC 12228, a non-biofilm forming, non-infection associated strain used for detection of residual antibiotics in food products, was sequenced. This strain showed low virulence by mouse and rat experimental infections. The genome consists of a single 2499 279 bp chromosome and six plasmids. The chromosomal G + C content is 32.1% and 2419 protein coding sequences (CDS) are predicted, among which 230 are putative novel genes. Compared to the virulence factors in Staphylococcus aureus, aside from delta-haemolysin and beta-haemolysin, other toxin genes were not found. In contrast, the majority of adhesin genes are intact in ATCC 12228. Most strikingly, the ica operon coding for the enzymes synthesizing interbacterial cellular polysaccharide is missing in ATCC 12228 and rearrangements of adjacent genes are shown. No mec genes, IS256, IS257, were found in ATCC 12228. It is suggested that the absence of the ica operon is a genetic marker in commensal Staphylococcus epidermidis strains which are less likely to become invasive.

  11. Biofilm Risks

    DEFF Research Database (Denmark)

    Wirtanen, Gun Linnea; Salo, Satu

    2016-01-01

    This chapter on biofilm risks deals with biofilm formation of pathogenic microbes, sampling and detection methods, biofilm removal, and prevention of biofilm formation. Several common pathogens produce sticky and/or slimy structures in which the cells are embedded, that is, biofilms, on various s...

  12. In Vitro Interactions between Non-Steroidal Anti-Inflammatory Drugs and Antifungal Agents against Planktonic and Biofilm Forms of Trichosporon asahii.

    Directory of Open Access Journals (Sweden)

    Suteng Yang

    Full Text Available Increasing drug resistance has brought enormous challenges to the management of Trichosporon spp. infections. The in vitro antifungal activities of non-steroidal anti-inflammatory drugs (NSAIDs against Candida spp. and Cryptococcus spp. were recently discovered. In the present study, the in vitro interactions between three NSAIDs (aspirin, ibuprofen and diclofenac sodium and commonly used antifungal agents (fluconazole, itraconazole, voriconazole, caspofungin and amphotericin B against planktonic and biofilm cells of T. asahii were evaluated using the checkerboard microdilution method. The spectrophotometric method and the XTT reduction assay were used to generate data on biofilm cells. The fractional inhibitory concentration index (FICI and the ΔE model were compared to interpret drug interactions. Using the FICI, the highest percentages of synergistic effects against planktonic cells (86.67% and biofilm cells (73.33% were found for amphotericin B/ibuprofen, and caspofungin/ibuprofen showed appreciable percentages (73.33% for planktonic form and 60.00% for biofilm as well. We did not observe antagonism. The ΔE model gave consistent results with FICI (86.67%. Our findings suggest that amphotericin B/ibuprofen and caspofungin/ibuprofen combinations have potential effects against T. asahii. Further in vivo and animal studies to investigate associated mechanisms need to be conducted.

  13. Antibiofilm activity of α-amylase from Bacillus subtilis S8-18 against biofilm forming human bacterial pathogens.

    Science.gov (United States)

    Kalpana, Balu Jancy; Aarthy, Subramonian; Pandian, Shunmugiah Karutha

    2012-07-01

    The extracellular α-amylase enzyme from Bacillus subtilis S8-18 of marine origin was proved as an antibiofilm agent against methicillin-resistant Staphylococcus aureus (MRSA), a clinical strain isolated from pharyngitis patient, Vibrio cholerae also a clinical isolate from cholera patient and Pseudomonas aeruginosa ATCC10145. The spectrophotometric and microscopic investigations revealed the potential of α-amylase to inhibit biofilm formation in these pathogens. At its BIC level, the crude enzyme caused 51.81-73.07% of biofilm inhibition. Beyond the inhibition, the enzyme was also effective in degradation of preformed mature biofilm by disrupting the exopolysaccharide (EPS), an essential component in biofilm architecture. Furthermore, the enzyme purified to its homogeneity by chromatographic techniques was also effective in biofilm inhibition (43.83-61.68%) as well as in degradation of EPS. A commercial α-amylase enzyme from B. subtilis was also used for comparative purpose. Besides, the effect of various enzymes and temperature on the antibiofilm activity of amylase enzymes was also investigated. This study, for the first time, proved that α-amylase enzyme alone can be used to inhibit/disrupt the biofilms of V. cholerae and MRSA strains and beholds much promise in clinical applications.

  14. In vitro apatite-forming ability of hydrogels derived from sodium carboxymethylcellulose

    Science.gov (United States)

    Koh, M.-Y.; Morita, Y.; Miyazaki, T.; Ohtsuki, C.

    2011-10-01

    Hydrogels able to form a bone-like hydroxyapatite (HAp) layer in the body environment are attractive materials as scaffolds for tissue engineering because they show osteoconductivity, i.e. bone-bonding property. In the present study, we synthesized hydrogels from sodium carboxymethylcellulose (sCMC), a water soluble polymer, through modification with a cross-linking agent, either ethylenediamine (EDA) or 3-aminopropyltriethoxysilane (APTES), followed by treatment with an aqueous solution containing calcium chloride aqueous solution. Formation of the bone-like HAp on the hydrogels was evaluated after immersion in a simulated body fluid (SBF). Hydrogels modified with the cross-linking agents EDA or APTES, and treated with 0.1 mol/dm3 of calcium chloride aqueous solution, formed a bone-like HAp layer on their surfaces after immersion in SBF for 3 days. Modification of organic polymers rich in carboxyl groups with APTES and CaCl2 offers a new method to produce biomaterials with greater potential for forming HAp, which provides high affinity to living bone because the incorporation of silanol groups confers the high ability to induce HAp formation.

  15. COMBINED USE OF FOURIER TRANSFORM INFRARED AND RAMAN SPECTROSCOPY TO STUDY PLANKTONIC AND BIOFILM CELLS OF CRONOBACTER SAKAZAKII

    Directory of Open Access Journals (Sweden)

    Garima Sharma

    2014-02-01

    Full Text Available Cronobacter sakazakii is an opportunistic pathogen, which causes necrotizing enterocolitis, bacteriaemia and infant meningitis. It has the ability to form biofilm on food contact surfaces, creating food safety risks. In this work, the phenotypic expression of planktonic and biofilm was studied by Fourier transform infrared (FTIR and Raman spectroscopy. FTIR spectra of the biofilm cells exhibited higher intensity in the absorption bands assigned to polysaccharides, amide I, amide II vibrational mode of ester and carboxylate group. Raman spectra of the biofilm cells showed higher intensity in the absorption band assigned to tyrosine, amide III, carbohydrates, carotenoids, DNA and lipids. Understanding the chemical properties of planktonic and biofilm cells employing the two techniques helped to decipher the differences in the chemical composition between planktonic and biofilm cells. This can promote a better understanding of the persistence, survival and resistance of the biofilm cells.

  16. Biofilm formation on polystyrene under different temperatures by antibiotic resistant Enterococcus faecalis and Enterococcus faecium isolated from food.

    Science.gov (United States)

    Marinho, A R; Martins, P D; Ditmer, E M; d'Azevedo, P A; Frazzon, J; Van Der Sand, S T; Frazzon, A P G

    2013-01-01

    The ability of antibiotic resistant E. faecalis and E. faecium isolated from food to form biofilm at different temperatures in the absence or presence of 0.75% glucose was evaluated. A synergistic effect on biofilm at 10 °C, 28 °C, 37 °C and 45 °C and glucose was observed for E. faecalis and E. faecium.

  17. Biofilms and the food industry

    Directory of Open Access Journals (Sweden)

    Nathanon Trachoo

    2003-11-01

    Full Text Available In the past, interest in biofilms was limited to research related to water distribution systems, waste water treatment and dental plaques. Biofilm has become a more popular research topic in many other areas in recent years including food safety. Biofilm formation can compromise the sanitation of food surfaces and environmental surfaces by spreading detached organisms to other areas of processing plants. Unfortunately, these detached organisms are not similar to normal microorganisms suspended in an aquatic environment but are more resistant to several stresses or microbial inactivation including some food preservation methods. Microstructures of biofilms as revealed by different types of microscopic techniques showed that biofilms are highly complex and consist of many symbiotic organisms, some of which are human pathogens. This article reviewed the process of biofilm formation, the significance of biofilms on food or food contact surfaces, their ability to protect foodborne pathogens from environmental stresses and recent methods for the study of biofilms on food contact surfaces.

  18. Glass forming ability of Zr-and Fe-based alloys at quenching from melts

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The master alloy ingots(MAI)with the nominal composition Zr52.5 Ti5Cu17.9 Ni14.6Al10 and Fe61Co7Zr10Mo5W2B15(at%)were prepared by arc-melting in Ti-gettered Ar atmosphere.The Zr-based buttons of 6 mm and 9 mm in diameter were fully amorphous,but those of 13 mm in diameter experienced crystallization.The glass forming ability(GFA)of Fe-based alloys was relatively lower,and the buttons obtained were fully crystallized.The microhardness of the Zr-based buttons was about 500(Hv),and the Fe-based rod obtained by injection technique exhibited a high Vickers hardness of 1329.In addition,an amorphous-crystalline transition layers were observed in both the buttons and the rods.

  19. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength

    Institute of Scientific and Technical Information of China (English)

    ZHUO Long-Chao; PANG Shu-Jie; WANG Hui; ZHANG Tao

    2009-01-01

    Based on a new approach for designing glassy alloy compositions,bulk Al-based alloys with good glass-forming ability (GFA) are synthesized.The cast Al86Si0.5Ni4.06Co2.94 Y6Sc0.5 rod with a diameter of 1 mm shows almost fully amorphous structure besides about 5% fcc-Al nucleated in the center of the rod.The bulk alloy with high Al concentration exhibits an ultrahigh yield strength of 1.18 Gpa and maximum strength of 1.27 Gpa as well as an obvious plastic strain of about 2.4% during compressive deformation.This light Al-based alloy with good GFA and mechanical properties is promising as a new high specific strength material with good deformability.

  20. On the origin of bulk glass forming ability in Cu-Hf, Zr alloys

    Science.gov (United States)

    Ristić, Ramir; Zadro, Krešo; Pajić, Damir; Figueroa, Ignacio A.; Babić, Emil

    2016-04-01

    Understanding the formation of bulk metallic glasses (BMG) in metallic systems and finding a reliable criterion for selection of BMG compositions are among the most important issues in condensed-matter physics and material science. Using the results of magnetic susceptibility measurements performed on both amorphous and crystallized Cu-Hf alloys (30-70 at% Cu) we find a correlation between the difference in magnetic susceptibilities of corresponding glassy and crystalline alloys and the variation in the glass forming ability (GFA) in these alloys. Since the same correlation can be inferred from data for the properties associated with the electronic structure of Cu-Zr alloys, it seems quite general and may apply to other glassy alloys based on early and late transition metals. This correlation is plausible from the free-energy considerations and provides a simple way to select the compositions with high GFA.

  1. Glass forming ability and thermodynamic properties of Ti(Zr,Hf)NiCu shape memory alloys

    Science.gov (United States)

    Pasko, A.; Kolomytsev, V.; Babanly, M.; Sezonenko, A.; Ochin, P.; Portier, R.; Vermaut, Ph.

    2003-10-01

    Rapidly solidified amorphous and crystalline-amorphous ribbons have been produced from a number of quatemary Ti{50+z-x}(Zr,Hf){ x}Ni{50- z-y}Cu{ y} alloys where z =(-5, 0, 5). Structural states were checked by XRD, crystallization behaviour of amorphous phase and martensitic transformations in crystalline material were studied by DSC. The glass transition and crystallization temperatures have been measured at different heating rates, and the crystallization activation energy for each composition and heat event bas been calculated. Isothermal crystallization gives an alternative method of determining the activation energy according to the Arrhenius equation. Contradictory requirements for the conditions of martensitic transformation and good glass forming ability is discussed.

  2. Soft-ferromagnetic bulk glassy alloys with large magnetostriction and high glass-forming ability

    Directory of Open Access Journals (Sweden)

    Jiawei Li

    2011-12-01

    Full Text Available The effect of Dy addition on the glass-forming ability (GFA, magnetostriction as well as soft-magnetic properties and fracture strength in FeDyBSiNb glassy alloys was investigated. In addition to the increase of supercooled liquid region from 55 to 100 K, the addition of Dy is effective in approaching alloy to an eutectic point and increasing the saturation magnetostrction (λs. Accordingly, bulk glassy alloy (BGA rods with diameters up to 4 mm were produced, which exhibit a large λs as high as 65×10-6. Besides, the BGA system exhibits superhigh fracture strength of 4000 MPa, combined with good soft-magnetic properties.

  3. A thermodynamic approach towards glass-forming ability of amorphous metallic alloys

    Indian Academy of Sciences (India)

    Sonal R Prajapati; Supriya Kasyap; Arun Pratap

    2015-12-01

    A quantitative measure of the stability of a glass as compared to its corresponding crystalline state can be obtained by calculating the thermodynamic parameters, such as the Gibbs free energy difference (), entropy difference () and the enthalpy difference () between the super-cooled liquid and the corresponding crystalline phase. is known as the driving force of crystallization. The driving force of crystallization () provides very important information about the glass-forming ability (GFA) of metallic glasses (MGs). Lesser the driving force of crystallization more is the GFA. The varies linearly with the critical size (). According to Battezzati and Garonne the parameter ( = (1−(/))/(1−( / ))) in the expression for should be a constant (i.e., 0.8), but its uniqueness is not observed for all MGs. The thermal stability of various alloy compositions is studied by their undercooled liquid region ( = − ). Large implies greater stability against crystallization of the amorphous structure. Other GFA parameters are also calculated and correlated with critical size ().

  4. A study on the effects of some laboratory-derived genetic mutations on biofilm formation by Listeria monocytogenes

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, S.; Parvathi, A; George, J.; Krohne, G.; Karunasagar, Indrani; Karunasagar, Iddya

    Biofilms formed by the human pathogen Listeria monocytogenes in food-processing environments can be a potential source of contamination. In this study, we investigated the ability of L. monocytogenes wild type and its laboratory-derived isogenic...

  5. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display...... a remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because...... the use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  6. Effects of lactoferricin B against keratitis-associated fungal biofilms.

    Science.gov (United States)

    Sengupta, Jayangshu; Saha, Suman; Khetan, Archana; Sarkar, Sujoy K; Mandal, Santi M

    2012-10-01

    Biofilms are considered as the most important developmental characteristics in ocular infections. Biofilm eradication is a major challenge today to overcome the incidence of drug resistance. This report demonstrates the in vitro ability of biofilm formation on contact lens by three common keratitis-associated fungal pathogens, namely, Aspergillus fumigatus, Fusarium solani, and Candida albicans. Antifungal sensitivity testing performed for both planktonic cells and biofilm revealed the sessile phenotype to be resistant at MIC levels for the planktonic cells and also at higher concentrations. A prototype lens care solution was also found to be partially effective in eradication of the mature biofilm from contact lenses. Lactoferricin B (Lacf, 64 μg/ml), an antimicrobial peptide, exhibited almost no effect on the sessile phenotype. However, the combinatory effect of Lacf with antifungals against planktonic cells and biofilms of three fungal strains that were isolated from keratitis patients exhibited a reduction of antifungal dose more than eightfold. Furthermore, the effect of Lacf in lens care solution against biofilms in which those strains formed was eradicated successfully. These results suggest that lactoferricin B could be a promising candidate for clinical use in improving biofilm susceptibility to antifungals and also as an antibiofilm-antifungal additive in lens care solution.

  7. Inhibitory effects of antibiofilm compound 1 against Staphylococcus aureus biofilms.

    Science.gov (United States)

    Shrestha, Looniva; Kayama, Shizuo; Sasaki, Michiko; Kato, Fuminori; Hisatsune, Junzo; Tsuruda, Keiko; Koizumi, Kazuhisa; Tatsukawa, Nobuyuki; Yu, Liansheng; Takeda, Kei; Sugai, Motoyuki

    2016-03-01

    A novel benzimidazole molecule that was identified in a small-molecule screen and is known as antibiofilm compound 1 (ABC-1) has been found to prevent bacterial biofilm formation by multiple bacterial pathogens, including Staphylococcus aureus, without affecting bacterial growth. Here, the biofilm inhibiting ability of 156 μM ABC-1 was tested in various biofilm-forming strains of S. aureus. It was demonstrated that ABC-1 inhibits biofilm formation by these strains at micromolar concentrations regardless of the strains' dependence on Polysaccharide Intercellular Adhesin (PIA), cell wall-associated protein dependent or cell wall- associated extracellular DNA (eDNA). Of note, ABC-1 treatment primarily inhibited Protein A (SpA) expression in all strains tested. spa gene disruption showed decreased biofilm formation; however, the mutants still produced more biofilm than ABC-1 treated strains, implying that ABC-1 affects not only SpA but also other factors. Indeed, ABC-1 also attenuated the accumulation of PIA and eDNA on cell surface. Our results suggest that ABC-1 has pleotropic effects on several biofilm components and thus inhibits biofilm formation by S. aureus.

  8. Biofilm Formation and Morphotypes of Salmonella enterica subsp.arizonae Differs from Those of Other Salmonella enterica Subspecies in Isolates from Poultry Houses.

    Science.gov (United States)

    Lamas, A; Fernandez-No, I C; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M

    2016-07-01

    Salmonella serovars are responsible for foodborne diseases around the world. The ability to form biofilms allows microorganisms to survive in the environment. In this study, 73 Salmonella strains, belonging to four different subspecies, were isolated from poultry houses and foodstuffs and tested. Biofilm formation was measured at four different temperatures and two nutrient concentrations. Morphotypes and cellulose production were evaluated at three different temperatures. The presence of several genes related to biofilm production was also examined. All strains and subspecies of Salmonella had the ability to form biofilms, and 46.57% of strains produced biofilms under all conditions tested. Biofilm formation was strain dependent and varied according to the conditions. This is the first study to analyze biofilm formation in a wide number of Salmonella enterica subsp. arizonae strains, and no direct relationship between the high prevalence of Salmonella enterica subsp. arizonae strains and their ability to form biofilm was established. Morphotypes and cellulose production varied as the temperature changed, with 20°C being the optimum temperature for expression of the red, dry, and rough morphotype and cellulose. Salmonella enterica subsp. arizonae, whose morphotype is poorly studied, only showed a smooth and white morphotype and lacked the csgD and gcpA genes that are implicated in biofilm production. Thus, Salmonella biofilm formation under different environmental conditions is a public health problem because it can survive and advance through the food chain to reach the consumer.

  9. Oral multispecies biofilm development and the key role of cell-cell distance.

    Science.gov (United States)

    Kolenbrander, Paul E; Palmer, Robert J; Periasamy, Saravanan; Jakubovics, Nicholas S

    2010-07-01

    Growth of oral bacteria in situ requires adhesion to a surface because the constant flow of host secretions thwarts the ability of planktonic cells to grow before they are swallowed. Therefore, oral bacteria evolved to form biofilms on hard tooth surfaces and on soft epithelial tissues, which often contain multiple bacterial species. Because these biofilms are easy to study, they have become the paradigm of multispecies biofilms. In this Review we describe the factors involved in the formation of these biofilms, including the initial adherence to the oral tissues and teeth, cooperation between bacterial species in the biofilm, signalling between the bacteria and its role in pathogenesis, and the transfer of DNA between bacteria. In all these aspects distance between cells of different species is integral for oral biofilm growth.

  10. Computational studies of the glass-forming ability of model bulk metallic glasses.

    Science.gov (United States)

    Zhang, Kai; Wang, Minglei; Papanikolaou, Stefanos; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D; O'Hern, Corey S

    2013-09-28

    Bulk metallic glasses (BMGs) are produced by rapidly thermally quenching supercooled liquid metal alloys below the glass transition temperature at rates much faster than the critical cooling rate R(c) below which crystallization occurs. The glass-forming ability of BMGs increases with decreasing R(c), and thus good glass-formers possess small values of R(c). We perform molecular dynamics simulations of binary Lennard-Jones (LJ) mixtures to quantify how key parameters, such as the stoichiometry, particle size difference, attraction strength, and heat of mixing, influence the glass-formability of model BMGs. For binary LJ mixtures, we find that the best glass-forming mixtures possess atomic size ratios (small to large) less than 0.92 and stoichiometries near 50:50 by number. In addition, weaker attractive interactions between the smaller atoms facilitate glass formation, whereas negative heats of mixing (in the experimentally relevant regime) do not change R(c) significantly. These results are tempered by the fact that the slowest cooling rates achieved in our simulations correspond to ~10(11) K/s, which is several orders of magnitude higher than R(c) for typical BMGs. Despite this, our studies represent a first step in the development of computational methods for quantitatively predicting glass-formability.

  11. Computational studies of the glass-forming ability of model bulk metallic glasses

    Science.gov (United States)

    Zhang, Kai; Wang, Minglei; Papanikolaou, Stefanos; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D.; O'Hern, Corey S.

    2013-09-01

    Bulk metallic glasses (BMGs) are produced by rapidly thermally quenching supercooled liquid metal alloys below the glass transition temperature at rates much faster than the critical cooling rate Rc below which crystallization occurs. The glass-forming ability of BMGs increases with decreasing Rc, and thus good glass-formers possess small values of Rc. We perform molecular dynamics simulations of binary Lennard-Jones (LJ) mixtures to quantify how key parameters, such as the stoichiometry, particle size difference, attraction strength, and heat of mixing, influence the glass-formability of model BMGs. For binary LJ mixtures, we find that the best glass-forming mixtures possess atomic size ratios (small to large) less than 0.92 and stoichiometries near 50:50 by number. In addition, weaker attractive interactions between the smaller atoms facilitate glass formation, whereas negative heats of mixing (in the experimentally relevant regime) do not change Rc significantly. These results are tempered by the fact that the slowest cooling rates achieved in our simulations correspond to ˜1011 K/s, which is several orders of magnitude higher than Rc for typical BMGs. Despite this, our studies represent a first step in the development of computational methods for quantitatively predicting glass-formability.

  12. Thermodynamic model for glass forming ability of ternary metallic glass systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The thermodynamic model of multicomponent chemical short range order (MCSRO) was established in order to evaluate the glass forming ability (GFA) of ternary alloys. Comprehensive numerical calculations using MSCRO software were conducted to obtain the composition dependence of the MCSRO undercooling in Zr-Ni-Cu, Zr-Si-Cu and Pd-Si-Cu ternary systems. By the MCSRO undercooling principle, the composition range of Zr-Ni-Cu system with optimum GFA is determined to be 62.5~75Zr, 5~20Cu, 12.5~25Ni (n(Ni)/n(Cu)=1~5). The TTT curves of Zr-Ni-Cu system were also calculated based on the MCSRO model. The critical cooling rates for Zr-based alloy with deep MSCRO undercooling are estimated to be as low as 100?K/s, which is consistent with the practical cooling rate in the preparation of Zr-based bulk metallic glass (BMG). The calculation also illustrates that the easy glass forming systems such as Pd-based alloys exhibit an extraordinary deep MCSRO undercooling. It is shown that the thermodynamic model of MCSRO provides an effective method for the alloy designing of BMG.

  13. Dam methylation is required for efficient biofilm production in Salmonella enterica serovar Enteritidis.

    Science.gov (United States)

    Aya Castañeda, María del Rosario; Sarnacki, Sebastián Hernán; Noto Llana, Mariángeles; López Guerra, Adriana Gabriela; Giacomodonato, Mónica Nancy; Cerquetti, María Cristina

    2015-01-16

    The ecological success of Salmonella enterica to survive in different environments is due, in part, to the ability to form biofilms, something which is especially important for food industry. The aim of the current study was to evaluate the involvement of Dam methylation in biofilm production in S. Enteritidis strains. The ability to generate biofilms was analyzed in wild type and dam mutant strains. In S. Enteritidis, the absence of Dam affected the capacity to develop pellicles at the air-liquid interface and reduced the ability to form biofilm on polystyrene surfaces. Curli and cellulose production, determined by Congo red and calcofluor assays, were affected in dam mutant strains. Relative quantitative real-time PCR experiments showed that the expression of csgD and csgA genes is reduced in mutants lacking dam gene with respect to the wild type strains, whereas transcript levels of bcsA are not affected in the absence of Dam. To our knowledge, this is the first report on the participation of Dam methylation on biofilm production in Enteritidis or any other serovar of S. enterica. Results presented here suggest that changes in gene expression required for biofilm production are finely regulated by Dam methylation. Thus, Dam methylation could modulate csgD expression and upregulate the expression of factors related with biofilm production, including curli and cellulose. This study contributes to the understanding of biofilm regulation in Salmonella spp. and to the design of new strategies to prevent food contamination and humans and animals infections.

  14. Combating biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong;

    2012-01-01

    Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life...... is believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review......, strategies to control biofilms are discussed, including those of inhibition of microbial attachment, interference of biofilm structure development and differentiation, killing of biofilm cells and induction of biofilm dispersion....

  15. Variability in biofilm formation correlates with hydrophobicity and quorum sensing among Vibrio parahaemolyticus isolates from food contact surfaces and the distribution of the genes involved in biofilm formation.

    Science.gov (United States)

    Mizan, Md Furkanur Rahaman; Jahid, Iqbal Kabir; Kim, Minhui; Lee, Ki-Hoon; Kim, Tae Jo; Ha, Sang-Do

    2016-01-01

    Vibrio parahaemolyticus is one of the leading foodborne pathogens causing seafood contamination. Here, 22 V. parahaemolyticus strains were analyzed for biofilm formation to determine whether there is a correlation between biofilm formation and quorum sensing (QS), swimming motility, or hydrophobicity. The results indicate that the biofilm formation ability of V. parahaemolyticus is positively correlated with cell surface hydrophobicity, autoinducer (AI-2) production, and protease activity. Field emission scanning electron microscopy (FESEM) showed that strong-biofilm-forming strains established thick 3-D structures, whereas poor-biofilm-forming strains produced thin inconsistent biofilms. In addition, the distribution of the genes encoding pandemic clone factors, type VI secretion systems (T6SS), biofilm functions, and the type I pilus in the V. parahaemolyticus seafood isolates were examined. Biofilm-associated genes were present in almost all the strains, irrespective of other phenotypes. These results indicate that biofilm formation on/in seafood may constitute a major factor in the dissemination of V. parahaemolyticus and the ensuing diseases.

  16. A combination of cis-2-decenoic acid and antibiotics eradicates pre-established catheter-associated biofilms.

    Science.gov (United States)

    Rahmani-Badi, Azadeh; Sepehr, Shayesteh; Mohammadi, Parisa; Soudi, Mohammad Reza; Babaie-Naiej, Hamta; Fallahi, Hossein

    2014-11-01

    The catheterized urinary tract provides ideal conditions for the development of biofilm populations. Catheter-associated urinary tract infections (CAUTIs) are recalcitrant to existing antimicrobial treatments; therefore, established biofilms are not eradicated completely after treatment and surviving biofilm cells will carry on the infection. Cis-2-decenoic acid (CDA), an unsaturated fatty acid, is capable of inhibiting biofilm formation by Pseudomonas aeruginosa and of inducing the dispersion of established biofilms by multiple types of micro-organisms. Here, the ability of CDA to induce dispersal in pre-established single- and dual-species biofilms formed by Escherichia coli and Klebsiella pneumoniae was measured by using both semi-batch and continuous cultures bioassays. Removal of the biofilms by combined CDA and antibiotics (ciprofloxacin or ampicillin) was evaluated using microtitre plate assays (crystal violet staining). The c.f.u. counts were determined to assess the potential of combined CDA treatments to kill and eradicate pre-established biofilms formed on catheters. The effects of combined CDA treatments on biofilm surface area and bacteria viability were evaluated using fluorescence microscopy, digital image analysis and live/dead staining. To investigate the ability of CDA to prevent biofilm formation, single and mixed cultures were grown in the presence and absence of CDA. Treatment of pre-established biofilms with only 310 nM CDA resulted in at least threefold increase in the number of planktonic cells in all cultures tested. Whilst none of the antibiotics alone exerted a significant effect on c.f.u. counts and percentage of surface area covered by the biofilms, combined CDA treatments led to at least a 78% reduction in biofilm biomass in all cases. Moreover, most of the biofilm cells remaining on the surface were killed by antibiotics. The addition of 310 nM CDA significantly prevented biofilm formation by the tested micro-organisms, even within

  17. Streptokinase Treatment Reverses Biofilm-Associated Antibiotic Resistance in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Nis Pedersen Jørgensen

    2016-09-01

    Full Text Available Biofilms formed by Staphylococcus aureus is a serious complication to the use of medical implants. A central part of the pathogenesis relies on S. aureus’ ability to adhere to host extracellular matrix proteins, which adsorb to medical implants and stimulate biofilm formation. Being coagulase positive, S. aureus furthermore induces formation of fibrin fibers from fibrinogen in the blood. Consequently, we hypothesized that fibrin is a key component of the extracellular matrix of S. aureus biofilms under in vivo conditions, and that the recalcitrance of biofilm infections can be overcome by combining antibiotic treatment with a fibrinolytic drug. We quantified S. aureus USA300 biofilms grown on peg-lids in brain heart infusion (BHI broth with 0%–50% human plasma. Young (2 h and mature (24 h biofilms were then treated with streptokinase to determine if this lead to dispersal. Then, the minimal biofilm eradication concentration (MBEC of 24 h old biofilms was measured for vancomycin and daptomycin alone or in combination with 10 µg/mL rifampicin in the presence or absence of streptokinase in the antibiotic treatment step. Finally, biofilms were visualized by confocal laser scanning microscopy. Addition of human plasma stimulated biofilm formation in BHI in a dose-dependent manner, and biofilms could be partially dispersed by streptokinase. The biofilms could be eradicated with physiologically relevant concentrations of streptokinase in combination with rifampicin and vancomycin or daptomycin, which are commonly used antibiotics for treatment of S. aureus infections. Fibronolytic drugs have been used to treat thromboembolic events for decades, and our findings suggest that their use against biofilm infections has the potential to improve the efficacy of antibiotics in treatment of S. aureus biofilm infections.

