WorldWideScience

Sample records for biofilm formation colonization

  1. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease.

    Science.gov (United States)

    Chao, Yashuan; Marks, Laura R; Pettigrew, Melinda M; Hakansson, Anders P

    2014-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over one million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo. In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of pneumococcal biofilm

  2. Impact of early colonizers on in vitro subgingival biofilm formation.

    Directory of Open Access Journals (Sweden)

    Thomas W Ammann

    Full Text Available The aim of this study was to investigate the impact of early colonizing species on the structure and the composition of the bacterial community developing in a subgingival 10-species biofilm model system. The model included Streptococcus oralis, Streptococcus anginosus, Actinomycesoris, Fusobacterium nucleatum subsp. nucleatum, Veillonella dispar, Campylobacter rectus, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. Based on literature, we considered Streptococcus oralis, Streptococcus anginosus, and Actinomyces oris as early colonizers and examined their role in the biofilms by either a delayed addition to the consortium, or by not inoculating at all the biofilms with these species. We quantitatively evaluated the resulting biofilms by real-time quantitative PCR and further compared the structures using confocal laser scanning microscopy following fluorescence in situ hybridisation. The absence of the early colonizers did not hinder biofilm formation. The biofilms reached the same total counts and developed to normal thickness. However, quantitative shifts in the abundances of individual species were observed. In the absence of streptococci, the overall biofilm structure appeared looser and more dispersed. Moreover, besides a significant increase of P. intermedia and a decrease of P. gingivalis , P. intermedia appeared to form filamented long chains that resembled streptococci. A. oris, although growing to significantly higher abundance in absence of streptococci, did not have a visible impact on the biofilms. Hence, in the absence of the early colonizers, there is a pronounced effect on P. intermedia and P. gingivalis that may cause distinct shifts in the structure of the biofilm. Streptococci possibly facilitate the establishment of P. gingivalis into subgingival biofilms, while in their absence P. intermedia became more dominant and forms elongated chains.

  3. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization.

    Science.gov (United States)

    Iwase, Tadayuki; Uehara, Yoshio; Shinji, Hitomi; Tajima, Akiko; Seo, Hiromi; Takada, Koji; Agata, Toshihiko; Mizunoe, Yoshimitsu

    2010-05-20

    Commensal bacteria are known to inhibit pathogen colonization; however, complex host-microbe and microbe-microbe interactions have made it difficult to gain a detailed understanding of the mechanisms involved in the inhibition of colonization. Here we show that the serine protease Esp secreted by a subset of Staphylococcus epidermidis, a commensal bacterium, inhibits biofilm formation and nasal colonization by Staphylococcus aureus, a human pathogen. Epidemiological studies have demonstrated that the presence of Esp-secreting S. epidermidis in the nasal cavities of human volunteers correlates with the absence of S. aureus. Purified Esp inhibits biofilm formation and destroys pre-existing S. aureus biofilms. Furthermore, Esp enhances the susceptibility of S. aureus in biofilms to immune system components. In vivo studies have shown that Esp-secreting S. epidermidis eliminates S. aureus nasal colonization. These findings indicate that Esp hinders S. aureus colonization in vivo through a novel mechanism of bacterial interference, which could lead to the development of novel therapeutics to prevent S. aureus colonization and infection.

  4. Intra-amoeba multiplication induces chemotaxis and biofilm colonization and formation for Legionella.

    Directory of Open Access Journals (Sweden)

    Renaud Bigot

    Full Text Available Legionella pneumophila, a facultative intracellular bacterium, is the causative agent of legionellosis. In the environment this pathogenic bacterium colonizes the biofilms as well as amoebae, which provide a rich environment for the replication of Legionella. When seeded on pre-formed biofilms, L. pneumophila was able to establish and survive and was only found at the surface of the biofilms. Different phenotypes were observed when the L. pneumophila, used to implement pre-formed biofilms or to form mono-species biofilms, were cultivated in a laboratory culture broth or had grown intracellulary within the amoeba. Indeed, the bacteria, which developed within the amoeba, formed clusters when deposited on a solid surface. Moreover, our results demonstrate that multiplication inside the amoeba increased the capacity of L. pneumophila to produce polysaccharides and therefore enhanced its capacity to establish biofilms. Finally, it was shown that the clusters formed by L. pneumophila were probably related to the secretion of a chemotaxis molecular agent.

  5. Intra-amoeba multiplication induces chemotaxis and biofilm colonization and formation for Legionella.

    Science.gov (United States)

    Bigot, Renaud; Bertaux, Joanne; Frere, Jacques; Berjeaud, Jean-Marc

    2013-01-01

    Legionella pneumophila, a facultative intracellular bacterium, is the causative agent of legionellosis. In the environment this pathogenic bacterium colonizes the biofilms as well as amoebae, which provide a rich environment for the replication of Legionella. When seeded on pre-formed biofilms, L. pneumophila was able to establish and survive and was only found at the surface of the biofilms. Different phenotypes were observed when the L. pneumophila, used to implement pre-formed biofilms or to form mono-species biofilms, were cultivated in a laboratory culture broth or had grown intracellulary within the amoeba. Indeed, the bacteria, which developed within the amoeba, formed clusters when deposited on a solid surface. Moreover, our results demonstrate that multiplication inside the amoeba increased the capacity of L. pneumophila to produce polysaccharides and therefore enhanced its capacity to establish biofilms. Finally, it was shown that the clusters formed by L. pneumophila were probably related to the secretion of a chemotaxis molecular agent.

  6. The Enterococcus faecium enterococcal biofilm regulator, EbrB, regulates the esp operon and is implicated in biofilm formation and intestinal colonization.

    Science.gov (United States)

    Top, Janetta; Paganelli, Fernanda L; Zhang, Xinglin; van Schaik, Willem; Leavis, Helen L; van Luit-Asbroek, Miranda; van der Poll, Tom; Leendertse, Masja; Bonten, Marc J M; Willems, Rob J L

    2013-01-01

    Nowadays, Enterococcus faecium is one of the leading nosocomial pathogens worldwide. Strains causing clinical infections or hospital outbreaks are enriched in the enterococcal surface protein (Esp) encoding ICEEfm1 mobile genetic element. Previous studies showed that Esp is involved in biofilm formation, endocarditis and urinary tract infections. In this study, we characterized the role of the putative AraC type of regulator (locus tag EfmE1162_2351), which we renamed ebrB and which is, based on the currently available whole genome sequences, always located upstream of the esp gene, and studied its role in Esp surface exposure during growth. A markerless deletion mutant of ebrB resulted in reduced esp expression and complete abolishment of Esp surface exposure, while Esp cell-surface exposure was restored when this mutant was complemented with an intact copy of ebrB. This demonstrates a role for EbrB in esp expression. However, during growth, ebrB expression levels did not change over time, while an increase in esp expression at both RNA and protein level was observed during mid-log and late-log phase. These results indicate the existence of a secondary regulation system for esp, which might be an unknown quorum sensing system as the enhanced esp expression seems to be cell density dependent. Furthermore, we determined that esp is part of an operon of at least 3 genes putatively involved in biofilm formation. A semi-static biofilm model revealed reduced biofilm formation for the EbrB deficient mutant, while dynamics of biofilm formation using a flow cell system revealed delayed biofilm formation in the ebrB mutant. In a mouse intestinal colonization model the ebrB mutant was less able to colonize the gut compared to wild-type strain, especially in the small intestine. These data indicate that EbrB positively regulates the esp operon and is implicated in biofilm formation and intestinal colonization.

  7. The Enterococcus faecium enterococcal biofilm regulator, EbrB, regulates the esp operon and is implicated in biofilm formation and intestinal colonization.

    Directory of Open Access Journals (Sweden)

    Janetta Top

    Full Text Available Nowadays, Enterococcus faecium is one of the leading nosocomial pathogens worldwide. Strains causing clinical infections or hospital outbreaks are enriched in the enterococcal surface protein (Esp encoding ICEEfm1 mobile genetic element. Previous studies showed that Esp is involved in biofilm formation, endocarditis and urinary tract infections. In this study, we characterized the role of the putative AraC type of regulator (locus tag EfmE1162_2351, which we renamed ebrB and which is, based on the currently available whole genome sequences, always located upstream of the esp gene, and studied its role in Esp surface exposure during growth. A markerless deletion mutant of ebrB resulted in reduced esp expression and complete abolishment of Esp surface exposure, while Esp cell-surface exposure was restored when this mutant was complemented with an intact copy of ebrB. This demonstrates a role for EbrB in esp expression. However, during growth, ebrB expression levels did not change over time, while an increase in esp expression at both RNA and protein level was observed during mid-log and late-log phase. These results indicate the existence of a secondary regulation system for esp, which might be an unknown quorum sensing system as the enhanced esp expression seems to be cell density dependent. Furthermore, we determined that esp is part of an operon of at least 3 genes putatively involved in biofilm formation. A semi-static biofilm model revealed reduced biofilm formation for the EbrB deficient mutant, while dynamics of biofilm formation using a flow cell system revealed delayed biofilm formation in the ebrB mutant. In a mouse intestinal colonization model the ebrB mutant was less able to colonize the gut compared to wild-type strain, especially in the small intestine. These data indicate that EbrB positively regulates the esp operon and is implicated in biofilm formation and intestinal colonization.

  8. Cell surface attachment structures contribute to biofilm formation and xylem colonization by Erwinia amylovora.

    Science.gov (United States)

    Koczan, Jessica M; Lenneman, Bryan R; McGrath, Molly J; Sundin, George W

    2011-10-01

    Biofilm formation plays a critical role in the pathogenesis of Erwinia amylovora and the systemic invasion of plant hosts. The functional role of the exopolysaccharides amylovoran and levan in pathogenesis and biofilm formation has been evaluated. However, the role of biofilm formation, independent of exopolysaccharide production, in pathogenesis and movement within plants has not been studied previously. Evaluation of the role of attachment in E. amylovora biofilm formation and virulence was examined through the analysis of deletion mutants lacking genes encoding structures postulated to function in attachment to surfaces or in cellular aggregation. The genes and gene clusters studied were selected based on in silico analyses. Microscopic analyses and quantitative assays demonstrated that attachment structures such as fimbriae and pili are involved in the attachment of E. amylovora to surfaces and are necessary for the production of mature biofilms. A time course assay indicated that type I fimbriae function earlier in attachment, while type IV pilus structures appear to function later in attachment. Our results indicate that multiple attachment structures are needed for mature biofilm formation and full virulence and that biofilm formation facilitates entry and is necessary for the buildup of large populations of E. amylovora cells in xylem tissue.

  9. Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Meneses, Carlos H S G; Rouws, Luc F M; Simoes-Araujo, Jean L; Vidal, Marcia S; Baldani, Jos I

    2011-12-01

    The genome of the endophytic diazotrophic bacterial species Gluconacetobacter diazotrophicus PAL5 (PAL5) revealed the presence of a gum gene cluster. In this study, the gumD gene homologue, which is predicted to be responsible for the first step in exopolysaccharide (EPS) production, was insertionally inactivated and the resultant mutant (MGD) was functionally studied. The mutant MGD presented normal growth and nitrogen (N(2)) fixation levels but did not produce EPS when grown on different carbon sources. MGD presented altered colony morphology on soft agar plates (0.3% agar) and was defective in biofilm formation on glass wool. Most interestingly, MGD was defective in rice root surface attachment and in root surface and endophytic colonization. Genetic complementation reverted all mutant phenotypes. Also, the addition of EPS purified from culture supernatants of the wild-type strain PAL5 to the mutant MGD was effective in partially restoring wild-type biofilm formation and plant colonization. These data provide strong evidence that the PAL5 gumD gene is involved in EPS biosynthesis and that EPS biosynthesis is required for biofilm formation and plant colonization. To our knowledge, this is the first report of a role of EPS in the endophytic colonization of graminaceous plants by a nitrogen-fixing bacterium.

  10. Poly-γ-Glutamic Acids Contribute to Biofilm Formation and Plant Root Colonization in Selected Environmental Isolates of Bacillus subtilis.

    Science.gov (United States)

    Yu, Yiyang; Yan, Fang; Chen, Yun; Jin, Christopher; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacillus subtilis is long known to produce poly-γ-glutamic acids (γ-PGA) as one of the major secreted polymeric substances. In B. subtilis, the regulation of γ-PGA production and its physiological role are still unclear. B. subtilis is also capable of forming structurally complex multicellular communities, or biofilms, in which an extracellular matrix consisting of secreted proteins and polysaccharides holds individual cells together. Biofilms were shown to facilitate B. subtilis-plant interactions. In this study, we show that different environmental isolates of B. subtilis, all capable of forming biofilms, vary significantly in γ-PGA production. This is possibly due to differential regulation of γ-PGA biosynthesis genes. In many of those environmental isolates, γ-PGA seems to contribute to robustness and complex morphology of the colony biofilms, suggesting a role of γ-PGA in biofilm formation. Our evidence further shows that in selected B. subtilis strains, γ-PGA also plays a role in root colonization by the bacteria, pinpointing a possible function of γ-PGA in B. subtilis-plant interactions. Finally, we found that several pathways co-regulate both γ-PGA biosynthesis genes and genes for the biofilm matrix in B. subtilis, but in an opposing fashion. We discussed potential biological significance of that.

  11. Staphylococcus aureus sarA regulates inflammation and colonization during central nervous system biofilm formation.

    Directory of Open Access Journals (Sweden)

    Jessica N Snowden

    Full Text Available Infection is a frequent and serious complication following the treatment of hydrocephalus with CSF shunts, with limited therapeutic options because of biofilm formation along the catheter surface. Here we evaluated the possibility that the sarA regulatory locus engenders S. aureus more resistant to immune recognition in the central nervous system (CNS based on its reported ability to regulate biofilm formation. We utilized our established model of CNS catheter-associated infection, similar to CSF shunt infections seen in humans, to compare the kinetics of bacterial titers, cytokine production and inflammatory cell influx elicited by wild type S. aureus versus an isogenic sarA mutant. The sarA mutant was more rapidly cleared from infected catheters compared to its isogenic wild type strain. Consistent with this finding, several pro-inflammatory cytokines and chemokines, including IL-17, CXCL1, and IL-1β were significantly increased in the brain following infection with the sarA mutant versus wild type S. aureus, in agreement with the fact that the sarA mutant displayed impaired biofilm growth and favored a planktonic state. Neutrophil influx into the infected hemisphere was also increased in the animals infected with the sarA mutant compared to wild type bacteria. These changes were not attributable to extracellular protease activity, which is increased in the context of SarA mutation, since similar responses were observed between sarA and a sarA/protease mutant. Overall, these results demonstrate that sarA plays an important role in attenuating the inflammatory response during staphylococcal biofilm infection in the CNS via a mechanism that remains to be determined.

  12. Metabolism links bacterial biofilms and colon carcinogenesis.

    Science.gov (United States)

    Johnson, Caroline H; Dejea, Christine M; Edler, David; Hoang, Linh T; Santidrian, Antonio F; Felding, Brunhilde H; Ivanisevic, Julijana; Cho, Kevin; Wick, Elizabeth C; Hechenbleikner, Elizabeth M; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A; Pardoll, Drew M; White, James R; Patti, Gary J; Sears, Cynthia L; Siuzdak, Gary

    2015-06-02

    Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N(1), N(12)-diacetylspermine in both biofilm-positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N(1), N(12)-diacetylspermine levels to those seen in biofilm-negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression.

  13. Metabolism links bacterial biofilms and colon carcinogenesis

    Science.gov (United States)

    Johnson, Caroline H.; Dejea, Christine M.; Edler, David; Hoang, Linh T.; Santidrian, Antonio F.; Felding, Brunhilde H.; Cho, Kevin; Wick, Elizabeth C.; Hechenbleikner, Elizabeth M.; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A.; Pardoll, Drew M.; White, James R.; Patti, Gary J.; Sears, Cynthia L.; Siuzdak, Gary

    2015-01-01

    SUMMARY Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N1, N12-diacetylspermine in both biofilm positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N1, N12-diacetylspermine levels to those seen in biofilm negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome, to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. PMID:25959674

  14. Hydrodynamics of catheter biofilm formation

    CERN Document Server

    Sotolongo-Costa, Oscar; Rodriguez-Perez, Daniel; Martinez-Escobar, Sergio; Fernandez-Barbero, Antonio

    2009-01-01

    A hydrodynamic model is proposed to describe one of the most critical problems in intensive medical care units: the formation of biofilms inside central venous catheters. The incorporation of approximate solutions for the flow-limited diffusion equation leads to the conclusion that biofilms grow on the internal catheter wall due to the counter-stream diffusion of blood through a very thin layer close to the wall. This biological deposition is the first necessary step for the subsequent bacteria colonization.

  15. Acceleration of Enterococcus faecalis biofilm formation by aggregation substance expression in an ex vivo model of cardiac valve colonization.

    Directory of Open Access Journals (Sweden)

    Olivia N Chuang-Smith

    Full Text Available Infectious endocarditis involves formation of a microbial biofilm in vivo. Enterococcus faecalis Aggregation Substance (Asc10 protein enhances the severity of experimental endocarditis, where it has been implicated in formation of large vegetations and in microbial persistence during infection. In the current study, we developed an ex vivo porcine heart valve adherence model to study the initial interactions between Asc10(+ and Asc10(-E. faecalis and valve tissue, and to examine formation of E. faecalis biofilms on a relevant tissue surface. Scanning electron microscopy of the infected valve tissue provided evidence for biofilm formation, including growing masses of bacterial cells and the increasing presence of exopolymeric matrix over time; accumulation of adherent biofilm populations on the cardiac valve surfaces during the first 2-4 h of incubation was over 10-fold higher than was observed on abiotic membranes incubated in the same culture medium. Asc10 expression accelerated biofilm formation via aggregation between E. faecalis cells; the results also suggested that in vivo adherence to host tissue and biofilm development by E. faecalis can proceed by Asc10-dependent or Asc10-independent pathways. Mutations in either of two Asc10 subdomains previously implicated in endocarditis virulence reduced levels of adherent bacterial populations in the ex vivo system. Interference with the molecular interactions involved in adherence and initiation of biofilm development in vivo with specific inhibitory compounds could lead to more effective treatment of infectious endocarditis.

  16. Biofilm formation by enteric pathogens and its role in plant colonization and persistence

    OpenAIRE

    2014-01-01

    The significant increase in foodborne outbreaks caused by contaminated fresh produce, such as alfalfa sprouts, lettuce, melons, tomatoes and spinach, during the last 30 years stimulated investigation of the mechanisms of persistence of human pathogens on plants. Emerging evidence suggests that Salmonella enterica and Escherichia coli, which cause the vast majority of fresh produce outbreaks, are able to adhere to and to form biofilms on plants leading to persistence and resistance to disinfec...

  17. Tobacco smoking affects bacterial acquisition and colonization in oral biofilms.

    Science.gov (United States)

    Kumar, Purnima S; Matthews, Chad R; Joshi, Vinayak; de Jager, Marko; Aspiras, Marcelo

    2011-11-01

    Recent evidence suggests that smoking affects the composition of the disease-associated subgingival biofilm, yet little is known about its effects during the formation of this biofilm. The present investigation was undertaken to examine the contributions of smoking to the composition and proinflammatory characteristics of the biofilm during de novo plaque formation. Marginal and subgingival plaque and gingival crevicular fluid samples were collected from 15 current smokers and from 15 individuals who had never smoked (nonsmokers) following 1, 2, 4, and 7 days of undisturbed plaque formation. 16S rRNA gene cloning and sequencing were used for bacterial identification, and multiplex bead-based flow cytometry was used to quantify the levels of 27 immune mediators. Smokers demonstrated a highly diverse, relatively unstable initial colonization of both marginal and subgingival biofilms, with lower niche saturation than that seen in nonsmokers. Periodontal pathogens belonging to the genera Fusobacterium, Cardiobacterium, Synergistes, and Selenomonas, as well as respiratory pathogens belonging to the genera Haemophilus and Pseudomonas, colonized the early biofilms of smokers and continued to persist over the observation period, suggesting that smoking favors early acquisition and colonization of pathogens in oral biofilms. Smokers also demonstrated an early proinflammatory response to this colonization, which persisted over 7 days. Further, a positive correlation between proinflammatory cytokine levels and commensal bacteria was observed in smokers but not in nonsmokers. Taken together, the data suggest that smoking influences both the composition of the nascent biofilm and the host response to this colonization.

  18. Meningococcal biofilm formation

    DEFF Research Database (Denmark)

    Lappann, M.; Haagensen, Janus Anders Juul; Claus, H.

    2006-01-01

    We show that in a standardized in vitro flow system unencapsulated variants of genetically diverse lineages of Neisseria meningitidis formed biofilms, that could be maintained for more than 96 h. Biofilm cells were resistant to penicillin, but not to rifampin or ciprofloxacin. For some strains......, microcolony formation within biofilms was observed. Microcolony formation in strain MC58 depended on a functional copy of the pilE gene encoding the pilus subunit pilin, and was associated with twitching of cells. Nevertheless, unpiliated pilE mutants formed biofilms showing that attachment and accumulation......X alleles was identified among genetically diverse meningococcal strains. PilX alleles differed in their propensity to support autoaggregation of cells in suspension, but not in their ability to support microcolony formation within biofilms in the continuous flow system....

  19. The phosphotransferase system gene ptsI in the endophytic bacterium Bacillus cereus is required for biofilm formation, colonization, and biocontrol against wheat sharp eyespot.

    Science.gov (United States)

    Xu, Yu-Bin; Chen, Mai; Zhang, Ying; Wang, Miao; Wang, Ying; Huang, Qiu-bin; Wang, Xue; Wang, Gang

    2014-05-01

    Natural resistance of wheat plants to wheat sharp eyespot is inadequate, and new strategies for controlling the disease are required. Biological control is an alternative and attractive way of reducing the use of chemicals in agriculture. In this study, we investigated the biocontrol properties of endophytic bacterium Bacillus cereus strain 0-9, which was isolated from the root systems of healthy wheat varieties. The phosphotransferase system is a major regulator of carbohydrate metabolism in bacteria. Enzyme I is one of the protein components of this system. Specific disruption and complementation of the enzyme I-coding gene ptsI from B. cereus was achieved through homologous recombination. Disruption of ptsI in B. cereus caused a 70% reduction in biofilm formation, a 30.4% decrease in biocontrol efficacy, and a 1000-fold reduction in colonization. The growth of ΔptsI mutant strain on G-tris synthetic medium containing glucose as the exclusive carbon source was also reduced. Wild-type properties could be restored to the ΔptsI mutant strain by ptsI complementation. These results suggested that ptsI may be one of the key genes involved in biofilm formation, colonization, and biocontrol of B. cereus and that B. cereus wild-type strain 0-9 may be an ideal biocontrol agent for controlling wheat sharp eyespot.

  20. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda

  1. Plasmid curing and the loss of grip--the 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae.

    Science.gov (United States)

    Frank, Oliver; Michael, Victoria; Päuker, Orsola; Boedeker, Christian; Jogler, Christian; Rohde, Manfred; Petersen, Jörn

    2015-03-01

    Surface colonization is characteristic for a broad range of marine roseobacters and many strains have been isolated from biofilms, microbial mats and dinoflagellates. Phaeobacter inhibens DSM 17395, one of the best-studied representatives of the Roseobacter group, is an effective colonizer of marine surfaces, but the genetic basis of this trait is unknown. Based on the composition of its 65-kb RepA-I type plasmid that contains more than 20 genes for polysaccharide metabolism, including a rhamnose operon, which is required for O-antigen formation in Escherichia coli, it was hypothesized that this replicon was essential for surface attachment. Accordingly, a holistic approach was taken and the functional role of this extrachromosomal element in P. inhibens was investigated. Plasmid curing was performed with the homologous RepA-I replication system of Dinoroseobacter shibae DSM 16493(T). The Δ65-kb mutant completely lost its stickiness and could neither attach to artificial (glass, polystyrene) nor to natural surfaces (algae) and, consequently, its ability to form biofilms was impaired. Surprisingly, the mutant also lost the capacity for flagellar swimming motility required for surface colonization and the dispersal of biofilms. The data clearly showed that the 65-kb replicon of P. inhibens DSM 17395 was a genuine biofilm plasmid-mediating surface attachment. Homologous replicons are widely distributed among Rhodobacterales thus indicating the general importance of extrachromosomal elements for biofilm formation.

  2. Actinomyces naeslundii in intial dental biofilm formation

    DEFF Research Database (Denmark)

    Dige, Irene; Raarup, Merete Krog; Nyengaard, Jens Randel

    2009-01-01

    Combined use of Confocal Laser Scanning Microscopy (CLSM) and Fluorescent in situ Hybridization (FISH) offers new opportunities for analysing the spatial relationships and temporal changes of specific members of microbial populations in intact dental biofilms. AIMS: The purpose of this study...... was to analyse the patterns of colonization and population dynamics of A. naeslundii compared to Streptococcus spp. and other bacteria during the initial 48 h of biofilm formation. METHODS: Biofilms were collected on standardized glass slabs mounted in intra-oral appliances and worn by 10 individuals for 6, 12......, 24, and 48 h. The biofilms were subsequently labelled with probes against Streptococcus spp. (STR405), A. naeslundii (ACT476), or all bacteria (EUB338) and analysed by CLSM. Quantification of labelled bacteria was done by stereological tools: the unbiased counting frame and the 2D fractionator...

  3. The contribution of cell-cell signaling and motility to bacterial biofilm formation

    DEFF Research Database (Denmark)

    Shrout, Joshua D; Tolker-Nielsen, Tim; Givskov, Michael;

    2011-01-01

    Many bacteria grow attached to a surface as biofilms. Several factors dictate biofilm formation, including responses by the colonizing bacteria to their environment. Here we review how bacteria use cell-cell signaling (also called quorum sensing) and motility during biofilm formation. Specificall...

  4. A semi-quantitative approach to assess biofilm formation using wrinkled colony development.

    Science.gov (United States)

    Ray, Valerie A; Morris, Andrew R; Visick, Karen L

    2012-06-07

    Biofilms, or surface-attached communities of cells encapsulated in an extracellular matrix, represent a common lifestyle for many bacteria. Within a biofilm, bacterial cells often exhibit altered physiology, including enhanced resistance to antibiotics and other environmental stresses. Additionally, biofilms can play important roles in host-microbe interactions. Biofilms develop when bacteria transition from individual, planktonic cells to form complex, multi-cellular communities. In the laboratory, biofilms are studied by assessing the development of specific biofilm phenotypes. A common biofilm phenotype involves the formation of wrinkled or rugose bacterial colonies on solid agar media. Wrinkled colony formation provides a particularly simple and useful means to identify and characterize bacterial strains exhibiting altered biofilm phenotypes, and to investigate environmental conditions that impact biofilm formation. Wrinkled colony formation serves as an indicator of biofilm formation in a variety of bacteria, including both Gram-positive bacteria, such as Bacillus subtilis, and Gram-negative bacteria, such as Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Vibrio fischeri. The marine bacterium V. fischeri has become a model for biofilm formation due to the critical role of biofilms during host colonization: biofilms produced by V. fischeri promote its colonization of the Hawaiian bobtail squid Euprymna scolopes. Importantly, biofilm phenotypes observed in vitro correlate with the ability of V. fischeri cells to effectively colonize host animals: strains impaired for biofilm formation in vitro possess a colonization defect, while strains exhibiting increased biofilm phenotypes are enhanced for colonization. V. fischeri therefore provides a simple model system to assess the mechanisms by which bacteria regulate biofilm formation and how biofilms impact host colonization. In this report, we describe a semi-quantitative method to assess

  5. Mannheimia haemolytica biofilm formation on bovine respiratory epithelial cells.

    Science.gov (United States)

    Boukahil, Ismail; Czuprynski, Charles J

    2016-12-25

    Mannheimia haemolytica is the most important bacterial agent associated with the bovine respiratory disease complex (BRDC), which causes worldwide economic losses to the cattle industry. M. haemolytica cells initially colonize the tonsillar crypts in the upper respiratory tract of cattle, from where they can subsequently descend into the lungs to cause disease. Many bacteria exist as biofilms inside their hosts. We hypothesize that M. haemolytica colonization of cattle during its commensal state may include biofilm formation. To begin to assess this possibility, we developed an in vitro system to study biofilm formation directly on bovine respiratory epithelial cells. Using fixed primary bovine bronchial epithelial cells, we observed M. haemolytica biofilm formation after a 48h incubation period at 37°C. Addition of mucin, the main component of mucus present in the upper respiratory tract, decreased M. haemolytica biofilm formation on bovine epithelial cells. We investigated the effects of prior viral infection of the epithelial cells on subsequent biofilm formation by M. haemolytica and found negligible effects. Utilization of this model system will provide new insights into the potential role of biofilm formation by M. haemolytica in the pathogenesis of BRDC.

  6. Environmental factors that shape biofilm formation.

    Science.gov (United States)

    Toyofuku, Masanori; Inaba, Tomohiro; Kiyokawa, Tatsunori; Obana, Nozomu; Yawata, Yutaka; Nomura, Nobuhiko

    2015-01-01

    Cells respond to the environment and alter gene expression. Recent studies have revealed the social aspects of bacterial life, such as biofilm formation. Biofilm formation is largely affected by the environment, and the mechanisms by which the gene expression of individual cells affects biofilm development have attracted interest. Environmental factors determine the cell's decision to form or leave a biofilm. In addition, the biofilm structure largely depends on the environment, implying that biofilms are shaped to adapt to local conditions. Second messengers such as cAMP and c-di-GMP are key factors that link environmental factors with gene regulation. Cell-to-cell communication is also an important factor in shaping the biofilm. In this short review, we will introduce the basics of biofilm formation and further discuss environmental factors that shape biofilm formation. Finally, the state-of-the-art tools that allow us investigate biofilms under various conditions are discussed.

  7. Pneumococcal neuraminidase A (NanA) promotes biofilm formation and synergizes with influenza A virus in nasal colonization and middle ear infection.

    Science.gov (United States)

    Wren, John T; Blevins, Lance K; Pang, Bing; Basu Roy, Ankita; Oliver, Melissa B; Reimche, Jennifer L; Wozniak, Jessie E; Alexander-Miller, Martha A; Swords, W Edward

    2017-01-17

    Even in the vaccine era, Streptococcus pneumoniae (pneumococcus) remains a leading cause of otitis media, a significant public health burden, in large because of its high prevalence of nasal colonization in children. The primary pneumococcal neuraminidase NanA, which is a sialidase that catalyzes the cleavage of terminal sialic acids from host glycoconjugates, is involved in both of these processes. Coinfection with influenza A virus, which also expresses a neuraminidase, exacerbates nasal colonization and disease by S. pneumoniae, in part via the synergistic contributions of the viral neuraminidase. The specific role of its pneumococcal counterpart NanA in this interaction, however, is less well-understood. We demonstrate in a mouse model that NanA-deficient pneumococci are impaired in both nasal colonization and middle ear infection. Coinfection with neuraminidase-expressing influenza virus potentiates both but not to wild-type levels, suggesting an intrinsic role of NanA. Using in vitro models, we show that while NanA contributes to both epithelial adherence and biofilm viability, its effect on the latter is actually independent of its sialidase activity. These data indicate that NanA contributes both enzymatically and non-enzymatically to pneumococcal pathogenesis and, as such, suggest that it is not a redundant bystander during coinfection with influenza A virus. Rather, that its expression is required for the full synergism between these two pathogens.

  8. Characterization of Mannheimia haemolytica biofilm formation in vitro.

    Science.gov (United States)

    Boukahil, Ismail; Czuprynski, Charles J

    2015-01-30

    Mannheimia haemolytica is the primary bacterial agent in the bovine respiratory disease complex. It is thought that M. haemolytica colonizes the tonsillar crypts of cattle as a commensal and subsequently descends into the lungs to cause disease. Many bacterial species persist in the host as biofilms. There is limited information about the ability of M. haemolytica to form biofilms. The aim of this study was to develop an in vitro model for M. haemolytica biofilm formation. We found that M. haemolytica required at least 36 h to form robust biofilms on plastic in vitro when incubated in RPMI-1640 tissue culture medium at 37 °C, with maximal biofilm formation being evident at 48 h. Biofilm formation was inhibited by adding the monosaccharides d(+) galactose and d(+) mannose to the growth medium. Addition of antibodies to the M. haemolytica surface protein OmpA also reduced biofilm formation. Upon evaluating the macromolecules within the biofilm extracellular polymeric substance we found it contained 9.7 μg/cm(2) of protein, 0.81 μg/cm(2) of total carbohydrate, and 0.47 μg/cm(2) of extracellular DNA. Furthermore, proteinase K treatment significantly decreased biofilms (P<0.05) while α-amylase and micrococcal nuclease decreased biofilms to a lesser extent. M. haemolytica biofilm cells were more resistant than planktonic cells to the antibiotics florfenicol, gentamicin, and tulathromycin. These results provide evidence that M. haemolytica can form biofilms, which could contribute to its ability to persist as a commensal in the bovine upper respiratory tract.

  9. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhiqiang [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Key Laboratory of Medical Molecular Virology of Ministry of Education and Public Health, Institute of Medical Microbiology and Institutes of Biomedical Science, Shanghai Medical School of Fudan University, Yi Xue Yuan Road 138, Shanghai 200032 (China); Division of Infectious Diseases, Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 (United States); Zhang, Jingdong; Hu, Yifan; Chi, Qijin [Department of Chemistry, Building 207, NanoDTU, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Mortensen, Ninell P. [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37932 (United States); Qu, Di [Key Laboratory of Medical Molecular Virology of Ministry of Education and Public Health, Institute of Medical Microbiology and Institutes of Biomedical Science, Shanghai Medical School of Fudan University, Yi Xue Yuan Road 138, Shanghai 200032 (China); Molin, Soren [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Ulstrup, Jens, E-mail: ju@kemi.dtu.dk [Department of Chemistry, Building 207, NanoDTU, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2009-07-15

    The formation of biofilms on surfaces of indwelling medical devices is a serious medical problem. Staphylococcus epidermidis is a common pathogen found to colonize implanted devices and as a biofilm is more resistant to the host immune system as well as to antibiotic treatments. Combating S. epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both air and aqueous environments. We have investigated the inhibitory effects of surfaces treated with four organic compounds, two benzoate derivatives denoted as compound 59 and 75 and two carboxamide derivatives denoted as compound 47 and 73, on S. epidermidis adhesion and biofilm formation. All four compounds evoke significant inhibitory effects on the formation of S. epidermidis biofilms with compounds 47 and 73 being most effective. None of the compounds were found to inhibit growth of S. epidermidis in liquid cultures. Bacteria attached to the substrate when exposed to the compounds were not affected indicating that these compounds inhibit initial adhesion. These results suggest a pretreatment for medically implanted surfaces that can prevent the biofilm formation and reduce infection.

  10. Blocking of bacterial biofilm formation by a fish protein coating

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2008-01-01

    Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development...... of biofilm-preventive measures. We have previously found that the preconditioning of several different inert materials with an aqueous fish muscle extract, composed primarily of fish muscle alpha-tropomyosin, significantly discourages bacterial attachment and adhesion to these surfaces. Here......, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition...

  11. Tobacco smoke augments Porphyromonas gingivalis-Streptococcus gordonii biofilm formation.

    Directory of Open Access Journals (Sweden)

    Juhi Bagaitkar

    Full Text Available Smoking is responsible for the majority of periodontitis cases in the US and smokers are more susceptible than non-smokers to infection by the periodontal pathogen Porphyromonas gingivalis. P. gingivalis colonization of the oral cavity is dependent upon its interaction with other plaque bacteria, including Streptococcus gordonii. Microarray analysis suggested that exposure of P. gingivalis to cigarette smoke extract (CSE increased the expression of the major fimbrial antigen (FimA, but not the minor fimbrial antigen (Mfa1. Therefore, we hypothesized that CSE promotes P. gingivalis-S. gordonii biofilm formation in a FimA-dependent manner. FimA total protein and cell surface expression were increased upon exposure to CSE whereas Mfa1 was unaffected. CSE exposure did not induce P. gingivalis auto-aggregation but did promote dual species biofilm formation, monitored by microcolony numbers and depth (both, p<0.05. Interestingly, P. gingivalis biofilms grown in the presence of CSE exhibited a lower pro-inflammatory capacity (TNF-α, IL-6 than control biofilms (both, p<0.01. CSE-exposed P. gingivalis bound more strongly to immobilized rGAPDH, the cognate FimA ligand on S. gordonii, than control biofilms (p<0.001 and did so in a dose-dependent manner. Nevertheless, a peptide representing the Mfa1 binding site on S. gordonii, SspB, completely inhibited dual species biofilm formation. Thus, CSE likely augments P. gingivalis biofilm formation by increasing FimA avidity which, in turn, supports initial interspecies interactions and promotes subsequent high affinity Mfa1-SspB interactions driving biofilm growth. CSE induction of P. gingivalis biofilms of limited pro-inflammatory potential may explain the increased persistence of this pathogen in smokers. These findings may also be relevant to other biofilm-induced infectious diseases and conditions.

  12. Biofilm formation in Acinetobacter baumannii.

    Science.gov (United States)

    Longo, Francesca; Vuotto, Claudia; Donelli, Gianfranco

    2014-04-01

    Acinetobacter baumannii has received much attention in recent years because of its increasing involvement in a number of severe infections and outbreaks occurring in clinical settings, and presumably related to its ability to survive and persist in hospital environments. The treatment of infections caused by A. baumannii nosocomial strains has become increasingly problematic, due to their intrinsic and/or acquired resistance to multiple classes of antibiotics. Furthermore, the demonstrated ability of nosocomial strains to grow as biofilm is believed to play a significant role in their persistence and antibiotic resistance. This review summarises current knowledge on A. baumannii biofilm formation and its clinical significance, as well as the related genetic determinants and the regulation of this process.

  13. Strain-specific colonization patterns and serum modulation of multi-species oral biofilm development.

    Science.gov (United States)

    Biyikoğlu, Basak; Ricker, Austin; Diaz, Patricia I

    2012-08-01

    Periodontitis results from an ecological shift in the composition of subgingival biofilms. Subgingival community maturation is modulated by inter-organismal interactions and the relationship of communities with the host. In an effort to better understand this process, we evaluated biofilm formation, with oral commensal species, by three strains of the subgingivally prevalent microorganism Fusobacterium nucleatum and four strains of the periodontopathogen Porphyromonas gingivalis. We also tested the effect of serum, which resembles gingival exudates, on subgingival biofilms. Biofilms were allowed to develop in flow cells using salivary medium. We found that although not all strains of F. nucleatum were able to grow in mono-species biofilms, forming a community with health-associated partners Actinomyces oris and Veillonella parvula promoted biofilm growth of all F. nucleatum strains. Strains of P. gingivalis also showed variable ability to form mono-species biofilms. P. gingivalis W50 and W83 did not form biofilms, while ATCC 33277 and 381 formed biofilm structures, but only strain ATCC 33277 grew over time. Unlike the enhanced growth of F. nucleatum with the two health-associated species, no strain of P. gingivalis grew in three-species communities with A. oris and V. parvula. However, addition of F. nucleatum facilitated growth of P. gingivalis ATCC 33277 with health-associated partners. Importantly, serum negatively affected the adhesion of F. nucleatum, while it favored biofilm growth by P. gingivalis. This work highlights strain specificity in subgingival biofilm formation. Environmental factors such as serum alter the colonization patterns of oral microorganisms and could impact subgingival biofilms by selectively promoting pathogenic species.

  14. Pattern formation in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Parsek, Matthew R.; Tolker-Nielsen, Tim

    2008-01-01

    Bacteria are capable of forming elaborate multicellular communities called biofilms. Pattern formation in biofilms depends on cell proliferation and cellular migration in response to the available nutrients and other external cues, as well as on self-generated intercellular signal molecules...... and the production of an extracellular matrix that serves as a structural 'scaffolding' for the biofilm cells. Pattern formation in biofilms allows cells to position themselves favorably within nutrient gradients and enables buildup and maintenance of physiologically distinct subpopulations, which facilitates...... survival of one or more subpopulations upon environmental insult, and therefore plays an important role in the innate tolerance displayed by biofilms toward adverse conditions....

  15. Azithromycin-Ciprofloxacin-Impregnated Urinary Catheters Avert Bacterial Colonization, Biofilm Formation, and Inflammation in a Murine Model of Foreign-Body-Associated Urinary Tract Infections Caused by Pseudomonas aeruginosa.

    Science.gov (United States)

    Saini, Hina; Vadekeetil, Anitha; Chhibber, Sanjay; Harjai, Kusum

    2017-03-01

    Pseudomonas aeruginosa is a multifaceted pathogen causing a variety of biofilm-mediated infections, including catheter-associated urinary tract infections (CAUTIs). The high prevalence of CAUTIs in hospitals, their clinical manifestations, such as urethritis, cystitis, pyelonephritis, meningitis, urosepsis, and death, and the associated economic challenges underscore the need for management of these infections. Biomaterial modification of urinary catheters with two drugs seems an interesting approach to combat CAUTIs by inhibiting biofilm. Previously, we demonstrated the in vitro efficacy of urinary catheters impregnated with azithromycin (AZM) and ciprofloxacin (CIP) against P. aeruginosa Here, we report how these coated catheters impact the course of CAUTI induced by P. aeruginosa in a murine model. CAUTI was established in female LACA mice with uncoated or AZM-CIP-coated silicone implants in the bladder, followed by transurethral inoculation of 10(8) CFU/ml of biofilm cells of P. aeruginosa PAO1. AZM-CIP-coated implants (i) prevented biofilm formation on the implant's surface (P ≤ 0.01), (ii) restricted bacterial colonization in the bladder and kidney (P < 0.0001), (iii) averted bacteriuria (P < 0.0001), and (iv) exhibited no major histopathological changes for 28 days in comparison to uncoated implants, which showed persistent CAUTI. Antibiotic implants also overcame implant-mediated inflammation, as characterized by trivial levels of inflammatory markers such as malondialdehyde (P < 0.001), myeloperoxidase (P < 0.05), reactive oxygen species (P ≤ 0.001), and reactive nitrogen intermediates (P < 0.01) in comparison to those in uncoated implants. Further, AZM-CIP-coated implants showed immunomodulation by manipulating the release of inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-10 to the benefit of the host. Overall, the study demonstrates long-term in vivo effectiveness of AZM-CIP-impregnated catheters, which may

  16. Silver-Palladium Surfaces Inhibit Biofilm Formation

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Schroll, Casper; Hilbert, Lisbeth Rischel

    2009-01-01

    Undesired biofilm formation is a major concern in many areas. In the present study, we investigated biofilm-inhibiting properties of a silver-palladium surface that kills bacteria by generating microelectric fields and electrochemical redox processes. For evaluation of the biofilm inhibition...... efficacy and study of the biofilm inhibition mechanism, the silver-sensitive Escherichia coli J53 and the silver-resistant E. coli J53[pMG101] strains were used as model organisms, and batch and flow chamber setups were used as model systems. In the case of the silver-sensitive strain, the silver......-palladium surfaces killed the bacteria and prevented biofilm formation under conditions of low or high bacterial load. In the case of the silver-resistant strain, the silver-palladium surfaces killed surface-associated bacteria and prevented biofilm formation under conditions of low bacterial load, whereas under...

  17. Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Maria José Alves

    2014-08-01

    Full Text Available Microorganisms can colonize a wide variety of medical devices, putting patients in risk for local and systemic infectious complications, including local-site infections, catheter-related bloodstream infections, and endocarditis. These microorganisms are able to grow adhered to almost every surface, forming architecturally complex communities termed biofilms. The use of natural products has been extremely successful in the discovery of new medicine, and mushrooms could be a source of natural antimicrobials. The present study reports the capacity of wild mushroom extracts to inhibit in vitro biofilm formation by multi-resistant bacteria. Four Gram-negative bacteria biofilm producers (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Acinetobacter baumannii isolated from urine were used to verify the activity of Russula delica, Fistulina hepatica, Mycena rosea, Leucopaxilus giganteus, and Lepista nuda extracts. The results obtained showed that all tested mushroom extracts presented some extent of inhibition of biofilm production. Pseudomonas aeruginosa was the microorganism with the highest capacity of biofilm production, being also the most susceptible to the extracts inhibition capacity (equal or higher than 50%. Among the five tested extracts against E. coli, Leucopaxillus giganteus (47.8% and Mycenas rosea (44.8% presented the highest inhibition of biofilm formation. The extracts exhibiting the highest inhibitory effect upon P. mirabilis biofilm formation were Sarcodon imbricatus (45.4% and Russula delica (53.1%. Acinetobacter baumannii was the microorganism with the lowest susceptibility to mushroom extracts inhibitory effect on biofilm production (highest inhibition—almost 29%, by Russula delica extract. This is a pioneer study since, as far as we know, there are no reports on the inhibition of biofilm production by the studied mushroom extracts and in particular against multi-resistant clinical isolates; nevertheless, other

  18. Cellular chain formation in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2009-01-01

    In this study we report on a novel structural phenotype in Escherichia coli biofilms: cellular chain formation. Biofilm chaining in E. coli K-12 was found to occur primarily by clonal expansion, but was not due to filamentous growth. Rather, chain formation was the result of intercellular...

  19. Role of multicellular aggregates in biofilm formation

    DEFF Research Database (Denmark)

    Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin;

    2016-01-01

    response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation.IMPORTANCE During the past decades, there has been a consensus around the model of development of a biofilm......In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However......, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm...

  20. Investigate Nasal Colonize Staphylococcus Species Biofilm Produced

    Directory of Open Access Journals (Sweden)

    Cemil Demir

    2014-03-01

    Full Text Available Aim: 127 S.aureus and 65 CoNS strains were isolated from patients noses%u2019. To produce a biofilm ability was investigated using three different methods. Slime-positive and negative staphylococcies%u2019 resistance were evaluated against different antibiotics. Material and Method: Swap samples puted 7% blood agar. Staphylococcus aureus and coagulase-negative staphylococci (CoNS isolates biofilm produced ability were investigated using Congo Red Agar (CRA, microplates (MP and Standard Tube (ST methods. In addition to that, presence of antibiotic resistance of the staphylococcal isolates are determined agar disc diffusion method. Results: The rate of biofilm producing Staphylococcus spp strains was found to be 72.4%, 67.7%, and 62.9%, respectively with CRA, MP, and ST tests. There was no significant relationship among the tests (p>0.05. In addition, antibiotic resistance of Staphylococcus spp. against various antibiotics was also determined by the agar disk diffusion method. Resistance rates of biofilm positive (BP Staphylococcus spp for penicilin G, ampicilin, amocycilin/clavulanic acid, tetracyclin, eritromycin, gentamycin, and enrofloxacin 71.7%, 69.7%, 6.2%, 20.7%, 21.4%, 1.4%, and 0.7%, respectively. Resistance rates of biofilm negative (BN spp for 42.6%, 23.4%, 4.3%, 14.9%, 19.1%, 0.0%, 0.0% respectively. All Staphylococcus isolates were found to be susceptible to vancomycin and teicaplonin. Although BP strains antibiotic resistance rates were observed higher than BN strains. But resistance rates were not found statistically significant (p>0.05. Discussion: CRA is the reliablity and specifity method to determine Staphylococcus spp. biofilm produce ability.

  1. Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation

    DEFF Research Database (Denmark)

    Balestrino, D.; Haagensen, Janus Anders Juul; Rich, C.

    2005-01-01

    observed in minimal medium supplemented with glycerol. To determine the potential role of luxS in colonization processes, a K. pneumoniae luxS isogenic mutant was constructed and tested for its capacity to form biofilms in vitro on an abiotic surface and to colonize the intestinal tract in a murine model....... No difference was observed in the level of intestinal colonization between the wild-type strain and the luxS mutant. Microscopic analysis of biofilm structures revealed that the luxS mutant was able to form a mature biofilm but with reduced capacities in the development of microcolonies, mostly in the early...... steps of biofilm formation. These data suggest that a LuxS-dependent signal plays a role in the early stages of biofilm formation by K. pneumoniae....

  2. Aspartate inhibits Staphylococcus aureus biofilm formation.

    Science.gov (United States)

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp.

  3. Capsular polysaccharide of Group B Streptococcus mediates biofilm formation in the presence of human plasma.

    Science.gov (United States)

    Xia, Fan Di; Mallet, Adeline; Caliot, Elise; Gao, Cherry; Trieu-Cuot, Patrick; Dramsi, Shaynoor

    2015-01-01

    Group B Streptococcus (GBS) is an asymptomatic colonizer of human mucosal surfaces that is responsible for sepsis and meningitis in neonates. Bacterial persistence and pathogenesis often involves biofilm formation. We previously showed that biofilm formation in medium supplemented with glucose is mediated by the PI-2a pilus. Here, biofilm formation was tested in cell culture medium supplemented with human plasma. GBS strains were able to form biofilms in these conditions unlike Group A Streptococcus (GAS) or Staphylococcus aureus. Analysis of mutants impaired for various surface components revealed that the GBS capsule is a key component in this process.

  4. Biofilm formation on abiotic surfaces

    DEFF Research Database (Denmark)

    Tang, Lone

    2011-01-01

    Bacteria can attach to any surface in contact with water and proliferate into complex communities enclosed in an adhesive matrix, these communities are called biofilms. The matrix makes the biofilm difficult to remove by physical means, and bacteria in biofilm can survive treatment with many...... to changing the surface hydrophobicity. The influence of surface topography in the biomolecule of great importance for bacterial adhesion...

  5. Inhibition of Biofilm Formation Using Novel Nanostructured Surfaces Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Biofilms are ubiquitous in the environment. Few surfaces resist biofilm formation, most promote it. Biofilm formation poses problems in water systems as they can...

  6. Polyspecies biofilm formation on implant surfaces with different surface characteristics

    Directory of Open Access Journals (Sweden)

    Patrick R. SCHMIDLIN

    2013-01-01

    Full Text Available Objective To investigate the microbial adherence and colonization of a polyspecies biofilm on 7 differently processed titanium surfaces. Material and Methods Six-species biofilms were formed anaerobically on 5-mm-diameter sterilized, saliva-preconditioned titanium discs. Material surfaces used were either machined, stained, acid-etched or sandblasted/acid-etched (SLA. Samples of the latter two materials were also provided in a chemically modified form, with increased wettability characteristics. Surface roughness and contact angles of all materials were determined. The discs were then incubated anaerobically for up to 16.5 h. Initial microbial adherence was evaluated after 20 min incubation and further colonization after 2, 4, 8, and 16.5 h using non-selective and selective culture techniques. Results at different time points were compared using ANOVA and Scheffé post hoc analysis. Results The mean differences in microorganisms colonizing after the first 20 min were in a very narrow range (4.5 to 4.8 log CFU. At up to 16.5 h, the modified SLA surface exhibited the highest values for colonization (6.9±0.2 log CFU, p<0.05 but increasing growth was observed on all test surfaces over time. Discrepancies among bacterial strains on the differently crafted titanium surfaces were very similar to those described for total log CFU. F. nucleatum was below the detection limit on all surfaces after 4 h. Conclusion Within the limitations of this in vitro study, surface roughness had a moderate influence on biofilm formation, while wettability did not seem to influence biofilm formation under the experimental conditions described. The modified SLA surface showed the highest trend for bacterial colonization.

  7. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  8. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Margarida Carrolo

    Full Text Available Streptococcus pneumoniae (pneumococcus is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.

  9. Crenarchaeal biofilm formation under extreme conditions.

    Directory of Open Access Journals (Sweden)

    Andrea Koerdt

    Full Text Available BACKGROUND: Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments. METHODOLOGY: We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells. CONCLUSION: The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.

  10. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Wooseong Kim

    Full Text Available Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight.

  11. Iron and Acinetobacter baumannii Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Valentina Gentile

    2014-08-01

    Full Text Available Acinetobacter baumannii is an emerging nosocomial pathogen, responsible for infection outbreaks worldwide. The pathogenicity of this bacterium is mainly due to its multidrug-resistance and ability to form biofilm on abiotic surfaces, which facilitate long-term persistence in the hospital setting. Given the crucial role of iron in A. baumannii nutrition and pathogenicity, iron metabolism has been considered as a possible target for chelation-based antibacterial chemotherapy. In this study, we investigated the effect of iron restriction on A. baumannii growth and biofilm formation using different iron chelators and culture conditions. We report substantial inter-strain variability and growth medium-dependence for biofilm formation by A. baumannii isolates from veterinary and clinical sources. Neither planktonic nor biofilm growth of A. baumannii was affected by exogenous chelators. Biofilm formation was either stimulated by iron or not responsive to iron in the majority of isolates tested, indicating that iron starvation is not sensed as an overall biofilm-inducing stimulus by A. baumannii. The impressive iron withholding capacity of this bacterium should be taken into account for future development of chelation-based antimicrobial and anti-biofilm therapies.

  12. Streptococcus pyogenes biofilmsformation, biology,and clinical relevance

    Directory of Open Access Journals (Sweden)

    Tomas eFiedler

    2015-02-01

    Full Text Available Streptococcus pyogenes (group A streptococci, GAS is an exclusive human bacterial pathogen. The virulence potential of this species is tremendous. Interactions with humans range from asymptomatic carriage over mild and superficial infections of skin and mucosal membranes up to systemic purulent toxic-invasive disease manifestations. Particularly the latter are a severe threat for predisposed patients and lead to significant death tolls worldwide. This places GAS among the most important Gram-positive bacterial pathogens. Many recent reviews have highlighted the GAS repertoire of virulence factors, regulators and regulatory circuits/networks that enable GAS to colonize the host and to deal with all levels of the host immune defense. This covers in vitro and in vivo studies, including animal infection studies based on mice and more relevant, macaque monkeys. It is now appreciated that GAS, like many other bacterial species, do not necessarily exclusively live in a planktonic lifestyle. GAS is capable of microcolony and biofilm formation on host cells and tissues. We are now beginning to understand that this feature significantly contributes to GAS pathogenesis. In this review we will discuss the current knowledge on GAS biofilm formation, the biofilm-phenotype associated virulence factors, regulatory aspects of biofilm formation, the clinical relevance, and finally contemporary treatment regimens and future treatment options.

  13. Regulation of Acinetobacter baumannii biofilm formation.

    Science.gov (United States)

    Gaddy, Jennifer A; Actis, Luis A

    2009-04-01

    Acinetobacter baumannii is a Gram-negative opportunistic nosocomial pathogen. This microorganism survives in hospital environments despite unfavorable conditions such as desiccation, nutrient starvation and antimicrobial treatments. It is hypothesized that its ability to persist in these environments, as well as its virulence, is a result of its capacity to form biofilms. A. baumannii forms biofilms on abiotic surfaces such as polystyrene and glass as well as biotic surfaces such as epithelial cells and fungal filaments. Pili assembly and production of the Bap surface-adhesion protein play a role in biofilm initiation and maturation after initial attachment to abiotic surfaces. Furthermore, the adhesion and biofilm phenotypes of some clinical isolates seem to be related to the presence of broad-spectrum antibiotic resistance. The regulation of the formation and development of these biofilms is as diverse as the surfaces on which this bacterium persists and as the cellular components that participate in this programmed multistep process. The regulatory processes associated with biofilm formation include sensing of bacterial cell density, the presence of different nutrients and the concentration of free cations available to bacterial cells. Some of these extracellular signals may be sensed by two-component regulatory systems such as BfmRS. This transcriptional regulatory system activates the expression of the usher-chaperone assembly system responsible for the production of pili, needed for cell attachment and biofilm formation on polystyrene surfaces. However, such a system is not required for biofilm formation on abiotic surfaces when cells are cultured in chemically defined media. Interestingly, the BfmRS system also controls cell morphology under particular culture conditions.

  14. A Subinhibitory Concentration of Clarithromycin Inhibits Mycobacterium avium Biofilm Formation

    OpenAIRE

    2004-01-01

    Mycobacterium avium causes disseminated infection in immunosuppressed individuals and lung infection in patients with chronic lung diseases. M. avium forms biofilm in the environment and possibly in human airways. Antibiotics with activity against the bacterium could inhibit biofilm formation. Clarithromycin inhibits biofilm formation but has no activity against established biofilm.

  15. Characterization of Biofilm Formation in [Pasteurella] pneumotropica and [Actinobacillus] muris Isolates of Mouse Origin.

    Science.gov (United States)

    Sager, Martin; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Benga, Laurentiu

    2015-01-01

    [Pasteurella] pneumotropica biotypes Jawetz and Heyl and [Actinobacillus] muris are the most prevalent Pasteurellaceae species isolated from laboratory mouse. However, mechanisms contributing to their high prevalence such as the ability to form biofilms have not been studied yet. In the present investigation we analyze if these bacterial species can produce biofilms in vitro and investigate whether proteins, extracellular DNA and polysaccharides are involved in the biofilm formation and structure by inhibition and dispersal assays using proteinase K, DNase I and sodium periodate. Finally, the capacity of the biofilms to confer resistance to antibiotics is examined. We demonstrate that both [P.] pneumotropica biotypes but not [A.] muris are able to form robust biofilms in vitro, a phenotype which is widely spread among the field isolates. The biofilm inhibition and dispersal assays by proteinase and DNase lead to a strong inhibition in biofilm formation when added at the initiation of the biofilm formation and dispersed pre-formed [P.] pneumotropica biofilms, revealing thus that proteins and extracellular DNA are essential in biofilm formation and structure. Sodium periodate inhibited the bacterial growth when added at the beginning of the biofilm formation assay, making difficult the assessment of the role of β-1,6-linked polysaccharides in the biofilm formation, and had a biofilm stimulating effect when added on pre-established mature biofilms of [P.] pneumotropica biotype Heyl and a majority of [P.] pneumotropica biotype Jawetz strains, suggesting that the presence of β-1,6-linked polysaccharides on the bacterial surface might attenuate the biofilm production. Conversely, no effect or a decrease in the biofilm quantity was observed by biofilm dispersal using sodium periodate on further biotype Jawetz isolates, suggesting that polysaccharides might be incorporated in the biofilm structure. We additionally show that [P.] pneumotropica cells enclosed in biofilms

  16. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    Science.gov (United States)

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms.

  17. Biofilm formation of Francisella noatunensis subsp. orientalis

    Science.gov (United States)

    Soto, Esteban; Halliday-Wimmonds, Iona; Francis , Stewart; Kearney, Michael T; Hansen, John D.

    2015-01-01

    Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen in both marine and fresh water environments. The bacterium is suspected to persist in the environment even without the presence of a suitable fish host. In the present study, the influence of different abiotic factors such as salinity and temperature were used to study the biofilm formation of different isolates of Fno including intracellular growth loci C (iglC)and pathogenicity determinant protein A (pdpA) knockout strains. Finally, we compared the susceptibility of planktonic and biofilm to three disinfectants used in the aquaculture and ornamental fish industry, namely Virkon®, bleach and hydrogen peroxide. The data indicates that Fno is capable of producing biofilms within 24 h where both salinity as well as temperature plays a role in the growth and biofilm formation of Fno. Mutations in theiglC or pdpA, both known virulence factors, do not appear to affect the capacity of Fno to produce biofilms, and the minimum inhibitory concentration, and minimum biocidal concentration for the three disinfectants were lower than the minimum biofilm eradication concentration values. This information needs to be taken into account if trying to eradicate the pathogen from aquaculture facilities or aquariums.

  18. Implications of Biofilm Formation on Urological Devices

    Science.gov (United States)

    Cadieux, Peter A.; Wignall, Geoffrey R.; Carriveau, Rupp; Denstedt, John D.

    2008-09-01

    Despite millions of dollars and several decades of research targeted at their prevention and eradication, biofilm-associated infections remain the major cause of urological device failure. Numerous strategies have been aimed at improving device design, biomaterial composition, surface properties and drug delivery, but have been largely circumvented by microbes and their plethora of attachment, host evasion, antimicrobial resistance, and dissemination strategies. This is not entirely surprising since natural biofilm formation has been going on for millions of years and remains a major part of microorganism survival and evolution. Thus, the fact that biofilms develop on and in the biomaterials and tissues of humans is really an extension of this natural tendency and greatly explains why they are so difficult for us to combat. Firstly, biofilm structure and composition inherently provide a protective environment for microorganisms, shielding them from the shear stress of urine flow, immune cell attack and some antimicrobials. Secondly, many biofilm organisms enter a metabolically dormant state that renders them tolerant to those antibiotics and host factors able to penetrate the biofilm matrix. Lastly, the majority of organisms that cause biofilm-associated urinary tract infections originate from our own oral cavity, skin, gastrointestinal and urogenital tracts and therefore have already adapted to many of our host defenses. Ultimately, while biofilms continue to hold an advantage with respect to recurrent infections and biomaterial usage within the urinary tract, significant progress has been made in understanding these dynamic microbial communities and novel approaches offer promise for their prevention and eradication. These include novel device designs, antimicrobials, anti-adhesive coatings, biodegradable polymers and biofilm-disrupting compounds and therapies.

  19. Streptococcal Receptor Polysaccharides: Recognition Molecules for Oral Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Kolenbrander Paul E

    2006-06-01

    Full Text Available Abstract Background Strains of viridans group streptococci that initiate colonization of the human tooth surface typically coaggregate with each other and with Actinomyces naeslundii, another member of the developing biofilm community. These interactions generally involve adhesin-mediated recognition of streptococcal receptor polysaccharides (RPS. The objective of our studies is to understand the role of these polysaccharides in oral biofilm development. Methods Different structural types of RPS have been characterized by their reactions with specific antibodies and lectin-like adhesins. Streptococcal gene clusters for RPS biosynthesis were identified, sequenced, characterized and compared. RPS-producing bacteria were detected in biofilm samples using specific antibodies and gene probes. Results Six different types of RPS have been identified from representative viridans group streptococci that coaggregate with A. naeslundii. Each type is composed of a different hexa- or heptasaccharide repeating unit, the structures of which contain host-like motifs, either GalNAcβ1-3Gal or Galβ1-3GalNAc. These motifs account for RPS-mediated recognition, whereas other features of these polysaccharides are more closely associated with RPS antigenicity. The RPS-dependent interaction of S. oralis with A. naeslundii promotes growth of these bacteria and biofilm formation in flowing saliva. Type specific differences in RPS production have been noted among the resident streptococcal floras of different individuals, raising the possibility of RPS-based differences in the composition of oral biofilm communities. Conclusion The structural, functional and molecular properties of streptococcal RPS support a recognition role of these cell surface molecules in oral biofilm formation.

  20. Sustained prevention of biofilm formation on a novel silicone matrix suitable for medical devices

    DEFF Research Database (Denmark)

    Steffensen, Søren Langer; Merete H., Vestergaard,; Jensen, Minna Grønning;

    2015-01-01

    Bacterial colonization and biofilm formation on medical devices constitute major challenges in clinical long-term use of e.g. catheters due to the risk of (re)infection of patients, which would result in additional use of antibiotics risking bacterial resistance development. The aim of the present...... in the range of 1–20 mg/mL. Devices containing 25% (w/w) hydrogel and loaded with ciprofloxacin displayed a strong antibacterial effect against Staphylococcus aureus bacterial colonization and subsequent biofilm formation on the device material was inhibited for 29 days. In conclusion, the hydrogel...

  1. Enhanced biofilm formation and multi-host transmission evolve from divergent genetic backgrounds in Campylobacter jejuni.

    Science.gov (United States)

    Pascoe, Ben; Méric, Guillaume; Murray, Susan; Yahara, Koji; Mageiros, Leonardos; Bowen, Ryan; Jones, Nathan H; Jeeves, Rose E; Lappin-Scott, Hilary M; Asakura, Hiroshi; Sheppard, Samuel K

    2015-11-01

    Multicellular biofilms are an ancient bacterial adaptation that offers a protective environment for survival in hostile habitats. In microaerophilic organisms such as Campylobacter, biofilms play a key role in transmission to humans as the bacteria are exposed to atmospheric oxygen concentrations when leaving the reservoir host gut. Genetic determinants of biofilm formation differ between species, but little is known about how strains of the same species achieve the biofilm phenotype with different genetic backgrounds. Our approach combines genome-wide association studies with traditional microbiology techniques to investigate the genetic basis of biofilm formation in 102 Campylobacter jejuni isolates. We quantified biofilm formation among the isolates and identified hotspots of genetic variation in homologous sequences that correspond to variation in biofilm phenotypes. Thirteen genes demonstrated a statistically robust association including those involved in adhesion, motility, glycosylation, capsule production and oxidative stress. The genes associated with biofilm formation were different in the host generalist ST-21 and ST-45 clonal complexes, which are frequently isolated from multiple host species and clinical samples. This suggests the evolution of enhanced biofilm from different genetic backgrounds and a possible role in colonization of multiple hosts and transmission to humans.

  2. Inhibition of Salmonella enterica biofilm formation using small-molecule adenosine mimetics.

    Science.gov (United States)

    Koopman, Jacob A; Marshall, Joanna M; Bhatiya, Aditi; Eguale, Tadesse; Kwiek, Jesse J; Gunn, John S

    2015-01-01

    Biofilms have been widely implicated in chronic infections and environmental persistence of Salmonella enterica, facilitating enhanced colonization of surfaces and increasing the ability of the bacteria to be transmitted to new hosts. Salmonella enterica serovar Typhi biofilm formation on gallstones from humans and mice enhances gallbladder colonization and bacterial shedding, while Salmonella enterica serovar Typhimurium biofilms facilitate long-term persistence in a number of environments important to food, medical, and farming industries. Salmonella regulates expression of many virulence- and biofilm-related processes using kinase-driven pathways. Kinases play pivotal roles in phosphorylation and energy transfer in cellular processes and possess an ATP-binding pocket required for their functions. Many other cellular proteins also require ATP for their activity. Here we test the hypothesis that pharmacological interference with ATP-requiring enzymes utilizing adenosine mimetic compounds would decrease or inhibit bacterial biofilm formation. Through the screening of a 3,000-member ATP mimetic library, we identified a single compound (compound 7955004) capable of significantly reducing biofilm formation by S. Typhimurium and S. Typhi. The compound was not bactericidal or bacteriostatic toward S. Typhimurium or cytotoxic to mammalian cells. An ATP-Sepharose affinity matrix technique was used to discover potential protein-binding targets of the compound and identified GroEL and DeoD. Compound 7955004 was screened against other known biofilm-forming bacterial species and was found to potently inhibit biofilms of Acinetobacter baumannii as well. The identification of a lead compound with biofilm-inhibiting capabilities toward Salmonella provides a potential new avenue of therapeutic intervention against Salmonella biofilm formation, with applicability to biofilms of other bacterial pathogens.

