WorldWideScience

Sample records for biofilm formation biofilms

  1. Meningococcal biofilm formation

    DEFF Research Database (Denmark)

    Lappann, M.; Haagensen, Janus Anders Juul; Claus, H.

    2006-01-01

    We show that in a standardized in vitro flow system unencapsulated variants of genetically diverse lineages of Neisseria meningitidis formed biofilms, that could be maintained for more than 96 h. Biofilm cells were resistant to penicillin, but not to rifampin or ciprofloxacin. For some strains......, microcolony formation within biofilms was observed. Microcolony formation in strain MC58 depended on a functional copy of the pilE gene encoding the pilus subunit pilin, and was associated with twitching of cells. Nevertheless, unpiliated pilE mutants formed biofilms showing that attachment and accumulation......X alleles was identified among genetically diverse meningococcal strains. PilX alleles differed in their propensity to support autoaggregation of cells in suspension, but not in their ability to support microcolony formation within biofilms in the continuous flow system....

  2. Maggot excretions inhibit biofilm formation on biomaterials.

    Science.gov (United States)

    Cazander, Gwendolyn; van de Veerdonk, Mariëlle C; Vandenbroucke-Grauls, Christina M J E; Schreurs, Marco W J; Jukema, Gerrolt N

    2010-10-01

    Biofilm-associated infections in trauma surgery are difficult to treat with conventional therapies. Therefore, it is important to develop new treatment modalities. Maggots in captured bags, which are permeable for larval excretions/secretions, aid in healing severe, infected wounds, suspect for biofilm formation. Therefore we presumed maggot excretions/secretions would reduce biofilm formation. We studied biofilm formation of Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella oxytoca, Enterococcus faecalis, and Enterobacter cloacae on polyethylene, titanium, and stainless steel. We compared the quantities of biofilm formation between the bacterial species on the various biomaterials and the quantity of biofilm formation after various incubation times. Maggot excretions/secretions were added to existing biofilms to examine their effect. Comb-like models of the biomaterials, made to fit in a 96-well microtiter plate, were incubated with bacterial suspension. The formed biofilms were stained in crystal violet, which was eluted in ethanol. The optical density (at 595 nm) of the eluate was determined to quantify biofilm formation. Maggot excretions/secretions were pipetted in different concentrations to (nonstained) 7-day-old biofilms, incubated 24 hours, and finally measured. The strongest biofilms were formed by S. aureus and S. epidermidis on polyethylene and the weakest on titanium. The highest quantity of biofilm formation was reached within 7 days for both bacteria. The presence of excretions/secretions reduced biofilm formation on all biomaterials. A maximum of 92% of biofilm reduction was measured. Our observations suggest maggot excretions/secretions decrease biofilm formation and could provide a new treatment for biofilm formation on infected biomaterials.

  3. Physics of biofilms: the initial stages of biofilm formation and dynamics

    International Nuclear Information System (INIS)

    Lambert, Guillaume; Bergman, Andrew; Zhang, Qiucen; Bortz, David; Austin, Robert

    2014-01-01

    One of the physiological responses of bacteria to external stress is to assemble into a biofilm. The formation of a biofilm greatly increases a bacterial population's resistance to a hostile environment by shielding cells, for example, from antibiotics. In this paper, we describe the conditions necessary for the emergence of biofilms in natural environments and relate them to the emergence of biofilm formation inside microfluidic devices. We show that competing species of Escherichia coli bacteria form biofilms to spatially segregate themselves in response to starvation stress, and use in situ methods to characterize the physical properties of the biofilms. Finally, we develop a microfluidic platform to study the inter-species interactions and show how biofilm-mediated genetic interactions can improve a species’ resistance to external stress. (paper)

  4. Aspartate inhibits Staphylococcus aureus biofilm formation.

    Science.gov (United States)

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Crenarchaeal biofilm formation under extreme conditions.

    Directory of Open Access Journals (Sweden)

    Andrea Koerdt

    Full Text Available BACKGROUND: Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments. METHODOLOGY: We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells. CONCLUSION: The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.

  6. Silver-Palladium Surfaces Inhibit Biofilm Formation

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Schroll, Casper; Hilbert, Lisbeth Rischel

    2009-01-01

    Undesired biofilm formation is a major concern in many areas. In the present study, we investigated biofilm-inhibiting properties of a silver-palladium surface that kills bacteria by generating microelectric fields and electrochemical redox processes. For evaluation of the biofilm inhibition...... efficacy and study of the biofilm inhibition mechanism, the silver-sensitive Escherichia coli J53 and the silver-resistant E. coli J53[pMG101] strains were used as model organisms, and batch and flow chamber setups were used as model systems. In the case of the silver-sensitive strain, the silver......-palladium surfaces killed the bacteria and prevented biofilm formation under conditions of low or high bacterial load. In the case of the silver-resistant strain, the silver-palladium surfaces killed surface-associated bacteria and prevented biofilm formation under conditions of low bacterial load, whereas under...

  7. Pattern formation in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Parsek, Matthew R.; Tolker-Nielsen, Tim

    2008-01-01

    Bacteria are capable of forming elaborate multicellular communities called biofilms. Pattern formation in biofilms depends on cell proliferation and cellular migration in response to the available nutrients and other external cues, as well as on self-generated intercellular signal molecules...... and the production of an extracellular matrix that serves as a structural 'scaffolding' for the biofilm cells. Pattern formation in biofilms allows cells to position themselves favorably within nutrient gradients and enables buildup and maintenance of physiologically distinct subpopulations, which facilitates...... survival of one or more subpopulations upon environmental insult, and therefore plays an important role in the innate tolerance displayed by biofilms toward adverse conditions....

  8. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni.

    Science.gov (United States)

    Brown, Helen L; Reuter, Mark; Hanman, Kate; Betts, Roy P; van Vliet, Arnoud H M

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.

  9. Biofilm formation in attached microalgal reactors.

    Science.gov (United States)

    Shen, Y; Zhu, W; Chen, C; Nie, Y; Lin, X

    2016-08-01

    The objective of this study was to investigate the fundamental question of biofilm formation. First, a drum biofilm reactor was introduced. The drums were coated with three porous substrates (cotton rope, canvas, and spandex), respectively. The relationships among the substrate, extracellular polymeric substances (EPS), and adhesion ratio were analyzed. Second, a plate biofilm reactor (PBR) was applied by replacing the drum with multiple parallel vertical plates to increase the surface area. The plates were coated with porous substrates on each side, and the nutrients were delivered to the cells by diffusion. The influence of nitrogen source and concentration on compositions of EPS and biofilm formation was analyzed using PBR under sunlight. The results indicated that both substrate and nitrogen were critical on the EPS compositions and biofilm formation. Under the optimal condition (glycine with concentration of 1 g l(-1) and substrate of canvas), the maximum biofilm productivity of 54.46 g m(-2) d(-1) with adhesion ratio of 84.4 % was achieved.