  18. Streptokinase Treatment Reverses Biofilm-Associated Antibiotic Resistance in Staphylococcus aureus

    Science.gov (United States)

    Jørgensen, Nis Pedersen; Zobek, Natalia; Dreier, Cindy; Haaber, Jakob; Ingmer, Hanne; Larsen, Ole Halfdan; Meyer, Rikke L.

    2016-01-01

    Biofilms formed by Staphylococcus aureus is a serious complication to the use of medical implants. A central part of the pathogenesis relies on S. aureus’ ability to adhere to host extracellular matrix proteins, which adsorb to medical implants and stimulate biofilm formation. Being coagulase positive, S. aureus furthermore induces formation of fibrin fibers from fibrinogen in the blood. Consequently, we hypothesized that fibrin is a key component of the extracellular matrix of S. aureus biofilms under in vivo conditions, and that the recalcitrance of biofilm infections can be overcome by combining antibiotic treatment with a fibrinolytic drug. We quantified S. aureus USA300 biofilms grown on peg-lids in brain heart infusion (BHI) broth with 0%–50% human plasma. Young (2 h) and mature (24 h) biofilms were then treated with streptokinase to determine if this lead to dispersal. Then, the minimal biofilm eradication concentration (MBEC) of 24 h old biofilms was measured for vancomycin and daptomycin alone or in combination with 10 µg/mL rifampicin in the presence or absence of streptokinase in the antibiotic treatment step. Finally, biofilms were visualized by confocal laser scanning microscopy. Addition of human plasma stimulated biofilm formation in BHI in a dose-dependent manner, and biofilms could be partially dispersed by streptokinase. The biofilms could be eradicated with physiologically relevant concentrations of streptokinase in combination with rifampicin and vancomycin or daptomycin, which are commonly used antibiotics for treatment of S. aureus infections. Fibronolytic drugs have been used to treat thromboembolic events for decades, and our findings suggest that their use against biofilm infections has the potential to improve the efficacy of antibiotics in treatment of S. aureus biofilm infections. PMID:27681928

  19. Biofilm formation on tympanostomy tubes depends on methicillin-resistant Staphylococcus aureus genetic lineage.

    Science.gov (United States)

    Jotić, Ana; Božić, Dragana D; Milovanović, Jovica; Pavlović, Bojan; Ješić, Snežana; Pelemiš, Mijomir; Novaković, Marko; Ćirković, Ivana

    2016-03-01

    Bacterial biofilm formation has been implicated in the high incidence of persistent otorrhoea after tympanostomy tube insertion. The aim of the study was to investigate whether biofilm formation on tympanostomy tubes depends on the genetic profile of methicillin-resistant Staphylococcus aureus (MRSA) strains. Capacity of biofilm formation on fluoroplastic tympanostomy tubes (TTs) was tested on 30 MRSA strains. Identification and methicillin resistance were confirmed by PCR for nuc and mecA genes. Strains were genotypically characterised (SCCmec, agr and spa typing). Biofilm formation was tested in microtiter plate and on TTs. Tested MRSA strains were classified into SCCmec type I (36.7 %), III (23.3 %), IV (26.7 %) and V (13.3 %), agr type I (50 %), II (36.7 %) and III (13.3 %), and 5 clonal complexes (CCs). All tested MRSA strains showed ability to form biofilm on microtiter plate. Capacity of biofilm formation on TTs was as following: 13.3 % of strains belonged to the category of no biofilm producers, 50 % to the category of weak biofilm producers and 36.7 % to moderate biofilm producers. There was a statistically significant difference between CC, SCCmec and agr types and the category of biofilm production on TTs tubes (p biofilm, and CC8 and agrI type with a low amount of biofilm. Biofilm formation by MRSA on TTs is highly dependent on genetic characteristics of the strains. Therefore, MRSA genotyping may aid the determination of the possibility of biofilm-related post-tympanostomy tube otorrhea.

  20. Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation.

    Science.gov (United States)

    Lattif, Ali Abdul; Mukherjee, Pranab K; Chandra, Jyotsna; Roth, Mary R; Welti, Ruth; Rouabhia, Mahmoud; Ghannoum, Mahmoud A

    2011-11-01

    Candida albicans-associated bloodstream infections are linked to the ability of this yeast to form biofilms. In this study, we used lipidomics to compare the lipid profiles of C. albicans biofilms and planktonic cells, in early and mature developmental phases. Our results showed that significant differences exist in lipid composition in both developmental phases. Biofilms contained higher levels of phospholipid and sphingolipids than planktonic cells (nmol per g biomass, Pbiofilms compared to planktonic cells (P≤0.05). The ratio of phosphatidylcholine to phosphatidylethanolamine was lower in biofilms compared to planktonic cells in both early (1.17 vs 2.52, P≤0.001) and late (2.34 vs 3.81, P≤0.001) developmental phases. The unsaturation index of phospholipids decreased with time, with this effect being particularly strong for biofilms. Inhibition of the biosynthetic pathway for sphingolipid [mannosyl diinositolphosphoryl ceramide, M(IP)₂C] by myriocin or aureobasidin A, and disruption of the gene encoding inositolphosphotransferase (Ipt1p), abrogated the ability of C. albicans to form biofilms. The differences in lipid profiles between biofilms and planktonic Candida cells may have important implications for the biology and antifungal resistance of biofilms.

  1. 同源性金黄色葡萄球菌生物被膜形成能力比较%Biofilm formation ability of homologous Staphylococcus aureus strains : a comparative study

    Institute of Scientific and Technical Information of China (English)

    孔晋亮; 张东伟; 陈一强; 闫萍; 蔡双启; 简丽娟

    2013-01-01

    目的 比较临床分离同源性金黄色葡萄球菌(SAU)的黏附及生物被膜(BF)形成能力差异.方法 刚果红平板法定性能形成BF的菌株;建立SAU的BF体外静置模型,分别于建模第1、3、7天,采用结晶紫染色方法,比较临床分离同源性SAU的黏附及BF形成能力差异.结果 临床分离10株同源性SAU中,刚果红平板法定性可全部形成BF;SAU 17546的黏附及形成早期BF能力最强(P<0.001),而SAU 17422最弱(P<0.001);形成成熟BF能力,仍以SAU 17546最强(P<0.001),但SAU 17642与17546比较,两者极近似(P =0.495);SAU 17422形成BF能力最弱,但是与17431、18541-2、18558、18565、18719等菌株差异无统计学意义.结论 刚果红平板法可定性SAU形成BF菌株,同源性SAU黏附及形成BF的能力存在差异.%OBJECTIVE To compare the adhesion and the abilities of biofilm formation of the homologous clinical isolates of Staphylococcus aureus. METHODS Congo red plate method was used to detect strains The in vitro biofilm model of S. aureus was established, and the crystal violet staining biofilm semi-quantitative method was employed to compare the adhesion and biofilm formation abilities of the homologous S. aureus. RESULTS Totally 10 strains of homologous S. aureus were biofilm formation-positive, which were isolated from the clinic. The ability of adhesion and early biofilm formation of S. aureus 17546 was the strongest (P<0. 001), but S. aureus 17422's was the weakest (P<0. 001). As for the formation ability of the mature biofilm, S. aureus 17546 was the most powerful (P<0. 001), S. aureus 17642 was extremely similar to strain 17546(P=0. 495). the biofilm formation ability of S. aureus 17422 was the weakest, but as compared with S. aureus 17431, S. aureus 18541-2, S. aureus 18558, S. aureus 18565 and S. aureus 18719, the difference was not statistically significant. CONCLUSION Congo red plate method can detect the S. aureus strains of BF formation. All the homologous S

  2. Relationship between color and pigment production in two stone biofilm-forming cyanobacteria (Nostoc sp. PCC 9104 and Nostoc sp. PCC 9025).

    Science.gov (United States)

    Sanmartín, P; Aira, N; Devesa-Rey, R; Silva, B; Prieto, B

    2010-07-01

    Previous studies have provided evidence that color measurements enable on site quantification of superficial biofilms, thereby avoiding the need for sampling. In the present study, the efficiency of color measurements to evaluate to what extent pigment production is affected by environmental parameters such as light intensity, combined nitrogen and nutrient availability, was tested with two cyanobacteria, Nostoc sp. strains PCC 9104 and PCC 9025, which form biofilms on stone. Both strains were acclimated, in aerated batch cultures for 2 weeks, to three different culture media: BG-11, BG-11(0), and BG-11(0)/10 at either high or low light intensity. The content of chlorophyll a, carotenoids, and phycocyanins was measured throughout the experiment, together with variations in the color of the cyanobacteria, which were represented in the CIELAB color space. The results confirmed that the CIELAB color parameters are correlated with pigment content in such a way that variations in the latter are reflected as variations in color.

  3. Strain-specific colonization patterns and serum modulation of multi-species oral biofilm development.

    Science.gov (United States)

    Biyikoğlu, Basak; Ricker, Austin; Diaz, Patricia I

    2012-08-01

    Periodontitis results from an ecological shift in the composition of subgingival biofilms. Subgingival community maturation is modulated by inter-organismal interactions and the relationship of communities with the host. In an effort to better understand this process, we evaluated biofilm formation, with oral commensal species, by three strains of the subgingivally prevalent microorganism Fusobacterium nucleatum and four strains of the periodontopathogen Porphyromonas gingivalis. We also tested the effect of serum, which resembles gingival exudates, on subgingival biofilms. Biofilms were allowed to develop in flow cells using salivary medium. We found that although not all strains of F. nucleatum were able to grow in mono-species biofilms, forming a community with health-associated partners Actinomyces oris and Veillonella parvula promoted biofilm growth of all F. nucleatum strains. Strains of P. gingivalis also showed variable ability to form mono-species biofilms. P. gingivalis W50 and W83 did not form biofilms, while ATCC 33277 and 381 formed biofilm structures, but only strain ATCC 33277 grew over time. Unlike the enhanced growth of F. nucleatum with the two health-associated species, no strain of P. gingivalis grew in three-species communities with A. oris and V. parvula. However, addition of F. nucleatum facilitated growth of P. gingivalis ATCC 33277 with health-associated partners. Importantly, serum negatively affected the adhesion of F. nucleatum, while it favored biofilm growth by P. gingivalis. This work highlights strain specificity in subgingival biofilm formation. Environmental factors such as serum alter the colonization patterns of oral microorganisms and could impact subgingival biofilms by selectively promoting pathogenic species.

  4. In Vitro Biofilm Formation by Uropathogenic Bacteria and their Antibiotic Susceptibility Pattern

    Directory of Open Access Journals (Sweden)

    Somya Verma

    2016-07-01

    Full Text Available Background: Uropathogens have an ability to form biofilm in urinary tract. Microorganisms growing in biofilm are associated with chronic and recurrent UTI. They are highly resistant to a variety of antimicrobial agents. There are different phenotypic methods to detect biofilm production like Tube Adherence Method (TAM, Congo Red Agar Method (CRAM, Tissue Culture Plate Method (TCPM, etc. Aim and Objectives: The purpose of the study was to observe biofilm formation by uropathogens, their antibiotic resistance pattern and to correlate biofilm formation with drug resistance. Material and Methods: Total 168 isolates were collected from urine over six months. They were subjected to AST by Kirby Bauer disc diffusion method. Detection of biofilm production was done by TAM, CRAM, and TCPM. Results: Escherichia coli was the commonest isolate. Of the 68 clinical isolates, 54% were positive for biofilm production by TAM, 58% by CRAM, and 66% by TCPM. Compared to non-biofilm producers higher antibiotic resistance was observed among biofilm producers. TCPM was found to be more accurate. Conclusion: E. coli was the most frequent isolate. Biofilm producers were found to be resistant for multiple drugs. TCPM was found to be more quantitative and reliable

  5. Biofilm Formation in Staphylococcus Aureus and its Relation to Phenotypic and Genotypic Criteria

    Directory of Open Access Journals (Sweden)

    Hasannejad Bibalan, M. (MSc

    2014-09-01

    Full Text Available Background and Objective: Biofilm is a complex microbial community embedded in a self-produced extracellular polymeric matrix. We aimed to study the extent of biofilm formation by S. Areas isolates and its relation to some phenotypic and genotypic criteria. Material and Methods: One hundred-fifty strains of Staphylococcus aureus isolated from Gorgan were studied. Microtiter plate assay method was used for investigation of biofilm formation.The biofilm formation of strains were recorded and its relation to accessory gene regulator (agr and antibiotic resistance were assessed by X2 test. Results: Eighty-four isolates (56% were able to form biofilm. The strength of biofilm formation in agr group I was more than that of other groups. The biofilm formation among S. Areas isolated from the wound and urine (both with 75 % had the highest capability. Methicillin-resistant isolates had a greater ability to biofilm formation. Conclusion: Methicillin resistant isolates had a greater ability to biofilm formation. Given the importance and treatment related problems of Methicillin-Resistant Staphylococcus Aureus (MRSA especially Community Acquired-Methicillin-Resistant Staphylococcus Aureus (CA-MRSA, it is a necessity to control or remove the biofilm formation alongside antibiotic treatment.

  6. Potential of Ocimum basilicum L. and Salvia officinalis L. essential oils against biofilms of P. aeruginosa clinical isolates.

    Science.gov (United States)

    Stojanović-Radić, Z; Pejcić, M; Stojanović, N; Sharifi-Rad, J; Stanković, N

    2016-08-29

    Biofilms are complex communities of microorganisms, responsible for more than 60% of the chronic human infections and they represent one of the leading concerns in medicine. Pseudomonas aeruginosa is human pathogenic bacteria which causes numerous diseases and is known for its ability to produce biofilm. Ocimum basilicum L. (basil) and Salvia officinalis L. (sage) are widely used plants in traditional medicine for the treatment of different conditions. Therefore, the aim of this study was to investigate the potential of basil and sage essential oils against P. aeruginosa biofilm producing strains. The efficacy of two essential oils on P. aeruginosa biofilm forming ability was determined using crystal violet method. Out of 15 strains isolated from different clinical biological samples, two were strong, 11 moderate and one weak biofilm producer. Good efficacy of sage essential oil towards strong and weak biofilm producers, but not of basil essential oil, was observed. In the case of moderate biofilm producers, 81.8% showed lower biofilm production after incubation with the sage oil, while 63.6% showed the reduction of biofilm production after basil essential oil treatment. The obtained results showed high potential of both oils for the treatment of persistent infections caused by Pseudomonas aeruginosa biofilms.

  7. Biofilm formation of the L. monocytogenes strain 15G01 is influenced by changes in environmental conditions.

    Science.gov (United States)

    Nowak, Jessika; Cruz, Cristina D; Palmer, Jon; Fletcher, Graham C; Flint, Steve

    2015-12-01

    Listeria monocytogenes 15G01, a strain belonging to the persistent pulsotype 5132, was isolated from a seafood processing plant in New Zealand. Simple monoculture assays using crystal violet staining showed good biofilm formation for this strain and it was therefore chosen to be further investigated in regard to its biofilm forming ability. To evaluate its behaviour in different conditions commonly encountered in food processing environments, biofilm assays and growth studies were performed using common laboratory media under a range of temperatures (20 °C, 30 °C and 37 °C). Furthermore, the effects of incubation time and different environmental conditions including static, dynamic and anaerobic incubation on biofilm formation were investigated. Changes in the environmental conditions resulted in different biofilm phenotypes of L. monocytogenes 15G01. We demonstrated that increasing temperature and incubation time led to a higher biofilm mass and that dynamic incubation has little effect on biofilm formation at 37 °C but encourages biofilm formation at 30 °C. Biofilm production at 20 °C was minimal regardless of the medium used. We furthermore observed that anaerobic environment led to reduced biofilm mass at 30 °C for all tested media but not at 37 °C. Biofilm formation could not be narrowed down to one factor but was rather dependent on multiple factors with temperature and medium having the biggest effects.

  8. Biofilm monitoring using complex permittivity.

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Susan Jeanne; McGrath, Lucas K.; Dolan, Patricia L.; Yelton, William Graham

    2008-10-01

    There is strong interest in the detection and monitoring of bio-fouling. Bio-fouling problems are common in numerous water treatments systems, medical and dental apparatus and food processing equipment. Current bio-fouling control protocols are time consuming and costly. New early detection techniques to monitor bio-forming contaminates are means to enhanced efficiency. Understanding the unique dielectric properties of biofilm development, colony forming bacteria and nutrient background will provide a basis to the effectiveness of controlling or preventing biofilm growth. Dielectric spectroscopy measurements provide values of complex permittivity, {var_epsilon}*, of biofilm formation by applying a weak alternating electric field at various frequencies. The dielectric characteristic of the biofilm, {var_epsilon}{prime}, is the real component of {var_epsilon}* and measures the biofilm's unique ability to store energy. Graphically observed dependencies of {var_epsilon}{prime} to frequency indicate dielectric relaxation or dielectric dispersion behaviors that mark the particular stage of progression during the development of biofilms. In contrast, any frequency dependency of the imaginary component, {var_epsilon}{double_prime} the loss factor, is expressed as dielectric losses from the biofilm due to dipole relaxation. The tangent angle of these two component vectors is the ratio of the imaginary component to the real component, {var_epsilon}{double_prime}/{var_epsilon}{prime} and is referred to as the loss angle tangent (tan {delta}) or dielectric loss. Changes in tan {delta} are characteristic of changes in dielectric losses during various developmental stages of the films. Permittivity scans in the above figure are of biofilm growth from P. Fluorescens (10e7 CFU's at the start). Three trends are apparent from these scans, the first being a small drop in the imaginary permittivity over a 7 hours period, best seen in the Cole-Cole plot (a). The second trend

  9. Cellulose production, activated by cyclic di-GMP through BcsA and BcsZ, is a virulence factor and an essential determinant of the three-dimensional architectures of biofilms formed by Erwinia amylovora Ea1189.

    Science.gov (United States)

    Castiblanco, Luisa F; Sundin, George W

    2016-10-18

    Bacterial biofilms are multicellular aggregates encased in an extracellular matrix mainly composed of exopolysaccharides (EPSs), protein and nucleic acids, which determines the architecture of the biofilm. Erwinia amylovora Ea1189 forms a biofilm inside the xylem of its host, which results in vessel plugging and water transport impairment. The production of the EPSs amylovoran and levan is critical for the formation of a mature biofilm. In addition, cyclic dimeric GMP (c-di-GMP) has been reported to positively regulate amylovoran biosynthesis and biofilm formation in E. amylovora Ea1189. In this study, we demonstrate that cellulose is synthesized by E. amylovora Ea1189 and is a major modulator of the three-dimensional characteristics of biofilms formed by this bacterium, and also contributes to virulence during systemic host invasion. In addition, we demonstrate that the activation of cellulose biosynthesis in E. amylovora is a c-di-GMP-dependent process, through allosteric binding to the cellulose catalytic subunit BcsA. We also report that the endoglucanase BcsZ is a key player in c-di-GMP activation of cellulose biosynthesis. Our results provide evidence of the complex composition of the extracellular matrix produced by E. amylovora and the implications of cellulose biosynthesis in shaping the architecture of the biofilm and in the expression of one of the main virulence phenotypes of this pathogen.

  10. Investigating the Effectiveness of Centaureacyanus Extracts on Planktonic Growth and Biofilm Structures of Six Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Z Mohsenipour

    2014-10-01

    Full Text Available Introduction: Nowadays, the treatments of infectious disease are regarded difficult due to increasing antibiotic resistance among pathogenic bacteria, which the reason may be placing of microorganisms in a structure named biofilm. Biofilms are complex structures consisting of surface-attached bacteria. Therefore, it is essential to find new compounds in order to remove and inhibit biofilms. This study aimed to examine the antibacterial activities of alcoholic extracts of Centaurea cyanus on the biofilm structures and planktonic form of six pathogen bacteria(Staphylococcusaureus, Bacilluscereus, Streptococcuspneumoniae, Pseudomonasaeruginosa, Escherichiacoli and Klebsiellapneumonia. Methods: Antimicrobial activities of the alcoholic plant extracts against the planktonic form of bacteria were assessed via using the disc diffusion method. MIC and MBC values were determined by a macrobroth dilution technique and anti-biofilm effects were scrutinized by microtiter plate method. Results: The results of this study confirmed high ability of C.cyanus extracts against the biofilm of the tested bacteria as well as their free-living forms. To inhibit bacterial growth, ethanolic extracts proved to be more effective than methanolic extracts. Anti-biofilm effects of plant extracts were associated with the solvent type and extract concentration. C.cyanus extracts were reported to be most efficient to inhibit biofilm formation of E. coli (84/26% and S. pneumoniae(83/14%. The greatest eradication of biofilm structures were observed on S. pneumonia biofilm (75.66%, and the highest decrease in metabolic activity was reported in S.aureus biofilms (71/85%. Conclusion: In this study the high capacity of C. cyanus extracts to encounter with whit biofilm was emphasized. Moreover, it was demonstrated that these extracts possess an appropriate potential to become active principles of new drugs.

  11. New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry.

    Science.gov (United States)

    Coughlan, Laura M; Cotter, Paul D; Hill, Colin; Alvarez-Ordóñez, Avelino

    2016-01-01

    Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated

  12. New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry

    Science.gov (United States)

    Coughlan, Laura M.; Cotter, Paul D.; Hill, Colin; Alvarez-Ordóñez, Avelino

    2016-01-01

    Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated

  13. New weapons to fight old enemies: novel strategies for the (biocontrol of bacterial biofilms in the food industry

    Directory of Open Access Journals (Sweden)

    Laura Maria Coughlan

    2016-10-01

    Full Text Available Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances (EPS, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc., although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses

  14. Hippocampal pathway plasticity is associated with the ability to form novel memories in older adults

    Directory of Open Access Journals (Sweden)

    Daria eAntonenko

    2016-03-01

    Full Text Available White matter deterioration in the aging human brain contributes to cognitive decline. The fornix as main efferent hippocampal pathway is one of the tracts most strongly associated with age-related memory impairment. Its deterioration may predict conversion to Alzheimer’s dementia and its precursors. However, the associations between the ability to form novel memories, fornix microstructure and plasticity in response to training have never been tested. In the present study, 25 healthy older adults (15 women; mean age (SD: 69 (6 years underwent an object-location training on three consecutive days. Behavioral outcome measures comprised recall performance on the training days, and on 1-day and 1-month follow up assessments. MRI at 3 Tesla was assessed before and after training. Fornix microstructure was determined by fractional anisotropy and mean diffusivity values from diffusion tensor imaging (DTI. In addition, hippocampal volumes were extracted from high-resolution images; individual hippocampal masks were further aligned to DTI images to determine hippocampal microstructure. Using linear mixed model analysis, we found that the change in fornix FA from pre- to post-training assessment was significantly associated with training success. Neither baseline fornix microstructure nor hippocampal microstructure or volume changes were significantly associated with performance. Further, models including control task performance (auditory verbal learning and control white matter tract microstructure (uncinate fasciculus and parahippocampal cingulum did not yield significant associations. Our results confirm that hippocampal pathways respond to short-term cognitive training, and extend previous findings by demonstrating that the magnitude of training-induced structural changes is associated with behavioral success in older adults. This suggests that the amount of fornix plasticity may not only be behaviorally relevant, but also a potential sensitive

  15. Relationship between topological order and glass forming ability in densely packed enstatite and forsterite composition glasses.

    Science.gov (United States)

    Kohara, S; Akola, J; Morita, H; Suzuya, K; Weber, J K R; Wilding, M C; Benmore, C J

    2011-09-06

    The atomic structures of magnesium silicate melts are key to understanding processes related to the evolution of the Earth's mantle and represent precursors to the formation of most igneous rocks. Magnesium silicate compositions also represent a major component of many glass ceramics, and depending on their composition can span the entire fragility range of glass formation. The silica rich enstatite (MgSiO(3)) composition is a good glass former, whereas the forsterite (Mg(2)SiO(4)) composition is at the limit of glass formation. Here, the structure of MgSiO(3) and Mg(2)SiO(4) composition glasses obtained from levitated liquids have been modeled using Reverse Monte Carlo fits to diffraction data and by density functional theory. A ring statistics analysis suggests that the lower glass forming ability of the Mg(2)SiO(4) glass is associated with a topologically ordered and very narrow ring distribution. The MgO(x) polyhedra have a variety of irregular shapes in MgSiO(3) and Mg(2)SiO(4) glasses and a cavity analysis demonstrates that both glasses have almost no free volume due to a large contribution from edge sharing of MgO(x)-MgO(x) polyhedra. It is found that while the atomic volume of Mg cations in the glasses increases compared to that of the crystalline phases, the number of Mg-O contacts is reduced, although the effective chemical interaction of Mg(2+) remains similar. This unusual structure-property relation of Mg(2)SiO(4) glass demonstrates that by using containerless processing it may be possible to synthesize new families of dense glasses and glass ceramics with zero porosity.

  16. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.

    Directory of Open Access Journals (Sweden)

    Mikko T Nieminen

    Full Text Available The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH. ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM. ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h biofilms were significantly reduced after exposure to HICA (p40 µM of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05. Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm infections.

  17. Crystallization behavior of Fe- and Co-based bulk metallic glasses and their glass-forming ability

    Energy Technology Data Exchange (ETDEWEB)

    Louzguine-Luzgin, D.V., E-mail: dml@wpi-aimr.tohoku.ac.jp [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Bazlov, A.I. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); National University of Science and Technology “MISiS”, Moscow 119049 (Russian Federation); Ketov, S.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Inoue, A. [International Institute of Green Materials, Josai International University, Togane 283-8555 (Japan); School of Materials Science and Engineering, Tianjin University, 300072 (China); Department of Physics, King Abdulaziz University, Jeddah 22254 (Saudi Arabia)

    2015-07-15

    In the present work we study and compare the crystallization behavior of Fe- and Co-based good bulk glass formers with an exceptionally high glass-forming ability leading to the critical thickness of cast samples reaching 1 cm. For Fe-based alloys we also investigate the effect of opposite C/B content ratio on the glass-forming ability and the crystallization behavior. The structure and phase composition of the glassy samples were examined by conventional X-ray diffractometry and transmission electron microscopy while thermal stability and phase transformations were studied by differential scanning calorimetry. The reasons for high glass-forming ability are discussed. The glass-forming ability of the studied alloys depends on both factors: the type of crystallization reaction and characteristic temperatures. - Highlights: • Crystallization of Fe-based and Co-based bulk glass-forming alloys. • The reasons for enhanced glass-forming ability of these alloys are discussed. • Low growth rate of χ-Fe{sub 36}Cr{sub 12}Mo{sub 10} phase. • Reduced liquidus temperature of Fe{sub 48}Cr{sub 15}Mo{sub 14}C{sub 6}B{sub 15}RE{sub 2} alloys.

  18. A coverslip-based technique for evaluating Staphylococcus aureus biofilm formation on human plasma

    Directory of Open Access Journals (Sweden)

    Jennifer N Walker

    2012-03-01

    Full Text Available The ability of the opportunistic pathogen, Staphylococcus aureus, to form biofilms is increasingly being viewed as an important contributor to chronic infections. In vitro methods for analyzing S. aureus biofilm formation have focused on bacterial attachment and accumulation on abiotic surfaces, such as in microtiter plate and flow cell assays. Microtiter plates provide a rapid measure of relative biomass levels, while flow cells have limited experimental throughput but are superior for confocal microscopy biofilm visualization. Although these assays have proven effective at identifying mechanisms involved in cell attachment and biofilm accumulation, the significance of these assays in vivo remains unclear. Studies have shown that when medical devices are implanted they are coated with host factors, such as matrix proteins, that facilitate S. aureus attachment and biofilm formation. To address the challenge of integrating existing biofilm assay features with a biotic surface, we have established an in vitro biofilm technique utilizing UV-sterilized coverslips coated with human plasma. The substratum more closely resembles the in vivo state and provides a platform for S. aureus to establish a robust biofilm. Importantly, these coverslips are amenable to confocal microscopy imaging to provide a visual reference of the biofilm growth stage, effectively merging the benefits of the microtiter and flow cell assays. We confirmed the approach using clinical S. aureus isolates and mutants with known biofilm phenotypes. Altogether, this new biofilm assay can be used to assess the function of S. aureus virulence factors associated with biofilm formation and for monitoring the efficacy of biofilm treatment modalities.

  19. Candida glabrata Biofilms: How Far Have We Come?

    Directory of Open Access Journals (Sweden)

    Célia F. Rodrigues

    2017-03-01

    Full Text Available Infections caused by Candida species have been increasing in the last decades and can result in local or systemic infections, with high morbidity and mortality. After Candida albicans, Candida glabrata is one of the most prevalent pathogenic fungi in humans. In addition to the high antifungal drugs resistance and inability to form hyphae or secret hydrolases, C. glabrata retain many virulence factors that contribute to its extreme aggressiveness and result in a low therapeutic response and serious recurrent candidiasis, particularly biofilm formation ability. For their extraordinary organization, especially regarding the complex structure of the matrix, biofilms are very resistant to antifungal treatments. Thus, new approaches to the treatment of C. glabrata’s biofilms are emerging. In this article, the knowledge available on C. glabrata’s resistance will be highlighted, with a special focus on biofilms, as well as new therapeutic alternatives to control them.

  20. Molecular Determinants of Staphylococcal Biofilm Dispersal and Structuring

    Directory of Open Access Journals (Sweden)

    Katherine Y Le

    2014-11-01

    Full Text Available Staphylococci are frequently implicated in human infections, and continue to pose a therapeutic dilemma due to their ability to form deeply seated microbial communities, known as biofilms, on the surfaces of implanted medical devices and host tissues. Biofilm development has been proposed to occur in three stages: 1 attachment, 2 proliferation/structuring, and 3 detachment/dispersal. Although research within the last several decades has implicated multiple molecules in the roles as effectors of staphylococcal biofilm proliferation/structuring and detachment/dispersal, to date, only phenol soluble modulins (PSMs have been consistently demonstrated to serve in this role under both in-vitro and in-vivo settings. PSMs are regulated directly through a density-dependent manner by the accessory gene regulator (Agr system. They disrupt the non-covalent forces holding the biofilm extracellular matrix together, which is necessary for the formation of channels, a process essential for the delivery of nutrients to deeper biofilm layers, and for dispersal/dissemination of clusters of biofilm to distal organs in acute infection. Given their relevance in both acute and chronic biofilm-associated infections, the Agr system and the psm genes hold promise as potential therapeutic targets.