  3. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense.

    Science.gov (United States)

    Arruebarrena Di Palma, Andrés; Pereyra, Cintia M; Moreno Ramirez, Lizbeth; Xiqui Vázquez, María L; Baca, Beatriz E; Pereyra, María A; Lamattina, Lorenzo; Creus, Cecilia M

    2013-01-01

    Azospirillum brasilense is a rhizobacterium that provides beneficial effects on plants when they colonize roots. The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with surfaces in response to appropriate signals. Nitric oxide (NO) is a signaling molecule implicated in numerous processes in bacteria, including biofilm formation or dispersion, depending on genera and lifestyle. Azospirillum brasilense Sp245 produces NO by denitrification having a role in root growth promotion. We analyzed the role of endogenously produced NO on biofilm formation in A. brasilense Sp245 and in a periplasmic nitrate reductase mutant (napA::Tn5; Faj164) affected in NO production. Cells were statically grown in media with nitrate or ammonium as nitrogen sources and examined for biofilm formation using crystal violet and by confocal laser microscopy. Both strains formed biofilms, but the mutant produced less than half compared with the wild type in nitrate medium showing impaired nitrite production in this condition. NO measurements in biofilm confirmed lower values in the mutant strain. The addition of a NO donor showed that NO influences biofilm formation in a dose-dependent manner and reverses the mutant phenotype, indicating that Nap positively regulates the formation of biofilm in A. brasilense Sp245.

  4. Chemically Specific Cellular Imaging of Biofilm Formation

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J L; Schaldach, C; Horn, J; Gjersing, E; Maxwell, R

    2006-02-09

    This document and the accompanying manuscripts summarize the technical accomplishments for our one-year LDRD-ER effort. Biofilm forming microbes have existed on this planet for billions of years and make up 60% of the biological mass on earth. Such microbes exhibit unique biochemical pathways during biofilm formation and play important roles in human health and the environment. Microbial biofilms have been directly implicated in, for example, product contamination, energy losses, and medical infection that cost the loss of human lives and billions of dollars. In no small part due to the lack of detailed understanding, biofilms unfortunately are resistant to control, inhibition, and destruction, either through treatment with antimicrobials or immunological defense mechanisms of the body. Current biofilm research has concentrated on the study of biofilms in the bulk. This is primarily due to the lack of analytical and physical tools to study biofilms non-destructively, in three dimensions, and on the micron or sub-micron scale. This has hindered the development of a clear understanding of either the early stage mechanisms of biofilm growth or the interactions of biofilms with their environment. Enzymatic studies have deduced a biochemical reaction that results in the oxidation of reduced sulfur species with the concomitant reduction of nitrate, a common groundwater pollutant, to dinitrogen gas by the bacterium, Thiobacillus denitrificans (TD). Because of its unique involvement in biologically relevant environmental pathways, TD is scheduled for genome sequencing in the near future by the DOE's Joint Genome Institute and is of interest to DOE's Genomes to Life Program. As our ecosystem is exposed to more and more nitrate contamination large scale livestock and agricultural practices, a further understanding of biofilm formation by organisms that could alleviate these problems is necessary in order to protect out biosphere. However, in order to study this

  5. Effects of different osmolarities on bacterial biofilm formation

    OpenAIRE

    2014-01-01

    Biofilm formation depends on several factors. The influence of different osmolarities on bacterial biofilm formation was studied. Two strains (Enterobacter sp. and Stenotrophomonas sp.) exhibited the most remarkable alterations. Biofilm formation is an important trait and its use has been associated to the protection of organisms against environmental stresses.

  6. Preventive effects of a phospholipid polymer coating on PMMA on biofilm formation by oral streptococci

    Science.gov (United States)

    Shibata, Yukie; Yamashita, Yoshihisa; Tsuru, Kanji; Ishihara, Kazuhiko; Fukazawa, Kyoko; Ishikawa, Kunio

    2016-12-01

    The regulation of biofilm formation on dental materials such as denture bases is key to oral health. Recently, a biocompatible phospholipid polymer, poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) coating, was reported to inhibit sucrose-dependent biofilm formation by Streptococcus mutans, a cariogenic bacterium, on the surface of poly(methyl methacrylate) (PMMA) denture bases. However, S. mutans is a minor component of the oral microbiome and does not play an important role in biofilm formation in the absence of sucrose. Other, more predominant oral streptococci must play an indispensable role in sucrose-independent biofilm formation. In the present study, the effect of PMB coating on PMMA was evaluated using various oral streptococci that are known to be initial colonizers during biofilm formation on tooth surfaces. PMB coating on PMMA drastically reduced sucrose-dependent tight biofilm formation by two cariogenic bacteria (S. mutans and Streptococcus sobrinus), among seven tested oral streptococci, as described previously [N. Takahashi, F. Iwasa, Y. Inoue, H. Morisaki, K. Ishihara, K. Baba, J. Prosthet. Dent. 112 (2014) 194-203]. Streptococci other than S. mutans and S. sobrinus did not exhibit tight biofilm formation even in the presence of sucrose. On the other hand, all seven species of oral streptococci exhibited distinctly reduced glucose-dependent soft biofilm retention on PMB-coated PMMA. We conclude that PMB coating on PMMA surfaces inhibits biofilm attachment by initial colonizer oral streptococci, even in the absence of sucrose, indicating that PMB coating may help maintain clean conditions on PMMA surfaces in the oral cavity.

  7. Inactivation of Efflux Pumps Abolishes Bacterial Biofilm Formation

    DEFF Research Database (Denmark)

    Kvist, Malin; Hancock, Viktoria; Klemm, Per

    2008-01-01

    Bacterial biofilms cause numerous problems in health care and industry; notably, biofilms are associated with a large number of infections. Biofilm-dwelling bacteria are particularly resistant to antibiotics, making it hard to eradicate biofilm-associated infections. Bacteria rely on efflux pumps...... to get rid of toxic substances. We discovered that efflux pumps are highly active in bacterial biofilms, thus making efflux pumps attractive targets for antibiofilm measures. A number of efflux pump inhibitors (EPIs) are known. EPIs were shown to reduce biofilm formation, and in combination they could...... abolish biofilm formation completely. Also, EPIs were able to block the antibiotic tolerance of biofilms. The results of this feasibility study might pave the way for new treatments for biofilm-related infections and may be exploited for prevention of biofilms in general....

  8. In vitro study of biofilm formation and effectiveness of antimicrobial treatment on various dental material surfaces.

    Science.gov (United States)

    Li, L; Finnegan, M B; Özkan, S; Kim, Y; Lillehoj, P B; Ho, C-M; Lux, R; Mito, R; Loewy, Z; Shi, W

    2010-12-01

    Elevated proportions of Candida albicans in biofilms formed on dentures are associated with stomatitis whereas Streptococcus mutans accumulation on restorative materials can cause secondary caries. Candida albicans, S. mutans, saliva-derived and C. albicans/saliva-derived mixed biofilms were grown on different materials including acrylic denture, porcelain, hydroxyapatite (HA), and polystyrene. The resulting biomass was analysed by three-dimensional image quantification and assessment of colony-forming units. The efficacy of biofilm treatment with a dissolved denture cleansing tablet (Polident(®)) was also evaluated by colony counting. Biofilms formed on HA exhibited the most striking differences in biomass accumulation: biofilms comprising salivary bacteria accrued the highest total biomass whereas C. albicans biofilm formation was greatly reduced on the HA surface compared with other materials, including the acrylic denture surface. These results substantiate clinical findings that acrylic dentures can comprise a reservoir for C. albicans, which renders patients more susceptible to C. albicans infections and stomatitis. Additionally, treatment efficacy of the same type of biofilms varied significantly depending on the surface. Although single-species biofilms formed on polystyrene surfaces exhibited the highest susceptibility to the treatment, the most surviving cells were recovered from HA surfaces for all types of biofilms tested. This study demonstrates that the nature of a surface influences biofilm characteristics including biomass accumulation and susceptibility to antimicrobial treatments. Such treatments should therefore be evaluated on the surfaces colonized by the target pathogen(s).

  9. MPC-polymer reduces adherence and biofilm formation by oral bacteria.

    Science.gov (United States)

    Hirota, K; Yumoto, H; Miyamoto, K; Yamamoto, N; Murakami, K; Hoshino, Y; Matsuo, T; Miyake, Y

    2011-07-01

    Oral biofilms such as dental plaque cause dental caries and periodontitis, as well as aspiration pneumonia and infectious endocarditis by translocation. Hence, the suppression of oral biofilm formation is an issue of considerable importance. Mechanical removal, disinfectants, inhibition of polysaccharide formation, and artificial sugar have been used for the reduction of oral biofilm. From the viewpoint of the inhibition of bacterial adherence, we investigated whether aqueous biocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC)-polymer can reduce streptococcal colonization and biofilm formation. We examined the effects of MPC-polymer on streptococcal adherence to saliva-coated hydroxyapatite and oral epithelial cells, and the adherence of Fusobacterium nucleatum to streptococcal biofilm. MPC-polymer application markedly inhibited both the adherence and biofilm formation of Streptococcus mutans on saliva-coated hydroxyapatite and streptococcal adherence to oral epithelial cells, and reduced the adherence of F. nucleatum to streptococcal biofilms. A small-scale clinical trial revealed that mouthrinsing with MPC-polymer inhibited the increase of oral bacterial numbers, especially of S. mutans. These findings suggest that MPC-polymer is a potent inhibitor of bacterial adherence and biofilm development, and may be useful to prevent dental-plaque-related diseases. (UMIN Clinical Trial Registry UMIN000003471).

  10. Transcriptomic analysis of the process of biofilm formation in Rhizobium etli CFN42.

    Science.gov (United States)

    Reyes-Pérez, Agustín; Vargas, María Del Carmen; Hernández, Magdalena; Aguirre-von-Wobeser, Eneas; Pérez-Rueda, Ernesto; Encarnacion, Sergio

    2016-11-01

    Organisms belonging to the genus Rhizobium colonize leguminous plant roots and establish a mutually beneficial symbiosis. Biofilms are structured ecosystems in which microbes are embedded in a matrix of extracellular polymeric substances, and their development is a multistep process. The biofilm formation processes of R. etli CFN42 were analyzed at an early (24-h incubation) and mature stage (72 h), comparing cells in the biofilm with cells remaining in the planktonic stage. A genome-wide microarray analysis identified 498 differentially regulated genes, implying that expression of ~8.3 % of the total R. etli gene content was altered during biofilm formation. In biofilms-attached cells, genes encoding proteins with diverse functions were overexpressed including genes involved in membrane synthesis, transport and chemotaxis, repression of flagellin synthesis, as well as surface components (particularly exopolysaccharides and lipopolysaccharides), in combination with the presence of activators or stimulators of N-acyl-homoserine lactone synthesis This suggests that R. etli is able to sense surrounding environmental conditions and accordingly regulate the transition from planktonic and biofilm growth. In contrast, planktonic cells differentially expressed genes associated with transport, motility (flagellar and twitching) and inhibition of exopolysaccharide synthesis. To our knowledge, this is the first report of nodulation and nitrogen assimilation-related genes being involved in biofilm formation in R. etli. These results contribute to the understanding of the physiological changes involved in biofilm formation by bacteria.

  11. Evidence for inter- and intraspecies biofilm formation variability among a small group of coagulase-negative staphylococci.

    Science.gov (United States)

    Oliveira, Fernando; Lima, Cláudia Afonso; Brás, Susana; França, Ângela; Cerca, Nuno

    2015-10-01

    Coagulase-negative staphylococci (CoNS) are common bacterial colonizers of the human skin. They are often involved in nosocomial infections due to biofilm formation in indwelling medical devices. While biofilm formation has been extensively studied in Staphylococcus epidermidis, little is known regarding other CoNS species. Here, biofilms from six different CoNS species were characterized in terms of biofilm composition and architecture. Interestingly, the ability to form a thick biofilm was not associated with any particular species, and high variability on biofilm accumulation was found within the same species. Cell viability assays also revealed different proportions of live and dead cells within biofilms formed by different species, although this parameter was particularly similar at the intraspecies level. On the other hand, biofilm disruption assays demonstrated important inter- and intraspecies differences regarding extracellular matrix composition. Lastly, confocal laser scanning microscopy experiments confirmed this variability, highlighting important differences and common features of CoNS biofilms. We hypothesized that the biofilm formation heterogeneity observed was rather associated with biofilm matrix composition than with cells themselves. Additionally, our results indicate that polysaccharides, DNA and proteins are fundamental pieces in the process of CoNS biofilm formation.

  12. Biofilm formation by asymptomatic and virulent urinary tract infectious Escherichia coli strains

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Ferrieres, Lionel; Klemm, Per

    2007-01-01

    Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU) in humans. In contrast to uropathogenic E. coli (UPEC) that cause symptomatic urinary tract infection, very little is known about the mechanisms by which these strains colonize the urinary tract. Here, we...... have investigated the biofilm-forming capacity on abiotic surfaces of groups of ABU strains and UPEC strains in human urine. We found that there is a strong bias; ABU strains were significantly better biofilm formers than UPEC strains. Our data suggest that biofilm formation in urinary tract infectious...

  13. Influence of Streptococcus mutans on Enterococcus faecalis Biofilm Formation

    NARCIS (Netherlands)

    Deng, Dong Mei; Hoogenkamp, Michel A.; Exterkate, Rob A. M.; Jiang, Lei Meng; van der Sluis, Lucas W. M.; ten Cate, Jacob M.; Crielaard, Wim

    2009-01-01

    Introduction: An important virulence factor of Enterococcus faecalis is its ability to form biofilms. Most studies on biofilm formation have been carried out by using E. faecalis monocultures. Given the polymicrobial nature of root canal infections, it is important to understand biofilm formation of

  14. Influence of Streptococcus mutans on enterococcus faecalis biofilm formation

    NARCIS (Netherlands)

    Deng, D.M.; Hoogenkamp, M.A.; Exterkate, R.A.M.; Jiang, L.M.; van der Sluis, L.W.M.; ten Cate, J.M.; Crielaard, W.

    2009-01-01

    Introduction: An important virulence factor of Enterococcus faecalis is its ability to form biofilms. Most studies on biofilm formation have been carried out by using E. faecalis monocultures. Given the polymicrobial nature of root canal infections, it is important to understand biofilm formation of

  15. Emergent pattern formation in an interstitial biofilm

    CERN Document Server

    Zachreson, Cameron; Whitchurch, Cynthia; Toth, Milos

    2016-01-01

    Collective behavior of bacterial colonies plays critical roles in adaptability, survivability, biofilm expansion and infection. We employ an individual-based model of an interstitial biofilm to study emergent pattern formation based on the assumptions that rod-shaped bacteria furrow through a viscous environment, and excrete extracellular polymeric substances which bias their rate of motion. Because the bacteria furrow through their environment, the substratum stiffness is a key control parameter behind the formation of distinct morphological patterns. By systematically varying this property (which we quantify with a stiffness coefficient {\\gamma}), we show that subtle changes in the substratum stiffness can give rise to a stable state characterized by a high degree of local order and long-range pattern formation. The ordered state exhibits characteristics typically associated with bacterial fitness advantages, even though it is induced by changes in environmental conditions rather than changes in biological ...

  16. Biofilm formation and fibrinogen and fibronectin binding activities by Corynebacterium pseudodiphtheriticum invasive strains.

    Science.gov (United States)

    Souza, Monica Cristina; dos Santos, Louisy Sanches; Sousa, Leonardo Paiva; Faria, Yuri Vieira; Ramos, Juliana Nunes; Sabbadini, Priscila Soares; da Santos, Cíntia Silva; Nagao, Prescilla Emy; Vieira, Verônica Viana; Gomes, Débora Leandro Rama; Hirata Júnior, Raphael; Mattos-Guaraldi, Ana Luiza

    2015-06-01

    Biofilm-related infections are considered a major cause of morbidity and mortality in hospital environments. Biofilms allow microorganisms to exchange genetic material and to become persistent colonizers and/or multiresistant to antibiotics. Corynebacterium pseudodiphtheriticum (CPS), a commensal bacterium that colonizes skin and mucosal sites has become progressively multiresistant and responsible for severe nosocomial infections. However, virulence factors of this emergent pathogen remain unclear. Herein, we report the adhesive properties and biofilm formation on hydrophilic (glass) and hydrophobic (plastic) abiotic surfaces by CPS strains isolated from patients with localized (ATCC10700/Pharyngitis) and systemic (HHC1507/Bacteremia) infections. Adherence to polystyrene attributed to hydrophobic interactions between bacterial cells and this negatively charged surface indicated the involvement of cell surface hydrophobicity in the initial stage of biofilm formation. Attached microorganisms multiplied and formed microcolonies that accumulated as multilayered cell clusters, a step that involved intercellular adhesion and synthesis of extracellular matrix molecules. Further growth led to the formation of dense bacterial aggregates embedded in the exopolymeric matrix surrounded by voids, typical of mature biofilms. Data also showed CPS recognizing human fibrinogen (Fbg) and fibronectin (Fn) and involvement of these sera components in formation of "conditioning films". These findings suggested that biofilm formation may be associated with the expression of different adhesins. CPS may form biofilms in vivo possibly by an adherent biofilm mode of growth in vitro currently demonstrated on hydrophilic and hydrophobic abiotic surfaces. The affinity to Fbg and Fn and the biofilm-forming ability may contribute to the establishment and dissemination of infection caused by CPS.

  17. Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors.

    Science.gov (United States)

    Rosini, Roberto; Margarit, Immaculada

    2015-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) is an important human pathogen that colonizes the urogenital and/or the lower gastro-intestinal tract of up to 40% of healthy women of reproductive age and is a leading cause of sepsis and meningitis in the neonates. GBS can also infect the elderly and immuno-compromised adults, and is responsible for mastitis in bovines. Like other Gram-positive bacteria, GBS can form biofilm-like three-dimensional structures that could enhance its ability to colonize and persist in the host. Biofilm formation by GBS has been investigated in vitro and appears tightly controlled by environmental conditions. Several adhesins have been shown to play a role in the formation of GBS biofilm-like structures, among which are the protein components of pili protruding outside the bacterial surface. Remarkably, antibodies directed against pilus proteins can prevent the formation of biofilms. The implications of biofilm formation in the context of GBS asymptomatic colonization and dissemination to cause invasive disease remain to be investigated in detail.

  18. Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors

    Directory of Open Access Journals (Sweden)

    Imma eMargarit

    2015-02-01

    Full Text Available Streptococcus agalactiae (Group B Streptococcus, GBS is an important human pathogen that colonizes the urogenital and/or the lower gastro-intestinal tract of up to 40% of healthy women of reproductive age and is a leading cause of sepsis and meningitis in the neonates. GBS can also infect the elderly and immuno-compromised adults, and is responsible for mastitis in bovines. Like other Gram-positive bacteria, GBS can form biofilm-like three-dimensional structures that could enhance its ability to colonize and persist in the host. Biofilm formation by GBS has been investigated in vitro and appears tightly controlled by environmental conditions. Several adhesins have been shown to play a role in the formation of GBS biofilm-like structures, among which are the protein components of pili protruding outside the bacterial surface. Remarkably, antibodies directed against pilus proteins can prevent the formation of biofilms. The implications of biofilm formation in the context of GBS asymptomatic colonization and dissemination to cause invasive disease remain to be investigated in detail.

  19. Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility

    OpenAIRE

    Amaya-Gomez, CV; Hirsch, AM; Soto, MJ

    2015-01-01

    Background Swarming motility and biofilm formation are opposite, but related surface-associated behaviors that allow various pathogenic bacteria to colonize and invade their hosts. In Sinorhizobium meliloti, the alfalfa endosymbiont, these bacterial processes and their relevance for host plant colonization are largely unexplored. Our previous work demonstrated distinct swarming abilities in two S. meliloti strains (Rm1021 and GR4) and revealed that both environmental cues (iron concentration)...

  20. Biofilm Formation by Drug Resistant Enterococci Isolates Obtained from Chronic Periodontitis Patients

    Science.gov (United States)

    Mehta, Manjula; Sood, Shaveta; Sharma, Jyoti

    2017-01-01

    Introduction Enterococci are an important cause of opportunistic nosocomial infections and several multidrug resistant strains have emerged. The severity of periodontal diseases is managed by reduction in the pathogenic bacteria. There is a need to assess the prevalence and antibiotic susceptibility of enterococci colonizing the periodontal pocket and correlate its biofilm formation ability because oral biofilms provide a protective environment and are a reservoir of bacterial colonization of the gingival crevice. Aim To investigate possible association between antibiotic susceptibility and biofilm formation in enterococci isolates from chronic periodontitis patients. Materials and Methods This retrospective study was conducted at Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Punjab University, Chandigarh from January 2015 to October 2015. Sterile paper points were inserted in the periodontal pocket of 100 subjects and put in a transport media. Forty -six isolates were identified as enterococci. The isolates were further examined for their ability to form biofilm by microtitre plate assay and antimicrobial susceptibility testing was done by disc diffusion method for clinically relevant antibiotics. Results Significant relationship (p<0.001) was found between biofilm production with antibiotic resistance to Vancomycin, Erythromycin, Ciprofloxacin, Tiecoplanin, Amoxycillin and Gentamycin. Conclusion The study demonstrates a high propensity among the isolates of Enterococci to form biofilm and a significant association of biofilm with multiple drug resistance. PMID:28273964

  1. Essential roles and regulation of the Legionella pneumophila collagen-like adhesin during biofilm formation.

    Directory of Open Access Journals (Sweden)

    Julia Mallegol

    Full Text Available Legionellosis is mostly caused by Legionella pneumophila (Lp and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In a previous study, we showed that a glycosaminoglycan (GAG-binding adhesin of Lp, named Lcl, is produced during legionellosis and is unique to the L. pneumophila species. Importantly, a mutant depleted in Lcl (Δlpg2644 is impaired in adhesion to GAGs and epithelial cells and in biofilm formation. Here, we examine the molecular function(s of Lcl and the transcriptional regulation of its encoding gene during different stages of the biofilm development. We show that the collagen repeats and the C-terminal domains of Lcl are crucial for the production of biofilm. We present evidence that Lcl is involved in the early step of surface attachment but also in intercellular interactions. Furthermore, we address the relationship between Lcl gene regulation during biofilm formation and quorum sensing (QS. In a static biofilm assay, we show that Lcl is differentially regulated during growth phases and biofilm formation. Moreover, we show that the transcriptional regulation of lpg2644, mediated by a prototype of QS signaling homoserine lactone (3OC12-HSL, may play a role during the biofilm development. Thus, transcriptional down-regulation of lpg2644 may facilitate the dispersion of Lp to reinitiate biofilm colonization on a distal surface.

  2. Esp-independent biofilm formation by Enterococcus faecalis.

    Science.gov (United States)

    Kristich, Christopher J; Li, Yung-Hua; Cvitkovitch, Dennis G; Dunny, Gary M

    2004-01-01

    Enterococcus faecalis is a gram-positive opportunistic pathogen known to form biofilms in vitro. In addition, this organism is often isolated from biofilms on the surfaces of various indwelling medical devices. However, the molecular mechanisms regulating biofilm formation in these clinical isolates are largely unknown. Recent work has suggested that a specific cell surface protein (Esp) of E. faecalis is critical for biofilm formation by this organism. However, in the same study, esp-deficient strains of E. faecalis were found to be capable of biofilm formation. To test the hypothesis that Esp is dispensable for biofilm formation by E. faecalis, we used microtiter plate assays and a chemostat-based biofilm fermentor assay to examine biofilm formation by genetically well-defined, non-Esp-expressing strains. Our results demonstrate that in vitro biofilm formation occurs, not only in the absence of esp, but also in the absence of the entire pathogenicity island that harbors the esp coding sequence. Using scanning electron microscopy to evaluate biofilms of E. faecalis OG1RF grown in the fermentor system, biofilm development was observed to progress through multiple stages, including attachment of individual cells to the substratum, microcolony formation, and maturation into complex multilayered structures apparently containing water channels. Microtiter plate biofilm analyses indicated that biofilm formation or maintenance was modulated by environmental conditions. Furthermore, our results demonstrate that expression of a secreted metalloprotease, GelE, enhances biofilm formation by E. faecalis. In summary, E. faecalis forms complex biofilms by a process that is sensitive to environmental conditions and does not require the Esp surface protein.

  3. Genetic adaptation of Streptococcus mutans during biofilm formation on different types of surfaces

    Directory of Open Access Journals (Sweden)

    Aharoni Reuven

    2010-02-01

    Full Text Available Abstract Background Adhesion and successful colonization of bacteria onto solid surfaces play a key role in biofilm formation. The initial adhesion and the colonization of bacteria may differ between the various types of surfaces found in oral cavity. Therefore, it is conceivable that diverse biofilms are developed on those various surfaces. The aim of the study was to investigate the molecular modifications occurring during in vitro biofilm development of Streptococcus mutans UA159 on several different dental surfaces. Results Growth analysis of the immobilized bacterial populations generated on the different surfaces shows that the bacteria constructed a more confluent and thick biofilms on a hydroxyapatite surface compared to the other tested surfaces. Using DNA-microarray technology we identified the differentially expressed genes of S. mutans, reflecting the physiological state of biofilms formed on the different biomaterials tested. Eight selected genes were further analyzed by real time RT-PCR. To further determine the impact of the tested material surfaces on the physiology of the bacteria, we tested the secretion of AI-2 signal by S. mutans embedded on those biofilms. Comparative transcriptome analyses indicated on changes in the S. mutans genome in biofilms formed onto different types of surfaces and enabled us to identify genes most differentially expressed on those surfaces. In addition, the levels of autoinducer-2 in biofilms from the various tested surfaces were different. Conclusions Our results demonstrate that gene expression of S. mutans differs in biofilms formed on tested surfaces, which manifest the physiological state of bacteria influenced by the type of surface material they accumulate onto. Moreover, the stressful circumstances of adjustment to the surface may persist in the bacteria enhancing intercellular signaling and surface dependent biofilm formation.

  4. Gentamicin induces efaA expression and biofilm formation in Enterococcus faecalis.

    Science.gov (United States)

    Kafil, Hossein Samadi; Mobarez, Ashraf Mohabati; Moghadam, Mehdi Forouzandeh; Hashemi, Zahra Sadat; Yousefi, Mehdi

    2016-03-01

    Enterococci have been ranked among the leading causes of nosocomial bacteremia and urinary tract infection. This study aimed to investigate the effect of ampicillin, vancomycin, gentamicin and ceftizoxime on biofilm formation and gene expression of colonization factors on Enterococcus faecalis. Twelve clinical isolates of E. faecalis were used to investigate the effect of antibiotics on biofilm formation and gene expression of efaA, asa1, ebpA, esp and ace. Flow system assay and Microtiter plates were used for biofilm assay. Two hundred clinical isolates were used for confirming the effect of antibiotics on biofilm formation. Ampicillin, vancomycin and ceftizoxime did not have any significant effect on biofilm formation, but gentamicin induced biofilm formation in 89% of isolates. In twelve selected isolate gentamicin increased expression of esp (+50.9%) and efaA (+33.9%) genes and reduced or maintained expression of others (asa1:-47.4%, ebpA: 0, ace:-19.2%). Vancomycin increased expression of esp (+89.1%) but reduced the others (asa1: -34.9%, ebpA:-11%, ace:-30%, efaA:-60%). Ceftizoxime increased slightly ebpA (+19.7%) and reduced others (asa1:-66.2%, esp:-35%, ace:-28.1%, efaA:-38.4%). and ampicillin strongly increased expression of ace (+231%), esp (+131%) and ebpA (+83%) but reduced others (asa1:-85.5%, efaA:-47.4%). The findings of the present study showed that antibiotics may have a role in biofilm formation and sustainability of enterococci, especially in case of gentamicin. efaA gene may have an important role, especially in antibiotic induced biofilm formation by gentamicin. Experiments with efaA mutants are needed to investigate the exact effect of efaA on biofilm formation with antibiotic induced cells.

  5. Alpha-Toxin Promotes Mucosal Biofilm Formation by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Michele J Anderson

    2012-05-01

    Full Text Available Staphylococcus aureus causes numerous diseases in humans ranging from the mild skin infections to serious, life-threatening, superantigen-mediated Toxic Shock Syndrome (TSS. S. aureus may also be asymptomatically carried in the anterior nares, vagina or on the skin, which serve as reservoirs for infection. Pulsed-field gel electrophoresis clonal type USA200 is the most widely disseminated colonizer and a major cause of TSS. Our prior studies indicated that α-toxin was a major epithelial proinflammatory exotoxin produced by TSS S. aureus USA200 isolates. It also facilitated the penetration of TSS Toxin-1 (TSST-1 across vaginal mucosa. However, the majority of menstrual TSS isolates produce low α-toxin due to a nonsense point mutation at codon 113, designated hly, suggesting mucosal adaptation. The aim of this study was to characterize the differences between TSS USA200 strains [high (hla+ and low (hly+ α-toxin producers] in their abilities to infect and disrupt vaginal mucosal tissue. A mucosal model was developed using ex vivo porcine vaginal mucosa, LIVE/DEAD® staining and confocal microscropy to characterize biofilm formation and tissue viability of TSS USA 200 isolates CDC587 and MN8, which contain the α-toxin pseudogene (hly, MNPE (hla+ and MNPE isogenic hla knockout (hlaKO. All TSS strains grew to similar bacterial densities (1-5 x 108 CFU on the mucosa and were proinflammatory over 3 days. However, MNPE formed biofilms with significant reductions in the mucosal viability whereas neither CDC587, MN8 (hly+, or MNPE hlaKO, formed biofilms and were less cytotoxic. The addition of exogenous, purified α-toxin to MNPE hlaKO restored the biofilm phenotype. Our studies suggest α-toxin affects S. aureus phenotypic growth on vaginal mucosa, by promoting tissue disruption and biofilm formation; and α–toxin mutants (hly are not benign colonizers, but rather form a different type of infection, which we have termed high density pathogenic

  6. Emergent pattern formation in an interstitial biofilm

    Science.gov (United States)

    Zachreson, Cameron; Wolff, Christian; Whitchurch, Cynthia B.; Toth, Milos

    2017-01-01

    Collective behavior of bacterial colonies plays critical roles in adaptability, survivability, biofilm expansion and infection. We employ an individual-based model of an interstitial biofilm to study emergent pattern formation based on the assumptions that rod-shaped bacteria furrow through a viscous environment and excrete extracellular polymeric substances which bias their rate of motion. Because the bacteria furrow through their environment, the substratum stiffness is a key control parameter behind the formation of distinct morphological patterns. By systematically varying this property (which we quantify with a stiffness coefficient γ ), we show that subtle changes in the substratum stiffness can give rise to a stable state characterized by a high degree of local order and long-range pattern formation. The ordered state exhibits characteristics typically associated with bacterial fitness advantages, even though it is induced by changes in environmental conditions rather than changes in biological parameters. Our findings are applicable to a broad range of biofilms and provide insights into the relationship between bacterial movement and their environment, and basic mechanisms behind self-organization of biophysical systems.

  7. Specific Involvement of Pilus Type 2a in Biofilm Formation in Group B Streptococcus

    Science.gov (United States)

    Galeotti, Cesira L.; Berti, Francesco; Necchi, Francesca; Reguzzi, Valerio; Ghezzo, Claudia; Telford, John Laird; Grandi, Guido; Maione, Domenico

    2010-01-01

    Streptococcus agalactiae is the primary colonizer of the anogenital mucosa of up to 30% of healthy women and can infect newborns during delivery and cause severe sepsis and meningitis. Persistent colonization usually involves the formation of biofilm and increasing evidences indicate that in pathogenic streptococci biofilm formation is mediated by pili. Recently, we have characterized pili distribution and conservation in 289 GBS clinical isolates and we have shown that GBS has three pilus types, 1, 2a and 2b encoded by three corresponding pilus islands, and that each strain carries one or two islands. Here we have investigated the capacity of these strains to form biofilms. We have found that most of the biofilm-formers carry pilus 2a, and using insertion and deletion mutants we have confirmed that pilus type 2a, but not pilus types 1 and 2b, confers biofilm-forming phenotype. We also show that deletion of the major ancillary protein of type 2a did not impair biofilm formation while the inactivation of the other ancillary protein and of the backbone protein completely abolished this phenotype. Furthermore, antibodies raised against pilus components inhibited bacterial adherence to solid surfaces, offering new strategies to prevent GBS infection by targeting bacteria during their initial attachment to host epithelial cells. PMID:20169161

  8. Specific involvement of pilus type 2a in biofilm formation in group B Streptococcus.

    Directory of Open Access Journals (Sweden)

    Cira Daniela Rinaudo

    Full Text Available Streptococcus agalactiae is the primary colonizer of the anogenital mucosa of up to 30% of healthy women and can infect newborns during delivery and cause severe sepsis and meningitis. Persistent colonization usually involves the formation of biofilm and increasing evidences indicate that in pathogenic streptococci biofilm formation is mediated by pili. Recently, we have characterized pili distribution and conservation in 289 GBS clinical isolates and we have shown that GBS has three pilus types, 1, 2a and 2b encoded by three corresponding pilus islands, and that each strain carries one or two islands. Here we have investigated the capacity of these strains to form biofilms. We have found that most of the biofilm-formers carry pilus 2a, and using insertion and deletion mutants we have confirmed that pilus type 2a, but not pilus types 1 and 2b, confers biofilm-forming phenotype. We also show that deletion of the major ancillary protein of type 2a did not impair biofilm formation while the inactivation of the other ancillary protein and of the backbone protein completely abolished this phenotype. Furthermore, antibodies raised against pilus components inhibited bacterial adherence to solid surfaces, offering new strategies to prevent GBS infection by targeting bacteria during their initial attachment to host epithelial cells.

  9. Biofilm Formation Characteristics of Pseudomonas lundensis Isolated from Meat.

    Science.gov (United States)

    Liu, Yong-Ji; Xie, Jing; Zhao, Li-Jun; Qian, Yun-Fang; Zhao, Yong; Liu, Xiao

    2015-12-01

    Biofilms formations of spoilage and pathogenic bacteria on food or food contact surfaces have attracted increasing attention. These events may lead to a higher risk of food spoilage and foodborne disease transmission. While Pseudomonas lundensis is one of the most important bacteria that cause spoilage in chilled meat, its capability for biofilm formation has been seldom reported. Here, we investigated biofilm formation characteristics of P. lundensis mainly by using crystal violet staining, and confocal laser scanning microscopy (CLSM). The swarming and swimming motility, biofilm formation in different temperatures (30, 10, and 4 °C) and the protease activity of the target strain were also assessed. The results showed that P. lundensis showed a typical surface-associated motility and was quite capable of forming biofilms in different temperatures (30, 10, and 4 °C). The strain began to adhere to the contact surfaces and form biofilms early in the 4 to 6 h. The biofilms began to be formed in massive amounts after 12 h at 30 °C, and the extracellular polysaccharides increased as the biofilm structure developed. Compared with at 30 °C, more biofilms were formed at 4 and 10 °C even by a low bacterial density. The protease activity in the biofilm was significantly correlated with the biofilm formation. Moreover, the protease activity in biofilm was significantly higher than that of the corresponding planktonic cultures after cultured 12 h at 30 °C.

  10. Mechanisms of biofilm formation in paper machine by Bacillus species: the role of Deinococcus geothermalis.

    Science.gov (United States)

    Kolari, M; Nuutinen, J; Salkinoja-Salonen, M S

    2001-12-01

    Mechanisms for the undesired persistence of Bacillus species in paper machine slimes were investigated. Biofilm formation was measured for industrial Bacillus isolates under paper machine wet-end-simulating conditions (white water, pH 7, agitated at 45 degrees C for 1-2 days). None of the 40 tested strains of seven Bacillus species formed biofilm on polished stainless steel or on polystyrene surfaces as a monoculture. Under the same conditions, Deinococcus geothermalis E50051 covered all test surfaces as a patchy thick biofilm. The paper machine bacilli, however, formed mixed biofilms with D. geothermalis E50051 as revealed by confocal microscopy. Biofilm interactions between the bacilli and the deinococci varied from synergism to antagonism. Synergism in biofilm formation of D. geothermalis E50051 was strongest with Bacillus coagulans D50192, and with the type strains of B. coagulans, B. amyloliquefaciens or B. pumilus. Two B. licheniformis, one B. amyloliquefaciens, one B. pumilus and four B. cereus strains antagonized biofilm production by D. geothermalis. B. licheniformis D50141 and the type strain of B. licheniformis were the strongest antagonists. These bacteria inhibited deinococcal growth by emitting heat-stable, methanol-soluble metabolite(s). We conclude that the persistence of Bacillus species in paper machine slimes relates to their ability to conquer biofilms formed by primary colonizers, such as D. geothermalis.

  11. Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity.

    Science.gov (United States)

    Bruchmann, Julia; Sachsenheimer, Kai; Rapp, Bastian E; Schwartz, Thomas

    2015-01-01

    Bacterial colonization of surfaces and interfaces has a major impact on various areas including biotechnology, medicine, food industries, and water technologies. In most of these areas biofilm development has a strong impact on hygiene situations, product quality, and process efficacies. In consequence, biofilm manipulation and prevention is a fundamental issue to avoid adverse impacts. For such scenario online, non-destructive biofilm monitoring systems become important in many technical and industrial applications. This study reports such a system in form of a microfluidic sensor platform based on the combination of electrical impedance spectroscopy and amperometric current measurement, which allows sensitive online measurement of biofilm formation and activity. A total number of 12 parallel fluidic channels enable real-time online screening of various biofilms formed by different Pseudomonas aeruginosa and Stenotrophomonas maltophilia strains and complex mixed population biofilms. Experiments using disinfectant and antibiofilm reagents demonstrate that the biofilm sensor is able to discriminate between inactivation/killing of bacteria and destabilization of biofilm structures. The impedance and amperometric sensor data demonstrated the high dynamics of biofilms as a consequence of distinct responses to chemical treatment strategies. Gene expression of flagellar and fimbrial genes of biofilms grown inside the microfluidic system supported the detected biofilm growth kinetics. Thus, the presented biosensor platform is a qualified tool for assessing biofilm formation in specific environments and for evaluating the effectiveness of antibiofilm treatment strategies.

  12. BIOFILM FORMATION OF Vibrio cholerae ON STAINLESS STEEL USED IN FOOD PROCESSING.

    Science.gov (United States)

    Fernández-Delgado, Milagro; Rojas, Héctor; Duque, Zoilabet; Suárez, Paula; Contreras, Monica; García-Amado, M Alexandra; Alciaturi, Carlos

    2016-01-01

    Vibrio cholerae represents a significant threat to human health in developing countries. This pathogen forms biofilms which favors its attachment to surfaces and its survival and transmission by water or food. This work evaluated the in vitro biofilm formation of V. cholerae isolated from clinical and environmental sources on stainless steel of the type used in food processing by using the environmental scanning electron microscopy (ESEM). Results showed no cell adhesion at 4 h and scarce surface colonization at 24 h. Biofilms from the environmental strain were observed at 48 h with high cellular aggregations embedded in Vibrio exopolysaccharide (VPS), while less confluence and VPS production with microcolonies of elongated cells were observed in biofilms produced by the clinical strain. At 96 h the biofilms of the environmental strain were released from the surface leaving coccoid cells and residual structures, whereas biofilms of the clinical strain formed highly organized structures such as channels, mushroom-like and pillars. This is the first study that has shown the in vitro ability of V. cholerae to colonize and form biofilms on stainless steel used in food processing.

  13. Biofilm Formation on Dental Restorative and Implant Materials

    NARCIS (Netherlands)

    Busscher, H. J.; Rinastiti, M.; Siswomihardjo, W.; van der Mei, H. C.

    2010-01-01

    Biomaterials for the restoration of oral function are prone to biofilm formation, affecting oral health. Oral bacteria adhere to hydrophobic and hydrophilic surfaces, but due to fluctuating shear, little biofilm accumulates on hydrophobic surfaces in vivo. More biofilm accumulates on rough than on s

  14. Extracellular DNA formation during biofilm development by freshwater bacteria

    DEFF Research Database (Denmark)

    Tang, Lone; Schramm, Andreas; Revsbech, Niels Peter

    2011-01-01

    of eDNA is most important. In this study, we investigated the significance of eDNA during biofilm formation in four freshwater isolates. The aim was to relate the quantity and timing of eDNA production to the isolates’ ability to form biofilms. eDNA and biofilm biomass was quantified over time during...

  15. Effects of patterned topography on biofilm formation

    Science.gov (United States)

    Vasudevan, Ravikumar

    2011-12-01

    Bacterial biofilms are a population of bacteria attached to each other and irreversibly to a surface, enclosed in a matrix of self-secreted polymers, among others polysaccharides, proteins, DNA. Biofilms cause persisting infections associated with implanted medical devices and hospital acquired (nosocomial) infections. Catheter-associated urinary tract infections (CAUTIs) are the most common type of nosocomial infections accounting for up to 40% of all hospital acquired infections. Several different strategies, including use of antibacterial agents and genetic cues, quorum sensing, have been adopted for inhibiting biofilm formation relevant to CAUTI surfaces. Each of these methods pertains to certain types of bacteria, processes and has shortcomings. Based on eukaryotic cell topography interaction studies and Ulva linza spore studies, topographical surfaces were suggested as a benign control method for biofilm formation. However, topographies tested so far have not included a systematic variation of size across basic topography shapes. In this study patterned topography was systematically varied in size and shape according to two approaches 1) confinement and 2) wetting. For the confinement approach, using scanning electron microscopy and confocal microscopy, orienting effects of tested topography based on staphylococcus aureus (s. aureus) (SH1000) and enterobacter cloacae (e. cloacae) (ATCC 700258) bacterial models were identified on features of up to 10 times the size of the bacterium. Psuedomonas aeruginosa (p. aeruginosa) (PAO1) did not show any orientational effects, under the test conditions. Another important factor in medical biofilms is the identification and quantification of phenotypic state which has not been discussed in the literature concerning bacteria topography characterizations. This was done based on antibiotic susceptibility evaluation and also based on gene expression analysis. Although orientational effects occur, phenotypically no difference

  16. Subinhibitory concentrations of azithromycin decrease nontypeable Haemophilus influenzae biofilm formation and Diminish established biofilms.

    Science.gov (United States)

    Starner, Timothy D; Shrout, Joshua D; Parsek, Matthew R; Appelbaum, Peter C; Kim, GunHee

    2008-01-01

    Nontypeable Haemophilus influenzae (NTHi) commonly causes otitis media, chronic bronchitis in emphysema, and early airway infections in cystic fibrosis. Long-term, low-dose azithromycin has been shown to improve clinical outcomes in chronic lung diseases, although the mechanism of action remains unclear. The inhibition of bacterial biofilms by azithromycin has been postulated to be one mechanism mediating these effects. We hypothesized that subinhibitory concentrations of azithromycin would affect NTHi biofilm formation. Laboratory strains of NTHi expressing green fluorescent protein and azithromycin-resistant clinical isolates were grown in flow-cell and static-culture biofilm models. Using a range of concentrations of azithromycin and gentamicin, we measured the degree to which these antibiotics inhibited biofilm formation and persistence. Large biofilms formed over 2 to 4 days in a flow cell, displaying complex structures, including towers and channels. Subinhibitory concentrations of azithromycin significantly decreased biomass and maximal thickness in both forming and established NTHi biofilms. In contrast, subinhibitory concentrations of gentamicin had no effect on biofilm formation. Furthermore, established NTHi biofilms became resistant to gentamicin at concentrations far above the MIC. Biofilm formation of highly resistant clinical NTHi isolates (azithromycin MIC of > 64 microg/ml) was similarly decreased at subinhibitory azithromycin concentrations. Clinically obtainable azithromycin concentrations inhibited biofilms in all but the most highly resistant isolates. These data show that subinhibitory concentrations of azithromycin have antibiofilm properties, provide mechanistic insights, and supply an additional rationale for the use of azithromycin in chronic biofilm infections involving H. influenzae.

  17. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction.

    Science.gov (United States)

    Sugimoto, Shinya; Iwamoto, Takeo; Takada, Koji; Okuda, Ken-Ichi; Tajima, Akiko; Iwase, Tadayuki; Mizunoe, Yoshimitsu

    2013-04-01

    Staphylococcus aureus exhibits a strong capacity to attach to abiotic or biotic surfaces and form biofilms, which lead to chronic infections. We have recently shown that Esp, a serine protease secreted by commensal Staphylococcus epidermidis, disassembles preformed biofilms of S. aureus and inhibits its colonization. Esp was expected to degrade protein determinants of the adhesive and cohesive strength of S. aureus biofilms. The aim of this study was to elucidate the substrate specificity and target proteins of Esp and thereby determine the mechanism by which Esp disassembles S. aureus biofilms. We used a mutant Esp protein (Esp(S235A)) with defective proteolytic activity; this protein did not disassemble the biofilm formed by a clinically isolated methicillin-resistant S. aureus (MRSA) strain, thereby indicating that the proteolytic activity of Esp is essential for biofilm disassembly. Esp degraded specific proteins in the biofilm matrix and cell wall fractions, in contrast to proteinase K, which is frequently used for testing biofilm robustness and showed no preference for proteolysis. Proteomic and immunological analyses showed that Esp degrades at least 75 proteins, including 11 biofilm formation- and colonization-associated proteins, such as the extracellular adherence protein, the extracellular matrix protein-binding protein, fibronectin-binding protein A, and protein A. In addition, Esp selectively degraded several human receptor proteins of S. aureus (e.g., fibronectin, fibrinogen, and vitronectin) that are involved in its colonization or infection. These results suggest that Esp inhibits S. aureus colonization and biofilm formation by degrading specific proteins that are crucial for biofilm construction and host-pathogen interaction.

  18. Chemically Specific Cellular Imaging of Biofilm Formation

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J L; Schaldach, C; Horn, J; Gjersing, E; Maxwell, R

    2006-02-09

    This document and the accompanying manuscripts summarize the technical accomplishments for our one-year LDRD-ER effort. Biofilm forming microbes have existed on this planet for billions of years and make up 60% of the biological mass on earth. Such microbes exhibit unique biochemical pathways during biofilm formation and play important roles in human health and the environment. Microbial biofilms have been directly implicated in, for example, product contamination, energy losses, and medical infection that cost the loss of human lives and billions of dollars. In no small part due to the lack of detailed understanding, biofilms unfortunately are resistant to control, inhibition, and destruction, either through treatment with antimicrobials or immunological defense mechanisms of the body. Current biofilm research has concentrated on the study of biofilms in the bulk. This is primarily due to the lack of analytical and physical tools to study biofilms non-destructively, in three dimensions, and on the micron or sub-micron scale. This has hindered the development of a clear understanding of either the early stage mechanisms of biofilm growth or the interactions of biofilms with their environment. Enzymatic studies have deduced a biochemical reaction that results in the oxidation of reduced sulfur species with the concomitant reduction of nitrate, a common groundwater pollutant, to dinitrogen gas by the bacterium, Thiobacillus denitrificans (TD). Because of its unique involvement in biologically relevant environmental pathways, TD is scheduled for genome sequencing in the near future by the DOE's Joint Genome Institute and is of interest to DOE's Genomes to Life Program. As our ecosystem is exposed to more and more nitrate contamination large scale livestock and agricultural practices, a further understanding of biofilm formation by organisms that could alleviate these problems is necessary in order to protect out biosphere. However, in order to study this

  19. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14.

    Science.gov (United States)

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39-56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3'-5')-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor.

  20. D-Galactose as an autoinducer 2 inhibitor to control the biofilm formation of periodontopathogens.

    Science.gov (United States)

    Ryu, Eun-Ju; Sim, Jaehyun; Sim, Jun; Lee, Julian; Choi, Bong-Kyu

    2016-09-01

    Autoinducer 2 (AI-2) is a quorum sensing molecule to which bacteria respond to regulate various phenotypes, including virulence and biofilm formation. AI-2 plays an important role in the formation of a subgingival biofilm composed mostly of Gram-negative anaerobes, by which periodontitis is initiated. The aim of this study was to evaluate D-galactose as an inhibitor of AI-2 activity and thus of the biofilm formation of periodontopathogens. In a search for an AI-2 receptor of Fusobacterium nucleatum, D-galactose binding protein (Gbp, Gene ID FN1165) showed high sequence similarity with the ribose binding protein (RbsB), a known AI-2 receptor of Aggregatibacter actinomycetemcomitans. D-Galactose was evaluated for its inhibitory effect on the AI-2 activity of Vibrio harveyi BB152 and F. nucleatum, the major coaggregation bridge organism, which connects early colonizing commensals and late pathogenic colonizers in dental biofilms. The inhibitory effect of D-galactose on the biofilm formation of periodontopathogens was assessed by crystal violet staining and confocal laser scanning microscopy in the absence or presence of AI-2 and secreted molecules of F. nucleatum. D-Galactose significantly inhibited the AI-2 activity of V. harveyi and F. nucleatum. In addition, D-galactose markedly inhibited the biofilm formation of F. nucleatum, Porphyromonas gingivalis, and Tannerella forsythia induced by the AI-2 of F. nucleatum without affecting bacterial growth. Our results demonstrate that the Gbp may function as an AI-2 receptor and that galactose may be used for prevention of the biofilm formation of periodontopathogens by targeting AI-2 activity.

  1. COMPOSITION AND METHOD FOR CONTROLLING MICROBIAL ADHESION AND BIOFILM FORMATION OF SURFACES

    DEFF Research Database (Denmark)

    2003-01-01

    in a large range of areas. The reduced numbers of adhered, attached or colonized microbial organisms is not due to a general growth inhibitory effect and therefore the anti-adhesive effect may not be caused by the presence of antimicrobials (antibiotics or non-antibiotics) in the fish extract.......The present invention describes how coating of surfaces with an extract, particularly a fish extract, can significantly reduce microbial adhesion, attachment, colonization and biofilm formation on surfaces. Such reduction of microbial adherence, attachment and colonization will be applicable...

  2. Physics of biofilms: the initial stages of biofilm formation and dynamics

    Science.gov (United States)

    Lambert, Guillaume; Bergman, Andrew; Zhang, Qiucen; Bortz, David; Austin, Robert

    2014-04-01

    One of the physiological responses of bacteria to external stress is to assemble into a biofilm. The formation of a biofilm greatly increases a bacterial population's resistance to a hostile environment by shielding cells, for example, from antibiotics. In this paper, we describe the conditions necessary for the emergence of biofilms in natural environments and relate them to the emergence of biofilm formation inside microfluidic devices. We show that competing species of Escherichia coli bacteria form biofilms to spatially segregate themselves in response to starvation stress, and use in situ methods to characterize the physical properties of the biofilms. Finally, we develop a microfluidic platform to study the inter-species interactions and show how biofilm-mediated genetic interactions can improve a species’ resistance to external stress.

  3. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation

    DEFF Research Database (Denmark)

    Stapper, A.P.; Narasimhan, G.; Oman, D.E.

    2004-01-01

    Extracellular polymers can facilitate the non-specific attachment of bacteria to surfaces and hold together developing biofilms. This study was undertaken to qualitatively and quantitatively compare the architecture of biofilms produced by Pseudomonas aeruginosa strain PAO1 and its alginate......-overproducing (mucA22) and alginate-defective (algD) variants in order to discern the role of alginate in biofilm formation. These strains, PAO1, Alg(+) PAOmucA22 and Alg(-) PAOalgD, tagged with green fluorescent protein, were grown in a continuous flow cell system to characterize the developmental cycles...... of their biofilm formation using confocal laser scanning microscopy. Biofilm Image Processing (BIP) and Community Statistics (COMSTAT) software programs were used to provide quantitative measurements of the two-dimensional biofilm images. All three strains formed distinguishable biofilm architectures, indicating...

  4. Biofilm formation on dental restorative and implant materials.

    Science.gov (United States)

    Busscher, H J; Rinastiti, M; Siswomihardjo, W; van der Mei, H C

    2010-07-01

    Biomaterials for the restoration of oral function are prone to biofilm formation, affecting oral health. Oral bacteria adhere to hydrophobic and hydrophilic surfaces, but due to fluctuating shear, little biofilm accumulates on hydrophobic surfaces in vivo. More biofilm accumulates on rough than on smooth surfaces. Oral biofilms mostly consist of multiple bacterial strains, but Candida species are found on acrylic dentures. Biofilms on gold and amalgam in vivo are thick and fully covering, but barely viable. Biofilms on ceramics are thin and highly viable. Biofilms on composites and glass-ionomer cements cause surface deterioration, which enhances biofilm formation again. Residual monomer release from composites influences biofilm growth in vitro, but effects in vivo are less pronounced, probably due to the large volume of saliva into which compounds are released and its continuous refreshment. Similarly, conflicting results have been reported on effects of fluoride release from glass-ionomer cements. Finally, biomaterial-associated infection of implants and devices elsewhere in the body is compared with oral biofilm formation. Biomaterial modifications to discourage biofilm formation on implants and devices are critically discussed for possible applications in dentistry. It is concluded that, for dental applications, antimicrobial coatings killing bacteria upon contact are more promising than antimicrobial-releasing coatings.

  5. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2009-07-01

    Full Text Available Extracellular polymeric substances (EPS produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  6. Frequency of biofilm formation in toothbrushes and wash basin junks

    Directory of Open Access Journals (Sweden)

    Abdulazeez A Abubakar

    2013-01-01

    Full Text Available Background: Biofilms are known to be resistant to several antibiotics once they are allowed to form on any surface. Aim: To investigate the biofilm forming ability of some bacterial isolates in toothbrushes and wash basin junks. Materials and Methods: A total of 606 students of Federal University of Technology, Yola were provided with new toothbrushes, which were collected after 1 month of usage and screened for biofilm formation. Another 620 swabs were collected from the wash basins of Federal Medical Centre, Specialist Hospital, Federal University of Technology, and students′ hostels in Yola and from some residence in Jimeta, Yola Metropolis; they were all screened for biofilm formation. Results: A total of 38.3% biofilm formation rate was recorded. Three types of bacterial isolates were identified in the biofilms of toothbrushes and wash basin junks, namely Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa at the prevalence rate of 48.0%, 29.1%, and 22.6%, respectively. Overall, 83.3% of the toothbrush biofilm were identified from female students, while 16.7% were from their male counterparts. Statistically, the frequency of biofilm formation showed a significant difference by gender (X 2 = 10.242, P 0.05. Conclusion: This study identified three microorganisms namely S. aureus, E. coli, and P. aeruginosa that were involved in wash basin junk biofilm formation. The findings also showed that occurrence of biofilm in females′ toothbrushes were significantly higher than in males′ (X 2 = 10.242, P < 0.05.

  7. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal

    DEFF Research Database (Denmark)

    Harmsen, Morten; Yang, Liang; Pamp, Sünje Johanna

    2010-01-01

    . aeruginosa biofilms. The second messenger, c-di-GMP, is established as an important regulator of the synthesis of polysaccharide and protein components of the biofilm matrix. Extracellular DNA is shown to be an essential component of the biofilm matrix. It has become apparent that biofilm formation involves......We review the recent advances in the understanding of the Pseudomonas aeruginosa biofilm lifestyle from studies using in vitro laboratory setups such as flow chambers and microtiter trays. Recent work sheds light on the role of nutrients, motility, and quorum sensing in structure formation in P...... interactions between different subpopulations. The molecular mechanisms underlying the tolerance of biofilm bacteria to antimicrobial agents are beginning to be unraveled, and new knowledge has been obtained regarding the environmental cues and regulatory mechanisms involved in biofilm dispersal....

  8. [Mechanism and risk factors of oral biofilm formation].

    Science.gov (United States)

    Pasich, Ewa; Walczewska, Maria; Pasich, Adam; Marcinkiewicz, Janusz

    2013-08-02

    Recent microbiological investigations completely changed our understanding of the role of biofilm in the formation of the mucosal immune barrier and in pathogenesis of chronic inflammation of bacterial etiology. It is now clear that formation of bacterial biofilm on dental surfaces is characteristic for existence of oral microbial communities. It has also been proved that uncontrolled biofilms on dental tissues, as well as on different biomaterials (e.g. orthodontic appliances), are the main cause of dental diseases such as dental caries and periodontitis. The aim of this paper is to explain mechanisms and consequences of orthodontic biofilm formation. We will discuss current opinions on the influence of different biomaterials employed for orthodontic treatment in biofilm formation and new strategies employed in prevention and elimination of oral biofilm ("dental plaque").

  9. Etiology of bacterial vaginosis and polymicrobial biofilm formation.

    Science.gov (United States)

    Jung, Hyun-Sul; Ehlers, Marthie M; Lombaard, Hennie; Redelinghuys, Mathys J; Kock, Marleen M

    2017-03-30

    Microorganisms in nature rarely exist in a planktonic form, but in the form of biofilms. Biofilms have been identified as the cause of many chronic and persistent infections and have been implicated in the etiology of bacterial vaginosis (BV). Bacterial vaginosis is the most common form of vaginal infection in women of reproductive age. Similar to other biofilm infections, BV biofilms protect the BV-related bacteria against antibiotics and cause recurrent BV. In this review, an overview of BV-related bacteria, conceptual models and the stages involved in the polymicrobial BV biofilm formation will be discussed.

  10. An expanded regulatory network temporally controls Candida albicans biofilm formation.

    Science.gov (United States)

    Fox, Emily P; Bui, Catherine K; Nett, Jeniel E; Hartooni, Nairi; Mui, Michael C; Andes, David R; Nobile, Clarissa J; Johnson, Alexander D

    2015-06-01

    Candida albicans biofilms are composed of highly adherent and densely arranged cells with properties distinct from those of free-floating (planktonic) cells. These biofilms are a significant medical problem because they commonly form on implanted medical devices, are drug resistant and are difficult to remove. C. albicans biofilms are not static structures; rather they are dynamic and develop over time. Here we characterize gene expression in biofilms during their development, and by comparing them to multiple planktonic reference states, we identify patterns of gene expression relevant to biofilm formation. In particular, we document time-dependent changes in genes involved in adhesion and metabolism, both of which are at the core of biofilm development. Additionally, we identify three new regulators of biofilm formation, Flo8, Gal4, and Rfx2, which play distinct roles during biofilm development over time. Flo8 is required for biofilm formation at all time points, and Gal4 and Rfx2 are needed for proper biofilm formation at intermediate time points.

  11. A bacterial volatile signal for biofilm formation

    Science.gov (United States)

    Chen, Yun; Gozzi, Kevin; Chai, Yunrong

    2015-01-01

    Bacteria constantly monitor the environment they reside in and respond to potential changes in the environment through a variety of signal sensing and transduction mechanisms in a timely fashion. Those signaling mechanisms often involve application of small, diffusible chemical molecules. Volatiles are a group of small air-transmittable chemicals that are produced universally by all kingdoms of organisms. Past studies have shown that volatiles can function as cell-cell communication signals not only within species, but also cross-species. However, little is known about how the volatile-mediated signaling mechanism works. In our recent study (Chen, et al. mBio (2015), 6: e00392-15), we demonstrated that the soil bacterium Bacillus subtilis uses acetic acid as a volatile signal to coordinate the timing of biofilm formation within physically separated cells in the community. We also showed that the bacterium possesses an intertwined gene network to produce, secrete, sense, and respond to acetic acid, in stimulating biofilm formation. Interestingly, many of those genes are highly conserved in other bacterial species, raising the possibility that acetic acid may act as a volatile signal for cross-species communication.

  12. A bacterial volatile signal for biofilm formation

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2015-09-01

    Full Text Available Bacteria constantly monitor the environment they reside in and respond to potential changes in the environment through a variety of signal sensing and transduction mechanisms in a timely fashion. Those signaling mechanisms often involve application of small, diffusible chemical molecules. Volatiles are a group of small air-transmittable chemicals that are produced universally by all kingdoms of organisms. Past studies have shown that volatiles can function as cell-cell communication signals not only within species, but also cross-species. However, little is known about how the volatile-mediated signaling mechanism works. In our recent study (Chen, et al. mBio (2015, 6: e00392-15, we demonstrated that the soil bacterium Bacillus subtilis uses acetic acid as a volatile signal to coordinate the timing of biofilm formation within physically separated cells in the community. We also showed that the bacterium possesses an intertwined gene network to produce, secrete, sense, and respond to acetic acid, in stimulating biofilm formation. Interestingly, many of those genes are highly conserved in other bacterial species, raising the possibility that acetic acid may act as a volatile signal for cross-species communication.

  13. Kinetics of biofilm formation by drinking water isolated Penicillium expansum.

    Science.gov (United States)

    Simões, Lúcia Chaves; Simões, Manuel; Lima, Nelson

    2015-01-01

    Current knowledge on drinking water (DW) biofilms has been obtained mainly from studies on bacterial biofilms. Very few reports on filamentous fungi (ff) biofilms are available, although they can contribute to the reduction in DW quality. This study aimed to assess the dynamics of biofilm formation by Penicillium expansum using microtiter plates under static conditions, mimicking water flow behaviour in stagnant regions of drinking water distribution systems. Biofilms were analysed in terms of biomass (crystal violet staining), metabolic activity (resazurin, fluorescein diacetate and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide [MTT]) and morphology (epifluorescence [calcofluor white M2R, FUN-1, FDA and acridine orange] and bright-field microscopies). Biofilm development over time showed the typical sigmoidal curve with noticeable different phases in biofilm formation (induction, exponential, stationary, and sloughing off). The methods used to assess metabolic activity provided similar results. The microscope analysis allowed identification of the involvement of conidia in initial adhesion (4 h), germlings (8 h), initial monolayers (12 h), a monolayer of intertwined hyphae (24 h), mycelial development, hyphal layering and bundling, and development of the mature biofilms (≥48 h). P. expansum grows as a complex, multicellular biofilm in 48 h. The metabolic activity and biomass of the fungal biofilms were shown to increase over time and a correlation between metabolism, biofilm mass and hyphal development was found.

  14. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni.

    Science.gov (United States)

    Brown, Helen L; Reuter, Mark; Hanman, Kate; Betts, Roy P; van Vliet, Arnoud H M

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.

  15. Influence of the sulfur species reactivity on biofilm conformation during pyrite colonization by Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Lara, René H; García-Meza, J Viridiana; Cruz, Roel; Valdez-Pérez, Donato; González, Ignacio

    2012-08-01

    Massive pyrite (FeS₂) electrodes were potentiostatically modified by means of variable oxidation pulse to induce formation of diverse surface sulfur species (S(n)²⁻, S⁰). The evolution of reactivity of the resulting surfaces considers transition from passive (e.g., Fe(1-x )S₂) to active sulfur species (e.g., Fe(1-x )S(2-y ), S⁰). Selected modified pyrite surfaces were incubated with cells of sulfur-oxidizing Acidithiobacillus thiooxidans for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the attached cells density and their exopolysaccharides were analyzed by confocal laser scanning microscopy (CLMS) and atomic force microscopy (AFM) on bio-oxidized surfaces; additionally, S(n)²⁻/S⁰ speciation was carried out on bio-oxidized and abiotic pyrite surfaces using Raman spectroscopy. Our results indicate an important correlation between the evolution of S(n)²⁻/S⁰ surface species ratio and biofilm formation. Hence, pyrite surfaces with mainly passive-sulfur species were less colonized by A. thiooxidans as compared to surfaces with active sulfur species. These results provide knowledge that may contribute to establishing interfacial conditions that enhance or delay metal sulfide (MS) dissolution, as a function of the biofilm formed by sulfur-oxidizing bacteria.

  16. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Zhang, Jingdong; Hu, Yifan

    2009-01-01

    . epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both...

  17. Enhanced biofilm formation and multi‐host transmission evolve from divergent genetic backgrounds in C ampylobacter jejuni

    Science.gov (United States)

    Pascoe, Ben; Méric, Guillaume; Murray, Susan; Yahara, Koji; Mageiros, Leonardos; Bowen, Ryan; Jones, Nathan H.; Jeeves, Rose E.; Lappin‐Scott, Hilary M.; Asakura, Hiroshi

    2015-01-01

    Summary Multicellular biofilms are an ancient bacterial adaptation that offers a protective environment for survival in hostile habitats. In microaerophilic organisms such as C ampylobacter, biofilms play a key role in transmission to humans as the bacteria are exposed to atmospheric oxygen concentrations when leaving the reservoir host gut. Genetic determinants of biofilm formation differ between species, but little is known about how strains of the same species achieve the biofilm phenotype with different genetic backgrounds. Our approach combines genome‐wide association studies with traditional microbiology techniques to investigate the genetic basis of biofilm formation in 102 C ampylobacter jejuni isolates. We quantified biofilm formation among the isolates and identified hotspots of genetic variation in homologous sequences that correspond to variation in biofilm phenotypes. Thirteen genes demonstrated a statistically robust association including those involved in adhesion, motility, glycosylation, capsule production and oxidative stress. The genes associated with biofilm formation were different in the host generalist ST‐21 and ST‐45 clonal complexes, which are frequently isolated from multiple host species and clinical samples. This suggests the evolution of enhanced biofilm from different genetic backgrounds and a possible role in colonization of multiple hosts and transmission to humans. PMID:26373338

  18. Antiseptics and microcosm biofilm formation on titanium surfaces

    Directory of Open Access Journals (Sweden)

    Georgia VERARDI

    2016-01-01

    Full Text Available Abstract Oral rehabilitation with osseointegrated implants is a way to restore esthetics and masticatory function in edentulous patients, but bacterial colonization around the implants may lead to mucositis or peri-implantitis and consequent implant loss. Peri-implantitis is the main complication of oral rehabilitation with dental implants and, therefore, it is necessary to take into account the potential effects of antiseptics such as chlorhexidine (CHX, chloramine T (CHT, triclosan (TRI, and essential oils (EO on bacterial adhesion and on biofilm formation. To assess the action of these substances, we used the microcosm technique, in which the oral environment and periodontal conditions are simulated in vitro on titanium discs with different surface treatments (smooth surface - SS, acid-etched smooth surface - AESS, sand-blasted surface - SBS, and sand-blasted and acid-etched surface - SBAES. Roughness measurements yielded the following results: SS: 0.47 µm, AESS: 0.43 µm, SB: 0.79 µm, and SBAES: 0.72 µm. There was statistical difference only between SBS and AESS. There was no statistical difference among antiseptic treatments. However, EO and CHT showed lower bacterial counts compared with the saline solution treatment (control group. Thus, the current gold standard (CHX did not outperform CHT and EO, which were efficient in reducing the biofilm biomass compared with saline solution.