  10. Inactivation of Efflux Pumps Abolishes Bacterial Biofilm Formation

    DEFF Research Database (Denmark)

    Kvist, Malin; Hancock, Viktoria; Klemm, Per

    2008-01-01

    Bacterial biofilms cause numerous problems in health care and industry; notably, biofilms are associated with a large number of infections. Biofilm-dwelling bacteria are particularly resistant to antibiotics, making it hard to eradicate biofilm-associated infections. Bacteria rely on efflux pumps...... to get rid of toxic substances. We discovered that efflux pumps are highly active in bacterial biofilms, thus making efflux pumps attractive targets for antibiofilm measures. A number of efflux pump inhibitors (EPIs) are known. EPIs were shown to reduce biofilm formation, and in combination they could...... abolish biofilm formation completely. Also, EPIs were able to block the antibiotic tolerance of biofilms. The results of this feasibility study might pave the way for new treatments for biofilm-related infections and may be exploited for prevention of biofilms in general....

  11. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda

  12. Biofilm formation and determination of minimum biofilm eradication concentration of antibiotics in Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Tassew, Dereje Damte; Mechesso, Abraham Fikru; Park, Na-Hye; Song, Ju-Beom; Shur, Joo-Woon; Park, Seung-Chun

    2017-10-20

    The study was aimed to investigate biofilm forming ability of Mycoplasma hyopneumoniae and to determine the minimum biofilm eradication concentrations of antibiotics. Biofilm forming ability of six strains of M. hyopneumoniae was examined using crystal violet staining on coverslips. The results demonstrated an apparent line of biofilm growth in 3 of the strains isolated from swine with confirmed cases of enzootic pneumonia. BacLight bacterial viability assay revealed that the majority of the cells were viable after 336 hr of incubation. Moreover, M. hyopneumoniae persists in the biofilm after being exposed to 10 fold higher concentration of antibiotics than the minimum inhibitory concentrations in planktonic cells. To the best of our knowledge, this is the first report of biofilm formation in M. hyopneumoniae. However, comprehensive studies on the mechanisms of biofilm formation are needed to combat swine enzootic pneumonia caused by resistant M. hyopneumoniae.

  13. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms.

    Science.gov (United States)

    Gu, Huan; Hou, Shuyu; Yongyat, Chanokpon; De Tore, Suzanne; Ren, Dacheng

    2013-09-03

    Bacterial biofilms are ubiquitous and are the major cause of chronic infections in humans and persistent biofouling in industry. Despite the significance of bacterial biofilms, the mechanism of biofilm formation and associated drug tolerance is still not fully understood. A major challenge in biofilm research is the intrinsic heterogeneity in the biofilm structure, which leads to temporal and spatial variation in cell density and gene expression. To understand and control such structural heterogeneity, surfaces with patterned functional alkanthiols were used in this study to obtain Escherichia coli cell clusters with systematically varied cluster size and distance between clusters. The results from quantitative imaging analysis revealed an interesting phenomenon in which multicellular connections can be formed between cell clusters depending on the size of interacting clusters and the distance between them. In addition, significant differences in patterned biofilm formation were observed between wild-type E. coli RP437 and some of its isogenic mutants, indicating that certain cellular and genetic factors are involved in interactions among cell clusters. In particular, autoinducer-2-mediated quorum sensing was found to be important. Collectively, these results provide missing information that links cell-to-cell signaling and interaction among cell clusters to the structural organization of bacterial biofilms.

  14. Biofilm Formation As a Response to Ecological Competition.

    Directory of Open Access Journals (Sweden)

    Nuno M Oliveira

    2015-07-01

    Full Text Available Bacteria form dense surface-associated communities known as biofilms that are central to their persistence and how they affect us. Biofilm formation is commonly viewed as a cooperative enterprise, where strains and species work together for a common goal. Here we explore an alternative model: biofilm formation is a response to ecological competition. We co-cultured a diverse collection of natural isolates of the opportunistic pathogen Pseudomonas aeruginosa and studied the effect on biofilm formation. We show that strain mixing reliably increases biofilm formation compared to unmixed conditions. Importantly, strain mixing leads to strong competition: one strain dominates and largely excludes the other from the biofilm. Furthermore, we show that pyocins, narrow-spectrum antibiotics made by other P. aeruginosa strains, can stimulate biofilm formation by increasing the attachment of cells. Side-by-side comparisons using microfluidic assays suggest that the increase in biofilm occurs due to a general response to cellular damage: a comparable biofilm response occurs for pyocins that disrupt membranes as for commercial antibiotics that damage DNA, inhibit protein synthesis or transcription. Our data show that bacteria increase biofilm formation in response to ecological competition that is detected by antibiotic stress. This is inconsistent with the idea that sub-lethal concentrations of antibiotics are cooperative signals that coordinate microbial communities, as is often concluded. Instead, our work is consistent with competition sensing where low-levels of antibiotics are used to detect and respond to the competing genotypes that produce them.

  15. Sexual Biofilm Formation in Candida tropicalis Opaque Cells

    Science.gov (United States)

    Jones, Stephen K.; Hirakawa, Matthew P.; Bennett, Richard J.

    2014-01-01

    Summary Candida albicans and Candida tropicalis are opportunistic fungal pathogens that can transition between white and opaque phenotypic states. White and opaque cells differ both morphologically and in their responses to environmental signals. In C. albicans, opaque cells respond to sexual pheromones by undergoing conjugation, while white cells are induced by pheromones to form sexual biofilms. Here, we show that sexual biofilm formation also occurs in C. tropicalis but, unlike C. albicans, biofilms are formed exclusively by opaque cells. C. tropicalis biofilm formation was dependent on the pheromone receptors Ste2 and Ste3, confirming the role of pheromone signaling in sexual biofilm development. Structural analysis of C. tropicalis sexual biofilms revealed stratified communities consisting of a basal layer of yeast cells and an upper layer of filamentous cells, together with an extracellular matrix. Transcriptional profiling showed that genes involved in pheromone signaling and conjugation were upregulated in sexual biofilms. Furthermore, FGR23, which encodes an agglutinin-like protein, was found to enhance both mating and sexual biofilm formation. Together, these studies reveal that C. tropicalis opaque cells form sexual biofilms with a complex architecture, and suggest a conserved role for sexual agglutinins in mediating mating, cell cohesion and biofilm formation. PMID:24612417

  16. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation

    DEFF Research Database (Denmark)

    Stapper, A.P.; Narasimhan, G.; Oman, D.E.

    2004-01-01

    of their biofilm formation using confocal laser scanning microscopy. Biofilm Image Processing (BIP) and Community Statistics (COMSTAT) software programs were used to provide quantitative measurements of the two-dimensional biofilm images. All three strains formed distinguishable biofilm architectures, indicating...

  17. Role of bacterial efflux pumps in biofilm formation.

    Science.gov (United States)

    Alav, Ilyas; Sutton, J Mark; Rahman, Khondaker Miraz

    2018-02-28

    Efflux pumps are widely implicated in antibiotic resistance because they can extrude the majority of clinically relevant antibiotics from within cells to the extracellular environment. However, there is increasing evidence from many studies to suggest that the pumps also play a role in biofilm formation. These studies have involved investigating the effects of efflux pump gene mutagenesis and efflux pump inhibitors on biofilm formation, and measuring the levels of efflux pump gene expression in biofilms. In particular, several key pathogenic species associated with increasing multidrug resistance, such as Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, have been investigated, whilst other studies have focused on Salmonella enterica serovar Typhimurium as a model organism and problematic pathogen. Studies have shown that efflux pumps, including AcrAB-TolC of E. coli, MexAB-OprM of P. aeruginosa, AdeFGH of A. baumannii and AcrD of S. enterica, play important roles in biofilm formation. The substrates for such pumps, and whether changes in their efflux activity affect biofilm formation directly or indirectly, remain to be determined. By understanding the roles that efflux pumps play in biofilm formation, novel therapeutic strategies can be developed to inhibit their function, to help disrupt biofilms and improve the treatment of infections. This review will discuss and evaluate the evidence for the roles of efflux pumps in biofilm formation and the potential approaches to overcome the increasing problem of biofilm-based infections.