  1. Synthesis of Bioinspired Carbohydrate Amphiphiles that Promote and Inhibit Biofilms.

    Science.gov (United States)

    Dane, Eric L; Ballok, Alicia E; O'Toole, George A; Grinstaff, Mark W

    2014-02-01

    The synthesis and characterization of a new class of bioinspired carbohydrate amphiphiles that modulate Pseudomonas aeruginosa biofilm formation are reported. The carbohydrate head is an enantiopure poly-amido-saccharide (PAS) prepared by a controlled anionic polymerization of β-lactam monomers derived from either glucose or galactose. The supramolecular assemblies formed by PAS amphiphiles are investigated in solution using fluorescence assays and dynamic light scattering. Dried samples are investigated using X-ray, infrared spectroscopy, and transmission electron microscopy. Additionally, the amphiphiles are evaluated for their ability to modulate biofilm formation by the Gram-negative bacterium Pseudomonas aeruginosa. Remarkably, from a library of eight amphiphiles, we identify a structure that promotes biofilm formation and two structures that inhibit biofilm formation. Using biological assays and electron microscopy, we relate the chemical structure of the amphiphiles to the observed activity. Materials that modulate the formation of biofilms by bacteria are important both as research tools for microbiologists to study the process of biofilm formation and for their potential to provide new drug candidates for treating biofilm-associated infections.

  2. Insight on the glass-forming ability of Al–Y–Ni–Ce bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shih-Fan, E-mail: sfchen@ntut.edu.tw [Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan (China); Chen, Chih-Yuan, E-mail: chen6563@gmail.com [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Lin, Chia-Hung [Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan (China)

    2015-07-15

    Highlights: • Adding 1 at.% cerium to Al{sub 87}Y{sub 8}Ni{sub 5} alloy causes glass transition. • A large ΔT{sub x} indicates that (Al{sub 87}Y{sub 8}Ni{sub 5}){sub 99}Ce{sub 1} is possibly a ductile amorphous alloy. • Ce is effective in improving the thermal stability of the Al–Y–Ni amorphous alloy. • The hardness of the crystallized cerium-bearing alloy was as high as 593 Hv. - Abstract: In the present study, the role of Ce in the thermal stability and glass forming ability (GFA) of (Al{sub 87}Y{sub 8}Ni{sub 5}){sub 99}Ce{sub 1} alloy ribbons produced by a single roller melt-spinning process has been investigated in an attempt to understand the influences of multiple RE elements in an Al–TM–RE (TM: transition metal, RE: rear earth metal) alloy system. Only the (Al{sub 87}Y{sub 8}Ni{sub 5}){sub 99}Ce{sub 1} alloy ribbon showed a glass transition temperature (T{sub g}) at 483.2 K, and its ΔT{sub x} value was 41.3 K. Crystallization occurred in the temperature range of 500–750 K in three exothermic reaction stages. The peak temperature for these reactions shifted toward higher temperatures at higher heating rates. XRD and SEM analysis of annealed samples revealed that nano-sized Al particles precipitated within the amorphous matrix during the first exothermic reaction. The maximum hardness was obtained for both non-cerium and cerium addition alloys after crystallization in the 550–660 K region due to numerous nano-sized precipitates randomly and homogeneously distributed in the amorphous matrix. Moreover, from observation of the fracture surface, it is found that the fracture mode transforms from ductile to brittle when the sample is annealed at a higher crystallization temperature, at which brittle intermetallic compounds appear.

  3. Environmental factors that shape biofilm formation.

    Science.gov (United States)

    Toyofuku, Masanori; Inaba, Tomohiro; Kiyokawa, Tatsunori; Obana, Nozomu; Yawata, Yutaka; Nomura, Nobuhiko

    2015-01-01

    Cells respond to the environment and alter gene expression. Recent studies have revealed the social aspects of bacterial life, such as biofilm formation. Biofilm formation is largely affected by the environment, and the mechanisms by which the gene expression of individual cells affects biofilm development have attracted interest. Environmental factors determine the cell's decision to form or leave a biofilm. In addition, the biofilm structure largely depends on the environment, implying that biofilms are shaped to adapt to local conditions. Second messengers such as cAMP and c-di-GMP are key factors that link environmental factors with gene regulation. Cell-to-cell communication is also an important factor in shaping the biofilm. In this short review, we will introduce the basics of biofilm formation and further discuss environmental factors that shape biofilm formation. Finally, the state-of-the-art tools that allow us investigate biofilms under various conditions are discussed.

  4. Proteus mirabilis biofilm - qualitative and quantitative colorimetric methods-based evaluation.

    Science.gov (United States)

    Kwiecinska-Piróg, Joanna; Bogiel, Tomasz; Skowron, Krzysztof; Wieckowska, Ewa; Gospodarek, Eugenia

    2014-01-01

    Proteus mirabilis strains ability to form biofilm is a current topic of a number of research worldwide. In this study the biofilm formation of P. mirabilis strains derived from urine of the catheterized and non-catheterized patients has been investigated. A total number of 39 P. mirabilis strains isolated from the urine samples of the patients of dr Antoni Jurasz University Hospital No. 1 in Bydgoszcz clinics between 2011 and 2012 was used. Biofilm formation was evaluated using two independent quantitative and qualitative methods with TTC (2,3,5-triphenyl-tetrazolium chloride) and CV (crystal violet) application. The obtained results confirmed biofilm formation by all the examined strains, except quantitative method with TTC, in which 7.7% of the strains did not have this ability. It was shown that P. mirabilis rods have the ability to form biofilm on the surfaces of both biomaterials applied, polystyrene and polyvinyl chloride (Nelaton catheters). The differences in ability to form biofilm observed between P. mirabilis strains derived from the urine of the catheterized and non-catheterized patients were not statistically significant.

  5. Proteus mirabilis biofilm - Qualitative and quantitative colorimetric methods-based evaluation

    Directory of Open Access Journals (Sweden)

    Joanna Kwiecinska-Piróg

    2014-12-01

    Full Text Available Proteus mirabilis strains ability to form biofilm is a current topic of a number of research worldwide. In this study the biofilm formation of P. mirabilis strains derived from urine of the catheterized and non-catheterized patients has been investigated. A total number of 39 P. mirabilis strains isolated from the urine samples of the patients of dr Antoni Jurasz University Hospital No. 1 in Bydgoszcz clinics between 2011 and 2012 was used. Biofilm formation was evaluated using two independent quantitative and qualitative methods with TTC (2,3,5-triphenyl-tetrazolium chloride and CV (crystal violet application. The obtained results confirmed biofilm formation by all the examined strains, except quantitative method with TTC, in which 7.7% of the strains did not have this ability. It was shown that P. mirabilis rods have the ability to form biofilm on the surfaces of both biomaterials applied, polystyrene and polyvinyl chloride (Nelaton catheters. The differences in ability to form biofilm observed between P. mirabilis strains derived from the urine of the catheterized and non-catheterized patients were not statistically significant.

  6. Multifunctional porous titanium oxide coating with apatite forming ability and photocatalytic activity on a titanium substrate formed by plasma electrolytic oxidation.

    Science.gov (United States)

    Akatsu, T; Yamada, Y; Hoshikawa, Y; Onoki, T; Shinoda, Y; Wakai, F

    2013-12-01

    Plasma electrolytic oxidation (PEO) was used to make a multifunctional porous titanium oxide (TiO2) coating on a titanium substrate. The key finding of this study is that a highly crystalline TiO2 coating can be made by performing the PEO in an ammonium acetate (CH3COONH4) solution; the PEO coating was formed by alternating between rapid heating by spark discharges and quenching in the solution. The high crystallinity of the TiO2 led to the surface having multiple functions, including apatite forming ability and photocatalytic activity. Hydroxyapatite formed on the PEO coating when it was soaked in simulated body fluid. The good apatite forming ability can be attributed to the high density of hydroxyl groups on the anatase and rutile phases in the coating. The degradation of methylene blue under ultraviolet radiation indicated that the coating had high photocatalytic activity.

  7. Mechanisms of biofilm formation in paper machine by Bacillus species: the role of Deinococcus geothermalis.

    Science.gov (United States)

    Kolari, M; Nuutinen, J; Salkinoja-Salonen, M S

    2001-12-01

    Mechanisms for the undesired persistence of Bacillus species in paper machine slimes were investigated. Biofilm formation was measured for industrial Bacillus isolates under paper machine wet-end-simulating conditions (white water, pH 7, agitated at 45 degrees C for 1-2 days). None of the 40 tested strains of seven Bacillus species formed biofilm on polished stainless steel or on polystyrene surfaces as a monoculture. Under the same conditions, Deinococcus geothermalis E50051 covered all test surfaces as a patchy thick biofilm. The paper machine bacilli, however, formed mixed biofilms with D. geothermalis E50051 as revealed by confocal microscopy. Biofilm interactions between the bacilli and the deinococci varied from synergism to antagonism. Synergism in biofilm formation of D. geothermalis E50051 was strongest with Bacillus coagulans D50192, and with the type strains of B. coagulans, B. amyloliquefaciens or B. pumilus. Two B. licheniformis, one B. amyloliquefaciens, one B. pumilus and four B. cereus strains antagonized biofilm production by D. geothermalis. B. licheniformis D50141 and the type strain of B. licheniformis were the strongest antagonists. These bacteria inhibited deinococcal growth by emitting heat-stable, methanol-soluble metabolite(s). We conclude that the persistence of Bacillus species in paper machine slimes relates to their ability to conquer biofilms formed by primary colonizers, such as D. geothermalis.

  8. Multi-species biofilm of Candida albicans and non-Candida albicans Candida species on acrylic substrate

    Directory of Open Access Journals (Sweden)

    Apurva K Pathak

    2012-02-01

    Full Text Available OBJECTIVE: In polymicrobial biofilms bacteria extensively interact with Candida species, but the interaction among the different species of the Candida is yet to be completely evaluated. In the present study, the difference in biofilm formation ability of clinical isolates of four species of Candida in both single-species and multi-species combinations on the surface of dental acrylic resin strips was evaluated. MATERIAL AND METHODS: The species of Candida, isolated from multiple species oral candidiasis of the neutropenic patients, were used for the experiment. Organisms were cultured on Sabouraud dextrose broth with 8% glucose (SDB. Biofilm production on the acrylic resins strips was determined by crystal violet assay. Student's t-test and ANOVA were used to compare in vitro biofilm formation for the individual species of Candida and its different multi-species combinations. RESULTS: In the present study, differences between the mean values of the biofilm-forming ability of individual species (C. glabrata>C. krusei>C. tropicalis>C. albicans and in its multi-species' combinations (the highest for C. albicans with C. glabrata and the lowest for all the four species combination were reported. CONCLUSIONS: The findings of this study showed that biofilm-forming ability was found greater for non-Candida albicans Candida species (NCAC than for C. albicans species with intra-species variation. Presence of C. albicans in multi-species biofilms increased, whereas; C. tropicalis decreased the biofilm production with all other NCAC species.

  9. Greater perceived ability to form vivid mental images in individuals with high compared to low BMI.

    Science.gov (United States)

    Patel, Barkha P; Aschenbrenner, Katja; Shamah, Daniel; Small, Dana M

    2015-08-01

    Obese individuals report more frequent food cravings than their lean counterparts. Since mental imagery plays a role in eliciting and maintaining craving we hypothesized that one's ability to image may be associated with body mass index (BMI) and account, at least in part, for the association between BMI and craving. Twenty-five participants (BMI range: 17.7 kg/m(2)-34.2 kg/m(2)) completed three measures of perceived mental imagery ability (The Vividness of Visual Imagery Questionnaire, The Vividness of Olfactory Imagery Questionnaire, The Vividness of Food Imagery Questionnaire), and one measure of craving (Food-Craving Inventory). As predicted, correlation analyses revealed positive associations between BMI and perceived ability to image odors and foods, but not visual objects. Olfactory imagery was singled out as the best predictor of BMI in a hierarchical regression analysis. A second experiment with 57 participants (BMI range: 19.1 kg/m(2)-38.7 kg/m(2)) then confirmed the significant positive association between BMI and perceived ability to image odors. These results raise the possibility that imagery ability may play a role in the heightened food cue reactivity observed in obese individuals.

  10. Intermicrobial Interactions as a Driver for Community Composition and Stratification of Oral Biofilms.

    Science.gov (United States)

    Jakubovics, Nicholas S

    2015-11-20

    The oral cavity is accessible to microorganisms, and biofilms are present throughout on hard and soft tissues. The shedding of epithelial cell layers is usually effective for controlling biofilm development on soft tissues. Innate immune mechanisms are not so effective against biofilms on tooth surfaces, and oral hygiene measures such as brushing and flossing are required for the periodic removal of dental plaque. Even with good oral hygiene, microbial communities accumulate on teeth in areas that are protected from mechanical abrasion forces. Changes in the composition of these biofilms are associated with oral diseases such as dental caries or periodontitis. Newly formed biofilms and more mature dental plaque each have a level of spatial organization in the horizontal and vertical planes. Communities are shaped by many varied interactions between different species and genera within the biofilm, which include physical cell-cell associations known as coaggregation, interspecies signaling, secretion and turnover of antimicrobial compounds and the sharing of an extracellular matrix. Central to these interactions is the selection for metabolic synergies and it is becoming clear that the ability of communities to extract the maximum energy from the available metabolites is a potent driver for biofilm structure and stratification. This review discusses recent advances in our understanding of intermicrobial interactions in oral biofilms and the roles that they play in determining the spatial organization of biofilm communities.

  11. Catalase Enhances Growth and Biofilm Production of Mycoplasma pneumoniae.

    Science.gov (United States)

    Simmons, Warren L; Dybvig, Kevin

    2015-08-01

    Mycoplasma pneumoniae causes chronic respiratory disease in humans. Factors thought to be important for colonization include the ability of the mycoplasma to form a biofilm on epithelial surfaces and the production of hydrogen peroxide to damage host tissue. Almost all of the mycoplasmas, including M. pneumoniae, lack superoxide dismutase and catalase and a balance should exist between peroxide production and growth. We show here that the addition of catalase to cultures enhanced the formation of biofilms and altered the structure. The incorporation of catalase in agar increased the number of colony-forming units detected and hence could improve the clinical diagnosis of mycoplasmal diseases.

  12. Critical review on biofilm methods.

    Science.gov (United States)

    Azeredo, Joana; Azevedo, Nuno F; Briandet, Romain; Cerca, Nuno; Coenye, Tom; Costa, Ana Rita; Desvaux, Mickaël; Di Bonaventura, Giovanni; Hébraud, Michel; Jaglic, Zoran; Kačániová, Miroslava; Knøchel, Susanne; Lourenço, Anália; Mergulhão, Filipe; Meyer, Rikke Louise; Nychas, George; Simões, Manuel; Tresse, Odile; Sternberg, Claus

    2017-05-01

    Biofilms are widespread in nature and constitute an important strategy implemented by microorganisms to survive in sometimes harsh environmental conditions. They can be beneficial or have a negative impact particularly when formed in industrial settings or on medical devices. As such, research into the formation and elimination of biofilms is important for many disciplines. Several new methodologies have been recently developed for, or adapted to, biofilm studies that have contributed to deeper knowledge on biofilm physiology, structure and composition. In this review, traditional and cutting-edge methods to study biofilm biomass, viability, structure, composition and physiology are addressed. Moreover, as there is a lack of consensus among the diversity of techniques used to grow and study biofilms. This review intends to remedy this, by giving a critical perspective, highlighting the advantages and limitations of several methods. Accordingly, this review aims at helping scientists in finding the most appropriate and up-to-date methods to study their biofilms.

  13. Predicting Composition Dependence of Glass Forming Ability in Ternary Al-Cu-Y System by Thermodynamic Calculation

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2014-11-01

    Full Text Available The composition dependence of glass forming ability in the ternary Al-Cu-Y system is predicted by thermodynamic calculations based on the Miedema’s model and Alonso’s method. By comparing the relative energetic status of the amorphous phase versus the solid solution phase, a hexagonal composition region that energetically favoring the metallic glass formation is predicted. The glass formation driving force and crystallization resistance are further calculated and the composition of Al72Cu10Y18 is pinpointed with the largest glass forming ability in the Al-Cu-Y system. The calculation results are well supported by the experimental observations reported in the literature.

  14. Factors contributing to the biofilm-deficient phenotype of Staphylococcus aureus sarA mutants.

    Directory of Open Access Journals (Sweden)

    Laura H Tsang

    Full Text Available Mutation of sarA in Staphylococcus aureus results in a reduced capacity to form a biofilm, but the mechanistic basis for this remains unknown. Previous transcriptional profiling experiments identified a number of genes that are differentially expressed both in a biofilm and in a sarA mutant. This included genes involved in acid tolerance and the production of nucleolytic and proteolytic exoenzymes. Based on this we generated mutations in alsSD, nuc and sspA in the S. aureus clinical isolate UAMS-1 and its isogenic sarA mutant and assessed the impact on biofilm formation. Because expression of alsSD was increased in a biofilm but decreased in a sarA mutant, we also generated a plasmid construct that allowed expression of alsSD in a sarA mutant. Mutation of alsSD limited biofilm formation, but not to the degree observed with the corresponding sarA mutant, and restoration of alsSD expression did not restore the ability to form a biofilm. In contrast, concomitant mutation of sarA and nuc significantly enhanced biofilm formation by comparison to the sarA mutant. Although mutation of sspA had no significant impact on the ability of a sarA mutant to form a biofilm, a combination of protease inhibitors (E-64, 1-10-phenanthroline, and dichloroisocoumarin that was shown to inhibit the production of multiple extracellular proteases without inhibiting growth was also shown to enhance the ability of a sarA mutant to form a biofilm. This effect was evident only when all three inhibitors were used concurrently. This suggests that the reduced capacity of a sarA mutant to form a biofilm involves extracellular proteases of all three classes (serine, cysteine and metalloproteases. Inclusion of protease inhibitors also enhanced biofilm formation in a sarA/nuc mutant, with the combined effect of mutating nuc and adding protease inhibitors resulting in a level of biofilm formation with the sarA mutant that approached that of the UAMS-1 parent strain. These results

  15. Acid environments affect biofilm formation and gene expression in isolates of Salmonella enterica Typhimurium DT104.

    Science.gov (United States)

    O'Leary, Denis; McCabe, Evonne M; McCusker, Matthew P; Martins, Marta; Fanning, Séamus; Duffy, Geraldine

    2015-08-01

    The aim of this study was to examine the survival and potential virulence of biofilm-forming Salmonella Typhimurium DT104 under mild acid conditions. Salmonella Typhimurium DT104 employs an acid tolerance response (ATR) allowing it to adapt to acidic environments. The threat that these acid adapted cells pose to food safety could be enhanced if they also produce biofilms in acidic conditions. The cells were acid-adapted by culturing them in 1% glucose and their ability to form biofilms on stainless steel and on the surface of Luria Bertani (LB) broth at pH7 and pH5 was examined. Plate counts were performed to examine cell survival. RNA was isolated from cells to examine changes in the expression of genes associated with virulence, invasion, biofilm formation and global gene regulation in response to acid stress. Of the 4 isolates that were examined only one (1481) that produced a rigid biofilm in LB broth at pH7 also formed this same structure at pH5. This indicated that the lactic acid severely impeded the biofilm producing capabilities of the other isolates examined under these conditions. Isolate 1481 also had higher expression of genes associated with virulence (hilA) and invasion (invA) with a 24.34-fold and 13.68-fold increase in relative gene expression respectively at pH5 compared to pH7. Although genes associated with biofilm formation had increased expression in response to acid stress for all the isolates this only resulted in the formation of a biofilm by isolate 1481. This suggests that in addition to the range of genes associated with biofilm production at neutral pH, there are genes whose protein products specifically aid in biofilm production in acidic environments. Furthermore, it highlights the potential for the use of lactic acid for the inhibition of Salmonella biofilms.

  16. Immobilization of iron- and manganese-oxidizing bacteria with a biofilm-forming bacterium for the effective removal of iron and manganese from groundwater.

    Science.gov (United States)

    Li, Chunyan; Wang, Shuting; Du, Xiaopeng; Cheng, Xiaosong; Fu, Meng; Hou, Ning; Li, Dapeng

    2016-11-01

    In this study, three bacteria with high Fe- and Mn-oxidizing capabilities were isolated from groundwater well sludge and identified as Acinetobacter sp., Bacillus megaterium and Sphingobacterium sp. The maximum removal ratios of Fe and Mn (99.75% and 96.69%) were obtained by an optimal combination of the bacteria at a temperature of 20.15°C, pH 7.09 and an inoculum size of 2.08%. Four lab-scale biofilters were tested in parallel for the removal of iron and manganese ions from groundwater. The results indicated that the Fe/Mn removal ratios of biofilter R4, which was inoculated with iron- and manganese-oxidizing bacteria and a biofilm-forming bacterium, were approximately 95% for each metal during continuous operation and were better than the other biofilters. This study demonstrated that the biofilm-forming bacterium could promote the immobilization of the iron- and manganese-oxidizing bacteria on the biofilters and enhance the removal efficiency of iron and manganese ions from groundwater.

  17. Permeabilizing biofilms

    Science.gov (United States)

    Soukos, Nikolaos S.; Lee, Shun; Doukas,; Apostolos G.

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  18. Autoinducer-2 increases biofilm formation via an ica- and bhp-dependent manner in Staphylococcus epidermidis RP62A.

    Science.gov (United States)

    Xue, Ting; Ni, Jingtian; Shang, Fei; Chen, Xiaolin; Zhang, Ming

    2015-05-01

    Staphylococcus epidermidis has become the most common cause of nosocomial bacteraemia and the principal organism responsible for indwelling medical device -associated infections. Its pathogenicity is mainly due to its ability to form biofilms on the implanted medical devices. Biofilm formation is a quorum-sensing (QS)-dependent process controlled by autoinducers, which are signalling molecules. Here, we investigated the function of the autoinducer-2 (AI-2) QS system, especially the influence of AI-2 on biofilm formation in S. epidermidis RP62A. Results showed that the addition of AI-2 leads to a significant increase in biofilm formation, in contrast with previous studies which showed that AI-2 limits biofilm formation in Staphylococci. We found that AI-2 increases biofilm formation by enhancing the transcription of the ica operon, which is a known component in the AI-2-regulated biofilm pathway. In addition, we first observed that the transcript level of bhp, which encodes a biofilm-associated protein, was also increased following the addition of AI-2. Furthermore, we found that, among the known biofilm regulator genes (icaR, sigB, rbsU, sarA, sarX, sarZ, clpP, agrA, abfR, arlRS, saeRS), only icaR can be regulated by AI-2, suggesting that AI-2 may regulate biofilm formation by an icaR-dependent mechanism in S. epidermidis RP62A.

  19. Quercus cerris extracts limit Staphylococcus aureus biofilm formation

    Science.gov (United States)

    Hobby, Gerren H.; Quave, Cassandra L.; Nelson, Katie; Compadre, Cesar M.; Beenken, Karen E.; Smeltzer, Mark S.

    2012-01-01

    Ethnopharmacological relevance Quercus cerris L., Fagaceae has been used in traditional Mediterranean medicine for numerous purposes, including anti-infective therapies for diarrhea and wound care. Aim of the study To evaluate the anti-staphylococcal activity of fractions of ethanolic extracts of Q. cerris leaf and stem/fruit samples in models for biofilm and growth inhibition. Materials and methods Ethanolic extracts of Q. cerris leaves and stems/fruits were prepared, resuspended in water and fractioned by successively partitioning with hexane, ethyl acetate and butanol. The ability of the fractions to inhibit Staphylococcus aureus biofilm formation was tested using static crystal violet staining methods and confocal laser scanning microscopy. Growth studies were conducted to determine if the diminished capacity to form a biofilm was related to growth inhibition. Results The butanol extracts of both the leaf and stem/fruit samples were the most active, and at a dose of 200 μg/ml, the capacity to form a biofilm was limited to a level equivalent to that of the sarA mutant controls. Further examination of the impact of these fractions on S. aureus growth revealed that biofilm inhibition by the leaf butanol fraction was due to its bacteriostatic activity. The stem/fruit butanol fraction, however, showed a limited impact on growth, thus demonstrating that biofilm inhibition in this case is not related to the bacteriostatic activity of the extract. Conclusion Our evaluation of a medicinal plant used in Mediterranean ethnotherapies for infectious disease has demonstrated significant activity in the inhibition of staphylococcal biofilm formation with a mechanism unrelated to staphylococcal growth inhibition. These results contribute towards validation of this botanical remedy and form the groundwork for future studies in the search for novel biofilm inhibiting drugs. PMID:23127649

  20. Story Telling or Storied Telling? Media's Pedagogical Ability to Shape Narrative as a Form of "Knowing"

    Science.gov (United States)

    Blevins, Dean G.

    2007-01-01

    Storytellers know that stories are "formed" in their telling. Stories, whether oral or written, personal or mass communicated, ultimately express the boundaries of their medium (their "embodiment" through mediated forms). Religious Educators must always address the medium as well as the message in any theory of narrative accounting. Media often…

  1. Biofilm Induced Tolerance Towards Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Folkesson, Anders; Haagensen, Janus Anders Juul; Zampaloni, Claudia

    2008-01-01

    of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically......, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms....

  2. Biofilm formation on the surface of polylactide during its biodegradation in different environments.

    Science.gov (United States)

    Walczak, Maciej; Swiontek Brzezinska, Maria; Sionkowska, Alina; Michalska, Marta; Jankiewicz, Urszula; Deja-Sikora, Edyta

    2015-12-01

    The research was aimed at determining the abundance and viability of biofilm formed on the surface of polylactide (PLA) during its biodegradation in different environments. It was also aimed at isolating biofilm forming bacteria, determining their hydrolytic activity and taxonomic status. The first step was to evaluate PLA biodegradability in lake water, compost and soil, using OxiTop Control. The next step was to assess the ability of isolated bacteria to form biofilm in the investigated environments and to evaluate the biofilm structure. The results indicate that PLA is sensitive to biodegradation in any environment, particularly in compost. During this process biofilm of high viability was observed on the surface of PLA. Based on the 16S rRNA gene sequence, the biofilm-forming bacteria were classified as the following species: Acidovorax sp. LW9, Chryseobacterium sp. LW2, Aeromonas veronii LW8, Arthrobacter aurescens LG2, Arthrobacter sp. LG12, A. aurescens LG9, Elizabethkingia meningoseptica LK3, A. aurescens LK9, A. aurescens and LK7. The results show that different bacterial species formed biofilm of different abundance and hydrolytic activitiy levels.

  3. Effects of ceftazidime and ciprofloxacin on biofilm formation in Proteus mirabilis rods.

    Science.gov (United States)

    Kwiecińska-Piróg, Joanna; Bogiel, Tomasz; Gospodarek, Eugenia

    2013-10-01

    Proteus mirabilis rods are one of the most commonly isolated species of the Proteus genus from human infections, mainly those from the urinary tract and wounds. They are often related to biofilm structure formation. The bacterial cells of the biofilm are less susceptible to routinely used antimicrobials, making the treatment more difficult. The aim of this study was to evaluate quantitatively the influence of ceftazidime and ciprofloxacin on biofilm formation on the polyvinyl chloride surface by 42 P. mirabilis strains isolated from urine, purulence, wound swab and bedsore samples. It has been shown that ceftazidime and ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular Proteus spp. strains decrease their ability to form biofilms. Moreover, ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular P. mirabilis strains reduces biofilm formation more efficiently than ceftazidime at the corresponding concentration values.

  4. Aminoglycoside inhibition of Staphylococcus aureus biofilm formation is nutrient dependent.

    Science.gov (United States)

    Henry-Stanley, Michelle J; Hess, Donavon J; Wells, Carol L

    2014-06-01

    showed that the ability of 3× TSBg to overcome the antibacterial effects of gentamicin was associated with decreased uptake of gentamicin by S. aureus. Uptake is known to be decreased at low pH, and the kinetic change in pH of growth medium from biofilms incubated in 5 µg gentamicin ml(-1) in the presence of 3× TSBg was decreased when compared with pH determinations from biofilms formed in 1/3× or 1× TSBg. These studies underscore the importance of environmental factors, including nutrient concentration and pH, on the antibiotic susceptibility of S. aureus planktonic and biofilm bacteria.

  5. Potential Antibacterial Activity of Carvacrol-Loaded Poly(DL-lactide-co-glycolide (PLGA Nanoparticles against Microbial Biofilm

    Directory of Open Access Journals (Sweden)

    Luigina Cellini

    2011-08-01

    Full Text Available The ability to form biofilms contributes significantly to the pathogenesis of many microbial infections, including a variety of ocular diseases often associated with the biofilm formation on foreign materials. Carvacrol (Car. is an important component of essential oils and recently has attracted much attention pursuant to its ability to promote microbial biofilm disruption. In the present study Car. has been encapsulated in poly(DL-lactide-co-glycolide (PLGA nanocapsules in order to obtain a suitable drug delivery system that could represent a starting point for developing new therapeutic strategies against biofilm-associated infections, such as improving the drug effect by associating an antimicrobial agent with a biofilm viscoelasticity modifier.

  6. Developmental Abilities to Form Chunks in Immediate Memory and its Non-Relationship to Span Development

    Directory of Open Access Journals (Sweden)

    Fabien eMathy

    2016-02-01

    Full Text Available Both adults and children --by the time they are two to three years old-- have a general ability to recode information to increase memory efficiency. This paper aims to evaluate the ability of untrained children aged six to ten years old to deploy such a recoding process in immediate memory. A large sample of 374 children were given a task of immediate serial report based on SIMON, a classic memory game made of four colored buttons (red, green, yellow, blue requiring players to reproduce a sequence of colors within which repetitions eventually occur. It was hypothesized that a primitive ability across all ages (since theoretically already available in toddlers to detect redundancies allows the span to increase whenever information can be recoded on the fly. The chunkable condition prompted the formation of chunks based on the perceived structure of color repetition within to-be-recalled sequences of colors. Our result shows a similar linear improvement of memory span with age for both chunkable and non-chunkable conditions. The amount of information retained in immediate memory systematically increased for the groupable sequences across all age groups, independently of the average age-group span that was measured on sequences that contained fewer repetitions. This result shows that chunking gives young children an equal benefit as older children. We discuss the role of recoding in the expansion of capacity in immediate memory and the potential role of data compression in the formation of chunks in long-term memory.