  19. Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material.

    Science.gov (United States)

    de Avila, Erica Dorigatti; Lima, Bruno P; Sekiya, Takeo; Torii, Yasuyoshi; Ogawa, Takahiro; Shi, Wenyuan; Lux, Renate

    2015-10-01

    Bacterial biofilm infections remain prevalent reasons for implant failure. Dental implant placement occurs in the oral environment, which harbors a plethora of biofilm-forming bacteria. Due to its trans-mucosal placement, part of the implant structure is exposed to oral cavity and there is no effective measure to prevent bacterial attachment to implant materials. Here, we demonstrated that UV treatment of titanium immediately prior to use (photofunctionalization) affects the ability of human polymicrobial oral biofilm communities to colonize in the presence of salivary and blood components. UV-treatment of machined titanium transformed the surface from hydrophobic to superhydrophilic. UV-treated surfaces exhibited a significant reduction in bacterial attachment as well as subsequent biofilm formation compared to untreated ones, even though overall bacterial viability was not affected. The function of reducing bacterial colonization was maintained on UV-treated titanium that had been stored in a liquid environment before use. Denaturing gradient gel-electrophoresis (DGGE) and DNA sequencing analyses revealed that while bacterial community profiles appeared different between UV-treated and untreated titanium in the initial attachment phase, this difference vanished as biofilm formation progressed. Our findings confirm that UV-photofunctionalization of titanium has a strong potential to improve outcome of implant placement by creating and maintaining antimicrobial surfaces.

  20. Acidic pH strongly enhances in vitro biofilm formation by a subset of hypervirulent ST-17 Streptococcus agalactiae strains.

    Science.gov (United States)

    D'Urzo, Nunzia; Martinelli, Manuele; Pezzicoli, Alfredo; De Cesare, Virginia; Pinto, Vittoria; Margarit, Immaculada; Telford, John Laird; Maione, Domenico

    2014-04-01

    Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a primary colonizer of the anogenital mucosa of up to 40% of healthy women and an important cause of invasive neonatal infections worldwide. Among the 10 known capsular serotypes, GBS type III accounts for 30 to 76% of the cases of neonatal meningitis. In recent years, the ability of GBS to form biofilm attracted attention for its possible role in fitness and virulence. Here, a new in vitro biofilm formation protocol was developed to guarantee more stringent conditions, to better discriminate between strong-, low-, and non-biofilm-forming strains, and to facilitate interpretation of data. This protocol was used to screen the biofilm-forming abilities of 366 GBS clinical isolates from pregnant women and from neonatal infections of different serotypes in relation to medium composition and pH. The results identified a subset of isolates of serotypes III and V that formed strong biofilms under acidic conditions. Importantly, the best biofilm formers belonged to serotype III hypervirulent clone ST-17. Moreover, the abilities of proteinase K to strongly inhibit biofilm formation and to disaggregate mature biofilms suggested that proteins play an essential role in promoting GBS biofilm initiation and contribute to biofilm structural stability.

  1. A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis

    DEFF Research Database (Denmark)

    Lappann, M.; Claus, H.; van Alen, T.

    2010-01-01

    P>Major pathogenic clonal complexes (cc) of Neisseria meningitidis differ substantially in their point prevalence among healthy carriers. We show that frequently carried pathogenic cc (e.g. sequence type ST-41/44 cc and ST-32 cc) depend on extracellular DNA (eDNA) to initiate in vitro biofilm for....... On the contrary, spreaders (ST-11 and ST-8 cc) are unable to use eDNA for biofilm formation and might compensate for poor colonization properties by high transmission rates....

  2. Direct Electrical Current Reduces Bacterial and Yeast Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Maria Ruiz-Ruigomez

    2016-01-01

    Full Text Available New strategies are needed for prevention of biofilm formation. We have previously shown that 24 hr of 2,000 µA of direct current (DC reduces Staphylococcus epidermidis biofilm formation in vitro. Herein, we examined the effect of a lower amount of DC exposure on S. epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Propionibacterium acnes, and Candida albicans biofilm formation. 12 hr of 500 µA DC decreased S. epidermidis, S. aureus, E. coli, and P. aeruginosa biofilm formation on Teflon discs by 2, 1, 1, and 2 log10 cfu/cm2, respectively (p<0.05. Reductions in S. epidermidis, S. aureus, and E. coli biofilm formation were observed with as few as 12 hr of 200 µA DC (2, 2 and 0.4 log10 cfu/cm2, resp.; a 1 log10 cfu/cm2 reduction in P. aeruginosa biofilm formation was observed at 36 hr. 24 hr of 500 µA DC decreased C. albicans biofilm formation on Teflon discs by 2 log10 cfu/cm2. No reduction in P. acnes biofilm formation was observed. 1 and 2 log10 cfu/cm2 reductions in E. coli and S. epidermidis biofilm formation on titanium discs, respectively, were observed with 12 hr of exposure to 500 µA. Electrical current is a potential strategy to reduce biofilm formation on medical biomaterials.

  3. Dynamics of biofilm formation during anaerobic digestion of organic waste.

    Science.gov (United States)

    Langer, Susanne; Schropp, Daniel; Bengelsdorf, Frank R; Othman, Maazuza; Kazda, Marian

    2014-10-01

    Biofilm-based reactors are effectively used for wastewater treatment but are not common in biogas production. This study investigated biofilm dynamics on biofilm carriers incubated in batch biogas reactors at high and low organic loading rates for sludge from meat industry dissolved air flotation units. Biofilm formation and dynamics were studied using various microscopic techniques. Resulting micrographs were analysed for total cell numbers, thickness of biofilms, biofilm-covered surface area, and the area covered by extracellular polymeric substances (EPS). Cell numbers within biofilms (10(11) cells ml(-1)) were up to one order of magnitude higher compared to the numbers of cells in the fluid reactor content. Further, biofilm formation and structure mainly correlated with the numbers of microorganisms present in the fluid reactor content and the organic loading. At high organic loading (45 kg VS m(-3)), the thickness of the continuous biofilm layer ranged from 5 to 160 μm with an average of 51 μm and a median of 26 μm. Conversely, at lower organic loading (15 kg VS m(-3)), only microcolonies were detectable. Those microcolonies increased in their frequency of occurrence during ongoing fermentation. Independently from the organic loading rate, biofilms were embedded completely in EPS within seven days. The maturation and maintenance of biofilms changed during the batch fermentation due to decreasing substrate availability. Concomitant, detachment of microorganisms within biofilms was observed simultaneously with the decrease of biogas formation. This study demonstrates that biofilms of high cell densities can enhance digestion of organic waste and have positive effects on biogas production.

  4. Biofilm Formation of Pasteurella Multocida on Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Ramachandranpillai Rajagopal

    2013-06-01

    Full Text Available Background and objectives: Biofilms are structural communities of bacterial cells enshrined in a self produced polymeric matrix. The studies on biofilm formation of Pasteurella multocida have become imperative since it is a respiratory pathogen and its biofilm mode could possibly be one of its virulence factors for survival inside a host. The present study describes a biofilm assay for P. multocida on inert hydrophilic material called bentonite clay.Materials and methods: The potential of the organism to form in vitro biofilm was assessed by growing the organism under nutrient restriction along with the inert substrate bentonite clay, which will provide a surface for attachment. For quantification of biofilm, plate count by the spread plate method was employed. Capsule production of the attached bacteria was demonstrated by light microscopic examination following Maneval staining and capsular polysaccharide estimation was done using standard procedures.Results and Conclusion: The biofilm formation peaked on the third day of incubation (1.54 ×106 cfu/g of bentonite clay while the planktonic cells were found to be at a maximum on day one post inoculation (8.10 ×108 cfu/ml of the broth. Maneval staining of late logarithmic phase biofilm cultures revealed large aggregates of bacterial cells, bacteria appearing as chains or as a meshwork. The capsular polysaccharide estimation of biofilm cells revealed a 3.25 times increase over the planktonic bacteria. The biofilm cells cultured on solid media also produced some exclusive colony morphotypes

  5. Host intestinal signal-promoted biofilm dispersal induces Vibrio cholerae colonization.

    Science.gov (United States)

    Hay, Amanda J; Zhu, Jun

    2015-01-01

    Vibrio cholerae causes human infection through ingestion of contaminated food and water, leading to the devastating diarrheal disease cholera. V. cholerae forms matrix-encased aggregates, known as biofilms, in the native aquatic environment. While the formation of V. cholerae biofilms has been well studied, little is known about the dispersal from biofilms, particularly upon entry into the host. In this study, we found that the exposure of mature biofilms to physiologic levels of the bile salt taurocholate, a host signal for the virulence gene induction of V. cholerae, induces an increase in the number of detached cells with a concomitant decrease in biofilm mass. Scanning electron microscopy micrographs of biofilms exposed to taurocholate revealed an altered, perhaps degraded, appearance of the biofilm matrix. The inhibition of protein synthesis did not alter rates of detachment, suggesting that V. cholerae undergoes a passive dispersal. Cell-free media from taurocholate-exposed biofilms contains a larger amount of free polysaccharide, suggesting an abiotic degradation of biofilm matrix by taurocholate. Furthermore, we found that V. cholerae is only able to induce virulence in response to taurocholate after exit from the biofilm. Thus, we propose a model in which V. cholerae ingested as a biofilm has coopted the host-derived bile salt signal to detach from the biofilm and go on to activate virulence.

  6. Decrease of Pseudomonas aeruginosa biofilm formation by food waste materials.

    Science.gov (United States)

    Maderova, Zdenka; Horska, Katerina; Kim, Sang-Ryoung; Lee, Chung-Hak; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2016-01-01

    The formation of bacterial biofilm on various surfaces has significant negative economic effects. The aim of this study was to find a simple procedure to decrease the Pseudomonas aeruginosa biofilm formation in a water environment by using different food waste biological materials as signal molecule adsorbents. The selected biomaterials did not reduce the cell growth but affected biofilm formation. Promising biomaterials were magnetically modified in order to simplify manipulation and facilitate their magnetic separation. The best biocomposite, magnetically modified spent grain, exhibited substantial adsorption of signal molecules and decreased the biofilm formation. These results suggest that selected food waste materials and their magnetically responsive derivatives could be applied to solve biofilm problems in water environment.

  7. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    Full Text Available Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.

  8. Effect of chlorhexidine on oral airway biofilm formation of Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    Ünase Büyükkoçak

    2015-12-01

    Full Text Available Objective: Biofilm formation of microorganisms on the surface of airways may lead to supraglottic colonization that may cause lower respiratuar tract infections. Studies searching the efficiency of local disinfectants on biofilm formation are limited. The aim of this study was to investigate the effects of chlorhexidine coated airways on biofilm formation of Staphylococcus epidermidis. Methods: Culture and electron microscopy methods were used for biofilm assessment. Airways were divided into two groups to investigate the effects of chlorhexidine on number of bacteria attached to the airway and biofilm formation. Group 1(control: naive material, S. epidermidis, Group 2: chlorhexidine coated material, S. epidermidis. No process was applied in Group 1. Chlorhexidine gluconate (0.2% was sprayed on the surface of naive material for four seconds and then left to dry in air, in Group to. Number of bacteria attached to the airway were counted by microbiological methods and biofilm formation was shown by Scanning Electron Microscope (SEM. Mann-Whitney u test was performed for statistical analyses. Results: In Group 2, bacteria numbers were 1x102-8x102 cfu/ml, whereas they were 3x103-1x104 cfu/ml in Group 1. Chlorhexidine decreased number of microorganisms attached to the airways with statistical significance (p=0.04. The results of the electron microscopic evaluation were in accordance with the acteriological findings. Conclusion: This study has shown that chlorhexidine coating can successfully reduce the number of adhered bacteria and biofilm formation on airways. J Microbiol Infect Dis 2015;5(4: 162-166

  9. Hydrophilicity of dentin bonding systems influences in vitro Streptococcus mutans biofilm formation

    Science.gov (United States)

    Brambilla, Eugenio; Ionescu, Andrei; Mazzoni, Annalisa; Cadenaro, Milena; Gagliani, Massimo; Ferraroni, Monica; Tay, Franklin; Pashley, David; Breschi, Lorenzo

    2014-01-01

    Objectives To evaluate in vitro Streptococcus mutans (S. mutans) biofilm formation on the surface of five light-curing experimental dental bonding systems (DBS) with increasing hydrophilicity. The null hypothesis tested was that resin chemical composition and hydrophilicity does not affect S. mutans biofilm formation. Methods Five light-curing versions of experimental resin blends with increasing hydrophilicity were investigated (R1, R2, R3, R4 and R5). R1 and R2 contained ethoxylated BisGMA/TEGDMA or BisGMA/TEGDMA, respectively, and were very hydrophobic, were representative of pit-and-fissure bonding agents. R3 was representative of a typical two-step etch- and-rinse adhesive, while R4 and R5 were very hydrophilic resins analogous to self-etching adhesives. Twenty-eight disks were prepared for each resin blend. After a 24 h-incubation at 37 °C, a multilayer monospecific biofilm of S. mutans was obtained on the surface of each disk. The adherent biomass was determined using the MTT assay and evaluated morphologically with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Results R2 and R3 surfaces showed the highest biofilm formation while R1 and R4 showed a similar intermediate biofilm formation. R5 was more hydrophilic and acidic and was significantly less colonized than all the other resins. A significant quadratic relationship between biofilm formation and hydrophilicity of the resin blends was found. CLSM and SEM evaluation confirmed MTT assay results. Conclusions The null hypothesis was rejected since S. mutans biofilm formation was influenced by hydrophilicity, surface acidity and chemical composition of the experimental resins. Further studies using a bioreactor are needed to confirm the results and clarify the role of the single factors. PMID:24954666

  10. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers.

    Science.gov (United States)

    Kruszewski, Kristen M; Nistico, Laura; Longwell, Mark J; Hynes, Matthew J; Maurer, Joshua A; Hall-Stoodley, Luanne; Gawalt, Ellen S

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (-CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an "active" antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively.

  11. The type III protein secretion system contributes to Xanthomonas citri subsp. citri biofilm formation

    KAUST Repository

    Zimaro, Tamara

    2014-04-18

    Background: Several bacterial plant pathogens colonize their hosts through the secretion of effector proteins by a Type III protein secretion system (T3SS). The role of T3SS in bacterial pathogenesis is well established but whether this system is involved in multicellular processes, such as bacterial biofilm formation has not been elucidated. Here, the phytopathogen Xanthomonas citri subsp. citri (X. citri) was used as a model to gain further insights about the role of the T3SS in biofilm formation. Results: The capacity of biofilm formation of different X. citri T3SS mutants was compared to the wild type strain and it was observed that this secretion system was necessary for this process. Moreover, the T3SS mutants adhered proficiently to leaf surfaces but were impaired in leaf-associated growth. A proteomic study of biofilm cells showed that the lack of the T3SS causes changes in the expression of proteins involved in metabolic processes, energy generation, exopolysaccharide (EPS) production and bacterial motility as well as outer membrane proteins. Furthermore, EPS production and bacterial motility were also altered in the T3SS mutants. Conclusions: Our results indicate a novel role for T3SS in X. citri in the modulation of biofilm formation. Since this process increases X. citri virulence, this study reveals new functions of T3SS in pathogenesis. 2014 Zimaro et al.; licensee BioMed Central Ltd.

  12. Pneumococci in biofilms are non-invasive: implications on nasopharyngeal colonization

    Directory of Open Access Journals (Sweden)

    Ryan Paul Gilley

    2014-11-01

    Full Text Available Streptococcus pneumoniae (the pneumococcus is an opportunistic pathogen that colonizes the human nasopharynx asymptomatically. Invasive pneumococcal disease develops following bacterial aspiration into the lungs. Pneumococci within the nasopharynx exist as biofilms, a growth phenotype characterized by surface attachment, encasement within an extracellular matrix, and antimicrobial resistance. Experimental evidence indicates that biofilm pneumococci are attenuated versus their planktonic counterpart. Biofilm pneumococci failed to cause invasive disease in experimentally challenged mice and in vitro were shown to be non-invasive despite being hyper-adhesive. This attenuated phenotype corresponds with observations that biofilm pneumococci elicit significantly less cytokine and chemokine production from host cells than their planktonic counterparts. Microarray and proteomic studies show that pneumococci within biofilms have decreased metabolism, less capsular polysaccharide, and reduced production of the pore-forming toxin pneumolysin. Biofilm pneumococci are predominately in the transparent phenotype, which has elevated cell wall phosphorylcholine, an adhesin subject to C-reactive protein mediated opsonization. Herein, we review these changes in virulence, interpret their impact on colonization and transmission, and discuss the notion that non-invasive biofilms are principal lifestyle of S. pneumoniae.

  13. Functional Relationship between Sucrose and a Cariogenic Biofilm Formation.

    Directory of Open Access Journals (Sweden)

    Jian-Na Cai

    Full Text Available Sucrose is an important dietary factor in cariogenic biofilm formation and subsequent initiation of dental caries. This study investigated the functional relationships between sucrose concentration and Streptococcus mutans adherence and biofilm formation. Changes in morphological characteristics of the biofilms with increasing sucrose concentration were also evaluated. S. mutans biofilms were formed on saliva-coated hydroxyapatite discs in culture medium containing 0, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, or 40% (w/v sucrose. The adherence (in 4-hour biofilms and biofilm composition (in 46-hour biofilms of the biofilms were analyzed using microbiological, biochemical, laser scanning confocal fluorescence microscopic, and scanning electron microscopic methods. To determine the relationships, 2nd order polynomial curve fitting was performed. In this study, the influence of sucrose on bacterial adhesion, biofilm composition (dry weight, bacterial counts, and water-insoluble extracellular polysaccharide (EPS content, and acidogenicity followed a 2nd order polynomial curve with concentration dependence, and the maximum effective concentrations (MECs of sucrose ranged from 0.45 to 2.4%. The bacterial and EPS bio-volume and thickness in the biofilms also gradually increased and then decreased as sucrose concentration increased. Furthermore, the size and shape of the micro-colonies of the biofilms depended on the sucrose concentration. Around the MECs, the micro-colonies were bigger and more homogeneous than those at 0 and 40%, and were surrounded by enough EPSs to support their structure. These results suggest that the relationship between sucrose concentration and cariogenic biofilm formation in the oral cavity could be described by a functional relationship.

  14. Formation of biofilms under phage predation: considerations concerning a biofilm increase.

    Science.gov (United States)

    Hosseinidoust, Zeinab; Tufenkji, Nathalie; van de Ven, Theo G M

    2013-01-01

    Bacteriophages are emerging as strong candidates for combating bacterial biofilms. However, reports indicating that host populations can, in some cases, respond to phage predation by an increase in biofilm formation are of concern. This study investigates whether phage predation can enhance the formation of biofilm and if so, if this phenomenon is governed by the emergence of phage-resistance or by non-evolutionary mechanisms (eg spatial refuge). Single-species biofilms of three bacterial pathogens (Pseudomonas aeruginosa, Salmonella enterica serotype Typhimurium, and Staphylococcus aureus) were pretreated and post-treated with species-specific phages. Some of the phage treatments resulted in an increase in the levels of biofilm of their host. It is proposed that the phenotypic change brought about by acquiring phage resistance is the main reason for the increase in the level of biofilm of P. aeruginosa. For biofilms of S. aureus and S. enterica Typhimurium, although resistance was detected, increased formation of biofilm appeared to be a result of non-evolutionary mechanisms.

  15. Biofilm formation of the black yeast-like fungus Exophiala dermatitidis and its susceptibility to antiinfective agents

    Science.gov (United States)

    Kirchhoff , Lisa; Olsowski, Maike; Zilmans, Katrin; Dittmer, Silke; Haase, Gerhard; Sedlacek, Ludwig; Steinmann, Eike; Buer, Jan; Rath, Peter-Michael; Steinmann, Joerg

    2017-01-01

    Various fungi have the ability to colonize surfaces and to form biofilms. Fungal biofilm-associated infections are frequently refractory to targeted treatment because of resistance to antifungal drugs. One fungus that frequently colonises the respiratory tract of cystic fibrosis (CF) patients is the opportunistic black yeast–like fungus Exophiala dermatitidis. We investigated the biofilm-forming ability of E. dermatitidis and its susceptibility to various antiinfective agents and natural compounds. We tested 58 E. dermatitidis isolates with a biofilm assay based on crystal violet staining. In addition, we used three isolates to examine the antibiofilm activity of voriconazole, micafungin, colistin, farnesol, and the plant derivatives 1,2,3,4,6-penta-O-galloyl-b-D-glucopyranose (PGG) and epigallocatechin-3-gallate (EGCG) with an XTT reduction assay. We analysed the effect of the agents on cell to surface adhesion, biofilm formation, and the mature biofilm. The biofilms were also investigated by confocal laser scan microscopy. We found that E. dermatitidis builds biofilm in a strain-specific manner. Invasive E. dermatitidis isolates form most biomass in biofilm. The antiinfective agents and the natural compounds exhibited poor antibiofilm activity. The greatest impact of the compounds was detected when they were added prior cell adhesion. These findings suggest that prevention may be more effective than treatment of biofilm-associated E. dermatitidis infections. PMID:28211475

  16. Lactobacilli : Important in biofilm formation on voice prostheses

    NARCIS (Netherlands)

    Buijssen, Kevin J. D. A.; Harmsen, Hermie J. M.; van der Mei, Henny C.; Busscher, Henk J.; van der Laan, Bernard F. A. M.

    2007-01-01

    OBJECTIVE: We sought to identify bacterial strains responsible for biofilm formation on silicone rubber voice prostheses. STUDY DESIGN: We conducted an analysis of the bacterial population in biofilms on used silicone rubber voice prostheses by using new microbiological methods. METHODS: Two microbi

  17. The relationship between biofilm formations and capsule in Haemophilus influenzae.

    Science.gov (United States)

    Qin, Liang; Kida, Yutaka; Ishiwada, Naruhiko; Ohkusu, Kiyofumi; Kaji, Chiharu; Sakai, Yoshiro; Watanabe, Kiwao; Furumoto, Akitsugu; Ichinose, Akitoyo; Watanabe, Hiroshi

    2014-03-01

    To evaluate the biofilm formation of non-typeable Haemophilus influenzae (NTHi) and H. influenzae type b (Hib) clinical isolates, we conducted the following study. Serotyping and polymerase chain reaction were performed to identify β-lactamase-negative ampicillin (ABPC)-susceptible (BLNAS), β-lactamase-negative ABPC-resistant (BLNAR), TEM-1 type β-lactamase-producing ABPC-resistant (BLPAR)-NTHi, and Hib. Biofilm formation was investigated by microtiter biofilm assay, as well as visually observation with a scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) in a continuous-flow chamber. As a result, totally 99 strains were investigated, and were classified into 4 groups which were 26 gBLNAS, 22 gBLNAR, 28 gBLPAR-NTHi and 23 Hib strains. The mean OD600 in the microtiter biofilm assay of gBLNAS, gBLNAR, gBLPAR-NTHi, and Hib strains were 0.57, 0.50, 0.34, and 0.08, respectively. NTHi strains were similar in terms of biofilm formations, which were observed by SEM and CLSM. Five Hib strains with the alternated type b cap loci showed significantly increased biofilm production than the other Hib strains. In conclusion, gBLNAS, gBLNAR, and gBLPAR-NTHi strains were more capable to produce biofilms compared to Hib strains. Our data suggested that resistant status may not be a key factor but capsule seemed to play an important role in H. influenzae biofilm formation.

  18. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings.

    Science.gov (United States)

    Brandenburg, Kenneth S; Calderon, Diego F; Kierski, Patricia R; Brown, Amanda L; Shah, Nihar M; Abbott, Nicholas L; Schurr, Michael J; Murphy, Christopher J; McAnulty, Jonathan F; Czuprynski, Charles J

    2015-01-01

    Chronic nonhealing skin wounds often contain bacterial biofilms that prevent normal wound healing and closure and present challenges to the use of conventional wound dressings. We investigated inhibition of Pseudomonas aeruginosa biofilm formation, a common pathogen of chronic skin wounds, on a commercially available biological wound dressing. Building on prior reports, we examined whether the amino acid tryptophan would inhibit P. aeruginosa biofilm formation on the three-dimensional surface of the biological dressing. Bacterial biomass and biofilm polysaccharides were quantified using crystal violet staining or an enzyme linked lectin, respectively. Bacterial cells and biofilm matrix adherent to the wound dressing were visualized through scanning electron microscopy. D-/L-tryptophan inhibited P. aeruginosa biofilm formation on the wound dressing in a dose dependent manner and was not directly cytotoxic to immortalized human keratinocytes although there was some reduction in cellular metabolism or enzymatic activity. More importantly, D-/L-tryptophan did not impair wound healing in a splinted skin wound murine model. Furthermore, wound closure was improved when D-/L-tryptophan treated wound dressing with P. aeruginosa biofilms were compared with untreated dressings. These findings indicate that tryptophan may prove useful for integration into wound dressings to inhibit biofilm formation and promote wound healing.

  19. Dynamic approaches of mixed species biofilm formation using modern technologies.

    Science.gov (United States)

    Doiron, Kim; Linossier, Isabelle; Fay, Fabienne; Yong, Julius; Abd Wahid, Effendy; Hadjiev, Dimitre; Bourgougnon, Nathalie

    2012-07-01

    Bacteria and diatoms exist in sessile communities and develop as biofilm on all surfaces in aqueous environments. The interaction between these microorganisms in biofilm was investigated with a bacterial genus Pseudoalteromonas sp. (strain 3J6) and two benthic diatoms Amphora coffeaeformis and Cylindrotheca closterium. Each biofilm was grown for 22 days. Images from the confocal microscopy show a difference of adhesion between Pseudoalteromonas 3J6 and diatoms. Indeed, a stronger adhesion is found with C. closterium suggesting cohabitation between Pseudoalteromonas 3J6 and C. closterium compared at an adaptation for bacteria and A. coffeaeformis. The cellular attachment and the growth evolution in biofilm formation depend on each species of diatoms in the biofilm. Behaviour of microalgae in presence of bacteria demonstrates the complexity of the marine biofilm.

  20. Spore formation and toxin production in Clostridium difficile biofilms.

    Science.gov (United States)

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  1. Spore formation and toxin production in Clostridium difficile biofilms.

    Directory of Open Access Journals (Sweden)

    Ekaterina G Semenyuk

    Full Text Available The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA, polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  2. Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation.

    Science.gov (United States)

    Rinaudi, Luciana; Fujishige, Nancy A; Hirsch, Ann M; Banchio, Erika; Zorreguieta, Angeles; Giordano, Walter

    2006-11-01

    Rhizobia are non-spore-forming soil bacteria that fix atmospheric nitrogen into ammonia in a symbiosis with legume roots. However, in the absence of a legume host, rhizobia manage to survive and hence must have evolved strategies to adapt to diverse environmental conditions. The capacity to respond to variations in nutrient availability enables the persistence of rhizobial species in soil, and consequently improves their ability to colonize and to survive in the host plant. Rhizobia, like many other soil bacteria, persist in nature most likely in sessile communities known as biofilms, which are most often composed of multiple microbial species. We have been employing in vitro assays to study environmental parameters that might influence biofilm formation in the Medicago symbiont Sinorhizobium meliloti. These parameters include carbon source, amount of nitrate, phosphate, calcium and magnesium as well as the effects of osmolarity and pH. The microtiter plate assay facilitates the detection of subtle differences in rhizobial biofilms in response to these parameters, thereby providing insight into how environmental stress or nutritional status influences rhizobial survival. Nutrients such as sucrose, phosphate and calcium enhance biofilm formation as their concentrations increase, whereas extreme temperatures and pH negatively affect biofilm formation.

  3. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Kruszewski, Kristen M., E-mail: kruszewskik@duq.edu [Duquesne University, Department of Chemistry and Biochemistry, 600 Forbes Avenue, Pittsburgh, PA 15282 (United States); Nistico, Laura, E-mail: lnistico@wpahs.org [Allegheny General Hospital, Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 East North Avenue, 11th floor, South Tower, Pittsburgh, PA 15212 (United States); Longwell, Mark J., E-mail: mlongwel@wpahs.org [Allegheny General Hospital, Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 East North Avenue, 11th floor, South Tower, Pittsburgh, PA 15212 (United States); Hynes, Matthew J., E-mail: mjhynes@go.wustl.edu [Washington University in St. Louis, Department of Chemistry, One Brookings Drive, St. Louis, MO 63130 (United States); Maurer, Joshua A., E-mail: maurer@wustl.edu [Washington University in St. Louis, Department of Chemistry, One Brookings Drive, St. Louis, MO 63130 (United States); Hall-Stoodley, Luanne, E-mail: L.Hall-Stoodley@soton.ac.uk [Southampton Wellcome Trust Clinical Research Facility/NIHR Respiratory BRU, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, Hampshire SO16 6YD (United Kingdom); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Duquesne University, Department of Chemistry and Biochemistry, McGowan Institute for Regenerative Medicine, 600 Forbes Avenue, Pittsburgh, PA 15282 (United States)

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (− CH{sub 3}) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an “active” antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively. - Highlights: ► SS316L was modified with glycol terminated SAMs in order to reduce biofilm growth. ► Antibiotics gentamicin and vancomycin were immobilized on SS316L via SAMs. ► Only the antibiotic modifications reduced biofilm development on SS316L.

  4. Pseudomonas aeruginosa promotes Escherichia coli biofilm formation in nutrient-limited medium.

    Directory of Open Access Journals (Sweden)

    Alessandro Culotti

    Full Text Available Biofilms have been implicated as an important reservoir for pathogens and commensal enteric bacteria such as Escherichia coli in natural and engineered water systems. However, the processes that regulate the survival of E. coli in aquatic biofilms have not been thoroughly studied. We examined the effects of hydrodynamic shear and nutrient concentrations on E. coli colonization of pre-established Pseudomonas aeruginosa biofilms, co-inoculation of E. coli and P. aeruginosa biofilms, and P. aeruginosa colonization of pre-established E. coli biofilms. In nutritionally-limited R2A medium, E. coli dominated biofilms when co-inoculated with P. aeruginosa, and successfully colonized and overgrew pre-established P. aeruginosa biofilms. In more enriched media, P. aeruginosa formed larger clusters, but E. coli still extensively overgrew and colonized the interior of P. aeruginosa clusters. In mono-culture, E. coli formed sparse and discontinuous biofilms. After P. aeruginosa was introduced to these biofilms, E. coli growth increased substantially, resulting in patterns of biofilm colonization similar to those observed under other sequences of organism introduction, i.e., E. coli overgrew P. aeruginosa and colonized the interior of P. aeruginosa clusters. These results demonstrate that E. coli not only persists in aquatic biofilms under depleted nutritional conditions, but interactions with P. aeruginosa can greatly increase E. coli growth in biofilms under these experimental conditions.

  5. Spatial & Temporal Geophysical Monitoring of Microbial Growth and Biofilm Formation

    Science.gov (United States)

    Previous studies have examined the effect of biogenic gases and biomineralization on the acoustic properties of porous media. In this study, we investigated the spatiotemporal effect of microbial growth and biofilm formation on compressional waves and complex conductivity in sand...

  6. Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa.

    Science.gov (United States)

    Scoffield, Jessica; Silo-Suh, Laura

    2016-08-01

    Pseudomonas aeruginosa causes persistent infections in the airways of cystic fibrosis (CF) patients. Airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphotidylcholine, a major component of host cell membranes. Phosphotidylcholine can be degraded by P. aeruginosa to glycerol and fatty acids to increase the availability of glycerol in the CF lung. In this study, we explored the role that glycerol metabolism plays in biofilm formation by P. aeruginosa. We report that glycerol metabolism promotes biofilm formation by both a chronic CF isolate (FRD1) and a wound isolate (PAO1) of P. aeruginosa. Moreover, loss of the GlpR regulator, which represses the expression of genes involved in glycerol metabolism, enhances biofilm formation in FRD1 through the upregulation of Pel polysaccharide. Taken together, our results suggest that glycerol metabolism may be a key factor that contributes to P. aeruginosa persistence by promoting biofilm formation.

  7. Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces

    DEFF Research Database (Denmark)

    Bagge, Dorthe; Hjelm, M.; Johansen, C.

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended...

  8. Role of multicellular aggregates in biofilm formation

    DEFF Research Database (Denmark)

    Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin

    2016-01-01

    In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However......, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm...... initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends...

  9. Molecule Targeting Glucosyltransferase Inhibits Streptococcus mutans Biofilm Formation and Virulence.

    Science.gov (United States)

    Ren, Zhi; Cui, Tao; Zeng, Jumei; Chen, Lulu; Zhang, Wenling; Xu, Xin; Cheng, Lei; Li, Mingyun; Li, Jiyao; Zhou, Xuedong; Li, Yuqing

    2015-10-19

    Dental plaque biofilms are responsible for numerous chronic oral infections and cause a severe health burden. Many of these infections cannot be eliminated, as the bacteria in the biofilms are resistant to the host's immune defenses and antibiotics. There is a critical need to develop new strategies to control biofilm-based infections. Biofilm formation in Streptococcus mutans is promoted by major virulence factors known as glucosyltransferases (Gtfs), which synthesize adhesive extracellular polysaccharides (EPS). The current study was designed to identify novel molecules that target Gtfs, thereby inhibiting S. mutans biofilm formation and having the potential to prevent dental caries. Structure-based virtual screening of approximately 150,000 commercially available compounds against the crystal structure of the glucosyltransferase domain of the GtfC protein from S. mutans resulted in the identification of a quinoxaline derivative, 2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-1,4-dihydro-2-quinoxalinylidene)ethanamine, as a potential Gtf inhibitor. In vitro assays showed that the compound was capable of inhibiting EPS synthesis and biofilm formation in S. mutans by selectively antagonizing Gtfs instead of by killing the bacteria directly. Moreover, the in vivo anti-caries efficacy of the compound was evaluated in a rat model. We found that the compound significantly reduced the incidence and severity of smooth and sulcal-surface caries in vivo with a concomitant reduction in the percentage of S. mutans in the animals' dental plaque (P biofilm formation and the cariogenicity of S. mutans.

  10. Effect of Lactobacillus species on Streptococcus mutans biofilm formation.

    Science.gov (United States)

    Ahmed, Ayaz; Dachang, Wu; Lei, Zhou; Jianjun, Liu; Juanjuan, Qiu; Yi, Xin

    2014-09-01

    Streptococcus mutans is the primary pathogen responsible for initiating dental caries and decay. The presence of sucrose, stimulates S. mutans to produce insoluble glucans to form oral biofilm also known as dental plaque to initiate caries lesion. The GtfB and LuxS genes of S. mutans are responsible for formation and maturation of biofilm. Lactobacillus species as probiotic can reduces the count of S. mutans. In this study effect of different Lactobacillus species against the formation of S. mutans biofilm was observed. Growing biofilm in the presence of sucrose was detected using 96 well microtiter plate crystal violet assay and biofilm formation by S. mutans in the presence of Lactobacillus was detected. Gene expression of biofilm forming genes (GtfB and LuxS) was quantified through Real-time PCR. All strains of Lactobacillus potently reduced the formation of S. mutans biofilm whereas Lactobacillus acidophilus reduced the genetic expression by 60-80%. Therefore, probiotic Lactobacillus species can be used as an alternative instead of antibiotics to decrease the chance of dental caries by reducing the count of S. mutans and their gene expression to maintain good oral health.

  11. Helicobacter pylori-coccoid forms and biofilm formation

    DEFF Research Database (Denmark)

    Andersen, Leif Percival; Rasmussen, Lone

    2009-01-01

    be detected by PCR in water supplies. There is no substantial evidence for viable H. pylori persisting in water supplies. Epidemiological studies suggest that environmental water is a risk factor for H. pylori infection when compared with tap water, and formation of H. pylori biofilm cannot be excluded....... Helicobacter pylori does not seem to take part in biofilm formation in the oral cavity even though the bacterium may be detected....

  12. Microbial diversity of supra- and subgingival biofilms on freshly colonized titanium implant abutments in the human mouth.

    Science.gov (United States)

    Heuer, W; Stiesch, M; Abraham, W R

    2011-02-01

    Supra- and subgingival biofilm formation is considered to be mainly responsible for early implant failure caused by inflammations of periimplant tissues. Nevertheless, little is known about the complex microbial diversity and interindividual similarities around dental implants. An atraumatic assessment was made of the diversity of microbial communities around titanium implants by single strand conformation polymorphism (SSCP) analysis of the 16S rRNA gene amplicons as well as subsequent sequence analysis. Samples of adherent supra- and subgingival periimplant biofilms were collected from ten patients. Additionally, samples of sulcusfluid were taken at titanium implant abutments and remaining teeth. The bacteria in the samples were characterized by SSCP and sequence analysis. A high diversity of bacteria varying between patients and within one patient at different locations was found. Bacteria characteristic for sulcusfluid and supra- and subgingival biofilm communities were identified. Sulcusfluid of the abutments showed higher abundance of Streptococcus species than from residual teeth. Prevotella and Rothia species frequently reported from the oral cavity were not detected at the abutments suggesting a role as late colonizers. Different niches in the human mouth are characterized by specific groups of bacteria. Implant abutments are a very valuable approach to study dental biofilm development in vivo.

  13. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms.

    Science.gov (United States)

    Gu, Huan; Hou, Shuyu; Yongyat, Chanokpon; De Tore, Suzanne; Ren, Dacheng

    2013-09-03

    Bacterial biofilms are ubiquitous and are the major cause of chronic infections in humans and persistent biofouling in industry. Despite the significance of bacterial biofilms, the mechanism of biofilm formation and associated drug tolerance is still not fully understood. A major challenge in biofilm research is the intrinsic heterogeneity in the biofilm structure, which leads to temporal and spatial variation in cell density and gene expression. To understand and control such structural heterogeneity, surfaces with patterned functional alkanthiols were used in this study to obtain Escherichia coli cell clusters with systematically varied cluster size and distance between clusters. The results from quantitative imaging analysis revealed an interesting phenomenon in which multicellular connections can be formed between cell clusters depending on the size of interacting clusters and the distance between them. In addition, significant differences in patterned biofilm formation were observed between wild-type E. coli RP437 and some of its isogenic mutants, indicating that certain cellular and genetic factors are involved in interactions among cell clusters. In particular, autoinducer-2-mediated quorum sensing was found to be important. Collectively, these results provide missing information that links cell-to-cell signaling and interaction among cell clusters to the structural organization of bacterial biofilms.

  14. Transcription Factors Efg1 and Bcr1 Regulate Biofilm Formation and Virulence during Candida albicans-Associated Denture Stomatitis.

    Science.gov (United States)

    Yano, Junko; Yu, Alika; Fidel, Paul L; Noverr, Mairi C

    2016-01-01

    Denture stomatitis (DS) is characterized by inflammation of the oral mucosa in direct contact with dentures and affects a significant number of otherwise healthy denture wearers. The disease is caused by Candida albicans, which readily colonizes and form biofilms on denture materials. While evidence for biofilms on abiotic and biotic surfaces initiating Candida infections is accumulating, a role for biofilms in DS remains unclear. Using an established model of DS in immunocompetent animals, the purpose of this study was to determine the role of biofilm formation in mucosal damage during pathogenesis using C. albicans or mutants defective in morphogenesis (efg1-/-) or biofilm formation (bcr1-/-). For in vivo analyses, rats fitted with custom dentures, consisting of fixed and removable parts, were inoculated with wild-type C. albicans, mutants or reconstituted strains and monitored weekly for fungal burden (denture and palate), body weight and tissue damage (LDH) for up to 8 weeks. C. albicans wild-type and reconstituted mutants formed biofilms on dentures and palatal tissues under in vitro, ex vivo and in vivo conditions as indicated by microscopy demonstrating robust biofilm architecture and extracellular matrix (ECM). In contrast, both efg1-/- and bcr1-/- mutants exhibited poor biofilm growth with little to no ECM. In addition, quantification of fungal burden showed reduced colonization throughout the infection period on dentures and palates of rats inoculated with efg1-/-, but not bcr1-/-, compared to controls. Finally, rats inoculated with efg1-/- and bcr1-/- mutants had minimal palatal tissue damage/weight loss while those inoculated with wild-type or reconstituted mutants showed evidence of tissue damage and exhibited stunted weight gain. These data suggest that biofilm formation is associated with tissue damage during DS and that Efg1 and Bcr1, both central regulators of virulence in C. albicans, have pivotal roles in pathogenesis of DS.

  15. Transcription Factors Efg1 and Bcr1 Regulate Biofilm Formation and Virulence during Candida albicans-Associated Denture Stomatitis.

    Directory of Open Access Journals (Sweden)

    Junko Yano

    Full Text Available Denture stomatitis (DS is characterized by inflammation of the oral mucosa in direct contact with dentures and affects a significant number of otherwise healthy denture wearers. The disease is caused by Candida albicans, which readily colonizes and form biofilms on denture materials. While evidence for biofilms on abiotic and biotic surfaces initiating Candida infections is accumulating, a role for biofilms in DS remains unclear. Using an established model of DS in immunocompetent animals, the purpose of this study was to determine the role of biofilm formation in mucosal damage during pathogenesis using C. albicans or mutants defective in morphogenesis (efg1-/- or biofilm formation (bcr1-/-. For in vivo analyses, rats fitted with custom dentures, consisting of fixed and removable parts, were inoculated with wild-type C. albicans, mutants or reconstituted strains and monitored weekly for fungal burden (denture and palate, body weight and tissue damage (LDH for up to 8 weeks. C. albicans wild-type and reconstituted mutants formed biofilms on dentures and palatal tissues under in vitro, ex vivo and in vivo conditions as indicated by microscopy demonstrating robust biofilm architecture and extracellular matrix (ECM. In contrast, both efg1-/- and bcr1-/- mutants exhibited poor biofilm growth with little to no ECM. In addition, quantification of fungal burden showed reduced colonization throughout the infection period on dentures and palates of rats inoculated with efg1-/-, but not bcr1-/-, compared to controls. Finally, rats inoculated with efg1-/- and bcr1-/- mutants had minimal palatal tissue damage/weight loss while those inoculated with wild-type or reconstituted mutants showed evidence of tissue damage and exhibited stunted weight gain. These data suggest that biofilm formation is associated with tissue damage during DS and that Efg1 and Bcr1, both central regulators of virulence in C. albicans, have pivotal roles in pathogenesis of DS.

  16. Role of Extracellular DNA during Biofilm Formation by Listeria monocytogenes

    DEFF Research Database (Denmark)

    Harmsen, Morten; Lappann, Martin; Knøchel, S

    2010-01-01

    Listeria monocytogenes is a food-borne pathogen that is capable of living in harsh environments. It is believed to do this by forming biofilms, which are surface-associated multicellular structures encased in a self-produced matrix. In this paper we show that in L. monocytogenes extracellular DNA...... (eDNA) may be the only central component of the biofilm matrix and that it is necessary for both initial attachment and early biofilm formation for 41 L. monocytogenes strains that were tested. DNase I treatment resulted in dispersal of biofilms, not only in microtiter tray assays but also in flow...... cell biofilm assays. However, it was also demonstrated that in a culture without eDNA, neither Listeria genomic DNA nor salmon sperm DNA by itself could restore the capacity to adhere. A search for additional necessary components revealed that peptidoglycan (PG), specifically N-acetylglucosamine (NAG...

  17. In vitro colonization of the muscle extracellular matrix components by Escherichia coli O157:H7: the influence of growth medium, temperature and pH on initial adhesion and induction of biofilm formation by collagens I and III.

    Directory of Open Access Journals (Sweden)

    Caroline Chagnot

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC O157:H7 are responsible for repeated food-poisoning cases often caused by contaminated burgers. EHEC infection is predominantly a pediatric illness, which can lead to life-threatening diseases. Ruminants are the main natural reservoir for EHEC and food contamination almost always originates from faecal contamination. In beef meat products, primary bacterial contamination occurs at the dehiding stage of slaughtering. The extracellular matrix (ECM is the most exposed part of the skeletal muscles in beef carcasses. Investigating the adhesion to the main muscle fibrous ECM proteins, insoluble fibronectin, collagen I, III and IV, laminin-α2 and elastin, results demonstrated that the preceding growth conditions had a great influence on subsequent bacterial attachment. In the tested experimental conditions, maximal adhesion to fibril-forming collagens I or III occurred at 25°C and pH 7. Once initially adhered, exposure to lower temperatures, as applied to meat during cutting and storage, or acidification, as in the course of post-mortem physiological modifications of muscle, had no effect on detachment, except at pHu. In addition, dense biofilm formation occurred on immobilized collagen I or III and was induced in growth medium supplemented with collagen I in solution. From this first comprehensive investigation of EHEC adhesion to ECM proteins with respect to muscle biology and meat processing, new research directions for the development of innovative practices to minimize the risk of meat contamination are further discussed.

  18. Alkaloids modulate motility, biofilm formation and antibiotic susceptibility of uropathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Devendra H Dusane

    Full Text Available Alkaloid-containing natural compounds have shown promise in the treatment of microbial infections. However, practical application of many of these compounds is pending a mechanistic understanding of their mode of action. We investigated the effect of two alkaloids, piperine (found in black pepper and reserpine (found in Indian snakeroot, on the ability of the uropathogenic bacterium Escherichia coli CFT073 to colonize abiotic surfaces. Sub-inhibitory concentrations of both compounds (0.5 to 10 µg/mL decreased bacterial swarming and swimming motilities and increased biofilm formation. qRT-PCR revealed a decrease in the expression of the flagellar gene (fliC and motility genes (motA and motB along with an increased expression of adhesin genes (fimA, papA, uvrY. Interestingly, piperine increased penetration of the antibiotics ciprofloxacin and azithromycin into E. coli CFT073 biofilms and consequently enhanced the ability of these antibiotics to disperse pre-established biofilms. The findings suggest that these alkaloids can potentially affect bacterial colonization by hampering bacterial motility and may aid in the treatment of infection by increasing antibiotic penetration in biofilms.

  19. Aminoglycoside inhibition of Staphylococcus aureus biofilm formation is nutrient dependent.

    Science.gov (United States)

    Henry-Stanley, Michelle J; Hess, Donavon J; Wells, Carol L

    2014-06-01

    Biofilms represent microbial communities, encased in a self-produced matrix or extracellular polymeric substance. Microbial biofilms are likely responsible for a large proportion of clinically significant infections and the multicellular nature of biofilm existence has been repeatedly associated with antibiotic resistance. Classical in vitro antibiotic-susceptibility testing utilizes artificial growth media and planktonic microbes, but this method may not account for the variability inherent in environments subject to biofilm growth in vivo. Experiments were designed to test the hypothesis that nutrient concentration can modulate the antibiotic susceptibility of Staphylococcus aureus biofilms. Developing S. aureus biofilms initiated on surgical sutures, and in selected experiments planktonic cultures, were incubated for 16 h in 66 % tryptic soy broth, 0.2 % glucose (1× TSBg), supplemented with bactericidal concentrations of gentamicin, streptomycin, ampicillin or vancomycin. In parallel experiments, antibiotics were added to growth medium diluted one-third (1/3× TSBg) or concentrated threefold (3× TSBg). Following incubation, viable bacteria were enumerated from planktonic cultures or suture sonicates, and biofilm biomass was assayed using spectrophotometry. Interestingly, bactericidal concentrations of gentamicin (5 µg gentamicin ml(-1)) and streptomycin (32 µg streptomycin ml(-1)) inhibited biofilm formation in samples incubated in 1/3× or 1× TSBg, but not in samples incubated in 3× TSBg. The nutrient dependence of aminoglycoside susceptibility is not only associated with biofilm formation, as planktonic cultures incubated in 3× TSBg in the presence of gentamicin also showed antibiotic resistance. These findings appeared specific for aminoglycosides because biofilm formation was inhibited in all three growth media supplemented with bactericidal concentrations of the cell wall-active antibiotics, ampicillin and vancomycin. Additional experiments

  20. Nanoscale Plasma Coating Inhibits Formation of Staphylococcus aureus Biofilm.

    Science.gov (United States)

    Xu, Yuanxi; Jones, John E; Yu, Haiqing; Yu, Qingsong; Christensen, Gordon D; Chen, Meng; Sun, Hongmin

    2015-12-01

    Staphylococcus aureus commonly infects medical implants or devices, with devastating consequences for the patient. The infection begins with bacterial attachment to the device, followed by bacterial multiplication over the surface of the device, generating an adherent sheet of bacteria known as a biofilm. Biofilms resist antimicrobial therapy and promote persistent infection, making management difficult to futile. Infections might be prevented by engineering the surface of the device to discourage bacterial attachment and multiplication; however, progress in this area has been limited. We have developed a novel nanoscale plasma coating technology to inhibit the formation of Staphylococcus aureus biofilms. We used monomeric trimethylsilane (TMS) and oxygen to coat the surfaces of silicone rubber, a material often used in the fabrication of implantable medical devices. By quantitative and qualitative analysis, the TMS/O2 coating significantly decreased the in vitro formation of S. aureus biofilms; it also significantly decreased in vivo biofilm formation in a mouse model of foreign-body infection. Further analysis demonstrated TMS/O2 coating significantly changed the protein adsorption, which could lead to reduced bacterial adhesion and biofilm formation. These results suggest that TMS/O2 coating can be used to effectively prevent medical implant-related infections.

  1. Efficient suppression of biofilm formation by a nucleic acid aptamer.

    Science.gov (United States)

    Ning, Yi; Cheng, Lijuan; Ling, Min; Feng, Xinru; Chen, Lingli; Wu, Minxi; Deng, Le

    2015-08-01

    Biofilms are microbial communities that are attached to a solid surface using extracellular polymeric substances. Motility and initial attachment mediated by flagella are required for biofilm formation. Therefore, blocking the motility of flagella is a potential strategy to inhibit biofilm formation. In this study, single-stranded DNA aptamers specific to the Salmonella choleraesuis were selected after 14 cycles of the systematic evolution of ligands by exponential enrichment. Among the selected aptamers, the aptamer 3 showed the highest affinity for S. choleraesuis with a dissociation constant (Kd) of 41 ± 2 nM. Aptamer 3, conjugated with magnetic beads, was then used to capture its binding target on the bacteria. After mass spectrometry and specific binding analysis, the flagellin was identified as the target captured by aptamer 3. Furthermore, inhibition experiments, inverted microscopy and atomic force microscopy demonstrated that aptamer 3 was able to control the biofilm formation and promote the inhibitory effect of an antibiotic on bacterial biofilms. Single-stranded DNA aptamers therefore have great potential as inhibitors of biofilm formation.

  2. The Possible Role of Staphylococcus epidermidis LPxTG Surface Protein SesC in Biofilm Formation.

    Science.gov (United States)

    Khodaparast, Laleh; Khodaparast, Ladan; Shahrooei, Mohammad; Stijlemans, Benoit; Merckx, Rita; Baatsen, Pieter; O'Gara, James P; Waters, Elaine; Van Mellaert, Lieve; Van Eldere, Johan

    2016-01-01

    Staphylococcus epidermidis is the most common cause of device-associated infections. It has been shown that active and passive immunization in an animal model against protein SesC significantly reduces S. epidermidis biofilm-associated infections. In order to elucidate its role, knock-out of sesC or isolation of S. epidermidis sesC-negative mutants were attempted, however, without success. As an alternative strategy, sesC was introduced into Staphylococcus aureus 8325-4 and its isogenic icaADBC and srtA mutants, into the clinical methicillin-sensitive S. aureus isolate MSSA4 and the MRSA S. aureus isolate BH1CC, which all lack sesC. Transformation of these strains with sesC i) changed the biofilm phenotype of strains 8325-4 and MSSA4 from PIA-dependent to proteinaceous even though PIA synthesis was not affected, ii) converted the non-biofilm-forming strain 8325-4 ica::tet to a proteinaceous biofilm-forming strain, iii) impaired PIA-dependent biofilm formation by 8325-4 srtA::tet, iv) had no impact on protein-mediated biofilm formation of BH1CC and v) increased in vivo catheter and organ colonization by strain 8325-4. Furthermore, treatment with anti-SesC antibodies significantly reduced in vitro biofilm formation and in vivo colonization by these transformants expressing sesC. These findings strongly suggest that SesC is involved in S. epidermidis attachment to and subsequent biofilm formation on a substrate.

  3. Autoinducer-2 influences interactions amongst pioneer colonizing streptococci in oral biofilms.

    Science.gov (United States)

    Cuadra-Saenz, Giancarlo; Rao, Dhana L; Underwood, Adam J; Belapure, Sneha A; Campagna, Shawn R; Sun, Zhichao; Tammariello, Steven; Rickard, Alexander H

    2012-07-01

    Streptococcus gordonii and Streptococcus oralis are among the first bacterial species to colonize clean tooth surfaces. Both produce autoinducer-2 (AI-2): a family of inter-convertible cell-cell signal molecules synthesized by the LuxS enzyme. The overall aim of this work was to determine whether AI-2 alters interspecies interactions between S. gordonii DL1 and S. oralis 34 within dual-species biofilms in flowing human saliva. Based upon AI-2 bioluminescence assays, S. gordonii DL1 produced more AI-2 activity than S. oralis 34 in batch culture, and both were able to remove AI-2 activity from solution. In single-species, saliva-fed flowcell systems, S. oralis 34 formed scant biofilms that were similar to the luxS mutant. Conversely, S. gordonii DL1 formed confluent biofilms while the luxS mutant formed architecturally distinct biofilms that possessed twofold greater biovolume than the wild-type. Supplementing saliva with 0.1-10 nM chemically synthesized AI-2 (csAI-2) restored the S. gordonii DL1 luxS biofilm phenotype to that which was similar to the wild-type; above or below this concentration range, biofilms were architecturally similar to that formed by the luxS mutant. In dual-species biofilms, S. gordonii DL1 was always more abundant than S. oralis 34. Compared with dual-species, wild-type biofilms, the biovolume occupied by S. oralis 34 was reduced by greater than sevenfold when neither species produced AI-2. The addition of 1 nM csAI-2 to the dual-species luxS-luxS mutant biofilms re-established the biofilm phenotype to resemble that of the wild-type pair. Thus, this work demonstrates that AI-2 can alter the biofilm structure and composition of pioneering oral streptococcal biofilms. This may influence the subsequent succession of other species into oral biofilms and the ecology of dental plaque.

  4. The symbiotic biofilm of Sinorhizobium fredii SMH12, necessary for successful colonization and symbiosis of Glycine max cv Osumi, is regulated by Quorum Sensing systems and inducing flavonoids via NodD1.

    Directory of Open Access Journals (Sweden)

    Francisco Pérez-Montaño

    Full Text Available Bacterial surface components, especially exopolysaccharides, in combination with bacterial Quorum Sensing signals are crucial for the formation of biofilms in most species studied so far. Biofilm formation allows soil bacteria to colonize their surrounding habitat and survive common environmental stresses such as desiccation and nutrient limitation. This mode of life is often essential for survival in bacteria of the genera Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Rhizobium. The role of biofilm formation in symbiosis has been investigated in detail for Sinorhizobium meliloti and Bradyrhizobium japonicum. However, for S. fredii this process has not been studied. In this work we have demonstrated that biofilm formation is crucial for an optimal root colonization and symbiosis between S. fredii SMH12 and Glycine max cv Osumi. In this bacterium, nod-gene inducing flavonoids and the NodD1 protein are required for the transition of the biofilm structure from monolayer to microcolony. Quorum Sensing systems are also required for the full development of both types of biofilms. In fact, both the nodD1 mutant and the lactonase strain (the lactonase enzyme prevents AHL accumulation are defective in soybean root colonization. The impairment of the lactonase strain in its colonization ability leads to a decrease in the symbiotic parameters. Interestingly, NodD1 together with flavonoids activates certain quorum sensing systems implicit in the development of the symbiotic biofilm. Thus, S. fredii SMH12 by means of a unique key molecule, the flavonoid, efficiently forms biofilm, colonizes the legume roots and activates the synthesis of Nod factors, required for successfully symbiosis.

  5. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress

    Directory of Open Access Journals (Sweden)

    Aisha Waheed Qurashi

    2012-09-01

    Full Text Available To compensate for stress imposed by salinity, biofilm formation and exopolysaccharide production are significant strategies of salt tolerant bacteria to assist metabolism. We hypothesized that two previously isolated salt-tolerant strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 have an ability to improve plant growth, These strains can form biofilm and accumulate exopolysacharides at increasing salt stress. These results showed that bacteria might be involved in developing microbial communities under salt stress and helpful in colonizing of bacterial strains to plant roots and soil particles. Eventually, it can add to the plant growth and soil structure. We investigated the comparative effect of exopolysacharide and biofilm formation in two bacterial strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 in response to varying salt stress. We found that biofilm formation and exopolysaccharide accumulation increased at higher salinity. To check the effect of bacterial inoculation on the plant (Cicer arietinum Var. CM-98 growth and soil aggregation, pot experiment was conducted by growing seedlings under salt stress. Inoculation of both strains increased plant growth at elevated salt stress. Weight of soil aggregates attached with roots and present in soil were added at higher salt concentrations compared to untreated controls. Soil aggregation was higher at plant roots under salinity. These results suggest the feasibility of using above strains in improving plant growth and soil fertility under salinity.

  6. Coexistence facilitates interspecific biofilm formation in complex microbial communities

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Røder, Henriette Lyng; Russel, Jakob

    2016-01-01

    Social interactions in which bacteria respond to one another by modifying their phenotype are central determinants of microbial communities. It is known that interspecific interactions influence the biofilm phenotype of bacteria; a phenotype that is central to the fitness of bacteria. However...... correlated with an increase in planktonic cell numbers, thus implying a behavioral response rather than mere growth competition. Our findings suggest that an increase in biofilm formation is a common adaptive response to long-term coexistence....

  7. AI-2 of Aggregatibacter actinomycetemcomitans Inhibits Candida albicans Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Endang W. Bachtiar

    2014-07-01

    Full Text Available Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (AI-2, synthesized by LuxS, that plays an important role in expression of virulence factors, in intra- but also in interspecies communication. The aim of this study was to investigate the role of AI-2 based signaling in the interactions between C. albicans and A. actinomycetemcomitans. A. actinomycetemcomitans adhered to C. albicans and inhibited biofilm formation by means of a molecule that was secreted during growth. C. albicans biofilm formation increased significantly when co-cultured with A. actinomycetemcomitans luxS, lacking AI-2 production. Addition of wild-type-derived spent medium or synthetic AI-2 to spent medium of the luxS strain, restored inhibition of C. albicans biofilm formation to wild-type levels. Addition of synthetic AI-2 significantly inhibited hypha formation of C. albicans possibly explaining the inhibition of biofilm formation. AI-2 of A. actinomycetemcomitans is synthesized by LuxS, accumulates during growth and inhibits C. albicans hypha- and biofilm formation. Identifying the molecular mechanisms underlying the interaction between bacteria and fungi may provide important insight into the balance within complex oral microbial communities.

  8. Homologs of the LapD-LapG c-di-GMP Effector System Control Biofilm Formation by Bordetella bronchiseptica

    Science.gov (United States)

    Ambrosis, Nicolás; Boyd, Chelsea D.; O´Toole, George A.; Fernández, Julieta; Sisti, Federico

    2016-01-01

    Biofilm formation is important for infection by many pathogens. Bordetella bronchiseptica causes respiratory tract infections in mammals and forms biofilm structures in nasal epithelium of infected mice. We previously demonstrated that cyclic di-GMP is involved in biofilm formation in B. bronchiseptica. In the present work, based on their previously reported function in Pseudomonas fluorescens, we identified three genes in the B. bronchiseptica genome likely involved in c-di-GMP-dependent biofilm formation: brtA, lapD and lapG. Genetic analysis confirmed a role for BrtA, LapD and LapG in biofilm formation using microtiter plate assays, as well as scanning electron and fluorescent microscopy to analyze the phenotypes of mutants lacking these proteins. In vitro and in vivo studies showed that the protease LapG of B. bronchiseptica cleaves the N-terminal domain of BrtA, as well as the LapA protein of P. fluorescens, indicating functional conservation between these species. Furthermore, while BrtA and LapG appear to have little or no impact on colonization in a mouse model of infection, a B. bronchiseptica strain lacking the LapG protease has a significantly higher rate of inducing a severe disease outcome compared to the wild type. These findings support a role for c-di-GMP acting through BrtA/LapD/LapG to modulate biofilm formation, as well as impact pathogenesis, by B. bronchiseptica PMID:27380521

  9. Surface modification of materials to encourage beneficial biofilm formation

    Directory of Open Access Journals (Sweden)

    Amreeta Sarjit

    2015-10-01

    Full Text Available Biofilms are communities of sessile microorganisms that grow and produce extrapolymeric substances on an abiotic or biotic surface. Although biofilms are often associated with negative impacts, the role of beneficial biofilms is wide and include applications in bioremediation, wastewater treatment and microbial fuel cells. Microbial adhesion to a surface, which is highly dependent on the physicochemical properties of the cells and surfaces, is an essential step in biofilm formation. Surface modification therefore represents an important way to modulate microbial attachment and ultimately biofilm formation by microorganisms. In this review different surface modification processes such as organosilane surface modification, plasma treatment, and chemical modification of carbon nanotubes, electro-oxidation and covalent-immobilization with neutral red and methylene blue molecules are outlined. The effectiveness of these modifications and their industrial applications are also discussed. There is inadequate literature on surface modification as a process to enhance beneficial biofilm formation. These methods need to be safe, economically viable, scalable and environmental friendly and their potential to fulfil these criteria for many applications has yet to be determined.

  10. Biofilm formation and control in a simulated spacecraft water system - Interim results

    Science.gov (United States)

    Schultz, John R.; Taylor, Robert D.; Flanagan, David T.; Gibbons, Randall E.; Brown, Harlan D.; Sauer, Richard L.

    1989-01-01

    The ability of iodine to control microbial contamination and biofilm formation in spacecraft water distribution systems is studied using two stainless steel water subsystems. One subsystem has an iodine level of 2.5 mg/L maintained by an iodinated ion-exchange resin. The other subsystem has no iodine added. Stainless steel coupons are removed from each system to monitor biofilm formation. Results from the first six months of operation indicate that 2.5 mg/L of iodine has limited the number of viable bacteria that can be recovered from the iodinated subsystem. Epifluorescence microscopy of the coupons taken from this subsystem, however, indicates some evidence of microbial colonization after 15 weeks of operation. Numerous bacteria have been continually removed from both the water samples and the coupons taken from the noniodinated subsystem after only 3 weeks of operation.

  11. Effect of Biosynthesized Silver Nanoparticles on Staphylococcus aureus Biofilm Quenching and Prevention of Biofilm Formation

    Institute of Scientific and Technical Information of China (English)

    Pratik R. Chaudhari∗; Shalaka A. Masurkar; Vrishali B. Shidore; Suresh P. Kamble

    2012-01-01

    The development of green experimental processes for the synthesis of nanoparticles is a need in the field of nanotechnology. The synthesis of silver nanoparticles was achieved using Bacillus cereus supernatant and 1 mM silver nitrate. 100 mM glucose was found to quicken the rate of reaction of silver nanoparticles synthesis. UV-visible spectrophotometric analysis was carried out to assess the synthesis of silver nanoparticles. The synthesized silver nanoparticles were further characterized by using Nanoparticle Tracking Analyzer (NTA), Transmission Electron Microscope and Energy Dispersive X-ray spectra. These silver nanoparticles showed enhanced quorum quenching activity against Staphylococcus aureus biofilm and prevention of biofilm formation which can be seen under inverted microscope (40 X). The synergistic effect of silver nanoparticles along with antibiotics in biofilm quenching was found to be effective. In the near future, silver nanoparticles could be used in the treatment of infections caused by highly antibiotic resistant biofilm.

  12. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.

    Science.gov (United States)

    Nguyen, Uyen T; Burrows, Lori L

    2014-09-18

    Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (biofilms with 100μg/ml of DNase for 24h induced incomplete biofilm dispersal, with biofilm remaining compared to control. In contrast, addition of proteinase K completely inhibited biofilm formation, and 72h biofilms-including those grown under stimulatory conditions-were completely dispersed with 100μg/ml proteinase K. Generally-regarded-as-safe proteases bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25μg/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms.

  13. Deacetylation of Fungal Exopolysaccharide Mediates Adhesion and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Mark J. Lee

    2016-04-01

    Full Text Available The mold Aspergillus fumigatus causes invasive infection in immunocompromised patients. Recently, galactosaminogalactan (GAG, an exopolysaccharide composed of galactose and N-acetylgalactosamine (GalNAc, was identified as a virulence factor required for biofilm formation. The molecular mechanisms underlying GAG biosynthesis and GAG-mediated biofilm formation were unknown. We identified a cluster of five coregulated genes that were dysregulated in GAG-deficient mutants and whose gene products share functional similarity with proteins that mediate the synthesis of the bacterial biofilm exopolysaccharide poly-(β1-6-N-acetyl-d-glucosamine (PNAG. Bioinformatic analyses suggested that the GAG cluster gene agd3 encodes a protein containing a deacetylase domain. Because deacetylation of N-acetylglucosamine residues is critical for the function of PNAG, we investigated the role of GAG deacetylation in fungal biofilm formation. Agd3 was found to mediate deacetylation of GalNAc residues within GAG and render the polysaccharide polycationic. As with PNAG, deacetylation is required for the adherence of GAG to hyphae and for biofilm formation. Growth of the Δagd3 mutant in the presence of culture supernatants of the GAG-deficient Δuge3 mutant rescued the biofilm defect of the Δagd3 mutant and restored the adhesive properties of GAG, suggesting that deacetylation is an extracellular process. The GAG biosynthetic gene cluster is present in the genomes of members of the Pezizomycotina subphylum of the Ascomycota including a number of plant-pathogenic fungi and a single basidiomycete species, Trichosporon asahii, likely a result of recent horizontal gene transfer. The current study demonstrates that the production of cationic, deacetylated exopolysaccharides is a strategy used by both fungi and bacteria for biofilm formation.

  14. Staphylokinase Control of Staphylococcus aureus Biofilm Formation and Detachment Through Host Plasminogen Activation.