  18. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.

    Science.gov (United States)

    Nguyen, Uyen T; Burrows, Lori L

    2014-09-18

    Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (biofilms with 100μg/ml of DNase for 24h induced incomplete biofilm dispersal, with biofilm remaining compared to control. In contrast, addition of proteinase K completely inhibited biofilm formation, and 72h biofilms-including those grown under stimulatory conditions-were completely dispersed with 100μg/ml proteinase K. Generally-regarded-as-safe proteases bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25μg/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Biofilm Formation Characteristics of Pseudomonas lundensis Isolated from Meat.

    Science.gov (United States)

    Liu, Yong-Ji; Xie, Jing; Zhao, Li-Jun; Qian, Yun-Fang; Zhao, Yong; Liu, Xiao

    2015-12-01

    Biofilms formations of spoilage and pathogenic bacteria on food or food contact surfaces have attracted increasing attention. These events may lead to a higher risk of food spoilage and foodborne disease transmission. While Pseudomonas lundensis is one of the most important bacteria that cause spoilage in chilled meat, its capability for biofilm formation has been seldom reported. Here, we investigated biofilm formation characteristics of P. lundensis mainly by using crystal violet staining, and confocal laser scanning microscopy (CLSM). The swarming and swimming motility, biofilm formation in different temperatures (30, 10, and 4 °C) and the protease activity of the target strain were also assessed. The results showed that P. lundensis showed a typical surface-associated motility and was quite capable of forming biofilms in different temperatures (30, 10, and 4 °C). The strain began to adhere to the contact surfaces and form biofilms early in the 4 to 6 h. The biofilms began to be formed in massive amounts after 12 h at 30 °C, and the extracellular polysaccharides increased as the biofilm structure developed. Compared with at 30 °C, more biofilms were formed at 4 and 10 °C even by a low bacterial density. The protease activity in the biofilm was significantly correlated with the biofilm formation. Moreover, the protease activity in biofilm was significantly higher than that of the corresponding planktonic cultures after cultured 12 h at 30 °C. © 2015 Institute of Food Technologists®

  20. Specific plant induced biofilm formation in Methylobacterium species

    Science.gov (United States)

    Rossetto, Priscilla B.; Dourado, Manuella N.; Quecine, Maria C.; Andreote, Fernando D.; Araújo, Welington L.; Azevedo, João L.; Pizzirani-Kleiner, Aline A.

    2011-01-01

    Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes. PMID:24031703

  1. Fractal analysis of Xylella fastidiosa biofilm formation

    Science.gov (United States)

    Moreau, A. L. D.; Lorite, G. S.; Rodrigues, C. M.; Souza, A. A.; Cotta, M. A.

    2009-07-01

    We have investigated the growth process of Xylella fastidiosa biofilms inoculated on a glass. The size and the distance between biofilms were analyzed by optical images; a fractal analysis was carried out using scaling concepts and atomic force microscopy images. We observed that different biofilms show similar fractal characteristics, although morphological variations can be identified for different biofilm stages. Two types of structural patterns are suggested from the observed fractal dimensions Df. In the initial and final stages of biofilm formation, Df is 2.73±0.06 and 2.68±0.06, respectively, while in the maturation stage, Df=2.57±0.08. These values suggest that the biofilm growth can be understood as an Eden model in the former case, while diffusion-limited aggregation (DLA) seems to dominate the maturation stage. Changes in the correlation length parallel to the surface were also observed; these results were correlated with the biofilm matrix formation, which can hinder nutrient diffusion and thus create conditions to drive DLA growth.

  2. Biofilm Formation of Listeria monocytogenes on Various Surfaces

    Directory of Open Access Journals (Sweden)

    M Mahdavi

    2007-10-01

    Full Text Available Introduction & Objective: Listeria monocytogenes is considered as a ubiquitous foodborne pathogen which can lead to serious infections, especially in newborns, elderly, pregnant, and immunocompromised people. The organism has been isolated from many foods and may cause meningitis, septicemia and abortion in pregnant women. Also L. monocytogenes forms biofilms on many food contact surface materials and medical devices. Development of biofilms on many surfaces is a potential source of contamination of foods that may lead to spoilage or transmission of foodborne pathogens. Materials & Methods: Biofilm formation of L. monocytogenes (RITCC 1293 serotype 4a was investigated. Hydrophobicity of L. monocytogenes was measured by MATH method. Then biofilm formation of the organism was assessed at 2, 4, 8, 16 and 20 hours on stainless steel (type 304 no 2B, polyethylene and glass by drop plate method. Results: Results indicated that L. monocytogenes with 85% of hydrophobicity formed biofilm on each of three surfaces. Biofilm formation on stainless steel surfaces was significantly more than other surfaces (p<0.05. Conclusion: The ability of biofilm formation of L. monocytogenes on medical devices and food containers is very important as far as hygiene and disease outbreaks are concerned.

  3. Flagellar motility is critical for Listeria monocytogenes biofilm formation.

    Science.gov (United States)

    Lemon, Katherine P; Higgins, Darren E; Kolter, Roberto

    2007-06-01

    The food-borne pathogen Listeria monocytogenes attaches to environmental surfaces and forms biofilms that can be a source of food contamination, yet little is known about the molecular mechanisms of its biofilm development. We observed that nonmotile mutants were defective in biofilm formation. To investigate how flagella might function during biofilm formation, we compared the wild type with flagellum-minus and paralyzed-flagellum mutants. Both nonmotile mutants were defective in biofilm development, presumably at an early stage, as they were also defective in attachment to glass during the first few hours of surface exposure. This attachment defect could be significantly overcome by providing exogenous movement toward the surface via centrifugation. However, this centrifugation did not restore mature biofilm formation. Our results indicate that it is flagellum-mediated motility that is critical for both initial surface attachment and subsequent biofilm formation. Also, any role for L. monocytogenes flagella as adhesins on abiotic surfaces appears to be either minimal or motility dependent under the conditions we examined.

  4. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ-Grown Dental Biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Ibsen, Casper Jon Steenberg; Birkedal, Henrik

    2017-01-01

    This 2-period crossover study investigated the effect of calcium-phosphate-osteopontin particles on biofilm formation and pH in 48-h biofilms grown in situ. Bovine milk osteopontin is a highly phosphorylated glycoprotein that has been shown to interfere with bacterial adhesion to salivary......-coated surfaces. Calcium-phosphate-osteopontin particles have been shown to reduce biofilm formation and pH drops in a 5-species laboratory model of dental biofilm without affecting bacterial viability. Here, smooth surface biofilms from 10 individuals were treated ex vivo 6 times/day for 30 min with either...... calcium-phosphate-osteopontin particles or sterile saline. After growth, the amount of biofilm formed was determined by confocal microscopy, and pH drops upon exposure to glucose were monitored using confocal-microscopy-based pH ratiometry. A total of 160 biofilms were analysed. No adverse effects...