  7. Biofilms: a developing microscopic community

    Directory of Open Access Journals (Sweden)

    Rivera Sandra Patricia

    2004-09-01

    Full Text Available Biofilms are microbial communities composed by different microbiota embebbed in a special adaptive environment. These communities show different characteristics such as heterogeneity, diversity in microenvironments, capacity to resist antimicrobial therapy and ability to allow bacterial communication. These characteristics convert them in complex organizations that are difficult to eradicate in their own environment. In the man, biofilms are associated to a great number of slow-development infectious processes which greatly difficulties their eradication. In the industry and environment, biofilms are centered in processes known as biofouling and bioremediation. The former is the contamination of a system due to the microbial activity of a biofilm. The latter uses biofilms to improve the conditions of a contaminated system. The study of biofilms is a new and exciting field which is constantly evolving and whose implications in medicine and industry would have important repercussions for the humankind.

  8. Persistence of non-native spore forming bacteria in drinking water biofilm and evaluation of decontamination methods.

    Science.gov (United States)

    Shane, William T; Szabo, Jeffrey G; Bishop, Paul L

    2011-01-01

    Persistence of Bacillus globigii spores, a surrogate for Bacillus anthracis, was studied on biofouled concrete-lined slides in drinking water using biofilm annular reactors. Reactors were inoculated with B. globigii spores and persistence was monitored in the bulk and biofilm phases, first in dechlorinated water and later with free chlorine concentrations of 1 and 5 mg/L. In the dechlorinated study, a steady state population of spores developed on the slides. The addition of free chlorine at 5 mg/L decreased the adhered spore density by 2-logs within 4 hours and spores were not detected after 67 and 49 hours in the presence of 1 and 5 mg/L free chlorine, respectively. This suggests that adhered spores can persist in non-chlorinated conditions, but detach and/or are inactivated upon addition of free chlorine. When injected into a chlorinated reactor, adhered spore density continually decreased and spores were either undetectable or unquantifiable by 48 hours for both 1 and 5 mg/L chlorine concentrations. Results from these experiments suggest that the presence of a free chlorine residual limits adherence of viable spores to biofouled concrete-lined pipe walls by inactivating spores before they have attached. Both free chlorine concentrations (1 and 5 mg/L) were equally effective at inactivating spores in terms of log reduction, but the higher concentrations yielded faster rates of log reduction.

  9. Biofilm formation by Staphylococcus aureus isolates from a dental clinic in Konya, Turkey.

    Science.gov (United States)

    Torlak, Emrah; Korkut, Emre; Uncu, Ali T; Şener, Yağmur

    2017-02-14

    The ability of Staphylococcus aureus to form biofilm is considered to be a major virulence factor influencing its survival and persistence in both the environment and the host. Biofilm formation in S. aureus is most frequently associated with production of polysaccharide intercellular adhesion by ica operon-encoded enzymes. The present work aimed at evaluating the in vitro biofilm production and presence of the icaA and icaD genes in S. aureus isolates from a dental clinic in Konya, Turkey. The surfaces of inanimate objects were sampled over a period of six months. S. aureus isolates were subjected to Congo Red Agar (CRA) and crystal violet (CV) staining assays to evaluate their ability of biofilm production, while the presence of the icaA and icaD genes was determined by polymerase chain reaction. S. aureus contamination was detected in 13.2% of the environmental samples. All the 32 isolates were observed to be positive for both the icaA and icaD genes. Phenotypic evaluations revealed that CV staining assay is a more reliable alternative to CRA assay to determine biofilm formation ability. A high percentage of agreement (91%) was observed between the results from CV staining and ica genes' detection assays. Phenotypic and genotypic evaluations should be combined to detect biofilm formation in S. aureus. Our findings indicate that dental clinic environments should be considered as potential reservoir for biofilm-producing S. aureus and thus cross contamination.

  10. Detection of Intracellular Adhesion (ica Gene and Biofilm Formation Staphylococcus aureus Isolates from Clinical Blood Cultures

    Directory of Open Access Journals (Sweden)

    Mohsen Mirzaee

    2015-10-01

    Full Text Available Background: In fact the biofilms are composed of bacterial cells living inmulticellular structures such as tissues and organs embedded within a self-produced matrix of extracellular polymeric substance (EPS. Ability to attach and biofilm formation are the most important virulence factors Staphylococcus aureus isolates. The aims of this study were to detect intracellular adhesion (ica locus and its relation to the biofilm formation phenotype in clinical isolates of S. aureus isolated from bloodcultures.Methods: A total of 31 clinical S. aureus isolates were collected from Loghman Hospital of Tehran, Iran. In vitro biofilm formation ability was determined by microliter tissue culture plates. All clinical isolates were examined for determination the ica locus by using PCR method.Results: Twelve (38.7% of the isolates were strong biofilm producers. The results showed that 18(80.6% of the isolates carried icaD gene, whereas the prevalence of icaA, icaB and icaC were 51.6%, 45.1% and 77.4% respectively.Conclusions: S. aureus clinical isolates have different ability to form biofilm. This may be caused by the differences in the expression of biofilm related genes, genetic make-up and physiological conditions.

  11. D-amino acids reduce Enterococcus faecalis biofilms in vitro and in the presence of antimicrobials used for root canal treatment

    Science.gov (United States)

    Rossi-Fedele, Giampiero; Kidd, Stephen P.; Edwards, Suzanne; Vasilev, Krasimir

    2017-01-01

    Enterococcus faecalis is the most frequent species present in post-treatment disease and plays a significant role in persistent periapical infections following root canal treatment. Its ability to persist in stressful environments is inter alia, due to its ability to form biofilms. The presence of certain D-amino acids (DAAs) has previously been shown to reduce formation of Bacillus subtilis biofilms. The aims of this investigation were to determine if DAAs disrupt biofilms in early and late growth stages for clinical E. faecalis strains and to test their efficacy in disrupting E. faecalis biofilms grown in sub-minimum inhibitory concentrations of commonly used endodontic biocides. From thirty-seven E. faecalis strains, the ten “best” biofilm producers were used to test the ability of a mixture containing D-leucine, D-methionine, D-tyrosine and D-tryptophan to reduce biofilm growth over a period of 24, 72 and 144 hours and when compared to their cognate L-Amino Acids (LAAs). We have previously shown that sub-MIC levels of tetracycline and sodium hypochlorite promotes biofilm growth in clinical strains of E. faecalis. DAAs were therefore tested for their effectiveness to reduce biofilm growth in the presence of sub-minimal concentrations of sodium hypochlorite (NaOCl-0.031%) and Odontocide™ (0.25% w/v), and in the presence of Odontopaste™ (0.25% w/v). DAAs significantly reduced biofilm formation for all strains tested in vitro, while DAAs significantly reduced biofilm formation compared to LAAs. The inhibitory effect of DAAs on biofilm formation was concentration dependent. DAAs were also shown to be effective in reducing E. faecalis biofilms in the presence of Odontopaste™ and sub-MIC levels of NaOCl and Odontocide™. The results suggest that the inclusion of DAAs into current endodontic procedures may reduce E. faecalis biofilms. PMID:28151960

  12. Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation

    Directory of Open Access Journals (Sweden)

    Mohammad Hassani Sangani

    2015-04-01

    Full Text Available Objective(s: Bacterial biofilm formation causes many persistent and chronic infections. The matrix protects biofilm bacteria from exposure to innate immune defenses and antibiotic treatments. The purpose of this study was to evaluate the biofilm formation of clinical isolates of Pseudomonas aeruginosa and the activity of zinc oxide nanoparticles (ZnO NPs on biofilm. Materials and Methods: After collecting bacteria from clinical samples of hospitalized patients, the ability of organisms were evaluated to create biofilm by tissue culture plate (TCP assay. ZnO NPs were synthesized by sol gel method and the efficacy of different concentrations (50- 350 µg/ml of ZnO NPs was assessed on biofilm formation and also elimination of pre-formed biofilm by using TCP method. Results:The average diameter of synthesized ZnO NPs was 20 nm. The minimum inhibitory concentration of nanoparticles was 150- 158 μg/ml and the minimum bactericidal concentration was higher (325 µg/ml. All 15 clinical isolates of P. aeruginosa were able to produce biofilm. Treating the organisms with nanoparticles at concentrations of 350 μg/ml resulted in more than 94% inhibition in OD reduction%. Molecular analysis showed that the presence of mRNA of pslA gene after treating bacteria with ZnO NPs for 30 minutes. Conclusion: The results showed that ZnO NPs can inhibit the establishment of P. aeruginosa biofilms and have less effective in removing pre-formed biofilm. However the tested nanoparticles exhibited anti-biofilm effect, but mRNA of pslA gene could be still detected in the medium by RT-PCR technique after 30 minutes treatment with ZnO.

  13. Melaleuca alternifolia nanoparticles against Candida species biofilms.

    Science.gov (United States)

    Souza, M E; Lopes, L Q S; Bonez, P C; Gündel, A; Martinez, D S T; Sagrillo, M R; Giongo, J L; Vaucher, R A; Raffin, R P; Boligon, A A; Santos, R C V

    2017-03-01

    Candida infection is an important cause of morbidity and mortality on immunosuppressed patients. This growing trend has been associated with resistance to the antimicrobial therapy and the ability of microorganism to form biofilms. TTO oil is used as antimicrobial which shows antibiofilm activity against Candida species. However, it presents problems due to its poor solubility and high volatility. The present study aimed to evaluate in vitro antibiofilm activity of TTO nanoparticles against many Candida species. It was performed the characterization of the oil and nanoparticles. The levels of exopolysaccharides, proteins, and the biomass of biofilms were measured. The chromatographic profile demonstrated that the TTO oil is in accordance with ISO 4730 with major constituents of 41.9% Terpinen-4-ol, 20.1% of γ-Terpinene, 9,8% of α-Terpinene, and 6,0% of 1,8-Cineole. The TTO nanoparticles showed pH of 6.3, mean diameter of 158.2 ± 2 nm, polydispersion index of 0.213 ± 0.017, and zeta potential of -8.69 ± 0.80 mV. The addition of TTO and its nanoparticles represented a significant reduction of biofilm formed by all Candida species, as well as a reduction of proteins and exopolysaccharides levels. It was possible to visualize the reduction of biofilm in presence of TTO nanoparticles by Calcofluor White method.

  14. Subinhibitory concentrations of metronidazole increase biofilm formation in Clostridium difficile strains.

    Science.gov (United States)

    Vuotto, Claudia; Moura, Ines; Barbanti, Fabrizio; Donelli, Gianfranco; Spigaglia, Patrizia

    2016-03-01

    Resistance mechanism to metronidazole is still poorly understood, even if the number of reports on Clostridium difficile strains with reduced susceptibility to this antibiotic is increasing. In this study, we investigated the ability of the C. difficile strains 7032994, 7032985 and 7032989, showing different susceptibility profiles to metronidazole but all belonging to the PCR ribotype 010, to form biofilm in vitro in presence and absence of subinhibitory concentrations of metronidazole. The quantitative biofilm production assay performed in presence of metronidazole revealed a significant increase in biofilm formation in both the susceptible strain 7032994 and the strain 7032985 exhibiting a reduced susceptibility to this antibiotic, while antibiotic pressure did not affect the biofilm-forming ability of the stable-resistant strain 7032989. Moreover, confocal microscopy analysis showed an abundant biofilm matrix production by the strains 7032994 and 7032885, when grown in presence of metronidazole, but not in the stable-resistant one. These results seem to demonstrate that subinhibitory concentrations of metronidazole are able to enhance the in vitro biofilm production of the above-mentioned PCR ribotype 010 C. difficile strains, susceptible or with reduced susceptibility to this antibiotic, suggesting a possible role of biofilm formation in the multifactorial mechanism of metronidazole resistance developed by C. difficile.

  15. Biofilm Formation by Drug Resistant Enterococci Isolates Obtained from Chronic Periodontitis Patients

    Science.gov (United States)

    Mehta, Manjula; Sood, Shaveta; Sharma, Jyoti

    2017-01-01

    Introduction Enterococci are an important cause of opportunistic nosocomial infections and several multidrug resistant strains have emerged. The severity of periodontal diseases is managed by reduction in the pathogenic bacteria. There is a need to assess the prevalence and antibiotic susceptibility of enterococci colonizing the periodontal pocket and correlate its biofilm formation ability because oral biofilms provide a protective environment and are a reservoir of bacterial colonization of the gingival crevice. Aim To investigate possible association between antibiotic susceptibility and biofilm formation in enterococci isolates from chronic periodontitis patients. Materials and Methods This retrospective study was conducted at Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Punjab University, Chandigarh from January 2015 to October 2015. Sterile paper points were inserted in the periodontal pocket of 100 subjects and put in a transport media. Forty -six isolates were identified as enterococci. The isolates were further examined for their ability to form biofilm by microtitre plate assay and antimicrobial susceptibility testing was done by disc diffusion method for clinically relevant antibiotics. Results Significant relationship (p<0.001) was found between biofilm production with antibiotic resistance to Vancomycin, Erythromycin, Ciprofloxacin, Tiecoplanin, Amoxycillin and Gentamycin. Conclusion The study demonstrates a high propensity among the isolates of Enterococci to form biofilm and a significant association of biofilm with multiple drug resistance. PMID:28273964

  16. An in vitro urinary tract catheter system to investigate biofilm development in catheter-associated urinary tract infections.

    Science.gov (United States)

    Dohnt, Katrin; Sauer, Marie; Müller, Maren; Atallah, Karin; Weidemann, Marina; Gronemeyer, Petra; Rasch, Detlev; Tielen, Petra; Krull, Rainer

    2011-12-01

    Biofilm development in urinary tract catheters is an often underestimated problem. However, this form of infection leads to high mortality rates and causes significant costs in health care. Therefore, it is important to analyze these biofilms and establish avoiding strategies. In this study a continuous flow-through system for the cultivation of biofilms under catheter-associated urinary tract infection conditions was established and validated. The in vitro urinary tract catheter system implies the composition of urine (artificial urine medium), the mean volume of urine of adults (1 mL min(-1)), the frequently used silicone catheter (foley silicon catheter) as well as the infection with uropathogenic microorganisms like Pseudomonas aeruginosa. Three clinical isolates from urine of catheterized patients were chosen due to their ability to form biofilms, their mobility and their cell surface hydrophobicity. As reference strain P. aeruginosa PA14 has been used. Characteristic parameters as biofilm thickness, specific biofilm growth rate and substrate consumption were observed. Biofilm thicknesses varied from 105±16 μm up to 246±67 μm for the different isolates. The specific biofilm growth rate could be determined with a non invasive optical biomass sensor. This sensor allows online monitoring of the biofilm growth in the progress of the cultivation.

  17. Beneficial biofilms

    Directory of Open Access Journals (Sweden)

    Sara R Robertson

    2015-10-01

    Full Text Available Surface-adherent biofilm growth is a common trait of bacteria and other microorganisms in nature. Within biofilms, organisms are present in high density and are enmeshed in an organic matrix containing polysaccharides and other molecules. The close proximity of organisms within biofilms facilitates microbial interactions and signaling, including many metabolic processes in which consortia rather than individual organisms participate. Biofilm growth also enables microorganisms to withstand chemical and biological stresses. Here, we review some current literature and document representative beneficial aspects of biofilms using examples from wastewater treatment, microbial fuel cells, biological repair (biocementation of stonework, and biofilm protection against Candida albicans infections. Finally, we address a chemical ecology strategy whereby desired microbial succession and beneficial biofilm formation can be encouraged via manipulation of culture conditions and bacterial signaling.

  18. Career Adapt-Abilities Scale--Portugal Form: Psychometric Properties and Relationships to Employment Status

    Science.gov (United States)

    Duarte, M. Eduarda; Soares, M. C.; Fraga, S.; Rafael, M.; Lima, M. R.; Paredes, I.; Agostinho, R.; Djalo, A.

    2012-01-01

    The Career-Adaptabilities Scale (CAAS)--Portugal Form consists of four scales, each with seven items, which measure concern, control, curiosity, and confidence as psychosocial resources for managing occupational transitions, developmental tasks, and work traumas. Internal consistency estimates for the subscale and total scores ranged from good to…

  19. Correlations between biochemical characteristics and foam-forming and -stabilizing ability of whey and casein hydrolysates

    NARCIS (Netherlands)

    Ven, van der C.; Bont, D.B.A.; Voragen, A.G.J.

    2002-01-01

    Whey protein and casein were hydrolyzed with 11 commercially available enzymes. Foam properties of 44 samples were measured and were related to biochemical properties of the hydrolysates using statistical data analysis. All casein hydrolysates formed high initial foam levels, whereas whey hydrolysat

  20. Phytoplankton blooms weakly influence the cloud forming ability of sea spray aerosol

    Science.gov (United States)

    Collins, Douglas B.; Bertram, Timothy H.; Sultana, Camille M.; Lee, Christopher; Axson, Jessica L.; Prather, Kimberly A.

    2016-09-01

    After many field studies, the establishment of connections between marine microbiological processes, sea spray aerosol (SSA) composition, and cloud condensation nuclei (CCN) has remained an elusive challenge. In this study, we induced algae blooms to probe how complex changes in seawater composition impact the ability of nascent SSA to act as CCN, quantified by using the apparent hygroscopicity parameter (κapp). Throughout all blooms, κapp ranged between 0.7 and 1.4 (average 0.95 ± 0.15), consistent with laboratory investigations using algae-produced organic matter, but differing from climate model parameterizations and in situ SSA generation studies. The size distribution of nascent SSA dictates that changes in κapp associated with biological processing induce less than 3% change in expected CCN concentrations for typical marine cloud supersaturations. The insignificant effect of hygroscopicity on CCN concentrations suggests that the SSA production flux and/or secondary aerosol chemistry may be more important factors linking ocean biogeochemistry and marine clouds.

  1. Dual-species biofilm formation by Escherichia coli O157:H7 and environmental bacteria isolated from fresh-cut processing facilities.

    Science.gov (United States)

    Liu, Nancy T; Nou, Xiangwu; Lefcourt, Alan M; Shelton, Daniel R; Lo, Y Martin

    2014-02-03

    Biofilm formation is a mechanism adapted by many microorganisms that enhances the survival in stressful environments. In food processing facilities, foodborne bacterial pathogens, which many are poor biofilm formers, could potentially take advantage of this protective mechanism by interacting with other strong biofilm producers. The objective of this study was to determine the influence of bacteria native to fresh produce processing environments on the incorporation of Escherichia coli O157:H7 in biofilms. Bacteria strains representing 13 Gram-negative species isolated from two fresh produce processing facilities in a previous study were tested for forming dual-species biofilms with E. coli O157:H7. Strong biofilm producing strains of Burkholderia caryophylli and Ralstonia insidiosa exhibited 180% and 63% increase in biofilm biomass, and significant thickening of the biofilms (B. caryophylli not tested), when co-cultured with E. coli O157:H7. E. coli O157:H7 populations increased by approximately 1 log in dual-species biofilms formed with B. caryophylli or R. insidiosa. While only a subset of environmental isolates with strong biofilm formation abilities increased the presence of E. coli O157:H7 in biofilms, all tested E. coli O157:H7 exhibited higher incorporation in dual-species biofilms with R. insidiosa. These observations support the notion that E. coli O157:H7 and specific strong biofilm producing bacteria interact synergistically in biofilm formation, and suggest a route for increased survival potential of E. coli O157:H7 in fresh produce processing environments.

  2. Detection of cell surface hydrophobicity, biofilm and fimbirae genes in salmonella isolated from tunisian clinical and poultry meat.

    Directory of Open Access Journals (Sweden)

    Fethi Ben Abdallah

    2015-04-01

    Full Text Available The aim of this study was to evaluate the ability of 15 serotypes of Salmonella to form biofilm on polystyrene, polyvinyl chloride (PVC and glass surfaces. .Initially slime production was assessed on CRA agar and hydrophobicity of 20 Salmonella strains isolated from poultry and human and two Salmonella enterica serovar Typhimurium references strains was achieved by microbial adhesion to n-hexadecane. In addition, biofilm formation on polystyrene, PVC and glass surfaces was also investigated by using MTT and XTT colorimetric assay. Further, distribution of Salmonella enterotoxin (stn, Salmonella Enteritidis fimbrial (sef and plasmid encoded fimbrial (pef genes among tested strains was achieved by PCR.Salmonella strains developed red and white colonies on CRA and they are considered as hydrophilic with affinity values to n-hexadecane ranged between 0.29% and 29.55%. Quantitative biofilm assays showed that bacteria are able to form biofilm on polystyrene with different degrees and 54.54% of strains produce a strong biofilm on glass. In addition, all the strains form only a moderate (54.54% and weak (40.91% biofilm on PVC. PCR detection showed that only S. Enteritidis harbour Sef gene, whereas Pef and stn genes were detected in S. Kentucky, S. Amsterdam, S. Hadar, S. Enteritidis and S. Typhimurium.Salmonella serotypes are able to form biofilm on hydrophobic and hydrophilic industrial surfaces. Biofilm formation of Salmonella on these surfaces has an increased potential to compromise food safety and potentiate public health risk.

  3. Toward in silico prediction of glass-forming ability from molecular structure alone: a screening tool in early drug development.

    Science.gov (United States)

    Mahlin, Denny; Ponnambalam, Sopana; Höckerfelt, Mina Heidarian; Bergström, Christel A S

    2011-04-04

    We present a novel computational tool which predicts the glass-forming ability of drug compounds solely from their molecular structure. Compounds which show solid-state limited aqueous solubility were selected, and their glass-forming ability was determined upon spray-drying, melt-quenching and mechanical activation. The solids produced were analyzed by differential scanning calorimetry (DSC) and powder X-ray diffraction. Compounds becoming at least partially amorphous on processing were classified as glass-formers, whereas those remaining crystalline regardless of the process method were classified as non-glass-forming compounds. A predictive model of the glass-forming ability, designed to separate between these two classes, was developed through the use of partial least-squares projection to latent structure discriminant analysis (PLS-DA) and calculated molecular descriptors. In total, ten of the 16 compounds were determined experimentally to be good glass-formers and the PLS-DA model correctly sorted 15 of the compounds using four molecular descriptors only. An external test set was predicted with an accuracy of 75%, and, hence, the PLS-DA model developed was shown to be applicable for the identification of compounds that have the potential to be designed as amorphous formulations. The model suggests that larger molecules with a low number of benzene rings, low level of molecular symmetry, branched carbon skeletons and electronegative atoms have the ability to form a glass. To conclude, we have developed a predictive, transparent and interpretable computational model for the identification of drug molecules capable of being glass-formers. The model allows an assessment of amorphization as a formulation strategy in the early drug development process, and can be applied before compound synthesis.

  4. Intrigues of biofilm: A perspective in veterinary medicine.

    Science.gov (United States)

    Abdullahi, Umar Faruk; Igwenagu, Ephraim; Mu'azu, Anas; Aliyu, Sani; Umar, Maryam Ibrahim

    2016-01-01

    Biofilm has a tremendous impact in the field of veterinary medicine, especially the livestock industry, leading to a serious economic loss. Over the years, little attention has been given to biofilm in animals with most of the research geared toward human biofilm diseases. The greatest challenge posed by biofilm is in its incredible ability to resist most of the currently existing antibiotics. This mystery can best be demystified through understanding the mechanism of the quorum sensing which regulate the pathophysiology of biofilm. Ability of biofilm formation in a variety of inanimate surfaces such as animal food contact surfaces is responsible for a host of biofilm diseases affecting animals and humans. In this review, we highlighted some of the challenges of biofilm in livestock and food industries. Also highlighted are; mechanisms of biofilm development, best diagnostic approach and possible novel therapeutic measures needed to combat the menace of biofilm in veterinary medicine.

  5. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms.

    Science.gov (United States)

    Martins, Margarida; Uppuluri, Priya; Thomas, Derek P; Cleary, Ian A; Henriques, Mariana; Lopez-Ribot, José L; Oliveira, Rosário

    2010-05-01

    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.

  6. Isolate-specific effects of patulin, penicillic Acid and EDTA on biofilm formation and growth of dental unit water line biofilm isolates.

    Science.gov (United States)

    Liaqat, Iram; Bachmann, Robert Thomas; Sabri, Anjum Nasim; Edyvean, Robert G J

    2010-08-01

    Dental unit water line (DUWL) contamination by opportunistic pathogens has its significance in nosocomial infection of patients, health care workers, and life-threatening infections to immunocompromized persons. Recently, the quorum sensing (QS) system of DUWL isolates has been found to affect their biofilm-forming ability, making it an attractive target for antimicrobial therapy. In this study, the effect of two quorum-sensing inhibitory compounds (patulin; PAT, penicillic acid; PA) and EDTA on planktonic growth, AI-2 signalling and in vitro biofilm formation of Pseudomonas aeruginosa, Achromobacter xylosoxidans and Achromobacter sp. was monitored. Vibrio harveyi BB170 bioassay and crystal violet staining methods were used to detect the AI-2 monitoring and biofilm formation in DUWL isolates, respectively. The V. harveyi BB170 bioassay failed to induce bioluminescence in A. xylosoxidans and Achromobacter sp., while P. aeruginosa showed AI-2 like activity suggesting the need of some pretreatments prior to bioassay. All strains were found to form biofilms within 72 h of incubation. The QSIs/EDTA combination have isolate-specific effects on biofilm formation and in some cases it stimulated biofilm formation as often as it was inhibited. However, detailed information about the anti-biofilm effect of these compounds is still lacking.

  7. Anionic fluoroquinolones as antibacterials against biofilm-producing Pseudomonas aeruginosa.

    Science.gov (United States)

    Long, Timothy E; Keding, Lexie C; Lewis, Demetria D; Anstead, Michael I; Withers, T Ryan; Yu, Hongwei D

    2016-02-15

    Pseudomonas aeruginosa is a common biofilm-forming bacterial pathogen implicated in diseases of the lungs. The extracellular polymeric substances (EPS) of respiratory Pseudomonas biofilms are largely comprised of anionic molecules such as rhamnolipids and alginate that promote a mucoid phenotype. In this Letter, we examine the ability of negatively-charged fluoroquinolones to transverse the EPS and inhibit the growth of mucoid P. aeruginosa. Anionic fluoroquinolones were further compared with standard antibiotics via a novel microdiffusion assay to evaluate drug penetration through pseudomonal alginate and respiratory mucus from a patient with cystic fibrosis.

  8. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar Typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances.

    Science.gov (United States)

    Wang, Rong; Kalchayanand, Norasak; Schmidt, John W; Harhay, Dayna M

    2013-09-01

    Shiga toxin-producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their planktonic counterparts, so these foodborne pathogens in biofilms pose a serious food safety concern. We investigated how the coexistence of E. coli O157:H7 and Salmonella Typhimurium strains would affect bacterial planktonic growth competition and mixed biofilm composition. Furthermore, we also investigated how mixed biofilm formation would affect bacterial resistance to common sanitizers. Salmonella Typhimurium strains were able to outcompete E. coli strains in the planktonic growth phase; however, mixed biofilm development was highly dependent upon companion strain properties in terms of the expression of bacterial extracellular polymeric substances (EPS), including curli fimbriae and exopolysaccharide cellulose. The EPS-producing strains with higher biofilm-forming abilities were able to establish themselves in mixed biofilms more efficiently. In comparison to single-strain biofilms, Salmonella or E. coli strains with negative EPS expression obtained significantly enhanced resistance to sanitization by forming mixed biofilms with an EPS-producing companion strain of the other species. These observations indicate that the bacterial EPS components not only enhance the sanitizer resistance of the EPS-producing strains but also render protections to their companion strains, regardless of species, in mixed biofilms. Our study highlights the potential risk of cross-contamination by multispecies biofilms in food safety and the need for increased attention to proper sanitization practices in food processing facilities.

  9. Critical review on biofilm methods

    DEFF Research Database (Denmark)

    Azeredo, Joana; F. Azevedo, Nuno; Briandet, Romain;

    2017-01-01

    Biofilms are widespread in nature and constitute an important strategy implemented by microorganisms to survive in sometimes harsh environmental conditions. They can be beneficial or have a negative impact particularly when formed in industrial settings or on medical devices. As such, research...... into the formation and elimination of biofilms is important for many disciplines. Several new methodologies have been recently developed for, or adapted to, biofilm studies that have contributed to deeper knowledge on biofilm physiology, structure and composition. In this review, traditional and cutting-edge methods...... to study biofilm biomass, viability, structure, composition and physiology are addressed. Moreover, as there is a lack of consensus among the diversity of techniques used to grow and study biofilms. This review intends to remedy this, by giving a critical perspective, highlighting the advantages...

  10. About forming of personality physical culture of students in the process of physical education (in aspect of presence of abilities

    Directory of Open Access Journals (Sweden)

    Belykh S.I.

    2013-01-01

    Full Text Available It is shown that practice of teaching of discipline «Physical education» does not provide forming of volume of abilities, sufficient for the origin of athletic activity. Prevail ability to pick up a place, sporting form, inventory depending on the type of physical exercises and ability on the observance of rules of the personal hygiene. In the questionnaire questioning 650 students (324 youths and 326 girls of the first and fourth courses took part. All of students visited employments on physical education at school and institute of higher. It is marked that the important task of amateurish athletic education is forming for the students of the personal experience of independent athletic, health and рекреационных employments. It is underlined that sense of amateurish athletic education of students consists in achievement by a man unity of mental and activity processes. Such processes are needed for an estimation and understanding of the state of the health, programming and residence of healthy way of life.

  11. Biofilm formation of Salmonella serotypes in simulated meat processing environments and its relationship to cell characteristics.