    Science.gov (United States)

    Kwiecinski, Jakub; Peetermans, Marijke; Liesenborghs, Laurens; Na, Manli; Björnsdottir, Halla; Zhu, Xuefeng; Jacobsson, Gunnar; Johansson, Bengt R; Geoghegan, Joan A; Foster, Timothy J; Josefsson, Elisabet; Bylund, Johan; Verhamme, Peter; Jin, Tao

    2016-01-01

    Staphylococcus aureus biofilms, a leading cause of persistent infections, are highly resistant to immune defenses and antimicrobial therapies. In the present study, we investigated the contribution of fibrin and staphylokinase (Sak) to biofilm formation. In both clinical S. aureus isolates and laboratory strains, high Sak-producing strains formed less biofilm than strains that lacked Sak, suggesting that Sak prevents biofilm formation. In addition, Sak induced detachment of mature biofilms. This effect depended on plasminogen activation by Sak. Host-derived fibrin, the main substrate cleaved by Sak-activated plasminogen, was a major component of biofilm matrix, and dissolution of this fibrin scaffold greatly increased susceptibility of biofilms to antibiotics and neutrophil phagocytosis. Sak also attenuated biofilm-associated catheter infections in mouse models. In conclusion, our results reveal a novel role for Sak-induced plasminogen activation that prevents S. aureus biofilm formation and induces detachment of existing biofilms through proteolytic cleavage of biofilm matrix components.

  15. Subinhibitory concentrations of triclosan promote Streptococcus mutans biofilm formation and adherence to oral epithelial cells.

    Science.gov (United States)

    Bedran, Telma Blanca Lombardo; Grignon, Louis; Spolidorio, Denise Palomari; Grenier, Daniel

    2014-01-01

    Triclosan is a general membrane-active agent with a broad-spectrum antimicrobial activity that is commonly used in oral care products. In this study, we investigated the effect of sub-minimum inhibitory concentrations (MICs) of triclosan on the capacity of the cariogenic bacterium Streptococcus mutans to form biofilm and adhere to oral epithelial cells. As quantified by crystal violet staining, biofilm formation by two reference strains of S. mutans was dose-dependently promoted, in the range of 2.2- to 6.2-fold, by 1/2 and 1/4 MIC of triclosan. Observations by scanning electron microscopy revealed the presence of a dense biofilm attached to the polystyrene surface. Growth of S. mutans in the presence of triclosan at sub-MICs also increased its capacity to adhere to a monolayer of gingival epithelial cells. The expression of several genes involved in adherence and biofilm formation in S. mutans was investigated by quantitative RT-PCR. It was found that sub-MICs of triclosan significantly increased the expression of comD, gtfC, and luxS, and to a lesser extent of gtfB and atlA genes. These findings stress the importance of maintaining effective bactericidal concentrations of therapeutic triclosan since sub-MICs may promote colonization of the oral cavity by S. mutans.

  16. Subinhibitory concentrations of triclosan promote Streptococcus mutans biofilm formation and adherence to oral epithelial cells.

    Directory of Open Access Journals (Sweden)

    Telma Blanca Lombardo Bedran

    Full Text Available Triclosan is a general membrane-active agent with a broad-spectrum antimicrobial activity that is commonly used in oral care products. In this study, we investigated the effect of sub-minimum inhibitory concentrations (MICs of triclosan on the capacity of the cariogenic bacterium Streptococcus mutans to form biofilm and adhere to oral epithelial cells. As quantified by crystal violet staining, biofilm formation by two reference strains of S. mutans was dose-dependently promoted, in the range of 2.2- to 6.2-fold, by 1/2 and 1/4 MIC of triclosan. Observations by scanning electron microscopy revealed the presence of a dense biofilm attached to the polystyrene surface. Growth of S. mutans in the presence of triclosan at sub-MICs also increased its capacity to adhere to a monolayer of gingival epithelial cells. The expression of several genes involved in adherence and biofilm formation in S. mutans was investigated by quantitative RT-PCR. It was found that sub-MICs of triclosan significantly increased the expression of comD, gtfC, and luxS, and to a lesser extent of gtfB and atlA genes. These findings stress the importance of maintaining effective bactericidal concentrations of therapeutic triclosan since sub-MICs may promote colonization of the oral cavity by S. mutans.

  17. Hydrophobic nature and effects of culture conditions on biofilm formation by the cellulolytic actinomycete Thermobifida fusca

    Directory of Open Access Journals (Sweden)

    Almaris N. Alonso

    2015-09-01

    Full Text Available Thermobifida fusca produces a firmly attached biofilm on nutritive and non-nutritive surfaces, such as cellulose, glass, plastic, metal and Teflon®. The ability to bind to surfaces has been suggested as a competitive advantage for microbes in soil environments. Results of previous investigations indicated that a Gram-positive cellulolytic soil bacteria, Cellulomonas uda, a facultative aerobe, specifically adhered to nutritive surfaces forming biofilms, but cells did not colonize non-nutritive surfaces. Cell surface hydrophobicity has been implicated in the interactions between bacteria and the adhesion to surfaces. It was recently described that the cellulolytic actinomycete T. fusca cells hydrophobicity was measured and compared to the cellulolytic soil bacteria C. uda. Also, T. fusca biofilm formation on non-nutritive surface, such as polyvinyl chloride, was examined by testing various culture ingredients to determine a possible trigger mechanism for biofilm formation. Experimental results showed that partitioning of bacterial cells to various hydrocarbons was higher in T. fusca cells than in C. uda. The results of this study suggest that the attachment to multiple surfaces by T. fusca could depend on nutrient availability, pH, salt concentrations, and the higher hydrophobic nature of bacterial cells. Possibly, these characteristics may confer T. fusca a selective advantage to compete and survive among the many environments it thrives.

  18. Bap: a family of surface proteins involved in biofilm formation.

    Science.gov (United States)

    Lasa, Iñigo; Penadés, José R

    2006-03-01

    A group of surface proteins sharing several structural and functional features is emerging as an important element in the biofilm formation process of diverse bacterial species. The first member of this group of proteins was identified in a Staphylococcus aureus mastitis isolate and was named Bap (biofilm-associated protein). As common structural features, Bap-related proteins: (i) are present on the bacterial surface; (ii) show a high molecular weight; (iii) contain a core domain of tandem repeats; (iv) confer upon bacteria the capacity to form a biofilm; (v) play a relevant role in bacterial infectious processes; and (vi) can occasionally be contained in mobile elements. This review summarizes recent studies that have identified and assigned roles to Bap-related proteins in biofilm biology and virulence.

  19. Evolution of biofilms during the colonization process of pyrite by Acidithiobacillus thiooxidans.

    Science.gov (United States)

    González, Dulce M; Lara, René H; Alvarado, Keila N; Valdez-Pérez, Donato; Navarro-Contreras, Hugo R; Cruz, Roel; García-Meza, Jessica Viridiana

    2012-01-01

    We have applied epifluorescence principles, atomic force microscopy, and Raman studies to the analysis of the colonization process of pyrite (FeS(2)) by sulfuroxidizing bacteria Acidithiobacillus thiooxidans after 1, 15, 24, and 72 h. For the stages examined, we present results comprising the evolution of biofilms, speciation of S (n) (2-) /S(0) species, adhesion forces of attached cells, production and secretion of extracellular polymeric substances (EPS), and its biochemical composition. After 1 h, highly dispersed attached cells in the surface of the mineral were observed. The results suggest initial non-covalent, weak interactions (e.g., van der Waal's, hydrophobic interactions), mediating an irreversible binding mechanism to electrooxidized massive pyrite electrode (eMPE), wherein the initial production of EPS by individual cells is determinant. The mineral surface reached its maximum cell cover between 15 to 24 h. Longer biooxidation times resulted in the progressive biofilm reduction on the mineral surface. Quantification of attached cell adhesion forces indicated a strong initial mechanism (8.4 nN), whereas subsequent stages of mineral colonization indicated stability of biofilms and of the adhesion force to an average of 4.2 nN. A variable EPS (polysaccharides, lipids, and proteins) secretion at all stages was found; thus, different architectural conformation of the biofilms was observed during 120 h. The main EPS produced were lipopolysaccharides which may increase the hydrophobicity of A. thiooxidans biofilms. The highest amount of lipopolysaccharides occurred between 15-72 h. In contrast with abiotic surfaces, the progressive depletion of S (n) (2-) /S(0) was observed on biotic eMPE surfaces, indicating consumption of surface sulfur species. All observations indicated a dynamic biooxidation mechanism of pyrite by A. thiooxidans, where the biofilms stability and composition seems to occur independently from surface sulfur species depletion.

  20. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation.

    Science.gov (United States)

    Wu, C-C; Lin, C-T; Wu, C-Y; Peng, W-S; Lee, M-J; Tsai, Y-C

    2015-02-01

    Dental caries arises from an imbalance of metabolic activities in dental biofilms developed primarily by Streptococcus mutans. This study was conducted to isolate potential oral probiotics with antagonistic activities against S. mutans biofilm formation from Lactobacillus salivarius, frequently found in human saliva. We analysed 64 L. salivarius strains and found that two, K35 and K43, significantly inhibited S. mutans biofilm formation with inhibitory activities more pronounced than those of Lactobacillus rhamnosus GG (LGG), a prototypical probiotic that shows anti-caries activity. Scanning electron microscopy showed that co-culture of S. mutans with K35 or K43 resulted in significantly reduced amounts of attached bacteria and network-like structures, typically comprising exopolysaccharides. Spot assay for S. mutans indicated that K35 and K43 strains possessed a stronger bactericidal activity against S. mutans than LGG. Moreover, quantitative real-time polymerase chain reaction showed that the expression of genes encoding glucosyltransferases, gtfB, gtfC, and gtfD was reduced when S. mutans were co-cultured with K35 or K43. However, LGG activated the expression of gtfB and gtfC, but did not influence the expression of gtfD in the co-culture. A transwell-based biofilm assay indicated that these lactobacilli inhibited S. mutans biofilm formation in a contact-independent manner. In conclusion, we identified two L. salivarius strains with inhibitory activities on the growth and expression of S. mutans virulence genes to reduce its biofilm formation. This is not a general characteristic of the species, so presents a potential strategy for in vivo alteration of plaque biofilm and caries.

  1. Quercus cerris extracts limit Staphylococcus aureus biofilm formation

    Science.gov (United States)

    Hobby, Gerren H.; Quave, Cassandra L.; Nelson, Katie; Compadre, Cesar M.; Beenken, Karen E.; Smeltzer, Mark S.

    2012-01-01

    Ethnopharmacological relevance Quercus cerris L., Fagaceae has been used in traditional Mediterranean medicine for numerous purposes, including anti-infective therapies for diarrhea and wound care. Aim of the study To evaluate the anti-staphylococcal activity of fractions of ethanolic extracts of Q. cerris leaf and stem/fruit samples in models for biofilm and growth inhibition. Materials and methods Ethanolic extracts of Q. cerris leaves and stems/fruits were prepared, resuspended in water and fractioned by successively partitioning with hexane, ethyl acetate and butanol. The ability of the fractions to inhibit Staphylococcus aureus biofilm formation was tested using static crystal violet staining methods and confocal laser scanning microscopy. Growth studies were conducted to determine if the diminished capacity to form a biofilm was related to growth inhibition. Results The butanol extracts of both the leaf and stem/fruit samples were the most active, and at a dose of 200 μg/ml, the capacity to form a biofilm was limited to a level equivalent to that of the sarA mutant controls. Further examination of the impact of these fractions on S. aureus growth revealed that biofilm inhibition by the leaf butanol fraction was due to its bacteriostatic activity. The stem/fruit butanol fraction, however, showed a limited impact on growth, thus demonstrating that biofilm inhibition in this case is not related to the bacteriostatic activity of the extract. Conclusion Our evaluation of a medicinal plant used in Mediterranean ethnotherapies for infectious disease has demonstrated significant activity in the inhibition of staphylococcal biofilm formation with a mechanism unrelated to staphylococcal growth inhibition. These results contribute towards validation of this botanical remedy and form the groundwork for future studies in the search for novel biofilm inhibiting drugs. PMID:23127649

  2. The interconnection between biofilm formation and horizontal gene transfer

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Burmølle, Mette; Hansen, Lars H.

    2012-01-01

    Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because of their beli......Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because...... of their believed importance in the understanding of the adaptation and subsequent evolution of social traits in bacteria. Here, we discuss current evidence for such interconnectedness centred on plasmids. Horizontal transfer rates are typically higher in biofilm communities compared with those in planktonic states....... Biofilms, furthermore, promote plasmid stability and may enhance the host range of mobile genetic elements that are transferred horizontally. Plasmids, on the other hand, are very well suited to promote the evolution of social traits such as biofilm formation. This, essentially, transpires because plasmids...

  3. Biofilm formation and sanitizer resistance of Escherichia coli O157:H7 strains isolated from "high event period" meat contamination.

    Science.gov (United States)

    Wang, Rong; Kalchayanand, Norasak; King, David A; Luedtke, Brandon E; Bosilevac, Joseph M; Arthur, Terrance M

    2014-11-01

    In the meat industry, a "high event period" (HEP) is defined as a time period during which commercial meat plants experience a higher than usual rate of Escherichia coli O157:H7 contamination. Genetic analysis indicated that within a HEP, most of the E. coli O157:H7 strains belong to a singular dominant strain type. This was in disagreement with the current beef contamination model stating that contamination occurs when incoming pathogen load on animal hides, which consists of diverse strain types of E. coli O157:H7, exceeds the intervention capacity. Thus, we hypothesize that the HEP contamination may be due to certain in-plant colonized E. coli O157:H7 strains that are better able to survive sanitization through biofilm formation. To test our hypothesis, a collection of 45 E. coli O157:H7 strains isolated from HEP beef contamination incidents and a panel of 47 E. coli O157:H7 strains of diverse genetic backgrounds were compared for biofilm formation and sanitizer resistance. Biofilm formation was tested on 96-well polystyrene plates for 1 to 6 days. Biofilm cell survival and recovery growth after sanitization were compared between the two strain collections using common sanitizers, including quaternary ammonium chloride, chlorine, and sodium chlorite. No difference in "early stage" biofilms was observed between the two strain collections after incubation at 22 to 25°C for 1 or 2 days. However, the HEP strains demonstrated significantly higher potency of "mature" biofilm formation after incubation for 4 to 6 days. Biofilms of the HEP strains also exhibited significantly stronger resistance to sanitization. These data suggest that biofilm formation and sanitization resistance could have a role in HEP beef contamination by E. coli O157:H7, which highlights the importance of proper and complete sanitization of food contact surfaces and food processing equipment in commercial meat plants.

  4. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ-Grown Dental Biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Ibsen, Casper Jon Steenberg; Birkedal, Henrik;

    2016-01-01

    This two-period crossover study investigated the effect of calcium-phosphate-osteopontin particles on biofilm formation and pH in 48-h biofilms grown in situ. Bovine milk osteopontin is a highly phosphorylated glycoprotein that has been shown to interfere with bacterial adhesion to salivary......-coated surfaces. Calcium-phosphate-osteopontin particles have been shown to reduce biofilm formation and pH drops in a 5-species laboratory model of dental biofilm without affecting bacterial viability. Here, smooth surface biofilms from 10 individuals were treated ex vivo 6 times/day for 30 min with either...... calcium-phosphate-osteopontin particles or sterile saline. After growth, the amount of biofilm formed was determined by confocal microscopy, and pH drops upon exposure to glucose were monitored using confocal-microscopy-based pH ratiometry. A total of 160 biofilms were analysed. No adverse effects...

  5. Effect of Lactoferrin on Oral Biofilm Formation

    Science.gov (United States)

    2009-10-01

    and free-floating forms. In the oral cavity, microbial biofilms including dental plaque, are involved in the pathogenesis of caries, periodontitis ...plaque-associated oral infections, including dental caries and periodontitis . One of these candidates is lactoferrin [LF]. Lactoferrin, a...research data was subsequently submitted to Oral Microbiology and Immunology journal for publication. Both the PI and Dr. Kai Leung at the USADTRD

  6. The road to ruin: the formation of disease-associated oral biofilms.

    Science.gov (United States)

    Jakubovics, N S; Kolenbrander, P E

    2010-11-01

    The colonization of oral surfaces by micro-organisms occurs in a characteristic sequence of stages, each of which is potentially amenable to external intervention. The process begins with the adhesion of bacteria to host receptors on epithelial cells or in the salivary pellicle covering tooth surfaces. Interbacterial cell-cell binding interactions facilitate the attachment of new species and increase the diversity of the adherent microbial population. Microbial growth in oral biofilms is influenced by the exchange of chemical signals, metabolites and toxic products between neighbouring cells. Bacterial cells on tooth surfaces (dental plaque) produce extracellular polymers such as complex carbohydrates and nucleic acids. These large molecules form a protective matrix that contributes to the development of dental caries and, possibly, to periodontitis. The identification of key microbial factors underlying each step in the formation of oral biofilms will provide new opportunities for preventative or therapeutic measures aimed at controlling oral infectious diseases.

  7. Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.

    Science.gov (United States)

    Biggs, Matthew B; Papin, Jason A

    2013-01-01

    Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.

  8. Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.

    Directory of Open Access Journals (Sweden)

    Matthew B Biggs

    Full Text Available Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.

  9. Comparison of Switching and Biofilm Formation between MTL-Homozygous Strains of Candida albicans and Candida dubliniensis.

    Science.gov (United States)

    Pujol, Claude; Daniels, Karla J; Soll, David R

    2015-12-01

    Candida albicans and Candida dubliniensis are highly related species that share the same main developmental programs. In C. albicans, it has been demonstrated that the biofilms formed by strains heterozygous and homozygous at the mating type locus (MTL) differ functionally, but studies rarely identify the MTL configuration. This becomes a particular problem in studies of C. dubliniensis, given that one-third of natural strains are MTL homozygous. For that reason, we have analyzed MTL-homozygous strains of C. dubliniensis for their capacity to switch from white to opaque, the stability of the opaque phenotype, CO2 induction of switching, pheromone induction of adhesion, the effects of minority opaque cells on biofilm thickness and dry weight, and biofilm architecture in comparison with C. albicans. Our results reveal that C. dubliniensis strains switch to opaque at lower average frequencies, exhibit a far lower level of opaque phase stability, are not stimulated to switch by high CO2, exhibit more variability in biofilm architecture, and most notably, form mature biofilms composed predominately of pseudohyphae rather than true hyphae. Therefore, while several traits of MTL-homozygous strains of C. dubliniensis appear to be degenerating or have been lost, others, most notably several related to biofilm formation, have been conserved. Within this context, the possibility is considered that C. dubliniensis is transitioning from a hypha-dominated to a pseudohypha-dominated biofilm and that aspects of C. dubliniensis colonization may provide insights into the selective pressures that are involved.

  10. Conditioning film and initial biofilm formation on ceramics tiles in the marine environment.

    Science.gov (United States)

    Siboni, Nachshon; Lidor, Michal; Kramarsky-Winter, Esti; Kushmaro, Ariel

    2007-09-01

    The formation of biofilm on surfaces in the marine environment is believed to be an important factor driving colonization and recruitment of some sessile invertebrate communities. The present study follows the process of biofilm buildup on unglazed ceramic tiles deployed into the marine environment in the northern Gulf of Eilat. PCR-DGGE of film eluted from the tile surface indicated the presence of bacteria as early as 2 h after deployment. The makeup of the biofilm bacterial community was dynamic. Bacterial presence was apparent microscopically 6 h after deployment, though a developed biofilm was not observed until 24 h following deployment. Total organic carbon (TOC) data suggest that a conditioning film was built within the first four hours following deployment. During this time period TOC reached the highest level possibly due to adhesion of organics (e.g., sugars, proteins and humic substances) from the water column. We suggest that the primary adhering bacteria, whilst still in the reversible stage of adhesion, utilize the conditioning film as food causing the decrease in TOC. Understanding the dynamics between these primary bacterial settlers is of importance, since they may play a role on the succession of invertebrate species settlement onto artificial surfaces.

  11. Biofilm formation on the surface of ceramic tiles.

    Science.gov (United States)

    Sessa, R; Di Pietro, M; Zamparelli, M; Schiavoni, G; Del Piano, M

    2000-10-01

    The aim of the study was to investigate the formation of biofilm on the surface of ceramic tiles, widely present in public and private buildings, using six parallel flow chambers. Our flow system was conceived and made to compare biofilm results by parallel distributed rectangular tiles. The tiles, divided into two identical A and B sections, were placed within the flow chambers. Biofilm formation was performed after 72 h and was quantified by viable counts of bacteria. Average viable counts ranged from 1.1x10(7) to 7.3x10(7) cfu cm(-2) and from 1.1x10(7) to 5.8x10(7) cfu cm(-2) respectively for biofilm A and B sections. As statistical analysis does not show significant differences, we can conclude that biofilms obtained were so similar to each other that they confirmed the system reproducibility. Our next step will be to use our system to study Legionella pneumophila and to evaluate the efficacy of antibacterial agents.

  12. Effect of residual sanitizers on Salmonella enterica biofilm formation

    Science.gov (United States)

    Introduction: Salmonella enterica are a diverse group of bacteria that represent a serious risk to public health. Bacterial attachment on food and contact surfaces can lead to biofilm formation, and once in this state, bacteria are more resistant to sanitization and may serve as a continuous contam...

  13. BACTERIAL BIOFILM FORMATION UNDER MICROGRAVITY CONDITIONS. (R825503)

    Science.gov (United States)

    Although biofilm formation is widely documented on Earth, it has not been demonstrated in the absence of gravity. To explore this possibility, Pseudomonas aeruginosa, suspended in sterile buffer, was flown in a commercial payload on space shuttle flight STS-95. During earth or...

  14. Visualizing biofilm formation in endotracheal tubes using endoscopic three-dimensional optical coherence tomography

    Science.gov (United States)

    Heidari, Andrew E.; Moghaddam, Samer; Troung, Kimberly K.; Chou, Lidek; Genberg, Carl; Brenner, Matthew; Chen, Zhongping

    2015-12-01

    Biofilm formation has been linked to ventilator-associated pneumonia, which is a prevalent infection in hospital intensive care units. Currently, there is no rapid diagnostic tool to assess the degree of biofilm formation or cellular biofilm composition. Optical coherence tomography (OCT) is a minimally invasive, nonionizing imaging modality that can be used to provide high-resolution cross-sectional images. Biofilm deposited in critical care patients' endotracheal tubes was analyzed in vitro. This study demonstrates that OCT could potentially be used as a diagnostic tool to analyze and assess the degree of biofilm formation and extent of airway obstruction caused by biofilm in endotracheal tubes.

  15. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria

    OpenAIRE

    Furukawa, Soichi; Akiyoshi, Yuko; O’Toole, George A; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-01-01

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and i...

  16. Antibiotic Resistance Related to Biofilm Formation in Klebsiella pneumoniae

    Directory of Open Access Journals (Sweden)

    Claudia Vuotto

    2014-09-01

    Full Text Available The Gram-negative opportunistic pathogen, Klebsiella pneumoniae, is responsible for causing a spectrum of community-acquired and nosocomial infections and typically infects patients with indwelling medical devices, especially urinary catheters, on which this microorganism is able to grow as a biofilm. The increasingly frequent acquisition of antibiotic resistance by K. pneumoniae strains has given rise to a global spread of this multidrug-resistant pathogen, mostly at the hospital level. This scenario is exacerbated when it is noted that intrinsic resistance to antimicrobial agents dramatically increases when K. pneumoniae strains grow as a biofilm. This review will summarize the findings about the antibiotic resistance related to biofilm formation in K. pneumoniae.

  17. Regulation of biofilm formation in Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Simm, Roger; Ahmad, Irfan; Rhen, Mikael; Le Guyon, Soazig; Römling, Ute

    2014-01-01

    In animals, plants and the environment, Salmonella enterica serovar Typhimurium forms the red dry and rough (rdar) biofilm characterized by extracellular matrix components curli and cellulose. With complex expression control by at least ten transcription factors, the bistably expressed orphan response regulator CsgD directs rdar morphotype development. CsgD expression is an integral part of the Hfq regulon and the complex cyclic diguanosine monophosphate signaling network partially controlled by the global RNA-binding protein CsrA. Cell wall turnover and the periplasmic redox status regulate csgD expression on a post-transcriptional level by unknown mechanisms. Furthermore, phosphorylation of CsgD is a potential inactivation and degradation signal in biofilm dissolution. Including complex incoherent feed-forward loops, regulation of biofilm formation versus motility and virulence is of recognized complexity.

  18. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: influence of calcium on EPS production and biofilm formation by these isolates.

    Science.gov (United States)

    López-Moreno, Angélica; Sepúlveda-Sánchez, José David; Mercedes Alonso Guzmán, Elia Mercedes; Le Borgne, Sylvie

    2014-01-01

    Heterotrophic CaCO3-precipitating bacteria were isolated from biofilms on deteriorated ignimbrites, siliceous acidic rocks, from Morelia Cathedral (Mexico) and identified as Enterobacter cancerogenus (22e), Bacillus sp. (32a) and Bacillus subtilis (52g). In solid medium, 22e and 32a precipitated calcite and vaterite while 52g produced calcite. Urease activity was detected in these isolates and CaCO3 precipitation increased in the presence of urea in the liquid medium. In the presence of calcium, EPS production decreased in 22e and 32a and increased in 52g. Under laboratory conditions, ignimbrite colonization by these isolates only occurred in the presence of calcium and no CaCO3 was precipitated. Calcium may therefore be important for biofilm formation on stones. The importance of the type of stone, here a siliceous stone, on biological colonization is emphasized. This calcium effect has not been reported on calcareous materials. The importance of the effect of calcium on EPS production and biofilm formation is discussed in relation to other applications of CaCO3 precipitation by bacteria.

  19. Bacterial biofilm formation, pathogenicity, diagnostics and control: An overview

    Directory of Open Access Journals (Sweden)

    Sawhney Rajesh

    2009-07-01

    Full Text Available Bacterial biofilms are complex, mono- or poly-microbialn communities adhering to biotic or abiotic surfaces. This adaptation has been implicated as a survival strategy. The formation of biofilms is mediated by mechanical, biochemical and genetical factors. The biofilms enhance the virulence of the pathogen and have their potential role in various infections, such as dental caries, cystic fibrosis, osteonecrosis, urinary tract infection and eye infections. A number of diagnostic techniques, viz., bright-field microscopy, epifluorescence microscopy, scanning electron microscopy, confocal laser scanning microscopy and amplicon length heterogeneity polymerase chain reaction, have been employed for detection of these communities. Researchers have worked on applications of catheter lock solutions, a fish protein coating, acid shock treatment, susceptibility to bacteriophages, etc., for biofilm control. However, we need to rearrange our strategies to have thorough insight and concentrate on priority basis to develop new accurate, precise and rapid diagnostic protocols for detection and evaluation of biofilm. Above all, the strict compliance to these techniques is required for accurate diagnosis and control.

  20. Changes in biofilm structure during the colonization of chalcopyrite by Acidithiobacillus thiooxidans.

    Science.gov (United States)

    García-Meza, J V; Fernández, J J; Lara, R H; González, I

    2013-07-01

    Biofilms of Acidithiobacillus thiooxidans were grown on the surface of massive chalcopyrite electrodes (MCE) where different secondary sulfur phases were previously formed by potentiostatic oxidation of MCE at 0.780≤Ean≤0.965 V (electrooxidized MCE, eMCE). The formation of mainly S⁰ and minor amounts of CuS and Sn²⁻ were detected on eMCEs. The eMCEs were incubated with A. thiooxidans cells for 1, 12, 24, 48, and 120 h in order to temporally monitor changes in eMCE's secondary phases, biofilm structure, and extracellular polymeric substance (EPS) composition (lipids, proteins, and polysaccharides) using microscopic, spectroscopic, electrochemical, and biochemical techniques. The results show significant cell attachments with stratified biofilm structure since the first hour of incubation and EPS composition changes, the most important being production after 48-120 h when the highest amount of lipids and proteins were registered. During 120 h, periodic oxidation/formation of S⁰/Sn²⁻ was recorded on biooxidized eMCEs, until a stable CuS composition was formed. In contrast, no evidence of CuS formation was observed on the eMCEs of the abiotic control, confirming that CuS formation results from microbial activity. The surface transformation of eMCE induces a structural transformation of the biofilm, evolving directly to a multilayered biofilm with more hydrophobic EPS and proteins after 120 h. Our results suggest that A. thiooxidans responded to the spatial and temporal distribution and chemical reactivity of the Sn²⁻/S⁰/CuS phases throughout 120 h. These results suggested a strong correlation between surface speciation, hydrophobic domains in EPS, and biofilm organization during chalcopyrite biooxidation by A. thiooxidans.

  1. GlpC gene is responsible for biofilm formation and defense against phagocytes and imparts tolerance to pH and organic solvents in Proteus vulgaris.

    Science.gov (United States)

    Wu, Y L; Liu, K S; Yin, X T; Fei, R M

    2015-09-09

    Biofilm-forming bacteria are highly resistant to antibiotics, host immune defenses, and other external conditions. The formation of biofilms plays a key role in colonization and infection. To explore the mechanism of biofilm formation, mutant strains of Proteus vulgaris XC 2 were generated by Tn5 random transposon insertion. Only one biofilm defective bacterial species was identified from among 500 mutants. Inactivation of the glpC gene coding an anaerobic glycerol-3-phosphate dehydrogenase subunit C was identified by sequence analysis of the biofilm defective strain. Differences were detected in the growth phenotypes of the wild-type and mutant strains under pH, antibiotic, and organic solvent stress conditions. Furthermore, we observed an increase in the phagocytosis of the biofilm defective strain by the mouse macrophage RAW264.7 cell line compared to the wild-type strain. This study shows that the glpC gene plays an important role in biofilm formation, in addition to imparting pH, organic solvent, and antibiotic tolerance, and defense against phagocytosis to Proteus sp. The results further clarified the mechanism of biofilm formation at the genomic level, and indicated the importance of the glpC gene in this process. This data may provide innovative therapeutic measures against P. vulgaris infections; furthermore, as an important crocodile pathogen, this study also has important significance in the protection of Chinese alligators.

  2. Beneficial biofilms in marine aquaculture? Linking points of biofilm formation mechanisms in Pseudomonas aeruginosa and Pseudoalteromonas species

    Directory of Open Access Journals (Sweden)

    Wiebke Wesseling

    2015-07-01

    Full Text Available For marine aquaculture it is suggested that a specific substrate coated with a beneficial biofilm could prevent fish egg clutches from pathogenic infestations and improve the water quality and health of adult fish while, at the same time, minimising the need for the application of antibiotics. In marine biotopes, the habitat of Pseudoalteromonas species (a strain with suggested beneficial properties, biofilms are mostly discussed in the context of fouling processes. Hence research focuses on unravelling the mechanisms of biofilm formation aiming to prevent formation or to destroy existing biofilms. Initially in this review, particular components of biofilm formation in Pseudomonas aeruginosa, a gram-negative model organism that is responsible for nosocomial infections and considered as a food spoiling agent, are described (extracellular appendages, role of matrix components, cell-cell signalling to get an advanced understanding of biofilm formation. The aim of this treatise is to seek linking points for biofilm formation of P. aeruginosa and Pseudoalteromonas sp., respectively. Furthermore, approaches are discussed for how biofilm formation can be realized to improve fish (larvae rearing by species of the genus Pseudoalteromonas.

  3. Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance.

    Science.gov (United States)

    Patil, Sunil A; Harnisch, Falk; Kapadnis, Balasaheb; Schröder, Uwe

    2010-10-15

    In this paper we investigate the temperature dependence and temperature limits of waste water derived anodic microbial biofilms. We demonstrate that these biofilms are active in a temperature range between 5°C and 45°C. Elevated temperatures during initial biofilm growth not only accelerate the biofilm formation process, they also influence the bioelectrocatalytic performance of these biofilms when measured at identical operation temperatures. For example, the time required for biofilm formation decreases from above 40 days at 15°C to 3.5 days at 35°C. Biofilms grown at elevated temperatures are more electrochemically active at these temperatures than those grown at lower incubation temperature. Thus, at 30°C current densities of 520 μA cm(-2) and 881 μA cm(-2) are achieved by biofilms grown at 22°C and 35°C, respectively. Vice versa, and of great practical relevance for waste water treatment plants in areas of moderate climate, at low operation temperatures, biofilms grown at lower temperatures outperform those grown at higher temperatures. We further demonstrate that all biofilms possess similar lower (0°C) and upper (50°C) temperature limits--defining the operational limits of a respective microbial fuel cell or microbial biosensor--as well as similar electrochemical electron transfer characteristics.

  4. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ Grown Dental Biofilms.

    Science.gov (United States)

    Schlafer, Sebastian; Ibsen, Casper J S; Birkedal, Henrik; Nyvad, Bente

    2017-01-01

    This 2-period crossover study investigated the effect of calcium-phosphate-osteopontin particles on biofilm formation and pH in 48-h biofilms grown in situ. Bovine milk osteopontin is a highly phosphorylated glycoprotein that has been shown to interfere with bacterial adhesion to salivary-coated surfaces. Calcium-phosphate-osteopontin particles have been shown to reduce biofilm formation and pH drops in a 5-species laboratory model of dental biofilm without affecting bacterial viability. Here, smooth surface biofilms from 10 individuals were treated ex vivo 6 times/day for 30 min with either calcium-phosphate-osteopontin particles or sterile saline. After growth, the amount of biofilm formed was determined by confocal microscopy, and pH drops upon exposure to glucose were monitored using confocal-microscopy-based pH ratiometry. A total of 160 biofilms were analysed. No adverse effects of repeated ex vivo treatment with calcium-phosphate-osteopontin particles were observed. Particle treatment resulted in a 32% lower amount of biofilm formed (p Biofilm pH was significantly higher upon particle treatment, both shortly after the addition of glucose and after 30 min of incubation with glucose (p biofilms as well as the remineralizing potential of the particles.

  5. In Vitro Evaluation of Bacteriocins Activity Against Listeria monocytogenes Biofilm Formation.

    Science.gov (United States)

    Camargo, Anderson Carlos; de Paula, Otávio Almeida Lino; Todorov, Svetoslav Dimitrov; Nero, Luís Augusto

    2016-03-01

    The present study aimed to assess the activity of cell-free supernatant (CFS) containing bacteriocins on the formation and maintenance of biofilms developed by Listeria monocytogenes, and the associated effect of bacteriocins and ethylene-diamine-tetra-acetic acid (EDTA) on the formed biofilm. CFS from 9 lactic acid bacteria (LAB) strains was tested for inhibitory activity against 85 L. monocytogenes isolates and 21 LAB strains. Then, 12 L. monocytogenes strains were selected based on genetic profiles and sensitivity to CFS and were subjected to an in vitro assay to assess biofilm formation in microtiter plates, considering different culture media and incubation conditions. Based on these results, 6 L. monocytogenes strains were subjected to the same in vitro procedure to assess biofilm formation, being co-inoculated with CFS. In addition, these strains were subjected to the same in vitro procedure, modified by adding the CFS after biofilm formation. Relevant decrease in biofilm formation was observed in the first experiment, but CFS added after biofilm formation did not eliminate them. CFS from Lactobacillus curvatus ET31 were selected due to its anti-biofilm activity, being associated to EDTA at different concentrations and tested for biofilm control of three strains of L. monocytogenes, using the same in vitro procedure described previously. Concentrated bacteriocin presented poor performance in eliminating formed biofilms, and EDTA concentration presented no evident interference on biofilm elimination. Twelve selected L. monocytogenes strains were positive for investigated virulence makers and negative for luxS gene, recognized as being involved in biofilm formation. Selected L. monocytogenes strains were able to produce biofilms under different conditions. CFSs have the potential to prevent biofilm formation, but they were not able to destroy already formed biofilms. Nevertheless, low concentrations of CFS combined with EDTA caused a relevant reduction in

  6. Biofilm formation by Staphylococcus aureus isolates from skin and soft tissue infections.

    Science.gov (United States)

    Kwiecinski, Jakub; Kahlmeter, Gunnar; Jin, Tao

    2015-05-01

    Many diseases caused by Staphylococcus aureus are associated with biofilm formation. However, the ability of S. aureus isolates from skin and soft tissue infections to form biofilms has not yet been investigated. We tested 160 isolates from patients with various skin infections for biofilm-forming capacity in different growth media. All the isolates formed biofilms, the extent of which depended on the type of growth medium. The thickest biofilms were formed when both plasma and glucose were present in the broth; in this case, S. aureus incorporated host fibrin into the biofilm's matrix. There were no differences in the biofilm formation between isolates from different types of skin infections, except for a particularly good biofilm formation by isolates from diabetic wounds and a weaker biofilm formation by isolates from impetigo. In conclusion, biofilm formation is a universal behavior of S. aureus isolates from skin infections. In some cases, such as in diabetic wounds, a particularly strong biofilm formation most likely contributes to the chronic and recurrent character of the infection. Additionally, as S. aureus apparently uses host fibrin as part of the biofilm structure, we suggest that plasma should be included more frequently in in vitro biofilm studies.

  7. Biofilm formation as a function of adhesin, growth medium, substratum and strain type

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Witsø, Ingun Lund; Klemm, Per

    2011-01-01

    Biofilm formation is involved in the majority of bacterial infections. Comparing six Escherichia coli and Klebsiella pneumoniae isolates revealed significant differences in biofilm formation depending on the growth medium. Fimbriae are known to be involved in biofilm formation, and type 1, F1C...... and P fimbriae were seen to influence biofilm formation significantly different depending on strain background, growth media and aeration as well as surface material. Altogether, this report clearly demonstrates that biofilm formation of a given strain is highly dependent on experimental design...... and that specific mechanisms involved in biofilm formation such as fimbrial expression only play a role under certain environmental conditions. This study underscores the importance of careful selection of experimental conditions when investigating bacterial biofilm formation and to take great precaution/care when...

  8. Data on enterobacteria activity on biofilm formation at surface mango fruit (Mangifera indica L. cv Ataulfo

    Directory of Open Access Journals (Sweden)

    Juan A. Ragazzo-Sánchez

    2016-12-01

    Full Text Available Abiotic factors influenced the capacity of the strains to form biofilms. Classification of the adhesion type is related with the optical density measured on the biofilm formation of tested strains. The relationship between the biofilm formation in real values with theoretical values of the strains was used to determine the mechanism involved during mixed cultures.

  9. Influence of culture heterogeneity in cell surface charge on adhesion and biofilm formation by Enterococcus faecalis

    NARCIS (Netherlands)

    van Merode, Annet E.J.; van der Mei, HC; Busscher, HJ; Krom, BP

    2006-01-01

    Biofilm formation is an increasing problem in medicine, due to the intrinsic resistance of microorganisms in the biofilm mode of growth against the host immune system and antimicrobial therapy. Adhesion is an important step in biofilm formation, influenced, among other factors, by the surface hydrop

  10. Interactions between Lactobacillus crispatus and Bacterial Vaginosis (BV)-Associated Bacterial Species in Initial Attachment and Biofilm Formation

    Science.gov (United States)

    Machado, António; Jefferson, Kimberly Kay; Cerca, Nuno

    2013-01-01

    Certain anaerobic bacterial species tend to predominate the vaginal flora during bacterial vaginosis (BV), with Gardnerella vaginalis being the most common. However, the exact role of G. vaginalis in BV has not yet been determined. The main goal of this study was to test the hypothesis that G. vaginalis is an early colonizer, paving the way for intermediate (e.g., Fusobacterium nucleatum) and late colonizers (e.g., Prevotella bivia). Theoretically, in order to function as an early colonizer, species would need to be able to adhere to vaginal epithelium, even in the presence of vaginal lactobacilli. Therefore, we quantified adherence of G. vaginalis and other BV-associated bacteria to an inert surface pre-coated with Lactobacillus crispatus using a new Peptide Nucleic Acid (PNA) Fluorescence In Situ Hybridization (FISH) methodology. We found that G. vaginalis had the greatest capacity to adhere in the presence of L. crispatus. Theoretically, an early colonizer would contribute to the adherence and/or growth of additional species, so we next quantified the effect of G. vaginalis biofilms on the adherence and growth of other BV-associated species by quantitative Polymerase Chain Reaction (qPCR) technique. Interestingly, G. vaginalis derived a growth benefit from the addition of a second species, regardless of the species. Conversely, G. vaginalis biofilms enhanced the growth of P. bivia, and to a minor extent of F. nucleatum. These results contribute to our understanding of BV biofilm formation and the progression of the disorder. PMID:23739678

  11. Microbial biofilm formation and its consequences for the CELSS program

    Science.gov (United States)

    Mitchell, R.

    1994-01-01

    A major goal of the Controlled Ecology Life Support System (CELSS) program is to provide reliable and efficient life support systems for long-duration space flights. A principal focus of the program is on the growth of higher plants in growth chambers. These crops should be grown without the risk of damage from microbial contamination. While it is unlikely that plant pathogens will pose a risk, there are serious hazards associated with microorganisms carried in the nutrient delivery systems and in the atmosphere of the growth chamber. Our experience in surface microbiology showed that colonization of surfaces with microorganisms is extremely rapid even when the inoculum is small. After initial colonization extensive biofilms accumulate on moist surfaces. These microbial films metabolize actively and slough off continuously to the air and water. During plant growth in the CELSS program, microbial biofilms have the potential to foul sensors and to plug nutrient delivery systems. In addition both metabolic products of microbial growth and degradation products of materials being considered for use as nutrient reservoirs and for delivery are likely sources of chemicals known to adversly affect plant growth.

  12. A role for amyloid in cell aggregation and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Melissa C Garcia

    Full Text Available Cell adhesion molecules in Saccharomyces cerevisiae and Candida albicans contain amyloid-forming sequences that are highly conserved. We have now used site-specific mutagenesis and specific peptide perturbants to explore amyloid-dependent activity in the Candida albicans adhesin Als5p. A V326N substitution in the amyloid-forming region conserved secondary structure and ligand binding, but abrogated formation of amyloid fibrils in soluble Als5p and reduced cell surface thioflavin T fluorescence. When displayed on the cell surface, Als5p with this substitution prevented formation of adhesion nanodomains and formation of large cellular aggregates and model biofilms. In addition, amyloid nanodomains were regulated by exogenous peptides. An amyloid-forming homologous peptide rescued aggregation and biofilm activity of Als5p(V326N cells, and V326N substitution peptide inhibited aggregation and biofilm activity in Als5p(WT cells. Therefore, specific site mutation, inhibition by anti-amyloid peturbants, and sequence-specificity of pro-amyloid and anti-amyloid peptides showed that amyloid formation is essential for nanodomain formation and activation.

  13. The interconnection between biofilm formation and horizontal gene transfer.

    Science.gov (United States)

    Madsen, Jonas Stenløkke; Burmølle, Mette; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes

    2012-07-01

    Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because of their believed importance in the understanding of the adaptation and subsequent evolution of social traits in bacteria. Here, we discuss current evidence for such interconnectedness centred on plasmids. Horizontal transfer rates are typically higher in biofilm communities compared with those in planktonic states. Biofilms, furthermore, promote plasmid stability and may enhance the host range of mobile genetic elements that are transferred horizontally. Plasmids, on the other hand, are very well suited to promote the evolution of social traits such as biofilm formation. This, essentially, transpires because plasmids are independent replicons that enhance their own success by promoting inter-bacterial interactions. They typically also carry genes that heighten their hosts' direct fitness. Furthermore, current research shows that the so-called mafia traits encoded on mobile genetic elements can enforce bacteria to maintain stable social interactions. It also indicates that horizontal gene transfer ultimately enhances the relatedness of bacteria carrying the mobile genetic elements of the same origin. The perspective of this review extends to an overall interconnectedness between horizontal gene transfer, mobile genetic elements and social evolution of bacteria.

  14. Characterization of biofilm formation by Borrelia burgdorferi in vitro.

    Directory of Open Access Journals (Sweden)

    Eva Sapi

    Full Text Available Borrelia burgdorferi, the causative agent of Lyme disease, has long been known to be capable of forming aggregates and colonies. It was recently demonstrated that Borrelia burgdorferi aggregate formation dramatically changes the in vitro response to hostile environments by this pathogen. In this study, we investigated the hypothesis that these aggregates are indeed biofilms, structures whose resistance to unfavorable conditions are well documented. We studied Borrelia burgdorferi for several known hallmark features of biofilm, including structural rearrangements in the aggregates, variations in development on various substrate matrices and secretion of a protective extracellular polymeric substance (EPS matrix using several modes of microscopic, cell and molecular biology techniques. The atomic force microscopic results provided evidence that multilevel rearrangements take place at different stages of aggregate development, producing a complex, continuously rearranging structure. Our results also demonstrated that Borrelia burgdorferi is capable of developing aggregates on different abiotic and biotic substrates, and is also capable of forming floating aggregates. Analyzing the extracellular substance of the aggregates for potential exopolysaccharides revealed the existence of both sulfated and non-sulfated/carboxylated substrates, predominately composed of an alginate with calcium and extracellular DNA present. In summary, we have found substantial evidence that Borrelia burgdorferi is capable of forming biofilm in vitro. Biofilm formation by Borrelia species might play an important role in their survival in diverse environmental conditions by providing refuge to individual cells.

  15. Biofilm formation in Hafnia alvei HUMV-5920, a human isolate

    Directory of Open Access Journals (Sweden)

    Itziar Chapartegui-González

    2016-11-01

    Full Text Available Hafnia alvei is a Gram-negative, rodshaped, facultative anaerobic bacterium of the family Enterobacteriaceae that has been isolated from various mammals, fish, insects and birds. In humans, case reports of Hafnia-associated enteric infections have been chiefly reported in Spain. Although H. alvei shares some virulence mechanisms with other Gram-negative enteropathogens little is known about the factors that contribute to its pathogenesis or virulence factors and regulatory circuits that may enhance the establishment and survival of H. alvei in the environment. The goal of the present study was to analyze the capacity of a H. alvei clinical isolate (strain HUMV-5920 to form biofilms. Biofilm formation by this strain increases during growth at 28 °C compared to 37 °C. Investigation of multicellular behavior by confocal microscopy, crystal violet and calcofluor staining in this strain showed biofilm formation associated with the production of cellulose. Importantly, several genes related to cellulose production including bcsABZC and yhjQ are present in the H. alvei HUMV-5920 chromosome. The ability of H. alvei to adhere to abiotic surfaces and to form biofilms likely contributes to its persistence in the hospital environment or food processing environments, increasing the probability of causing infections. Therefore, a better understanding of the adherence properties of this species will provide greater insights into the diseases it causes.

  16. Studying the Formation of Biofilms on Supports with Different Polarity and Their Efficiency to Treat Wastewater

    Directory of Open Access Journals (Sweden)

    Stavroula Sfaelou

    2015-01-01

    Full Text Available The main objective of this study was the evaluation of biofilm formation onto different supports and of biofilm efficiency to treat wastewater. Two different reactors were used, one with porous polyvinyl alcohol gel (PVA biocarrier and another with a high-density polyethylene (PE biocarrier. The reactor performance was evaluated and the biofilm formed was analyzed with potentiometric mass titrations. The biofilm formation was monitored with diffuse reflectance spectroscopy. The presence of the support did not alter the nature of the biofilm. However, the quantity of the biofilm formed was higher when polar surface groups were present on the support.

  17. Capillary isoelectric focusing--useful tool for detection of the biofilm formation in Staphylococcus epidermidis.

    Science.gov (United States)

    Ruzicka, Filip; Horka, Marie; Hola, Veronika; Votava, Miroslav

    2007-03-01

    The biofilm formation is an important factor of S. epidermidis virulence. Biofilm-positive strains might be clinically more important than biofilm-negative ones. Unlike biofilm-negative staphylococci, biofilm-positive staphylococci are surrounded with an extracellular polysaccharide substance. The presence of this substance on the surface can affect physico-chemical properties of the bacterial cell, including surface charge. 73 S. epidermidis strains were examined for the presence of ica operon, for the ability to form biofilm by Christensen test tube method and for the production of slime by Congo red agar method. Isoelectric points (pI) of these strains were determined by means of Capillary Isoelectric Focusing. The biofilm negative strains focused near pI value 2.3, while the pI values of the biofilm positive strains were near 2.6. Isoelectric point is a useful criterion for the differentiation between biofilm-positive and biofilm-negative S. epidermidis strains.

  18. Structural insight into the role of Streptococcus parasanguinis Fap1 within oral biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, James A.; Simpson, Peter J.; Taylor, Jonathan; Benjamin, Stefi V.; Tagliaferri, Camille; Cota, Ernesto [Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Chen, Yi-Ywan M. [Department of Microbiology and Immunology, and Research Center for Pathogenic Bacteria, Chang Gung University, Tao-Yuan, Taiwan (China); Wu, Hui [Department of Pediatric Dentistry, University of Alabama at Birmingham, School of Dentistry, Birmingham, AL 35294 (United States); Matthews, Stephen, E-mail: s.j.matthews@imperial.ac.uk [Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Crystal structure of Streptococcus parasanguinis Fap1-NR{sub {alpha}} at pH 5.0. Black-Right-Pointing-Pointer pH-dependent conformational changes mediated through electrostatic potential of Fap1-NR{sub {alpha}}. Black-Right-Pointing-Pointer Fap1 facilitates pH-dependent biofilms. Black-Right-Pointing-Pointer We model inter-Fap1 biofilm interactions. -- Abstract: The fimbriae-associated protein 1 (Fap1) is a major adhesin of Streptococcus parasanguinis, a primary colonizer of the oral cavity that plays an important role in the formation of dental plaque. Fap1 is an extracellular adhesive surface fibre belonging to the serine-rich repeat protein (SRRP) family, which plays a central role in the pathogenesis of streptococci and staphylococci. The N-terminal adhesive region of Fap1 (Fap1-NR) is composed of two domains (Fap1-NR{sub {alpha}} and Fap1-NR{sub {beta}}) and is projected away from the bacterial surface via the extensive serine-rich repeat region, for adhesion to the salivary pellicle. The adhesive properties of Fap1 are modulated through a pH switch in which a reduction in pH results in a rearrangement between the Fap1-NR{sub {alpha}} and Fap1-NR{sub {beta}} domains, which assists in the survival of S. parasanguinis in acidic environments. We have solved the structure of Fap1-NR{sub {alpha}} at pH 5.0 at 3.0 A resolution and reveal how subtle rearrangements of the 3-helix bundle combined with a change in electrostatic potential mediates 'opening' and activation of the adhesive region. Further, we show that pH-dependent changes are critical for biofilm formation and present an atomic model for the inter-Fap1-NR interactions which have been assigned an important role in the biofilm formation.

  19. Nasopharyngeal and Adenoid Colonization by Haemophilus influenzae and Haemophilus parainfluenzae in Children Undergoing Adenoidectomy and the Ability of Bacterial Isolates to Biofilm Production.

    Science.gov (United States)

    Kosikowska, Urszula; Korona-Głowniak, Izabela; Niedzielski, Artur; Malm, Anna

    2015-05-01

    Haemophili are pathogenic or opportunistic bacteria often colonizing the upper respiratory tract mucosa. The prevalence of Haemophilus influenzae (with serotypes distribution), and H. parainfluenzae in the nasopharynx and/or the adenoid core in children with recurrent pharyngotonsillitis undergoing adenoidectomy was assessed. Haemophili isolates were investigated for their ability to biofilm production.Nasopharyngeal swabs and the adenoid core were collected from 164 children who underwent adenoidectomy (2-5 years old). Bacteria were identified by the standard methods. Serotyping of H. influenzae was performed using polyclonal and monoclonal antisera. Biofilm formation was detected spectrophotometrically using 96-well microplates and 0.1% crystal violet.Ninety seven percent (159/164) children who underwent adenoidectomy were colonized by Haemophilus spp. The adenoid core was colonized in 99.4% (158/159) children, whereas the nasopharynx in 47.2% (75/159) children (P influenzae were identified, in 22.6% (36/159) children only (nonencapsulated) H. influenzae NTHi (nonencapsulated) isolates were present, whereas 7.5% (12/159) children were colonized by both types. 14.5% (23/159) children were colonized by untypeable (rough) H. influenzae. In 22% (35/159) children H. influenzae serotype d was isolated. Totally, 192 isolates of H. influenzae, 96 isolates of H. parainfluenzae and 14 isolates of other Haemophilus spp. were selected. In 20.1% (32/159) children 2 or 3 phenotypically different isolates of the same species (H. influenzae or H. parainfluenzae) or serotypes (H. influenzae) were identified in 1 child. 67.2% (129/192) isolates of H. influenzae, 56.3% (54/96) isolates of H. parainfluenzae and 85.7% (12/14) isolates of other Haemophilus spp. were positive for biofilm production. Statistically significant differences (P = 0.0029) among H. parainfluenzae biofilm producers and nonproducers in the adenoid core and the nasopharynx were detected.H. influenzae and H

  20. Comparative transcriptional profiling reveals differential expression of pathways directly and indirectly influencing biofilm formation in Escherichia coli O157:H7

    Science.gov (United States)

    Introduction: Escherichia coli O157:H7 (O157) is a frequent cause of foodborne disease outbreaks. O157 encodes virulence factors for colonizing and survival in reservoir animals and the environment. For example, genetic factors promoting biofilm formation are linked to survival of O157 in and outsid...

  1. The Active Component of Aspirin, Salicylic Acid, Promotes Staphylococcus aureus Biofilm Formation in a PIA-dependent Manner.

    Science.gov (United States)

    Dotto, Cristian; Lombarte Serrat, Andrea; Cattelan, Natalia; Barbagelata, María S; Yantorno, Osvaldo M; Sordelli, Daniel O; Ehling-Schulz, Monika; Grunert, Tom; Buzzola, Fernanda R

    2017-01-01

    Aspirin has provided clear benefits to human health. But salicylic acid (SAL) -the main aspirin biometabolite- exerts several effects on eukaryote and prokaryote cells. SAL can affect, for instance, the expression of Staphylococcus aureus virulence factors. SAL can also form complexes with iron cations and it has been shown that different iron chelating molecules diminished the formation of S. aureus biofilm. The aim of this study was to elucidate whether the iron content limitation caused by SAL can modify the S. aureus metabolism and/or metabolic regulators thus changing the expression of the main polysaccharides involved in biofilm formation. The exposure of biofilm to 2 mM SAL induced a 27% reduction in the intracellular free Fe(2+) concentration compared with the controls. In addition, SAL depleted 23% of the available free Fe(2+) cation in culture media. These moderate iron-limited conditions promoted an intensification of biofilms formed by strain Newman and by S. aureus clinical isolates related to the USA300 and USA100 clones. The slight decrease in iron bioavailability generated by SAL was enough to induce the increase of PIA expression in biofilms formed by methicillin-resistant as well as methicillin-sensitive S. aureus strains. S. aureus did not produce capsular polysaccharide (CP) when it was forming biofilms under any of the experimental conditions tested. Furthermore, SAL diminished aconitase activity and stimulated the lactic fermentation pathway in bacteria forming biofilms. The polysaccharide composition of S. aureus biofilms was examined and FTIR spectroscopic analysis revealed a clear impact of SAL in a codY-dependent manner. Moreover, SAL negatively affected codY transcription in mature biofilms thus relieving the CodY repression of the ica operon. Treatment of mice with SAL induced a significant increase of S aureus colonization. It is suggested that the elevated PIA expression induced by SAL might be responsible for the high nasal

  2. The Active Component of Aspirin, Salicylic Acid, Promotes Staphylococcus aureus Biofilm Formation in a PIA-dependent Manner

    Science.gov (United States)

    Dotto, Cristian; Lombarte Serrat, Andrea; Cattelan, Natalia; Barbagelata, María S.; Yantorno, Osvaldo M.; Sordelli, Daniel O.; Ehling-Schulz, Monika; Grunert, Tom; Buzzola, Fernanda R.

    2017-01-01

    Aspirin has provided clear benefits to human health. But salicylic acid (SAL) -the main aspirin biometabolite- exerts several effects on eukaryote and prokaryote cells. SAL can affect, for instance, the expression of Staphylococcus aureus virulence factors. SAL can also form complexes with iron cations and it has been shown that different iron chelating molecules diminished the formation of S. aureus biofilm. The aim of this study was to elucidate whether the iron content limitation caused by SAL can modify the S. aureus metabolism and/or metabolic regulators thus changing the expression of the main polysaccharides involved in biofilm formation. The exposure of biofilm to 2 mM SAL induced a 27% reduction in the intracellular free Fe2+ concentration compared with the controls. In addition, SAL depleted 23% of the available free Fe2+ cation in culture media. These moderate iron-limited conditions promoted an intensification of biofilms formed by strain Newman and by S. aureus clinical isolates related to the USA300 and USA100 clones. The slight decrease in iron bioavailability generated by SAL was enough to induce the increase of PIA expression in biofilms formed by methicillin-resistant as well as methicillin-sensitive S. aureus strains. S. aureus did not produce capsular polysaccharide (CP) when it was forming biofilms under any of the experimental conditions tested. Furthermore, SAL diminished aconitase activity and stimulated the lactic fermentation pathway in bacteria forming biofilms. The polysaccharide composition of S. aureus biofilms was examined and FTIR spectroscopic analysis revealed a clear impact of SAL in a codY-dependent manner. Moreover, SAL negatively affected codY transcription in mature biofilms thus relieving the CodY repression of the ica operon. Treatment of mice with SAL induced a significant increase of S aureus colonization. It is suggested that the elevated PIA expression induced by SAL might be responsible for the high nasal colonization

  3. Effect of proteases on biofilm formation of the plastic-degrading actinomycete Rhodococcus ruber C208.

    Science.gov (United States)

    Gilan, Irit; Sivan, Alex

    2013-05-01

    In most habitats, the vast majority of microbial populations form biofilms on solid surfaces, whether natural or artificial. These biofilms provide either increased physical support and/or a source of nutrients. Further modifications and development of biofilms are regulated by signal molecules secreted by the cells. Because synthetic polymers are not soluble in aqueous solutions, biofilm-producing bacteria may biodegrade such materials more efficiently than planktonic strains. Bacterial biofilms comprise bacterial cells embedded in self-secreted extracellular polymeric substances (EPS). Revealing the roles of each component of the EPS will enable further insight into biofilm development and the EPS structure-function relationship. A strain of Rhodococcus ruber (C208) displayed high hydrophobicity and formed a dense biofilm on the surface of polyethylene films while utilizing the polyolefin as carbon and energy sources. This study investigated the effects of several proteases on C208 biofilm formation and stability. The proteolysis of C208 biofilm gave conflicting results. Trypsin significantly reduced biofilm formation, and the resultant biofilm appeared monolayered. In contrast, proteinase K enhanced biofilm formation, which was robust and multilayered. Presumably, proteinase K degraded self-secreted proteases or quorum-sensing peptides, which may be involved in biofilm detachment processes, leading to a multilayered, nondispersed biofilm.

  4. In vitro model of bacterial biofilm formation on polyvinyl chloride biomaterial.

    Science.gov (United States)

    Zhao, Guang-qiang; Ye, Lian-hua; Huang, Yun-chao; Yang, Da-kuan; Li, Li; Xu, Geng; Lei, Yu-jie

    2011-11-01

    The aim of the study was to establish an in vitro model of Staphylococcus epidermidis biofilms on polyvinyl chloride (PVC) material, and to investigate bacterial biofilm formation and its structure using the combined approach of confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM). Staphylococcus epidermidis bacteria (stain RP62A) were incubated with PVC pieces in Tris buffered saline to form biofilms. Biofilm formation was examined at 6, 12, 18, 24, 30, and 48 h. Thicknesses of these biofilms and the number, and percentage of viable cells in biofilms were measured. CT scan images of biofilms were obtained using CLSM and environmental SEM. The results of this study showed that Staphylococcus epidermidis biofilm is a highly organized multi-cellular structure. The biofilm is constituted of large number of viable and dead bacterial cells. Bacterial biofilm formation on the surface of PVC material was found to be a dynamic process with maximal thickness being attained at 12-18 h. These biofilms became mature by 24 h. There was significant difference in the percentage of viable cells along with interior, middle, and outer layers of biofilms (P < 0.05). Staphylococcus epidermidis biofilm is sophisticated in structure and the combination method involving CLSM and SEM was ideal for investigation of biofilms on PVC material.

  5. The salmochelin receptor IroN itself, but not salmochelin-mediated iron uptake promotes biofilm formation in extraintestinal pathogenic Escherichia coli (ExPEC).

    Science.gov (United States)

    Magistro, Giuseppe; Hoffmann, Christiane; Schubert, Sören

    2015-01-01

    The key to success of extraintestinal pathogenic Escherichia coli (ExPEC) to colonize niches outside the intestinal tract and to establish infection is the coordinated action of numerous virulence and fitness factors. Intense research revealed not only an arsenal of unique virulence determinants with specific action, but also the multi-functionality of single elements. Especially iron uptake systems of ExPEC proved to be of prime importance. Apart from iron acquisition they optimize certain virulence properties. Here we analyzed the contribution of the salmochelin siderophore system to the ability of ExPEC to form biofilms. In the same iron limited environment, ExPEC displayed a distinct transcriptional profile of siderophore systems. During biofilm formation the iroN gene coding for the specific receptors of the siderophore salmochelin was highly upregulated. Almost no induction was observed during planctonic growth. Disruption of iroN resulted in a reduction of almost 50% in biofilm production. Efficient biofilm formation was not affected in a salmochelin synthesis mutant. Thus, the contribution of IroN is independent from the ability to produce salmochelin. Enhanced expression of IroN did not increase significantly the capacity to form biofilms in ExPEC. Interestingly, the additional expression of IroN or even the acquisition of the entire salmochelin system was not able to improve biofilm formation in a poor biofilm producer like a laboratory E. coli K12 strain. However, complementation with only IroN in an ExPEC iroA deletion mutant was able to restore biofilm formation. The contribution of IroN to biofilm formation appears to require a certain background found in ExPEC, but not in E. coli K12. This study identified the contribution of IroN to biofilm formation and highlights the multi-functional role of iron uptake systems in ExPEC.

  6. Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related Pathogens Using an Impedance-Based Technology

    Science.gov (United States)

    Gutiérrez, Diana; Hidalgo-Cantabrana, Claudio; Rodríguez, Ana; García, Pilar

    2016-01-01

    Bacteria found in diverse ecosystems grow in a community of aggregated cells that favors their survival and colonization. Different extracellular polymeric substances are used to entrap this multispecies community forming a biofilm, which can be associated to biotic and abiotic surfaces. This widespread and successful way of bacterial life, however, can lead to negative effects for human activity since many pathogen and spoiling bacteria form biofilms which are not easy to eradicate. Therefore, the search for novel anti-biofilm bio-active molecules is a very active research area for which simple, reliable, and fast screening methods are demanded. In this work we have successfully validated an impedance-based method, initially developed for the study of adherent eukaryotic cells, to monitor the formation of single-species biofilms of three model bacteria in real time. The xCelligence real time cell analyzer (RTCA) equipment uses specific microtiter E-plates coated with gold-microelectrodes that detect the attachment of adherent cells, thus modifying the impedance signal. In the current study, this technology allowed the distinction between biofilm-producers and non-producers of Staphylococcus aureus and Staphylococcus epidermidis, as well as the formation of Streptococcus mutans biofilms only when sucrose was present in the culture medium. Besides, different impedance values permitted discrimination among the biofilm-producing strains tested regardless of the nature of the polymeric biofilm matrix. Finally, we have continuously monitored the inhibition of staphylococcal biofilm formation by the bacteriophage phi-IPLA7 and the bacteriophage-encoded endolysin LysH5, as well as the removal of a preformed biofilm by this last antimicrobial treatment. Results observed with the impedance-based method showed high correlation with those obtained with standard approaches, such as crystal violet staining and bacteria enumeration, as well as with those obtained upon other

  7. Femtosecond Laser Patterning of the Biopolymer Chitosan for Biofilm Formation

    Science.gov (United States)

    Estevam-Alves, Regina; Ferreira, Paulo Henrique Dias; Coatrini, Andrey C.; Oliveira, Osvaldo N.; Fontana, Carla Raquel; Mendonca, Cleber Renato

    2016-01-01

    Controlling microbial growth is crucial for many biomedical, pharmaceutical and food industry applications. In this paper, we used a femtosecond laser to microstructure the surface of chitosan, a biocompatible polymer that has been explored for applications ranging from antimicrobial action to drug delivery. The influence of energy density on the features produced on chitosan was investigated by optical and atomic force microscopies. An increase in the hydrophilic character of the chitosan surface was attained upon laser micromachining. Patterned chitosan films were used to observe Staphylococcus aureus (ATCC 25923) biofilm formation, revealing an increase in the biofilm formation in the structured regions. Our results indicate that fs-laser micromachining is an attractive option to pattern biocompatible surfaces, and to investigate basic aspects of the relationship between surface topography and bacterial adhesion. PMID:27548153

  8. Efficacy of clarithromycin on biofilm formation of methicillin-resistant Staphylococcus pseudintermedius

    Directory of Open Access Journals (Sweden)

    DiCicco Matthew

    2012-11-01

    Full Text Available Abstract Background Surgical site infections (SSIs caused by biofilm-forming methicillin-resistant Staphylococcus pseudintermedius (MRSP have emerged as the most common hospital-acquired infections in companion animals. No methods currently exist for the therapeutic remediation of SSIs caused by MRSP in biofilms. Clarithromycin (CLA has been shown to prevent biofilm formation by Staphylococcus aureus. This study aims to assess the in vitro activity of CLA in eradicating MRSP biofilm formation on various materials. Results Quantitative assay results (P = 0.5126 suggest that CLA does not eradicate MRSP biofilm formation on polystyrene after 4 – 24 h growth periods. Scanning electron micrographs confirmed that CLA did not eradicate MRSP biofilm formed on orthopaedic implants. Conclusions By determining the in vitro characteristics and activities of MRSP isolates alone and against antibiotics, in vitro models of biofilm related infections can be made. In vitro data suggests that CLA does not effectively eradicate S. pseudintermedius biofilms in therapeutic doses.

  9. Studies on formation, control and application of biofilm formed by food related microorganisms.

    Science.gov (United States)

    Furukawa, Soichi

    2015-01-01

    Biofilms are sessile microbial aggregates on the interfaces, and they were usually considered as microbial contamination sources in medical care and various industries. We studied the control and application of biofilms formed by food-related microorganisms, and mechanism of the biofilm formation was also investigated. We studied the biofilm formation in mixed cultures using various combinations of two strains of food-related microorganisms. There were various microorganisms that showed decreased or increased biofilm formation in the mixed culture in comparison with that in a single culture. Biofilm formed by lactic acid bacteria and yeast isolated from traditional fermented food, Fukuyama pot vinegar, exhibited unique feature in that structure and formation mechanism, and expected to be used as an immobilized microorganism in fermentation production. Here our studies on the control and application of biofilms and the mechanisms of its formation were described.