  5. Inhibitory effect of farnesol on biofilm formation by Candida tropicalis

    Directory of Open Access Journals (Sweden)

    E Zibafar

    2009-03-01

    Full Text Available ABSTRACT Background: Candidiasis associated with indwelling medical devices is especially problematic since they can act as substrates for biofilm growth which are highly resistant to antifungal drugs. Farnesol is a quorum-sensing molecule that inhibits filamentation and biofilm formation in Candida albicans. Since in recent years Candida tropicalis have been reported as an important and common non-albicans Candida species with high drug resistance pattern, the inhibitory effect of farnesol on biofilm formation by Candida tropicalis was evaluated. Methods: Five Candida tropicalis strains were treated with different concentration of farnesol (0, 30 and 300 µM after 0, 1 and 4 hrs of adherence and then they were maintained under biofilm formation condition in polystyrene, 96-well microtiter plates at 37°C for 48 hrs. Biofilm formation was measured by a semiquantitative colorimetric technique based on reduction assay of 2,3- bis  -2H-tetrazolium- 5- carboxanilide (XTT. Results: The results indicated that the initial adherence time had no effect on biofilm formation and low concentration of farnesol (30 µM could not inhibit biofilm formation. However the presence of non-adherent cells increased biofilm formation significantly and the high concentration of farnesol (300 µM could inhibit biofilm formation. Conclusion: Results of this study showed that the high concentration of farnesol could inhibit biofilm formation and may be used as an adjuvant in prevention and in therapeutic strategies with antifungal drugs.

  6. Biofilm formation by clinical isolates and the implications in chronic infections

    Directory of Open Access Journals (Sweden)

    Sanchez Carlos J

    2013-01-01

    Full Text Available Abstract Background Biofilm formation is a major virulence factor contributing to the chronicity of infections. To date few studies have evaluated biofilm formation in infecting isolates of patients including both Gram-positive and Gram-negative multidrug-resistant (MDR species in the context of numerous types of infectious syndromes. Herein, we investigated the biofilm forming capacity in a large collection of single patient infecting isolates and compared the relationship between biofilm formation to various strain characteristics. Methods The biofilm-forming capacity of 205 randomly sampled clinical isolates from patients, collected from various anatomical sites, admitted for treatment at Brooke Army Medical Center (BAMC from 2004–2011, including methicillin-resistant/methicillin susceptible Staphylococcus aureus (MRSA/MSSA (n=23, Acinetobacter baumannii (n=53, Pseudomonas aeruginosa (n=36, Klebsiella pneumoniae (n=54, and Escherichia coli (n=39, were evaluated for biofilm formation using the high-throughput microtiter plate assay and scanning electron microscopy (SEM. Relationships between biofilm formation to clonal type, site of isolate collection, and MDR phenotype were evaluated. Furthermore, in patients with relapsing infections, serial strains were assessed for their ability to form biofilms in vitro. Results Of the 205 clinical isolates tested, 126 strains (61.4% were observed to form biofilms in vitro at levels greater than or equal to the Staphylococcus epidermidis, positive biofilm producing strain, with P. aeruginosa and S. aureus having the greatest number of biofilm producing strains. Biofilm formation was significantly associated with specific clonal types, the site of isolate collection, and strains positive for biofilm formation were more frequently observed to be MDR. In patients with relapsing infections, the majority of serial isolates recovered from these individuals were observed to be strong biofilm producers in vitro

  7. Molecular mechanisms involved in Bacillus subtilis biofilm formation

    Science.gov (United States)

    Mielich-Süss, Benjamin; Lopez, Daniel

    2014-01-01

    Summary Biofilms are the predominant lifestyle of bacteria in natural environments, and they severely impact our societies in many different fashions. Therefore, biofilm formation is a topic of growing interest in microbiology, and different bacterial models are currently studied to better understand the molecular strategies that bacteria undergo to build biofilms. Among those, biofilms of the soil-dwelling bacterium Bacillus subtilis are commonly used for this purpose. Bacillus subtilis biofilms show remarkable architectural features that are a consequence of sophisticated programs of cellular specialization and cell-cell communication within the community. Many laboratories are trying to unravel the biological role of the morphological features of biofilms, as well as exploring the molecular basis underlying cellular differentiation. In this review, we present a general perspective of the current state of knowledge of biofilm formation in B. subtilis. In particular, a special emphasis is placed on summarizing the most recent discoveries in the field and integrating them into the general view of these truly sophisticated microbial communities. PMID:24909922

  8. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans

    Science.gov (United States)

    Ahn, Ki Bum; Baik, Jung Eun; Park, Ok-Jin; Yun, Cheol-Heui

    2018-01-01

    Dental caries is a biofilm-dependent oral disease and Streptococcus mutans is the known primary etiologic agent of dental caries that initiates biofilm formation on tooth surfaces. Although some Lactobacillus strains inhibit biofilm formation of oral pathogenic bacteria, the molecular mechanisms by which lactobacilli inhibit bacterial biofilm formation are not clearly understood. In this study, we demonstrated that Lactobacillus plantarum lipoteichoic acid (Lp.LTA) inhibited the biofilm formation of S. mutans on polystyrene plates, hydroxyapatite discs, and dentin slices without affecting the bacterial growth. Lp.LTA interferes with sucrose decomposition of S. mutans required for the production of exopolysaccharide, which is a main component of biofilm. Lp.LTA also attenuated the biding of fluorescein isothiocyanate-conjugated dextran to S. mutans, which is known to have a high affinity to exopolysaccharide on S. mutans. Dealanylated Lp.LTA did not inhibit biofilm formation of S. mutans implying that D-alanine moieties in the Lp.LTA structure were crucial for inhibition. Collectively, these results suggest that Lp.LTA attenuates S. mutans biofilm formation and could be used to develop effective anticaries agents. PMID:29420616

  9. Biofilm Formation by Staphylococcus epidermidis on Foldable and Rigid Intraocular Lenses.

    Science.gov (United States)

    Fazly Bazzaz, Bibi Sedigheh; Jalalzadeh, Monireh; Sanati, Maryam; Zarei-Ghanavati, Syamak; Khameneh, Bahman