    Science.gov (United States)

    Wang, Huhu; Ding, Shijie; Dong, Yang; Ye, Keping; Xu, Xinglian; Zhou, Guanghong

    2013-10-01

    Salmonella attached to meat contact surfaces encountered in meat processing facilities may serve as a source of cross-contamination. In this study, the influence of serotypes and media on biofilm formation of Salmonella was investigated in a simulated meat processing environment, and the relationships between biofilm formation and cell characteristics were also determined. All six serotypes (Salmonella enterica serotype Heidelberg, Salmonella Derby, Salmonella Agona, Salmonella Indiana, Salmonella Infantis, and Salmonella Typhimurium) can readily form biofilms on stainless steel surfaces, and the amounts of biofilms were significantly influenced by the serotypes, incubation media, and incubation time used in this study. Significant differences in cell surface hydrophobicity, autoaggregation, motility, and growth kinetic parameters were observed between individual serotypes tested. Except for growth kinetic parameters, the cell characteristics were correlated with the ability of biofilm formation incubated in tryptic soy broth, whereas no correlation with biofilm formation incubated in meat thawing-loss broth (an actual meat substrate) was found. Salmonella grown in meat thawing-loss broth showed a "cloud-shaped" morphology in the mature biofilm, whereas when grown in tryptic soy broth it had a "reticulum-shaped" appearance. Our study provides some practical information to understand the process of biofilm formation on meat processing contact surfaces.

  12. BIOFILM FORMATION OF Vibrio cholerae ON STAINLESS STEEL USED IN FOOD PROCESSING.

    Science.gov (United States)

    Fernández-Delgado, Milagro; Rojas, Héctor; Duque, Zoilabet; Suárez, Paula; Contreras, Monica; García-Amado, M Alexandra; Alciaturi, Carlos

    2016-01-01

    Vibrio cholerae represents a significant threat to human health in developing countries. This pathogen forms biofilms which favors its attachment to surfaces and its survival and transmission by water or food. This work evaluated the in vitro biofilm formation of V. cholerae isolated from clinical and environmental sources on stainless steel of the type used in food processing by using the environmental scanning electron microscopy (ESEM). Results showed no cell adhesion at 4 h and scarce surface colonization at 24 h. Biofilms from the environmental strain were observed at 48 h with high cellular aggregations embedded in Vibrio exopolysaccharide (VPS), while less confluence and VPS production with microcolonies of elongated cells were observed in biofilms produced by the clinical strain. At 96 h the biofilms of the environmental strain were released from the surface leaving coccoid cells and residual structures, whereas biofilms of the clinical strain formed highly organized structures such as channels, mushroom-like and pillars. This is the first study that has shown the in vitro ability of V. cholerae to colonize and form biofilms on stainless steel used in food processing.

  13. Glass forming ability of Zr-Al-Ni(Co,Cu) understood via cluster sharing model

    Institute of Scientific and Technical Information of China (English)

    Jixiang Chen; Yi Cheng

    2014-01-01

    Clusters are shared atoms in different ways with their neighboring clusters in the crystalline phases. Cluster formula [effective cluster]1(glue atom)x can be used to describe crystalline phases, and the effective cluster means the true cluster composition due to cluster overlapping in the phase structure. Degree of cluster sharing of Zr6Al2Ni (InMg2), Zr2Co (Al2Cu) and Zr2Cu (MoSi2) phases is investigated in this paper. Ni3Zr9, Co3Zr8 and Cu5Zr10 clusters are highlighted because they have the least degree of sharing and can best represent the local atomic short-range order features of the formed phases. It is pointed out that the least sharing clusters are correlated with metallic glass formation and are verified by experiments.

  14. 两种营养条件对尿路致病性大肠埃希菌生物膜形成的影响%Effects of two culture media on the growth of biofilm formed by uropathogenic Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    葛新; 王辉; 张晓雷; 董小青

    2011-01-01

    目的 研究2种培养基对尿路致病性大肠埃希菌(UPEC)生物膜形成能力的影响.方法 将5株UPEC分别接种LB培养基或M63基础培养基,用结晶紫染色半定量法检测各菌株生物膜形成能力,分别用荧光显微镜和共聚焦显微镜观察绿色荧光蛋白标记的UPEC在2种培养基中的生物膜形成过程与厚度的差异.结果 5株UPEC在2种培养基中均为生物膜阳性菌株,早期生物膜的形成趋势基本一致,但同时期LB培养基中的生物膜菌量少于M63基础培养基中的生物膜菌量.共聚焦显微镜观察发现在M63基础培养基中各菌株生物膜最大平均厚度均大于LB培养基的相应数值(P<0.05).结论 培养基成分对UPEC生物膜的形成具有重要影响,M63基础培养基相对于LB培养基更适于培养UPEC生物膜.%Objective To compare the effects of two different levels of nutrition on the growth of biofilm formed by uropathogenic Escherichia coli (UPEC). Methods Five clinical strains of UPEC were cultured in Luria-Bertani (LB) broth or M63 minimal medium. The ability of biofilm formation was semiquantitatively measured by crystal violet stain. Green fluorescent protein-tagged strains were observed by a fluorescent microscope and a confocal microscope for the growth process and the levels of thickness of biofilm formed in the LB or M63. Results Five UPEC isolates were all biofilm positive strains. The early biofilm growth in LB was basically consistent with the growth in M63, but the bacterial population producing biofilm in LB was less than in M63 at the same time point. The confocal microscope observation showed that all strains formed thicker biofilm in M63 than in LB (P<0. 05). Conclusions The growth of UPEC biofilm was obviously affected by culture media. M63 minimal medium is more suitable for the formation of UPEC biofilm than LB.

  15. Effect of serogroup, surface material and disinfectant on biofilm formation by avian pathogenic Escherichia coli.

    Science.gov (United States)

    Oosterik, Leon H; Tuntufye, Huruma N; Butaye, Patrick; Goddeeris, Bruno M

    2014-12-01

    Avian pathogenic Escherichia coli (APEC) are responsible for significant economic losses in the poultry industry and are difficult to eradicate. Biofilm formation by APEC has the potential to reduce the efficacy of cleaning and disinfection. In this study, biofilm formation on materials used in poultry facilities by APEC strains from laying hens was determined. APEC strains were analysed for an association between biofilm forming capacity and O serogroup. The abilities of two routinely used disinfectants, hydrogen peroxide (H2O2) and a quaternary ammonium compound (QAC), to kill adherent cells of two strong APEC biofilm producers (05/503 and 04/40) and a non-biofilm producer (05/293) on polystyrene (PS) and polyvinylchloride (PVC) surfaces were tested. Most APEC strains were moderate (PS) or strong biofilm producers (polypropylene, PP, and PVC). Strains in serogroup O2 more often belonged to the moderate (PS) or strong (PP and PVC) biofilm producers than to other groups, while most O78 strains were weak biofilm producers. O78 strains were stronger biofilm producers on stainless steel than on PP and PVC, while O2 strains were stronger biofilm producers on PP and PVC. A concentration of 1% H2O2 killed all adherent bacteria of strains 05/503 and 04/40 on PP and PVC, while 0.5% H2O2 killed all adherent bacteria of strain 05/293. QAC at a concentration of 0.01% killed all adherent cells of strains 05/503, 04/40 and 05/293 under equal conditions. In conclusion, biofilm formation by APEC was affected by serogroup and surface material, and inactivation of APEC was dependent on the disinfectant and surface material.

  16. Inhibition of Salmonella enterica biofilm formation using small-molecule adenosine mimetics.

    Science.gov (United States)

    Koopman, Jacob A; Marshall, Joanna M; Bhatiya, Aditi; Eguale, Tadesse; Kwiek, Jesse J; Gunn, John S

    2015-01-01

    Biofilms have been widely implicated in chronic infections and environmental persistence of Salmonella enterica, facilitating enhanced colonization of surfaces and increasing the ability of the bacteria to be transmitted to new hosts. Salmonella enterica serovar Typhi biofilm formation on gallstones from humans and mice enhances gallbladder colonization and bacterial shedding, while Salmonella enterica serovar Typhimurium biofilms facilitate long-term persistence in a number of environments important to food, medical, and farming industries. Salmonella regulates expression of many virulence- and biofilm-related processes using kinase-driven pathways. Kinases play pivotal roles in phosphorylation and energy transfer in cellular processes and possess an ATP-binding pocket required for their functions. Many other cellular proteins also require ATP for their activity. Here we test the hypothesis that pharmacological interference with ATP-requiring enzymes utilizing adenosine mimetic compounds would decrease or inhibit bacterial biofilm formation. Through the screening of a 3,000-member ATP mimetic library, we identified a single compound (compound 7955004) capable of significantly reducing biofilm formation by S. Typhimurium and S. Typhi. The compound was not bactericidal or bacteriostatic toward S. Typhimurium or cytotoxic to mammalian cells. An ATP-Sepharose affinity matrix technique was used to discover potential protein-binding targets of the compound and identified GroEL and DeoD. Compound 7955004 was screened against other known biofilm-forming bacterial species and was found to potently inhibit biofilms of Acinetobacter baumannii as well. The identification of a lead compound with biofilm-inhibiting capabilities toward Salmonella provides a potential new avenue of therapeutic intervention against Salmonella biofilm formation, with applicability to biofilms of other bacterial pathogens.

  17. A Genome-Scale Modeling Approach to Quantify Biofilm Component Growth of Salmonella Typhimurium.

    Science.gov (United States)

    Ribaudo, Nicholas; Li, Xianhua; Davis, Brett; Wood, Thomas K; Huang, Zuyi Jacky

    2017-01-01

    Salmonella typhimurium (S. typhimurium) is an extremely dangerous foodborne bacterium that infects both animal and human subjects, causing fatal diseases around the world. Salmonella's robust virulence, antibiotic-resistant nature, and capacity to survive under harsh conditions are largely due to its ability to form resilient biofilms. Multiple genome-scale metabolic models have been developed to study the complex and diverse nature of this organism's metabolism; however, none of these models fully integrated the reactions and mechanisms required to study the influence of biofilm formation. This work developed a systems-level approach to study the adjustment of intracellular metabolism of S. typhimurium during biofilm formation. The most advanced metabolic reconstruction currently available, STM_v1.0, was 1st extended to include the formation of the extracellular biofilm matrix. Flux balance analysis was then employed to study the influence of biofilm formation on cellular growth rate and the production rates of biofilm components. With biofilm formation present, biomass growth was examined under nutrient rich and nutrient deficient conditions, resulting in overall growth rates of 0.8675 and 0.6238 h(-1) respectively. Investigation of intracellular flux variation during biofilm formation resulted in the elucidation of 32 crucial reactions, and associated genes, whose fluxes most significantly adapt during the physiological response. Experimental data were found in the literature to validate the importance of these genes for the biofilm formation of S. typhimurium. This preliminary investigation on the adjustment of intracellular metabolism of S. typhimurium during biofilm formation will serve as a platform to generate hypotheses for further experimental study on the biofilm formation of this virulent bacterium.

  18. Current understanding of multi-species biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong

    2011-01-01

    Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actuall...

  19. Sequencing of IncX-plasmids suggests ubiquity of mobile forms of a biofilm-promoting gene cassette recruited from Klebsiella pneumoniae.

    Science.gov (United States)

    Burmølle, Mette; Norman, Anders; Sørensen, Søren J; Hansen, Lars Hestbjerg

    2012-01-01

    Plasmids are a highly effective means with which genetic traits that influence human health, such as virulence and antibiotic resistance, are disseminated through bacterial populations. The IncX-family is a hitherto sparsely populated group of plasmids that are able to thrive within Enterobacteriaceae. In this study, a replicon-centric screening method was used to locate strains from wastewater sludge containing plasmids belonging to the IncX-family. A transposon aided plasmid capture method was then employed to transport IncX-plasmids from their original hosts (and co-hosted plasmids) into a laboratory strain (Escherichia coli Genehogs®) for further study. The nucleotide sequences of the three newly isolated IncX-plasmids (pLN126_33, pMO17_54, pMO440_54) and the hitherto un-sequenced type-plasmid R485 revealed a remarkable occurrence of whole or partial gene cassettes that promote biofilm-formation in Klebsiella pneumonia or E. coli, in all four instances. Two of the plasmids (R485 and pLN126_33) were shown to directly induce biofilm formation in a crystal violet retention assay in E. coli. Sequence comparison revealed that all plasmid-borne forms of the type 3 fimbriae encoding gene cassette mrkABCDF were variations of a composite transposon Tn6011 first described in the E. coli IncX plasmid pOLA52. In conclusion, IncX-plasmids isolated from Enterobacteriaceae over almost 40 years and on three different continents have all been shown to carry a type 3 fimbriae gene cassette mrkABCDF stemming from pathogenic K. pneumoniae. Apart from contributing general knowledge about IncX-plasmids, this study also suggests an apparent ubiquity of a mobile form of an important virulence factor and is an illuminating example of the recruitment, evolution and dissemination of genetic traits through plasmid-mediated horizontal gene transfer.

  20. Sequencing of IncX-plasmids suggests ubiquity of mobile forms of a biofilm-promoting gene cassette recruited from Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Mette Burmølle

    Full Text Available Plasmids are a highly effective means with which genetic traits that influence human health, such as virulence and antibiotic resistance, are disseminated through bacterial populations. The IncX-family is a hitherto sparsely populated group of plasmids that are able to thrive within Enterobacteriaceae. In this study, a replicon-centric screening method was used to locate strains from wastewater sludge containing plasmids belonging to the IncX-family. A transposon aided plasmid capture method was then employed to transport IncX-plasmids from their original hosts (and co-hosted plasmids into a laboratory strain (Escherichia coli Genehogs® for further study. The nucleotide sequences of the three newly isolated IncX-plasmids (pLN126_33, pMO17_54, pMO440_54 and the hitherto un-sequenced type-plasmid R485 revealed a remarkable occurrence of whole or partial gene cassettes that promote biofilm-formation in Klebsiella pneumonia or E. coli, in all four instances. Two of the plasmids (R485 and pLN126_33 were shown to directly induce biofilm formation in a crystal violet retention assay in E. coli. Sequence comparison revealed that all plasmid-borne forms of the type 3 fimbriae encoding gene cassette mrkABCDF were variations of a composite transposon Tn6011 first described in the E. coli IncX plasmid pOLA52. In conclusion, IncX-plasmids isolated from Enterobacteriaceae over almost 40 years and on three different continents have all been shown to carry a type 3 fimbriae gene cassette mrkABCDF stemming from pathogenic K. pneumoniae. Apart from contributing general knowledge about IncX-plasmids, this study also suggests an apparent ubiquity of a mobile form of an important virulence factor and is an illuminating example of the recruitment, evolution and dissemination of genetic traits through plasmid-mediated horizontal gene transfer.

  1. Biofilm Infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Jensen, Peter Østrup; Moser, Claus Ernst

    A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized...... as being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections...... such as diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well...

  2. The effects of mycoplasma contamination upon the ability to form bioengineered 3D kidney cysts.

    Directory of Open Access Journals (Sweden)

    Teresa M DesRochers

    Full Text Available Mycoplasma contamination of cell cultures is a pervasive, often undiagnosed and ignored problem in many laboratories that can result in reduced cell proliferation and changes in gene expression. Unless contamination is specifically suspected, it is often undetected in two dimensional (2D cultures and the resulting effects of mycoplasma contamination are rarely appreciated and can lead to incorrect conclusions. Three dimensional (3D tissue cultures are increasingly utilized to explore tissue development and phenotype. However, 3D cultures are more complex than 2D cell cultures and require a more controlled cellular environment in order to generate structures necessary to mimic in vivo responses and are often maintained for longer time periods. Changes to the microenvironment are assumed to have a more extreme effect upon the success of 3D tissue cultures than 2D cell cultures, but the effects of mycoplasma have not been studied. To test this hypothesis, we grew 2D cell cultures and 3D tissues from pig kidney epithelial cells (LLC-PK1 that were contaminated with mycoplasma and the same stock of cells after mycoplasma removal. We did not observe an effect of mycoplasma contamination on proliferation in 2D monolayer cell culture. However, cyst formation in 3D tissues was altered, with effects upon the number, size and structure of cysts formed. These data serve to reinforce the necessity of testing cell stocks for mycoplasma contamination.

  3. The glass-forming ability of model metal-metalloid alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Liu, Yanhui; Schroers, Jan [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Shattuck, Mark D. [Department of Physics and Benjamin Levich Institute, The City College of the City University of New York, New York, New York 10031 (United States); Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); O’Hern, Corey S. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States)

    2015-03-14

    Bulk metallic glasses (BMGs) are amorphous alloys with desirable mechanical properties and processing capabilities. To date, the design of new BMGs has largely employed empirical rules and trial-and-error experimental approaches. Ab initio computational methods are currently prohibitively slow to be practically used in searching the vast space of possible atomic combinations for bulk glass formers. Here, we perform molecular dynamics simulations of a coarse-grained, anisotropic potential, which mimics interatomic covalent bonding, to measure the critical cooling rates for metal-metalloid alloys as a function of the atomic size ratio σ{sub S}/σ{sub L} and number fraction x{sub S} of the metalloid species. We show that the regime in the space of σ{sub S}/σ{sub L} and x{sub S} where well-mixed, optimal glass formers occur for patchy and LJ particle mixtures, coincides with that for experimentally observed metal-metalloid glass formers. Thus, our simple computational model provides the capability to perform combinatorial searches to identify novel glass-forming alloys.

  4. The glass-forming ability of model metal-metalloid alloys

    Science.gov (United States)

    Zhang, Kai; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D.; O'Hern, Corey S.

    2015-03-01

    Bulk metallic glasses (BMGs) are amorphous alloys with desirable mechanical properties and processing capabilities. To date, the design of new BMGs has largely employed empirical rules and trial-and-error experimental approaches. Ab initio computational methods are currently prohibitively slow to be practically used in searching the vast space of possible atomic combinations for bulk glass formers. Here, we perform molecular dynamics simulations of a coarse-grained, anisotropic potential, which mimics interatomic covalent bonding, to measure the critical cooling rates for metal-metalloid alloys as a function of the atomic size ratio σS/σL and number fraction xS of the metalloid species. We show that the regime in the space of σS/σL and xS where well-mixed, optimal glass formers occur for patchy and LJ particle mixtures, coincides with that for experimentally observed metal-metalloid glass formers. Thus, our simple computational model provides the capability to perform combinatorial searches to identify novel glass-forming alloys.

  5. Effects of solute methoxylation on glass-forming ability and stability of vitrification solutions

    Science.gov (United States)

    Wowk; Darwin; Harris; Russell; Rasch

    1999-11-01

    The effects of replacing hydroxyl groups with methoxyl (OCH(3)) groups in the polyols ethylene glycol (EG), propylene glycol (PG), glycerol, and threitol were studied by differential scanning calorimetry (DSC) during cooling of aqueous solutions to -150 degrees C and subsequent rewarming. For 35% (w/w) PG, 40% EG, and 45% glycerol, a single substitution of a terminal hydroxyl group with a methoxyl group reduced the critical cooling rate necessary to avoid ice on cooling (vitrify) from approximately 500 to 50 degrees C/min. This reduction was approximately equivalent to increasing the parent polyol concentration by 5% (w/w). The critical warming rate calculated to avoid formation of ice on rewarming (devitrification) was also reduced by methoxyl substitution, typically by a factor of 10(4) for dilute solutions. Double methoxylation (replacement of both terminal hydroxyls) tended to result in hydrate formation, making these compounds less interesting. An exception was threitol, for which substituting both terminal hydroxyls by methoxyls reduced the critical rewarming rate of a 50% solution by a factor of 10(7) without any hydrate formation. These glass-forming and stability properties of methoxylated compounds, combined with their low viscosity, enhanced permeability, and high glass transition temperatures, make them interesting candidate cryoprotective agents for cryopreservation by vitrification or freezing. Copyright 1999 Academic Press.

  6. Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach.

    Science.gov (United States)

    Kulshrestha, Shatavari; Khan, Shakir; Hasan, Sadaf; Khan, M Ehtisham; Misba, Lama; Khan, Asad U

    2016-02-01

    Biofilm formation on the tooth surface is the root cause of dental caries and periodontal diseases. Streptococcus mutans is known to produce biofilm which is one of the primary causes of dental caries. Acid production and acid tolerance along with exopolysaccharide (EPS) formation are major virulence factors of S. mutans biofilm. In the current study, calcium fluoride nanoparticles (CaF2-NPs) were evaluated for their effect on the biofilm forming ability of S. mutans in vivo and in vitro. The in vitro studies revealed 89 % and 90 % reduction in biofilm formation and EPS production, respectively. Moreover, acid production and acid tolerance abilities of S. mutans were also reduced considerably in the presence of CaF2-NPs. Confocal laser scanning microscopy and transmission electron microscopy images were in accordance with the other results indicating inhibition of biofilm without affecting bacterial viability. The qRT-PCR gene expression analysis showed significant downregulation of various virulence genes (vicR, gtfC, ftf, spaP, comDE) associated with biofilm formation. Furthermore, CaF2-NPs were found to substantially decrease the caries in treated rat groups as compared to the untreated groups in in vivo studies. Scanning electron micrographs of rat's teeth further validated our results. These findings suggest that the CaF2-NPs may be used as a potential antibiofilm applicant against S. mutans and may be applied as a topical agent to reduce dental caries.

  7. Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses.

    Science.gov (United States)

    Oudadesse, H; Dietrich, E; Gal, Y L; Pellen, P; Bureau, B; Mostafa, A A; Cathelineau, G

    2011-06-01

    The use of bone grafts permits the filling of a bone defect without risk of virus transmission. In this work, pure bioactive glass (46S6) and zinc-doped bioactive glass (46S6Zn10) with 0.1 wt% zinc are used to elaborate highly bioactive materials by melting and rapid quenching. Cylinders of both types of glasses were soaked in a simulated body fluid (SBF) solution with the aim of determining the effect of zinc addition as a trace element on the chemical reactivity and bioactivity of glass. Several physico-chemical characterization methods such as x-ray diffraction, Fourier transform infrared spectroscopy and nuclear magnetic resonance methods, with particular focus on the latter, were chosen to investigate the fine structural behaviour of pure and Zn-doped bioactive glasses as a function of the soaking time of immersion in SBF. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was used to measure the concentrations of Ca and P ions in the SBF solution after different durations of immersion. The effect of the investigated samples on the proliferation rate of human osteoblast cells was assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, and tested on two different sizes of pure and zinc-doped glasses in powder form, with particle sizes that ranged between 40 to 63 µm and 500 to 600 µm. The obtained results showed the delay release of ions by Zn-doped glass (46S6Zn10) and the slower CaP deposition. Cytotoxicity and cell viability were affected by the particle size of the glass. The release rate of ions was found to influence the cell viability.

  8. Nanocrystallization kinetics and glass forming ability of the Fe65Nb10B25 metallic alloy

    Science.gov (United States)

    Torrens-Serra, J.; Rodríguez-Viejo, J.; Clavaguera-Mora, M. T.

    2007-12-01

    The crystallization kinetics of glassy Fe65Nb10B25 melt-spun ribbons is studied by differential scanning calorimetry in the mode of continuous heating and isothermal annealing and by x-ray diffraction and transmission electron microscopy. Continuous heat treatments of the ribbons show the presence of multiple exothermic peaks before melting. The low-temperature peak corresponds to the precipitation of nanoscale Fe23B6 -type crystalline metastable phase, and further annealing leads to its transformation into the metastable Fe3B phase and subsequent formation of bcc-Fe , Fe2B , and FeNbB stable crystalline phases. The nucleation frequency and the growth rate are determined at selected temperatures from the analysis of the microstructures that emerge during the Fe23B6 -type nanocrystallization. The master curve method is used to obtain the apparent activation energy and the Avrami exponent at the nanocrystallization onset. The nanocrystallization kinetics is explained in the framework of the Kolmogorov-Johnson-Mehl-Avrami theory. The rejection of insoluble alloy atoms during primary crystallization, the formation of diffusion layers around the crystals, and the decrease in the nucleation frequency caused by alloy enrichment of the residual disordered matrix is modeled through a soft impingement factor. Estimated values for the interfacial energy that provide a satisfactory agreement between experiments and modeling are derived considering that homogeneous nucleation frequency and interface-controlled grain growth are dominant at the onset of the nanocrystallization. Consequently, the time-temperature-transformation diagram is also drawn and the critical cooling rate estimated for this glass forming alloy.

  9. Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses

    Energy Technology Data Exchange (ETDEWEB)

    Oudadesse, H; Dietrich, E; Gal, Y L; Pellen, P; Bureau, B; Mostafa, A A; Cathelineau, G, E-mail: hassane.oudadesse@univ-rennes1.fr [SCR, UMR-CNRS 6226, Campus de Beaulieu, Universite de Rennes 1, 263 Avenue du General Leclerc, 35042 Rennes Cedex (France)

    2011-06-15

    The use of bone grafts permits the filling of a bone defect without risk of virus transmission. In this work, pure bioactive glass (46S6) and zinc-doped bioactive glass (46S6Zn10) with 0.1 wt% zinc are used to elaborate highly bioactive materials by melting and rapid quenching. Cylinders of both types of glasses were soaked in a simulated body fluid (SBF) solution with the aim of determining the effect of zinc addition as a trace element on the chemical reactivity and bioactivity of glass. Several physico-chemical characterization methods such as x-ray diffraction, Fourier transform infrared spectroscopy and nuclear magnetic resonance methods, with particular focus on the latter, were chosen to investigate the fine structural behaviour of pure and Zn-doped bioactive glasses as a function of the soaking time of immersion in SBF. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was used to measure the concentrations of Ca and P ions in the SBF solution after different durations of immersion. The effect of the investigated samples on the proliferation rate of human osteoblast cells was assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, and tested on two different sizes of pure and zinc-doped glasses in powder form, with particle sizes that ranged between 40 to 63 {mu}m and 500 to 600 {mu}m. The obtained results showed the delay release of ions by Zn-doped glass (46S6Zn10) and the slower CaP deposition. Cytotoxicity and cell viability were affected by the particle size of the glass. The release rate of ions was found to influence the cell viability.

  10. Effects of Aronia melanocarpa Constituents on Biofilm Formation of Escherichia coli and Bacillus cereus

    Directory of Open Access Journals (Sweden)

    Marie Bräunlich

    2013-12-01

    Full Text Available Many bacteria growing on surfaces form biofilms. Adaptive and genetic changes of the microorganisms in this structure make them resistant to antimicrobial agents. Biofilm-forming organisms on medical devices can pose serious threats to human health. Thus, there is a need for novel prevention and treatment strategies. This study aimed to evaluate the ability of Aronia melanocarpa extracts, subfractions and compounds to prevent biofilm formation and to inhibit bacterial growth of Escherichia coli and Bacillus cereus in vitro. It was found that several aronia substances possessed anti-biofilm activity, however, they were not toxic to the species screened. This non-toxic inhibition may confer a lower potential for resistance development compared to conventional antimicrobials.

  11. Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Alhede, Maria; Bjarnsholt, Thomas; Givskov, Michael Christian;

    2014-01-01

    biofilms, which protect the aggregated, biopolymer-embedded bacteria from the detrimental actions of antibiotic treatments and host immunity. A key component in the protection against innate immunity is rhamnolipid, which is a quorum sensing (QS)-regulated virulence factor. QS is a cell-to-cell signaling...... mechanism used to coordinate expression of virulence and protection of aggregated biofilm cells. Rhamnolipids are known for their ability to cause hemolysis and have been shown to cause lysis of several cellular components of the human immune system, for example, macrophages and polymorphonuclear leukocytes...

  12. Microscopic insight into the origin of enhanced glass-forming ability of metallic melts on micro-alloying

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. J.; Chathoth, S. M., E-mail: smavilac@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China); Podlesnyak, A. [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Mamontov, E. [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Wang, W. H. [Institute of Physics, Chinese Academy of Science, Beijing 100190 (China)

    2015-09-28

    Extensive efforts have been made to develop metallic-glasses with large casting diameter. Such efforts were hindered by the poor understanding of glass formation mechanisms and the origin of the glass-forming ability (GFA) in metallic glass-forming systems. In this work, we have investigated relaxation dynamics of a model bulk glass-forming alloy system that shows the enhanced at first and then diminished GFA on increasing the percentage of micro-alloying. The micro-alloying did not have any significant impact on the thermodynamic properties. The GFA increasing on micro-alloying in this system cannot be explained by the present theoretical knowledge. Our results indicate that atomic caging is the primary factor that influences the GFA. The composition dependence of the atomic caging time or residence time is found to be well correlated with GFA of the system.

  13. A flow chamber assay for quantitative evaluation of bacterial surface colonization used to investigate the influence of temperature and surface hydrophilicity on the biofilm forming capacity of uropathogenic Escherichia coli

    DEFF Research Database (Denmark)

    Andersen, Thomas Emil; Kingshott, Peter; Palarasah, Yaseelan

    2010-01-01

    We have established a simple flow chamber-based procedure which provides an accurate and reproducible way to measure the amount of biofilm formed on an implantable biomaterial surface. The method enables the side-by-side evaluation of different materials under hydrodynamic flow conditions similar...

  14. Biofilm Morphotypes and Population Structure among Staphylococcus epidermidis from Commensal and Clinical Samples.

    Directory of Open Access Journals (Sweden)

    Llinos G Harris

    Full Text Available Bacterial species comprise related genotypes that can display divergent phenotypes with important clinical implications. Staphylococcus epidermidis is a common cause of nosocomial infections and, critical to its pathogenesis, is its ability to adhere and form biofilms on surfaces, thereby moderating the effect of the host's immune response and antibiotics. Commensal S. epidermidis populations are thought to differ from those associated with disease in factors involved in adhesion and biofilm accumulation. We quantified the differences in biofilm formation in 98 S. epidermidis isolates from various sources, and investigated population structure based on ribosomal multilocus typing (rMLST and the presence/absence of genes involved in adhesion and biofilm formation. All isolates were able to adhere and form biofilms in in vitro growth assays and confocal microscopy allowed classification into 5 biofilm morphotypes based on their thickness, biovolume and roughness. Phylogenetic reconstruction grouped isolates into three separate clades, with the isolates in the main disease associated clade displaying diversity in morphotype. Of the biofilm morphology characteristics, only biofilm thickness had a significant association with clade distribution. The distribution of some known adhesion-associated genes (aap and sesE among isolates showed a significant association with the species clonal frame. These data challenge the assumption that biofilm-associated genes, such as those on the ica operon, are genetic markers for less invasive S. epidermidis isolates, and suggest that phenotypic characteristics, such as adhesion and biofilm formation, are not fixed by clonal descent but are influenced by the presence of various genes that are mobile among lineages.