  10. Roles of Extracellular Polysaccharides and Biofilm Formation in Heavy Metal Resistance of Rhizobia

    Directory of Open Access Journals (Sweden)

    Natalia Nocelli

    2016-05-01

    Full Text Available Bacterial surface components and extracellular compounds, particularly flagella, lipopolysaccharides (LPSs, and exopolysaccharides (EPSs, in combination with environmental signals and quorum-sensing signals, play crucial roles in bacterial autoaggregation, biofilm development, survival, and host colonization. The nitrogen-fixing species Sinorhizobium meliloti (S. meliloti produces two symbiosis-promoting EPSs: succinoglycan (or EPS I and galactoglucan (or EPS II. Studies of the S. meliloti/alfalfa symbiosis model system have revealed numerous biological functions of EPSs, including host specificity, participation in early stages of host plant infection, signaling molecule during plant development, and (most importantly protection from environmental stresses. We evaluated functions of EPSs in bacterial resistance to heavy metals and metalloids, which are known to affect various biological processes. Heavy metal resistance, biofilm production, and co-culture were tested in the context of previous studies by our group. A range of mercury (Hg II and arsenic (As III concentrations were applied to S. meliloti wild type strain and to mutant strains defective in EPS I and EPS II. The EPS production mutants were generally most sensitive to the metals. Our findings suggest that EPSs are necessary for the protection of bacteria from either Hg (II or As (III stress. Previous studies have described a pump in S. meliloti that causes efflux of arsenic from cells to surrounding culture medium, thereby protecting them from this type of chemical stress. The presence of heavy metals or metalloids in culture medium had no apparent effect on formation of biofilm, in contrast to previous reports that biofilm formation helps protect various microorganism species from adverse environmental conditions. In co-culture experiments, EPS-producing heavy metal resistant strains exerted a protective effect on AEPS-non-producing, heavy metal-sensitive strains; a phenomenon

  11. L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni.

    Science.gov (United States)

    Dwivedi, Ritika; Nothaft, Harald; Garber, Jolene; Xin Kin, Lin; Stahl, Martin; Flint, Annika; van Vliet, Arnoud H M; Stintzi, Alain; Szymanski, Christine M

    2016-08-01

    Campylobacter jejuni and Campylobacter coli are zoonotic pathogens once considered asaccharolytic, but are now known to encode pathways for glucose and fucose uptake/metabolism. For C. jejuni, strains with the fuc locus possess a competitive advantage in animal colonization models. We demonstrate that this locus is present in > 50% of genome-sequenced strains and is prevalent in livestock-associated isolates of both species. To better understand how these campylobacters sense nutrient availability, we examined biofilm formation and chemotaxis to fucose. C. jejuni NCTC11168 forms less biofilms in the presence of fucose, although its fucose permease mutant (fucP) shows no change. In a newly developed chemotaxis assay, both wild-type and the fucP mutant are chemotactic towards fucose. C. jejuni 81-176 naturally lacks the fuc locus and is unable to swim towards fucose. Transfer of the NCTC11168 locus into 81-176 activated fucose uptake and chemotaxis. Fucose chemotaxis also correlated with possession of the pathway for C. jejuni RM1221 (fuc+) and 81116 (fuc-). Systematic mutation of the NCTC11168 locus revealed that Cj0485 is necessary for fucose metabolism and chemotaxis. This study suggests that components for fucose chemotaxis are encoded within the fuc locus, but downstream signals only in fuc + strains, are involved in coordinating fucose availability with biofilm development.

  12. Streptococcus suis Serotype 2 Biofilms Inhibit the Formation of Neutrophil Extracellular Traps

    Science.gov (United States)

    Ma, Fang; Yi, Li; Yu, Ningwei; Wang, Guangyu; Ma, Zhe; Lin, Huixing; Fan, Hongjie

    2017-01-01

    Invasive infections caused by Streptococcus suis serotype 2 (SS2) has emerged as a clinical problem in recent years. Neutrophil extracellular traps (NETs) are an important mechanism for the trapping and killing of pathogens that are resistant to phagocytosis. Biofilm formation can protect bacteria from being killed by phagocytes. Until now, there have only been a few studies that focused on the interactions between bacterial biofilms and NETs. SS2 in both a biofilm state and a planktonic cell state were incubated with phagocytes and NETs, and bacterial survival was assessed. DNase I and cytochalasin B were used to degrade NET DNA or suppress phagocytosis, respectively. Extracellular DNA was stained with impermeable fluorescent dye to quantify NET formation. Biofilm formation increased up to 6-fold in the presence of neutrophils, and biofilms were identified in murine tissue. Both planktonic and biofilm cells induced neutrophils chemotaxis to the infection site, with neutrophils increasing by 85.1 and 73.8%, respectively. The bacteria in biofilms were not phagocytized. The bactericidal efficacy of NETs on the biofilms and planktonic cells were equal; however, the biofilm extracellular matrix can inhibit NET release. Although biofilms inhibit NETs release, NETs appear to be an important mechanism to eliminate SS2 biofilms. This knowledge advances the understanding of biofilms and may aid in the development of treatments for persistent infections with a biofilm component. PMID:28373968

  13. Effects of Iron Chelators on the Formation and Development of Aspergillus fumigatus Biofilm.

    Science.gov (United States)

    Nazik, Hasan; Penner, John C; Ferreira, Jose A; Haagensen, Janus A J; Cohen, Kevin; Spormann, Alfred M; Martinez, Marife; Chen, Vicky; Hsu, Joe L; Clemons, Karl V; Stevens, David A

    2015-10-01

    Iron acquisition is crucial for the growth of Aspergillus fumigatus. A. fumigatus biofilm formation occurs in vitro and in vivo and is associated with physiological changes. In this study, we assessed the effects of Fe chelators on biofilm formation and development. Deferiprone (DFP), deferasirox (DFS), and deferoxamine (DFM) were tested for MIC against a reference isolate via a broth macrodilution method. The metabolic effects (assessed by XTT [2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide inner salt]) on biofilm formation by conidia were studied upon exposure to DFP, DFM, DFP plus FeCl3, or FeCl3 alone. A preformed biofilm was exposed to DFP with or without FeCl3. The DFP and DFS MIC50 against planktonic A. fumigatus was 1,250 μM, and XTT gave the same result. DFM showed no planktonic inhibition at concentrations of ≤2,500 μM. By XTT testing, DFM concentrations of biofilms forming in A. fumigatus or preformed biofilms (P biofilm formation (P Biofilm formation with 625 μM DFP plus any concentration of FeCl3 was lower than that in the controls (P biofilms, DFP in the range of ≥625 to 1,250 μM was inhibitory compared to the controls (P biofilm formation (P biofilm increased with 2,500 μM FeCl3 only (P biofilms of A. fumigatus clinical isolates to DFP were noted. In conclusion, iron stimulates biofilm formation and preformed biofilms. Chelators can inhibit or enhance biofilms. Chelation may be a potential therapy for A. fumigatus, but we show here that chelators must be chosen carefully. Individual isolate susceptibility assessments may be needed.

  14. Role of alkyl hydroperoxide reductase (AhpC) in the biofilm formation of Campylobacter jejuni.

    Science.gov (United States)

    Oh, Euna; Jeon, Byeonghwa

    2014-01-01

    Biofilm formation of Campylobacter jejuni, a major cause of human gastroenteritis, contributes to the survival of this pathogenic bacterium in different environmental niches; however, molecular mechanisms for its biofilm formation have not been fully understood yet. In this study, the role of oxidative stress resistance in biofilm formation was investigated using mutants defective in catalase (KatA), superoxide dismutase (SodB), and alkyl hydroperoxide reductase (AhpC). Biofilm formation was substantially increased in an ahpC mutant compared to the wild type, and katA and sodB mutants. In contrast to the augmented biofilm formation of the ahpC mutant, a strain overexpressing ahpC exhibited reduced biofilm formation. A perR mutant and a CosR-overexpression strain, both of which upregulate ahpC, also displayed decreased biofilms. However, the introduction of the ahpC mutation to the perR mutant and the CosR-overexpression strain substantially enhanced biofilm formation. The ahpC mutant accumulated more total reactive oxygen species and lipid hydroperoxides than the wild type, and the treatment of the ahpC mutant with antioxidants reduced biofilm formation to the wild-type level. Confocal microscopy analysis showed more microcolonies were developed in the ahpC mutant than the wild type. These results successfully demonstrate that AhpC plays an important role in the biofilm formation of C. jejuni.

  15. Genetic control of conventional and pheromone-stimulated biofilm formation in Candida albicans.

    Science.gov (United States)

    Lin, Ching-Hsuan; Kabrawala, Shail; Fox, Emily P; Nobile, Clarissa J; Johnson, Alexander D; Bennett, Richard J

    2013-01-01

    Candida albicans can stochastically switch between two phenotypes, white and opaque. Opaque cells are the sexually competent form of C. albicans and therefore undergo efficient polarized growth and mating in the presence of pheromone. In contrast, white cells cannot mate, but are induced - under a specialized set of conditions - to form biofilms in response to pheromone. In this work, we compare the genetic regulation of such "pheromone-stimulated" biofilms with that of "conventional" C. albicans biofilms. In particular, we examined a network of six transcriptional regulators (Bcr1, Brg1, Efg1, Tec1, Ndt80, and Rob1) that mediate conventional biofilm formation for their potential roles in pheromone-stimulated biofilm formation. We show that four of the six transcription factors (Bcr1, Brg1, Rob1, and Tec1) promote formation of both conventional and pheromone-stimulated biofilms, indicating they play general roles in cell cohesion and biofilm development. In addition, we identify the master transcriptional regulator of pheromone-stimulated biofilms as C. albicans Cph1, ortholog of Saccharomyces cerevisiae Ste12. Cph1 regulates mating in C. albicans opaque cells, and here we show that Cph1 is also essential for pheromone-stimulated biofilm formation in white cells. In contrast, Cph1 is dispensable for the formation of conventional biofilms. The regulation of pheromone- stimulated biofilm formation was further investigated by transcriptional profiling and genetic analyses. These studies identified 196 genes that are induced by pheromone signaling during biofilm formation. One of these genes, HGC1, is shown to be required for both conventional and pheromone-stimulated biofilm formation. Taken together, these observations compare and contrast the regulation of conventional and pheromone-stimulated biofilm formation in C. albicans, and demonstrate that Cph1 is required for the latter, but not the former.

  16. Evaluation of intraspecies interactions in biofilm formation by Methylobacterium species isolated from pink-pigmented household biofilms.

    Science.gov (United States)

    Xu, Fang-Fang; Morohoshi, Tomohiro; Wang, Wen-Zhao; Yamaguchi, Yuka; Liang, Yan; Ikeda, Tsukasa

    2014-01-01

    Concern regarding household biofilms has grown due to their widespread existence and potential to threaten human health by serving as pathogen reservoirs. Previous studies identified Methylobacterium as one of the dominant genera found in household biofilms. In the present study, we examined the mechanisms underlying biofilm formation by using the bacterial consortium found in household pink slime. A clone library analysis revealed that Methylobacterium was the predominant genus in household pink slime. In addition, 16 out of 21 pink-pigmented bacterial isolates were assigned to the genus Methylobacterium. Although all of the Methylobacterium isolates formed low-level biofilms, the amount of the biofilms formed by Methylobacterium sp. P-1M and P-18S was significantly increased by co-culturing with other Methylobacterium strains that belonged to a specific phylogenetic group. The single-species biofilm was easily washed from the glass surface, whereas the dual-species biofilm strongly adhered after washing. A confocal laser scanning microscopy analysis showed that the dual-species biofilms were significantly thicker and tighter than the single-species biofilms.

  17. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments.

    Science.gov (United States)

    Abdallah, Marwan; Benoliel, Corinne; Drider, Djamel; Dhulster, Pascal; Chihib, Nour-Eddine

    2014-07-01

    The biofilm formation on abiotic surfaces in food and medical sectors constitutes a great public health concerns. In fact, biofilms present a persistent source for pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, which lead to severe infections such as foodborne and nosocomial infections. Such biofilms are also a source of material deterioration and failure. The environmental conditions, commonly met in food and medical area, seem also to enhance the biofilm formation and their resistance to disinfectant agents. In this regard, this review highlights the effect of environmental conditions on bacterial adhesion and biofilm formation on abiotic surfaces in the context of food and medical environment. It also describes the current and emergent strategies used to study the biofilm formation and its eradication. The mechanisms of biofilm resistance to commercialized disinfectants are also discussed, since this phenomenon remains unclear to date.

  18. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms.

    Science.gov (United States)

    Schwartz, Kelly; Ganesan, Mahesh; Payne, David E; Solomon, Michael J; Boles, Blaise R

    2016-01-01

    Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology.

  19. Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal

    DEFF Research Database (Denmark)

    Gjermansen, Morten; Ragas, Paula Cornelia; Tolker-Nielsen, Tim

    2006-01-01

    H protein, which contains an EAL domain, strongly inhibited biofilm formation. Induction of YhjH expression in P. putida cells situated in established biofilms led to rapid dispersion of the biofilms. These results support the emerging theme that GGDEF-domain and EAL-domain proteins are involved...

  20. A Functional DNase I Coating to Prevent Adhesion of Bacteria and the Formation of Biofilm

    NARCIS (Netherlands)

    Swartjes, Jan J. T. M.; Das, Theerthankar; Sharifi, Shahriar; Subbiahdoss, Guruprakash; Sharma, Prashant K.; Krom, Bastiaan P.; Busscher, Henk J.; van der Mei, Henny C.

    2013-01-01

    Biofilms are detrimental in many industrial and biomedical applications and prevention of biofilm formation has been a prime challenge for decades. Biofilms consist of communities of adhering bacteria, supported and protected by extracellular-polymeric-substances (EPS), the so-called house of biofil

  1. Biofilm formation by environmental isolates of Salmonella and their sensitivity to natural antimicrobials

    Science.gov (United States)

    We evaluated 15 Salmonella isolates; S. Derby (2), S. Infantis (4), and S. Typhimurium (9) from conventional swine farm environment (soil and lagoon) for biofilm formation. Biofilm forming ability was determined by 96-well microtitre plate Crystal-Violet and Minimum Biofilm Eradication Concentration...

  2. Effect of Cinnamon Oil on icaA Expression and Biofilm Formation by Staphylococcus epidermidis

    NARCIS (Netherlands)

    Nuryastuti, Titik; van der Mei, Henny C.; Busscher, Henk J.; Iravati, Susi; Aman, Abu T.; Krom, Bastiaan P.

    2009-01-01

    Staphylococcus epidermidis is notorious for its biofilm formation on medical devices, and novel approaches to prevent and kill S. epidermidis biofilms are desired. In this study, the effect of cinnamon oil on planktonic and biofilm cultures of clinical S. epidermidis isolates was evaluated. Initiall

  3. Variability in biofilm formation correlates with hydrophobicity and quorum sensing among Vibrio parahaemolyticus isolates from food contact surfaces and the distribution of the genes involved in biofilm formation.

    Science.gov (United States)

    Mizan, Md Furkanur Rahaman; Jahid, Iqbal Kabir; Kim, Minhui; Lee, Ki-Hoon; Kim, Tae Jo; Ha, Sang-Do

    2016-01-01

    Vibrio parahaemolyticus is one of the leading foodborne pathogens causing seafood contamination. Here, 22 V. parahaemolyticus strains were analyzed for biofilm formation to determine whether there is a correlation between biofilm formation and quorum sensing (QS), swimming motility, or hydrophobicity. The results indicate that the biofilm formation ability of V. parahaemolyticus is positively correlated with cell surface hydrophobicity, autoinducer (AI-2) production, and protease activity. Field emission scanning electron microscopy (FESEM) showed that strong-biofilm-forming strains established thick 3-D structures, whereas poor-biofilm-forming strains produced thin inconsistent biofilms. In addition, the distribution of the genes encoding pandemic clone factors, type VI secretion systems (T6SS), biofilm functions, and the type I pilus in the V. parahaemolyticus seafood isolates were examined. Biofilm-associated genes were present in almost all the strains, irrespective of other phenotypes. These results indicate that biofilm formation on/in seafood may constitute a major factor in the dissemination of V. parahaemolyticus and the ensuing diseases.

  4. Bordetella pertussis isolates from Argentinean whooping cough patients display enhanced biofilm formation capacity compared to Tohama I reference strain

    Directory of Open Access Journals (Sweden)

    Laura eArnal

    2015-12-01

    Full Text Available Pertussis is a highly contagious disease mainly caused by Bordetella pertussis. Despite the massive use of vaccines since the 1950´s the disease has become re-emergent in 2000 with a shift in incidence from infants to adolescents and adults. Clearly, the efficacy of current cellular or acellular vaccines, formulated from bacteria grown in stirred bioreactors is limited, presenting a challenge for future vaccine development. For gaining insights into the role of B. pertussis biofilm development for host colonization and persistence within the host, we examined the biofilm forming capacity of eight argentinean clinical isolates recovered from 2001 to 2007. All clinical isolates showed an enhanced potential for biofilm formation compared to the reference strain Tohama I. We further selected the clinical isolate B. pertussis 2723, exhibiting the highest biofilm biomass production, for quantitative proteomic profiling by means of two-dimensional fluorescence difference gel electrophoresis (2D-DIGE coupled with mass spectrometry (MS, which was accompanied by targeted transcriptional analysis. Results revealed an elevated expression of several virulence factors, including adhesins involved in biofilm development. In addition, we observed a higher expression of energy metabolism enzymes in the clinical isolate compared to the Tohama I strain. Furthermore, all clinical isolates carried a polymorphism in the bvgS gene. This mutation was associated to an increased sensitivity to modulation and a faster rate of adhesion to abiotic surfaces. Thus, the phenotypic biofilm characteristics shown by the clinical isolates might represent an important, hitherto underestimated, adaptive strategy for host colonization and long time persistence within the host.

  5. Bordetella pertussis Isolates from Argentinean Whooping Cough Patients Display Enhanced Biofilm Formation Capacity Compared to Tohama I Reference Strain.

    Science.gov (United States)

    Arnal, Laura; Grunert, Tom; Cattelan, Natalia; de Gouw, Daan; Villalba, María I; Serra, Diego O; Mooi, Frits R; Ehling-Schulz, Monika; Yantorno, Osvaldo M

    2015-01-01

    Pertussis is a highly contagious disease mainly caused by Bordetella pertussis. Despite the massive use of vaccines, since the 1950s the disease has become re-emergent in 2000 with a shift in incidence from infants to adolescents and adults. Clearly, the efficacy of current cellular or acellular vaccines, formulated from bacteria grown in stirred bioreactors is limited, presenting a challenge for future vaccine development. For gaining insights into the role of B. pertussis biofilm development for host colonization and persistence within the host, we examined the biofilm forming capacity of eight argentinean clinical isolates recovered from 2001 to 2007. All clinical isolates showed an enhanced potential for biofilm formation compared to the reference strain Tohama I. We further selected the clinical isolate B. pertussis 2723, exhibiting the highest biofilm biomass production, for quantitative proteomic profiling by means of two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry, which was accompanied by targeted transcriptional analysis. Results revealed an elevated expression of several virulence factors, including adhesins involved in biofilm development. In addition, we observed a higher expression of energy metabolism enzymes in the clinical isolate compared to the Tohama I strain. Furthermore, all clinical isolates carried a polymorphism in the bvgS gene. This mutation was associated to an increased sensitivity to modulation and a faster rate of adhesion to abiotic surfaces. Thus, the phenotypic biofilm characteristics shown by the clinical isolates might represent an important, hitherto underestimated, adaptive strategy for host colonization and long time persistence within the host.

  6. Effect of biologically synthesised silver nanoparticles on Staphylococcus aureus biofilm quenching and prevention of biofilm formation.

    Science.gov (United States)

    Masurkar, S A; Chaudhari, P R; Shidore, V B; Kamble, S P

    2012-09-01

    The development of green experimental processes for the synthesis of nanoparticles is a need in the field of nanotechnology. In the present study, the authors reported rapid synthesis of silver nanoparticles using fresh leaves extract of Cymbopogan citratus (lemongrass) with increased stability. The synthesised silver nanoparticles were found to be stable for several months. UV-visible spectrophotometric analysis was carried out to assess the synthesis of silver nanoparticles. The synthesised silver nanoparticles were further characterised by using nanoparticle tracking analyser (NTA), transmission electron microscope (TEM) and energy-dispersive x-ray spectra (EDX). The NTA results showed that the mean size was found to be 32 nm. Silver nanoparticles with controlled size and shape were observed under TEM micrograph. The EDX of the nanoparticles confirmed the presence of elemental silver. These silver nanoparticles showed enhanced quorum quenching activity against Staphylococcus aureus biofilm and prevention of biofilm formation which can be seen under inverted microscope (40X). In the near future, silver nanoparticles synthesised using green methods may be used in the treatment of infections caused by a highly antibiotic resistant biofilm.

  7. Biofilm formation ability of Salmonella enterica serovar Typhimurium acrAB mutants.

    Science.gov (United States)

    Schlisselberg, Dov B; Kler, Edna; Kisluk, Guy; Shachar, Dina; Yaron, Sima

    2015-10-01

    Recent studies offer contradictory findings about the role of multidrug efflux pumps in bacterial biofilm development. Thus, the aim of this study was to investigate the involvement of the AcrAB efflux pump in biofilm formation by investigating the ability of AcrB and AcrAB null mutants of Salmonella enterica serovar Typhimurium to produce biofilms. Three models were used to compare the ability of S. Typhimurium wild-type and its mutants to form biofilms: formation of biofilm on polystyrene surfaces; production of biofilm (mat model) on the air/liquid interface; and expression of curli and cellulose on Congo red-supplemented agar plates. All three investigated genotypes formed biofilms with similar characteristics. However, upon exposure to chloramphenicol, formation of biofilms on solid surfaces as well as the production of curli were either reduced or were delayed more significantly in both mutants, whilst there was no visible effect on pellicle formation. It can be concluded that when no selective pressure is applied, S. Typhimurium is able to produce biofilms even when the AcrAB efflux pumps are inactivated, implying that the use of efflux pump inhibitors to prevent biofilm formation is not a general solution and that combined treatments might be more efficient. Other factors that affect the ability to produce biofilms depending on efflux pump activity are yet to be identified.

  8. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth.

    Science.gov (United States)

    Haque, Farazul; Alfatah, Md; Ganesan, K; Bhattacharyya, Mani Shankar

    2016-03-31

    Candida albicans causes superficial and life-threatening systemic infections. These are difficult to treat often due to drug resistance, particularly because C. albicans biofilms are inherently resistant to most antifungals. Sophorolipid (SL), a glycolipid biosurfactant, has been shown to have antimicrobial and anticancer properties. In this study, we investigated the effect of SL on C. albicans biofilm formation and preformed biofilms. SL was found to inhibit C. albicans biofilm formation as well as reduce the viability of preformed biofilms. Moreover, SL, when used along with amphotericin B (AmB) or fluconazole (FLZ), was found to act synergistically against biofilm formation and preformed biofilms. Effect of SL on C. albicans biofilm formation was further visualized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), which revealed absence of hyphae, typical biofilm architecture and alteration in the morphology of biofilm cells. We also found that SL downregulates the expression of hypha specific genes HWP1, ALS1, ALS3, ECE1 and SAP4, which possibly explains the inhibitory effect of SL on hyphae and biofilm formation.

  9. Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: biodegradation of polystyrene.

    Science.gov (United States)

    Mor, Roi; Sivan, Alex

    2008-11-01

    Polystyrene, which is one of the most utilized thermoplastics, is highly durable and is considered to be non-biodegradable. Hence, polystyrene waste accumulates in the environment posing an increasing ecological threat. In a previous study we have isolated a biofilm-producing strain (C208) of the actinomycete Rhodococcus ruber that degraded polyethylene films. Formation of biofilm, by C208, improved the biodegradation of polyethylene. Consequently, the present study aimed at monitoring the kinetics of biofilm formation by C208 on polystyrene, determining the physiological activity of the biofilm and analyzing its capacity to degrade polystyrene. Quantification of the biofilm biomass was performed using a modified crystal violet (CV) staining or by monitoring the protein content in the biofilm. When cultured on polystyrene flakes, most of the bacterial cells adhered to the polystyrene surface within few hours, forming a biofilm. The growth of the on polystyrene showed a pattern similar to that of a planktonic culture. Furthermore, the respiration rate, of the biofilm, exhibited a pattern similar to that of the biofilm growth. In contrast, the respiration activity of the planktonic population showed a constant decline with time. Addition of mineral oil (0.005% w/v), but not non-ionic surfactants, increased the biofilm biomass. Extended incubation of the biofilm for up to 8 weeks resulted in a small reduction in the polystyrene weight (0.8% of gravimetric weight loss). This study demonstrates the high affinity of C208 to polystyrene which lead to biofilm formation and, presumably, induced partial biodegradation.

  10. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets

    CERN Document Server

    Das, Siddhartha

    2013-01-01

    It has been recently reported that in presence of low Reynolds number (Re<<1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this letter, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such "viscous liquid" state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand an external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions.

  11. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional

    DEFF Research Database (Denmark)

    Shrout, J.D.; Chopp, D.L.; Just, C.L.

    2006-01-01

    The role of quorum sensing in Pseudomonas aeruginosa biofilm formation is unclear. Some researchers have shown that quorum sensing is important for biofilm development, while others have indicated it has little or no role. In this study, the contribution of quorum sensing to biofilm development...... was found to depend upon the nutritional environment. Depending upon the carbon source, quorum-sensing mutant strains (lasIrhlI and lasRrhlR) either exhibited a pronounced defect early in biofilm formation or formed biofilms identical to the wild-type strain. Quorum sensing was then shown to exert its...... nutritionally conditional control of biofilm development through regulation of swarming motility. Examination of pilA and fliM mutant strains further supported the role of swarming motility in biofilm formation. These data led to a model proposing that the prevailing nutritional conditions dictate...

  12. Biofilm formation on tympanostomy tubes depends on methicillin-resistant Staphylococcus aureus genetic lineage.

    Science.gov (United States)

    Jotić, Ana; Božić, Dragana D; Milovanović, Jovica; Pavlović, Bojan; Ješić, Snežana; Pelemiš, Mijomir; Novaković, Marko; Ćirković, Ivana

    2016-03-01

    Bacterial biofilm formation has been implicated in the high incidence of persistent otorrhoea after tympanostomy tube insertion. The aim of the study was to investigate whether biofilm formation on tympanostomy tubes depends on the genetic profile of methicillin-resistant Staphylococcus aureus (MRSA) strains. Capacity of biofilm formation on fluoroplastic tympanostomy tubes (TTs) was tested on 30 MRSA strains. Identification and methicillin resistance were confirmed by PCR for nuc and mecA genes. Strains were genotypically characterised (SCCmec, agr and spa typing). Biofilm formation was tested in microtiter plate and on TTs. Tested MRSA strains were classified into SCCmec type I (36.7 %), III (23.3 %), IV (26.7 %) and V (13.3 %), agr type I (50 %), II (36.7 %) and III (13.3 %), and 5 clonal complexes (CCs). All tested MRSA strains showed ability to form biofilm on microtiter plate. Capacity of biofilm formation on TTs was as following: 13.3 % of strains belonged to the category of no biofilm producers, 50 % to the category of weak biofilm producers and 36.7 % to moderate biofilm producers. There was a statistically significant difference between CC, SCCmec and agr types and the category of biofilm production on TTs tubes (p biofilm, and CC8 and agrI type with a low amount of biofilm. Biofilm formation by MRSA on TTs is highly dependent on genetic characteristics of the strains. Therefore, MRSA genotyping may aid the determination of the possibility of biofilm-related post-tympanostomy tube otorrhea.

  13. Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation.

    Science.gov (United States)

    Chellappa, Shakinah T; Maredia, Reshma; Phipps, Kara; Haskins, William E; Weitao, Tao

    2013-12-01

    DNA-damaging antibiotics such as ciprofloxacin induce biofilm formation and the SOS response through autocleavage of SOS-repressor LexA in Pseudomonas aeruginosa. However, the biofilm-SOS connection remains poorly understood. It was investigated with 96-well and lipid biofilm assays. The effects of ciprofloxacin were examined on biofilm stimulation of the SOS mutant and wild-type strains. The stimulation observed in the wild-type in which SOS was induced was reduced in the mutant in which LexA was made non-cleavable (LexAN) and thus SOS non-inducible. Therefore, the stimulation appeared to involve SOS. The possible mechanisms of inducible biofilm formation were explored by subproteomic analysis of outer membrane fractions extracted from biofilms. The data predicted an inhibitory role of LexA in flagellum function. This premise was tested first by functional and morphological analyses of flagellum-based motility. The flagellum swimming motility decreased in the LexAN strain treated with ciprofloxacin. Second, the motility-biofilm assay was performed, which tested cell migration and biofilm formation. The results showed that wild-type biofilm increased significantly over the LexAN. These results suggest that LexA repression of motility, which is the initial event in biofilm development, contributes to repression of SOS-inducible biofilm formation.

  14. Effects of ambroxol on Candida albicans growth and biofilm formation.

    Science.gov (United States)

    Rene, Hernandez-Delgadillo; José, Martínez-Sanmiguel Juan; Isela, Sánchez-Nájera Rosa; Claudio, Cabral-Romero

    2014-04-01

    Typically, the onset of candidiasis is characterised by the appearance of a biofilm of Candida albicans, which is associated with several diseases including oral candidiasis in young and elderly people. The objective of this work was to investigate the in vitro fungicidal activity as well as the antibiofilm activity of ambroxol (AMB) against C. albicans growth. In the present investigation, the fungicidal activity of AMB was established using the cell viability 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Also the minimum inhibitory concentration (MIC) of AMB required to inhibit the fungal growth was determined. Simultaneously, the antibiofilm activity of AMB was evaluated using fluorescence microscopy. The study revealed that 2 mg ml(-1) of AMB exhibited higher fungicidal activity than 3.3 mg ml(-1) of terbinafine, one of most common commercial antifungals. A MIC of 1 mg ml(-1) was determined for AMB to interfere with C. albicans growth. Furthermore, AMB was found to be effective in inhibiting the biofilm formation of C. albicans and exerted its fungicidal activity against the fungal cells interspersed in the preformed biofilm. The study suggests a potential role of the mucolytic agent, AMB, as an interesting therapeutic alternative in the treatment of oral candidiasis.

  15. Candidate Targets for New Anti-Virulence Drugs: Selected Cases of Bacterial Adhesion and Biofilm Formation

    DEFF Research Database (Denmark)

    Klemm, Per; Hancock, Viktoria; Kvist, Malin;

    2007-01-01

    formation are highly attractive targets for new drugs. Specific adhesion provides bacteria with target selection and prevents removal by hydrodynamic flow forces. Bacterial adhesion is of paramount importance for bacterial pathogenesis. Adhesion is also the first step in biofilm formation. Biofilm formation...

  16. Histophilus somni biofilm formation in cardiopulmonary tissue of the bovine host following respiratory challenge

    DEFF Research Database (Denmark)

    Sandal, Indra; Shao, Jian Q.; Annadata, Satish

    2009-01-01

    Biofilms form in a variety of host sites following infection with many bacterial species. However, the study of biofilms in a host is hindered due to the lack of protocols for the proper experimental investigation of biofilms in vivo. Histophilus somni is an agent of respiratory and systemic...... diseases in bovines, and readily forms biofilms in vitro. In the present study the capability of H. somni to form biofilms in cardiopulmonary tissue following experimental respiratory infection in the bovine host was examined by light microscopy, transmission electron microscopy, immunoelectron microscopy...... haemagglutinin (FHA), predicted to be involved in attachment. Thus, this investigation demonstrated that H. somni is capable of forming a biofilm in its natural host, that such a biofilm may be capable of harboring other bovine respiratory disease pathogens, and that the genes responsible for biofilm formation...

  17. Fur is a repressor of biofilm formation in Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Fengjun Sun

    Full Text Available BACKGROUND: Yersinia pestis synthesizes the attached biofilms in the flea proventriculus, which is important for the transmission of this pathogen by fleas. The hmsHFRS operons is responsible for the synthesis of exopolysaccharide (the major component of biofilm matrix, which is activated by the signaling molecule 3', 5'-cyclic diguanylic acid (c-di-GMP synthesized by the only two diguanylate cyclases HmsT, and YPO0449 (located in a putative operonYPO0450-0448. METHODOLOGY/PRINCIPAL FINDINGS: The phenotypic assays indicated that the transcriptional regulator Fur inhibited the Y. pestis biofilm production in vitro and on nematode. Two distinct Fur box-like sequences were predicted within the promoter-proximal region of hmsT, suggesting that hmsT might be a direct Fur target. The subsequent primer extension, LacZ fusion, electrophoretic mobility shift, and DNase I footprinting assays disclosed that Fur specifically bound to the hmsT promoter-proximal region for repressing the hmsT transcription. In contrast, Fur had no regulatory effect on hmsHFRS and YPO0450-0448 at the transcriptional level. The detection of intracellular c-di-GMP levels revealed that Fur inhibited the c-di-GMP production. CONCLUSIONS/SIGNIFICANCE: Y. pestis Fur inhibits the c-di-GMP production through directly repressing the transcription of hmsT, and thus it acts as a repressor of biofilm formation. Since the relevant genetic contents for fur, hmsT, hmsHFRS, and YPO0450-0448 are extremely conserved between Y. pestis and typical Y. pseudotuberculosis, the above regulatory mechanisms can be applied to Y. pseudotuberculosis.

  18. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity.

    Science.gov (United States)

    Zeriouh, Houda; de Vicente, Antonio; Pérez-García, Alejandro; Romero, Diego

    2014-07-01

    The biocontrol activity of many Bacillus species has been traditionally related to the direct antagonism of pathogens. In previous works, we reported that B. subtilis strain UMAF6614 was an efficient biocontrol agent that produced bacillomycin, fengycin and surfactin lipopeptides. Bacillomycins and fengycins were shown to have antagonistic activity towards fungal and bacterial pathogens of cucurbits; however, the functionality of surfactin remained unclear. In this study, the role of surfactin in the biocontrol activity of this strain was investigated. We observed that a deficiency in surfactin production led to a partial reduction of disease suppression by this biocontrol agent, which coincided with a defect in biofilm formation and the colonization of the melon phylloplane. These effects were due to a dramatic reduction in the production of exopolysaccharide and the TasA protein, which are the two major components of the extracellular matrix. We propose that the biocontrol activity of this strain is the result of the coordinated action of the three families of lipopeptides. B. subtilis UMAF6614 produces surfactin to trigger biofilm formation on melon phylloplane, which ensures the long-term persistence and the adequate secretion of suppressive lipopeptides, bacillomycins and fengycins, which efficiently target pathogens.

  19. Biofilm Formation in Staphylococcus Aureus and its Relation to Phenotypic and Genotypic Criteria

    Directory of Open Access Journals (Sweden)

    Hasannejad Bibalan, M. (MSc

    2014-09-01

    Full Text Available Background and Objective: Biofilm is a complex microbial community embedded in a self-produced extracellular polymeric matrix. We aimed to study the extent of biofilm formation by S. Areas isolates and its relation to some phenotypic and genotypic criteria. Material and Methods: One hundred-fifty strains of Staphylococcus aureus isolated from Gorgan were studied. Microtiter plate assay method was used for investigation of biofilm formation.The biofilm formation of strains were recorded and its relation to accessory gene regulator (agr and antibiotic resistance were assessed by X2 test. Results: Eighty-four isolates (56% were able to form biofilm. The strength of biofilm formation in agr group I was more than that of other groups. The biofilm formation among S. Areas isolated from the wound and urine (both with 75 % had the highest capability. Methicillin-resistant isolates had a greater ability to biofilm formation. Conclusion: Methicillin resistant isolates had a greater ability to biofilm formation. Given the importance and treatment related problems of Methicillin-Resistant Staphylococcus Aureus (MRSA especially Community Acquired-Methicillin-Resistant Staphylococcus Aureus (CA-MRSA, it is a necessity to control or remove the biofilm formation alongside antibiotic treatment.

  20. Formation of nitrifying biofilms on small suspended particles in airlift reactors.

    Science.gov (United States)

    Tijhuis, L; Huisman, J L; Hekkelman, H D; van Loosdrecht, M C; Heijnen, J J

    1995-09-05

    For a stable and reliable operation of a BAS-reactor a high, active biomass concentration is required with mainly biofilm-covered carriers. The effect of reactor conditions on the formation of nitrifying biofilms in BAS-reactors was investigated in this article. A start-up strategy to obtain predominantly biofilm-covered carriers, based on the balancing of detachment and a biomass production per carrier surface area, proved tp be very successful. The amount of biomass and the fraction of covered carrier were high and development of nitrification activity was fast, leading to a volumetric conversion of 5 kg(N) . m(-3) . d(-1) at a hydraulic retention time of 1h. A 1-week, continuous inoculation with suspended purely nitrifying microorganisms resulted in a swift start-up compared with batch addition of a small number of biofilms with some nitrification activity. The development of nitrifying biofilms was very similar to the formation of heterotrophic biofilms. In contrast to heterotrophic bio-films, the diameter of nitrifying biofilms increased during start-up. The detachment rate from nitrifying biofilms decreased with lower concentrations of bare carrier, in a fashion comparable with heterotrophic biofilms, but the nitrifying biofilms were much more robust and resistant. Standard diffusion theory combined with reaction kinetics are capable of predicting the activity and conversion of biofilms on small suspended particles. (c) 1995 John Wiley & Sons Inc.

  1. Metagenomic and ecophysiological analysis of biofilms colonizing coral substrates: "Life after death of coral"

    Science.gov (United States)

    Sanchez, A., Sr.; Cerqueda-Garcia, D.; Falcón, L. I.; Iglesias-Prieto, R., Sr.

    2015-12-01

    Coral reefs are the most productive ecosystems on the planet and are the most important carbonated structures of biological origin. However, global warming is affecting the health and functionality of these ecosystems. Specifically, most of the Acropora sp. stony corals have declined their population all over the Mexican Caribbean in more than ~80% of their original coverage, resulting in vast extensions of dead coral rubble. When the coral dies, the skeleton begins to be colonized by algae, sponges, bacteria and others, forming a highly diverse biofilm. We analyzed the metagenomes of the dead A. palmata rubbles from Puerto Morelos, in the Mexican Caribbean. Also, we quantified the elemental composition of biomass and measured nitrogen fixation and emission of greenhouse gases over 24 hrs. This works provides information on how the community is composed and functions after the death of the coral, visualizing a possible picture for a world without coral reefs.

  2. Study on Hydro-Alcoholic Extract Effect of Pomegranate Peel on Pseudomonas aeruginosa Biofilm Formation

    Directory of Open Access Journals (Sweden)

    R. Habibipour

    2015-10-01

    Full Text Available Introduction & Objective: Microorganisms form biomass as biofilm in response to many factors, in order to adapt to hostile extracellular environments and biocides. Using different herbal compounds are of those strategies to deal with biofilm. It has been proved that plants extracts such as pomegranate, raspberry and chamomile essential oils have anti-biofilm effects. This study aimed to evaluate the effect of different concentrations of black peel pomegranate ex-tract on Pseudomonas aeruginosa biofilm formation. Materials & Methods: In this experimental research the anti-biofilm effect, reducing the amount of biofilm formation and growth kinetics of Pseudomonas aeruginosa in different treatments was measured by microtiter and plate colorimetric crystal violet method. Biofilm formation was also examined using a microscope. Statistical analysis of data obtained from the reading of the ELISA was performed using SPSS software, P value 0.05. Results: Findings of this study showed that bacteria cannot form any biofilm in first 6 hours of incubation, in all treatments. The amount of biofilm formation after 12 hours in 0.01 and 0.05 g/ mL treatments were medium. Among treatments, after 18 and 24 hours of incubation 0.001 g/ mL concentration of pomegranate peel extract had medium and strong inhibitory effect on biofilm formation, respectively. Conclusion: Results of this study showed that biofilm formation and biofilm reduction percent-age is directly related to the duration of exposure of bacteria that could be due to the different phases of growth. Growth kinetics study also revealed that in the majority of treatments the growth was incremental up to about 15 hours and decrement afterwards due to the effective-ness of different treatments. After 18 hours, treatments have greatest influence on biofilm formation. The foregoing has been fully confirmed by the results of microscopic slides. (Sci J Hamadan Univ Med Sci 2015; 22 (3: 195-202

  3. Endogenous hydrogen peroxide increases biofilm formation by inducing exopolysaccharide production in Acinetobacter oleivorans DR1.

    Science.gov (United States)

    Jang, In-Ae; Kim, Jisun; Park, Woojun

    2016-02-17

    In this study, we investigated differentially expressed proteins in Acinetobacter oleivorans cells during planktonic and biofilm growth by using 2-dimensional gel electrophoresis combined with matrix-assisted laser desorption time-of-flight mass spectrometry. We focused on the role of oxidative stress resistance during biofilm formation using mutants defective in alkyl hydroperoxide reductase (AhpC) because its production in aged biofilms was enhanced compared to that in planktonic cells. Results obtained using an ahpC promoter-gfp reporter vector showed that aged biofilms expressed higher ahpC levels than planktonic cells at 48 h. However, at 24 h, ahpC expression was higher in planktonic cells than in biofilms. Deletion of ahpC led to a severe growth defect in rich media that was not observed in minimal media and promoted early biofilm formation through increased production of exopolysaccharide (EPS) and EPS gene expression. Increased endogenous H2O2 production in the ahpC mutant in rich media enhanced biofilm formation, and this enhancement was not observed in the presence of antioxidants. Exogenous addition of H2O2 promoted biofilm formation in wild type cells, which suggested that biofilm development is linked to defense against H2O2. Collectively, our data showed that EPS production caused by H2O2 stress enhances biofilm formation in A. oleivorans.

  4. Mycobacterium avium Possesses Extracellular DNA that Contributes to Biofilm Formation, Structural Integrity, and Tolerance to Antibiotics.

    Science.gov (United States)

    Rose, Sasha J; Babrak, Lmar M; Bermudez, Luiz E

    2015-01-01

    Mycobacterium avium subsp. hominissuis is an opportunistic pathogen that is associated with biofilm-related infections of the respiratory tract and is difficult to treat. In recent years, extracellular DNA (eDNA) has been found to be a major component of bacterial biofilms, including many pathogens involved in biofilm-associated infections. To date, eDNA has not been described as a component of mycobacterial biofilms. In this study, we identified and characterized eDNA in a high biofilm-producing strain of Mycobacterium avium subsp. hominissuis (MAH). In addition, we surveyed for presence of eDNA in various MAH strains and other nontuberculous mycobacteria. Biofilms of MAH A5 (high biofilm-producing strain) and MAH 104 (reference strain) were established at 22°C and 37°C on abiotic surfaces. Acellular biofilm matrix and supernatant from MAH A5 7 day-old biofilms both possess abundant eDNA, however very little eDNA was found in MAH 104 biofilms. A survey of MAH clinical isolates and other clinically relevant nontuberculous mycobacterial species revealed many species and strains that also produce eDNA. RAPD analysis demonstrated that eDNA resembles genomic DNA. Treatment with DNase I reduced the biomass of MAH A5 biofilms when added upon biofilm formation or to an already established biofilm both on abiotic surfaces and on top of human pharyngeal epithelial cells. Furthermore, co-treatment of an established biofilm with DNase 1 and either moxifloxacin or clarithromycin significantly increased the susceptibility of the bacteria within the biofilm to these clinically used antimicrobials. Collectively, our results describe an additional matrix component of mycobacterial biofilms and a potential new target to help treat biofilm-associated nontuberculous mycobacterial infections.

  5. Archaeal type IV pili and their involvement in biofilm formation.

    Science.gov (United States)

    Pohlschroder, Mechthild; Esquivel, Rianne N

    2015-01-01

    Type IV pili are ancient proteinaceous structures present on the cell surface of species in nearly all bacterial and archaeal phyla. These filaments, which are required for a diverse array of important cellular processes, are assembled employing a conserved set of core components. While type IV pilins, the structural subunits of pili, share little sequence homology, their signal peptides are structurally conserved allowing for in silico prediction. Recently, in vivo studies in model archaea representing the euryarchaeal and crenarchaeal kingdoms confirmed that several of these pilins are incorporated into type IV adhesion pili. In addition to facilitating surface adhesion, these in vivo studies also showed that several predicted pilins are required for additional functions that are critical to biofilm formation. Examples include the subunits of Sulfolobus acidocaldarius Ups pili, which are induced by exposure to UV light and promote cell aggregation and conjugation, and a subset of the Haloferax volcanii adhesion pilins, which play a critical role in microcolony formation while other pilins inhibit this process. The recent discovery of novel pilin functions such as the ability of haloarchaeal adhesion pilins to regulate swimming motility may point to novel regulatory pathways conserved across prokaryotic domains. In this review, we will discuss recent advances in our understanding of the functional roles played by archaeal type IV adhesion pili and their subunits, with particular emphasis on their involvement in biofilm formation.

  6. Fresh garlic extract inhibits Staphylococcus aureus biofilm formation under chemopreventive and chemotherapeutic conditions

    Directory of Open Access Journals (Sweden)

    Panan Ratthawongjirakul

    2016-08-01

    Full Text Available Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA are the leading aetiological pathogens of nosocomial infections worldwide. These bacteria form biofilms on both biotic and abiotic surfaces causing biofilm-associated infections. Within the biofilm, these bacteria might develop persistent and antimicrobial resistant characteristics resulting in chronic infections and treatment failures. Garlic exhibits broad pharmaceutical properties and inhibitory activities against S. aureus. We investigated the effects of aqueous fresh garlic extract on biofilm formation in S. aureus ATCC25923 and MRSA strains under chemopreventive and chemotherapeutic conditions. The viable bacteria and biofilm levels were quantified through colony count and crystal violet staining, respectively. The use of fresh garlic extract under both conditions significantly inhibited biofilm formation in S. aureus strains ATCC25923 and MRSA. Garlic could be developed as either a prophylactic or therapeutic agent to manage S. aureus biofilm-associated infections.

  7. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants

    DEFF Research Database (Denmark)

    Klausen, M.; Heydorn, Arne; Ragas, Paula Cornelia;

    2003-01-01

    Biofilm formation by Gfp-tagged Pseudomonas aeruginosa PAO1 wild type, flagella and type IV pili mutants in flow chambers irrigated with citrate minimal medium was characterized by the use of confocal laser scanning microscopy and comstat image analysis. Flagella and type IV pili were not necessary...... for P. aeruginosa initial attachment or biofilm formation, but the cell appendages had roles in biofilm development, as wild type, flagella and type IV pili mutants formed biofilms with different structures. Dynamics and selection during biofilm formation were investigated by tagging the wild type...... and flagella/type IV mutants with Yfp and Cfp and performing time-lapse confocal laser scanning microscopy in mixed colour biofilms. The initial microcolony formation occurred by clonal growth, after which wild-type P. aeruginosa bacteria spread over the substratum by means of twitching motility. The wild-type...

  8. Biofilm formation, phenotypic production of cellulose and gene expression in Salmonella enterica decrease under anaerobic conditions.

    Science.gov (United States)

    Lamas, A; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M

    2016-12-05

    Salmonella enterica subsp. enterica is one of the main food-borne pathogens. This microorganism combines an aerobic life outside the host with an anaerobic life within the host. One of the main concerns related to S. enterica is biofilm formation and cellulose production. In this study, biofilm formation, morphotype, cellulose production and transcription of biofilm and quorum sensing-related genes of 11 S. enterica strains were tested under three different conditions: aerobiosis, microaerobiosis, and anaerobiosis. The results showed an influence of oxygen levels on biofilm production. Biofilm formation was significantly higher (Pbiofilm and quorum sensing-related genes. Thus, the results from this study indicate that biofilm formation and cellulose production are highly influenced by atmospheric conditions. This must be taken into account as contamination with these bacteria can occur during food processing under vacuum or modified atmospheres.

  9. [The influence of cell surface hydrophobicity Candida sp. on biofilm formation on different biomaterials].

    Science.gov (United States)

    Ciok-Pater, Emilia; Gospodarek, Eugenia; Prazyńska, Małgorzata; Bogiel, Tomasz

    2009-01-01

    The ability of yeasts to form biofilm is believed to play an important role in patomechanism of fungal infection. Candida sp. is considered to form biofilm on surfaces of biomaterials used in production of catheters, drains and prosthesis. Therefore this may lead to serious problems in patients with biomaterials used for diagnostic or therapeutic purposes. The aim of the study was to evaluate the influence of cell surface hydrophobicity (CSH) of Candida sp. on biofilm formation on different biomaterials. CSH was evaluated by two methods: Salt Aggregation Test (SAT) and Microbe Adhesion to Hydrocarbon Test (MATH). Biofilm formation on different biomaterials was measured by Richard's method after 72 hour incubation at 37 degrees C. Candida biofilm formation occurred more frequently in case of strains exhibiting hydrophobic than hydrophilic properties of cell surface. The statistically significant correlation between CSH and ability of biofilm formation on different biomaterials was observed (p < 0.05).

  10. Biofilm formation in long-term central venous catheters in children with cancer: a randomized controlled open-labelled trial of taurolidine versus heparin.

    Science.gov (United States)

    Handrup, Mette Møller; Fuursted, Kurt; Funch, Peter; Møller, Jens Kjølseth; Schrøder, Henrik

    2012-10-01

    Taurolidine has demonstrated inhibition of biofilm formation in vitro. The aim of this study was to compare the effect of catheter locking with taurolidine vs heparin in biofilm formation in central venous catheters. Forty-eight children with cancer were randomized to catheter locking by heparin (n = 22) or taurolidine (n = 26), respectively. After removal, catheters were examined by standardized scanning electron microscopy to assess quantitative biofilm formation. Biofilm was present if morphologically typical structures and bacterial cells were identified. Quantitative and semi-quantitative cultures were also performed. Biofilm was identified in 23 of 26 catheters from the taurolidine group and 21 of 22 catheters from the heparin group. A positive culture was made of six of the catheters locked with taurolidine and heparin, respectively (p = 0.78). The rate of catheter-related bloodstream infections (CRBSI) was 0.1 per 1000 catheter-days using taurolidine and 0.9 per 1000 catheter-days using heparin (p = 0.03). This randomized trial confirmed that the use of taurolidine as catheter-lock compared with heparin reduced the rate of CRBSIs; this reduction was not related to a reduction in the intraluminal biofilm formation and the rate of bacterial colonization detected by scanning electron microscopy in the two groups.

  11. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant.

    Science.gov (United States)

    James, K M; MacDonald, K W; Chanyi, R M; Cadieux, P A; Burton, J P

    2016-04-01

    Oral candidiasis is a disease caused by opportunistic species of Candida that normally reside on human mucosal surfaces. The transition of Candida from budding yeast to filamentous hyphae allows for covalent attachment to oral epithelial cells, followed by biofilm formation, invasion and tissue damage. In this study, combinations of Lactobacillus plantarum SD5870, Lactobacillus helveticus CBS N116411 and Streptococcus salivarius DSM 14685 were assessed for their ability to inhibit the formation of and disrupt Candida albicans biofilms. Co-incubation with probiotic supernatants under hyphae-inducing conditions reduced C. albicans biofilm formation by >75 % in all treatment groups. Likewise, combinations of live probiotics reduced biofilm formation of C. albicans by >67 %. When live probiotics or their supernatants were overlaid on preformed C. albicans biofilms, biofilm size was reduced by >63 and >65 % respectively. Quantitative real-time PCR results indicated that the combined supernatants of SD5870 and CBS N116411 significantly reduced the expression of several C. albicans genes involved in the yeast-hyphae transition: ALS3 (adhesin/invasin) by 70 % (P biofilm formation) by >99 % (P formation of and removing preformed C. albicans biofilms. Our novel results point to the downregulation of several Candida genes critical to the yeast-hyphae transition, biofilm formation, tissue invasion and cellular damage.

  12. The LuxS based quorum sensing governs lactose induced biofilm formation by Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Danielle eDuanis-Assaf

    2016-01-01

    Full Text Available Bacillus species present a major concern in the dairy industry as they can form biofilms in pipelines and on surfaces of equipment and machinery used in the entire line of production. These biofilms represent a continuous hygienic problem and can lead to serious economic losses due to food spoilage and equipment impairment. Biofilm formation by Bacillus subtilis is apparently dependent on LuxS quorum sensing (QS by Autoinducer-2 (AI-2. However, the link between sensing environmental cues and AI-2 induced biofilm formation remains largely unknown. The aim of this study is to investigate the role of lactose, the primary sugar in milk, on biofilm formation by B. subtilis and its possible link to QS processes. Our phenotypic analysis shows that lactose induces formation of biofilm bundles as well as formation of colony type biofilms. Furthermore, using reporter strain assays, we observed an increase in AI-2 production by B. subtilis in response to lactose in a dose dependent manner. Moreover, we found that expression of eps and tapA operons, responsible for extracellular matrix synthesis in B. subtilis, were notably up-regulated in response to lactose. Importantly, we also observed that LuxS is essential for B. subtilis biofilm formation in the presence of lactose. Overall, our results suggest that lactose may induce biofilm formation by B. subtilis through the LuxS pathway.

  13. Biofilm formation in clinical Candida isolates and its association with virulence

    OpenAIRE

    Hasan, Fahmi; Xess, Immaculata; Wang, Xiabo; Jain, Neena; Fries, Bettina C.

    2009-01-01

    Biofilm formation, an important virulence trait of Candida species was measured in 107 Candida isolates from 32 candidemic patients by XTT [2,3-bis (2-methoxy-4nitro-5-sulfo-phenyl)-2H-tetra-zolium-5-carboxanilide] activity and compared to biofilm formation of Candida isolates from oropharyngeal lesions of 19 AIDS patients. Biofilm formation by XTT varied among species and C. albicans; C. lusitaniae and C. krusei produced more biofilm than the other Candida species. C. tropicalis was the most...

  14. Extracellular DNA contributes to dental biofilm formation: an ex vivo study

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke Louise; Dige, Irene;

    The extracellular matrix of dental biofilms plays an important role during caries development. It increases the mechanical stability of the biofilm, it prevents desiccation, it serves as a reservoir for nutrients and it contributes to the long-term preservation of acidic microenvironments. Research...... on the biofilm matrix in the field of dentistry has focused mainly on the synthesis, structure and function of extracellular polysaccharides. In recent years, studies conducted on biofilms from other habitats have shown that the presence of extracellular DNA contributes to biofilm formation and stability...

  15. Evidence of extensive diversity in bacterial adherence mechanisms that exploit unanticipated stainless steel surface structural complexity for biofilm formation.

    Science.gov (United States)

    Davis, Elisabeth M; Li, Dongyang; Shahrooei, Mohammad; Yu, Bin; Muruve, Daniel; Irvin, Randall T

    2013-04-01

    Three protease-resistant bioorganic 304 stainless steel surfaces were created through the reaction of synthetic peptides consisting of the D-enantiomeric isomer (D-K122-4), the retro-inverso D-enantiomeric isomer (RI-K122-4), and a combination of the two peptides (D+RI) of the Pseudomonas aeruginosa PilA receptor binding domain with steel surfaces. The peptides used to produce the new materials differ only in handedness of their three-dimensional structure, but they reacted with the steel to yield materials that differed in their surface electron work function (EWF) while displaying an identical chemical composition and equivalent surface adhesive force properties. These surfaces allowed for an assessment of the relative role of surface EWF in initial biofilm formation. We examined the ability of various bacteria (selected strains of Listeria monocytogenes, L. innocua, Staphylococcus aureus and S. epidermidis) to initiate biofilm formation. The D-K1224 generated surface displayed the lowest EWF (classically associated with greater molecular interactions and more extensive biofilm formation) but was observed to be least effectively colonized by bacteria (>50% decrease in bacterial adherence of all strains). The highest surface EWF with the lowest surface free energy (RI-K122-4 generated) was more extensively colonized by bacteria, with the binding of some strains being equivalent to unmodified steel. The D+RI generated surface was least effective in minimizing biofilm formation, where some strains displayed enhanced bacterial colonization. Fluorescent microscopy revealed that the D and RI peptides displayed similar but clearly different binding patterns, suggesting that the peptides recognized different sites on the steel, and that differential binding of the peptides to the steel surfaces influences the binding of different bacterial strains and species. We have demonstrated that stainless steel surfaces can be easily modified by peptides to generate surfaces with

  16. Biofilm Formation by Bacillus cereus Is Influenced by PlcR, a Pleiotropic Regulator

    Science.gov (United States)

    Hsueh, Yi-Huang; Somers, Eileen B.; Lereclus, Didier; Wong, Amy C. Lee

    2006-01-01

    The ΔplcR mutant of Bacillus cereus strain ATCC 14579 developed significantly more biofilm than the wild type and produced increased amounts of biosurfactant. Biosurfactant production is required for biofilm formation and may be directly or indirectly repressed by PlcR, a pleiotropic regulator. Coating polystyrene plates with surfactin, a biosurfactant from Bacillus subtilis, rescued the deficiency in biofilm formation by the wild type. PMID:16820512

  17. Biofilm Risks

    DEFF Research Database (Denmark)

    Wirtanen, Gun Linnea; Salo, Satu

    2016-01-01

    This chapter on biofilm risks deals with biofilm formation of pathogenic microbes, sampling and detection methods, biofilm removal, and prevention of biofilm formation. Several common pathogens produce sticky and/or slimy structures in which the cells are embedded, that is, biofilms, on various s...

  18. In vitro prevention of Pseudomonas aeruginosa early biofilm formation with antibiotics used in cystic fibrosis patients.

    Science.gov (United States)

    Fernández-Olmos, Ana; García-Castillo, María; Maiz, Luis; Lamas, Adelaida; Baquero, Fernando; Cantón, Rafael

    2012-08-01

    The ability of antibiotics used in bronchopulmonary infections in cystic fibrosis (CF) patients to prevent Pseudomonas aeruginosa early biofilm formation was studied using a biofilm microtitre assay with 57 non-mucoid P. aeruginosa isolates (44 first colonisers and 13 recovered during the initial intermittent colonisation stage) obtained from 35 CF patients. Minimum biofilm inhibitory concentrations (BICs) of levofloxacin, ciprofloxacin, imipenem, ceftazidime, tobramycin, colistin and azithromycin were determined by placing a peg lid with a formed biofilm onto microplates containing antibiotics. A modification of this protocol consisting of antibiotic challenge during biofilm formation was implemented in order to determine the biofilm prevention concentration (BPC), i.e. the minimum concentration able to prevent biofilm formation. The lowest BPCs were for fluoroquinolones, tobramycin and colistin and the highest for ceftazidime and imipenem. The former antibiotics had BPCs identical to or only slightly higher than their minimum inhibitory concentrations (MICs) determined by standard Clinical and Laboratory Standards Institute (CLSI) microdilution and were also active on formed biofilms as reflected by their low BIC values. In contrast, ceftazidime and imipenem were less effective for prevention of biofilm formation and on formed biofilms. In conclusion, the new BPC parameter determined in non-mucoid P. aeruginosa isolates recovered during early colonisation stages in CF patients supports early aggressive antimicrobial treatment guidelines in first P. aeruginosa-colonised CF patients.

  19. STUDY OF BIOFILM FORMATION AS A VIRULENCE MARKER IN CANDIDA SPECIES ISOLATED FROM VARIOUS CLINICAL SPEC IMENS

    Directory of Open Access Journals (Sweden)

    Saroj

    2012-12-01

    Full Text Available ABSTRACT: BACKGROUND: Candida species can be either commensals or opportunis tic pathogens with the ability to cause a variety of inf ections, ranging from superficial to life threatening. Nosocomial infections due to candida a re also becoming increasingly important. Early and prompt diagnosis, proper treatment and prevent ion of candidemia due to biofilms pose a major challenge for microbiologists and clini cians worldwide. Added to this is the emerging trend of antifungal drug resistance among the biofilm producing strains of Candida. AIMS: The aim of this study was to detect biofilm producti on in Candida species isolated from various clinical samples obtained from patients hospit alized in Dr. B.R Ambedkar Medical College and Hospital. MATERIALS AND METHODS: A total of 108 Candida species (Candida albicans49 and non-albicans Candida59 species isola ted from various specimens (urine, blood, respiratory tract, genital samples, plastic devices an d pus samples were included in the study.The various candida isolates were identified by using conventional methods and their ability to produce biofilm was detected by the tube method. RESULTS: Out of 108 candida species, non-albicans Candida 59(54.63% was the pred ominant species isolated. Biofilm positivity was seen with 71(65.74% isolates and the biofilm production was observed more with non-albicans Candida species 44(61.97% compare d to C.albicans species 27(38.03%. Among the non-albicans Candida species, strong biofi lm producers were C.krusei(80.77% and C.tropicalis(72.73%. Biofilm positivity was found to be higher in the bloodstream Candida isolates (81.82% compared to isolates from other si tes. CONCLUSION: The present study suggests an increasing prevalence of non-albicans Ca ndida species in the various clinical samples isolated and also shows them as strong biofi lm producers compared to C.albicans species. These data suggest that, biofilm formation as a potential virulence factor might

  20. Legionella-protozoa-nematode interactions in aquatic biofilms and influence of Mip on Caenorhabditis elegans colonization.

    Science.gov (United States)

    Rasch, Janine; Krüger, Stefanie; Fontvieille, Dominique; Ünal, Can M; Michel, Rolf; Labrosse, Aurélie; Steinert, Michael

    2016-09-01

    Legionella pneumophila, the causative agent of Legionnaireś disease, is naturally found in aquatic habitats. The intracellular life cycle within protozoa pre-adapted the "accidental" human pathogen to also infect human professional phagocytes like alveolar macrophages. Previous studies employing the model organism Caenorhabditis elegans suggest that also nematodes might serve as a natural host for L. pneumophila. Here, we report for the first time from a natural co-habitation of L. pneumophila and environmental nematode species within biofilms of a warm water spring. In addition, we identified the protozoan species Oxytricha bifaria, Stylonychia mytilus, Ciliophrya sp. which have never been described as potential interaction partners of L. pneumophila before. Modeling and dissection of the Legionella-protozoa-nematode interaction revealed that C. elegans ruptures Legionella-infected amoebal cells and by this means incorporate the pathogen. Further infection studies revealed that the macrophage infectivity potentiator (Mip) protein of L. pneumophila, which is known to bind collagen IV during human lung infection, promotes the colonization of the intestinal tract of L4 larvae of C. elegans and negatively influences the life span of the worms. The Mip-negative L. pneumophila mutant exhibited a 32-fold reduced colonization rate of the nematodes after 48h when compared to the wild-type strain. Taken together, these studies suggest that nematodes may serve as natural hosts for L. pneumophila, promote their persistence and dissemination in the environment, and co-evolutionarily pre-adapt the pathogen for interactions with extracellular constituents of human lung tissue.

  1. Marine Sponge-Derived Streptomyces sp. SBT343 Extract Inhibits Staphylococcal Biofilm Formation

    Science.gov (United States)

    Balasubramanian, Srikkanth; Othman, Eman M.; Kampik, Daniel; Stopper, Helga; Hentschel, Ute; Ziebuhr, Wilma; Oelschlaeger, Tobias A.; Abdelmohsen, Usama R.

    2017-01-01

    Staphylococcus epidermidis and Staphylococcus aureus are opportunistic pathogens that cause nosocomial and chronic biofilm-associated infections. Indwelling medical devices and contact lenses are ideal ecological niches for formation of staphylococcal biofilms. Bacteria within biofilms are known to display reduced susceptibilities to antimicrobials and are protected from the host immune system. High rates of acquired antibiotic resistances in staphylococci and other biofilm-forming bacteria further hamper treatment options and highlight the need for new anti-biofilm strategies. Here, we aimed to evaluate the potential of marine sponge-derived actinomycetes in inhibiting biofilm formation of several strains of S. epidermidis, S. aureus, and Pseudomonas aeruginosa. Results from in vitro biofilm-formation assays, as well as scanning electron and confocal microscopy, revealed that an organic extract derived from the marine sponge-associated bacterium Streptomyces sp. SBT343 significantly inhibited staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces, without affecting bacterial growth. The extract also displayed similar antagonistic effects towards the biofilm formation of other S. epidermidis and S. aureus strains tested but had no inhibitory effects towards Pseudomonas biofilms. Interestingly the extract, at lower effective concentrations, did not exhibit cytotoxic effects on mouse fibroblast, macrophage and human corneal epithelial cell lines. Chemical analysis by High Resolution Fourier Transform Mass Spectrometry (HRMS) of the Streptomyces sp. SBT343 extract proportion revealed its chemical richness and complexity. Preliminary physico-chemical characterization of the extract highlighted the heat-stable and non-proteinaceous nature of the active component(s). The combined data suggest that the Streptomyces sp. SBT343 extract selectively inhibits staphylococcal biofilm formation without interfering with bacterial cell viability. Due to

  2. Experimental and Computational Investigation of Biofilm Formation by Rhodopseudomonas palustris Growth under Two Metabolic Modes.

    Directory of Open Access Journals (Sweden)

    Chase Kernan

    Full Text Available We examined biofilms formed by the metabolically versatile bacterium Rhodopseudomonas palustris grown via different metabolic modes. R. palustris was grown in flow cell chambers with identical medium conditions either in the presence or absence of light and oxygen. In the absence of oxygen and the presence of light, R. palustris grew and formed biofilms photoheterotrophically, and in the presence of oxygen and the absence of light, R. palustris grew and formed biofilms heterotrophically. We used confocal laser scanning microscopy and image analysis software to quantitatively analyze and compare R. palustris biofilm formation over time in these two metabolic modes. We describe quantifiable differences in structure between the biofilms formed by the bacterium grown heterotrophically and those grown photoheterotrophically. We developed a computational model to explore ways in which biotic and abiotic parameters could drive the observed biofilm architectures, as well as a random-forest machine-learning algorithm based on structural differences that was able to identify growth conditions from the confocal imaging of the biofilms with 87% accuracy. Insight into the structure of phototrophic biofilms and conditions that influence biofilm formation is relevant for understanding the generation of biofilm structures with different properties, and for optimizing applications with phototrophic bacteria growing in the biofilm state.