    2014-05-01

    Biofilm formation of Staphylococcus epidermidis is a major etiological factor of inducing device-related infections. The ability of biofilm formation by the S. epidermidis was assessed in vitro on two brands of foldable (hydrophilic) and two brands of rigid (hydrophobic) intraocular lens materials in order to investigate the role of lens material in postoperative endophthalmitis. To ensure reproducibility of biofilm formation on intraocular lenses, two strains of S. epidermidis and three quantification methods were performed. The S. epidermidis strains, DSMZ3270 (biofilm-producer) and ATCC12228 (non-biofilm-producer) were applied. Organisms were cultivated on disks of different brands of foldable hydrophilic Intra Ocular Lens (IOL) made of acrylic (Didar, Iran; (A) and Omni, India; (B)), and rigid hydrophobic IOL made of polymethyl methacrylate (PMMA; Didar, Iran; (C) and Hexavision, France; (D)). Biofilms were stained with crystal violet (CV) dye, which is an index of biofilm formation. The bacterial population was counted after biofilm homogenization. Scanning electron microscopy (SEM) was performed to examine the extent of biofilm formation. Adherence of DSMZ3270 strain on both types of foldable and rigid IOLs, was significantly more than ATCC12228 (P brands of foldable and PMMA IOLs. According to statistical analyses the incubation time influenced the biofilm formation on both types of IOLs which meant that by increasing incubation time, the biofilm formation increased. According to the SEM pictures, biofilm seems to be lysed at 72 hours. These data demonstrated that the attachment of bacteria to hydrophilic acrylic IOLs was more than hydrophobic PMMA ones independent of the brand. According to these results the bacterial strain might have more hydrophilic properties. Augmenting the biomass of biofilm by passing of time demonstrated the key role of time in biofilm formation on the IOL surfaces. The differences between IOL brands in the biofilm formation

  10. Investigating Microbial Biofilm Formations on Crustal Rock Substrates

    Science.gov (United States)

    Weiser, M.; D'Angelo, T.; Carr, S. A.; Orcutt, B.

    2017-12-01

    Ocean crust hosts microbial life that, in some cases, alter the component rocks as a means of obtaining energy. Variations in crust lithology, included trace metal and mineral content, as well as the chemistry of the fluids circulating through them, provide substrates for some microbes to metabolize, leading to formation of biofilm community structures. Microbes have different parameters for the situations in which they will form biofilms, but they must have some source of energy in excess at the site of biofilm formation for them to become stationary and form the carbohydrate-rich structures connecting the cells to one another and the substrate. Generally, the requirements for microbes to form biofilms on crustal minerals are unclear. We designed two experiments to test (1) mineral preference and biofilm formation rates by natural seawater microbial communities, and (2) biofilm development as a function of phosphate availability for an organism isolated from subseafloor ocean crust. In Experiment 1, we observed that phyric basalt groundmass is preferentially colonized over aphyric basalt or metal sulfides in a shallow water and oxic seawater environment. In experiment 2, tests of the anaerobic heterotroph Thalassospira bacteria isolated from oceanic crustal fluids showed that they preferentially form biofilms, lose motility, and increase exponentially in number over time in higher-PO4 treatments (50 micromolar), including with phosphate-doped basalts, than in treatments with low phosphate concentrations (0.5 micromolar) often found in crustal fluids. These observations suggest phosphate as a main driver of biofilm formation in subsurface crust. Overall, these data suggest that the drivers of microbial biofilm formation on crustal substrates are selective to the substrate conditions, which has important implications for estimating the global biomass of life harbored in oceanic crust.

  11. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ Grown Dental Biofilms.

    Science.gov (United States)

    Schlafer, Sebastian; Ibsen, Casper J S; Birkedal, Henrik; Nyvad, Bente

    2017-01-01

    This 2-period crossover study investigated the effect of calcium-phosphate-osteopontin particles on biofilm formation and pH in 48-h biofilms grown in situ. Bovine milk osteopontin is a highly phosphorylated glycoprotein that has been shown to interfere with bacterial adhesion to salivary-coated surfaces. Calcium-phosphate-osteopontin particles have been shown to reduce biofilm formation and pH drops in a 5-species laboratory model of dental biofilm without affecting bacterial viability. Here, smooth surface biofilms from 10 individuals were treated ex vivo 6 times/day for 30 min with either calcium-phosphate-osteopontin particles or sterile saline. After growth, the amount of biofilm formed was determined by confocal microscopy, and pH drops upon exposure to glucose were monitored using confocal-microscopy-based pH ratiometry. A total of 160 biofilms were analysed. No adverse effects of repeated ex vivo treatment with calcium-phosphate-osteopontin particles were observed. Particle treatment resulted in a 32% lower amount of biofilm formed (p Biofilm pH was significantly higher upon particle treatment, both shortly after the addition of glucose and after 30 min of incubation with glucose (p biofilms as well as the remineralizing potential of the particles. © 2016 S. Karger AG, Basel.

  12. Kaffir lime leaves extract inhibits biofilm formation by Streptococcus mutans.

    Science.gov (United States)

    Kooltheat, Nateelak; Kamuthachad, Ludthawun; Anthapanya, Methinee; Samakchan, Natthapon; Sranujit, Rungnapa Pankla; Potup, Pachuen; Ferrante, Antonio; Usuwanthim, Kanchana

    2016-04-01

    Although kaffir lime has been reported to exhibit antioxidant and antileukemic activity, little is known about the antimicrobial effect of kaffir lime extract. Because Streptococcus mutans has been known to cause biofilm formation, it has been considered the most important causative pathogen of dental caries. Thus, the effective control of its effects on the oral biofilm is the key to the prevention of dental caries. The aims of the present study were to investigate the effect of kaffir lime leaves extract on biofilm formation and its antibacterial activity on S. mutans. We examined the effect of kaffir lime leaves extract on growth and biofilm formation of S. mutans. For the investigation we used a kaffir lime extract with high phenolic content. The minimum inhibitory concentration of the extract was determined by broth microdilution assay. The inhibitory effect of the test substances on biofilm formation was also investigated by biofilm formation assay and qRT-PCR of biofilm formation-associated genes. Kaffir lime leaves extract inhibits the growth of S. mutans, corresponding to the activity of an antibiotic, ampicillin. Formation of biofilm by S. mutans was also inhibited by the extract. These results were confirmed by the down-regulation of genes associated with the biofilm formation. The findings highlight the ability of kaffir lime leaves extract to inhibit S. mutans activity, which may be beneficial in the prevention of biofilm formation on dental surface, reducing dental plaque and decreasing the chance of dental carries. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Biofilm Risks

    DEFF Research Database (Denmark)

    Wirtanen, Gun Linnea; Salo, Satu

    2016-01-01

    This chapter on biofilm risks deals with biofilm formation of pathogenic microbes, sampling and detection methods, biofilm removal, and prevention of biofilm formation. Several common pathogens produce sticky and/or slimy structures in which the cells are embedded, that is, biofilms, on various...... surfaces in food processing. Biofilms of common foodborne pathogens are reviewed. The issue of persistent and nonpersistent microbial contamination in food processing is also discussed. It has been shown that biofilms can be difficult to remove and can thus cause severe disinfection and cleaning problems...... in food factories. In the prevention of biofilm formation microbial control in process lines should both limit the number of microbes on surfaces and reduce microbial activity in the process. Thus the hygienic design of process equipment and process lines is important in improving the process hygiene...