  15. Dendrimers and Polyamino-Phenolic Ligands: Activity of New Molecules Against Legionella pneumophila Biofilms

    Science.gov (United States)

    Andreozzi, Elisa; Barbieri, Federica; Ottaviani, Maria F.; Giorgi, Luca; Bruscolini, Francesca; Manti, Anita; Battistelli, Michela; Sabatini, Luigia; Pianetti, Anna

    2016-01-01

    Legionnaires’ disease is a potentially fatal pneumonia caused by Legionella pneumophila, an aquatic bacterium often found within the biofilm niche. In man-made water systems microbial biofilms increase the resistance of legionella to disinfection, posing a significant threat to public health. Disinfection methods currently used in water systems have been shown to be ineffective against legionella over the long-term, allowing recolonization by the biofilm-protected microorganisms. In this study, the anti-biofilm activity of previously fabricated polyamino-phenolic ligands and polyamidoamine dendrimers was investigated against legionella mono-species and multi-species biofilms formed by L. pneumophila in association with other bacteria that can be found in tap water (Aeromonas hydrophila, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae). Bacterial ability to form biofilms was verified using a crystal violet colorimetric assay and testing cell viability by real-time quantitative PCR and Plate Count assay. The concentration of the chemicals tested as anti-biofilm agents was chosen based on cytotoxicity assays: the highest non-cytotoxic chemical concentration was used for biofilm inhibition assays, with dendrimer concentration 10-fold higher than polyamino-phenolic ligands. While Macrophen and Double Macrophen were the most active substances among polyamino-phenolic ligands, dendrimers were overall twofold more effective than all other compounds with a reduction up to 85 and 73% of legionella and multi-species biofilms, respectively. Chemical interaction with matrix molecules is hypothesized, based on SEM images and considering the low or absent anti-microbial activity on planktonic bacteria showed by flow cytometry. These data suggest that the studied compounds, especially dendrimers, could be considered as novel molecules in the design of research projects aimed at the development of efficacious anti-biofilm disinfection treatments of water systems

  16. Dendrimers and polyamino-phenolic ligands: activity of new molecules against Legionella pneumophila biofilms.

    Directory of Open Access Journals (Sweden)

    Elisa eAndreozzi

    2016-03-01

    Full Text Available Legionnaires’ disease is a potentially fatal pneumonia caused by Legionella pneumophila, an aquatic bacterium often found within the biofilm niche. In man-made water systems microbial biofilms increase the resistance of legionella to disinfection, posing a significant threat to public health. Disinfection methods currently used in water systems have been shown to be ineffective against legionella over the long-term, allowing recolonization by the biofilm-protected microorganisms. In this study, the anti-biofilm activity of previously fabricated polyamino-phenolic ligands and polyamidoamine dendrimers was investigated against legionella mono-species and multi-species biofilms formed by L. pneumophila in association with other bacteria that can be found in tap water (Aeromonas hydrophila, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae. Bacterial ability to form biofilms was verified using a crystal violet colorimetric assay and testing cell viability by real-time quantitative PCR and Plate Count assay. The concentration of the chemicals tested as anti-biofilm agents was chosen based on cytotoxicity assays: the highest non-cytotoxic chemical concentration was used for biofilm inhibition assays, with dendrimer concentration ten-fold higher than polyamino-phenolic ligands. While Macrophen and Double Macrophen were the most active substances among polyamino-phenolic ligands, dendrimers were overall two-fold more effective than all other compounds with a reduction up to 85% and 73% of legionella and multi-species biofilms, respectively. Chemical interaction with matrix molecules is hypothesized, based on SEM images and considering the low or absent anti-microbial activity on planktonic bacteria showed by flow cytometry. These data suggest that the studied compounds, especially dendrimers, could be considered as novel molecules in the design of research projects aimed at the development of efficacious anti-biofilm disinfection

  17. Neuroticism and self-evaluation measures are related to the ability to form cognitive maps critical for spatial orientation.

    Science.gov (United States)

    Burles, Ford; Guadagni, Veronica; Hoey, Felecia; Arnold, Aiden E G F; Levy, Richard M; O'Neill, Thomas; Iaria, Giuseppe

    2014-09-01

    Trait neuroticism is suggested to be related to measures of volume and function of the hippocampus, a brain structure located in the medial temporal lobe that is critical for human navigation and orientation. In this study, we assessed whether measures of trait neuroticism and self-concept are correlated with the human ability to orient by means of cognitive maps (i.e. mental representations of an environment that include landmarks and their spatial relationships). After controlling for gender differences, which are well-known in spatial orientation abilities, we found that measures of neuroticism (i.e. negative affect, emotional stability) and self-concept (i.e. self-esteem) were correlated with individual differences in the rate at which cognitive maps were formed; the same measures were generally unrelated to the ability to make use of cognitive maps, as well as the ability to orient using visual path integration. The relationships (and lack thereof) between personality traits and the spatial orientation skills, as reported in the present study, are consistent with specific neural correlates underlying these factors, and may have important implications for treatment of disorders related to them.

  18. A Subinhibitory Concentration of Clarithromycin Inhibits Mycobacterium avium Biofilm Formation

    OpenAIRE

    2004-01-01

    Mycobacterium avium causes disseminated infection in immunosuppressed individuals and lung infection in patients with chronic lung diseases. M. avium forms biofilm in the environment and possibly in human airways. Antibiotics with activity against the bacterium could inhibit biofilm formation. Clarithromycin inhibits biofilm formation but has no activity against established biofilm.

  19. Discovering Biofilms: Inquiry-Based Activities for the Classroom

    Science.gov (United States)

    Redelman, Carly V.; Marrs, Kathleen; Anderson, Gregory G.

    2012-01-01

    In nature, bacteria exist in and adapt to different environments by forming microbial communities called "biofilms." We propose simple, inquiry-based laboratory exercises utilizing a biofilm formation assay, which allows controlled biofilm growth. Students will be able to qualitatively assess biofilm growth via staining. Recently, we developed a…

  20. Glass-forming Ability and Chemical Stability of Mag-neto-optical Glass Heavily Doped with Rare Earth Oxide

    Institute of Scientific and Technical Information of China (English)

    YIN Hairong; ZHANG Chunxiang; LIU Liying; CHEN Guoping; TANG Baojun

    2009-01-01

    The glass-forming region of B_2O_3-Al_2O_3-SiO_2(BAS)glass heavily doped with rare earth oxides was investigated by an effective method,and the chemical stability was investigated by powder method.Influences of rare earth oxides on the glass-forming ability and the chemical stability of the BAS glass were also discussed.The experimental results show that the BAS glass-forming re-gion expands firstly with the increase of the Tb_2O_3 content up to 30mol%and then shrinks.The acid-resistant capacity of the BAS glass doped with rare earth oxides is the lowest,the water-resistant capacity is secondary,and the alkali-resistant capacity is the best.Besides,the glass chemical stability can be improved by doping appropriate amount of rare earth oxides.Moreover,the stronger the ionic polarization ability of the rare earth ions is,the better the chemical stability of the BAS glass will be.

  1. The Role of Biofilms and Curli in Salmonella Transport Through Porous Media

    Science.gov (United States)

    Salvucci, A. E.; Zhang, W.; Morales, V. L.; Cakmak, M. E.; Hay, A. G.; Steenhuis, T. S.

    2008-12-01

    Microbial pathogens, such as Salmonella and E. coli, are continually deposited in the environment and have been shown to contaminate the groundwater by leaching through the vadose zone. Therefore, understanding the mechanisms controlling the transport of these microbial pathogens through porous media is critical to protecting drinking water supplies. As previous research has shown, retention of microbial pathogens in porous media can be influenced by numerous biological factors. Consequently, this experiment specifically investigated the role of biofilm formation and curli production on the transport of environmental Salmonella through porous media. Environmental Salmonella strains used in the experiment were isolated from tile drains on dairy farms. In addition, two well-characterized E. coli strains with known high and low biofilm and curli producing capabilities were tested as controls alongside the Salmonella isolates throughout the experiment. The isolates were first assayed for their ability to form biofilms and produce curli, and then a subset of these isolates, representing range of high and low biofilm and curli formation capabilities, were simultaneously examined for transport characteristics through packed sand columns. Transport characteristics were tested for correlation with biofilm and curli-forming capabilities. Unlike the E. coli strains in which column retention correlated with biofilm formation and curli production, no obvious correlation between Salmonella phenotypes was observed. The results indicate that while transport of well-characterized laboratory E. coli strains can often be hindered by the presence of curli and biofilms, such assumptions are not fully representative of the behavior exhibited by environmental isolates of Salmonella.

  2. The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides

    DEFF Research Database (Denmark)

    Balestrino, D.; Ghigo, J.M.; Charbonnel, N.

    2008-01-01

    The ability to form biofilm is seen as an increasingly important colonization strategy among both pathogenic and environmental Klebsiella pneumoniae strains. The aim of the present study was to identify abiotic surface colonization factors of K. pneumoniae using different models at different phases...... of biofilm development. A 2200 K. pneumoniae mutant library previously obtained by signature-tagged mutagenesis was screened in static and dynamic culture models to detect clones impaired at early and/or mature stages of biofilm formation. A total of 28 mutants were affected during late phases of biofilm...... that LPS is involved in initial adhesion on both glass and polyvinyl-chloride and the capsule required for the appropriate initial coverage of substratum and the construction of mature biofilm architecture. These results give new insight into the bacterial factors sequentially associated with the ability...

  3. Biofilm formation on polystyrene under different temperatures by antibiotic resistant Enterococcus faecalis and Enterococcus faecium isolated from food

    Directory of Open Access Journals (Sweden)

    A.R. Marinho

    2013-01-01

    Full Text Available The ability of antibiotic resistant E. faecalis and E. faecium isolated from food to form biofilm at different temperatures in the absence or presence of 0.75% glucose was evaluated. A synergistic effect on biofilm at 10 °C, 28 °C, 37 °C and 45 °C and glucose was observed for E. faecalis and E. faecium.

  4. Biofilm formation on polystyrene under different temperatures by antibiotic resistant Enterococcus faecalis and Enterococcus faecium isolated from food

    Science.gov (United States)

    Marinho, A.R.; Martins, P.D.; Ditmer, E.M.; d’Azevedo, P.A.; Frazzon, J.; Van Der Sand, S.T.; Frazzon, A.P.G.

    2013-01-01

    The ability of antibiotic resistant E. faecalis and E. faecium isolated from food to form biofilm at different temperatures in the absence or presence of 0.75% glucose was evaluated. A synergistic effect on biofilm at 10 °C, 28 °C, 37 °C and 45 °C and glucose was observed for E. faecalis and E. faecium. PMID:24294231

  5. Candida Biofilms: Development, Architecture, and Resistance.

    Science.gov (United States)

    Chandra, Jyotsna; Mukherjee, Pranab K

    2015-08-01

    Intravascular device-related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis-associated infections and also are commonly isolated from contact lens-related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms.

  6. Vibrio cholerae Biofilms and Cholera Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Anisia J Silva

    2016-02-01

    Full Text Available Vibrio cholerae can switch between motile and biofilm lifestyles. The last decades have been marked by a remarkable increase in our knowledge of the structure, regulation, and function of biofilms formed under laboratory conditions. Evidence has grown suggesting that V. cholerae can form biofilm-like aggregates during infection that could play a critical role in pathogenesis and disease transmission. However, the structure and regulation of biofilms formed during infection, as well as their role in intestinal colonization and virulence, remains poorly understood. Here, we review (i the evidence for biofilm formation during infection, (ii the coordinate regulation of biofilm and virulence gene expression, and (iii the host signals that favor V. cholerae transitions between alternative lifestyles during intestinal colonization, and (iv we discuss a model for the role of V. cholerae biofilms in pathogenicity.

  7. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses.

    Science.gov (United States)

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer; Thorpe, Steven John

    2015-09-21

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal-transition metal and transition metal-metalloid (TM-M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM-M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  8. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer, E-mail: chandraveer.singh@utoronto.ca; Thorpe, Steven John [Department of Materials Science and Engineering, University of Toronto, Room 140, 184 College Street, Toronto, Ontario M5S 3E4 (Canada)

    2015-09-21

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal–transition metal and transition metal–metalloid (TM–M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM–M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  9. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses

    Science.gov (United States)

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer; Thorpe, Steven John

    2015-09-01

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal-transition metal and transition metal-metalloid (TM-M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM-M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  10. Bacterial interactions in dental biofilm.

    Science.gov (United States)

    Huang, Ruijie; Li, Mingyun; Gregory, Richard L

    2011-01-01

    Biofilms are masses of microorganisms that bind to and multiply on a solid surface, typically with a fluid bathing the microbes. The microorganisms that are not attached but are free floating in an aqueous environment are termed planktonic cells. Traditionally, microbiology research has addressed results from planktonic bacterial cells. However, many recent studies have indicated that biofilms are the preferred form of growth of most microbes and particularly those of a pathogenic nature. Biofilms on animal hosts have significantly increased resistance to various antimicrobials compared to planktonic cells. These microbial communities form microcolonies that interact with each other using very sophisticated communication methods (i.e., quorum-sensing). The development of unique microbiological tools to detect and assess the various biofilms around us is a tremendously important focus of research in many laboratories. In the present review, we discuss the major biofilm mechanisms and the interactions among oral bacteria.

  11. Salmonella biofilms

    NARCIS (Netherlands)

    Castelijn, G.A.A.

    2013-01-01

    Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm formation. A collectio

  12. In-situ study of crystallization kinetics in ternary bulk metallic glass alloys with different glass forming abilities

    Science.gov (United States)

    Lan, Si; Wei, Xiaoya; Zhou, Jie; Lu, Zhaoping; Wu, Xuelian; Feygenson, Mikhail; Neuefeind, Jörg; Wang, Xun-Li

    2014-11-01

    In-situ transmission electron microcopy and time-resolved neutron diffraction were used to study crystallization kinetics of two ternary bulk metallic glasses during isothermal annealing in the supercooled liquid region. It is found that the crystallization of Zr56Cu36Al8, an average glass former, follows continuous nucleation and growth, while that of Zr46Cu46Al8, a better glass former, is characterized by site-saturated nucleation, followed by slow growth. Possible mechanisms for the observed differences and the relationship to the glass forming ability are discussed.

  13. In-situ study of crystallization kinetics in ternary bulk metallic glass alloys with different glass forming abilities

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Si; Wei, Xiaoya; Wu, Xuelian; Wang, Xun-Li, E-mail: xlwang@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Ave., Kowloon (Hong Kong); Zhou, Jie; Lu, Zhaoping [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing (China); Feygenson, Mikhail; Neuefeind, Jörg [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-11-17

    In-situ transmission electron microcopy and time-resolved neutron diffraction were used to study crystallization kinetics of two ternary bulk metallic glasses during isothermal annealing in the supercooled liquid region. It is found that the crystallization of Zr{sub 56}Cu{sub 36}Al{sub 8}, an average glass former, follows continuous nucleation and growth, while that of Zr{sub 46}Cu{sub 46}Al{sub 8}, a better glass former, is characterized by site-saturated nucleation, followed by slow growth. Possible mechanisms for the observed differences and the relationship to the glass forming ability are discussed.

  14. Drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment.

    Science.gov (United States)

    Kouidhi, Bochra; Al Qurashi, Yasir Mohammed A; Chaieb, Kamel

    2015-03-01

    Oral diseases, such as dental caries and periodontal disease are directly linked with the ability of bacteria to form biofilm. The development of dental caries involves acidogenic and aciduric Gram-positive bacteria colonizing the supragingival biofilm (Streptococcus, Lactobacillus and Actinomycetes). Periodontal diseases have been linked to anaerobic Gram-negative bacteria forming a subgingival plaque (Porphyromonas gingivalis, Actinobacillus, Prevotella and Fusobacterium). Cells embedded in biofilm are up to 1000-fold more resistant to antibiotics compared to their planctonic ones. Several mechanisms have been proposed to explain biofilms drug resistance. Given the increased bacterial resistance to antibiotics currently used in dentistry, a great importance is given to natural compounds for the prevention of oral bacterial growth, adhesion and colonization. Over the past decade, interest in drugs derived from medicinal plants has markedly increased. It has been well documented that medicinal plants and natural compounds confer considerable antibacterial activity against various microorganisms including cariogenic and periodontal pathogens. This paper provides a review of the literature focusing on the studies on (i) biofilm in the oral cavity, (ii) drug resistance of bacterial biofilm and (iii) the potential use of plant extracts, essential oils and natural compounds as biofilm preventive agents in dentistry, involving their origin and their mechanism of biofilm inhibition.

  15. Novel application for the prevention and treatment of Staphylococcus aureus biofilm formation

    Science.gov (United States)

    Traba, Christian

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this dissertation, the application of plasma from two very different facets was studied. In part one, the susceptibility of pre-formed Staphylococcus aureus biofilms on biomaterials to different plasmas was investigated. It was found that the distinct chemical/physical properties of plasmas generated from oxygen, nitrogen, and argon all demonstrated very potent but very different anti-biofilm mechanisms of action. An in depth analysis of these results show: 1) different reactive species produced in each plasma demonstrate specific activity, and 2) the commonly associated etching effect could be manipulated and even controlled, depending on experimental conditions and the discharge gas. These studies provide insights into the anti-biofilm mechanisms of plasma as well as the effects of different reactive species on biofilm inactivation. Under experimental parameters, bacterial cells in Staphylococcus aureus biofilms were killed (>99.9%) by plasmas within minutes of exposure and no bacteria nor biofilm re-growth from discharge gas treated biofilms was observed throughout the life-span of the re-growth experiment. The decontamination ability of plasmas for the treatment of biofilm related infections on biomedical materials was confirmed and novel applications involving the use of low power argon and oxygen for the treatment of biofilm contaminated biomaterials and indwelling devices is proposed. The second facet of this dissertation explores the interaction between biofilm forming Staphylococcus aureus bacteria on different antibacterial/anti-biofilm surfaces. The antibiotic-free anti-fouling surfaces constructed in this study were generated from the plasma-assisted graft polymerization technique. These sophisticated surfaces were stable, biocompatible and capable of preventing biofilm formation on biomaterials and medical devices. Under

  16. Important contribution of the novel locus comEB to extracellular DNA-dependent Staphylococcus lugdunensis biofilm formation.

    Science.gov (United States)

    Rajendran, Nithya Babu; Eikmeier, Julian; Becker, Karsten; Hussain, Muzaffar; Peters, Georg; Heilmann, Christine

    2015-12-01

    The coagulase-negative species Staphylococcus lugdunensis is an emerging cause of serious and potentially life-threatening infections, such as infective endocarditis. The pathogenesis of these infections is characterized by the ability of S. lugdunensis to form biofilms on either biotic or abiotic surfaces. To elucidate the genetic basis of biofilm formation in S. lugdunensis, we performed transposon (Tn917) mutagenesis. One mutant had a significantly reduced biofilm-forming capacity and carried a Tn917 insertion within the competence gene comEB. Site-directed mutagenesis and subsequent complementation with a functional copy of comEB verified the importance of comEB in biofilm formation. In several bacterial species, natural competence stimulates DNA release via lysis-dependent or -independent mechanisms. Extracellular DNA (eDNA) has been demonstrated to be an important structural component of many bacterial biofilms. Therefore, we quantified the eDNA in the biofilms and found diminished eDNA amounts in the comEB mutant biofilm. High-resolution images and three-dimensional data obtained via confocal laser scanning microscopy (CSLM) visualized the impact of the comEB mutation on biofilm integrity. The comEB mutant did not show reduced expression of autolysin genes, decreased autolytic activities, or increased cell viability, suggesting a cell lysis-independent mechanism of DNA release. Furthermore, reduced amounts of eDNA in the comEB mutant biofilms did not result from elevated levels or activity of the S. lugdunensis thermonuclease NucI. In conclusion, we defined here, for the first time, a role for the competence gene comEB in staphylococcal biofilm formation. Our findings indicate that comEB stimulates biofilm formation via a lysis-independent mechanism of DNA release.

  17. Effect of crude extracts of selected actinomycetes on biofilm formation of A. schindleri, M. aci, and B. cereus.

    Science.gov (United States)

    Saleem, Hafiz Ghulam Murtaza; Aftab, Usman; Sajid, Imran; Abbas, Zaigham; Sabri, Anjum Nasim

    2015-05-01

    Actinomycetes are well known group of gram positive bacteria for their potential to produce antibiotics. This study sought to assess the ability of the selected actinomycetes to control biofilm forming bacteria isolated from different dental plaque samples. On the basis of morphological differences three out of ten different dental plaque bacterial isolates were selected for further study. These isolates were biochemically and genetically characterized and were identified as Acinetobacter schinndleri, Moraxella aci, and Bacillus cereus. Antibiotic resistant profile was measured through disc diffusion method and found that all three isolates were moderately sensitive to ofloxacin and erythromycin and resistant to trimethoprim. Antibacterial activity of ten different Streptomyces strains was assessed through an agar plug and well diffusion method against three dental biofilm forming bacteria. Two Streptomyces strains named as S. erythrogriseus and S. labedae showed good antibacterial activity against Moraxella and Acinetobacter strains. Ability of the four active antibiotic producing strains to inhibit biofilm formation was assessed using microtiter biofilm detection assay. It was found that biofilm forming ability of Acinetobacter and Moraxella was inhibited by S. labedae an antibiotic producing strain, while S. macrosporeus can only inhibit biofilm formation by B. cereus.

  18. Self-appraisal adequacy of students’ physical abilities of pedagogical specialties involved in various forms of education

    Directory of Open Access Journals (Sweden)

    TSYBUL’SKA V.V.

    2014-10-01

    Full Text Available Purpose : considered self-appraisal adequacy of students’ physical abilities of students of pedagogical specialties involved in various forms of education. Material : the study was conducted with students of II and IV courses of the Faculty of Primary Education stationary and correspondence courses (total 120 people.. Used a technique of self-appraisal of physical development, technique of rapid assessment of physical health, motor tests. Results : set the direction for the development of the values of physical culture and self-improvement of physical abilities that depend on the adequacy of the self-assessment of their physical development and physical fitness. The comparison of subjective and objective indicators for assessing physical health and physical fitness of students. Highlighted significant differences in the direction of re-evaluation of their physical abilities in students of correspondence courses. Conclusions : It is recommended to use the self-appraisal methodology of physical development to determine the degree of objectivity of self-confidence, which determines the motivation for self-improvement.

  19. Biofilm formation and fibrinogen and fibronectin binding activities by Corynebacterium pseudodiphtheriticum invasive strains.

    Science.gov (United States)

    Souza, Monica Cristina; dos Santos, Louisy Sanches; Sousa, Leonardo Paiva; Faria, Yuri Vieira; Ramos, Juliana Nunes; Sabbadini, Priscila Soares; da Santos, Cíntia Silva; Nagao, Prescilla Emy; Vieira, Verônica Viana; Gomes, Débora Leandro Rama; Hirata Júnior, Raphael; Mattos-Guaraldi, Ana Luiza

    2015-06-01

    Biofilm-related infections are considered a major cause of morbidity and mortality in hospital environments. Biofilms allow microorganisms to exchange genetic material and to become persistent colonizers and/or multiresistant to antibiotics. Corynebacterium pseudodiphtheriticum (CPS), a commensal bacterium that colonizes skin and mucosal sites has become progressively multiresistant and responsible for severe nosocomial infections. However, virulence factors of this emergent pathogen remain unclear. Herein, we report the adhesive properties and biofilm formation on hydrophilic (glass) and hydrophobic (plastic) abiotic surfaces by CPS strains isolated from patients with localized (ATCC10700/Pharyngitis) and systemic (HHC1507/Bacteremia) infections. Adherence to polystyrene attributed to hydrophobic interactions between bacterial cells and this negatively charged surface indicated the involvement of cell surface hydrophobicity in the initial stage of biofilm formation. Attached microorganisms multiplied and formed microcolonies that accumulated as multilayered cell clusters, a step that involved intercellular adhesion and synthesis of extracellular matrix molecules. Further growth led to the formation of dense bacterial aggregates embedded in the exopolymeric matrix surrounded by voids, typical of mature biofilms. Data also showed CPS recognizing human fibrinogen (Fbg) and fibronectin (Fn) and involvement of these sera components in formation of "conditioning films". These findings suggested that biofilm formation may be associated with the expression of different adhesins. CPS may form biofilms in vivo possibly by an adherent biofilm mode of growth in vitro currently demonstrated on hydrophilic and hydrophobic abiotic surfaces. The affinity to Fbg and Fn and the biofilm-forming ability may contribute to the establishment and dissemination of infection caused by CPS.

  20. Experimental evolution in biofilm populations.

    Science.gov (United States)

    Steenackers, Hans P; Parijs, Ilse; Foster, Kevin R; Vanderleyden, Jozef

    2016-05-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques.

  1. Experimental evolution in biofilm populations

    Science.gov (United States)

    Steenackers, Hans P.; Parijs, Ilse; Foster, Kevin R.; Vanderleyden, Jozef

    2016-01-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  2. Chemical sanitizers to control biofilms formed by two Pseudomonas species on stainless steel surface Sanificantes químicos no controle de biofilmes formados por duas espécies de Pseudomonas em superfície de aço inoxidável

    Directory of Open Access Journals (Sweden)

    Danila Soares Caixeta

    2012-03-01

    Full Text Available The biofilm formation of Pseudomonas aeruginosa and Pseudomonas fluorescens on AISI 304 stainless steel in the presence of reconstituted skim milk under different temperatures was conducted, and the potential of three chemical sanitizers in removing the mono-species biofilms formed was compared. Pseudomonas aeruginosa cultivated in skim milk at 28 °C presented better growth rate (10.4 log CFU.mL-1 when compared with 3.7 and 4.2 log CFU.mL-1 for P. aeruginosa and P. fluorescens cultivated at 7 °C, respectively. Pseudomonas aeruginosa formed biofilm when cultivated at 28 °C. However, only the adhesion of P. aeruginosa and P. fluorescens was observed when incubated at 7 °C. The sodium dichloroisocyanurate was the most efficient sanitizer in the reduction of the adhered P. aeruginosa cells at 7 and 28 °C and those on the biofilm, respectively. The hydrogen peroxide was more effective in the reduction of adhered cells of P. fluorescens at 7 °C.A capacidade de adesão e formação de biofilme por Pseudomonas aeruginosa e Pseudomonas fluorescens em aço inoxidável AISI 304, na presença de leite desnatado resconstituído sobre diferentes temperaturas foi conduzido e o potencial de três sanificantes químicos na remoção de biofilmes monoespécies foi comparado. Pseudomonas aeruginosa cultivada em leite desnatado a 28 °C apresentou melhor crescimento (10,4 log UFC.mL-1 quando comparado com 3,7 and 4,2 log UFC.mL-1 para P. aeruginosa e P. fluorescens cultivadas a 7 °C, respectivamente. Pseudomonas aeruginosa formou biofilme quando cultivada a 28 °C. Contudo foi observado somente adesão de P. aeruginosa e P. fluorescens quando incubada a 7 °C. O dicloroisocianurato de sódio foi o sanificante mais eficiente na redução de células aderidas e em biofilme de P. aeruginosa a 7 e 28 °C, respectivamente. O peróxido de hidrogênio foi o mais eficiente na redução de células aderidas de P. fluorescens a 7 °C.

  3. Combining Biofilm-Controlling Compounds and Antibiotics as a Promising New Way to Control Biofilm Infections

    Directory of Open Access Journals (Sweden)

    Andréia Bergamo Estrela

    2010-05-01

    Full Text Available Many bacteria grow on surfaces forming biofilms. In this structure, they are well protected and often high dosages of antibiotics cannot clear infectious biofilms. The formation and stabilization of biofilms are mediated by diffusible autoinducers (e.g. N-acyl homoserine lactones, small peptides, furanosyl borate diester. Metabolites interfering with this process have been identified in plants, animals and microbes, and synthetic analogues are known. Additionally, this seems to be not the only way to control biofilms. Enzymes capable of cleaving essential components of the biofilm matrix, e.g. polysaccharides or extracellular DNA, and thus weakening the biofilm architecture have been identified. Bacteria also have mechanisms to dissolve their biofilms and return to planktonic lifestyle. Only a few compounds responsible for the signalling of these processes are known, but they may open a completely novel line of biofilm control. All these approaches lead to the destruction of the biofilm but not the killing of the pathogens. Therefore, a combination of biofilm-destroying compounds and antibiotics to handle biofilm infections is proposed. In this article, different approaches to combine biofilm-controlling compounds and antibiotics to fight biofilm infections are discussed, as well as the balance between biofilm formation and virulence.

  4. Glass Forming Ability and Magnetic Property of Fe74Al4Sn2(PSiB)20 Amorphous Alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei-fei; ZHOU Shao-xiong

    2004-01-01

    Amorphous ribbons of Fe74Al4Sn2(PSiB)20 alloy have been synthesized by melt spinning and axial design method. The thermal properties of the amorphous ribbons have been measured by differential scanning calorimeter (DSC). The DSC results show that the Fe74Al4Sn2P12Si4B4 amorphous alloy has relatively wider supercooled liquid region with a temperature interval of 40.38 K (ΔTx=Tx-Tg). The alloys with a higher phosphorous content in the metalloid element composition triangle of Fe74Al4Sn2(PSiB)20 have high glass forming ability. The amorphous alloys also show good magnetic properties in which Fe74Al4Sn2P6.67Si6.67B6.67 alloy has a large maximum permeability (μm), Fe78Al4Sn2P3Si3B10 alloy exhibits a high square ratio (Br/B10) and Fe74Al4Sn2P4Si12B4 shows a low core loss (P0.5/1.3T). High glass forming ability and good magnetic properties make Fe74Al4Sn2(PSiB)20 amorphous alloys valuable in future research.

  5. Physical stability of drugs after storage above and below the glass transition temperature: Relationship to glass-forming ability.