  3. Evaluation of Various Metallic Coatings on Steel to Mitigate Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Hajime Ikigai

    2009-02-01

    Full Text Available In marine environments and water systems, it is easy for many structures to form biofilms on their surfaces and to be deteriorated due to the corrosion caused by biofilm formation by bacteria. The authors have investigated the antibacterial effects of metallic elements in practical steels so far to solve food-related problems, using Escherichia coli and Staphylococcus aureus. However, from the viewpoint of material deterioration caused by bacteria and their antifouling measures, we should consider the biofilm behavior as aggregate rather than individual bacterium. Therefore, we picked up Pseudomonas aeruginosa and Pseudoalteromonas carageenovara in this study, since they easily form biofilms in estuarine and marine environments. We investigated what kind of metallic elements could inhibit the biofilm formation at first and then discussed how the thin films of those inhibitory elements on steels could affect biofilm formation. The information would lead to the establishment of effective antifouling measures against corrosion in estuarine and marine environments.

  4. D-Amino acids inhibit biofilm formation in Staphylococcus epidermidis strains from ocular infections.

    Science.gov (United States)

    Ramón-Peréz, Miriam L; Diaz-Cedillo, Francisco; Ibarra, J Antonio; Torales-Cardeña, Azael; Rodríguez-Martínez, Sandra; Jan-Roblero, Janet; Cancino-Diaz, Mario E; Cancino-Diaz, Juan C

    2014-10-01

    Biofilm formation on medical and surgical devices is a major virulence determinant for Staphylococcus epidermidis. The bacterium S. epidermidis is able to produce biofilms on biotic and abiotic surfaces and is the cause of ocular infection (OI). Recent studies have shown that d-amino acids inhibit and disrupt biofilm formation in the prototype strains Bacillus subtilis NCBI3610 and Staphylococcus aureus SCO1. The effect of d-amino acids on S. epidermidis biofilm formation has yet to be tested for clinical or commensal isolates. S. epidermidis strains isolated from healthy skin (n = 3), conjunctiva (n = 9) and OI (n = 19) were treated with d-Leu, d-Tyr, d-Pro, d-Phe, d-Met or d-Ala and tested for biofilm formation. The presence of d-amino acids during biofilm formation resulted in a variety of patterns. Some strains were sensitive to all amino acids tested, while others were sensitive to one or more, and one strain was resistant to all of them when added individually; in this way d-Met inhibited most of the strains (26/31), followed by d-Phe (21/31). Additionally, the use of d-Met inhibited biofilm formation on a contact lens. The use of l-isomers caused no defect in biofilm formation in all strains tested. In contrast, when biofilms were already formed d-Met, d-Phe and d-Pro were able to disrupt it. In summary, here we demonstrated the inhibitory effect of d-amino acids on biofilm formation in S. epidermidis. Moreover, we showed, for the first time, that S. epidermidis clinical strains have a different sensitivity to these compounds during biofilm formation.

  5. Prevalence of Panton-Valentine leucocidin and phenotypic and genotypic characterization of biofilm formation among Staphylococcus aureus strains isolated from children with adenoid hypertrophy.

    Science.gov (United States)

    Emaneini, Mohammad; Khoramrooz, Seyed Sajjad; Shahsavan, Shadi; Dabiri, Hossein; Jabalameli, Fereshteh

    2015-12-01

    Adenoids as a first line of host defense against respiratory microbes play an important role in majority of upper airway infectious and noninfectious illnesses. Bacterial pathogen can colonize on the adenoid tissue and probably act as a reservoir for them. To determine phenotypic and genotypic characterization of biofilm forming capacity of Staphylococcus aureus isolates from children with adenoid hypertrophy and prevalence of Panton-Valentine leukocidin (PVL) gene we collected 17 consecutive, clinically significant S. aureus isolates from children with adenoid hypertrophy undergoing adenoidectomy with one or more of the upper airway obstruction symptoms, nasal obstruction, mouth breathing, snoring, or sleep apnea. Biofilm formation was evaluated by colorimetric microtiter plate's assay. Gene encoding PVL and adhesion- or biofilm formation-encoding genes were targeted by polymerase chain reaction (PCR) assay. According to the results, all strains produced biofilm. Seven (41.2%) isolates produced strong biofilm whereas 7 (41.2%) isolates produced week and 3 (17.6%) isolates produced medium biofilm. Regarding the adhesion- or biofilm formation-encoding genes, 16 (94.1%) isolates were positive for the gene eno, 13(76.4%) for icaA, 13 (76.4%) for icaD, 10 (58.8%) for fib, 10 (58.8%) for fnbB, 4(23.5%) for can, and 1(5.8%) for fnbA. The high prevalence of genes encoding biofilms and adhesins and phenotypic ability to form a biofilm by S. aureus strains emphasizes the pathogenic character of strains isolated from children with adenoid hypertrophy.

  6. The influence of dissolved oxygen level and medium on biofilm formation by Campylobacter jejuni.

    Science.gov (United States)

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2017-02-01

    Campylobacter jejuni survival in aerobic environments has been suggested to be mediated by biofilm formation. Biofilm formation by eight C. jejuni strains under both aerobic and microaerobic conditions in different broths (Mueller-Hinton (MH), Bolton and Brucella) was quantified. The dissolved oxygen (DO) content of the broths under both incubation atmospheres was determined. Biofilm formation for all strains was highest in MH broth under both incubation atmospheres. Four strains had lower biofilm formation in MH under aerobic as compared to microaerobic incubation, while biofilm formation by the other four strains did not differ under the 2 atm. Two strains had higher biofilm formation under aerobic as compared to microaerobic atmospheres in Bolton broth. Biofilm formation by all other strains in Bolton, and all strains in Brucella broth, did not differ under the 2 atm. Under aerobic incubation DO levels in MH > Brucella > Bolton broth. Under microaerobic conditions levels in MH = Brucella > Bolton broth. Levels of DO in MH and Brucella broth were lower under microaerobic conditions but those of Bolton did not differ under the 2 atm. Experimental conditions and especially the DO of broth media confound previous conclusions drawn about aerobic biofilm formation by C. jejuni.

  7. Biofilm formation and antibiotic resistance in Salmonella Typhimurium are affected by different ribonucleases.

    Science.gov (United States)

    Saramago, Margarida; Domingues, Susana; Viegas, Sandra Cristina; Arraiano, Cecília Maria

    2014-01-01

    Biofilm formation and antibiotic resistance are important determinants for bacterial pathogenicity. Ribonucleases control RNA degradation and there is increasing evidence that they have an important role in virulence mechanisms. In this report, we show that ribonucleases affect susceptibility against ribosome-targeting antibiotics and biofilm formation in Salmonella.

  8. An iron detection system determines bacterial swarming initiation and biofilm formation

    NARCIS (Netherlands)

    Lin, Chuan-Sheng; Tsai, Yu-Huan; Chang, Chih-Jung; Tseng, Shun-Fu; Wu, Tsung-Ru; Lu, Chia-Chen; Wu, Ting-Shu; Lu, Jang-Jih; Horng, Jim-Tong; Martel, Jan; Ojcius, David M.; Lai, Hsin-Chih; Young, John D.; Andrews, S. C.; Robinson, A. K.; Rodriguez-Quinones, F.; Touati, D.; Yeom, J.; Imlay, J. A.; Park, W.; Marx, J. J.; Braun, V.; Hantke, K.; Cornelis, P.; Wei, Q.; Vinckx, T.; Troxell, B.; Hassan, H. M.; Verstraeten, N.; Lewis, K.; Hall-Stoodley, L.; Costerton, J. W.; Stoodley, P.; Kearns, D. B.; Losick, R.; Butler, M. T.; Wang, Q.; Harshey, R. M.; Lai, S.; Tremblay, J.; Deziel, E.; Overhage, J.; Bains, M.; Brazas, M. D.; Hancock, R. E.; Partridge, J. D.; Kim, W.; Surette, M. G.; Givskov, M.; Rather, P. N.; Houdt, R. Van; Michiels, C. W.; Mukherjee, S.; Inoue, T.; Frye, J. G.; McClelland, M.; McCarter, L.; Silverman, M.; Matilla, M. A.; Wu, Y.; Outten, F. W.; Singh, P. K.; Parsek, M. R.; Greenberg, E. P.; Welsh, M. J.; Banin, E.; Vasil, M. L.; Wosten, M. M.; Kox, L. F.; Chamnongpol, S.; Soncini, F. C.; Groisman, E. A.; Laub, M. T.; Goulian, M.; Krell, T.; Lai, H. C.; Lin, C. S.; Soo, P. C.; Tsai, Y. H.; Wei, J. R.; Wyckoff, E. E.; Mey, A. R.; Leimbach, A.; Fisher, C. F.; Payne, S. M.; Livak, K. J.; Schmittgen, T. D.; Clarke, M. B.; Hughes, D. T.; Zhu, C.; Boedeker, E. C.; Sperandio, V.; Stintzi, A.; Clarke-Pearson, M. F.; Brady, S. F.; Drake, E. J.; Gulick, A. M.; Qaisar, U.; Rowland, M. A.; Deeds, E. J.; Garcia, C. A.; Alcaraz, E. S.; Franco, M. A.; Rossi, B. N. Passerini de; Mehi, O.; Skaar, E. P.; Visaggio, D.; Nishino, K.; Dietz, P.; Gerlach, G.; Beier, D.; Bustin, S. A.; Schwyn, B.; Neilands, J. B.

    2016-01-01

    Iron availability affects swarming and biofilm formation in various bacterial species. However, how bacteria sense iron and coordinate swarming and biofilm formation remains unclear. Using Serratia marcescens as a model organism, we identify here a stage-specific iron-regulatory machinery comprising

  9. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species.

    Science.gov (United States)

    Pasvolsky, Ronit; Zakin, Varda; Ostrova, Ievgeniia; Shemesh, Moshe

    2014-07-02

    Bacillus species form biofilms within milking pipelines and on surfaces of equipment in the dairy industry which represent a continuous hygiene problem and can lead to serious economic losses due to food spoilage and equipment impairment. Although much is known about the mechanism by which the model organism Bacillus subtilis forms biofilms in laboratory mediums in vitro, little is known of how these biofilms are formed in natural environments such as milk. Besides, little is known of the signaling pathways leading to biofilm formation in other Bacillus species, such as Bacillus cereus and Bacillus licheniformis, both of which are known to contaminate milk. In this study, we report that milk triggers the formation of biofilm-related structures, termed bundles. We show this to be a conserved phenomenon among all Bacillus members tested. Moreover, we demonstrate that the tasA gene, which encodes a major portion of the matrix which holds the biofilm together, is vital for this process. Furthermore, we show that the free fatty acid (FFA) - butyric acid (BA), which is released during lipolysis of milk fat and demonstrates antimicrobial activity, is the potent trigger for biofilm bundle formation. We finally show that BA-triggered biofilm bundle formation is mediated by the histidine kinase, KinD. Taken together, these observations indicate that BA, which is a major FFA within milk triggers biofilm formation in a conserved mechanism among members of the Bacillus genus.

  10. [Biofilm formation capacity of Listeria monocytogens strains isolated from soft cheese from Costa Rica].

    Science.gov (United States)

    Carrillo Zeledón, Gabriela; Redondo Solano, Mauricio; Arias Echandi, María Laura

    2010-06-01

    Listeria monocytogenes is a bacteria associated with the production of severe infectious disease in human being, but also with the formation of biofilms in different surfaces related to the food production environment. Biofilm represents a serious problem in food industry, since it is a constant and important contamination source and also, bacteria present in it have an increased resistance towards physical and chemical agents of common use. The capacity of biofilm formation of L. monocytogenes strains previously isolated from soft cheese samples from Costa Rica was studied under different temperature and culture conditions. The microplate technique was performed using different culture media (BHIB, TSB 1:20 and cheese serum) and at different incubation temperatures (refrigeration, environmental and 35 degrees C). Biofilm formation capacity was classified according to the optical density obtained at 620 nm. None of the strains evaluated was classified as strong biofilm former under any of the variables studied, nevertheless, weak and moderate formers were detected. The results obtained show the influence of the nutrient content of the culture media used over biofilm formation; BHIB was the only culture media that allowed the expression of moderate biofilm forms, contrary to cheese serum that did not promote biofilm production. Biofilm formation is a multifactorial process, where adsorption level depends on several variables and its study must be promoted in order to develop methodologies that allow its reduction or elimination, so food industries may offer safe food products to consumers.

  11. Chicken juice enhances surface attachment and biofilm formation of Campylobacter jejuni.

    Science.gov (United States)

    Brown, Helen L; Reuter, Mark; Salt, Louise J; Cross, Kathryn L; Betts, Roy P; van Vliet, Arnoud H M

    2014-11-01

    The bacterial pathogen Campylobacter jejuni is primarily transmitted via the consumption of contaminated foodstuffs, especially poultry meat. In food processing environments, C. jejuni is required to survive a multitude of stresses and requires the use of specific survival mechanisms, such as biofilms. An initial step in biofilm formation is bacterial attachment to a surface. Here, we investigated the effects of a chicken meat exudate (chicken juice) on C. jejuni surface attachment and biofilm formation. Supplementation of brucella broth with ≥5% chicken juice resulted in increased biofilm formation on glass, polystyrene, and stainless steel surfaces with four C. jejuni isolates and one C. coli isolate in both microaerobic and aerobic conditions. When incubated with chicken juice, C. jejuni was both able to grow and form biofilms in static cultures in aerobic conditions. Electron microscopy showed that C. jejuni cells were associated with chicken juice particulates attached to the abiotic surface rather than the surface itself. This suggests that chicken juice contributes to C. jejuni biofilm formation by covering and conditioning the abiotic surface and is a source of nutrients. Chicken juice was able to complement the reduction in biofilm formation of an aflagellated mutant of C. jejuni, indicating that chicken juice may support food chain transmission of isolates with lowered motility. We provide here a useful model for studying the interaction of C. jejuni biofilms in food chain-relevant conditions and also show a possible mechanism for C. jejuni cell attachment and biofilm initiation on abiotic surfaces within the food chain.

  12. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility.

    Science.gov (United States)

    Yang, Xiaolong; Sha, Kaihui; Xu, Guangya; Tian, Hanwen; Wang, Xiaoying; Chen, Shanze; Wang, Yi; Li, Jingyu; Chen, Junli; Huang, Ning

    2016-06-29

    Uropathogenic Escherichia coli (UPEC) biofilm formation enables the organism to avoid the host immune system, resist antibiotics, and provide a reservoir for persistent infection. Once the biofilm is established, eradication of the infection becomes difficult. Therefore, strategies against UPEC biofilm are urgently required. In this study, we investigated the effect of allicin, isolated from garlic essential oil, on UPEC CFT073 and J96 biofilm formation and dispersal, along with its effect on UPEC adhesion ability and swimming motility. Sub-inhibitory concentrations (sub-MICs) of allicin decreased UPEC biofilm formation and affected its architecture. Allicin was also capable of dispersing biofilm. Furthermore, allicin decreased the bacterial adhesion ability and swimming motility, which are important for biofilm formation. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that allicin decreased the expression of UPEC type 1 fimbriae adhesin gene fimH. Docking studies suggested that allicin was located within the binding pocket of heptyl α-d-mannopyrannoside in FimH and formed hydrogen bonds with Phe1 and Asn135. In addition, allicin decreased the expression of the two-component regulatory systems (TCSs) cognate response regulator gene uvrY and increased the expression of the RNA binding global regulatory protein gene csrA of UPEC CFT073, which is associated with UPEC biofilm. The findings suggest that sub-MICs of allicin are capable of affecting UPEC biofilm formation and dispersal, and decreasing UPEC adhesion ability and swimming motility.

  13. A three-step method for analysing bacterial biofilm formation under continuous medium flow.

    Science.gov (United States)

    Schmutzler, Karolin; Schmid, Andreas; Buehler, Katja

    2015-07-01

    For the investigation and comparison of microbial biofilms, a variety of analytical methods have been established, all focusing on different growth stages and application areas of biofilms. In this study, a novel quantitative assay for analysing biofilm maturation under the influence of continuous flow conditions was developed using the interesting biocatalyst Pseudomonas taiwanensis VLB120. In contrast to other tubular-based assay systems, this novel assay format delivers three readouts using a single setup in a total assay time of 40 h. It combines morphotype analysis of biofilm colonies with the direct quantification of biofilm biomass and pellicle formation on an air/liquid interphase. Applying the Tube-Assay, the impact of the second messenger cyclic diguanylate on biofilm formation of P. taiwanensis VLB120 was investigated. To this end, 41 deletions of genes encoding for protein homologues to diguanylate cyclase and phosphodiesterase were generated in the genome of P. taiwanensis VLB120. Subsequently, the biofilm formation of the resulting mutants was analysed using the Tube-Assay. In more than 60 % of the mutants, a significantly altered biofilm formation as compared to the parent strain was detected. Furthermore, the potential of the proposed Tube-Assay was validated by investigating the biofilms of several other bacterial species.

  14. Nuclease modulates biofilm formation in community-associated methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Megan R Kiedrowski

    Full Text Available Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA is an emerging contributor to biofilm-related infections. We recently reported that strains lacking sigma factor B (sigB in the USA300 lineage of CA-MRSA are unable to develop a biofilm. Interestingly, when spent media from a USA300 sigB mutant was incubated with other S. aureus strains, biofilm formation was inhibited. Following fractionation and mass spectrometry analysis, the major anti-biofilm factor identified in the spent media was secreted thermonuclease (Nuc. Considering reports that extracellular DNA (eDNA is an important component of the biofilm matrix, we investigated the regulation and role of Nuc in USA300. The expression of the nuc gene was increased in a sigB mutant, repressed by glucose supplementation, and was unaffected by the agr quorum-sensing system. A FRET assay for Nuc activity was developed and confirmed the regulatory results. A USA300 nuc mutant was constructed and displayed an enhanced biofilm-forming capacity, and the nuc mutant also accumulated more high molecular weight eDNA than the WT and regulatory mutant strains. Inactivation of nuc in the USA300 sigB mutant background partially repaired the sigB biofilm-negative phenotype, suggesting that nuc expression contributes to the inability of the mutant to form biofilm. To test the generality of the nuc mutant biofilm phenotypes, the mutation was introduced into other S. aureus genetic backgrounds and similar increases in biofilm formation were observed. Finally, using multiple S. aureus strains and regulatory mutants, an inverse correlation between Nuc activity and biofilm formation was demonstrated. Altogether, our findings confirm the important role for eDNA in the S. aureus biofilm matrix and indicates Nuc is a regulator of biofilm formation.

  15. Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria.

    Science.gov (United States)

    Simões, Lúcia Chaves; Simões, Manuel; Vieira, Maria João

    2010-10-01

    This study was performed in order to characterize the relationship between adhesion and biofilm formation abilities of drinking water-isolated bacteria (Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata and Staphylococcus sp.). Adhesion was assessed by two distinct methods: thermodynamic prediction of adhesion potential by quantifying hydrophobicity and the free energy of adhesion; and by microtiter plate assays. Biofilms were developed in microtiter plates for 24, 48 and 72 h. Polystyrene (PS) was used as adhesion substratum. The tested bacteria had negative surface charge and were hydrophilic. PS had negative surface charge and was hydrophobic. The free energy of adhesion between the bacteria and PS was > 0 mJ/m(2) (thermodynamic unfavorable adhesion). The thermodynamic approach was inappropriate for modelling adhesion of the tested drinking water bacteria, underestimating adhesion to PS. Only three (B. cepacia, Sph. capsulata and Staphylococcus sp.) of the six bacteria were non-adherent to PS. A. calcoaceticus, Methylobacterium sp. and M. mucogenicum were weakly adherent. This adhesion ability was correlated with the biofilm formation ability when comparing with the results of 24 h aged biofilms. Methylobacterium sp. and M. mucogenicum formed large biofilm amounts, regardless the biofilm age. Given time, all the bacteria formed biofilms; even those non-adherents produced large amounts of matured (72 h aged) biofilms. The overall results indicate that initial adhesion did not predict the ability of the tested drinking water-isolated bacteria to form a mature biofilm, suggesting that other events such as phenotypic and genetic switching during biofilm development and the production of extracellular polymeric substances (EPS), may play a significant role on biofilm formation and differentiation. This understanding of the relationship between adhesion and biofilm formation is important for

  16. [Biofilm Formation by the Nonflagellated flhB1 Mutant of Azospirillum brasilense Sp245].

    Science.gov (United States)

    Shelud'ko, A V; Filip'echeva, Yu A; Shumiliva, E M; Khlebtsov, B N; Burov, A M; Petrova, L P; Katsy, E I

    2015-01-01

    Azospirillum brasilense Sp245 with mixed flagellation are able to form biofilms on various surfaces. A nonflagellated mutant of this strain with inactivated chromosomal copy of the flhB gene (flhB1) was shown to exhibit specific traits at the later stages of biofilm formation on a hydrophilic (glass) surface. Mature biofilms of the flhB1::Omegon-Km mutant Sp245.1063 were considerably thinner than those of the parent strain Sp245. The biofilms of the mutant were more susceptible to the forces of hydrodynamic shear. A. brasilense Sp245 cells in biofilms were not found to possess lateral flagella. Cells with polar flagella were, however, revealed by atomic force microscopy of mature native biofilms of strain Sp245. Preservation of a polar flagellum (probably nonmotile) on the cells of A. brasilense Sp245 may enhance the biofilm stability.

  17. Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Høiby, Niels;

    2010-01-01

    Pseudomonas aeruginosa is the best described bacterium with regards to quorum sensing (QS), in vitro biofilm formation and the development of antibiotic tolerance. Biofilms composed of P. aeruginosa are thought to be the underlying cause of many chronic infections, including those in wounds...... and in the lungs of patients with cystic fibrosis. In this review, we provide an overview of the molecular mechanisms involved in QS, QS-enabled virulence, biofilm formation and biofilm-enabled antibiotic tolerance. We now have substantial knowledge of the multicellular behaviour of P. aeruginosa in vitro. A major...

  18. Cell Differentiation in a Bacillus thuringiensis Population during Planktonic Growth, Biofilm Formation, and Host Infection

    Science.gov (United States)

    Verplaetse, Emilie; Slamti, Leyla; Gohar, Michel

    2015-01-01

    ABSTRACT Bacillus thuringiensis (Bt) is armed to complete a full cycle in its insect host. During infection, virulence factors are expressed under the control of the quorum sensor PlcR to kill the host. After the host’s death, the quorum sensor NprR controls a necrotrophic lifestyle, allowing the vegetative cells to use the insect cadaver as a bioincubator and to survive. Only a part of the Bt population sporulates in the insect cadaver, and the precise composition of the whole population and its evolution over time are unknown. Using fluorescent reporters to record gene expression at the single-cell level, we have determined the differentiation course of a Bt population and explored the lineage existing among virulent, necrotrophic, and sporulating cells. The dynamics of cell differentiation were monitored during growth in homogenized medium, biofilm formation, and colonization of insect larvae. We demonstrated that in the insect host and in planktonic culture in rich medium, the virulence, necrotrophism, and sporulation regulators are successively activated in the same cell. In contrast, in biofilms, activation of PlcR is dispensable for NprR activation and we observed a greater heterogeneity than under the other two growth conditions. We also showed that sporulating cells arise almost exclusively from necrotrophic cells. In biofilm and in the insect cadaver, we identified an as-yet-uncharacterized category of cells that do not express any of the reporters used. Overall, we showed that PlcR, NprR, and Spo0A act as interconnected integrators to allow finely tuned adaptation of the pathogen to its environment. PMID:25922389

  19. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism.

    Science.gov (United States)

    Vital-Lopez, Francisco G; Reifman, Jaques; Wallqvist, Anders

    2015-10-01

    A hallmark of Pseudomonas aeruginosa is its ability to establish biofilm-based infections that are difficult to eradicate. Biofilms are less susceptible to host inflammatory and immune responses and have higher antibiotic tolerance than free-living planktonic cells. Developing treatments against biofilms requires an understanding of bacterial biofilm-specific physiological traits. Research efforts have started to elucidate the intricate mechanisms underlying biofilm development. However, many aspects of these mechanisms are still poorly understood. Here, we addressed questions regarding biofilm metabolism using a genome-scale kinetic model of the P. aeruginosa metabolic network and gene expression profiles. Specifically, we computed metabolite concentration differences between known mutants with altered biofilm formation and the wild-type strain to predict drug targets against P. aeruginosa biofilms. We also simulated the altered metabolism driven by gene expression changes between biofilm and stationary growth-phase planktonic cultures. Our analysis suggests that the synthesis of important biofilm-related molecules, such as the quorum-sensing molecule Pseudomonas quinolone signal and the exopolysaccharide Psl, is regulated not only through the expression of genes in their own synthesis pathway, but also through the biofilm-specific expression of genes in pathways competing for precursors to these molecules. Finally, we investigated why mutants defective in anthranilate degradation have an impaired ability to form biofilms. Alternative to a previous hypothesis that this biofilm reduction is caused by a decrease in energy production, we proposed that the dysregulation of the synthesis of secondary metabolites derived from anthranilate and chorismate is what impaired the biofilms of these mutants. Notably, these insights generated through our kinetic model-based approach are not accessible from previous constraint-based model analyses of P. aeruginosa biofilm

  20. A coverslip-based technique for evaluating Staphylococcus aureus biofilm formation on human plasma

    Directory of Open Access Journals (Sweden)

    Jennifer N Walker

    2012-03-01

    Full Text Available The ability of the opportunistic pathogen, Staphylococcus aureus, to form biofilms is increasingly being viewed as an important contributor to chronic infections. In vitro methods for analyzing S. aureus biofilm formation have focused on bacterial attachment and accumulation on abiotic surfaces, such as in microtiter plate and flow cell assays. Microtiter plates provide a rapid measure of relative biomass levels, while flow cells have limited experimental throughput but are superior for confocal microscopy biofilm visualization. Although these assays have proven effective at identifying mechanisms involved in cell attachment and biofilm accumulation, the significance of these assays in vivo remains unclear. Studies have shown that when medical devices are implanted they are coated with host factors, such as matrix proteins, that facilitate S. aureus attachment and biofilm formation. To address the challenge of integrating existing biofilm assay features with a biotic surface, we have established an in vitro biofilm technique utilizing UV-sterilized coverslips coated with human plasma. The substratum more closely resembles the in vivo state and provides a platform for S. aureus to establish a robust biofilm. Importantly, these coverslips are amenable to confocal microscopy imaging to provide a visual reference of the biofilm growth stage, effectively merging the benefits of the microtiter and flow cell assays. We confirmed the approach using clinical S. aureus isolates and mutants with known biofilm phenotypes. Altogether, this new biofilm assay can be used to assess the function of S. aureus virulence factors associated with biofilm formation and for monitoring the efficacy of biofilm treatment modalities.

  1. Differential effects of antifungal agents on expression of genes related to formation of Candida albicans biofilms.

    Science.gov (United States)

    Chatzimoschou, Athanasios; Simitsopoulou, Maria; Antachopoulos, Charalampos; Walsh, Thomas J; Roilides, Emmanuel

    2016-01-01

    The purpose of this study was to analyse specific molecular mechanisms involved in the intrinsic resistance of C. albicans biofilms to antifungals. We investigated the transcriptional profile of three genes (BGL2, SUN41, ECE1) involved in Candida cell wall formation in response to voriconazole or anidulafungin after the production of intermediate and mature biofilms. C. albicans M61, a well-documented biofilm producer strain, was used for the development of intermediate (12 h and 18 h) and completely mature biofilms (48 h). After exposure of cells from each biofilm growth mode to voriconazole (128 and 512 mg l(-1)) or anidulafungin (0.25 and 1 mg l(-1)) for 12-24 h, total RNA samples extracted from biofilm cells were analysed by RT-PCR. The voriconazole and anidulafungin biofilm MIC was 512 and 0.5 mg l(-1) respectively. Anidulafungin caused significant up-regulation of SUN41 (3.7-9.3-fold) and BGL2 (2.2-2.8 fold) in intermediately mature biofilms; whereas, voriconazole increased gene expression in completely mature biofilms (SUN41 2.3-fold, BGL2 2.1-fold). Gene expression was primarily down-regulated by voriconazole in intermediately, but not completely mature biofilms. Both antifungals caused down-regulation of ECE1 in intermediately mature biofilms.

  2. Archaeal type IV pili and their involvement in biofilm formation

    Directory of Open Access Journals (Sweden)

    Rianne eEsquivel

    2015-03-01

    Full Text Available Type IV pili are ancient proteinaceous structures present on the cell surface of species in nearly all bacterial and archaeal phyla. These filaments are involved in a diverse array of critical cellular processes. While the core components of the pilus biosynthesis machinery are highly conserved, type IV pilins, the structural subunits of pili, share little sequence homology. However, the conserved structure of the signal peptides of these pilus subunits has allowed the development of prediction programs that accurately detect the processing sites recognized by bacterial and archaeal prepilin peptidases. Using these programs, the genomes of organisms from both prokaryotic domains have been shown to encode a diverse set of putative type IV pilins. Recently, in vivo studies in model archaea representing the euryarchaeal and crenarchaeal kingdoms confirmed that several of these pilins are incorporated into type IV adhesion pili. In addition to facilitating surface adhesion, these in vivo studies also showed that several predicted pilins are required for additional functions that are critical to biofilm formation. Examples include the subunits of Sulfolobus acidocaldarius Ups pili, which are induced by exposure to UV light and promote cell aggregation and conjugation, and a subset of the Haloferax volcanii adhesion pilins, which play a critical role in microcolony formation while other pilins inhibit this process. The recent discovery of novel pilin functions such as the ability of haloarchaeal adhesion pilins to regulate swimming motility rather than being unique to organisms that inhabit high salt environments may point to novel prokaryotic regulatory pathways. In this review, we will discuss recent advances in our understanding of the functional roles played by archaeal type IV adhesion pili and their subunits, with particular emphasis on their involvement in biofilm formation.

  3. Essential oil of Curcuma longa inhibits Streptococcus mutans biofilm formation.

    Science.gov (United States)

    Lee, Kwang-Hee; Kim, Beom-Su; Keum, Ki-Suk; Yu, Hyeon-Hee; Kim, Young-Hoi; Chang, Byoung-Soo; Ra, Ji-Young; Moon, Hae-Dalma; Seo, Bo-Ra; Choi, Na-Young; You, Yong-Ouk

    2011-01-01

    Curcuma longa (C. longa) has been used as a spice in foods and as an antimicrobial in Oriental medicine. In this study, we evaluated the inhibitory effects of an essential oil isolated from C. longa on the cariogenic properties of Streptococcus mutans (S. mutans), which is an important bacterium in dental plaque and dental caries formation. First, the inhibitory effects of C. longa essential oil on the growth and acid production of S. mutans were tested. Next, the effect of C. longa essential oil on adhesion to saliva-coated hydroxyapatite beads (S-HAs) was investigated. C. longa essential oil inhibited the growth and acid production of S. mutans at concentrations from 0.5 to 4 mg/mL. The essential oil also exhibited significant inhibition of S. mutans adherence to S-HAs at concentrations higher than 0.5 mg/mL. S. mutans biofilm formation was determined by scanning electron microscopy (SEM) and safranin staining. The essential oil of C. longa inhibited the formation of S. mutans biofilms at concentrations higher than 0.5 mg/mL. The components of C. longa essential oil were then analyzed by GC and GC-MS, and the major components were α-turmerone (35.59%), germacrone (19.02%), α-zingiberene (8.74%), αr-turmerone (6.31%), trans-β-elemenone (5.65%), curlone (5.45%), and β-sesquiphellandrene (4.73%). These results suggest that C. longa may inhibit the cariogenic properties of S. mutans.

  4. Methods for studying biofilm formation: flow cells and confocal laser scanning microscopy

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2014-01-01

    In this chapter methods for growing and analyzing biofilms under hydrodynamic conditions in flow cells are described. Use of flow cells allows for direct microscopic investigation of biofilm formation. The flow in these chambers is essentially laminar, which means that the biofilms can be grown u......, inoculation of the flow cells, running of the system, confocal laser scanning microscopy and image analysis, and disassembly and cleaning of the system.......In this chapter methods for growing and analyzing biofilms under hydrodynamic conditions in flow cells are described. Use of flow cells allows for direct microscopic investigation of biofilm formation. The flow in these chambers is essentially laminar, which means that the biofilms can be grown...

  5. SarA is a negative regulator of Staphylococcus epidermidis biofilm formation

    DEFF Research Database (Denmark)

    Martin, Christer; Heinze, C.; Busch, M.

    2012-01-01

    Biofilm formation is essential for Staphylococcus epidermidis pathogenicity in implant-associated infections. Nonetheless, large proportions of invasive S. epidermidis isolates fail to show accumulative biofilm growth in vitro. We here tested the hypothesis that this apparent paradox is related...... to the existence of superimposed regulatory systems suppressing a multi-cellular biofilm life style in vitro. Transposon mutagenesis of clinical significant but biofilm-negative S. epidermidis 1585 was used to isolate a biofilm positive mutant carrying a Tn917 insertion in sarA,chief regulator of staphylococcal...... virulence. Genetic analysis revealed that inactivation of sarA induced biofilm formation via over-expression of the giant 1 MDa extracellular matrix binding protein (Embp), serving as an intercellular adhesin. In addition to Embp, increased extracellular DNA (eDNA) release significantly contributed...

  6. Oral cavity anaerobic pathogens in biofilm formation on voice prostheses

    NARCIS (Netherlands)

    Bertl, Kristina; Zijnge, Vincent; Zatorska, Beata; Leonhard, Matthias; Schneider-Stickler, Berit; Harmsen, Hermie J. M.

    2015-01-01

    BACKGROUND: A polymerase chain reaction (PCR)-based method has been used to identify oral anaerobic pathogens in biofilms on voice prostheses. The purpose of the present study was to determine the location of those pathogens inside the biofilms. METHODS: Biofilms of 15 voice prostheses were sampled

  7. Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles.

    Science.gov (United States)

    Shi, Si-Feng; Jia, Jing-Fu; Guo, Xiao-Kui; Zhao, Ya-Ping; Chen, De-Sheng; Guo, Yong-Yuan; Zhang, Xian-Long

    Staphylococcus aureus can adhere to most foreign materials and form biofilm on the surface of medical devices. Biofilm infections are difficult to resolve. The goal of this in vitro study was to explore the use of chitosan-coated nanoparticles to prevent biofilm formation. For this purpose, S. aureus was seeded in 96-well plates to incubate with chitosan-coated iron oxide nanoparticles in order to study the efficiency of biofilm formation inhibition. The biofilm bacteria count was determined using the spread plate method; biomass formation was measured using the crystal violet staining method. Confocal laser scanning microscopy and scanning electron microscopy were used to study the biofilm formation. The results showed decreased viable bacteria numbers and biomass formation when incubated with chitosan-coated iron oxide nanoparticles at all test concentrations. Confocal laser scanning microscopy showed increased dead bacteria and thinner biofilm when incubated with nanoparticles at a concentration of 500 µg/mL. Scanning electron microscopy revealed that chitosan-coated iron oxide nanoparticles inhibited biofilm formation in polystyrene plates. Future studies should be performed to study these nanoparticles for anti-infective use.

  8. In Vitro Biofilm Formation by Uropathogenic Bacteria and their Antibiotic Susceptibility Pattern

    Directory of Open Access Journals (Sweden)

    Somya Verma

    2016-07-01

    Full Text Available Background: Uropathogens have an ability to form biofilm in urinary tract. Microorganisms growing in biofilm are associated with chronic and recurrent UTI. They are highly resistant to a variety of antimicrobial agents. There are different phenotypic methods to detect biofilm production like Tube Adherence Method (TAM, Congo Red Agar Method (CRAM, Tissue Culture Plate Method (TCPM, etc. Aim and Objectives: The purpose of the study was to observe biofilm formation by uropathogens, their antibiotic resistance pattern and to correlate biofilm formation with drug resistance. Material and Methods: Total 168 isolates were collected from urine over six months. They were subjected to AST by Kirby Bauer disc diffusion method. Detection of biofilm production was done by TAM, CRAM, and TCPM. Results: Escherichia coli was the commonest isolate. Of the 68 clinical isolates, 54% were positive for biofilm production by TAM, 58% by CRAM, and 66% by TCPM. Compared to non-biofilm producers higher antibiotic resistance was observed among biofilm producers. TCPM was found to be more accurate. Conclusion: E. coli was the most frequent isolate. Biofilm producers were found to be resistant for multiple drugs. TCPM was found to be more quantitative and reliable

  9. Antifouling Coatings Influence both Abundance and Community Structure of Colonizing Biofilms: a Case Study in the Northwestern Mediterranean Sea

    OpenAIRE

    Camps, Mercedes; Barani, Aude; Gregori, Gerald; Bouchez, Agnes; Le Berre, Brigitte; Bressy , Christine; Blache, Yves

    2014-01-01

    When immersed in seawater, substrates are rapidly colonized by both micro- and macroorganisms. This process is responsible for important economic and ecological prejudices, particularly when related to ship hulls or aquaculture nets. Commercial antifouling coatings are supposed to reduce biofouling, i.e., micro- and macrofoulers. In this study, biofilms that primarily settled on seven different coatings (polyvinyl chloride [PVC], a fouling release coating [FRC], and five self-polishing copoly...

  10. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria, E-mail: maria.godoy.gallardo@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Guillem-Marti, Jordi, E-mail: jordi.guillem.marti@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Sevilla, Pablo, E-mail: psevilla@euss.es [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), C/ Passeig de Sant Bosco, 42, 08017 Barcelona (Spain); Manero, José M., E-mail: jose.maria.manero@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Gil, Francisco J., E-mail: francesc.xavier.gil@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  11. The Pseudomonas aeruginosa Type III Translocon Is Required for Biofilm Formation at the Epithelial Barrier

    DEFF Research Database (Denmark)

    Tran, Cindy S; Rangel, Stephanie M; Almblad, Henrik;

    2014-01-01

    Clinical infections by Pseudomonas aeruginosa, a deadly Gram-negative, opportunistic pathogen of immunocompromised hosts, often involve the formation of antibiotic-resistant biofilms. Although biofilm formation has been extensively studied in vitro on glass or plastic surfaces, much less is known...... about biofilm formation at the epithelial barrier. We have previously shown that when added to the apical surface of polarized epithelial cells, P. aeruginosa rapidly forms cell-associated aggregates within 60 minutes of infection. By confocal microscopy we now show that cell-associated aggregates...... a previously unappreciated function for the type III translocon in the formation of P. aeruginosa biofilms at the epithelial barrier and demonstrate that biofilms may form at early time points of infection....

  12. Biofilm formation by Shiga toxin-producing Escherichia coli O157:H7 and Non-O157 strains and their tolerance to sanitizers commonly used in the food processing environment.

    Science.gov (United States)

    Wang, Rong; Bono, James L; Kalchayanand, Norasak; Shackelford, Steven; Harhay, Dayna M

    2012-08-01

    Shiga toxin-producing Escherichia coli (STEC) strains are important foodborne pathogens. Among these, E. coli O157:H7 is the most frequently isolated STEC serotype responsible for foodborne diseases. However, the non-O157 serotypes have been associated with serious outbreaks and sporadic diseases as well. It has been shown that various STEC serotypes are capable of forming biofilms on different food or food contact surfaces that, when detached, may lead to cross-contamination. Bacterial cells at biofilm stage also are more tolerant to sanitizers compared with their planktonic counterparts, which makes STEC biofilms a serious food safety concern. In the present study, we evaluated the potency of biofilm formation by a variety of STEC strains from serotypes O157:H7, O26:H11, and O111:H8; we also compared biofilm tolerance with two types of common sanitizers, a quaternary ammonium chloride-based sanitizer and chlorine. Our results demonstrated that biofilm formation by various STEC serotypes on a polystyrene surface was highly strain-dependent, whereas the two non-O157 serotypes showed a higher potency of pellicle formation at air-liquid interfaces on a glass surface compared with serotype O157:H7. Significant reductions of viable biofilm cells were achieved with sanitizer treatments. STEC biofilm tolerance to sanitization was strain-dependent regardless of the serotypes. Curli expression appeared to play a critical role in STEC biofilm formation and tolerance to sanitizers. Our data indicated that multiple factors, including bacterial serotype and strain, surface materials, and other environmental conditions, could significantly affect STEC biofilm formation. The high potential for biofilm formation by various STEC serotypes, especially the strong potency of pellicle formation by the curli-positive non-O157 strains with high sanitization tolerance, might contribute to bacterial colonization on food contact surfaces, which may result in downstream product

  13. Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Raghupathi, Prem Krishnan; Herschend, Jakob

    2015-01-01

    examined for multispecies biofilm formation. Eight strains from each sampling site were chosen and all possible combinations of four member co-cultures were tested for enhanced biofilm formation at 15°C and 24°C. In approximately 20% of the multispecies consortia grown at 15°C, the biofilm formation......Bacterial attachment and biofilm formation can lead to poor hygienic conditions in food processing environments. Furthermore, interactions between different bacteria may induce or promote biofilm formation. In this study, we isolated and identified a total of 687 bacterial strains from seven...... different locations in a meat processing environment and evaluated their biofilm formation capability. A diverse group of bacteria was isolated and most were classified as poor biofilm producers in a Calgary biofilm device assay. Isolates from two sampling sites, the wall and the meat chopper, were further...

  14. Vibrio cholerae Biofilms and Cholera Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Anisia J Silva

    2016-02-01

    Full Text Available Vibrio cholerae can switch between motile and biofilm lifestyles. The last decades have been marked by a remarkable increase in our knowledge of the structure, regulation, and function of biofilms formed under laboratory conditions. Evidence has grown suggesting that V. cholerae can form biofilm-like aggregates during infection that could play a critical role in pathogenesis and disease transmission. However, the structure and regulation of biofilms formed during infection, as well as their role in intestinal colonization and virulence, remains poorly understood. Here, we review (i the evidence for biofilm formation during infection, (ii the coordinate regulation of biofilm and virulence gene expression, and (iii the host signals that favor V. cholerae transitions between alternative lifestyles during intestinal colonization, and (iv we discuss a model for the role of V. cholerae biofilms in pathogenicity.

  15. The impacts of a fliD mutation on the biofilm formation of Helicobacter pylori

    Institute of Scientific and Technical Information of China (English)

    Panan Ratthawongjirakul; Vorraruthai Thongkerd; Wanpen Chaicumpa

    2016-01-01

    Objective: To investigate the impact of the fliD gene on the biofilm formation of Hel-icobacter pylori (H. pylori). Methods: H. pylori fliD mutant was constructed using inverse PCR mutagenesis. The mobility of the bacteria and its adhesion ability to human epithelial cells were assessed using a motility assay and a fluorescein isothiocyanate staining adhesion assay, respec-tively. The formation of biofilm was evaluated using a pellicle assay and a crystal violet staining assay. The cyto-architecture of the biofilm was documented with scanning electron microscopy. Results: It was found that there was no significant difference in the levels of bacterial adhesion and the biofilm formation between the wild-type ATCC 43504 and the fliD mutant. Apart from a poor motility, the fliD mutant had a slightly delayed formation of its biofilm and an incomplete cyto-architecture of its biofilm. The bacterial cells residing in the biofilm of the fliD mutant showed a loose accumulation with less apparent cross-linking fibrils. Most of the mutant cells had truncated flagella. Conclusions: This study provides the preliminary evidences that fliD potentially regu-lates biofilm formation and is required for the motility of H. pylori. Further studies need to be performed in order to develop fliD as a novel target for vaccine or antimicrobial agent in future.

  16. Role of flgA for Flagellar Biosynthesis and Biofilm Formation of Campylobacter jejuni NCTC11168.

    Science.gov (United States)

    Kim, Joo-Sung; Park, Changwon; Kim, Yun-Ji

    2015-11-01

    The complex roles of flagella in the pathogenesis of Campylobacter jejuni, a major cause of worldwide foodborne diarrheal disease, are important. Compared with the wild-type, an insertional mutation of the flgA gene (cj0769c) demonstrated significant decrease in the biofilm formation of C. jejuni NCTC11168 on major food contact surfaces, such as polystyrene, stainless steel, and borosilicate glass. The flgA mutant was completely devoid of flagella and non-motile whereas the wild-type displayed the full-length flagella and motility. In addition, the biofilm formation of the wild-type was inversely dependent on the viscosity of the media. These results support that flagellar-mediated motility plays a significant role in the biofilm formation of C. jejuni NCTC11168. Moreover, our adhesion assay suggests that it plays an important role during biofilm maturation after initial attachment. Furthermore, C. jejuni NCTC11168 wild-type formed biofilm with a net-like structure of extracellular fiber-like material, but such a structure was significantly reduced in the biofilm of the flgA mutant. It supports that the extracellular fiber-like material may play a significant role in the biofilm formation of C. jejuni. This study demonstrated that flgA is essential for flagellar biosynthesis and motility, and plays a significant role in the biofilm formation of C. jejuni NCTC11168.

  17. Biofilm formation of Salmonella serotypes in simulated meat processing environments and its relationship to cell characteristics.

    Science.gov (United States)

    Wang, Huhu; Ding, Shijie; Dong, Yang; Ye, Keping; Xu, Xinglian; Zhou, Guanghong

    2013-10-01

    Salmonella attached to meat contact surfaces encountered in meat processing facilities may serve as a source of cross-contamination. In this study, the influence of serotypes and media on biofilm formation of Salmonella was investigated in a simulated meat processing environment, and the relationships between biofilm formation and cell characteristics were also determined. All six serotypes (Salmonella enterica serotype Heidelberg, Salmonella Derby, Salmonella Agona, Salmonella Indiana, Salmonella Infantis, and Salmonella Typhimurium) can readily form biofilms on stainless steel surfaces, and the amounts of biofilms were significantly influenced by the serotypes, incubation media, and incubation time used in this study. Significant differences in cell surface hydrophobicity, autoaggregation, motility, and growth kinetic parameters were observed between individual serotypes tested. Except for growth kinetic parameters, the cell characteristics were correlated with the ability of biofilm formation incubated in tryptic soy broth, whereas no correlation with biofilm formation incubated in meat thawing-loss broth (an actual meat substrate) was found. Salmonella grown in meat thawing-loss broth showed a "cloud-shaped" morphology in the mature biofilm, whereas when grown in tryptic soy broth it had a "reticulum-shaped" appearance. Our study provides some practical information to understand the process of biofilm formation on meat processing contact surfaces.

  18. Quorum-sensing regulates biofilm formation in Vibrio scophthalmi

    Directory of Open Access Journals (Sweden)

    García-Aljaro Cristina

    2012-12-01

    Full Text Available Abstract Background In a previous study, we demonstrated that Vibrio scophthalmi, the most abundant Vibrio species among the marine aerobic or facultatively anaerobic bacteria inhabiting the intestinal tract of healthy cultured turbot (Scophthalmus maximus, contains at least two quorum-sensing circuits involving two types of signal molecules (a 3-hydroxy-dodecanoyl-homoserine lactone and the universal autoinducer 2 encoded by luxS. The purpose of this study was to investigate the functions regulated by these quorum sensing circuits in this vibrio by constructing mutants for the genes involved in these circuits. Results The presence of a homologue to the Vibrio harveyi luxR gene encoding a main transcriptional regulator, whose expression is modulated by quorum–sensing signal molecules in other vibrios, was detected and sequenced. The V. scophthalmi LuxR protein displayed a maximum amino acid identity of 82% with SmcR, the LuxR homologue found in Vibrio vulnificus. luxR and luxS null mutants were constructed and their phenotype analysed. Both mutants displayed reduced biofilm formation in vitro as well as differences in membrane protein expression by mass-spectrometry analysis. Additionally, a recombinant strain of V. scophthalmi carrying the lactonase AiiA from Bacillus cereus, which causes hydrolysis of acyl homoserine lactones, was included in the study. Conclusions V. scophthalmi shares two quorum sensing circuits, including the main transcriptional regulator luxR, with some pathogenic vibrios such as V. harveyi and V. anguillarum. However, contrary to these pathogenic vibrios no virulence factors (such as protease production were found to be quorum sensing regulated in this bacterium. Noteworthy, biofilm formation was altered in luxS and luxR mutants. In these mutants a different expression profile of membrane proteins were observed with respect to the wild type strain suggesting that quorum sensing could play a role in the regulation of

  19. Modeling and predicting the biofilm formation of Salmonella Virchow with respect to temperature and pH.

    Science.gov (United States)

    Ariafar, M Nima; Buzrul, Sencer; Akçelik, Nefise

    2016-03-01

    Biofilm formation of Salmonella Virchow was monitored with respect to time at three different temperature (20, 25 and 27.5 °C) and pH (5.2, 5.9 and 6.6) values. As the temperature increased at a constant pH level, biofilm formation decreased while as the pH level increased at a constant temperature, biofilm formation increased. Modified Gompertz equation with high adjusted determination coefficient (Radj(2)) and low mean square error (MSE) values produced reasonable fits for the biofilm formation under all conditions. Parameters of the modified Gompertz equation could be described in terms of temperature and pH by use of a second order polynomial function. In general, as temperature increased maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation decreased; whereas, as pH increased; maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation increased. Two temperature (23 and 26 °C) and pH (5.3 and 6.3) values were used up to 24 h to predict the biofilm formation of S. Virchow. Although the predictions did not perfectly match with the data, reasonable estimates were obtained. In principle, modeling and predicting the biofilm formation of different microorganisms on different surfaces under various conditions could be possible.

  20. Relationship of biofilm formation and different virulence genes in uropathogenic Escherichia coli isolates from Northwest Iran

    Directory of Open Access Journals (Sweden)

    Fattahi, Sargol

    2015-07-01

    Full Text Available Background and objectives: The ( bacterium is one of the main causative agents of urinary tract infections (UTI worldwide. The ability of this bacterium to form biofilms on medical devices such as catheters plays an important role in the development of UTI. The aim of the present study was to investigate the possible relationship between virulence factors and biofilm formation of isolates responsible for urinary tract infection.Materials and methods: A total of 100 isolates isolated from patients with UTI were collected and characterized by routine bacteriological methods. In vitro biofilm formation by these isolates was determined using the 96-well microtiter-plate test, and the presence of , , and virulence genes was examined by PCR assay. Data analysis was performed using SPSS 16.0 software.Results: From 100 isolates isolated from UTIs, 92% were shown to be biofilm positive. The genes , , and were detected in 43%, 94% and 26% of isolates, respectively. Biofilm formation in isolates that expressed , , and genes was 100%, 93%, and 100%, respectively. A significant relationship was found between presence of the gene and biofilm formation in isolates isolated from UTI (<0.01, but there was no statistically significant correlation between presence of and genes with biofilm formation (<0.072, <0.104. Conclusion: Results showed that and genes do not seem to be necessary or sufficient for the production of biofilm in , but the presence of correlates with increased biofilm formation of urinary tract isolates. Overall, the presence of , , and virulence genes coincides with in vitro biofilm formation in uropathogenic

  1. New insights on molecular regulation of biofilm formation in plant-associated bacteria

    Institute of Scientific and Technical Information of China (English)

    Luisa F. Castiblanco; George W. Sundin

    2016-01-01

    Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extrac-ellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems, vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multi-cellular behavior.

  2. Biofilm formation in long-term central venous catheters in children with cancer

    DEFF Research Database (Denmark)

    Handrup, Mette Møller; Fuursted, Kurt; Funch, Peter;

    2012-01-01

    Taurolidine has demonstrated inhibition of biofilm formation in vitro. The aim of this study was to compare the effect of catheter locking with taurolidine vs heparin in biofilm formation in central venous catheters. Forty-eight children with cancer were randomized to catheter locking by heparin (n...... = 22) or taurolidine (n = 26), respectively. After removal, catheters were examined by standardized scanning electron microscopy to assess quantitative biofilm formation. Biofilm was present if morphologically typical structures and bacterial cells were identified. Quantitative and semi......-quantitative cultures were also performed. Biofilm was identified in 23 of 26 catheters from the taurolidine group and 21 of 22 catheters from the heparin group. A positive culture was made of six of the catheters locked with taurolidine and heparin, respectively (p = 0.78). The rate of catheter-related bloodstream...

  3. Effects of ceftazidime and ciprofloxacin on biofilm formation in Proteus mirabilis rods.

    Science.gov (United States)

    Kwiecińska-Piróg, Joanna; Bogiel, Tomasz; Gospodarek, Eugenia

    2013-10-01

    Proteus mirabilis rods are one of the most commonly isolated species of the Proteus genus from human infections, mainly those from the urinary tract and wounds. They are often related to biofilm structure formation. The bacterial cells of the biofilm are less susceptible to routinely used antimicrobials, making the treatment more difficult. The aim of this study was to evaluate quantitatively the influence of ceftazidime and ciprofloxacin on biofilm formation on the polyvinyl chloride surface by 42 P. mirabilis strains isolated from urine, purulence, wound swab and bedsore samples. It has been shown that ceftazidime and ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular Proteus spp. strains decrease their ability to form biofilms. Moreover, ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular P. mirabilis strains reduces biofilm formation more efficiently than ceftazidime at the corresponding concentration values.

  4. Dynamics of biofilm formation in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    determinations. The biofilm grew at a rate of 0.030±0.002 day−1 reaching quasi-stationary state at 2.6×106 cells/cm2 after approximately 200 days. The low substrate level in the bulk phase (AOC at approximately 6 g ac-C/l) most likely caused the relatively slow biofilm formation rate observed. During......The dynamics of biofilm formation in non-chlorinated groundwater-based drinking water was studied in a model distribution system. The formation of biofilm was closely monitored for a period of 522 days by total bacterial counts (AODC), heterotrophic plate counts (R2A media), and ATP content...... the maturation of the biofilm, the bacterial community changed properties in terms of cell-specific ATP content and culturability of the bacteria....

  5. [Research progress in biofilm formation and regulatory mechanism of Campylobacter jejuni].

    Science.gov (United States)

    Wu, Qingping; Zhong, Xian; Zhang, Jumei

    2016-02-04

    Biofilm of Campylobacter jejuni was formed by cross-linking its extracellular secretion, polysaccharides, various extracellular proteins, nucleic acids etc to enhance its survival in hostile environments, especially for detergents, antibiotics and disinfectants. This paper elaborated C. jejuni biofilm formation and regulation mechanisms in the surface properties of the media, temperatures, gas environment, the regulation of gene etc, also analysed and discussed a variety of biofilm removal practical applications. We hope it can provide a reference for studies on biofilm control of C. jejuni.

  6. Influence of exudates of the kelp Laminaria digitata on biofilm formation of associated and exogenous bacterial epiphytes.

    Science.gov (United States)

    Salaün, Stéphanie; La Barre, Stéphane; Dos Santos-Goncalvez, Marina; Potin, Philippe; Haras, Dominique; Bazire, Alexis

    2012-08-01

    Wild populations of brown marine algae (Phaeophyta) provide extensive surfaces to bacteria and epiphytic eukaryotes for colonization. On one hand, various strategies allow kelps prevent frond surface fouling which would retard growth by reducing photosynthesis and increasing pathogenesis. On the other hand, production and release of organic exudates of high energy value, sometimes in association with more or less selective control of settlement of epiphytic strains, allow bacteria to establish surface consortia not leading to macrofouling. Here, we present the analysis of adhesion and biofilm formation of bacterial isolates from the kelp Laminaria digitata and of characterized and referenced marine isolates. When they were grown in flow cell under standard nutrient regimes, all used bacteria, except one, were able to adhere on glass and then develop as biofilms, with different architecture. Then, we evaluated the effect of extracts from undisturbed young Laminaria thalli and from young thalli subjected to oxidative stress elicitation; this latter condition induced the production of defense molecules. We observed increasing or decreasing adhesion depending on the referenced strains, but no effects were observed against strains isolated from L. digitata. Such effects were less observed on biofilms. Our results suggested that L. digitata is able to modulate its bacterial colonization. Finally, mannitol, a regular surface active component of Laminaria exudates was tested individually, and it showed a pronounced increased on one biofilm strain. Results of these experiments are original and can be usefully linked to what we already know on the oxidative halogen metabolism peculiar to Laminaria. Hopefully, we will be able to understand more about the unique relationship that bacteria have been sharing with Laminaria for an estimated one billion years.

  7. Rot is a key regulator of Staphylococcus aureus biofilm formation

    Science.gov (United States)

    Mootz, Joe M.; Benson, Meredith A.; Heim, Cortney E.; Crosby, Heidi A.; Kavanaugh, Jeffrey S.; Dunman, Paul M.; Kielian, Tammy; Torres, Victor J.; Horswill, Alexander R.

    2015-01-01

    AUTHOR SUMMARY Staphylococcus aureus is a significant cause of chronic biofilm infections on medical implants. We investigated the biofilm regulatory cascade and discovered that the repressor of toxins (Rot) is part of this pathway. A USA300 community-associated methicillin-resistant S. aureus (CA-MRSA) strain deficient in Rot was unable to form a biofilm using multiple different assays, and we found rot mutants in other strain lineages were also biofilm deficient. By performing a global analysis of transcripts and protein production controlled by Rot, we observed that all the secreted protease genes were upregulated in a rot mutant, and we hypothesized that this regulation could be responsible for the biofilm phenotype. To investigate this question, we determined that Rot bound to the protease promoters, and we observed that activity levels of these enzymes, in particular the cysteine proteases, were increased in a rot mutant. By inactivating these proteases, biofilm capacity was restored to the mutant, demonstrating they are responsible for the biofilm negative phenotype. Finally, we tested the rot mutant in a mouse catheter model of biofilm infection and observed a significant reduction in biofilm burden. Thus S. aureus uses the transcription factor Rot to repress secreted protease levels in order to build a biofilm. PMID:25612137

  8. Assessment of biofilm formation in device-associated clinical bacterial isolates in a tertiary level hospital

    Directory of Open Access Journals (Sweden)

    Summaiya A Mulla

    2011-01-01

    Full Text Available Background: Biofilm formation is a developmental process with intercellular signals that regulate growth. Biofilms contaminate catheters, ventilators, and medical implants; they act as a source of disease for humans, animals, and plants. Aim: In this study we have done quantitative assessment of biofilm formation in device-associated clinical bacterial isolates in response to various concentrations of glucose in tryptic soya broth and with different incubation time. Materials and Methods: The study was carried out on 100 positive bacteriological cultures of medical devices, which were inserted in hospitalized patients. The bacterial isolates were processed as per microtitre plate method with tryptic soya broth alone and with varying concentrations of glucose and were observed in response to time. Results: Majority of catheter cultures were positive. Out of the total 100 bacterial isolates tested, 88 of them were biofilm formers. Incubation period of 16-20 h was found to be optimum for biofilm development. Conclusions: Availability of nutrition in the form of glucose enhances the biofilm formation by bacteria. Biofilm formation depends on adherence of bacteria to various surfaces. Time and availability of glucose are important factors for assessment of biofilm progress.

  9. Pyoverdine and PQS Mediated Subpopulation Interactions Involved in Pseudomonas aeruginosa Biofilm Formation

    DEFF Research Database (Denmark)

    Yang, Liang; Nilsson, Martin; Gjermansen, Morten;

    2009-01-01

    Using flow chamber-grown Pseudomonas aeruginosa biofilms as model system, we show in the present study that formation of heterogeneous biofilms may occur through mechanisms that involve complex subpopulation interactions. One example of this phenomenon is expression of the iron...

  10. Biofilm formation and Candida albicans morphology on the surface of denture base materials.

    Science.gov (United States)

    Susewind, Sabine; Lang, Reinhold; Hahnel, Sebastian

    2015-12-01

    Fungal biofilms may contribute to the occurrence of denture stomatitis. The objective of the study was to investigate the biofilm formation and morphology of Candida albicans in biofilms on the surface of denture base materials. Specimens were prepared from different denture base materials. After determination of surface properties and salivary pellicle formation, mono- and multispecies biofilm formation including Candida albicans ATCC 10231 was initiated. Relative amounts of adherent cells were determined after 20, 44, 68 and 188 h; C. albicans morphology was analysed employing selective fluorescence microscopic analysis. Significant differences were identified in the relative amount of cells adherent to the denture base materials. Highest blastospore/hyphae index suggesting an increased percentage of hyphae was observed in mono- and multispecies biofilms on the soft denture liner, which did not necessarily respond to the highest relative amount of adherent cells. For both biofilm models, lowest relative amount of adherent cells was identified on the methacrylate-based denture base material, which did not necessarily relate to a significantly lower blastospore/hyphae index. The results indicate that there are significant differences in both biofilm formation as well as the morphology of C. albicans cells in biofilms on the surface of different denture base materials.

  11. The Effect of Carbon Source and Fluoride Concentrations in the "Streptococcus Mutans" Biofilm Formation

    Science.gov (United States)

    Paulino, Tony P.; Andrade, Ricardo O.; Bruschi-Thedei, Giuliana C. M.; Thedei, Geraldo, Jr.; Ciancaglini, Pietro

    2004-01-01

    The main objective of this class experiment is to show the influence of carbon source and of different fluoride concentrations on the biofilm formation by the bacterium "Streptococcus mutans." The observation of different biofilm morphology as a function of carbon source and fluoride concentration allows an interesting discussion regarding the…

  12. Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae

    DEFF Research Database (Denmark)

    Laue, H.; Schenk, A.; Li, H.

    2006-01-01

    formation, biofilms of Pseudomonas syringae strains with different EPS patterns were compared. The mucoid strain PG4180.muc, which produces levan and alginate, and its levan- and/or alginate-deficient derivatives all formed biofilms in the wells of microtitre plates and in flow chambers. Confocal laser...

  13. Spectrum of bacteria associated with diabetic foot ulcer and biofilm formation: A prospective study

    Directory of Open Access Journals (Sweden)

    Asima Banu

    2015-09-01

    The organisms causing chronic diabetic foot ulcers were commonly multidrug-resistant; this was also observed among biofilm formers. Therefore, screening for biofilm formation, along with the usual antibiogram, needs to be performed as a routine procedure in chronic diabetic ulcers to formulate effective treatment strategies for these patients.

  14. Colistin-Resistant Acinetobacter baumannii Clinical Strains with Deficient Biofilm Formation

    Science.gov (United States)

    Dafopoulou, Konstantina; Xavier, Basil Britto; Hotterbeekx, An; Janssens, Lore; Lammens, Christine; Dé, Emmanuelle; Goossens, Herman; Tsakris, Athanasios; Malhotra-Kumar, Surbhi

    2015-01-01

    In two pairs of clinical colistin-susceptible/colistin-resistant (Csts/Cstr) Acinetobacter baumannii strains, the Cstr strains showed significantly decreased biofilm formation in static and dynamic assays (P Cstr strain and a frameshift mutation in CarO and the loss of a 47,969-bp element containing multiple genes associated with biofilm production in the other. PMID:26666921

  15. Effect of biofilm formation on virulence factor secretion via the general secretory pathway in Streptococcus mutans.

    NARCIS (Netherlands)

    Huang, M.; Meng, L.; Fan, M.; Hu, P.; Bian, Z.

    2008-01-01

    OBJECTIVES: To investigate the role of SecA in protein secretion, and to evaluate the effect of biofilm formation on protein secretion in Streptococcus mutans. DESIGN: S. mutans strains UA159 and GS-5 were used in this study. Cells grown in biofilm and planktonic conditions were observed using immun

  16. Orthodontic treatment with fixed appliances and biofilm formation-a potential public health threat?

    NARCIS (Netherlands)

    Ren, Yijin; Jongsma, Marije A.; Mei, Li; van der Mei, Henny C.; Busscher, Henk J.

    2014-01-01

    OBJECTIVES: Orthodontic treatment is highly popular for restoring functional and facial esthetics in juveniles and adults. As a downside, prevalence of biofilm-related complications is high. Objectives of this review are to (1) identify special features of biofilm formation in orthodontic patients a

  17. Disturbance of the bacterial cell wall specifically interferes with biofilm formation.

    Science.gov (United States)

    Bucher, Tabitha; Oppenheimer-Shaanan, Yaara; Savidor, Alon; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2015-12-01

    In nature, bacteria communicate via chemical cues and establish complex communities referred to as biofilms, wherein cells are held together by an extracellular matrix. Much research is focusing on small molecules that manipulate and prevent biofilm assembly by modifying cellular signalling pathways. However, the bacterial cell envelope, presenting the interface between bacterial cells and their surroundings, is largely overlooked. In our study, we identified specific targets within the biosynthesis pathways of the different cell wall components (peptidoglycan, wall teichoic acids and teichuronic acids) hampering biofilm formation and the anchoring of the extracellular matrix with a minimal effect on planktonic growth. In addition, we provide convincing evidence that biofilm hampering by transglycosylation inhibitors and D-Leucine triggers a highly specific response without changing the overall protein levels within the biofilm cells or the overall levels of the extracellular matrix components. The presented results emphasize the central role of the Gram-positive cell wall in biofilm development, resistance and sustainment.

  18. Biofilm formation, gel and esp gene carriage among recreational beach Enterococci.

    Science.gov (United States)

    Asmat, Ahmad; Dada, Ayokunle Christopher; Gires, Usup

    2014-06-12

    Biofilm production, gel and esp gene carriage was enumerated among forty six vancomycin resistant enterococci (VRE) and vancomycin susceptible enterococci (VSE) beach isolates. A higher proportion (61.54%) of biofilm producers was observed among beach sand as compared to beach water enterococci isolates (30%) indicating that enterococci within the sand column may be more dependent on biofilm production for survival than their beach water counterparts. Correlation analysis revealed strongly negative correlation (r=-0.535, p=0.015) between vancomycin resistance and biofilm formation. Given the observation of high prevalence of biofilm production among beach sand and the concomitant absence of esp gene carriage in any of the isolate, esp gene carriage may not be necessary for the production of biofilms among beach sand isolates. On the whole beach sand and water isolates demonstrated clearly different prevalence levels of vancomycin resistance, biofilm formation, esp and gel gene carriage. Application of these differences may be found useful in beach microbial source tracking studies. Tested starved cells still produced biofilm albeit at lower efficiencies. Non-dividing enterococci in beach sand can survive extended periods of environmental hardship and can resume growth or biofilm production in appropriate conditions thus making them infectious agents with potential health risk to recreational beach users.

  19. Biofilm Formation Derived from Ambient Air and the Characteristics of Apparatus

    Science.gov (United States)

    Kanematsu, H.; Kougo, H.; Kuroda, D.; Itho, H.; Ogino, Y.; Yamamoto, Y.