  14. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  15. Influence of Streptococcus mutans on Enterococcus faecalis Biofilm Formation

    NARCIS (Netherlands)

    Deng, Dong Mei; Hoogenkamp, Michel A.; Exterkate, Rob A. M.; Jiang, Lei Meng; van der Sluis, Lucas W. M.; ten Cate, Jacob M.; Crielaard, Wim

    Introduction: An important virulence factor of Enterococcus faecalis is its ability to form biofilms. Most studies on biofilm formation have been carried out by using E. faecalis monocultures. Given the polymicrobial nature of root canal infections, it is important to understand biofilm formation of

  16. Wound biofilms: lessons learned from oral biofilms

    OpenAIRE

    Mancl, Kimberly A.; Kirsner, Robert S.; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque,are a primary cause of oral diseases including caries, gingivitis and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible, thus biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well-elucidated. In contrast, wound research has relati...

  17. Ginger Extract Inhibits Biofilm Formation by Pseudomonas aeruginosa PA14

    Science.gov (United States)

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger’s ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39–56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3′-5′)-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor. PMID:24086697

  18. Biofilm Formation on Dental Restorative and Implant Materials

    NARCIS (Netherlands)

    Busscher, H. J.; Rinastiti, M.; Siswomihardjo, W.; van der Mei, H. C.

    Biomaterials for the restoration of oral function are prone to biofilm formation, affecting oral health. Oral bacteria adhere to hydrophobic and hydrophilic surfaces, but due to fluctuating shear, little biofilm accumulates on hydrophobic surfaces in vivo. More biofilm accumulates on rough than on

  19. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    International Nuclear Information System (INIS)

    Qin, Zhiqiang; Zhang, Jingdong; Hu, Yifan; Chi, Qijin; Mortensen, Ninell P.; Qu, Di; Molin, Soren; Ulstrup, Jens

    2009-01-01

    The formation of biofilms on surfaces of indwelling medical devices is a serious medical problem. Staphylococcus epidermidis is a common pathogen found to colonize implanted devices and as a biofilm is more resistant to the host immune system as well as to antibiotic treatments. Combating S. epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both air and aqueous environments. We have investigated the inhibitory effects of surfaces treated with four organic compounds, two benzoate derivatives denoted as compound 59 and 75 and two carboxamide derivatives denoted as compound 47 and 73, on S. epidermidis adhesion and biofilm formation. All four compounds evoke significant inhibitory effects on the formation of S. epidermidis biofilms with compounds 47 and 73 being most effective. None of the compounds were found to inhibit growth of S. epidermidis in liquid cultures. Bacteria attached to the substrate when exposed to the compounds were not affected indicating that these compounds inhibit initial adhesion. These results suggest a pretreatment for medically implanted surfaces that can prevent the biofilm formation and reduce infection.

  20. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhiqiang [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Key Laboratory of Medical Molecular Virology of Ministry of Education and Public Health, Institute of Medical Microbiology and Institutes of Biomedical Science, Shanghai Medical School of Fudan University, Yi Xue Yuan Road 138, Shanghai 200032 (China); Division of Infectious Diseases, Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 (United States); Zhang, Jingdong; Hu, Yifan; Chi, Qijin [Department of Chemistry, Building 207, NanoDTU, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Mortensen, Ninell P. [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37932 (United States); Qu, Di [Key Laboratory of Medical Molecular Virology of Ministry of Education and Public Health, Institute of Medical Microbiology and Institutes of Biomedical Science, Shanghai Medical School of Fudan University, Yi Xue Yuan Road 138, Shanghai 200032 (China); Molin, Soren [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Ulstrup, Jens, E-mail: ju@kemi.dtu.dk [Department of Chemistry, Building 207, NanoDTU, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2009-07-15

    The formation of biofilms on surfaces of indwelling medical devices is a serious medical problem. Staphylococcus epidermidis is a common pathogen found to colonize implanted devices and as a biofilm is more resistant to the host immune system as well as to antibiotic treatments. Combating S. epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both air and aqueous environments. We have investigated the inhibitory effects of surfaces treated with four organic compounds, two benzoate derivatives denoted as compound 59 and 75 and two carboxamide derivatives denoted as compound 47 and 73, on S. epidermidis adhesion and biofilm formation. All four compounds evoke significant inhibitory effects on the formation of S. epidermidis biofilms with compounds 47 and 73 being most effective. None of the compounds were found to inhibit growth of S. epidermidis in liquid cultures. Bacteria attached to the substrate when exposed to the compounds were not affected indicating that these compounds inhibit initial adhesion. These results suggest a pretreatment for medically implanted surfaces that can prevent the biofilm formation and reduce infection.

  1. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Wooseong Kim

    Full Text Available Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight.

  2. Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation.

    Science.gov (United States)

    Chellappa, Shakinah T; Maredia, Reshma; Phipps, Kara; Haskins, William E; Weitao, Tao

    2013-12-01

    DNA-damaging antibiotics such as ciprofloxacin induce biofilm formation and the SOS response through autocleavage of SOS-repressor LexA in Pseudomonas aeruginosa. However, the biofilm-SOS connection remains poorly understood. It was investigated with 96-well and lipid biofilm assays. The effects of ciprofloxacin were examined on biofilm stimulation of the SOS mutant and wild-type strains. The stimulation observed in the wild-type in which SOS was induced was reduced in the mutant in which LexA was made non-cleavable (LexAN) and thus SOS non-inducible. Therefore, the stimulation appeared to involve SOS. The possible mechanisms of inducible biofilm formation were explored by subproteomic analysis of outer membrane fractions extracted from biofilms. The data predicted an inhibitory role of LexA in flagellum function. This premise was tested first by functional and morphological analyses of flagellum-based motility. The flagellum swimming motility decreased in the LexAN strain treated with ciprofloxacin. Second, the motility-biofilm assay was performed, which tested cell migration and biofilm formation. The results showed that wild-type biofilm increased significantly over the LexAN. These results suggest that LexA repression of motility, which is the initial event in biofilm development, contributes to repression of SOS-inducible biofilm formation. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Characterization of the effect of serum and chelating agents on Staphylococcus aureus biofilm formation; chelating agents augment biofilm formation through clumping factor B

    Science.gov (United States)

    Abraham, Nabil Mathew

    Staphylococcus aureus is the causative agent of a diverse array of acute and chronic infections, and some these infections, including infective endocarditis, joint infections, and medical device-associated bloodstream infections, depend upon its capacity to form tenacious biofilms on surfaces. Inserted medical devices such as intravenous catheters, pacemakers, and artificial heart valves save lives, but unfortunately, they can also serve as a substrate on which S. aureus can form a biofilm, attributing S. aureus as a leading cause of medical device-related infections. The major aim of this work was take compounds to which S. aureus would be exposed during infection and to investigate their effects on its capacity to form a biofilm. More specifically, the project investigated the effects of serum, and thereafter of catheter lock solutions on biofilm formation by S. aureus. Pre-coating polystyrene with serum is frequently used as a method to augment biofilm formation. The effect of pre-coating with serum is due to the deposition of extracellular matrix components onto the polystyrene, which are then recognized by MSCRAMMs. We therefore hypothesized that the major component of blood, serum, would induce biofilm formation. Surprisingly, serum actually inhibited biofilm formation. The inhibitory activity was due to a small molecular weight, heat-stable, non-proteinaceous component/s of serum. Serum-mediated inhibition of biofilm formation may represent a previously uncharacterized aspect of host innate immunity that targets the expression of a key bacterial virulence factor: the ability to establish a resistant biofilm. Metal ion chelators like sodium citrate are frequently chosen to lock intravenous catheters because they are regarded as potent inhibitors of bacterial biofilm formation and viability. We found that, while chelating compounds abolished biofilm formation in most strains of S. aureus, they actually augmented the phenotype in a subset of strains. We