    Science.gov (United States)

    Alhalaweh, Amjad; Alzghoul, Ahmad; Mahlin, Denny; Bergström, Christel A S

    2015-11-10

    Amorphous materials are inherently unstable and tend to crystallize upon storage. In this study, we investigated the extent to which the physical stability and inherent crystallization tendency of drugs are related to their glass-forming ability (GFA), the glass transition temperature (Tg) and thermodynamic factors. Differential scanning calorimetry was used to produce the amorphous state of 52 drugs [18 compounds crystallized upon heating (Class II) and 34 remained in the amorphous state (Class III)] and to perform in situ storage for the amorphous material for 12h at temperatures 20°C above or below the Tg. A computational model based on the support vector machine (SVM) algorithm was developed to predict the structure-property relationships. All drugs maintained their Class when stored at 20°C below the Tg. Fourteen of the Class II compounds crystallized when stored above the Tg whereas all except one of the Class III compounds remained amorphous. These results were only related to the glass-forming ability and no relationship to e.g. thermodynamic factors was found. The experimental data were used for computational modeling and a classification model was developed that correctly predicted the physical stability above the Tg. The use of a large dataset revealed that molecular features related to aromaticity and π-π interactions reduce the inherent physical stability of amorphous drugs.

  6. Impaired colony-forming ability following. gamma. irradiation of skin fibroblasts from tuberous scierosis patients. [/sup 60/Co

    Energy Technology Data Exchange (ETDEWEB)

    Paterson, M.C.; Sell, B.M.; Smith, B.P.; Bech-Hansen, N.T.

    1982-05-01

    The radiosensitivity of cultured dermal fibroblasts from human subjects afflicted with tuberous sclerosis (TS), a hereditary neurocutaneous syndrome, was assessed by assaying loss of colony-forming ability in response to acute ..gamma..-ray exposure. Related to control strains from clinically normal donors, three cell lines (GM1635, GM1643, GM2333) from two affected patients displayed enhanced sensitivity to inactivation by /sup 60/Co ..gamma..-ray treatment, whether administered oxically (air-saturated) or hypoxically (N/sub 2/-gassed); a fourth strain (GM1644) from a third patient exhibited normal radiosensitivity under both treatment conditions. The post-..gamma..-irradiaton colony-forming ability of the three hypersensitive TS strains was intermediate between that of normal controls and that of strains from patients inheriting the radiotherapy-sensitive neurovascular disorder ataxia telangiectasia. The variability in the radioresponse of the TS stains (three sensitive and one normal) is not surprising, considering the widely recognized clinical heterogeneity in the disease. Our findings, aside from providing a laboratory marker for early (possible presymptomatic) detection of persons at high risk for TS, may lead to a better understanding of the origin and progressive development of this multifaceted syndrome.

  7. Relationship of biofilm formation and different virulence genes in uropathogenic Escherichia coli isolates from Northwest Iran

    Directory of Open Access Journals (Sweden)

    Fattahi, Sargol

    2015-07-01

    Full Text Available Background and objectives: The ( bacterium is one of the main causative agents of urinary tract infections (UTI worldwide. The ability of this bacterium to form biofilms on medical devices such as catheters plays an important role in the development of UTI. The aim of the present study was to investigate the possible relationship between virulence factors and biofilm formation of isolates responsible for urinary tract infection.Materials and methods: A total of 100 isolates isolated from patients with UTI were collected and characterized by routine bacteriological methods. In vitro biofilm formation by these isolates was determined using the 96-well microtiter-plate test, and the presence of , , and virulence genes was examined by PCR assay. Data analysis was performed using SPSS 16.0 software.Results: From 100 isolates isolated from UTIs, 92% were shown to be biofilm positive. The genes , , and were detected in 43%, 94% and 26% of isolates, respectively. Biofilm formation in isolates that expressed , , and genes was 100%, 93%, and 100%, respectively. A significant relationship was found between presence of the gene and biofilm formation in isolates isolated from UTI (<0.01, but there was no statistically significant correlation between presence of and genes with biofilm formation (<0.072, <0.104. Conclusion: Results showed that and genes do not seem to be necessary or sufficient for the production of biofilm in , but the presence of correlates with increased biofilm formation of urinary tract isolates. Overall, the presence of , , and virulence genes coincides with in vitro biofilm formation in uropathogenic

  8. The cabABC Operon Essential for Biofilm and Rugose Colony Development in Vibrio vulnificus.

    Directory of Open Access Journals (Sweden)

    Jin Hwan Park

    2015-09-01

    Full Text Available A transcriptome analysis identified Vibrio vulnificus cabABC genes which were preferentially expressed in biofilms. The cabABC genes were transcribed as a single operon. The cabA gene was induced by elevated 3',5'-cyclic diguanylic acid (c-di-GMP and encoded a calcium-binding protein CabA. Comparison of the biofilms produced by the cabA mutant and its parent strain JN111 in microtiter plates using crystal-violet staining demonstrated that CabA contributed to biofilm formation in a calcium-dependent manner under elevated c-di-GMP conditions. Genetic and biochemical analyses revealed that CabA was secreted to the cell exterior through functional CabB and CabC, distributed throughout the biofilm matrix, and produced as the biofilm matured. These results, together with the observation that CabA also contributes to the development of rugose colony morphology, indicated that CabA is a matrix-associated protein required for maturation, rather than adhesion involved in the initial attachment, of biofilms. Microscopic comparison of the structure of biofilms produced by JN111 and the cabA mutant demonstrated that CabA is an extracellular matrix component essential for the development of the mature biofilm structures in flow cells and on oyster shells. Exogenously providing purified CabA restored the biofilm- and rugose colony-forming abilities of the cabA mutant when calcium was available. Circular dichroism and size exclusion analyses revealed that calcium binding induces CabA conformational changes which may lead to multimerization. Extracellular complementation experiments revealed that CabA can assemble a functional matrix only when exopolysaccharides coexist. Consequently, the combined results suggested that CabA is a structural protein of the extracellular matrix and multimerizes to a conformation functional in building robust biofilms, which may render V. vulnificus to survive in hostile environments and reach a concentrated infective dose.

  9. Inhibitory effect of N-ethyl-3-amino-5-oxo-4-phenyl-2,5-dihydro-1H-pyrazole-1-carbothioamide on Haemophilus spp. planktonic or biofilm-forming cells.

    Science.gov (United States)

    Kosikowska, Urszula; Malm, Anna; Pitucha, Monika; Rajtar, Barbara; Polz-Dacewicz, Malgorzata

    2014-01-01

    During this study, we have investigated in vitro activity of N-substituted-3-amino-5-oxo-4-phenyl-2,5-dihydro-1H-pyrazole-1-carbothioamide derivatives with N-ethyl, N-(4-metoxyphenyl) and N-cyclohexyl substituents against Gram-negative Haemophilus influenzae and H. parainfluenzae bacteria. A spectrophotometric assay was used in order to determine the bacterial growth and biofilm formation using a microtiter plate to estimate minimal inhibitory concentration (MIC) and minimal biofilm inhibitory concentration (MBIC). Among the tested N-substituted pyrazole derivatives, only N-ethyl-3-amino-5-oxo-4-phenyl-2,5-dihydro-1H-pyrazole-1-carbothioamide showed a significant in vitro activity against both planktonic cells of H. parainfluenzae (MIC = 0.49-31.25 μg ml(-1)) and H. influenzae (MIC = 0.24-31.25 μg ml(-1)) as well as biofilm-forming cells of H. parainfluenzae (MBIC = 0.24-31.25 μg ml(-1)) and H. influenzae (MBIC = 0.49 to ≥31.25 μg ml(-1)). The pyrazole compound exerted higher inhibitory effect both on the growth of planktonic cells and biofilm formation by penicillinase-positive and penicillinase-negative isolates of H. parainfluenzae than the activity of commonly used antibiotics such as ampicillin. No cytotoxicity of the tested compound in vitro at concentrations used was found. The tested pyrazole N-ethyl derivative could be considered as a compound for the design of agents active against both pathogenic H. influenzae and opportunistic H. parainfluenzae, showing also anti-biofilm activity. This appears important because biofilms are determinants of bacterial persistence in long-term and recurrent infections recalcitrant to standard therapy.

  10. DKP对3株病原菌生物膜的抑制作用研究%Study on the Inhibition Effect of DKP on the Biofilms Formed by Three Pathogens

    Institute of Scientific and Technical Information of China (English)

    王建华; 权春善; 赵朋超; 范圣第

    2011-01-01

    The biofilms make it more difficult to treat the diseases caused by pathogens with antibiotics. A kind of diketopiperazine ( DKP )-cyclo ( Pro-Phe ) were found can inhibit the biofilms formation of Staphylococcus aureus,Pseudomonas aeruginosa and Candida albicans. The results of crystal violet staining,CFU (colony forming unit) analysis, and the structure analysis by optical microscope and atomic force microscope indicated that the biofilms of S. aureus and P. aeruginosa were almost disappeared with 10 mg/ml DKP,and the biofilms of C. albicans was significantly inhibited by 12 mg/ml DKP. This brings hope to the research work of novel biofilm inhibitors and cure of the biofilms-associated infections.%生物膜的存在使一些由病原菌引发的疾病变得更加难以治疗.经研究发现一种环二肽物质DKP-cyclo(Pro-Phe)能够抑制这3株病原菌(Staphylococcus aureus,Pseudomonas aeruginosa,Candida albicans)生物膜的形成.通过对不同浓度DKP作用下所形成的生物膜进行结晶紫定量、菌落计数分析和结构显微分析表明:在DKP的浓度达到10 mg/ml时,S.aureus和P.aeruginosa的生物膜几乎消失;在DKP的浓度达到12 mg/ml时,C.albicans的生物膜被显著抑制.这一发现为寻找新型的生物膜抑制剂治愈顽固疾病带来了新的希望.

  11. Comparison of antimicrobial efficacy of propolis, Morinda citrifolia, Azadirachta indica (Neem) and 5% sodium hypochlorite on Candida albicans biofilm formed on tooth substrate: An in-vitro study

    Science.gov (United States)

    Tyagi, Shashi Prabha; Sinha, Dakshita Joy; Garg, Paridhi; Singh, Udai Pratap; Mishra, Chandrakar Chaman; Nagpal, Rajni

    2013-01-01

    Introduction: Endodontic infections are polymicrobial in nature. Candida albicans is the most common fungus isolated from failed endodontic cases. The constant increase in antibiotic resistant strains and side-effects caused by synthetic drugs has prompted researchers to look for herbal alternatives such as propolis, Morinda citrifolia and Azadirachta indica (Neem) etc., since, the gold standard for irrigation, i.e., sodium hypochlorite has many disadvantages. Materials and Methods: Extracted human mandibular premolars were biomechanically prepared, vertically sectioned, placed in tissue culture wells exposing the root canal surface to C. albicans grown on Sabouraud Dextrose Agar to form a biofilm. At the end of 2 days, all groups were treated with test solutions and control for 10 min and evaluated for Candida growth and number of colony forming units. The readings were subjected to statistical analysis using analysis of variance and post hoc Tukey tests. Results: Sodium hypochlorite and propolis groups exhibited highest antimicrobial efficacy against C. albicans with no statistically significant difference. It was followed by the A. indica (Neem) group. M. citrifolia had limited antifungal action followed by the negative control group of saline. Conclusion: According to the results of this study, propolis can be used as an effective antifungal agent similar to that of sodium hypochlorite, although long-term in vivo studies are warranted. PMID:24347888

  12. Comparison of antimicrobial efficacy of propolis, Morinda citrifolia, Azadirachta indica (Neem and 5% sodium hypochlorite on Candida albicans biofilm formed on tooth substrate: An in-vitro study

    Directory of Open Access Journals (Sweden)

    Shashi Prabha Tyagi

    2013-01-01

    Full Text Available Introduction: Endodontic infections are polymicrobial in nature. Candida albicans is the most common fungus isolated from failed endodontic cases. The constant increase in antibiotic resistant strains and side-effects caused by synthetic drugs has prompted researchers to look for herbal alternatives such as propolis, Morinda citrifolia and Azadirachta indica (Neem etc., since, the gold standard for irrigation, i.e., sodium hypochlorite has many disadvantages. Materials and Methods: Extracted human mandibular premolars were biomechanically prepared, vertically sectioned, placed in tissue culture wells exposing the root canal surface to C. albicans grown on Sabouraud Dextrose Agar to form a biofilm. At the end of 2 days, all groups were treated with test solutions and control for 10 min and evaluated for Candida growth and number of colony forming units. The readings were subjected to statistical analysis using analysis of variance and post hoc Tukey tests. Results: Sodium hypochlorite and propolis groups exhibited highest antimicrobial efficacy against C. albicans with no statistically significant difference. It was followed by the A. indica (Neem group. M. citrifolia had limited antifungal action followed by the negative control group of saline. Conclusion: According to the results of this study, propolis can be used as an effective antifungal agent similar to that of sodium hypochlorite, although long-term in vivo studies are warranted.

  13. Influences of trans-trans farnesol, a membrane-targeting sesquiterpenoid, on Streptococcus mutans physiology and survival within mixed-species oral biofilms.

    Science.gov (United States)

    Jeon, Jae-Gyu; Pandit, Santosh; Xiao, Jin; Gregoire, Stacy; Falsetta, Megan L; Klein, Marlise I; Koo, Hyun

    2011-04-01

    Trans-trans farnesol (tt-farnesol) is a bioactive sesquiterpene alcohol commonly found in propolis (a beehive product) and citrus fruits, which disrupts the ability of Streptococcus mutans (S. mutans) to form virulent biofilms. In this study, we investigated whether tt-farnesol affects cell-membrane function, acid production and/or acid tolerance by planktonic cells and biofilms of S. mutans UA159. Furthermore, the influence of the agent on S. mutans gene expression and ability to form biofilms in the presence of other oral bacteria (Streptococcus oralis (S. oralis) 35037 and Actinomyces naeslundii (A. naeslundii) 12104) was also examined. In general, tt-farnesol (1 mmol x L(-1)) significantly increased the membrane proton permeability and reduced glycolytic activity of S. mutans in the planktonic state and in biofilms (P biofilms after introduction of 1% sucrose. S. oralis (a non-cariogenic organism) became the major species after treatments with tt-farnesol, whereas vehicle-treated biofilms contained mostly S. mutans (>90% of total bacterial population). However, the agent did not affect significantly the expression of S. mutans genes involved in acidogenicity, acid tolerance or polysaccharide synthesis in the treated biofilms. Our data indicate that tt-farnesol may affect the competitiveness of S. mutans in a mixed-species environment by primarily disrupting the membrane function and physiology of this bacterium. This naturally occurring terpenoid could be a potentially useful adjunctive agent to the current anti-biofilm/anti-caries chemotherapeutic strategies.

  14. Preliminary assessment of the interaction of introduced biological agents with biofilms in water distribution systems.

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Michael B.; Caldwell, Sara; Jones, Howland D. T.; Altman, Susan Jeanne; Souza, Caroline Ann; McGrath, Lucas K.

    2005-12-01

    Basic research is needed to better understand the potential risk of dangerous biological agents that are unintentionally or intentionally introduced into a water distribution system. We report on our capabilities to conduct such studies and our preliminary investigations. In 2004, the Biofilms Laboratory was initiated for the purpose of conducting applied research related to biofilms with a focus on application, application testing and system-scale research. Capabilities within the laboratory are the ability to grow biofilms formed from known bacteria or biofilms from drinking water. Biofilms can be grown quickly in drip-flow reactors or under conditions more analogous to drinking-water distribution systems in annular reactors. Biofilms can be assessed through standard microbiological techniques (i .e, aerobic plate counts) or with various visualization techniques including epifluorescent and confocal laser scanning microscopy and confocal fluorescence hyperspectral imaging with multivariate analysis. We have demonstrated the ability to grow reproducible Pseudomonas fluorescens biofilms in the annular reactor with plate counts on the order of 10{sup 5} and 10{sup 6} CFU/cm{sup 2}. Stationary phase growth is typically reached 5 to 10 days after inoculation. We have also conducted a series of pathogen-introduction experiments, where we have observed that both polystyrene microspheres and Bacillus cereus (as a surrogate for B. anthracis) stay incorporated in the biofilms for the duration of our experiments, which lasted as long as 36 days. These results indicated that biofilms may act as a safe harbor for bio-pathogens in drinking water systems, making it difficult to decontaminate the systems.

  15. Biofilm development

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2015-01-01

    During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction or terminat......During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction...... or termination of biofilm matrix production via the second messenger molecule c-di-GMP. In between initiation and termination of biofilm formation we have defined specific biofilm stages, but the currently available evidence suggests that these transitions are mainly governed by adaptive responses......, and not by specific genetic programs. It appears that biofilm formation can occur through multiple pathways and that the spatial structure of the biofilms is species dependent as well as dependent on environmental conditions. Bacterial subpopulations, e.g., motile and nonmotile subpopulations, can develop...

  16. Pattern formation in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Parsek, Matthew R.; Tolker-Nielsen, Tim

    2008-01-01

    Bacteria are capable of forming elaborate multicellular communities called biofilms. Pattern formation in biofilms depends on cell proliferation and cellular migration in response to the available nutrients and other external cues, as well as on self-generated intercellular signal molecules...... and the production of an extracellular matrix that serves as a structural 'scaffolding' for the biofilm cells. Pattern formation in biofilms allows cells to position themselves favorably within nutrient gradients and enables buildup and maintenance of physiologically distinct subpopulations, which facilitates...... survival of one or more subpopulations upon environmental insult, and therefore plays an important role in the innate tolerance displayed by biofilms toward adverse conditions....

  17. Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix

    Science.gov (United States)

    Kong, Eric F.; Tsui, Christina; Kucharíková, Sona; Andes, David

    2016-01-01

    ABSTRACT Biofilm-associated polymicrobial infections, particularly those involving fungi and bacteria, are responsible for significant morbidity and mortality and tend to be challenging to treat. Candida albicans and Staphylococcus aureus specifically are considered leading opportunistic fungal and bacterial pathogens, respectively, mainly due to their ability to form biofilms on catheters and indwelling medical devices. However, the impact of mixed-species biofilm growth on therapy remains largely understudied. In this study, we investigated the influence of C. albicans secreted cell wall polysaccharides on the response of S. aureus to antibacterial agents in biofilm. Results demonstrated significantly enhanced tolerance for S. aureus to drugs in the presence of C. albicans or its secreted cell wall polysaccharide material. Fluorescence confocal time-lapse microscopy revealed impairment of drug diffusion through the mixed biofilm matrix. Using C. albicans mutant strains with modulated cell wall polysaccharide expression, exogenous supplementation, and enzymatic degradation, the C. albicans-secreted β-1,3-glucan cell wall component was identified as the key matrix constituent providing the bacteria with enhanced drug tolerance. Further, antibody labeling demonstrated rapid coating of the bacteria by the C. albicans matrix material. Importantly, via its effect on the fungal biofilm matrix, the antifungal caspofungin sensitized the bacteria to the drugs. Understanding such symbiotic interactions with clinical relevance between microbial species in biofilms will greatly aid in overcoming the limitations of current therapies and in defining potential new targets for treating polymicrobial infections. PMID:27729510

  18. Biofilm formation in clinical isolates of nosocomial Acinetobacter baumannii and its relationship with multidrug resistance

    Institute of Scientific and Technical Information of China (English)

    Ebrahim Babapour; Azam Haddadi; Reza Mirnejad; Seyed-Abdolhamid Angaji; Nour Amirmozafari

    2016-01-01

    Objective: To check biofilm formation by Acinetobacter baumannii(A. baumannii)clinical isolates and show their susceptibility to different antibiotics and investigate a possible link between establishment of biofilm and multidrug resistance.Methods: This study was performed on clinical samples collected from patients with nosocomial infections in three hospitals of Tehran. Samples were initially screened by culture and biochemical tests for the presence of different species of Acinetobacter. Identifications were further confirmed by PCR assays. Their susceptibilities to 11 antibiotics of different classes were determined by disc diffusion method according to Clinical and Laboratory Standards Institute guidelines. The ability to produce biofilm was investigated using methods: culture on Congo red agar, microtiter plate, and test tube method.Results: From the overall clinical samples, 156 specimens were confirmed to contain A. baumannii. The bacteria were highly resistant to most antibiotics except polymyxin B.Of these isolates, 10.26% were able to produce biofilms as shown on Congo red agar.However, the percentage of bacteria with positive biofilm in test tube, standard microtiter plate, and modified microtiter plate assays were 48.72%, 66.66%, and 73.72%, respectively. At least 92% of the biofilm forming isolates were multidrug resistant.Conclusions: Since most of the multidrug resistant strains produce biofilm, it seems necessary to provide continuous monitoring and determination of antibiotic susceptibility of clinical A. baumannii. This would help to select the most appropriate antibiotic for treatment.

  19. Biofilm formation in clinical isolates of nosocomial Acinetobacter baumannii and its relationship with multidrug resistance

    Institute of Scientific and Technical Information of China (English)

    Ebrahim Babapour; Azam Haddadi; Reza Mirnejad; Seyed-Abdolhamid Angaji; Nour Amirmozafari

    2016-01-01

    Objective: To check biofilm formation by Acinetobacter baumannii (A. baumannii) clinical isolates and show their susceptibility to different antibiotics and investigate a possible link between establishment of biofilm and multidrug resistance. Methods: This study was performed on clinical samples collected from patients with nosocomial infections in three hospitals of Tehran. Samples were initially screened by culture and biochemical tests for the presence of different species of Acinetobacter. Iden-tifications were further confirmed by PCR assays. Their susceptibilities to 11 antibiotics of different classes were determined by disc diffusion method according to Clinical and Laboratory Standards Institute guidelines. The ability to produce biofilm was investigated using methods:culture on Congo red agar, microtiter plate, and test tube method. Results: From the overall clinical samples, 156 specimens were confirmed to contain A. baumannii. The bacteria were highly resistant to most antibiotics except polymyxin B. Of these isolates, 10.26% were able to produce biofilms as shown on Congo red agar. However, the percentage of bacteria with positive biofilm in test tube, standard microtiter plate, and modified microtiter plate assays were 48.72%, 66.66%, and 73.72%, respec-tively. At least 92%of the biofilm forming isolates were multidrug resistant. Conclusions: Since most of the multidrug resistant strains produce biofilm, it seems necessary to provide continuous monitoring and determination of antibiotic susceptibility of clinical A. baumannii. This would help to select the most appropriate antibiotic for treatment.

  20. Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix

    Directory of Open Access Journals (Sweden)

    Eric F. Kong

    2016-10-01

    Full Text Available Biofilm-associated polymicrobial infections, particularly those involving fungi and bacteria, are responsible for significant morbidity and mortality and tend to be challenging to treat. Candida albicans and Staphylococcus aureus specifically are considered leading opportunistic fungal and bacterial pathogens, respectively, mainly due to their ability to form biofilms on catheters and indwelling medical devices. However, the impact of mixed-species biofilm growth on therapy remains largely understudied. In this study, we investigated the influence of C. albicans secreted cell wall polysaccharides on the response of S. aureus to antibacterial agents in biofilm. Results demonstrated significantly enhanced tolerance for S. aureus to drugs in the presence of C. albicans or its secreted cell wall polysaccharide material. Fluorescence confocal time-lapse microscopy revealed impairment of drug diffusion through the mixed biofilm matrix. Using C. albicans mutant strains with modulated cell wall polysaccharide expression, exogenous supplementation, and enzymatic degradation, the C. albicans-secreted β-1,3-glucan cell wall component was identified as the key matrix constituent providing the bacteria with enhanced drug tolerance. Further, antibody labeling demonstrated rapid coating of the bacteria by the C. albicans matrix material. Importantly, via its effect on the fungal biofilm matrix, the antifungal caspofungin sensitized the bacteria to the drugs. Understanding such symbiotic interactions with clinical relevance between microbial species in biofilms will greatly aid in overcoming the limitations of current therapies and in defining potential new targets for treating polymicrobial infections.

  1. Glass-Forming Ability and Early Crystallization Kinetics of Novel Cu-Zr-Al-Co Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Xiaoliang Han

    2016-09-01

    Full Text Available In recent years, CuZr-based bulk metallic glass (BMG composites ductilized by a shape memory B2 CuZr phase have attracted great attention owing to their outstanding mechanical properties. However, the B2 CuZr phase for most CuZr-based glass-forming compositions is only stable at very high temperatures, leading to the uncontrollable formation of B2 crystals during quenching. In this work, by introducing Co (i.e., 4, 5, and 6 at. % and 10 at. % Al into CuZr-based alloys, the relatively good glass-forming ability (GFA of CuZr-based alloys still can be achieved. Meanwhile, the B2 phase can be successfully stabilized to lower temperatures than the final temperatures of crystallization upon heating CuZr-based BMGs. Unlike previous reported CuZr-based BMGs, the primary crystallization products upon heating are mainly B2 CuZr crystals but not CuZr2 and Cu10Zr7 crystals. Furthermore, the primary precipitates during solidification are still dominated by B2 crystals, whose percolation threshold is detected to lie between 10 ± 2 vol. % and 31 ± 2 vol. %. The crystallization kinetics underlying the precipitation of B2 crystals was also investigated. Our results show that the present glass-forming composites are promising candidates for the fabrication of ductile CuZr-based BMG composites.

  2. Novel entries in a fungal biofilm matrix encyclopedia.

    Science.gov (United States)

    Zarnowski, Robert; Westler, William M; Lacmbouh, Ghislain Ade; Marita, Jane M; Bothe, Jameson R; Bernhardt, Jörg; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Sanchez, Hiram; Hatfield, Ronald D; Ntambi, James M; Nett, Jeniel E; Mitchell, Aaron P; Andes, David R

    2014-08-05

    Virulence of Candida is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we provide a comprehensive analysis of the matrix manufactured by Candida albicans both in vitro and in a clinical niche animal model. We further explore the function of matrix components, including the impact on drug resistance. We uncovered components from each of the macromolecular classes (55% protein, 25% carbohydrate, 15% lipid, and 5% nucleic acid) in the C. albicans biofilm matrix. Three individual polysaccharides were identified and were suggested to interact physically. Surprisingly, a previously identified polysaccharide of functional importance, β-1,3-glucan, comprised only a small portion of the total matrix carbohydrate. Newly described, more abundant polysaccharides included α-1,2 branched α-1,6-mannans (87%) associated with unbranched β-1,6-glucans (13%) in an apparent mannan-glucan complex (MGCx). Functional matrix proteomic analysis revealed 458 distinct activities. The matrix lipids consisted of neutral glycerolipids (89.1%), polar glycerolipids (10.4%), and sphingolipids (0.5%). Examination of matrix nucleic acid identified DNA, primarily noncoding sequences. Several of the in vitro matrix components, including proteins and each of the polysaccharides, were also present in the matrix of a clinically relevant in vivo biofilm. Nuclear magnetic resonance (NMR) analysis demonstrated interaction of aggregate matrix with the antifungal fluconazole, consistent with a role in drug impedance and contribution of multiple matrix components. Importance: This report is the first to decipher the complex and unique macromolecular composition of the Candida biofilm matrix, demonstrate the clinical relevance of matrix components, and show that multiple matrix components are needed

  3. Inhibitory activity of isoniazid and ethionamide against Cryptococcus biofilms.

    Science.gov (United States)

    Cordeiro, Rossana de Aguiar; Serpa, Rosana; Marques, Francisca Jakelyne de Farias; de Melo, Charlline Vládia Silva; Evangelista, Antonio José de Jesus; Mota, Valquíria Ferreira; Brilhante, Raimunda Sâmia Nogueira; Bandeira, Tereza de Jesus Pinheiro Gomes; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2015-11-01

    In recent years, the search for drugs to treat systemic and opportunistic mycoses has attracted great interest from the scientific community. This study evaluated the in vitro inhibitory effect of the antituberculosis drugs isoniazid and ethionamide alone and combined with itraconazole and fluconazole against biofilms of Cryptococcus neoformans and Cryptococcus gattii. Antimicrobials were tested at defined concentrations after susceptibility assays with Cryptococcus planktonic cells. In addition, we investigated the synergistic interaction of antituberculosis drugs and azole derivatives against Cryptococcus planktonic cells, as well as the influence of isoniazid and ethionamide on ergosterol content and cell membrane permeability. Isoniazid and ethionamide inhibited both biofilm formation and viability of mature biofilms. Combinations formed by antituberculosis drugs and azoles proved synergic against both planktonic and sessile cells, showing an ability to reduce Cryptococcus biofilms by approximately 50%. Furthermore, isoniazid and ethionamide reduced the content of ergosterol in Cryptococcus spp. planktonic cells and destabilized or permeabilized the fungal cell membrane, leading to leakage of macromolecules. Owing to the paucity of drugs able to inhibit Cryptococcus biofilms, we believe that the results presented here might be of interest in the designing of new antifungal compounds.

  4. Functional Divergence of Hsp90 Genetic Interactions in Biofilm and Planktonic Cellular States.

    Directory of Open Access Journals (Sweden)

    Stephanie Diezmann

    Full Text Available Candida albicans is among the most prevalent opportunistic fungal pathogens. Its capacity to cause life-threatening bloodstream infections is associated with the ability to form biofilms, which are intrinsically drug resistant reservoirs for dispersal. A key regulator of biofilm drug resistance and dispersal is the molecular chaperone Hsp90, which stabilizes many signal transducers. We previously identified 226 C. albicans Hsp90 genetic interactors under planktonic conditions, of which 56 are involved in transcriptional regulation. Six of these transcriptional regulators have previously been implicated in biofilm formation, suggesting that Hsp90 genetic interactions identified in planktonic conditions may have functional significance in biofilms. Here, we explored the relationship between Hsp90 and five of these transcription factor genetic interactors: BCR1, MIG1, TEC1, TUP1, and UPC2. We deleted each transcription factor gene in an Hsp90 conditional expression strain, and assessed biofilm formation and morphogenesis. Strikingly, depletion of Hsp90 conferred no additional biofilm defect in the mutants. An interaction was observed in which deletion of BCR1 enhanced filamentation upon reduction of Hsp90 levels. Further, although Hsp90 modulates expression of TEC1, TUP1, and UPC2 in planktonic conditions, it has no impact in biofilms. Lastly, we probed for physical interactions between Hsp90 and Tup1, whose WD40 domain suggests that it might interact with Hsp90 directly. Hsp90 and Tup1 formed a stable complex, independent of temperature or developmental state. Our results illuminate a physical interaction between Hsp90 and a key transcriptional regulator of filamentation and biofilm formation, and suggest that Hsp90 has distinct genetic interactions in planktonic and biofilm cellular states.