    2013-04-01

    Biofilm is a kind of thin film on solidified matters, being derived from bacteria. Generally, planktonic bacteria float in aqueous environments, soil or air, most of which can be regarded as oligotrophic environments. Since they have to survive by instinct, they seek for nutrients that would exist on materials surfaces as organic matters. Therefore, bacteria attach materials surfaces reversibly. The attachment and detachment repeat for a while and finally, they attach on them irreversibly and the number of bacteria on them increases. At a threshold number, bacteria produce polymeric matters at the same time by quorum sensing mechanism and the biofilm produces on material surfaces. The biofilm produced in that way generally contains water (more than 80%), EPS (Exopolymeric Substance) and bacteria themselves. And they might bring about many industrial problems, fouling, corrosion etc. Therefore, it is very important for us to control and prevent the biofilm formation properly. However, it is generally very hard to produce biofilm experimentally and constantly in ambient atmosphere on labo scale. The authors invented an apparatus where biofilm could form on specimen's surfaces from house germs in the ambient air. In this experiment, we investigated the basic characteristics of the apparatus, reproducibility, the change of biofilm with experimental time, the quality change of water for biofilm formation and their significance for biofilm research.

  20. Staphylococcus epidermidis: metabolic adaptation and biofilm formation in response to different oxygen concentrations.

    Science.gov (United States)

    Uribe-Alvarez, Cristina; Chiquete-Félix, Natalia; Contreras-Zentella, Martha; Guerrero-Castillo, Sergio; Peña, Antonio; Uribe-Carvajal, Salvador

    2016-02-01

    Staphylococcus epidermidis has become a major health hazard. It is necessary to study its metabolism and hopefully uncover therapeutic targets. Cultivating S. epidermidis at increasing oxygen concentration [O2] enhanced growth, while inhibiting biofilm formation. Respiratory oxidoreductases were differentially expressed, probably to prevent reactive oxygen species formation. Under aerobiosis, S. epidermidis expressed high oxidoreductase activities, including glycerol-3-phosphate dehydrogenase, pyruvate dehydrogenase, ethanol dehydrogenase and succinate dehydrogenase, as well as cytochromes bo and aa3; while little tendency to form biofilms was observed. Under microaerobiosis, pyruvate dehydrogenase and ethanol dehydrogenase decreased while glycerol-3-phosphate dehydrogenase and succinate dehydrogenase nearly disappeared; cytochrome bo was present; anaerobic nitrate reductase activity was observed; biofilm formation increased slightly. Under anaerobiosis, biofilms grew; low ethanol dehydrogenase, pyruvate dehydrogenase and cytochrome bo were still present; nitrate dehydrogenase was the main terminal electron acceptor. KCN inhibited the aerobic respiratory chain and increased biofilm formation. In contrast, methylamine inhibited both nitrate reductase and biofilm formation. The correlation between the expression and/or activity or redox enzymes and biofilm-formation activities suggests that these are possible therapeutic targets to erradicate S. epidermidis.

  1. Fibrinogen-Induced Streptococcus mutans Biofilm Formation and Adherence to Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Telma Blanca Lombardo Bedran

    2013-01-01

    Full Text Available Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis.

  2. Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Teplitski, Max; Al-Agely, Ali; Ahmer, Brian M M

    2006-11-01

    Orthologues of the Salmonella enterica serovar Typhimurium (S. typhimurium) BarA/SirA two-component system are important for biofilm formation and virulence in many gamma-Proteobacteria. In S. typhimurium, SirA activates the csrB and csrC carbon storage regulatory RNAs and the virulence gene regulators hilA and hilC. The regulatory RNAs antagonize the activity of the CsrA protein, allowing translation of those same virulence genes, and inhibiting the translation of flagellar genes. In this report, it was determined that SirA and the Csr system also control the fim operon that encodes type 1 fimbriae. sirA orthologues in other bacterial species, and the fim operon of S. typhimurium, are known to play a role in biofilm formation; therefore, all members of the S. typhimurium sirA regulon were tested for in vitro biofilm production. A sirA mutant, a csrB csrC double mutant, and a fimI mutant, were all defective in biofilm formation. Conversely, inactivation of flhDC increased biofilm formation. Therefore, SirA activates csrB, csrC and the fim operon to promote biofilm formation. In turn, csrB and csrC promote the translation of the fim operon, while at the same time inhibiting the translation of flagella, which are inhibitory to biofilm formation.

  3. Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials

    Directory of Open Access Journals (Sweden)

    Audrey eCharlebois

    2014-04-01

    Full Text Available Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxemia in animal species. Very little is known on the biofilm of C. perfringens and its exposure to subminimal inhibitory concentrations of antimicrobials. This study was undertaken to address these issues. Most of the C. perfringens human and animal isolates tested in this study were able to form biofilm (230/277. Porcine clinical isolates formed significantly more biofilm than the porcine commensal isolates. A subgroup of clinical and commensal C. perfringens isolates was randomly selected for further characterization. Biofilm was found to protect C. perfringens bacterial cells from exposure to high concentrations of tested antimicrobials. Exposure to low doses of some of these antimicrobials tended to lead to a diminution of the biofilm formed. However, a few isolates showed an increase in biofilm formation when exposed to low doses of tylosin, bacitracin, virginiamycin and monensin. Six isolates were randomly selected for biofilm analysis using scanning laser confocal microscopy. Of those, four produced more biofilm in presence of low doses of bacitracin whereas biofilms formed without bacitracin were thinner and less elevated. An increase in the area occupied by bacteria in the biofilm following exposure to low doses of bacitracin was also observed in the majority of isolates. Morphology examination revealed flat biofilms with the exception of one isolate that demonstrated a mushroom-like biofilm. Matrix composition analysis showed the presence of proteins, beta 1-4 linked polysaccharides and extracellular DNA, but no poly-beta-1,6-N-acetyl-D-glucosamine (PNAG. This study brings new information on the biofilm produced by C. perfringens and its exposure to low doses of antimicrobials.

  4. Functional metagenomics of Escherichia coli O157:H7 interactions with spinach indigenous microorganisms during biofilm formation.

    Directory of Open Access Journals (Sweden)

    Michelle Q Carter

    Full Text Available The increase in foodborne outbreaks worldwide attributed to fresh fruit and vegetables suggests that produce may serve as an ecological niche for enteric pathogens. Here we examined the interaction of E. coli O157:H7 (EcO157 with spinach leaf indigenous microorganisms during co-colonization and establishment of a mixed biofilm on a stainless steel surface. Stainless steel surface was selected to mimic the surface of produce-processing equipment, where retention of foodborne pathogens such as EcO157 could serve as a potential source for transmission. We observed a positive effect of spinach-associated microbes on the initial attachment of EcO157, but an antagonistic effect on the EcO157 population at the later stage of biofilm formation. Metagenomic analyses of the biofilm community with the GeoChip revealed an extremely diverse community (gene richness, 23409; Shannon-Weiner index H, 9.55. Presence of EcO157 in the mixed biofilm resulted in a significant decrease in the community α-diversity (t test, P<0.05, indicating a putative competition between the pathogen and indigenous spinach microbes. The decrease in the β-diversity of the EcO157-inoculated biofilm at 48 h (ANOVA, P<0.05 suggested a convergent shift in functional composition in response to EcO157 invasion. The success of EcO157 in the mixed biofilm is likely associated with its metabolic potential in utilizing spinach nutrients: the generation time of EcO157 in spinach lysates at 28°C is ~ 38 min, which is comparable to that in rich broth. The significant decrease in the abundance of many genes involved in carbon, nitrogen, and phosphorus cycling in the EcO157-inoculated biofilms (t test, P<0.05 further support our conclusion that competition for essential macronutrients is likely the primary interaction between the EcO157 and indigenous spinach-biofilm species.

  5. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations

    NARCIS (Netherlands)

    Burt, Sara A; Ojo-Fakunle, Victoria T A; Woertman, Jenifer; Veldhuizen, Edwin J A

    2014-01-01

    The formation of biofilm by bacteria confers resistance to biocides and presents problems in medical and veterinary clinical settings. Here we report the effect of carvacrol, one of the major antimicrobial components of oregano oil, on the formation of biofilms and its activity on existing biofilms.

  6. SCCmec-associated psm-mec mRNA promotes Staphylococcus epidermidis biofilm formation.

    Science.gov (United States)

    Yang, Yongchang; Zhang, Xuemei; Huang, Wenfang; Yin, Yibing

    2016-10-01

    Biofilm formation is considered the major pathogenic mechanism of Staphylococcus epidermidis-associated nosocomial infections. Reports have shown that SCCmec-associated psm-mec regulated methicillin-resistant Staphylococcus aureus virulence and biofilm formation. However, the role of psm-mec in S. epidermidis remains unclear. To this purpose, we analysed 165 clinical isolates of S. epidermidis to study the distribution, mutation and expression of psm-mec and the relationship between this gene and biofilm formation. Next, we constructed three psm-mec deletion mutants, one psm-mec transgene expression strain (p221) and two psm-mec point mutant strains (pM, pAG) to explore its effects on S. epidermidis biofilm formation. Then, the amount of biofilm formation, extracellular DNA (eDNA) and Triton X-100-induced autolysis of the constructed strains was measured. Results of psm-mec deletion and transgene expression showed that the gene regulated S. epidermidis biofilm formation. Compared with the control strains, the ability to form biofilm, Triton X-100-induced autolysis and the amount of eDNA increased in the p221 strain and the two psm-mec mutants pM and pAG expressed psm-mec mRNA without its protein, whereas no differences were observed among the three constructed strains, illustrating that psm-mec mRNA promoted S. epidermidis biofilm formation through up-regulation of bacterial autolysis and the release of eDNA. Our results reveal that acquisition of psm-mec promotes S. epidermidis biofilm formation.

  7. Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices.

    Science.gov (United States)

    Wang, Qi; Webster, Thomas J

    2012-12-01

    Biofilms are a common cause of persistent infections on medical devices as they are easy to form and hard to treat. The objective of this study was for the first time to coat selenium (a natural element in the body) nanoparticles on the surface of polycarbonate medical devices (such as those used for medical catheters) and to examine their effectiveness at preventing biofilm formation. The size and distribution of selenium coatings were characterized using scanning electron microscopy and atomic force microscopy. The strength of the selenium coating on polycarbonate was assessed by tape-adhesion tests followed by atomic absorption spectroscopy. Results showed that selenium nanoparticles had a diameter of 50-100 nm and were well distributed on the polycarbonate surface. In addition, more than 50% of the selenium coating survived the tape-adhesion test as larger nanoparticles had less adhesion strength to the underlying polycarbonate substrate than smaller selenium nanoparticles. Most significantly, the results of this in vitro study showed that the selenium coatings on polycarbonate significantly inhibited Staphylococcus aureus growth to 8.9% and 27% when compared with an uncoated polycarbonate surface after 24 and 72 h, respectively. Importantly, this was accomplished without using antibiotics but rather with an element (selenium) that is natural to the human body. Thus, this study suggests that coating polymers (particularly, polycarbonate) with nanostructured selenium is a fast and effective way to reduce bacteria functions that lead to medical device infections. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A: 3205-3210, 2012.

  8. Bacterial Lysis through Interference with Peptidoglycan Synthesis Increases Biofilm Formation by Nontypeable Haemophilus influenzae

    Science.gov (United States)

    Puig, Carmen; Merlos, Alexandra; Viñas, Miguel; de Jonge, Marien I.; Liñares, Josefina; Ardanuy, Carmen

    2017-01-01

    ABSTRACT Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that mainly causes otitis media in children and community-acquired pneumonia or exacerbations of chronic obstructive pulmonary disease in adults. A large variety of studies suggest that biofilm formation by NTHi may be an important step in the pathogenesis of this bacterium. However, the underlying mechanisms involved in this process are poorly elucidated. In this study, we used a transposon mutant library to identify bacterial genes involved in biofilm formation. The growth and biofilm formation of 4,172 transposon mutants were determined, and the involvement of the identified genes in biofilm formation was validated in in vitro experiments. Here, we present experimental data showing that increased bacterial lysis, through interference with peptidoglycan synthesis, results in elevated levels of extracellular DNA, which increased biofilm formation. Interestingly, similar results were obtained with subinhibitory concentrations of β-lactam antibiotics, known to interfere with peptidoglycan synthesis, but such an effect does not appear with other classes of antibiotics. These results indicate that treatment with β-lactam antibiotics, especially for β-lactam-resistant NTHi isolates, might increase resistance to antibiotics by increasing biofilm formation. IMPORTANCE Most, if not all, bacteria form a biofilm, a multicellular structure that protects them from antimicrobial actions of the host immune system and affords resistance to antibiotics. The latter is especially disturbing with the increase in multiresistant bacterial clones worldwide. Bacterial biofilm formation is a multistep process that starts with surface adhesion, after which attached bacteria divide and give rise to biomass. The actual steps required for Haemophilus influenzae biofilm formation are largely not known. We show that interference with peptidoglycan biosynthesis increases biofilm formation because of the release

  9. Impact of Plant Extracts and Antibiotics on Biofilm Formation of Clinical Isolates From Otitis Media

    Science.gov (United States)

    Rehman, Saba; Mujtaba Ghauri, Shahbaz; Sabri, Anjum Nasim

    2016-01-01

    Background: Otitis media can lead to severe health consequences, and is the most common reason for antibiotic prescriptions and biofilm-mediated infections. However, the increased pattern of drug resistance in biofilm forming bacteria complicates the treatment of such infections. Objectives: This study was aimed to estimate the biofilm formation potential of the clinical isolates of otitis media, and to evaluate the efficacy of antibiotics and plant extracts as alternative therapeutic agents in biofilm eradication. Materials and Methods: The ear swab samples collected from the otitis media patients visiting the Mayo Hospital in Lahore were processed to isolate the bacteria, which were characterized using morphological, biochemical, and molecular (16S rRNA ribotyping) techniques. Then, the minimum inhibitory concentrations (MICs) of the antibiotics and crude plant extracts were measured against the isolates. The cell surface hydrophobicity and biofilm formation potential were determined, both qualitatively and quantitatively, with and without antibiotics. Finally, the molecular characterization of the biofilm forming proteins was done by amplifying the ica operon. Results: Pseudomonas aeruginosa (KC417303-05), Staphylococcus hemolyticus (KC417306), and Staphylococcus hominis (KC417307) were isolated from the otitis media specimens. Among the crude plant extracts, Acacia arabica showed significant antibacterial characteristics (MIC up to 13 mg/ml), while these isolates exhibited sensitivity towards ciprofloxacin (MIC 0.2 µg/mL). All of the bacterial strains had hydrophobic cellular surfaces that helped in their adherence to abiotic surfaces, leading to strong biofilm formation potential (up to 7 days). Furthermore, the icaC gene encoding polysaccharide intercellular adhesion protein was amplified from S. hemolyticus. Conclusions: The bacterial isolates exhibited strong biofilm formation potential, while the extracts of Acacia arabica significantly inhibited biofilm

  10. In vitro biofilm formation by uropathogenic Escherichia coliand their antimicrobial susceptibility pattern

    Institute of Scientific and Technical Information of China (English)

    Poovendran Ponnusamy; Vidhya Natarajan; Murugan Sevanan

    2012-01-01

    Objective:To detect in vitro biofilm formation of uropathogenic Escherichia coli(E. coli)(UPEC) strains isolated from urine specimens and also to determine their antimicrobial susceptibility pattern using 13 commonly used antibiotics.Methods: The present study comprised of166 urine specimens collected from tertiary care hospitals in and around Coimbatore, South India. All the specimens were subjected to gram staining, bacterial culture and theE. coli strains were screened for biofilm formation using Tube Method(TM), Congo Red Agar(CRA) and Tissue Culture Plate method(TCP) respectively. Subsequently, the antimicrobial susceptibility test was performed by Kirby Bauer-disk diffusion method for the biofilm and non-biofilm producingE. colistrains.Results: Of the100 (60.2 %)E. coli strains,72 strains displayed a biofilm positive phenotype under the optimized conditions in the Tube Method and the strains were classified as highly positive(17, 23.6%), moderate positive(19, 26.3 %) and weakly positive(36, 50.0 %), similarly under the optimized conditions on Congo Red agar medium, biofilm positive phenotype strains were classified as highly positive(23, 23 %), moderate positive(37, 37 %)and weakly positive (40, 40%). While inTCP method, the biofilm positive phenotype strains were also classified as highly positive(6, 6 %), moderate positive (80, 80 %)and weakly positive(14, 14 %), it didn’t not correlate well with the tube method for detecting biofilm formation in E. coli. The rates of antibiotic resistance of biofilm producingE. coliwere found to be 100 % for chloramphenicol and amoxyclav (amoxicillin and clavulanic acid),86% for gentamicin and cefotaxime,84% for ceftazidime,83% for cotrimoxazole and piperacillin/tazobactam,75% for tetracycline and70% for amikacin.Conclusions: This study reveals the prevalence and antimicrobial susceptibility pattern of biofilm and non-biofilm producing uropathogenic E. coli strains.

  11. Effect of serogroup, surface material and disinfectant on biofilm formation by avian pathogenic Escherichia coli.

    Science.gov (United States)

    Oosterik, Leon H; Tuntufye, Huruma N; Butaye, Patrick; Goddeeris, Bruno M

    2014-12-01

    Avian pathogenic Escherichia coli (APEC) are responsible for significant economic losses in the poultry industry and are difficult to eradicate. Biofilm formation by APEC has the potential to reduce the efficacy of cleaning and disinfection. In this study, biofilm formation on materials used in poultry facilities by APEC strains from laying hens was determined. APEC strains were analysed for an association between biofilm forming capacity and O serogroup. The abilities of two routinely used disinfectants, hydrogen peroxide (H2O2) and a quaternary ammonium compound (QAC), to kill adherent cells of two strong APEC biofilm producers (05/503 and 04/40) and a non-biofilm producer (05/293) on polystyrene (PS) and polyvinylchloride (PVC) surfaces were tested. Most APEC strains were moderate (PS) or strong biofilm producers (polypropylene, PP, and PVC). Strains in serogroup O2 more often belonged to the moderate (PS) or strong (PP and PVC) biofilm producers than to other groups, while most O78 strains were weak biofilm producers. O78 strains were stronger biofilm producers on stainless steel than on PP and PVC, while O2 strains were stronger biofilm producers on PP and PVC. A concentration of 1% H2O2 killed all adherent bacteria of strains 05/503 and 04/40 on PP and PVC, while 0.5% H2O2 killed all adherent bacteria of strain 05/293. QAC at a concentration of 0.01% killed all adherent cells of strains 05/503, 04/40 and 05/293 under equal conditions. In conclusion, biofilm formation by APEC was affected by serogroup and surface material, and inactivation of APEC was dependent on the disinfectant and surface material.

  12. Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation

    Directory of Open Access Journals (Sweden)

    Mohammad Hassani Sangani

    2015-04-01

    Full Text Available Objective(s: Bacterial biofilm formation causes many persistent and chronic infections. The matrix protects biofilm bacteria from exposure to innate immune defenses and antibiotic treatments. The purpose of this study was to evaluate the biofilm formation of clinical isolates of Pseudomonas aeruginosa and the activity of zinc oxide nanoparticles (ZnO NPs on biofilm. Materials and Methods: After collecting bacteria from clinical samples of hospitalized patients, the ability of organisms were evaluated to create biofilm by tissue culture plate (TCP assay. ZnO NPs were synthesized by sol gel method and the efficacy of different concentrations (50- 350 µg/ml of ZnO NPs was assessed on biofilm formation and also elimination of pre-formed biofilm by using TCP method. Results:The average diameter of synthesized ZnO NPs was 20 nm. The minimum inhibitory concentration of nanoparticles was 150- 158 μg/ml and the minimum bactericidal concentration was higher (325 µg/ml. All 15 clinical isolates of P. aeruginosa were able to produce biofilm. Treating the organisms with nanoparticles at concentrations of 350 μg/ml resulted in more than 94% inhibition in OD reduction%. Molecular analysis showed that the presence of mRNA of pslA gene after treating bacteria with ZnO NPs for 30 minutes. Conclusion: The results showed that ZnO NPs can inhibit the establishment of P. aeruginosa biofilms and have less effective in removing pre-formed biofilm. However the tested nanoparticles exhibited anti-biofilm effect, but mRNA of pslA gene could be still detected in the medium by RT-PCR technique after 30 minutes treatment with ZnO.

  13. Acid environments affect biofilm formation and gene expression in isolates of Salmonella enterica Typhimurium DT104.

    Science.gov (United States)

    O'Leary, Denis; McCabe, Evonne M; McCusker, Matthew P; Martins, Marta; Fanning, Séamus; Duffy, Geraldine

    2015-08-01

    The aim of this study was to examine the survival and potential virulence of biofilm-forming Salmonella Typhimurium DT104 under mild acid conditions. Salmonella Typhimurium DT104 employs an acid tolerance response (ATR) allowing it to adapt to acidic environments. The threat that these acid adapted cells pose to food safety could be enhanced if they also produce biofilms in acidic conditions. The cells were acid-adapted by culturing them in 1% glucose and their ability to form biofilms on stainless steel and on the surface of Luria Bertani (LB) broth at pH7 and pH5 was examined. Plate counts were performed to examine cell survival. RNA was isolated from cells to examine changes in the expression of genes associated with virulence, invasion, biofilm formation and global gene regulation in response to acid stress. Of the 4 isolates that were examined only one (1481) that produced a rigid biofilm in LB broth at pH7 also formed this same structure at pH5. This indicated that the lactic acid severely impeded the biofilm producing capabilities of the other isolates examined under these conditions. Isolate 1481 also had higher expression of genes associated with virulence (hilA) and invasion (invA) with a 24.34-fold and 13.68-fold increase in relative gene expression respectively at pH5 compared to pH7. Although genes associated with biofilm formation had increased expression in response to acid stress for all the isolates this only resulted in the formation of a biofilm by isolate 1481. This suggests that in addition to the range of genes associated with biofilm production at neutral pH, there are genes whose protein products specifically aid in biofilm production in acidic environments. Furthermore, it highlights the potential for the use of lactic acid for the inhibition of Salmonella biofilms.

  14. SarA positively controls bap-dependent biofilm formation in Staphylococcus aureus.

    Science.gov (United States)

    Trotonda, María Pilar; Manna, Adhar C; Cheung, Ambrose L; Lasa, Iñigo; Penadés, José R

    2005-08-01

    The biofilm-associated protein Bap is a staphylococcal surface protein involved in biofilm formation. We investigated the influence of the global regulatory locus sarA on bap expression and Bap-dependent biofilm formation in three unrelated Staphylococcus aureus strains. The results showed that Bap-dependent biofilm formation was diminished in the sarA mutants by an agr-independent mechanism. Complementation studies using a sarA clone confirmed that the defect in biofilm formation was due to the sarA mutation. As expected, the diminished capacity to form biofilms in the sarA mutants correlated with the decreased presence of Bap in the bacterial surface. Using transcriptional fusion and Northern analysis data, we demonstrated that the sarA gene product acts as an activator of bap expression. Finally, the bap promoter was characterized and the transcriptional start point was mapped by the rapid amplification of cDNA ends technique. As expected, we showed that purified SarA protein binds specifically to the bap promoter, as determined by gel shift and DNase I footprinting assays. Based on the previous studies of others as well as our work demonstrating the role for SarA in icaADBC and bap expression, we propose that SarA is an essential regulator controlling biofilm formation in S. aureus.

  15. Nickel Promotes Biofilm Formation by Escherichia coli K-12 Strains That Produce Curli▿

    Science.gov (United States)

    Perrin, Claire; Briandet, Romain; Jubelin, Gregory; Lejeune, Philippe; Mandrand-Berthelot, Marie-Andrée; Rodrigue, Agnès; Dorel, Corinne

    2009-01-01

    The survival of bacteria exposed to toxic compounds is a multifactorial phenomenon, involving well-known molecular mechanisms of resistance but also less-well-understood mechanisms of tolerance that need to be clarified. In particular, the contribution of biofilm formation to survival in the presence of toxic compounds, such as nickel, was investigated in this study. We found that a subinhibitory concentration of nickel leads Escherichia coli bacteria to change their lifestyle, developing biofilm structures rather than growing as free-floating cells. Interestingly, whereas nickel and magnesium both alter the global cell surface charge, only nickel promotes biofilm formation in our system. Genetic evidence indicates that biofilm formation induced by nickel is mediated by the transcriptional induction of the adhesive curli-encoding genes. Biofilm formation induced by nickel does not rely on efflux mechanisms using the RcnA pump, as these require a higher concentration of nickel to be activated. Our results demonstrate that the nickel-induced biofilm formation in E. coli is an adaptational process, occurring through a transcriptional effect on genes coding for adherence structures. The biofilm lifestyle is obviously a selective advantage in the presence of nickel, but the means by which it improves bacterial survival needs to be investigated. PMID:19168650

  16. Nickel promotes biofilm formation by Escherichia coli K-12 strains that produce curli.

    Science.gov (United States)

    Perrin, Claire; Briandet, Romain; Jubelin, Gregory; Lejeune, Philippe; Mandrand-Berthelot, Marie-Andrée; Rodrigue, Agnès; Dorel, Corinne

    2009-03-01

    The survival of bacteria exposed to toxic compounds is a multifactorial phenomenon, involving well-known molecular mechanisms of resistance but also less-well-understood mechanisms of tolerance that need to be clarified. In particular, the contribution of biofilm formation to survival in the presence of toxic compounds, such as nickel, was investigated in this study. We found that a subinhibitory concentration of nickel leads Escherichia coli bacteria to change their lifestyle, developing biofilm structures rather than growing as free-floating cells. Interestingly, whereas nickel and magnesium both alter the global cell surface charge, only nickel promotes biofilm formation in our system. Genetic evidence indicates that biofilm formation induced by nickel is mediated by the transcriptional induction of the adhesive curli-encoding genes. Biofilm formation induced by nickel does not rely on efflux mechanisms using the RcnA pump, as these require a higher concentration of nickel to be activated. Our results demonstrate that the nickel-induced biofilm formation in E. coli is an adaptational process, occurring through a transcriptional effect on genes coding for adherence structures. The biofilm lifestyle is obviously a selective advantage in the presence of nickel, but the means by which it improves bacterial survival needs to be investigated.

  17. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria.

    Science.gov (United States)

    Furukawa, Soichi; Akiyoshi, Yuko; O'Toole, George A; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-03-31

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001% (w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the S. aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01% (w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1% (w/w)) of the sugar fatty acid esters.

  18. Secreted single‐stranded DNA is involved in the initial phase of biofilm formation by Neisseria gonorrhoeae

    DEFF Research Database (Denmark)

    Zweig, Maria; Schork, Sabine; Koerdt, Andrea

    2014-01-01

    Neisseria gonorrhoeae is an obligate human pathogen that colonizes the genital tract and causes gonorrhoea. Neisseria gonorrhoeae can form biofilms during natural cervical infections, on glass and in continuous flow‐chamber systems. These biofilms contain large amounts of extracellular DNA, which...

  19. Biofilm Formation and the Presence of the Intercellular Adhesion Locus ica among Staphylococci from Food and Food Processing Environments

    OpenAIRE

    Møretrø, Trond; Hermansen, Lene; Holck, Askild L.; Sidhu, Maan S.; Rudi, Knut; Langsrud, Solveig

    2003-01-01

    In clinical staphylococci, the presence of the ica genes and biofilm formation are considered important for virulence. Biofilm formation may also be of importance for survival and virulence in food-related staphylococci. In the present work, staphylococci from the food industry were found to differ greatly in their abilities to form biofilms on polystyrene. A total of 7 and 21 of 144 food-related strains were found to be strong and weak biofilm formers, respectively. Glucose and sodium chlori...

  20. Studies of protein adsorption on implant materials in relation to biofilm formation I. Activity of Pseudomonas aeruginosa on Polypropylene and High density Polyethylene in presence of serum albumin

    CERN Document Server

    Sinha, S Dutta; Maity, P K; Tarafdar, S; Moulik, S P

    2014-01-01

    The surface of biomaterials used as implants are highly susceptible to bacterial colonization and subsequent infection. The amount of protein adsorption on biomaterials, among other factors, can affect the nature and quality of biofilms formed on them. The variation in the adsorption time of the protein on the biomaterial surface produces a phenotypic change in the bacteria by alteration of the production of EPS (exoplysaccharide) matrix. Knowledge of the effects of protein adsorption on implant infection will be very useful in understanding the chemistry of the biomaterial surfaces, which can deter the formation of biofilms. It is observed that the adsorption of BSA on the biomaterial surfaces increases with time and concentration, irrespective of their type and the nature of the EPS matrix of the bacterial biofilm is dependent on the amount of protein adsorbed on the biomaterial surface. The adsorption of protein (BSA) on the biomaterials, polypropylene (PP) and high density polyethylene (HDPE) has been stu...

  1. The influence of subminimal inhibitory concentrations of benzalkonium chloride on biofilm formation by Listeria monocytogenes.

    Science.gov (United States)

    Ortiz, Sagrario; López, Victoria; Martínez-Suárez, Joaquín V

    2014-10-17

    Disinfectants, such as benzalkonium chloride (BAC), are commonly used to control Listeria monocytogenes and other pathogens in food processing plants. Prior studies have demonstrated that the resistance to BAC of L. monocytogenes was associated with the prolonged survival of three strains of molecular serotype 1/2a in an Iberian pork processing plant. Because survival in such environments is related to biofilm formation, we hypothesised that the influence of BAC on the biofilm formation potential of L. monocytogenes might differ between BAC-resistant strains (BAC-R, MIC≥10mg/L) and BAC-sensitive strains (BAC-S, MIC≤2.5mg/L). To evaluate this possibility, three BAC-R strains and eight BAC-S strains, which represented all of the molecular serotype 1/2a strains detected in the sampled plant, were compared. Biofilm production was measured using the crystal violet staining method in 96-well microtitre plates. The BAC-R strains produced significantly (p<0.05) less biofilm than the BAC-S in the absence of BAC, independent of the rate of planktonic growth. In contrast, when the biofilm values were measured in the presence of BAC, one BAC-R strain (S10-1) was able to form biofilm at 5mg/L of BAC, which prevented biofilm formation among the rest of the strains. A genetic determinant of BAC resistance recently described in L. monocytogenes (Tn6188) was detected in S10-1. When a BAC-S strain and its spontaneous mutant BAC-R derivative were compared, resistance to BAC led to biofilm formation at 5mg/L of BAC and to a significant (p<0.05) stimulation of biofilm formation at 1.25mg/L of BAC, which significantly (p<0.05) reduced the biofilm level in the parent BAC-S strain. Our results suggest that the effect of subminimal inhibitory concentrations of BAC on biofilm production by L. monocytogenes might differ between strains with different MICs and even between resistant strains with similar MICs but different genetic determinants of BAC resistance. For BAC-R strains similar

  2. Drug susceptibility and biofilm formation of Burkholderia pseudomallei in nutrient-limited condition.

    Science.gov (United States)

    Anutrakunchai, C; Sermswan, R W; Wongratanacheewin, S; Puknun, A; Taweechaisupapong, S

    2015-06-01

    Burkholderia pseudomallei is the causative agent of melioidosis, which can form biofilms and microcolonies in vivo and in vitro. One of the hallmark characteristics of the biofilm-forming bacteria is that they can be up to 1,000 times more resistant to antibiotics than their free-living counterpart. Bacteria also become highly tolerant to antibiotics when nutrients are limited. One of the most important causes of starvation induced tolerance in vivo is biofilm growth. However, the effect of nutritional stress on biofilm formation and drug tolerance of B. pseudomallei has never been reported. Therefore, this study aims to determine the effect of nutrient-limited and enriched conditions on drug susceptibility of B. pseudomallei in both planktonic and biofilm forms in vitro using broth microdilution method and Calgary biofilm device, respectively. The biofilm formation of B. pseudomallei in nutrient-limited and enriched conditions was also evaluated by a modified microtiter-plate test. Six isolates of ceftazidime (CAZ)-susceptible and four isolates of CAZ-resistant B. pseudomallei were used. The results showed that the minimum bactericidal concentrations of CAZ against B. pseudomallei in nutrient-limited condition were higher than those in enriched condition. The drug susceptibilities of B. pseudomallei biofilm in both enriched and nutrient-limited conditions were more tolerant than those of planktonic cells. Moreover, the quantification of biofilm formation by B. pseudomallei in nutrient-limited condition was significantly higher than that in enriched condition. These data indicate that nutrient-limited condition could induce biofilm formation and drug tolerance of B. pseudomallei.

  3. Biofilm formation enhances Helicobacter pylori survivability in vegetables.

    Science.gov (United States)

    Ng, Chow Goon; Loke, Mun Fai; Goh, Khean Lee; Vadivelu, Jamuna; Ho, Bow

    2017-04-01

    To date, the exact route and mode of transmission of Helicobacter pylori remains elusive. The detection of H. pylori in food using molecular approaches has led us to postulate that the gastric pathogen may survive in the extragastric environment for an extended period. In this study, we show that H. pylori prolongs its survival by forming biofilm and micro-colonies on vegetables. The biofilm forming capability of H. pylori is both strain and vegetable dependent. H. pylori strains were classified into high and low biofilm formers based on their highest relative biofilm units (BU). High biofilm formers survived longer on vegetables compared to low biofilm formers. The bacteria survived better on cabbage compared to other vegetables tested. In addition, images captured on scanning electron and confocal laser scanning microscopes revealed that the bacteria were able to form biofilm and reside as micro-colonies on vegetable surfaces, strengthening the notion of possible survival of H. pylori on vegetables for an extended period of time. Taken together, the ability of H. pylori to form biofilm on vegetables (a common food source for human) potentially plays an important role in its survival, serving as a mode of transmission of H. pylori in the extragastric environment.

  4. Biofilm formation and dispersal in Gram-positive bacteria

    NARCIS (Netherlands)

    Abee, T.; Kovacs, A.T.; Kuipers, O.P.; Veen, van der S.

    2011-01-01

    Biofilms are structured communities of bacteria, which are adhered to a surface and embedded in a self-produced matrix of extracellular polymeric substances. Since biofilms are very resistant to antimicrobial agents, they are at the basis of a range of problems, including quality and safety issues i

  5. Inhibitors of biofilm formation by biofuel fermentation contaminants

    Science.gov (United States)

    Biofuel fermentation contaminants such as Lactobacillus sp. may persist in production facilities by forming recalcitrant biofilms. In this study, biofilm-forming strains of Lactobacillus brevis, L. fermentum, and L. plantarum were isolated and characterized from a dry-grind fuel ethanol plant. A var...

  6. Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation

    DEFF Research Database (Denmark)

    Wu, Hong; Lee, Baoleri; Yang, Liang

    2011-01-01

    Biofilm-associated chronic Pseudomonas aeruginosa lung infections in patients with cystic fibrosis are virtually impossible to eradicate with antibiotics because biofilm-growing bacteria are highly tolerant to antibiotics and host defense mechanisms. Previously, we found that ginseng treatments......-associated chronic infections caused by P. aeruginosa....

  7. INVESTIGATING THE EFFECT OF MICROBIAL GROWTH AND BIOFILM FORMATION ON SEISMIC WAVE PROPAGATION IN SEDIMENT

    Science.gov (United States)

    Previous laboratory investigations have demonstrated that the seismic methods are sensitive to microbially-induced changes in porous media through the generation of biogenic gases and biomineralization. The seismic signatures associated with microbial growth and biofilm formation...

  8. Acoustic and Electrical Property Changes Due to Microbial Growth and Biofilm Formation in Porous Media

    Science.gov (United States)

    A laboratory study was conducted to investigate the effect of microbial growth and biofilm formation on compressional waves, and complex conductivity during stimulated microbial growth. Over the 29 day duration of the experiment, compressional wave amplitudes and arrival times f...

  9. Genome-wide mutagenesis of Xanthomonas axonopodis pv. citri reveals novel genetic determinants and regulation mechanisms of biofilm formation.

    Directory of Open Access Journals (Sweden)

    Jinyun Li

    Full Text Available Xanthomonas axonopodis pv. citri (Xac causes citrus canker disease, a major threat to citrus production worldwide. Accumulating evidence suggests that the formation of biofilms on citrus leaves plays an important role in the epiphytic survival of this pathogen prior to the development of canker disease. However, the process of Xac biofilm formation is poorly understood. Here, we report a genome-scale study of Xac biofilm formation in which we identified 92 genes, including 33 novel genes involved in biofilm formation and 7 previously characterized genes, colR, fhaB, fliC, galU, gumD, wxacO, and rbfC, known to be important for Xac biofilm formation. In addition, 52 other genes with defined or putative functions in biofilm formation were identified, even though they had not previously reported been to be associated with biofilm formation. The 92 genes were isolated from 292 biofilm-defective mutants following a screen of a transposon insertion library containing 22,000 Xac strain 306 mutants. Further analyses indicated that 16 of the novel genes are involved in the production of extracellular polysaccharide (EPS and/or lipopolysaccharide (LPS, 7 genes are involved in signaling and regulatory pathways, and 5 genes have unknown roles in biofilm formation. Furthermore, two novel genes, XAC0482, encoding a haloacid dehalogenase-like phosphatase, and XAC0494 (designated as rbfS, encoding a two-component sensor protein, were confirmed to be biofilm-related genes through complementation assays. Our data demonstrate that the formation of mature biofilm requires EPS, LPS, both flagellum-dependent and flagellum-independent cell motility, secreted proteins and extracellular DNA. Additionally, multiple signaling pathways are involved in Xac biofilm formation. This work is the first report on a genome-wide scale of the genetic processes of biofilm formation in plant pathogenic bacteria. The report provides significant new information about the genetic

  10. CORRELATION BETWEEN BIOFILM FORMATION OF UROPATHOGE NIC ESCHERICHIA COLI AND ITS ANTIBIOTIC RESISTANCE PATT ERN

    Directory of Open Access Journals (Sweden)

    SarojGolia

    2012-09-01

    Full Text Available ABSTRACT BACKGROUND: Microorganisms growing in multilayered cell cluste rs embedded in a matrix of extracellular polysaccharide (slime which facilitat es the adherence of these microorganisms to biomedical surfaces and protect them from host immun e system and antimicrobial therapy. There are various methods to detect biofilm producti on like Tissue Culture Plate (TCP ,Tube method (TM ,Modified Congo Red Agar Method (MCRA, bio luminescent assay ,piezoelectric sensors and fluorescent microscopic examination. OBJECTIVES : This study was conducted to compare three methods f or the detection of biofilms and compare with antibiotic sensitivity pat tern, in uropathogenic Escherichia coli. METHOD: This study was carried out at the Department of Microbiology Dr. B. R. Ambedkar Medical College from Dec 2011 to June 2012. Total n umber of 107 clinical Escherichia coli isolates were randomly selected from all age groups were subjected to biofilm detection methods and their antibiotic resistance pattern w as compared. Isolates were identified by standard phenotypic methods. Biofilm detection was te sted by TCP, TM and MCRA methods . Antibiotic susceptibility test of uropathogenic E co li was performed using Kirby –Bauer disc diffusion method according to CLSI guidelines. RESULTS: From the total of 107 clinical isolate 74 (69.1 % isolates showed biofilm formation by all the TCP, TM, CRP methods. Biofilm forming i solates from catheter associated UTI showed drug resistance to more than 6 drugs. Only 2(13.3% isolates from Asymptomatic UTI showed biofilm by TM & MCRA methods & were sensitive all d rugs. Biofilm forming isolates from symptomatic UTI showed mixed drug resistance pattern. CONCLUSION: We conclude from our study that biofilm formation is more common in catheterized patients. TCP method is more quantitati ve and reliable method for the detection of biofilm forming micro-organisms as compared to TM a nd MCRA methods. So TCP method can be recommended

  11. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids.

    Directory of Open Access Journals (Sweden)

    Laura M Sanchez

    Full Text Available Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition, we describe the identification of taurine-conjugated bile acids as inhibitors of biofilm formation against both Vibrio cholerae and Pseudomonas aeruginosa. Taurocholic acid (1 was isolated from the fermentation broth of the fish microbiome-derived strain of Rhodococcus erythropolis and identified using standard NMR and MS methods. Screening of the twelve predominant human steroidal bile acid components revealed that a subset of these compounds can inhibit biofilm formation, induce detachment of preformed biofilms under static conditions, and that these compounds display distinct structure-activity relationships against V. cholerae and P. aeruginosa. Our findings highlight the significance of distinct bile acid components in the regulation of biofilm formation and dispersion in two different clinically relevant bacterial pathogens, and suggest that the bile acids, which are endogenous mammalian metabolites used to solubilize dietary fats, may also play a role in maintaining host health against bacterial infection.

  12. Targeting cyclic di-GMP signalling: a strategy to control biofilm formation?

    Science.gov (United States)

    Caly, Delphine L; Bellini, Domenico; Walsh, Martin A; Dow, J Maxwell; Ryan, Robert P

    2015-01-01

    Cyclic di-GMP is a second messenger found in almost all eubacteria that acts to regulate a wide range of functions including developmental transitions, adhesion and biofilm formation. Cyclic di-GMP is synthesised from two GTP molecules by diguanylate cyclases that have a GGDEF domain and is degraded by phosphodiesterases with either an EAL or an HD-GYP domain. Proteins with these domains often contain additional signal input domains, suggesting that their enzymatic activity may be modulated as a response to different environmental or cellular cues. Cyclic di-GMP exerts a regulatory action through binding to diverse receptors that include a small protein domain called PilZ, enzymatically inactive GGDEF, EAL or HD-GYP domains, transcription factors and riboswitches. In many bacteria, high cellular levels of cyclic di-GMP are associated with a sessile, biofilm lifestyle, whereas low levels of the nucleotide promote motility and virulence factor synthesis in pathogens. Elucidation of the roles of cyclic di-GMP signalling in biofilm formation has suggested strategies whereby modulation of the levels of the nucleotide or interference with signalling pathways may lead to inhibition of biofilm formation or promotion of biofilm dispersal. In this review we consider these approaches for the control of biofilm formation, beginning with an overview of cyclic di-GMP signalling and the different ways that it can act in regulation of biofilm dynamics.

  13. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids.

    Science.gov (United States)

    Sanchez, Laura M; Cheng, Andrew T; Warner, Christopher J A; Townsley, Loni; Peach, Kelly C; Navarro, Gabriel; Shikuma, Nicholas J; Bray, Walter M; Riener, Romina M; Yildiz, Fitnat H; Linington, Roger G

    2016-01-01

    Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition, we describe the identification of taurine-conjugated bile acids as inhibitors of biofilm formation against both Vibrio cholerae and Pseudomonas aeruginosa. Taurocholic acid (1) was isolated from the fermentation broth of the fish microbiome-derived strain of Rhodococcus erythropolis and identified using standard NMR and MS methods. Screening of the twelve predominant human steroidal bile acid components revealed that a subset of these compounds can inhibit biofilm formation, induce detachment of preformed biofilms under static conditions, and that these compounds display distinct structure-activity relationships against V. cholerae and P. aeruginosa. Our findings highlight the significance of distinct bile acid components in the regulation of biofilm formation and dispersion in two different clinically relevant bacterial pathogens, and suggest that the bile acids, which are endogenous mammalian metabolites used to solubilize dietary fats, may also play a role in maintaining host health against bacterial infection.

  14. Biofilm formation in Candida glabrata: What have we learnt from functional genomics approaches?

    Science.gov (United States)

    d'Enfert, Christophe; Janbon, Guilhem

    2016-02-01

    Biofilms are a source of therapeutic failures because of their intrinsic tolerance to antimicrobials. Candida glabrata is one of the pathogenic yeasts that is responsible for life-threatening disseminated infections and able to form biofilms on medical devices such as vascular and urinary catheters. Recent progresses in the functional genomics of C. glabrata have been applied to the study of biofilm formation, revealing the contribution of an array of genes to this process. In particular, the Yak1 kinase and the Swi/Snf chromatin remodeling complex have been shown to relieve the repression exerted by subtelomeric silencing on the expression of the EPA6 and EPA7 genes, thus allowing the encoded adhesins to exert their key roles in biofilm formation. This provides a framework to evaluate the contribution of other genes that have been genetically linked to biofilm development and, based on the function of their orthologs in Saccharomyces cerevisiae, appear to have roles in adaptation to nutrient deprivation, calcium signaling, cell wall remodeling and adherence. Future studies combining the use of in vitro and animal models of biofilm formation, omics approaches and forward or reverse genetics are needed to expand the current knowledge of C. glabrata biofilm formation and reveal the mechanisms underlying their antifungal tolerance.

  15. Inhibition of Biofilm Formation by T7 Bacteriophages Producing Quorum-Quenching Enzymes

    Science.gov (United States)

    Lamas-Samanamud, Gisella R.

    2014-01-01

    Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysaccharides and may have limited effects on natural multispecies biofilms. In this study, an engineered T7 bacteriophage was constructed to encode a lactonase enzyme with broad-range activity for quenching of quorum sensing, a form of bacterial cell-cell communication via small chemical molecules (acyl homoserine lactones [AHLs]) that is necessary for biofilm formation. Our results demonstrated that the engineered T7 phage expressed the AiiA lactonase to effectively degrade AHLs from many bacteria. Addition of the engineered T7 phage to mixed-species biofilms containing Pseudomonas aeruginosa and Escherichia coli resulted in inhibition of biofilm formation. Such quorum-quenching phages that can lyse host bacteria and express quorum-quenching enzymes to affect diverse bacteria in biofilm communities may become novel antifouling and antibiofilm agents in industrial and clinical settings. PMID:24951790

  16. Role of the luxS gene in initial biofilm formation by Streptococcus mutans.

    Science.gov (United States)

    He, Zhiyan; Liang, Jingping; Tang, Zisheng; Ma, Rui; Peng, Huasong; Huang, Zhengwei

    2015-01-01

    Quorum sensing (QS) is a process by which bacteria communicate with each other by secreting chemical signals called autoinducers (AIs). Among Gram-negative and Gram-positive bacteria, AI-2 synthesized by the LuxS enzyme is widespread. The aim of this study was to evaluate the effect of QS luxS gene on initial biofilm formation by Streptococcus mutans. The bacterial cell surface properties, including cell hydrophobicity (bacterial adherence to hydrocarbons) and aggregation, which are important for initial adherence during biofilm development, were investigated. The biofilm adhesion assay was evaluated by the MTT method. The structures of the 5-hour biofilms were observed by using confocal laser scanning microscopy, and QS-related gene expressions were investigated by real-time PCR. The luxS mutant strain exhibited higher biofilm adherence and aggregation, but lower hydrophobicity than the wild-type strain. The confocal laser scanning microscopy images revealed that the wild-type strain tended to form smaller aggregates with uniform distribution, whereas the luxS mutant strain aggregated into distinct clusters easily discernible in the generated biofilm. Most of the genes examined were downregulated in the biofilms formed by the luxS mutant strain, except the gtfB gene. QS luxS gene can affect the initial biofilm formation by S. mutans.

  17. Effect of antibacterial dental adhesive on multispecies biofilms formation.

    Science.gov (United States)

    Zhang, K; Wang, S; Zhou, X; Xu, H H K; Weir, M D; Ge, Y; Li, M; Wang, S; Li, Y; Xu, X; Zheng, L; Cheng, L

    2015-04-01

    Antibacterial adhesives have favorable prospects to inhibit biofilms and secondary caries. The objectives of this study were to investigate the antibacterial effect of dental adhesives containing dimethylaminododecyl methacrylate (DMADDM) on different bacteria in controlled multispecies biofilms and its regulating effect on development of biofilm for the first time. Antibacterial material was synthesized, and Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis were chosen to form multispecies biofilms. Lactic acid assay and pH measurement were conducted to study the acid production of controlled multispecies biofilms. Anthrone method and exopolysaccharide (EPS):bacteria volume ratio measured by confocal laser scanning microscopy were performed to determine the EPS production of biofilms. The colony-forming unit counts, scanning electron microscope imaging, and dead:live volume ratio decided by confocal laser scanning microscopy were used to study the biomass change of controlled multispecies biofilms. The TaqMan real-time polymerase chain reaction and fluorescent in situ hybridization imaging were used to study the proportion change in multispecies biofilms of different groups. The results showed that DMADDM-containing adhesive groups slowed the pH drop and decreased the lactic acid production noticeably, especially lactic acid production in the 5% DMADDM group, which decreased 10- to 30-fold compared with control group (P biofilms compared with control group (P biofilm had a more healthy development tendency after the regulation of DMADDM. In conclusion, the adhesives containing DMADDM had remarkable antimicrobial properties to serve as "bioactive" adhesive materials and revealed its potential value for antibiofilm and anticaries clinical applications.

  18. Resistance to benzalkonium chloride, peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes.

    Science.gov (United States)

    Saá Ibusquiza, P; Herrera, J J R; Cabo, M L

    2011-05-01

    Increase of resistance to the application of benzalkonium chloride (BAC), peracetic acid (PA) and nisin during biofilm formation at 25 °C by three strains of Listeria monocytogenes (CECT 911, CECT 4032, CECT 5873 and BAC-adapted CECT 5873) in different scenarios was compared. For this purpose, resistance after 4 and 11-days of biofilm formation was quantified in terms of lethal dose 90% values (LD(90)), determined according with a dose-response logistic mathematical model. Microscopic analyses after 4 and 11-days of L. monocytogenes biofilm formation were also carried out. Results demonstrated a relation between the microscopic structure and the resistance to the assayed biocides in matured biofilms. The worst cases being biofilms formed by the strain 4032 (in both stainless steel and polypropylene), which showed a complex "cloud-type" structure that correlates with the highest resistance of this strain against the three biocides during biofilm maturation. However, that increase in resistance and complexity appeared not to be dependent on initial bacterial adherence, thus indicating mature biofilms rather than planctonic cells or early-stage biofilms must be considered when disinfection protocols have to be optimized. PA seemed to be the most effective of the three disinfectants used for biofilms. We hypothesized both its high oxidizing capacity and low molecular size could suppose an advantage for its penetration inside the biofilm. We also demonstrated that organic material counteract with the biocides, thus indicating the importance of improving cleaning protocols. Finally, by comparing strains 5873 and 5873 adapted to BAC, several adaptative cross-responses between BAC and nisin or peracetic acid were identified.

  19. Lack of effect of cell-wall targeted antibacterials on biofilm formation and antifungal susceptibility of Candidaspecies

    Directory of Open Access Journals (Sweden)

    Gisela Myrian de Lima Leite

    2014-09-01

    Full Text Available The use of central venous catheters (CVC and broad-spectrum antibacterials are among the main risk factors for the development of candidemia in patients admitted to intensive care units (ICU. It is known that some antibacterials increase the resistance of these yeasts to azole antifungals. Thus, the aim of this research was to determine whether yeast present in CVC colonizations previously exposed to cell-wall targeted antibacterials benefit from a reduction in susceptibility to fluconazole and voriconazole, facilitating their ability to form biofilms. Candida albicans, C. tropicalis, C. glabrata, C. parapsilosis and C. guilhermondii were seeded into antibacterial (cefepime, meropenem, vancomycin, and piperacillin-tazobactam gradient plates produced in Mueller-Hinton Agar. The susceptibility to fluconazole and voriconazole and the biofilm formation of the yeasts were tested before and after exposure to the antibacterials. None of the antibacterials exerted a significant effect on the in vitro susceptibility of the yeasts to the antifungal agents or on their ability to form biofilms. These results suggest that increased candidemia in ICU patients is not attributable to possible alterations in the yeasts, but is more likely caused by a weakening of the patient's general condition after long exposure to infection.

  20. Polymicrobial biofilm formation by Candida albicans, Actinomyces naeslundii, and Streptococcus mutans is Candida albicans strain and medium dependent.

    Science.gov (United States)

    Arzmi, Mohd Hafiz; Alnuaimi, Ali D; Dashper, Stuart; Cirillo, Nicola; Reynolds, Eric C; McCullough, Michael

    2016-11-01

    Oral biofilms comprise of extracellular polysaccharides and polymicrobial microorganisms. The objective of this study was to determine the effect of polymicrobial interactions of Candida albicans, Actinomyces naeslundii, and Streptococcus mutans on biofilm formation with the hypotheses that biofilm biomass and metabolic activity are both C. albicans strain and growth medium dependent. To study monospecific biofilms, C. albicans, A. naeslundii, and S. mutans were inoculated into artificial saliva medium (ASM) and RPMI-1640 in separate vials, whereas to study polymicrobial biofilm formation, the inoculum containing microorganisms was prepared in the same vial prior inoculation into a 96-well plate followed by 72 hours incubation. Finally, biofilm biomass and metabolic activity were measured using crystal violet and XTT assays, respectively. Our results showed variability of monospecies and polymicrobial biofilm biomass between C. albicans strains and growth medium. Based on cut-offs, out of 32, seven RPMI-grown biofilms had high biofilm biomass (HBB), whereas, in ASM-grown biofilms, 14 out of 32 were HBB. Of the 32 biofilms grown in RPMI-1640, 21 were high metabolic activity (HMA), whereas in ASM, there was no biofilm had HMA. Significant differences were observed between ASM and RPMI-grown biofilms with respect to metabolic activity (P biofilm biomass and metabolic activity were both C. albicans strain and growth medium dependent.

  1. Different sensitivity levels to norspermidine on biofilm formation in clinical and commensal Staphylococcus epidermidis strains.

    Science.gov (United States)

    Ramón-Peréz, Miriam L; Díaz-Cedillo, Francisco; Contreras-Rodríguez, Araceli; Betanzos-Cabrera, Gabriel; Peralta, Humberto; Rodríguez-Martínez, Sandra; Cancino-Diaz, Mario E; Jan-Roblero, Janet; Cancino Diaz, Juan C

    2015-02-01

    Biofilm formation on medical and surgical devices is the main virulence factor of Staphylococcus epidermidis. A recent study has shown that norspermidine inhibits and disassembles the biofilm in the wild-type Bacillus subtilis NCBI3610 strain. In this study, the effect of norspermidine on S. epidermidis biofilm formation of clinical or commensal strains was tested. Biofilm producing strains of S. epidermidis were isolated from healthy skin (HS; n = 3), healthy conjunctiva (HC; n = 9) and ocular infection (OI; n = 19). All strains were treated with different concentrations of norspermidine, spermidine, putrescine, and cadaverine (1, 10, 25, 50 and 100 μM), and the biofilm formation was tested on microtiter plate. Besides, cell-free supernatants of S. epidermidis growth at 4 h and 40 h were analyzed by gas chromatography coupled to mass spectrometry (GC-MS) to detect norspermidine. Results showed that norspermidine at 25 μM and 100 μM prevented the biofilm formation in 45.16% (14/31) and 16.13% (5/31), respectively; only in one isolate from OI, norspermidine did not have effect. Other polyamines as spermidine, putrescine and cadaverine did not have effect on the biofilm formation of the strains tested. Norspermidine was also capable to disassemble a biofilm already formed. Norspermidine was detected in the 40 h cell-free supernatant of S. epidermidis by GC-MS. Norspermidine inhibited the biofilm development of S. epidermidis on the surface of contact lens. In this work, it was demonstrated that S. epidermidis produces and releases norspermidine causing an inhibitory effect on biofilm formation. Moreover, this is the first time showing that clinical S. epidermidis strains have different sensitivity to norspermidine, which suggest that the composition and structure of the biofilms is varied. We propose that norspermidine could potentially be used in the pre-treating of medical and surgical devices to inhibit the biofilm formation.

  2. Biofilm formation of Achromobacter xylosoxidans on contact lens.

    Science.gov (United States)

    Konstantinović, Neda; Ćirković, Ivana; Đukić, Slobodanka; Marić, Vesna; Božić, Dragana D

    2017-02-20

    Achromobacter spp. may contaminate lenses, lens cases, and contact lens solutions and cause ocular infections. The aim of this study was to investigate the possibility of isolated strain of Achromobacter xylosoxidans to form biofilm on the surface of soft contact lenses (CL), to quantify the production of the formed biofilm, and compare it with the reference strains (Pseudomonas aeruginosa, Staphylococcus aureus, and Haemophilus influenzae). Bacterial strain isolated from one contact lens case was identified as A. xylosoxidans using Vitek2 Automated System. Biofilm forming capacity of isolated strain of A. xylosoxidans and reference strains of P. aeruginosa, S. aureus, and H. influenzae on soft CL were analyzed by commonly used microtitre plate method. Our results showed that isolated strain of A. xylosoxidans was capable to form biofilm on the surface of soft contact lens. A. xylosoxidans was strong biofilm producer while all examined reference strains were moderate biofilm producers. A. xylosoxidans appears to be superior biofilm producer on soft CL compared to reference strains.

  3. Biofilm formation by Staphylococcus aureus isolates from a dental clinic in Konya, Turkey.

    Science.gov (United States)

    Torlak, Emrah; Korkut, Emre; Uncu, Ali T; Şener, Yağmur

    2017-02-14

    The ability of Staphylococcus aureus to form biofilm is considered to be a major virulence factor influencing its survival and persistence in both the environment and the host. Biofilm formation in S. aureus is most frequently associated with production of polysaccharide intercellular adhesion by ica operon-encoded enzymes. The present work aimed at evaluating the in vitro biofilm production and presence of the icaA and icaD genes in S. aureus isolates from a dental clinic in Konya, Turkey. The surfaces of inanimate objects were sampled over a period of six months. S. aureus isolates were subjected to Congo Red Agar (CRA) and crystal violet (CV) staining assays to evaluate their ability of biofilm production, while the presence of the icaA and icaD genes was determined by polymerase chain reaction. S. aureus contamination was detected in 13.2% of the environmental samples. All the 32 isolates were observed to be positive for both the icaA and icaD genes. Phenotypic evaluations revealed that CV staining assay is a more reliable alternative to CRA assay to determine biofilm formation ability. A high percentage of agreement (91%) was observed between the results from CV staining and ica genes' detection assays. Phenotypic and genotypic evaluations should be combined to detect biofilm formation in S. aureus. Our findings indicate that dental clinic environments should be considered as potential reservoir for biofilm-producing S. aureus and thus cross contamination.

  4. Graft polymerization of styryl bisphosphonate monomer onto polypropylene films for inhibition of biofilm formation.

    Science.gov (United States)

    Steinmetz, Hanna P; Rudnick-Glick, Safra; Natan, Michal; Banin, Ehud; Margel, Shlomo

    2016-11-01

    There has been increased concern during the past few decades over the role bacterial biofilms play in causing a variety of health problems, especially since they exhibit a high degree of resistance to antibiotics and are able to survive in hostile environments. Biofilms consist of bacterial aggregates enveloped by a self-produced matrix attached to the surface. Ca(2+) ions promote the formation of biofilms, and enhance their stability, viscosity, and strength. Bisphosphonates exhibit a high affinity for Ca(2+) ions, and may inhibit the formation of biofilms by acting as sequestering agents for Ca(2+) ions. Although the antibacterial activity of bisphosphonates is well known, research into their anti-biofilm behavior is still in its early stages. In this study, we describe the synthesis of a new thin coating composed of poly(styryl bisphosphonate) grafted onto oxidized polypropylene films for anti-biofilm applications. This grafting process was performed by graft polymerization of styryl bisphosphonate vinylic monomer onto O2 plasma-treated polypropylene films. The surface modification of the polypropylene films was confirmed using surface measurements, including X-ray photoelectron spectroscopy, atomic force microscopy, and water contact angle goniometry. Significant inhibition of biofilm formation was achieved for both Gram-negative and Gram-positive bacteria.

  5. Detection of Intracellular Adhesion (ica Gene and Biofilm Formation Staphylococcus aureus Isolates from Clinical Blood Cultures

    Directory of Open Access Journals (Sweden)

    Mohsen Mirzaee

    2015-10-01

    Full Text Available Background: In fact the biofilms are composed of bacterial cells living inmulticellular structures such as tissues and organs embedded within a self-produced matrix of extracellular polymeric substance (EPS. Ability to attach and biofilm formation are the most important virulence factors Staphylococcus aureus isolates. The aims of this study were to detect intracellular adhesion (ica locus and its relation to the biofilm formation phenotype in clinical isolates of S. aureus isolated from bloodcultures.Methods: A total of 31 clinical S. aureus isolates were collected from Loghman Hospital of Tehran, Iran. In vitro biofilm formation ability was determined by microliter tissue culture plates. All clinical isolates were examined for determination the ica locus by using PCR method.Results: Twelve (38.7% of the isolates were strong biofilm producers. The results showed that 18(80.6% of the isolates carried icaD gene, whereas the prevalence of icaA, icaB and icaC were 51.6%, 45.1% and 77.4% respectively.Conclusions: S. aureus clinical isolates have different ability to form biofilm. This may be caused by the differences in the expression of biofilm related genes, genetic make-up and physiological conditions.

  6. Sub-MIC Tylosin Inhibits Streptococcus suis Biofilm Formation and Results in Differential Protein Expression.

    Science.gov (United States)

    Wang, Shuai; Yang, Yanbei; Zhao, Yulin; Zhao, Honghai; Bai, Jingwen; Chen, Jianqing; Zhou, Yonghui; Wang, Chang; Li, Yanhua

    2016-01-01

    Streptococcus suis (S.suis) is an important zoonotic pathogen that causes severe diseases in humans and pigs. Biofilms of S. suis can induce persistent infections that are difficult to treat. In this study, the effect of tylosin on biofilm formation of S. suis was investigated. 1/2 minimal inhibitory concentration (MIC) and 1/4 MIC of tylosin were shown to inhibit S. suis biofilm formation in vitro. By using the iTRAQ strategy, we compared the protein expression profiles of S. suis grown with sub-MIC tylosin treatment and with no treatment. A total of 1501 proteins were identified by iTRAQ. Ninety-six differentially expressed proteins were identified (Ratio > ±1.5, p MIC tylosin treatment. Thus, our data revealed the rough regulation of biofilm formation that may provide a foundation for future research into mechanisms and targets.

  7. TOL Plasmid Carriage Enhances Biofilm Formation and Increases Extracellular DNA Content in Pseudomonas Putida KT2440

    DEFF Research Database (Denmark)

    Smets, Barth F.; D'Alvise, Paul; Yankelovich, T.;

    of extracellular polymeric substances: TOL carriage leads to more extracellular DNA (eDNA) in pellicles and biofilms. Pellicles were dissolved by DNAse I treatment. eDNA was observed as ominous fibrous structures. Quantitative analysis of live and dead cells in static cultures was performed by flow cytometry......Adherent growth of Pseudomonas putida KT2440 with and without the TOL plasmid (pWWO) at the solid-liquid and air-liquid interface was examined. We compared biofilm formation on glass in flow cells, and assayed pellicle (air-liquid interface biofilm) formation in stagnant liquid cultures by confocal...... combined with specific cytostains; release of cytoplasmic material was assayed by a β-glucosidase assay. Enhanced cell lysis due to plasmid carriage was ruled out as the mechanism for eDNA release. We report, for the first time, that carriage of a conjugative plasmid leads to increased biofilm formation...

  8. Soybean Lectin Enhances Biofilm Formation by Bradyrhizobium japonicum in the Absence of Plants

    Directory of Open Access Journals (Sweden)

    Julieta Pérez-Giménez

    2009-01-01

    Full Text Available Soybean lectin (SBL purified from soybean seeds by affinity chromatography strongly bound to Bradyrhizobium japonicum USDA 110 cell surface. This lectin enhanced biofilm formation by B. japonicum in a concentration-dependent manner. Presence of galactose during biofilm formation had different effects in the presence or absence of SBL. Biofilms were completely inhibited in the presence of both SBL and galactose, while in the absence of SBL, galactose was less inhibitory. SBL was very stable, since its agglutinating activity of B. japonicum cells as well as of human group A+ erythrocytes was resistant to preincubation for one week at 60°C. Hence, we propose that plant remnants might constitute a source of this lectin, which might remain active in soil and thus favor B. japonicum biofilm formation in the interval between soybean crop seasons.

  9. An easy and economical in vitro method for the formation of Candida albicans biofilms under continuous conditions of flow.

    Science.gov (United States)

    Uppuluri, Priya; Lopez-Ribot, Jose L

    2010-01-01

    Candida albicans can develop biofilms on medical devices and these biofilms are most often nourished by a continuous flow of body fluids and subjected to shear stress forces. While many C. albicans biofilm studies have been carried out using in vitro static models, more limited information is available for biofilms developed under conditions of flow. We have previously described a simple flow biofilm model (SFB) for the development of C. albicans biofilms under conditions of continuous media flow. Here, we recount in detail from a methodological perspective, this model that can be assembled easily using materials commonly available in most microbiological laboratories. The entire procedure takes approximately two days to complete. Biofilms developed using this system are robust, and particularly suitable for studies requiring large amounts of biofilm cells for downstream analyses. This methodology simplifies biofilm formation under continuous replenishment of nutrients. Moreover, this technique mimics in vivo flow conditions, thereby making it physiologically more relevant than the currently dominant static models.

  10. Resveratrol--a potential inhibitor of biofilm formation in Vibrio cholerae.

    Science.gov (United States)

    Augustine, Nimmy; Goel, A K; Sivakumar, K C; Kumar, R Ajay; Thomas, Sabu

    2014-02-15

    Resveratrol, a phytochemical commonly found in the skin of grapes and berries, was tested for its biofilm inhibitory activity against Vibrio cholerae. Biofilm inhibition was assessed using crystal violet assay. MTT assay was performed to check the viability of the treated bacterial cells and the biofilm architecture was analysed using confocal laser scanning microscopy. The possible target of the compound was determined by docking analysis. Results showed that subinhibitory concentrations of the compound could significantly inhibit biofilm formation in V. cholerae in a concentration-dependent manner. AphB was found to be the putative target of resveratrol using docking analysis. The results generated in this study proved that resveratrol is a potent biofilm inhibitor of V. cholerae and can be used as a novel therapeutic agent against cholera. To our knowledge, this is the first report of resveratrol showing antibiofilm activity against V. cholerae.

  11. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation

    DEFF Research Database (Denmark)

    Schroll, C.; Barken, Kim Bundvig; Krogfelt, K.A.

    2010-01-01

    isolate C3091 were constructed, and their ability to form biofilm was investigated in a flow cell system by confocal scanning laser microscopy. The wild type strain was found to form characteristic biofilm and development of K. pneumoniae biofilm occurred primarily by clonal growth, not by recruitment...... we found that type 3 fimbriae, but not type 1 fimbriae, strongly promote biofilm formation in K. pneumoniae C3091. As the vast majority of clinical K. pneumoniae isolates express type 3 fimbriae, this fimbrial adhesin may play a significant role in development of catheter associated K. pneumoniae......Background: Klebsiella pneumoniae is an important gram-negative opportunistic pathogen causing primarily urinary tract infections, respiratory infections, and bacteraemia. The ability of bacteria to form biofilms on medical devices, e. g. catheters, has a major role in development of many...