  4. Enhancement of Biofilm Formation on Pyrite by Sulfobacillus thermosulfidooxidans

    Directory of Open Access Journals (Sweden)

    Qian Li

    2016-07-01

    Full Text Available Bioleaching is the mobilization of metal cations from insoluble ores by microorganisms. Biofilms can enhance this process. Since Sulfobacillus often appears in leaching heaps or reactors, this genus has aroused attention. In this study, biofilm formation and subsequent pyrite dissolution by the Gram-positive, moderately thermophilic acidophile Sulfobacillus thermosulfidooxidans were investigated. Five strategies, including adjusting initial pH, supplementing an extra energy source or ferric ions, as well as exchanging exhausted medium with fresh medium, were tested for enhancement of its biofilm formation. The results show that regularly exchanging exhausted medium leads to a continuous biofilm development on pyrite. By this way, multiply layered biofilms were observed on pyrite slices, while only monolayer biofilms were visible on pyrite grains. In addition, biofilms were proven to be responsible for pyrite leaching in the early stages.

  5. Effects of substrates on biofilm formation observed by atomic force microscopy

    International Nuclear Information System (INIS)

    Oh, Y.J.; Lee, N.R.; Jo, W.; Jung, W.K.; Lim, J.S.

    2009-01-01

    Formation of biofilm is known to be strongly dependent on substrates including topography, materials, and chemical treatment. In this study, a variety of substrates are tested for understanding biofilm formation. Sheets of aluminum, steel, rubber, and polypropylene have been used to examine their effects on formation of Pseudomonas aeruginosa biofilm. In particular, the morphological variation, transition, and adhesiveness of biofilm were investigated through local measurement by atomic force microscopy (AFM). Mechanism of removing biofilm from adhering to substrate is also analyzed, thus the understanding of the mechanism can be potentially useful to prevent the biofilm formation. The results reveal that formation of biofilm can remain on rough surface regardless of substrates in hot water, which may easily induce extra-polymeric substances detachment from bacterial surface. By probing using AFM, local force-distance characterization of extra-cellular materials extracted from the bacteria can exhibit the progress of the biofilm formation and functional complexities.

  6. Neutrophil extracellular trap formation in supragingival biofilms.

    Science.gov (United States)

    Hirschfeld, Josefine; Dommisch, Henrik; Skora, Philipp; Horvath, Gabor; Latz, Eicke; Hoerauf, Achim; Waller, Tobias; Kawai, Toshihisa; Jepsen, Søren; Deschner, James; Bekeredjian-Ding, Isabelle

    2015-01-01

    Oral biofilms are the causative agents of the highly prevalent oral diseases periodontitis and caries. Additionally, the host immune response is thought to play a critical role in disease onset. Neutrophils are known to be a key host response factor to bacterial challenge on host surfaces. Release of neutrophil extracellular traps (NETs) as a novel antimicrobial defense strategy has gained increasing attention in the past years. Here, we investigated the influx of neutrophils into the dental plaque and the ability of oral bacteria to trigger intra-biofilm release of NETs and intracellular proteins. Supragingival biofilms and whole saliva were sampled from systemically healthy subjects participating in an experimental gingivitis study. Biofilms were analysed by immunofluorescence followed by confocal and fluorescence microscopy. Moreover, concentrations of cytokines and immune-associated proteins in biofilm suspensions and saliva were assessed by ELISA. Neutrophils obtained from blood were stimulated with twelve bacterial species isolated from cultured biofilms or with lipopolysaccharide to monitor NET formation. Neutrophils, NETs, neutrophil-associated proteins (myeloperoxidase, elastase-2, cathepsin G, cathelicidin LL-37), interleukin-8, interleukin-1β and tumor necrosis factor were detected within plaque samples and saliva. All tested bacterial species as well as the polymicrobial samples isolated from the plaque of each donor induced release of NETs and interleukin-8. The degree of NET formation varied among different subjects and did not correlate with plaque scores or clinical signs of local inflammation. Our findings indicate that neutrophils are attracted towards dental biofilms, in which they become incorporated and where they are stimulated by microbes to release NETs and immunostimulatory proteins. Thus, neutrophils and NETs may be involved in host biofilm control, although their specific role needs to be further elucidated. Moreover, inter

  7. Evaluation of intraspecies interactions in biofilm formation by Methylobacterium species isolated from pink-pigmented household biofilms.

    Science.gov (United States)

    Xu, Fang-Fang; Morohoshi, Tomohiro; Wang, Wen-Zhao; Yamaguchi, Yuka; Liang, Yan; Ikeda, Tsukasa

    2014-01-01

    Concern regarding household biofilms has grown due to their widespread existence and potential to threaten human health by serving as pathogen reservoirs. Previous studies identified Methylobacterium as one of the dominant genera found in household biofilms. In the present study, we examined the mechanisms underlying biofilm formation by using the bacterial consortium found in household pink slime. A clone library analysis revealed that Methylobacterium was the predominant genus in household pink slime. In addition, 16 out of 21 pink-pigmented bacterial isolates were assigned to the genus Methylobacterium. Although all of the Methylobacterium isolates formed low-level biofilms, the amount of the biofilms formed by Methylobacterium sp. P-1M and P-18S was significantly increased by co-culturing with other Methylobacterium strains that belonged to a specific phylogenetic group. The single-species biofilm was easily washed from the glass surface, whereas the dual-species biofilm strongly adhered after washing. A confocal laser scanning microscopy analysis showed that the dual-species biofilms were significantly thicker and tighter than the single-species biofilms.

  8. Biofilms.

    Science.gov (United States)

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-07-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. Using these bacteria as examples, we discuss the key features of biofilms as well as mechanisms by which extracellular signals trigger biofilm formation.

  9. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Zhang, Jingdong; Hu, Yifan

    2009-01-01

    The formation of biofilms on surfaces of indwelling medical devices is a serious medical problem. Staphylococcus epidermidis is a common pathogen found to colonize implanted devices and as a biofilm is more resistant to the host immune system as well as to antibiotic treatments. Combating S....... epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both...... air and aqueous environments. We have investigated the inhibitory effects of surfaces treated with four organic compounds, two benzoate derivatives denoted as compound 59 and 75 and two carboxamicle derivatives denoted as compound 47 and 73, on S. epidermidis adhesion and biofilm formation. All four...