  5. Streptococcus thermophilus Biofilm Formation: A Remnant Trait of Ancestral Commensal Life?

    Directory of Open Access Journals (Sweden)

    Benoit Couvigny

    Full Text Available Microorganisms have a long history of use in food production and preservation. Their adaptation to food environments has profoundly modified their features, mainly through genomic flux. Streptococcus thermophilus, one of the most frequent starter culture organisms consumed daily by humans emerged recently from a commensal ancestor. As such, it is a useful model for genomic studies of bacterial domestication processes. Many streptococcal species form biofilms, a key feature of the major lifestyle of these bacteria in nature. However, few descriptions of S. thermophilus biofilms have been reported. An analysis of the ability of a representative collection of natural isolates to form biofilms revealed that S. thermophilus was a poor biofilm producer and that this characteristic was associated with an inability to attach firmly to surfaces. The identification of three biofilm-associated genes in the strain producing the most biofilms shed light on the reasons for the rarity of this trait in this species. These genes encode proteins involved in crucial stages of biofilm formation and are heterogeneously distributed between strains. One of the biofilm genes appears to have been acquired by horizontal transfer. The other two are located in loci presenting features of reductive evolution, and are absent from most of the strains analyzed. Their orthologs in commensal bacteria are involved in adhesion to host cells, suggesting that they are remnants of ancestral functions. The biofilm phenotype appears to be a commensal trait that has been lost during the genetic domestication of S. thermophilus, consistent with its adaptation to the milk environment and the selection of starter strains for dairy fermentations.

  6. Streptococcus thermophilus Biofilm Formation: A Remnant Trait of Ancestral Commensal Life?

    Science.gov (United States)

    Couvigny, Benoit; Thérial, Claire; Gautier, Céline; Renault, Pierre; Briandet, Romain; Guédon, Eric

    2015-01-01

    Microorganisms have a long history of use in food production and preservation. Their adaptation to food environments has profoundly modified their features, mainly through genomic flux. Streptococcus thermophilus, one of the most frequent starter culture organisms consumed daily by humans emerged recently from a commensal ancestor. As such, it is a useful model for genomic studies of bacterial domestication processes. Many streptococcal species form biofilms, a key feature of the major lifestyle of these bacteria in nature. However, few descriptions of S. thermophilus biofilms have been reported. An analysis of the ability of a representative collection of natural isolates to form biofilms revealed that S. thermophilus was a poor biofilm producer and that this characteristic was associated with an inability to attach firmly to surfaces. The identification of three biofilm-associated genes in the strain producing the most biofilms shed light on the reasons for the rarity of this trait in this species. These genes encode proteins involved in crucial stages of biofilm formation and are heterogeneously distributed between strains. One of the biofilm genes appears to have been acquired by horizontal transfer. The other two are located in loci presenting features of reductive evolution, and are absent from most of the strains analyzed. Their orthologs in commensal bacteria are involved in adhesion to host cells, suggesting that they are remnants of ancestral functions. The biofilm phenotype appears to be a commensal trait that has been lost during the genetic domestication of S. thermophilus, consistent with its adaptation to the milk environment and the selection of starter strains for dairy fermentations.

  7. Acinetobacter baumannii biofilms: variations among strains and correlations with other cell properties.

    Science.gov (United States)

    McQueary, Christin N; Actis, Luis A

    2011-04-01

    Acinetobacter baumannii is an opportunistic pathogen that causes serious infections in humans by colonizing and persisting on surfaces normally found in hospital settings. The capacity of this pathogen to persist in these settings could be due to its ability to form biofilms on inanimate surfaces. This report shows that although the ATCC 19606(T) type strain and 8 different clinical isolates form biofilms, there are significant variations in the cell density and microscopic structures of these cell aggregates, with 3 of the isolates forming pellicles floating on the surface of stagnant broth cultures. PCR indicated that, like ATCC 19606(T), all 8 clinical isolates harbor all the genetic components of the CsuA/BABCDE chaperone-usher pili assembly system, which is needed for biofilm formation on plastic. Pili detection in cells of all strains examined supports the presence and function of a pilus assembly system. However, only one of them produced the putative ATCC 19606(T) CsuA/B pilin subunit protein. Hydrophobicity tests and motility assays also showed significant variations among all tested strains and did not result in direct correlations between the biofilm phenotype and cell properties that could affect biofilm formation on abiotic surfaces. This lack of correlation among these 3 phenotypes may reflect some of the variations already reported with this pathogen, which may pose a challenge in the treatment of the infections this pathogen causes in humans using biofilm formation on abiotic surfaces as a target.

  8. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers.

    Science.gov (United States)

    Kruszewski, Kristen M; Nistico, Laura; Longwell, Mark J; Hynes, Matthew J; Maurer, Joshua A; Hall-Stoodley, Luanne; Gawalt, Ellen S

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (-CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an "active" antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively.

  9. Effects of Microalloying on Glass Forming Ability and Thermodynamic Fragility of Cu-Pr-Based Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of microalloying of Ti and B on the glass formation of Cu60Pr30Ni10Al10-2xTixBx(x=0, 0.05%(atom fraction)) amorphous alloys was investigated using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). XRD analysis showed that microalloying with 0.05% Ti and 0.05% B improved the glass forming ability (GFA). The smaller difference in the Gibbs free energy between the liquid and crystalline states at the glass transition temperature (ΔGl-x (Tg)) and the smaller thermodynamic fragility index (ΔSf/Tm, where ΔSf is the entropy of fusion, and Tm is the melting temperature) after microalloying correlated with the higher GFA.

  10. Glass-Forming Ability of an Iron-Based Alloy Enhanced by Co Addition and Evaluated by a New Criterion

    Institute of Scientific and Technical Information of China (English)

    CHEN Qing-Jun; SHEN Jun; FAN Hong-Bo; SUN Jian-Fei; HUANG Yong-Jiang; MCCARTNEY D. G.

    2005-01-01

    @@ A new Fe-based alloy that can be cast into a fully amorphous rod with a diameter of at least 16mm by the conventional copper-mould casting technique is obtained by partially replacing Fe with Co in a previously reported Fe-based bulk metallic glass. The preliminary thermodynamic analysis indicates that the Co-containing alloy has a significantly lower Gibbs free energy difference between the undercooled melt and the corresponding crystalline solid, compared to the Co-free alloy, reflecting the dramatic role of the Co addition in stabilizing the supercooled melt and facilitating glass formation in iron-based alloys. Here, a new criterion, derived from the classical nucleation and growth theory, is introduced to evaluate the glass-forming ability of Fe-based bulk metallic glasses.

  11. Formation and mechanical properties of bulk Cu-Ti-Zr-Ni metallic glasses with high glass forming ability

    Institute of Scientific and Technical Information of China (English)

    YANG Ying-jun; KANG Fu-wei; XING Da-wei; SUN Jian-fei; SHEN Qing-ke; SHEN Jun

    2007-01-01

    Bulk amorphous Cu52.5Ti30Zr11.5Ni6 and Cu53.1Ti31.4Zr9.5Ni6 alloys with a high glass forming ability can be quenched into single amorphous rods with a diameter of 5 mm, and exhibit a high fracture strength of 2 212 MPa and 2 184 MPa under compressive condition, respectively. The stress-strain curves show nearly 2% elastic strain limit, yet display no appreciable macroscopic plastic deformation prior to the catastrophic fracture due to highly localized shear bands. The present work shows clearly evidence of molten droplets besides well-developed vein patterns typical of bulk metallic glasses on the fracture surface, suggesting that localized melting induced by adiabatic heating may occur during the final failure event.

  12. Modulation of gut mucosal biofilms.

    Science.gov (United States)

    Kleessen, Brigitta; Blaut, Michael

    2005-04-01

    Non-digestible inulin-type fructans, such as oligofructose and high-molecular-weight inulin, have been shown to have the ability to alter the intestinal microbiota composition in such a way that members of the microbial community, generally considered as health-promoting, are stimulated. Bifidobacteria and lactobacilli are the most frequently targeted organisms. Less information exists on effects of inulin-type fructans on the composition, metabolism and health-related significance of bacteria at or near the mucosa surface or in the mucus layer forming mucosa-associated biofilms. Using rats inoculated with a human faecal flora as an experimental model we have found that inulin-type fructans in the diet modulated the gut microbiota by stimulation of mucosa-associated bifidobacteria as well as by partial reduction of pathogenic Salmonella enterica subsp. enterica serovar Typhimurium and thereby benefit health. In addition to changes in mucosal biofilms, inulin-type fructans also induced changes in the colonic mucosa stimulating proliferation in the crypts, increasing the release of mucins, and altering the profile of mucin components in the goblet cells and epithelial mucus layer. These results indicate that inulin-type fructans may stabilise the gut mucosal barrier. Dietary supplementation with these prebiotics could offer a new approach to supporting the barrier function of the mucosa.

  13. Molecular typing of nosocomial Staphylococcus aureus strains associated to biofilm based on the coagulase and protein A gene polymorphisms

    Science.gov (United States)

    Salehzadeh, Ali; Zamani, Hojjatolah; Langeroudi, Maedeh Keshtkar; Mirzaie, Amir

    2016-01-01

    Objective(s): Staphylococcus aureus is an important bacterial pathogen responsible for a variety numbers of nosocomial and community acquired infections. Biofilm formation is regarded as an important factor in the establishment of S. aureus infection. The contribution of the genetic background of S. aureus to biofilm formation is poorly understood. The aim of the present work was to genotype S. aureus strains associated to biofilm based on the coagulase and protein A genes and to evaluate the association between the genetic background and the biofilm forming ability of clinical S. aureus isolates. Materials and Methods: A total number of 100 S. aureus were isolated from nosocomial infections and biofilm formation capability was investigated using phenotypic assay and molecular detection of biofilm associated genes. The strains were genotyped based on coagulase (coa) and protein A (spa) gene polymorphisms using restriction fragments length polymorphism-polymerase chain reaction (RFLP-PCR). Results: RFLP-PCR of coa gene generated two types and three subtypes. Amplification of spa gene resulted in two banding patterns and their restriction digestion generated three subtypes. The combined coa and spa RFLP patterns generated nine genotypes (G1-G9). The genotypes G4 and G1 were the most prevalent (32.1% and 24.3%, respectively). Conclusion: High clonal diversity of S. aureus strains able to produce biofilm was observed. Biofilm formation correlates with the spa and coa clonal lineage in our population and testing for multiple gene polymorphisms could be employed for local epidemiologic purposes. PMID:28096965

  14. Molecular typing of nosocomial Staphylococcus aureus strains associated to biofilm based on the coagulase and protein A gene polymorphisms

    Directory of Open Access Journals (Sweden)

    Ali Salehzadeh

    2016-12-01

    Full Text Available Objective(s: Staphylococcus aureus is an important bacterial pathogen responsible for a variety numbers of nosocomial and community acquired infections. Biofilm formation is regarded as an important factor in the establishment of S. aureus infection. The contribution of the genetic background of S. aureus to biofilm formation is poorly understood. The aim of the present work was to genotype S. aureus strains associated to biofilm based on the coagulase and protein A genes and to evaluate the association between the genetic background and the biofilm forming ability of clinical S. aureus isolates. Materials and Methods: A total number of 100 S. aureus were isolated from nosocomial infections and biofilm formation capability was investigated using phenotypic assay and molecular detection of biofilm associated genes. The strains were genotyped based on coagulase (coa and protein A (spa gene polymorphisms using restriction fragments length polymorphism-polymerase chain reaction (RFLP-PCR. Results: RFLP-PCR of coa gene generated two types and three subtypes. Amplification of spa gene resulted in two banding patterns and their restriction digestion generated three subtypes. The combined coa and spa RFLP patterns generated nine genotypes (G1-G9. The genotypes G4 and G1 were the most prevalent (32.1% and 24.3%, respectively. Conclusion: High clonal diversity of S. aureus strains able to produce biofilm was observed. Biofilm formation correlates with the spa and coa clonal lineage in our population and testing for multiple gene polymorphisms could be employed for local epidemiologic purposes.

  15. Inhibition of Serratia marcescens Smj-11 biofilm formation by Alcaligenes faecalis STN17 crude extract

    Energy Technology Data Exchange (ETDEWEB)

    Lutfi, Zainal; Ahmad, Asmat [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Usup, Gires [School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    Serratia marcescens biofilms are formed when they are bound to surfaces in aqueous environments. S. marcescens utilizes N-acylhomoserine lactone (AHL) as its quorum sensing signal molecule. The accumulation of AHL indicates the bacteria to produce matrices to form biofilms. Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin), which causes red pigmentation in the colonies, are also produced when the AHL reaches a certain threshold. The Alcaligenes faecalis STN17 crude extract is believed to inhibit quorum sensing in the S. marcescens Smj-11 and, thus, impedes its biofilm formation ability. A. faecalis STN17 was grown in marine broth, and ethyl acetate extraction was carried out. The crude compound of A. faecalis STN17 was diluted at high concentration (0.2-6.4 mg/mL) and was taken to confirm anti-biofilm activity through the crystal violet method in 96-wells plate. Then, the crude extract underwent purification using simple solvents partitioning test to discern the respective compounds that had the anti-biofilm activity under the crystal violet method. The crystal violet test showed that the crude did have anti-biofilm activity on S. marcescens Smj-11, but did not kill the cells. This finding signifies that the suppression of biofilm formation in S. marcescens by A. faecalis STN17 has a strong correlation. The partitioning test showed that A. faecalis STN17 crude extract has several compounds and only the compound(s) in chloroform showed activities. In conclusion, the crude extract of A. faecalis STN17 has the ability to inhibit S. marcescens Smj-11 biofilm formation.

  16. Galleria mellonella: an in vivo model for accessing the efficacy of colistin in combination with broad spectrum antibiotics against biofilm forming Acinetobacter baumannii infections

    OpenAIRE

    Gillett, Alice Rose

    2015-01-01

    The emergence of opportunistic nosocomial bacteria Acinetobacter baumannii, which causes infections in critically ill patients with compromised immune systems, is one of the most clinically challenging pathogens to treat effectively. Most nosocomial pathogens grow as monoculture or poly-species biofilms in infections and the biofilm mode of existence for A. baumannii may almost certainly contribute to its increased multi-drug resistant (MDR), although resistance can also be attributed to m...

  17. Damage of Streptococcus mutans biofilms by carolacton, a secondary metabolite from the myxobacterium Sorangium cellulosum

    Directory of Open Access Journals (Sweden)

    Irschik Herbert

    2010-07-01

    Full Text Available Abstract Background Streptococcus mutans is a major pathogen in human dental caries. One of its important virulence properties is the ability to form biofilms (dental plaque on tooth surfaces. Eradication of such biofilms is extremely difficult. We therefore screened a library of secondary metabolites from myxobacteria for their ability to damage biofilms of S. mutans. Results Here we show that carolacton, a secondary metabolite isolated from Sorangium cellulosum, has high antibacterial activity against biofilms of S. mutans. Planktonic growth of bacteria was only slightly impaired and no acute cytotoxicity against mouse fibroblasts could be observed. Carolacton caused death of S. mutans biofilm cells, elongation of cell chains, and changes in cell morphology. At a concentration of 10 nM carolacton, biofilm damage was already at 35% under anaerobic conditions. A knock-out mutant for comD, encoding a histidine kinase specific for the competence stimulating peptide (CSP, was slightly less sensitive to carolacton than the wildtype. Expression of the competence related alternate sigma factor ComX was strongly reduced by carolacton, as determined by a pcomX luciferase reporter strain. Conclusions Carolacton possibly interferes with the density dependent signalling systems in S. mutans and may represent a novel approach for the prevention of dental caries.

  18. Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans.

    Science.gov (United States)

    Rautela, Ria; Singh, Anil Kumar; Shukla, Abha; Cameotra, Swaranjit Singh

    2014-05-01

    The ability of the human fungal pathogen Candida albicans to reversibly switch between different morphological forms and establish biofilms is crucial for establishing infection. Targeting phenotypic plasticity and biofilm formation in C. albicans represents a new concept for antifungal drug discovery. The present study evaluated the influence of cyclic lipopeptide biosurfactant produced by Bacillus amyloliquefaciens strain AR2 on C. albicans biofilms. The biosurfactant was characterized as a mixture of iturin and fengycin by MALDI-TOF and amino acid analysis. The biosurfactant exhibited concentration dependent growth inhibition and fungicidal activity. The biosurfactant at sub-minimum growth inhibition concentration decreased cell surface hydrophobicity, hindered germ tube formation and reduced the mRNA expression of hyphae-specific gene HWP1 and ALS3 without exhibiting significant growth inhibition. The biosurfactants inhibited biofilm formation in the range of 46-100 % depending upon the concentration and Candida strains. The biosurfactant treatment dislodged 25-100 % of preformed biofilm from polystyrene plates. The biosurfactant retained its antifungal and antibiofilm activity even after exposure to extreme temperature. By virtue of the ability to inhibit germ tube and biofilm formation, two important traits of C. albicans involved in establishing infection, lipopeptides from strain AR2 may represent a potential candidate for developing heat stable anti-Candida drugs.

  19. Mycobacterium biofilms: factors involved in development, dispersal, and therapeutic strategies against biofilm-relevant pathogens.

    Science.gov (United States)

    Xiang, Xiaohong; Deng, Wanyan; Liu, Minqiang; Xie, Jianping

    2014-01-01

    Many bacteria can develop biofilm (BF), a multicellular structure largely combining bacteria and their extracellular polymeric substances (EPS). The formation of biofilm results in an alternative existence in which microbes ensure their survival in adverse environments. Biofilm-relevant infections are more persistent, resistant to most antibiotics, and more recalcitrant to host immunity. Mycobacterium tuberculosis, the causative agent of tuberculosis, can develop biofilm, though whether M. tuberculosis can form biofilm within tuberculosis patients has yet to be determined. Here, we summarize the factors involved in the development and dispersal of mycobacterial biofilms, as well as underlying regulatory factors and inhibitors against biofilm to deepen our understanding of their development and to elucidate potential novel modes of action for future antibiotics. Key factors in biofilm formation identified as drug targets represent a novel and promising avenue for developing better antibiotics.

  20. Connection between the packing efficiency of binary hard spheres and the glass-forming ability of bulk metallic glasses.

    Science.gov (United States)

    Zhang, Kai; Smith, W Wendell; Wang, Minglei; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D; O'Hern, Corey S

    2014-09-01

    We perform molecular dynamics simulations to compress binary hard spheres into jammed packings as a function of the compression rate R, size ratio α, and number fraction x(S) of small particles to determine the connection between the glass-forming ability (GFA) and packing efficiency in bulk metallic glasses (BMGs). We define the GFA by measuring the critical compression rate R(c), below which jammed hard-sphere packings begin to form "random crystal" structures with defects. We find that for systems with α≳0.8 that do not demix, R(c) decreases strongly with Δϕ(J), as R(c)∼exp(-1/Δϕ(J)(2)), where Δϕ(J) is the difference between the average packing fraction of the amorphous packings and random crystal structures at R(c). Systems with α≲0.8 partially demix, which promotes crystallization, but we still find a strong correlation between R(c) and Δϕ(J). We show that known metal-metal BMGs occur in the regions of the α and x(S) parameter space with the lowest values of R(c) for binary hard spheres. Our results emphasize that maximizing GFA in binary systems involves two competing effects: minimizing α to increase packing efficiency, while maximizing α to prevent demixing.

  1. Modelling the growth of a methanotrophic biofilm

    DEFF Research Database (Denmark)

    Arcangeli, J.-P.; Arvin, E.

    1999-01-01

    This article discusses the growth of methanotrophic biofilms. Several independent biofilm growths scenarios involving different inocula were examined. Biofilm growth, substrate removal and product formation were monitored throughout the experiments. Based on the oxygen consumption it was concluded...... that heterotrophs and nitrifiers co-existed with methanotrophs in the biofilm. Heterotrophic biomass grew on soluble polymers formed by the hydrolysis of dead biomass entrapped in the biofilm. Nitrifier populations developed because of the presence of ammonia in the mineral medium. Based on these experimental...... was performed on this model. It indicated that the most influential parameters were those related to the biofilm (i.e. density; solid-volume fraction; thickness). This suggests that in order to improve the model, further research regarding the biofilm structure and composition is needed....

  2. [Biofilms and their significance in medical microbiology].

    Science.gov (United States)

    Cernohorská, L; Votava, M

    2002-11-01

    Microorganisms are able to adhere to various surfaces and to form there a three-dimensional structure known as biofilm. In biofilms, microbial cells show characteristics and behaviours different from those of plankton cells. Intercellular signalizations of the quorum-sensing type regulate interaction between members of the biofilm. Bacteria embedded in the biofilm can escape and form well known planktonic forms, that are obviously only a part of the bacterial life cycle. Bacteria adhere also to medically important surfaces such as catheters, either urinary or intravenous ones, artificial heart valves, orthopedic implants and so on and contribute to device-related infections like cystitis, catheter-related sepsis, endocarditis etc. Once a biofilm has been established on a surface, the bacteria harboured inside are less exposed to the host's immune response and less susceptible to antibiotics. As an important cause of nosocomial infections the biofilm must remain in the centre of the microbiologist's attention.

  3. Career Adapt-Abilities Scale--Italian Form: Psychometric Properties and Relationships to Breadth of Interests, Quality of Life, and Perceived Barriers

    Science.gov (United States)

    Soresi, Salvatore; Nota, Laura; Ferrari, Lea

    2012-01-01

    The Career Adapt-Abilities Scale (CAAS)-Italian Form consists of four 6-item scales, which measure concern, control, curiosity, and confidence as psychosocial resources for managing occupational transitions, developmental tasks, and work traumas. The 24-item CAAS-Italian Form is identical to the International Form 2.0. The factor structure was…

  4. Wound biofilms: lessons learned from oral biofilms.

    Science.gov (United States)

    Mancl, Kimberly A; Kirsner, Robert S; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque, are a primary cause of oral diseases including caries, gingivitis, and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible; thus, biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well elucidated. In contrast, wound research has relatively recently directed attention to the role biofilms have in chronic wounds. This review discusses the biofilms in periodontal disease and chronic wounds with comparisons focusing on biofilm detection, biofilm formation, the immune response to biofilms, bacterial interaction, and quorum sensing. Current treatment modalities used by both fields and future therapies are also discussed.

  5. Efficiency of vanilla, patchouli and ylang ylang essential oils stabilized by iron oxide@C14 nanostructures against bacterial adherence and biofilms formed by Staphylococcus aureus and Klebsiella pneumoniae clinical strains.

    Science.gov (United States)

    Bilcu, Maxim; Grumezescu, Alexandru Mihai; Oprea, Alexandra Elena; Popescu, Roxana Cristina; Mogoșanu, George Dan; Hristu, Radu; Stanciu, George A; Mihailescu, Dan Florin; Lazar, Veronica; Bezirtzoglou, Eugenia; Chifiriuc, Mariana Carmen

    2014-01-01

    Biofilms formed by bacterial cells are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence and chronicization of the microbial infections and to therapy failure. The purpose of this study was to combine the unique properties of magnetic nanoparticles with the antimicrobial activity of three essential oils to obtain novel nanobiosystems that could be used as coatings for catheter pieces with an improved resistance to Staphylococcus aureus and Klebsiella pneumoniae clinical strains adherence and biofilm development. The essential oils of ylang ylang, patchouli and vanilla were stabilized by the interaction with iron oxide@C14 nanoparticles to be further used as coating agents for medical surfaces. Iron oxide@C14 was prepared by co-precipitation of Fe+2 and Fe+3 and myristic acid (C14) in basic medium. Vanilla essential oil loaded nanoparticles pelliculised on the catheter samples surface strongly inhibited both the initial adherence of S. aureus cells (quantified at 24 h) and the development of the mature biofilm quantified at 48 h. Patchouli and ylang-ylang essential oils inhibited mostly the initial adherence phase of S. aureus biofilm development. In the case of K. pneumoniae, all tested nanosystems exhibited similar efficiency, being active mostly against the adherence K. pneumoniae cells to the tested catheter specimens. The new nanobiosystems based on vanilla, patchouli and ylang-ylang essential oils could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with anti-adherence and anti-biofilm properties.

  6. Efficiency of Vanilla, Patchouli and Ylang Ylang Essential Oils Stabilized by Iron Oxide@C14 Nanostructures against Bacterial Adherence and Biofilms Formed by Staphylococcus aureus and Klebsiella pneumoniae Clinical Strains

    Directory of Open Access Journals (Sweden)

    Maxim Bilcu

    2014-11-01

    Full Text Available Biofilms formed by bacterial cells are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence and chronicization of the microbial infections and to therapy failure. The purpose of this study was to combine the unique properties of magnetic nanoparticles with the antimicrobial activity of three essential oils to obtain novel nanobiosystems that could be used as coatings for catheter pieces with an improved resistance to Staphylococcus aureus and Klebsiella pneumoniae clinical strains adherence and biofilm development. The essential oils of ylang ylang, patchouli and vanilla were stabilized by the interaction with iron oxide@C14 nanoparticles to be further used as coating agents for medical surfaces. Iron oxide@C14 was prepared by co-precipitation of Fe+2 and Fe+3 and myristic acid (C14 in basic medium. Vanilla essential oil loaded nanoparticles pelliculised on the catheter samples surface strongly inhibited both the initial adherence of S. aureus cells (quantified at 24 h and the development of the mature biofilm quantified at 48 h. Patchouli and ylang-ylang essential oils inhibited mostly the initial adherence phase of S. aureus biofilm development. In the case of K. pneumoniae, all tested nanosystems exhibited similar efficiency, being active mostly against the adherence K. pneumoniae cells to the tested catheter specimens. The new nanobiosystems based on vanilla, patchouli and ylang-ylang essential oils could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with anti-adherence and anti-biofilm properties.

  7. Analysis of the role of the LH92_11085 gene of a biofilm hyper-producing Acinetobacter baumannii strain on biofilm formation and attachment to eukaryotic cells.

    Science.gov (United States)

    Álvarez-Fraga, Laura; Pérez, Astrid; Rumbo-Feal, Soraya; Merino, María; Vallejo, Juan Andrés; Ohneck, Emily J; Edelmann, Richard E; Beceiro, Alejandro; Vázquez-Ucha, Juan C; Valle, Jaione; Actis, Luis A; Bou, Germán; Poza, Margarita

    2016-05-18

    Acinetobacter baumannii is a nosocomial pathogen that has a considerable ability to survive in the hospital environment partly due to its capacity to form biofilms. The first step in the process of establishing an infection is adherence of the bacteria to target cells. Chaperone-usher pili assembly systems are involved in pilus biogenesis pathways that play an important role in adhesion to host cells and tissues as well as medically relevant surfaces. After screening a collection of strains, a biofilm hyper-producing A. baumannii strain (MAR002) was selected to describe potential targets involved in pathogenicity. MAR002 showed a remarkable ability to form biofilm and attach to A549 human alveolar epithelial cells. Analysis of MAR002 using transmission electron microscopy (TEM) showed a significant presence of pili on the bacterial surface. Putative protein-coding genes involved in pili formation were identified based on the newly sequenced genome of MAR002 strain (JRHB01000001/2 or NZ_JRHB01000001/2). As assessed by qRT-PCR, the gene LH92_11085, belonging to the operon LH92_11070-11085, is overexpressed (ca. 25-fold more) in biofilm-associated cells compared to exponential planktonic cells. In the present work we investigate the role of this gene on the MAR002 biofilm phenotype. Scanning electron microscopy (SEM) and biofilm assays showed that inactivation of LH92_11085 gene significantly reduced bacterial attachment to A549 cells and biofilm formation on plastic, respectively. TEM analysis of the LH92_11085 mutant showed the absence of long pili formations normally present in the wild-type. These observations indicate the potential role this LH92_11085 gene could play in the pathobiology of A baumannii.

  8. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Kruszewski, Kristen M., E-mail: kruszewskik@duq.edu [Duquesne University, Department of Chemistry and Biochemistry, 600 Forbes Avenue, Pittsburgh, PA 15282 (United States); Nistico, Laura, E-mail: lnistico@wpahs.org [Allegheny General Hospital, Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 East North Avenue, 11th floor, South Tower, Pittsburgh, PA 15212 (United States); Longwell, Mark J., E-mail: mlongwel@wpahs.org [Allegheny General Hospital, Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 East North Avenue, 11th floor, South Tower, Pittsburgh, PA 15212 (United States); Hynes, Matthew J., E-mail: mjhynes@go.wustl.edu [Washington University in St. Louis, Department of Chemistry, One Brookings Drive, St. Louis, MO 63130 (United States); Maurer, Joshua A., E-mail: maurer@wustl.edu [Washington University in St. Louis, Department of Chemistry, One Brookings Drive, St. Louis, MO 63130 (United States); Hall-Stoodley, Luanne, E-mail: L.Hall-Stoodley@soton.ac.uk [Southampton Wellcome Trust Clinical Research Facility/NIHR Respiratory BRU, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, Hampshire SO16 6YD (United Kingdom); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Duquesne University, Department of Chemistry and Biochemistry, McGowan Institute for Regenerative Medicine, 600 Forbes Avenue, Pittsburgh, PA 15282 (United States)

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (− CH{sub 3}) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an “active” antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively. - Highlights: ► SS316L was modified with glycol terminated SAMs in order to reduce biofilm growth. ► Antibiotics gentamicin and vancomycin were immobilized on SS316L via SAMs. ► Only the antibiotic modifications reduced biofilm development on SS316L.

  9. Biofilm-forming Capabilities of Lactobacillus bulgaricus and Streptococcus thermophilus%保加利亚乳杆菌和嗜热链球菌生物膜形成研究

    Institute of Scientific and Technical Information of China (English)

    王坤; 闫颖娟; 姜梅; 陈晓红; 李伟; 董明盛

    2011-01-01

    The biofilm-forming capabilities of Streptococcus thermophilus and Lactobacillus bulgaricus on different carriers(coconut,stainless steel mesh,plastic sheet,glass sheet or ceramic parts) was studied by using placed slice and