  12. Effect of polymyxin resistance (pmr) on biofilm formation of Cronobacter sakazakii.

    Science.gov (United States)

    Bao, Xuerui; Jia, Xiangyin; Chen, Lequn; Peters, Brian M; Lin, Chii-Wann; Chen, Dingqiang; Li, Lin; Li, Bing; Li, Yanyan; Xu, Zhenbo; Shirtliff, Mark E

    2016-12-22

    Cronobacter sakazakii (C.sakazakii) has been identified as a wide-spread conditioned pathogen associated with series of serious illnesses, such as neonatal meningitis, enterocolitis, bacteremia or sepsis. As food safety is concerned, microbial biofilm has been considered to be a potential source of food contamination. The current study aims to investigate the ability of biofilm formation of two C. sakazakii strains (wild type BAA 894 and pmrA mutant). Crystal violet (CV), XTT (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino carbonyl)-2H-(tetrazolium hydroxide)] assays, and scanning electron microscopy (SEM) are performed on different time points during biofilm formation of C. sakazakii strains. Furthermore, RNA-seq strategy is utilized and the transcriptome data is analyzed to study the expression of genes related to biofilm formation along with whole genome sequencing. For biomass, in the first 24 h, pmrA mutant produced approximately 5 times than wildtype. However, the wild type exhibited more biomass than pmrA mutant during the post maturation stage (7-14 d). In addition, the wildtype showed higher viability than pmrA mutant during the whole biofilm formation. This study represents the first evidence on the biofilm formation of C. sakazakii pmrA mutant, which may further aid in the prevention and control for the food contamination caused by C. sakazakii.

  13. In vitro interference of cefotaxime at subinhibitory concentrations on biofilm formation by nontypeable Haemophilus influenzae

    Institute of Scientific and Technical Information of China (English)

    Sudarat Baothong; Sutthirat Sitthisak; Duangkamol Kunthalert

    2016-01-01

    Objective: To investigate the in vitro interference of cefotaxime at subinhibitory con-centrations [sub-minimal inhibitory concentrations (MIC)] on biofilm formation by nontypeable Haemophilus influenzae (NTHi). Methods: The interference of subinhibitory concentrations of cefotaxime on biofilm formation of the clinical strong-biofilm forming isolates of NTHi was evaluated by a microtiter plate biofilm formation assay. The effect of sub-MIC cefotaxime on bacterial cell-surface hydrophobicity was determined using a standard microbial adhesion to n-hexadecane test. Additionally, the effects on bacterial adherence to human fibronectin and expression of bacterial adhesins were also investigated. Results: Subinhibitory concentrations of cefotaxime, both at 0.1× and 0.5× MIC levels, efficiently reduced the NTHi biofilm formation, and this effect was independent of decreasing bacterial viability. Sub-MIC cefotaxime also decreased bacterial cell-surface hydrophobicity and reduced adherence to human fibronectin. Inhibition in the P2 and P6 gene expressions upon exposure to sub-MIC cefotaxime was also noted. Conclusions: Taken together, our results indicate that sub-MIC cefotaxime interferes with the formation of NTHi biofilm, and this effect is feasibly related to the interference with cell-surface hydrophobicity, fibronectin-binding activity as well as alteration of the P2 and P6 gene expression. The findings of the present study therefore provide a rationale for the use of subinhibitory concentrations of cefotaxime for treatment of NTHi-related diseases.

  14. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential

    Directory of Open Access Journals (Sweden)

    Maíra Maciel Mattos de Oliveira

    2010-03-01

    Full Text Available An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4 stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 ºC and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.

  15. Effect of LongZhang Gargle on Biofilm Formation and Acidogenicity of Streptococcus mutans In Vitro.

    Science.gov (United States)

    Yang, Yutao; Liu, Shiyu; He, Yuanli; Chen, Zhu; Li, Mingyun

    2016-01-01

    Streptococcus mutans, with the ability of high-rate acid production and strong biofilm formation, is considered the predominant bacterial species in the pathogenesis of human dental caries. Natural products which may be bioactive against S. mutans have become a hot spot to researches to control dental caries. LongZhang Gargle, completely made from Chinese herbs, was investigated for its effects on acid production and biofilm formation by S. mutans in this study. The results showed an antimicrobial activity of LongZhang Gargle against S. mutans planktonic growth at the minimum inhibitory concentration (MIC) of 16% and minimum bactericidal concentration (MBC) of 32%. Acid production was significantly inhibited at sub-MIC concentrations. Biofilm formation was also significantly disrupted, and 8% was the minimum concentration that resulted in at least 50% inhibition of biofilm formation (MBIC50). A scanning electron microscopy (SEM) showed an effective disruption of LongZhang Gargle on S. mutans biofilm integrity. In addition, a confocal laser scanning microscopy (CLSM) suggested that the extracellular polysaccharides (EPS) synthesis could be inhibited by LongZhang Gargle at a relatively low concentration. These findings suggest that LongZhang Gargle may be a promising natural anticariogenic agent in that it suppresses planktonic growth, acid production, and biofilm formation against S. mutans.

  16. Biofilms: The Stronghold of Legionella pneumophila

    Directory of Open Access Journals (Sweden)

    Mena Abdel-Nour

    2013-10-01

    Full Text Available Legionellosis is mostly caused by Legionella pneumophila and is defined as a severe respiratory illness with a case fatality rate ranging from 5% to 80%. L. pneumophila is ubiquitous in natural and anthropogenic water systems. L. pneumophila is transmitted by inhalation of contaminated aerosols produced by a variety of devices. While L. pneumophila replicates within environmental protozoa, colonization and persistence in its natural environment are also mediated by biofilm formation and colonization within multispecies microbial communities. There is now evidence that some legionellosis outbreaks are correlated with the presence of biofilms. Thus, preventing biofilm formation appears as one of the strategies to reduce water system contamination. However, we lack information about the chemical and biophysical conditions, as well as the molecular mechanisms that allow the production of biofilms by L. pneumophila. Here, we discuss the molecular basis of biofilm formation by L. pneumophila and the roles of other microbial species in L. pneumophila biofilm colonization. In addition, we discuss the protective roles of biofilms against current L. pneumophila sanitation strategies along with the initial data available on the regulation of L. pneumophila biofilm formation.

  17. Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner

    Directory of Open Access Journals (Sweden)

    Yu Dan

    2012-12-01

    Full Text Available Abstract Background Staphylococcus aureus is an important pathogen that causes biofilm-associated infection in humans. Autoinducer 2 (AI-2, a quorum-sensing (QS signal for interspecies communication, has a wide range of regulatory functions in both Gram-positive and Gram-negative bacteria, but its exact role in biofilm formation in S. aureus remains unclear. Results Here we demonstrate that mutation of the AI-2 synthase gene luxS in S. aureus RN6390B results in increased biofilm formation compared with the wild-type (WT strain under static, flowing and anaerobic conditions and in a mouse model. Addition of the chemically synthesized AI-2 precursor in the luxS mutation strain (ΔluxS restored the WT phenotype. Real-time RT-PCR analysis showed that AI-2 activated the transcription of icaR, a repressor of the ica operon, and subsequently a decreased level of icaA transcription, which was presumably the main reason why luxS mutation influences biofilm formation. Furthermore, we compared the roles of the agr-mediated QS system and the LuxS/AI-2 QS system in the regulation of biofilm formation using the ΔluxS strain, RN6911 and the Δagr ΔluxS strain. Our data indicate a cumulative effect of the two QS systems on the regulation of biofilm formation in S. aureus. Conclusion These findings demonstrate that AI-2 can decrease biofilm formation in S. aureus via an icaR-activation pathway. This study may provide clues for therapy in S. aureus biofilm-associated infection.

  18. Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation.

    Science.gov (United States)

    Otsuka, Ryoko; Imai, Susumu; Murata, Takatoshi; Nomura, Yoshiaki; Okamoto, Masaaki; Tsumori, Hideaki; Kakuta, Erika; Hanada, Nobuhiro; Momoi, Yasuko

    2015-01-01

    Water-insoluble glucan (WIG) produced by mutans streptococci, an important cariogenic pathogen, plays an important role in the formation of dental biofilm and adhesion of biofilm to tooth surfaces. Glucanohydrolases, such as mutanase (α-1,3-glucanase) and dextranase (α-1,6-glucanase), are able to hydrolyze WIG. The purposes of this study were to construct bi-functional chimeric glucanase, composed of mutanase and dextranase, and to examine the effects of this chimeric glucanase on the formation and decomposition of biofilm. The mutanase gene from Paenibacillus humicus NA1123 and the dextranase gene from Streptococcus mutans ATCC 25175 were cloned and ligated into a pE-SUMOstar Amp plasmid vector. The resultant his-tagged fusion chimeric glucanase was expressed in Escherichia coli BL21 (DE3) and partially purified. The effects of chimeric glucanase on the formation and decomposition of biofilm formed on a glass surface by Streptococcus sobrinus 6715 glucosyltransferases were then examined. This biofilm was fractionated into firmly adherent, loosely adherent, and non-adherent WIG fractions. Amounts of WIG in each fraction were determined by a phenol-sulfuric acid method, and reducing sugars were quantified by the Somogyi-Nelson method. Chimeric glucanase reduced the formation of the total amount of WIG in a dose-dependent manner, and significant reductions of WIG in the adherent fraction were observed. Moreover, the chimeric glucanase was able to decompose biofilm, being 4.1 times more effective at glucan inhibition of biofilm formation than a mixture of dextranase and mutanase. These results suggest that the chimeric glucanase is useful for prevention of dental biofilm formation.

  19. A chalcone with potent inhibiting activity against biofilm formation by nontypeable Haemophilus influenzae.

    Science.gov (United States)

    Kunthalert, Duangkamol; Baothong, Sudarat; Khetkam, Pichit; Chokchaisiri, Suwadee; Suksamrarn, Apichart

    2014-10-01

    Nontypeable Haemophilus influenzae (NTHi), an important human respiratory pathogen, frequently causes biofilm infections. Currently, resistance of bacteria within the biofilm to conventional antimicrobials poses a major obstacle to effective medical treatment on a global scale. Novel agents that are effective against NTHi biofilm are therefore urgently required. In this study, a series of natural and synthetic chalcones with various chemical substituents were evaluated in vitro for their antibiofilm activities against strong biofilm-forming strains of NTHi. Of the test chalcones, 3-hydroxychalcone (chalcone 8) exhibited the most potent inhibitory activity, its mean minimum biofilm inhibitory concentration (MBIC50 ) being 16 μg/mL (71.35 μM), or approximately sixfold more active than the reference drug, azithromycin (MBIC50 419.68 μM). The inhibitory activity of chalcone 8, which is a chemically modified chalcone, appeared to be superior to those of the natural chalcones tested. Significantly, chalcone 8 inhibited biofilm formation by all studied NTHi strains, indicating that the antibiofilm activities of this compound occur across multiple strong-biofilm forming NTHi isolates of different clinical origins. According to antimicrobial and growth curve assays, chalcone 8 at concentrations that decreased biofilm formation did not affect growth of NTHi, suggesting the biofilm inhibitory effect of chalcone 8 is non-antimicrobial. In terms of structure-activity relationship, the possible substituent on the chalcone backbone required for antibiofilm activity is discussed. These findings indicate that 3-hydroxychalcone (chalcone 8) has powerful antibiofilm activity and suggest the potential application of chalcone 8 as a new therapeutic agent for control of NTHi biofilm-associated infections.

  20. The formation of green rust induced by tropical river biofilm components

    Energy Technology Data Exchange (ETDEWEB)

    Jorand, F., E-mail: jorand@pharma.uhp-nancy.fr [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy-Universite, Institut Jean Barriol, 405 rue de Vandoeuvre, F-54600 Villers-les Nancy (France); Zegeye, A. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy-Universite, Institut Jean Barriol, 405 rue de Vandoeuvre, F-54600 Villers-les Nancy (France); Ghanbaja, J. [Service Commun de Microscopies Electroniques et Microanalyses X (SCMEM), Nancy-Universite, Bvd des Aiguillettes, BP 239, 54506, Vandoeuvre-les-Nancy (France); Abdelmoula, M. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy-Universite, Institut Jean Barriol, 405 rue de Vandoeuvre, F-54600 Villers-les Nancy (France)

    2011-06-01

    In the Sinnamary Estuary (French Guiana), a dense red biofilm grows on flooded surfaces. In order to characterize the iron oxides in this biofilm and to establish the nature of secondary minerals formed after anaerobic incubation, we conducted solid analysis and performed batch incubations. Elemental analysis indicated a major amount of iron as inorganic compartment along with organic matter. Solid analysis showed the presence of two ferric oxides ferrihydrite and lepidocrocite. Bacteria were abundant and represented more than 10{sup 11} cells g{sup -1} of dry weight among which iron reducers were revealed. Optical and electronic microscopy analysis revealed than the bacteria were in close vicinity of the iron oxides. After anaerobic incubations with exogenous electron donors, the biofilm's ferric material was reduced into green rust, a Fe{sup II}-Fe{sup III} layered double hydroxide. This green rust remained stable for several years. From this study and previous reports, we suggest that ferruginous biofilms should be considered as a favorable location for GR biomineralization when redox conditions and electron donors availability are gathered. - Research highlights: {yields} Characterization of ferruginous biofilm components by solid analysis methods. {yields} Lepidocrocite and ferrihydrite were the main iron oxides. {yields} Anaerobic incubation of biofilm with electron donors produced green rust. {yields} Biofilm components promote the formation of the green rust. {yields} Ferruginous biofilm could contribute to the natural mercury attenuation.

  1. Novel application for the prevention and treatment of Staphylococcus aureus biofilm formation

    Science.gov (United States)

    Traba, Christian

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this dissertation, the application of plasma from two very different facets was studied. In part one, the susceptibility of pre-formed Staphylococcus aureus biofilms on biomaterials to different plasmas was investigated. It was found that the distinct chemical/physical properties of plasmas generated from oxygen, nitrogen, and argon all demonstrated very potent but very different anti-biofilm mechanisms of action. An in depth analysis of these results show: 1) different reactive species produced in each plasma demonstrate specific activity, and 2) the commonly associated etching effect could be manipulated and even controlled, depending on experimental conditions and the discharge gas. These studies provide insights into the anti-biofilm mechanisms of plasma as well as the effects of different reactive species on biofilm inactivation. Under experimental parameters, bacterial cells in Staphylococcus aureus biofilms were killed (>99.9%) by plasmas within minutes of exposure and no bacteria nor biofilm re-growth from discharge gas treated biofilms was observed throughout the life-span of the re-growth experiment. The decontamination ability of plasmas for the treatment of biofilm related infections on biomedical materials was confirmed and novel applications involving the use of low power argon and oxygen for the treatment of biofilm contaminated biomaterials and indwelling devices is proposed. The second facet of this dissertation explores the interaction between biofilm forming Staphylococcus aureus bacteria on different antibacterial/anti-biofilm surfaces. The antibiotic-free anti-fouling surfaces constructed in this study were generated from the plasma-assisted graft polymerization technique. These sophisticated surfaces were stable, biocompatible and capable of preventing biofilm formation on biomaterials and medical devices. Under

  2. Filamentation and spatiotemporal distribution of extracellular polymeric substances: role on X.fastidiosa single cell adhesion and biofilm formation (Conference Presentation)

    Science.gov (United States)

    Janissen, Richard; Murillo, Duber M.; Niza, Barbara; Sahoo, Prasana K.; Monteiro, Moniellen P.; César, Carlos L.; Carvalho, Hernandes F.; de Souza, Alessandra A.; Cotta, Monica A.

    2016-04-01

    Biofilms can be defined as a community of microorganisms attached to a surface, living embedded in a self- produced matrix of hydrated extracellular polymeric substances (EPS) which comprises most of the biofilm mass. We have recently used an extensive pool of microscopy techniques (confocal fluorescence, electron and scanning probe microscopies) at the micro and nanoscales in order to create a detailed temporal observation of Xylella fastidiosa biofilm formation, using both wild type strain and Green Fluorescent Protein (GFP)-modified cells of this citrus phytopathogen. We have identified three different EPS compositions, as well as their spatial and temporal distribution from single cell to mature biofilm formation stages. In the initial adhesion stage, soluble-EPS (S-EPS) accumulates at cell polar regions and forms a surface layer which facilitates irreversible cell attachment and cell cluster formation. These small clusters are subsequently connected by filamentous cells; further S-EPS surface coverage facilitates cell attachment and form filaments, leading to a floating framework of mature biofilms. The important role of EPS in X.fastidiosa biology was further investigated by imunolabelling experiments to detect the distribution of XadA1 adhesin, which is expressed in early stages of biofilm formation and released in outer membrane vesicles. This protein is located mainly in S-EPS covered areas, as well as on the filaments, indicating a molecular pathway to the enhanced cell attachment previously observed. These results suggest that S-EPS may thus represent an important target for disease control, slow plant colonization by the bacteria, keeping the plant more productive in the field.

  3. Nanoscale Plasma Coating Inhibits Formation of Staphylococcus aureus Biofilm

    OpenAIRE

    2015-01-01

    Staphylococcus aureus commonly infects medical implants or devices, with devastating consequences for the patient. The infection begins with bacterial attachment to the device, followed by bacterial multiplication over the surface of the device, generating an adherent sheet of bacteria known as a biofilm. Biofilms resist antimicrobial therapy and promote persistent infection, making management difficult to futile. Infections might be prevented by engineering the surface of the device to disco...

  4. The Crucial Role of Biofilms in Cryptococcus neoformans Survival within Macrophages and Colonization of the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Lilit Aslanyan

    2017-02-01

    Full Text Available Cryptococcus neoformans is an encapsulated yeast-like fungus capable of causing life threatening meningoencephalitis in patients with impaired immunity. This microbe primarily infects the host via inhalation but has the ability to disseminate to the central nervous system (CNS either as a single cell or inside of macrophages. Upon traversing the blood brain barrier, C. neoformans has the capacity to form biofilm-like structures known as cryptococcomas. Hence, we will discuss the C. neoformans elements contributing to biofilm formation including the fungus’ ability to survive in the acidic environment of a macrophage phagosome and inside of the CNS. The purpose of this mini-review is to instill fresh interest in understanding the importance of biofilms on fungal pathogenesis.

  5. Involvement of three meningococcal surface-exposed proteins, the heparin-binding protein NhbA, the α-peptide of IgA protease and the autotransporter protease NalP, in initiation of biofilm formation

    KAUST Repository

    Arenas, Jesús

    2012-12-04

    Neisseria meningitidis is a common and usually harmless inhabitant of the mucosa of the human nasopharynx, which, in rare cases, can cross the epithelial barrier and cause meningitis and sepsis. Biofilm formation favours the colonization of the host and the subsequent carrier state. Two different strategies of biofilm formation, either dependent or independent on extracellular DNA (eDNA), have been described for meningococcal strains. Here, we demonstrate that the autotransporter protease NalP, the expression of which is phase variable, affects eDNA-dependent biofilm formation in N.meningitidis. The effect of NalP was found in biofilm formation under static and flow conditions and was dependent on its protease activity. Cleavage of the heparin-binding antigen NhbA and the α-peptide of IgA protease, resulting in the release of positively charged polypeptides from the cell surface, was responsible for the reduction in biofilm formation when NalP is expressed. Both NhbA and the α-peptide of IgA protease were shown to bind DNA. We conclude that NhbA and the α-peptide of IgA protease are implicated in biofilm formation by binding eDNA and that NalP is an important regulator of this process through the proteolysis of these surface-exposed proteins. © 2012 Blackwell Publishing Ltd.

  6. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

    Science.gov (United States)

    Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

    2014-10-20

    The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival.

  7. Mechanisms and Regulation of Surface Interactions and Biofilm Formation in Agrobacterium

    Directory of Open Access Journals (Sweden)

    Jason E. Heindl

    2014-05-01

    Full Text Available For many pathogenic bacteria surface attachment is a required first step during host interactions. Attachment can proceed to invasion of host tissue or cells or to establishment of a multicellular bacterial community known as a biofilm. The transition from a unicellular, often motile, state to a sessile, multicellular, biofilm-associated state is one of the most important developmental decisions for bacteria. Agrobacterium tumefaciens genetically transforms plant cells by transfer and integration of a segment of plasmid-encoded transferred DNA (T-DNA into the host genome, and has also been a valuable tool for plant geneticists. A. tumefaciens attaches to and forms a complex biofilm on a variety of biotic and abiotic substrates in vitro. Although rarely studied in situ, it is hypothesized that the biofilm state plays an important functional role in the ecology of this organism. Surface attachment, motility, and cell division are coordinated through a complex regulatory network that imparts an unexpected asymmetry to the A. tumefaciens life cycle. In this review we describe the mechanisms by which A. tumefaciens associates with surfaces, and regulation of this process. We focus on the transition between flagellar-based motility and surface attachment, and on the composition, production, and secretion of multiple extracellular components that contribute to the biofilm matrix. Biofilm formation by A. tumefaciens is linked with virulence both mechanistically and through shared regulatory molecules. We detail our current understanding of these and other regulatory schemes, as well as the internal and external (environmental cues mediating development of the biofilm state, including the second messenger cyclic-di-GMP, nutrient levels, and the role of the plant host in influencing attachment and biofilm formation. A. tumefaciens is an important model system contributing to our understanding of developmental transitions, bacterial cell biology, and

  8. Enhanced biofilm formation and multi‐host transmission evolve from divergent genetic backgrounds in C ampylobacter jejuni

    OpenAIRE

    Pascoe, Ben; Méric, Guillaume; Murray, Susan; Yahara, Koji; Mageiros, Leonardos; Bowen, Ryan; Jones, Nathan H.; Jeeves, Rose E.; Lappin‐Scott, Hilary M.; Asakura, Hiroshi; Sheppard, Samuel K.

    2015-01-01

    Summary Multicellular biofilms are an ancient bacterial adaptation that offers a protective environment for survival in hostile habitats. In microaerophilic organisms such as C ampylobacter, biofilms play a key role in transmission to humans as the bacteria are exposed to atmospheric oxygen concentrations when leaving the reservoir host gut. Genetic determinants of biofilm formation differ between species, but little is known about how strains of the same species achieve the biofilm phenotype...

  9. Highly Effective Inhibition of Biofilm Formation by the First Metagenome-Derived AI-2 Quenching Enzyme

    Science.gov (United States)

    Weiland-Bräuer, Nancy; Kisch, Martin J.; Pinnow, Nicole; Liese, Andreas; Schmitz, Ruth A.

    2016-01-01

    Bacterial cell–cell communication (quorum sensing, QS) represents a fundamental process crucial for biofilm formation, pathogenicity, and virulence allowing coordinated, concerted actions of bacteria depending on their cell density. With the widespread appearance of antibiotic-resistance of biofilms, there is an increasing need for novel strategies to control harmful biofilms. One attractive and most likely effective approach is to target bacterial communication systems for novel drug design in biotechnological and medical applications. In this study, metagenomic large-insert libraries were constructed and screened for QS interfering activities (quorum quenching, QQ) using recently established reporter strains. Overall, 142 out of 46,400 metagenomic clones were identified to interfere with acyl-homoserine lactones (AHLs), 13 with autoinducer-2 (AI-2). Five cosmid clones with highest simultaneous interfering activities were further analyzed and the respective open reading frames conferring QQ activities identified. Those showed homologies to bacterial oxidoreductases, proteases, amidases and aminotransferases. Evaluating the ability of the respective purified QQ-proteins to prevent biofilm formation of several model systems demonstrated highest inhibitory effects of QQ-2 using the crystal violet biofilm assay. This was confirmed by heterologous expression of the respective QQ proteins in Klebsiella oxytoca M5a1 and monitoring biofilm formation in a continuous flow cell system. Moreover, QQ-2 chemically immobilized to the glass surface of the flow cell effectively inhibited biofilm formation of K. oxytoca as well as clinical K. pneumoniae isolates derived from patients with urinary tract infections. Indications were obtained by molecular and biochemical characterizations that QQ-2 represents an oxidoreductase most likely reducing the signaling molecules AHL and AI-2 to QS-inactive hydroxy-derivatives. Overall, we propose that the identified novel QQ-2 protein

  10. Highly effective inhibition of biofilm formation by the first metagenome-derived AI-2 quenching enzyme

    Directory of Open Access Journals (Sweden)

    Nancy Weiland-Bräuer

    2016-07-01

    Full Text Available Bacterial cell-cell communication (quorum sensing, QS represents a fundamental process crucial for biofilm formation, pathogenicity, and virulence allowing coordinated, concerted actions of bacteria depending on their cell density. With the widespread appearance of antibiotic-resistance of biofilms, there is an increasing need for novel strategies to control harmful biofilms. One attractive and most likely effective approach is to target bacterial communication systems for novel drug design in biotechnological and medical applications. In this study, metagenomic large-insert libraries were constructed and screened for QS interfering activities (quorum quenching, QQ using recently established reporter strains. Overall, 142 out of 46,400 metagenomic clones were identified to interfere with acyl-homoserine lactones (AHLs, 13 with autoinducer-2 (AI-2. Five cosmid clones with highest simultaneous interfering activities were further analyzed and the respective open reading frames conferring QQ activities identified. Those showed homologies to bacterial oxidoreductases, proteases, amidases and aminotransferases. Evaluating the ability of the respective purified QQ-proteins to prevent biofilm formation of several model systems demonstrated highest inhibitory effects of QQ-2 using the crystal violet biofilm assay. This was confirmed by heterologous expression of the respective QQ proteins in Klebsiella oxytoca M5a1 and monitoring biofilm formation in a continuous flow cell system. Moreover, QQ-2 chemically immobilized to the glass surface of the flow cell effectively inhibited biofilm formation of K. oxytoca as well as clinical K. pneumoniae isolates derived from patients with urinary tract infections. Indications were obtained by molecular and biochemical characterizations that QQ-2 represents an oxidoreductase most likely reducing the signaling molecules AHL and AI-2 to QS-inactive hydroxy-derivatives. Overall, we propose that the identified novel QQ-2

  11. Inhibition of Streptococcus mutans Biofilm Formation by Streptococcus salivarius FruA▿

    Science.gov (United States)

    Ogawa, Ayako; Furukawa, Soichi; Fujita, Shuhei; Mitobe, Jiro; Kawarai, Taketo; Narisawa, Naoki; Sekizuka, Tsuyoshi; Kuroda, Makoto; Ochiai, Kuniyasu; Ogihara, Hirokazu; Kosono, Saori; Yoneda, Saori; Watanabe, Haruo; Morinaga, Yasushi; Uematsu, Hiroshi; Senpuku, Hidenobu

    2011-01-01

    The oral microbial flora consists of many beneficial species of bacteria that are associated with a healthy condition and control the progression of oral disease. Cooperative interactions between oral streptococci and the pathogens play important roles in the development of dental biofilms in the oral cavity. To determine the roles of oral streptococci in multispecies biofilm development and the effects of the streptococci in biofilm formation, the active substances inhibiting Streptococcus mutans biofilm formation were purified from Streptococcus salivarius ATCC 9759 and HT9R culture supernatants using ion exchange and gel filtration chromatography. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis was performed, and the results were compared to databases. The S. salivarius HT9R genome sequence was determined and used to indentify candidate proteins for inhibition. The candidates inhibiting biofilms were identified as S. salivarius fructosyltransferase (FTF) and exo-beta-d-fructosidase (FruA). The activity of the inhibitors was elevated in the presence of sucrose, and the inhibitory effects were dependent on the sucrose concentration in the biofilm formation assay medium. Purified and commercial FruA from Aspergillus niger (31.6% identity and 59.6% similarity to the amino acid sequence of FruA from S. salivarius HT9R) completely inhibited S. mutans GS-5 biofilm formation on saliva-coated polystyrene and hydroxyapatite surfaces. Inhibition was induced by decreasing polysaccharide production, which is dependent on sucrose digestion rather than fructan digestion. The data indicate that S. salivarius produces large quantities of FruA and that FruA alone may play an important role in multispecies microbial interactions for sucrose-dependent biofilm formation in the oral cavity. PMID:21239559

  12. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer?

    Science.gov (United States)

    Tormo, M Angeles; Knecht, Erwin; Götz, Friedrich; Lasa, Iñigo; Penadés, José R

    2005-07-01

    The biofilm-associated protein (Bap) is a surface protein implicated in biofilm formation by Staphylococcus aureus isolated from chronic mastitis infections. The bap gene is carried in a putative composite transposon inserted in SaPIbov2, a mobile staphylococcal pathogenicity island. In this study, bap orthologue genes from several staphylococcal species, including Staphylococcus epidermidis, Staphylococcus chromogenes, Staphylococcus xylosus, Staphylococcus simulans and Staphylococcus hyicus, were identified, cloned and sequenced. Sequence analysis comparison of the bap gene from these species revealed a very high sequence similarity, suggesting the horizontal gene transfer of SaPIbov2 amongst them. However, sequence analyses of the flanking region revealed that the bap gene of these species was not contained in the SaPIbov2 pathogenicity island. Although they did not contain the icaADBC operon, all the coagulase-negative staphylococcal isolates harbouring bap were strong biofilm producers. Disruption of the bap gene in S. epidermidis abolished its capacity to form a biofilm, whereas heterologous complementation of a biofilm-negative strain of S. aureus with the Bap protein from S. epidermidis bestowed the capacity to form a biofilm on a polystyrene surface. Altogether, these results demonstrate that Bap orthologues from coagulase-negative staphylococci induce an alternative mechanism of biofilm formation that is independent of the PIA/PNAG exopolysaccharide.

  13. Subinhibitory concentrations of metronidazole increase biofilm formation in Clostridium difficile strains.

    Science.gov (United States)

    Vuotto, Claudia; Moura, Ines; Barbanti, Fabrizio; Donelli, Gianfranco; Spigaglia, Patrizia

    2016-03-01

    Resistance mechanism to metronidazole is still poorly understood, even if the number of reports on Clostridium difficile strains with reduced susceptibility to this antibiotic is increasing. In this study, we investigated the ability of the C. difficile strains 7032994, 7032985 and 7032989, showing different susceptibility profiles to metronidazole but all belonging to the PCR ribotype 010, to form biofilm in vitro in presence and absence of subinhibitory concentrations of metronidazole. The quantitative biofilm production assay performed in presence of metronidazole revealed a significant increase in biofilm formation in both the susceptible strain 7032994 and the strain 7032985 exhibiting a reduced susceptibility to this antibiotic, while antibiotic pressure did not affect the biofilm-forming ability of the stable-resistant strain 7032989. Moreover, confocal microscopy analysis showed an abundant biofilm matrix production by the strains 7032994 and 7032885, when grown in presence of metronidazole, but not in the stable-resistant one. These results seem to demonstrate that subinhibitory concentrations of metronidazole are able to enhance the in vitro biofilm production of the above-mentioned PCR ribotype 010 C. difficile strains, susceptible or with reduced susceptibility to this antibiotic, suggesting a possible role of biofilm formation in the multifactorial mechanism of metronidazole resistance developed by C. difficile.

  14. Biofilm formation by Candida albicans and Streptococcus mutans in the presence of farnesol: a quantitative evaluation.

    Science.gov (United States)

    Fernandes, Renan Aparecido; Monteiro, Douglas Roberto; Arias, Laís Salomão; Fernandes, Gabriela Lopes; Delbem, Alberto Carlos Botazzo; Barbosa, Debora Barros

    2016-01-01

    The aim of this study was to evaluate the effect of the QS molecule farnesol on single and mixed species biofilms formed by Candida albicans and Streptococcus mutans. The anti-biofilm effect of farnesol was assessed through total biomass quantification, counting of colony forming units (CFUs) and evaluation of metabolic activity. Biofilms were also analyzed by scanning electron microscopy (SEM). It was observed that farnesol reduced the formation of single and mixed biofilms, with significant reductions of 37% to 90% and 64% to 96%, respectively, for total biomass and metabolic activity. Regarding cell viability, farnesol treatment promoted significant log reductions in the number of CFUs, ie 1.3-4.2 log10 and 0.67-5.32 log10, respectively, for single and mixed species biofilms. SEM images confirmed these results, showing decreases in the number of cells in all biofilms. In conclusion, these findings highlight the role of farnesol as an alternative agent with the potential to reduce the formation of pathogenic biofilms.

  15. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations.

    Science.gov (United States)

    Burt, Sara A; Ojo-Fakunle, Victoria T A; Woertman, Jenifer; Veldhuizen, Edwin J A

    2014-01-01

    The formation of biofilm by bacteria confers resistance to biocides and presents problems in medical and veterinary clinical settings. Here we report the effect of carvacrol, one of the major antimicrobial components of oregano oil, on the formation of biofilms and its activity on existing biofilms. Assays were carried out in polystyrene microplates to observe (a) the effect of 0-0.8 mM carvacrol on the formation of biofilms by selected bacterial pathogens over 24 h and (b) the effect of 0-8 mM carvacrol on the stability of pre-formed biofilms. Carvacrol was able to inhibit the formation of biofilms of Chromobacterium violaceum ATCC 12472, Salmonella enterica subsp. Typhimurium DT104, and Staphylococcus aureus 0074, while it showed no effect on formation of Pseudomonas aeruginosa (field isolate) biofilms. This inhibitory effect of carvacrol was observed at sub-lethal concentrations (biofilm formation. In contrast, carvacrol had (up to 8 mM) very little or no activity against existing biofilms of the bacteria described, showing that formation of the biofilm also confers protection against this compound. Since quorum sensing is an essential part of biofilm formation, the effect of carvacrol on quorum sensing of C. violaceum was also studied. Sub-MIC concentrations of carvacrol reduced expression of cviI (a gene coding for the N-acyl-L-homoserine lactone synthase), production of violacein (pigmentation) and chitinase activity (both regulated by quorum sensing) at concentrations coinciding with carvacrol's inhibiting effect on biofilm formation. These results indicate that carvacrol's activity in inhibition of biofilm formation may be related to the disruption of quorum sensing.

  16. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans.

    Science.gov (United States)

    Hsu, Chih-Chieh; Lai, Wen-Lin; Chuang, Kuei-Chin; Lee, Meng-Hwan; Tsai, Ying-Chieh

    2013-07-01

    Candida spp. are part of the natural human microbiota, but they also represent important opportunistic human pathogens. Biofilm-associated Candida albicans infections are clinically relevant due to their high levels of resistance to traditional antifungal agents. In this study, we investigated the ability of linalool to inhibit the formation of C. albicans biofilms and reduce existing C. albicans biofilms. Linalool exhibited antifungal activity against C. albicans ATCC 14053, with a minimum inhibitory concentration (MIC) of 8 mM. Sub-MIC concentrations of linalool also inhibited the formation of germ tubes and biofilms in that strain. The defective architecture composition of C. albicans biofilms exposed to linalool was characterized by scanning electron microscopy. The expression levels of the adhesin genes HWP1 and ALS3 were downregulated by linalool, as assessed by real-time RT-PCR. The expression levels of CYR1 and CPH1, which encode components of the cAMP-PKA and MAPK hyphal formation regulatory pathways, respectively, were also suppressed by linalool, as was the gene encoding their upstream regulator, Ras1. The expression levels of long-term hyphae maintenance associated genes, including UME6, HGC1, and EED1, were all suppressed by linalool. These results indicate that linalool may have therapeutic potential in the treatment of candidiasis associated with medical devices because it interferes with the morphological switch and biofilm formation of C. albicans.

  17. Enterococcal surface protein Esp is important for biofilm formation of Enterococcus faecium E1162.

    Science.gov (United States)

    Heikens, Esther; Bonten, Marc J M; Willems, Rob J L

    2007-11-01

    Enterococci have emerged as important nosocomial pathogens with resistance to multiple antibiotics. Adhesion to abiotic materials and biofilm formation on medical devices are considered important virulence properties. A single clonal lineage of Enterococcus faecium, complex 17 (CC17), appears to be a successful nosocomial pathogen, and most CC17 isolates harbor the enterococcal surface protein gene, esp. In this study, we constructed an esp insertion-deletion mutant in a clinical E. faecium CC17 isolate. In addition, initial adherence and biofilm assays were performed. Compared to the wild-type strain, the esp insertion-deletion mutant no longer produced Esp on the cell surface and had significantly lower initial adherence to polystyrene and significantly less biofilm formation, resulting in levels of biofilm comparable to those of an esp-negative isolate. Capacities for initial adherence and biofilm formation were restored in the insertion-deletion mutant by in trans complementation with esp. These results identify Esp as the first documented determinant in E. faecium CC17 with an important role in biofilm formation, which is an essential factor in infection pathogenesis.

  18. Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans.

    Science.gov (United States)

    Rautela, Ria; Singh, Anil Kumar; Shukla, Abha; Cameotra, Swaranjit Singh

    2014-05-01

    The ability of the human fungal pathogen Candida albicans to reversibly switch between different morphological forms and establish biofilms is crucial for establishing infection. Targeting phenotypic plasticity and biofilm formation in C. albicans represents a new concept for antifungal drug discovery. The present study evaluated the influence of cyclic lipopeptide biosurfactant produced by Bacillus amyloliquefaciens strain AR2 on C. albicans biofilms. The biosurfactant was characterized as a mixture of iturin and fengycin by MALDI-TOF and amino acid analysis. The biosurfactant exhibited concentration dependent growth inhibition and fungicidal activity. The biosurfactant at sub-minimum growth inhibition concentration decreased cell surface hydrophobicity, hindered germ tube formation and reduced the mRNA expression of hyphae-specific gene HWP1 and ALS3 without exhibiting significant growth inhibition. The biosurfactants inhibited biofilm formation in the range of 46-100 % depending upon the concentration and Candida strains. The biosurfactant treatment dislodged 25-100 % of preformed biofilm from polystyrene plates. The biosurfactant retained its antifungal and antibiofilm activity even after exposure to extreme temperature. By virtue of the ability to inhibit germ tube and biofilm formation, two important traits of C. albicans involved in establishing infection, lipopeptides from strain AR2 may represent a potential candidate for developing heat stable anti-Candida drugs.

  19. Biofilm formation of the L. monocytogenes strain 15G01 is influenced by changes in environmental conditions.

    Science.gov (United States)

    Nowak, Jessika; Cruz, Cristina D; Palmer, Jon; Fletcher, Graham C; Flint, Steve

    2015-12-01

    Listeria monocytogenes 15G01, a strain belonging to the persistent pulsotype 5132, was isolated from a seafood processing plant in New Zealand. Simple monoculture assays using crystal violet staining showed good biofilm formation for this strain and it was therefore chosen to be further investigated in regard to its biofilm forming ability. To evaluate its behaviour in different conditions commonly encountered in food processing environments, biofilm assays and growth studies were performed using common laboratory media under a range of temperatures (20 °C, 30 °C and 37 °C). Furthermore, the effects of incubation time and different environmental conditions including static, dynamic and anaerobic incubation on biofilm formation were investigated. Changes in the environmental conditions resulted in different biofilm phenotypes of L. monocytogenes 15G01. We demonstrated that increasing temperature and incubation time led to a higher biofilm mass and that dynamic incubation has little effect on biofilm formation at 37 °C but encourages biofilm formation at 30 °C. Biofilm production at 20 °C was minimal regardless of the medium used. We furthermore observed that anaerobic environment led to reduced biofilm mass at 30 °C for all tested media but not at 37 °C. Biofilm formation could not be narrowed down to one factor but was rather dependent on multiple factors with temperature and medium having the biggest effects.

  20. Sequence of Colonization Determines the Composition of Mixed Biofilms by Escherichia coli O157:H7 and O111:H8 Strains.

    Science.gov (United States)

    Wang, Rong; Kalchayanand, Norasak; Bono, James L

    2015-08-01

    Bacterial biofilms are one of the potential sources of cross-contamination in food processing environments. Shiga toxin-producing Escherichia coli (STEC) O157:H7 and O111:H8 are important foodborne pathogens capable of forming biofilms, and the coexistence of these two STEC serotypes has been detected in various food samples and in multiple commercial meat plants throughout the United States. Here, we investigated how the coexistence of these two STEC serotypes and their sequence of colonization could affect bacterial growth competition and mixed biofilm development. Our data showed that E. coli O157:H7 strains were able to maintain a higher cell percentage in mixed biofilms with the co-inoculated O111:H8 companion strains, even though the results of planktonic growth competition were strain dependent. On solid surfaces with preexisting biofilms, the sequence of colonization played a critical role in determining the composition of the mixed biofilms because early stage precolonization significantly affected the competition results between the E. coli O157:H7 and O111:H8 strains. The precolonizer of either serotype was able to outgrow the other serotype in both planktonic and biofilm phases. The competitive interactions among the various STEC serotypes would determine the composition and structure of the mixed biofilms as well as their potential risks to food safety and public health, which is largely influenced by the dominant strains in the mixtures. Thus, the analysis of mixed biofilms under various conditions would be of importance to determine the nature of mixed biofilms composed of multiple microorganisms and to help implement the most effective disinfection operations accordingly.

  1. Formation of industrial mixed culture biofilm in chlorophenol cultivated medium of microbial fuel cell

    Science.gov (United States)

    Hassan, Huzairy; Jin, Bo; Dai, Sheng; Ngau, Cornelius

    2016-11-01

    The formation of microbial biofilm while maintaining the electricity output is a challenging topic in microbial fuel cell (MFC) studies. This MFC critical factor becomes more significant when handling with industrial wastewater which normally contains refractory and toxic compounds. This study explores the formation of industrial mixed culture biofilm in chlorophenol cultivated medium through observing and characterizing microscopically its establishment on MFC anode surface. The mixed culture was found to develop its biofilm on the anode surface in the chlorophenol environment and established its maturity and dispersal stages with concurrent electricity generation and phenolic degradation. The mixed culture biofilm engaged the electron transfer roles in MFC by generating current density of 1.4 mA/m2 and removing 53 % of 2,4-dichlorophenol. The results support further research especially on hazardous wastewater treatment using a benign and sustainable method.

  2. TOL plasmid carriage enhances biofilm formation and increases extracellular DNA content in Pseudomonas putida KT2440

    DEFF Research Database (Denmark)

    D'Alvise, Paul; Sjoholm, O.R.; Yankelevich, T.;

    2010-01-01

    : TOL carriage leads to more extracellular DNA (eDNA) in pellicles and biofilms. Pellicles were dissolved by DNase I treatment. Enhanced cell lysis due to plasmid carriage was ruled out as the mechanism for eDNA release. We report, for the first time, that carriage of a conjugative plasmid leads......Adherent growth of Pseudomonas putida KT2440 with and without the TOL plasmid (pWWO) at the solid-liquid and air-liquid interface was examined. We compared biofilm formation on glass in flow cells, and assayed pellicle (air-liquid interface biofilm) formation in stagnant liquid cultures by confocal...... laser scanning microscopy. The TOL-carrying strains formed pellicles and thick biofilms, whereas the same strains without the plasmid displayed little adherent growth. Microscopy using fluorescent nucleic acid-specific stains revealed differences in the production of extracellular polymeric substances...

  3. Inhibitory effects of Lactobacillus fermentum on microbial growth and biofilm formation.

    Science.gov (United States)

    Rybalchenko, Oxana V; Bondarenko, Viktor M; Orlova, Olga G; Markov, Alexander G; Amasheh, S

    2015-10-01

    Beneficial effects of Lactobacilli have been reported, and lactic bacteria are employed for conservation of foods. Therefore, the effects of a Lactobacillus fermentum strain were analyzed regarding inhibitory effects on staphylococci, Candida albicans and enterotoxigenic enterobacteria by transmission electron microscopy (TEM). TEM of bacterial biofilms was performed using cocultures of bacteriocin-producing L. fermentum 97 with different enterotoxigenic strains: Staphylococcus epidermidis expressing the ica gene responsible for biofilm formation, Staphylococcus aureus producing enterotoxin type A, Citrobacter freundii, Enterobacter cloaceae, Klebsiella oxytoca, Proteus mirabilis producing thermolabile and thermostable enterotoxins determined by elt or est genes, and Candida albicans. L. fermentum 97 changed morphological features and suppressed biofilm formation of staphylococci, enterotoxigenic enterobacteria and Candida albicans; a marked transition to resting states, a degradation of the cell walls and cytoplasm, and a disruption of mature bacterial biofilms were observed, the latter indicating efficiency even in the phase of higher cell density.

  4. Sphygmomanometers and thermometers as potential fomites of Staphylococcus haemolyticus: biofilm formation in the presence of antibiotics

    Science.gov (United States)

    Sued, Bruna Pinto Ribeiro; Pereira, Paula Marcele Afonso; Faria, Yuri Vieira; Ramos, Juliana Nunes; Binatti, Vanessa Batista; dos Santos, Kátia Regina Netto; Seabra, Sérgio Henrique; Hirata, Raphael; Vieira, Verônica Viana; Mattos-Guaraldi, Ana Luíza; Pereira, José Augusto Adler

    2017-01-01

    BACKGROUND The association between Staphylococcus haemolyticus and severe nosocomial infections is increasing. However, the extent to which fomites contribute to the dissemination of this pathogen through patients and hospital wards remains unknown. OBJECTIVES In the present study, sphygmomanometers and thermometers were evaluated as potential fomites of oxacillin-resistant S. haemolyticus (ORSH). The influence of oxacillin and vancomycin on biofilm formation by ORSH strains isolated from fomites was also investigated. METHODS The presence of ORSH on swabs taken from fomite surfaces in a Brazilian hospital was assessed using standard microbiological procedures. Antibiotic susceptibility profiles were determined by the disk diffusion method, and clonal distribution was assessed in pulsed-field gel electrophoresis (PFGE) assays. Minimum inhibitory concentrations (MICs) of oxacillin and vancomycin were evaluated via the broth microdilution method. Polymerase chain reaction (PCR) assays were performed to detect the mecA and icaAD genes. ORSH strains grown in media containing 1/4 MIC of vancomycin or oxacillin were investigated for slime production and biofilm formation on glass, polystyrene and polyurethane catheter surfaces. FINDINGS ORSH strains comprising five distinct PFGE types were isolated from sphygmomanometers (n = 5) and a thermometer (n = 1) used in intensive care units and surgical wards. ORSH strains isolated from fomites showed susceptibility to only linezolid and vancomycin and were characterised as multi-drug resistant (MDR). Slime production, biofilm formation and the survival of sessile bacteria differed and were independent of the presence of the icaAD and mecA genes, PFGE type and subtype. Vancomycin and oxacillin did not inhibit biofilm formation by vancomycin-susceptible ORSH strains on abiotic surfaces, including on the catheter surface. Enhanced biofilm formation was observed in some situations. Moreover, a sub-lethal dose of vancomycin induced

  5. Synergistic Activities of an Efflux Pump Inhibitor and Iron Chelators against Pseudomonas aeruginosa Growth and Biofilm Formation

    DEFF Research Database (Denmark)

    Liu, Yang; Yang, Liang; Molin, Søren

    2010-01-01

    The efflux pump inhibitor phenyl-arginine-beta-naphthylamide (PA beta N) was paired with iron chelators 2,2'-dipyridyl, acetohydroxamic acid, and EDTA to assess synergistic activities against Pseudomonas aeruginosa growth and biofilm formation. All of the tested iron chelators synergistically...... inhibited P. aeruginosa growth and biofilm formation with PA beta N. PA beta N-EDTA showed the most promising activity against P. aeruginosa growth and biofilm formation....

  6. Abolition of Biofilm Formation in Urinary Tract Escherichia coli and Klebsiella Isolates by Metal Interference through Competition for Fur

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Dahl, Malin; Klemm, Per

    2010-01-01

    by the addition of divalent metal ions, such as Zn(II) and Co(II), which inhibit iron uptake by virtue of their higher-than-iron affinity for the master controller protein of iron uptake, Fur. Reduced biofilm formation of urinary tract-infectious E. coli strains in the presence of Zn(II) was observed......Bacterial biofilms are associated with a large number of persistent and chronic infections. Biofilm-dwelling bacteria are particularly resistant to antibiotics and immune defenses, which makes it hard if not impossible to eradicate biofilm-associated infections. In the urinary tract, free iron...... is strictly limited but is critical for bacterial growth. Biofilm-associated Escherichia coli cells are particularly desperate for iron. An attractive way of inhibiting biofilm formation is to fool the bacterial regulatory system for iron uptake. Here, we demonstrate that biofilm formation can be impaired...

  7. Assessment and characterization of biofilm formation among human isolates of Streptococcus dysgalactiae subsp. equisimilis.

    Science.gov (United States)

    Genteluci, Gabrielle Limeira; Silva, Ligia Guedes; Souza, Maria Clara; Glatthardt, Thaís; de Mattos, Marcos Corrêa; Ejzemberg, Regina; Alviano, Celuta Sales; Figueiredo, Agnes Marie Sá; Ferreira-Carvalho, Bernadete Teixeira

    2015-12-01

    The capacity to form biofilm is considered a protective mechanism that allows the bacteria to survive and proliferate in hostile environments, facilitating the maintenance of the infectious process. Recently, biofilm has become a topic of interest in the study of the human pathogen group A Streptococcus (GAS). Although GAS has not been associated with infection on medical implants, the presence of microcolonies embedded in an extracellular matrix on infected tissues has been reported. Despite the similarity between GAS and Streptococcus dysgalactiae subspecies equisimilis (SDSE), there are no studies in the literature describing the production of biofilm by SDSE. In this work, we assessed and characterized biofilm development among SDSE human isolates of group C. The in vitro data showed that 59.3% of the 118 isolates tested were able to form acid-induced biofilm on glass, and 28% formed it on polystyrene surfaces. More importantly, biofilm was also formed in a foreign body model in mice. The biofilm structure was analyzed by confocal laser scanning microscopy, transmission electron microscopy, and scanning electron microscopy. Long fibrillar-like structures were observed by scanning electron microscopy. Additionally, the expression of a pilus associated gene of SDSE was increased for in vitro sessile cells compared with planktonics, and when sessile cells were collected from biofilms formed in the animal model compared with that of in vitro model. Results obtained from the immunofluorescence microscopy indicated the biofilm was immunogenic. Our data also suggested a role for proteins, exopolysaccharide and extracellular DNA in the formation and accumulation of biofilm by SDSE.

  8. Temporal variations in the abundance and composition of biofilm communities colonizing drinking water distribution pipes.

    Directory of Open Access Journals (Sweden)

    John J Kelly

    Full Text Available Pipes that transport drinking water through municipal drinking water distribution systems (DWDS are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs (3% distance within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter.

  9. Biofilm feeding: Microbial colonization of food promotes the growth of a detritivorous arthropod

    Science.gov (United States)

    Horváthová, Terézia; Babik, Wiesław; Bauchinger, Ulf

    2016-01-01

    Abstract Feeding on plant material is common among animals, but how different animals overcome the dietary deficiencies imposed by this feeding strategy is not well understood. Microorganisms are generally considered to play a vital role in the nutritional ecology of plant feeding animals. Commonly microbes living inside animal bodies are considered more important, but recent studies suggest external microbes significantly shape plant-feeding strategies in invertebrates. Here we investigate how external microbes that typically form biofilm on primary plant material affect growth rates in a terrestrial isopod species Porcellio scaber. We experimentally manipulated the amount of biofilm on three different primary diet sources and quantified growth and survival of individuals that fed on food with either a small or large amount of biofilm. In addition, we tested how dietary manipulation shapes the composition of bacterial communities in the gut. The presence of visible biofilm significantly affected the growth of isopods: individuals that fed on the primary diet source with a large amount of biofilm gained more mass than individuals feeding on a diet with marginal biofilm. Diet also significantly affected the bacterial gut community. The primary diet source mainly determined the taxonomic composition of the bacterial community in the isopod gut, whereas the amount of biofilm affected the relative abundance of bacterial taxa. Our study suggests that terrestrial isopods may cope with low-quality plant matter by feeding on biofilm, with decomposition of plant material by organisms outside of the feeding organism (here a terrestrial isopod) probably playing a major role. Future investigations may be directed towards the primary diet source, plant matter, and the secondary diet source, biofilm, and should assess if both components are indeed uptaken in detritivorous species. PMID:27110187

  10. Absence of TolC Impairs Biofilm Formation in Actinobacillus pleuropneumoniae by Reducing Initial Attachment

    Science.gov (United States)

    Yuan, Jianlin; Lau, Gee W.; Wen, Yiping; Wu, Rui; Zhao, Qin; Huang, Xiaobo; Yan, Qigui; Huang, Yong; Wen, Xintian

    2016-01-01

    Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumonia, a major cause of economic loss in swine industry worldwide. TolC, the key component of multidrug efflux pumps and type I secretion systems, has been well-studied as an exit duct for numerous substances in many Gram-negative bacteria. By contrast, little is known on the role of TolC in biofilm formation. In this study, a ΔtolC mutant was used to examine the importance of TolC in biofilm formation of A. pleuropneumoniae. Surface attachment assays demonstrated the essential role of TolC in initial attachment of biofilm cells. The loss of TolC function altered surface hydrophobicity, and resulted in greatly reduced autoaggregation in ΔtolC. Using both enzymatic treatments and confocal microscopy, biofilm composition and architecture were characterized. When compared against the wild-type strain, the poly-β-1, 6-N-acetyl-D-glucosamine (PGA), an important biofilm matrix component of A. pleuropneumoniae, was significantly reduced at the initial attachment stage in ΔtolC. These results were confirmed by mRNA level using quantitative RT-PCR. Additionally, defective secretion systems in ΔtolC may also contribute to the deficiency in biofilm formation. Taken together, the current study demonstrated the importance of TolC in the initial biofilm formation stage in A. pleuropneumoniae. These findings could have important clinical implications in developing new treatments against biofilm-related infections by A. pleuropneumoniae. PMID:27681876

  11. Inhibitory activity of Iranian plant extracts on growth and biofilm formation by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Mansouri, S.

    2013-01-01

    Full Text Available Aims: Pseudomonas aeruginosa is a drug resistance opportunistic bacterium. Biofilm formation is key factor for survivalof P. aeruginosa in various environments. Polysaccharides may be involved in biofilm formation. The purpose of thisstudy was to evaluate antimicrobial and anti-biofilm activities of seven plant extracts with known alpha-glucosidaseinhibitory activities on different strains of P. aeruginosa.Methodology and results: Plants were extracted with methanol by the maceration method. Antimicrobial activities weredetermined by agar dilution and by growth yield as measured by OD560nm of the Luria Bertani broth (LB culture with orwithout extracts. In agar dilution method, extracts of Quercus infectoria inhibited the growth of all, while Myrtuscommunis extract inhibited the growth of 3 out of 8 bacterial strains with minimum inhibitory concentration (MIC of 1000μg/mL. All extracts significantly (p≤0.003 reduced growth rate of the bacteria in comparison with the control withoutextracts in LB broth at sub-MIC concentrations (500 μg/mL. All plant extracts significantly (p≤0.003 reduced biofilmformation compared to the controls. Glycyrrhiza glabra and Q. infectoria had the highest anti-biofilm activities. Nocorrelation between the alpha-glucosidase inhibitory activity with growth or the intensity of biofilm formation was found.Conclusion, significance and impact of study: Extracts of Q. infectoria and M. communis had the most antimicrobial,while Q. infectoria and G. glabra had the highest anti-biofilm activities. All plant extracts had anti-biofilm activities withmarginal effect on growth, suggesting that the mechanisms of these activities are unrelated to static or cidal effects.Further work to understand the relation between antimicrobial and biofilm formation is needed for development of newmeans to fight the infectious caused by this bacterium in future.

  12. Cranberry (Vaccinium macrocarpon) oligosaccharides decrease biofilm formation by uropathogenic Escherichia coli

    DEFF Research Database (Denmark)

    Sun, Jiadong; Marais, Jannie P J; Khoo, Christina

    2015-01-01

    . In antimicrobial assays, cranf1b-F2 (at 1.25 mg/mL concentration) reduced biofilm production by the uropathogenic Escherichia coli CFT073 strain by over 50% but did not inhibit bacterial growth. Cranf1b-F2 (ranging from 0.625 - 10 mg/mL) also inhibited biofilm formation of the non-pathogenic E. coli MG1655 strain...

  13. Biofilm formation by Staphylococcus epidermidis on peritoneal dialysis catheters and the effects of extracellular products from Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Pihl, Maria; Arvidsson, Anna; Skepö, Marie;

    2013-01-01

    Biofilm formation by Staphylococcus epidermidis is a cause of infections related to peritoneal dialysis (PD). We have used a PD catheter flow-cell model in combination with confocal scanning laser microscopy and atomic force microscopy to study biofilm formation by S. epidermidis. Adherence...... to serum-coated catheters was four times greater than to uncoated ones, suggesting that S. epidermidis binds to serum proteins on the catheter surface. Pseudomonas aeruginosa biofilm supernatant interfered with the formation of a serum protein coat thereby reducing the capacity for biofilm formation in S...

  14. Identification, structure, and characterization of an exopolysaccharide produced by Histophilus somni during biofilm formation

    Directory of Open Access Journals (Sweden)

    Apicella Michael A

    2011-08-01

    Full Text Available Abstract Background Histophilus somni, a gram-negative coccobacillus, is an obligate inhabitant of bovine and ovine mucosal surfaces, and an opportunistic pathogen responsible for respiratory disease and other systemic infections in cattle and sheep. Capsules are important virulence factors for many pathogenic bacteria, but a capsule has not been identified on H. somni. However, H. somni does form a biofilm in vitro and in vivo, and the biofilm matrix of most bacteria consists of a polysaccharide. Results Following incubation of H. somni under growth-restricting stress conditions, such as during anaerobiosis, stationary phase, or in hypertonic salt, a polysaccharide could be isolated from washed cells or culture supernatant. The polysaccharide was present in large amounts in broth culture sediment after H. somni was grown under low oxygen tension for 4-5 days (conditions favorable to biofilm formation, but not from planktonic cells during log phase growth. Immuno-transmission electron microscopy showed that the polysaccharide was not closely associated with the cell surface, and was of heterogeneous high molecular size by gel electrophoresis, indicating it was an exopolysaccharide (EPS. The EPS was a branched mannose polymer containing some galactose, as determined by structural analysis. The mannose-specific Moringa M lectin and antibodies to the EPS bound to the biofilm matrix, demonstrating that the EPS was a component of the biofilm. The addition of N-acetylneuraminic acid to the growth medium resulted in sialylation of the EPS, and increased biofilm formation. Real-time quantitative reverse transcription-polymerase chain reaction analyses indicated that genes previously identified in a putative polysaccharide locus were upregulated when the bacteria were grown under conditions favorable to a biofilm, compared to planktonic cells. Conclusions H. somni is capable of producing a branching, mannose-galactose EPS polymer under growth conditions

  15. Comparison of biofilm formation in clinical isolates of Candida species in a tertiary care center, North India

    Directory of Open Access Journals (Sweden)

    Vivek Agwan

    2015-01-01

    Full Text Available Background and Objectives: Biofilms are colonies of microbial cells encased in a self-produced organic polymeric matrix. The biofilm production is more important for nonalbicans Candida (NAC; as C. albicans possess many other mechanisms to establish infections. Correct identification of Candida species has gained importance due to persistent rise in infections caused by NAC. We sought to isolate, identify Candida species in clinical isolates and study biofilm formation. Materials and Methods: Modified microtiter plate method was performed to study biofilm formation by isolates in Sabouraud's dextrose broth. It was then quantitatively assessed using a spectrophotometer. Biofilm formation was graded as negative, +1, +2, +3 and + 4 on the basis of percentage absorbance. Results: Biofilm formation was observed in 16 of 40 (40.0% isolates of C. albicans as compared to 39 of 78 (50.0% of isolates of NAC. Strong (+4 biofilm production was seen in maximum biofilm producers in C. tropicalis (12 of 27 followed by C. albicans (8 of 16. Total biofilm producers were significantly more among high vaginal swab isolates 63.2% (12 of 19 and urine isolates 59.2% (29 of 49, when compared to blood isolates 34.2% (13 of 38 as well as other isolates 27.5% (11 of 40. Interpretation and Conclusions: NAC species are qualitatively and quantitatively superior biofilm producers than C. albicans. Biofilm production is the most important virulence factor of NAC species and compared to other lesions, it is more significantly associated with luminal infections.

  16. Inhibitory activity of hinokitiol against biofilm formation in fluconazole-resistant Candida species

    Science.gov (United States)

    Choi, Jeong Su; Lee, Seung Gwan; Park, Jee Yoon

    2017-01-01

    The aim of this study was to investigate the ability of hinokitiol to inhibit the formation of Candida biofilms. Biofilm inhibition was evaluated by quantification of the biofilm metabolic activity with XTT assay. Hinokitiol efficiently prevented biofilm formation in both fluconazole-susceptible and fluconazole-resistant strains of Candida species. We determined the expression levels of specific genes previously implicated in biofilm development of C. albicans cells by real-time RT-PCR. The expression levels of genes associated with adhesion process, HWP1 and ALS3, were downregulated by hinokitiol. Transcript levels of UME6 and HGC1, responsible for long-term hyphal maintenance, were also decreased by hinokitiol. The expression level of CYR1, which encodes the component of signaling pathway of hyphal formation-cAMP-PKA was suppressed by hinokitiol. Its upstream general regulator RAS1 was also suppressed by hinokitiol. These results indicate that hinokitiol may have therapeutic potential in the treatment and prevention of biofilm-associated Candida infections. PMID:28152096

  17. Klebsiella pneumoniae yfiRNB operon affects biofilm formation, polysaccharide production and drug susceptibility.

    Science.gov (United States)

    Huertas, Mónica G; Zárate, Lina; Acosta, Iván C; Posada, Leonardo; Cruz, Diana P; Lozano, Marcela; Zambrano, María M

    2014-12-01

    Klebsiella pneumoniae is an opportunistic pathogen important in hospital-acquired infections, which are complicated by the rise of drug-resistant strains and the capacity of cells to adhere to surfaces and form biofilms. In this work, we carried out an analysis of the genes in the K. pneumoniae yfiRNB operon, previously implicated in biofilm formation. The results indicated that in addition to the previously reported effect on type 3 fimbriae expression, this operon also affected biofilm formation due to changes in cellulose as part of the extracellular matrix. Deletion of yfiR resulted in enhanced biofilm formation and an altered colony phenotype indicative of cellulose overproduction when grown on solid indicator media. Extraction of polysaccharides and treatment with cellulase were consistent with the presence of cellulose in biofilms. The enhanced cellulose production did not, however, correlate with virulence as assessed using a Caenorhabditis elegans assay. In addition, cells bearing mutations in genes of the yfiRNB operon varied with respect to the WT control in terms of susceptibility to the antibiotics amikacin, ciprofloxacin, imipenem and meropenem. These results indicated that the yfiRNB operon is implicated in the production of exopolysaccharides that alter cell surface characteristics and the capacity to form biofilms--a phenotype that does not necessarily correlate with properties related with survival, such as resistance to antibiotics.

  18. Contribution of the Pseudomonas fluorescens MFE01 Type VI Secretion System to Biofilm Formation

    Science.gov (United States)

    Gallique, Mathias; Decoin, Victorien; Barbey, Corinne; Rosay, Thibaut; Feuilloley, Marc G. J.; Orange, Nicole

    2017-01-01

    Type VI secretion systems (T6SSs) are widespread in Gram-negative bacteria, including Pseudomonas. These macromolecular machineries inject toxins directly into prokaryotic or eukaryotic prey cells. Hcp proteins are structural components of the extracellular part of this machinery. We recently reported that MFE01, an avirulent strain of Pseudomonas fluorescens, possesses at least two hcp genes, hcp1 and hcp2, encoding proteins playing important roles in interbacterial interactions. Indeed, P. fluorescens MFE01 can immobilise and kill diverse bacteria of various origins through the action of the Hcp1 or Hcp2 proteins of the T6SS. We show here that another Hcp protein, Hcp3, is involved in killing prey cells during co-culture on solid medium. Even after the mutation of hcp1, hcp2, or hcp3, MFE01 impaired biofilm formation by MFP05, a P. fluorescens strain isolated from human skin. These mutations did not reduce P. fluorescens MFE01 biofilm formation, but the three Hcp proteins were required for the completion of biofilm maturation. Moreover, a mutant with a disruption of one of the unique core component genes, MFE01ΔtssC, was unable to produce its own biofilm or inhibit MFP05 biofilm formation. Finally, MFE01 did not produce detectable N-acyl-homoserine lactones for quorum sensing, a phenomenon reported for many other P. fluorescens strains. Our results suggest a role for the T6SS in communication between bacterial cells, in this strain, under biofilm conditions. PMID:28114423

  19. Cross-regulation by CrcZ RNA controls anoxic biofilm formation in Pseudomonas aeruginosa

    Science.gov (United States)

    Pusic, Petra; Tata, Muralidhar; Wolfinger, Michael T.; Sonnleitner, Elisabeth; Häussler, Susanne; Bläsi, Udo

    2016-12-01

    Pseudomonas aeruginosa (PA) can thrive in anaerobic biofilms in the lungs of cystic fibrosis (CF) patients. Here, we show that CrcZ is the most abundant PA14 RNA bound to the global regulator Hfq in anoxic biofilms grown in cystic fibrosis sputum medium. Hfq was crucial for anoxic biofilm formation. This observation complied with an RNAseq based transcriptome analysis and follow up studies that implicated Hfq in regulation of a central step preceding denitrification. CrcZ is known to act as a decoy that sequesters Hfq during relief of carbon catabolite repression, which in turn alleviates Hfq-mediated translational repression of catabolic genes. We therefore inferred that CrcZ indirectly impacts on biofilm formation by competing for Hfq. This hypothesis was supported by the findings that over-production of CrcZ mirrored the biofilm phenotype of the hfq deletion mutant, and that deletion of the crcZ gene augmented biofilm formation. To our knowledge, this is the first example where competition for Hfq by CrcZ cross-regulates an Hfq-dependent physiological process unrelated to carbon metabolism.

  20. MstX and a putative potassium channel facilitate biofilm formation in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Matthew E Lundberg

    Full Text Available Biofilms constitute the predominant form of microbial life and a potent reservoir for innate antibiotic resistance in systemic infections. In the spore-forming bacterium Bacillus subtilis, the transition from a planktonic to sessile state is mediated by mutually exclusive regulatory pathways controlling the expression of genes required for flagellum or biofilm