  10. Candida albicans survival and biofilm formation under starvation conditions.

    Science.gov (United States)

    Ning, Y; Hu, X; Ling, J; Du, Y; Liu, J; Liu, H; Peng, Z

    2013-01-01

    To investigate the survival and biofilm formation capacity of Candida albicans in starvation and under anaerobic conditions. Candida albicans growth and survival were monitored in vitro for up to 8 months. Fungal suspensions from late exponential, stationary and starvation phases were incubated on human dentine, polystyrene and glass slides. Scanning electron microscopy (SEM) was used to observe the process of biofilm formation. 2,3-bis(2-Methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxyanilide inner salt (XTT) reduction assay was performed to quantify the biofilm formation capability, and confocal laser scanning microscopy (CLSM) was used to study and make semi-quantitative comparisons of the ultrastructure of biofilms formed on human dentine. 'XTT bioactivity' and 'COMSTAT results' were analysed by two-way analysis of variance (ANOVA) and one-way ANOVA, respectively. Candida albicans survived for over six months. SEM demonstrated that starving C. albicans produced mature biofilms on different substrata. C. albicans of the same growth phase incubated on human dentine displayed significantly higher biofilm formation capability than on polystyrene or glass slides (P roughness coefficient and surface/volume ratio (P < 0.05). Candida albicans cells can survive and form biofilms in anaerobic and nutrient-limited conditions and may pose a treatment challenge. © 2012 International Endodontic Journal.

  11. Biofilm formation of Francisella noatunensis subsp. orientalis

    Science.gov (United States)

    Soto, Esteban; Halliday-Wimmonds, Iona; Francis , Stewart; Kearney, Michael T.; Hansen, John D.

    2015-01-01

    Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen in both marine and fresh water environments. The bacterium is suspected to persist in the environment even without the presence of a suitable fish host. In the present study, the influence of different abiotic factors such as salinity and temperature were used to study the biofilm formation of different isolates of Fno including intracellular growth loci C (iglC)and pathogenicity determinant protein A (pdpA) knockout strains. Finally, we compared the susceptibility of planktonic and biofilm to three disinfectants used in the aquaculture and ornamental fish industry, namely Virkon®, bleach and hydrogen peroxide. The data indicates that Fno is capable of producing biofilms within 24 h where both salinity as well as temperature plays a role in the growth and biofilm formation of Fno. Mutations in theiglC or pdpA, both known virulence factors, do not appear to affect the capacity of Fno to produce biofilms, and the minimum inhibitory concentration, and minimum biocidal concentration for the three disinfectants were lower than the minimum biofilm eradication concentration values. This information needs to be taken into account if trying to eradicate the pathogen from aquaculture facilities or aquariums.

  12. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense.

    Science.gov (United States)

    Arruebarrena Di Palma, Andrés; Pereyra, Cintia M; Moreno Ramirez, Lizbeth; Xiqui Vázquez, María L; Baca, Beatriz E; Pereyra, María A; Lamattina, Lorenzo; Creus, Cecilia M

    2013-01-01

    Azospirillum brasilense is a rhizobacterium that provides beneficial effects on plants when they colonize roots. The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with surfaces in response to appropriate signals. Nitric oxide (NO) is a signaling molecule implicated in numerous processes in bacteria, including biofilm formation or dispersion, depending on genera and lifestyle. Azospirillum brasilense Sp245 produces NO by denitrification having a role in root growth promotion. We analyzed the role of endogenously produced NO on biofilm formation in A. brasilense Sp245 and in a periplasmic nitrate reductase mutant (napA::Tn5; Faj164) affected in NO production. Cells were statically grown in media with nitrate or ammonium as nitrogen sources and examined for biofilm formation using crystal violet and by confocal laser microscopy. Both strains formed biofilms, but the mutant produced less than half compared with the wild type in nitrate medium showing impaired nitrite production in this condition. NO measurements in biofilm confirmed lower values in the mutant strain. The addition of a NO donor showed that NO influences biofilm formation in a dose-dependent manner and reverses the mutant phenotype, indicating that Nap positively regulates the formation of biofilm in A. brasilense Sp245. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Genetic Control of Conventional and Pheromone-Stimulated Biofilm Formation in Candida albicans

    Science.gov (United States)

    Lin, Ching-Hsuan; Kabrawala, Shail; Fox, Emily P.; Nobile, Clarissa J.; Johnson, Alexander D.; Bennett, Richard J.

    2013-01-01

    Candida albicans can stochastically switch between two phenotypes, white and opaque. Opaque cells are the sexually competent form of C. albicans and therefore undergo efficient polarized growth and mating in the presence of pheromone. In contrast, white cells cannot mate, but are induced – under a specialized set of conditions – to form biofilms in response to pheromone. In this work, we compare the genetic regulation of such “pheromone-stimulated” biofilms with that of “conventional” C. albicans biofilms. In particular, we examined a network of six transcriptional regulators (Bcr1, Brg1, Efg1, Tec1, Ndt80, and Rob1) that mediate conventional biofilm formation for their potential roles in pheromone-stimulated biofilm formation. We show that four of the six transcription factors (Bcr1, Brg1, Rob1, and Tec1) promote formation of both conventional and pheromone-stimulated biofilms, indicating they play general roles in cell cohesion and biofilm development. In addition, we identify the master transcriptional regulator of pheromone-stimulated biofilms as C. albicans Cph1, ortholog of Saccharomyces cerevisiae Ste12. Cph1 regulates mating in C. albicans opaque cells, and here we show that Cph1 is also essential for pheromone-stimulated biofilm formation in white cells. In contrast, Cph1 is dispensable for the formation of conventional biofilms. The regulation of pheromone- stimulated biofilm formation was further investigated by transcriptional profiling and genetic analyses. These studies identified 196 genes that are induced by pheromone signaling during biofilm formation. One of these genes, HGC1, is shown to be required for both conventional and pheromone-stimulated biofilm formation. Taken together, these observations compare and contrast the regulation of conventional and pheromone-stimulated biofilm formation in C. albicans, and demonstrate that Cph1 is required for the latter, but not the former. PMID:23637598

  14. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal

    DEFF Research Database (Denmark)

    Harmsen, Morten; Yang, Liang; Pamp, Sünje Johanna

    2010-01-01

    We review the recent advances in the understanding of the Pseudomonas aeruginosa biofilm lifestyle from studies using in vitro laboratory setups such as flow chambers and microtiter trays. Recent work sheds light on the role of nutrients, motility, and quorum sensing in structure formation in P....... aeruginosa biofilms. The second messenger, c-di-GMP, is established as an important regulator of the synthesis of polysaccharide and protein components of the biofilm matrix. Extracellular DNA is shown to be an essential component of the biofilm matrix. It has become apparent that biofilm formation involves...... interactions between different subpopulations. The molecular mechanisms underlying the tolerance of biofilm bacteria to antimicrobial agents are beginning to be unraveled, and new knowledge has been obtained regarding the environmental cues and regulatory mechanisms involved in biofilm dispersal....

  15. Biofilm Development

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2015-01-01

    During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction or terminat......During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction...... or termination of biofilm matrix production via the second messenger molecule c-di-GMP. In between initiation and termination of biofilm formation we have defined specific biofilm stages, but the currently available evidence suggests that these transitions are mainly governed by adaptive responses......, and not by specific genetic programs. It appears that biofilm formation can occur through multiple pathways and that the spatial structure of the biofilms is species dependent as well as dependent on environmental conditions. Bacterial subpopulations, e.g., motile and nonmotile subpopulations, can develop...

  16. Synergy in biofilm formation between Fusobacterium nucleatum and Prevotella species.

    Science.gov (United States)

    Okuda, Tamaki; Kokubu, Eitoyo; Kawana, Tomoko; Saito, Atsushi; Okuda, Katsuji; Ishihara, Kazuyuki

    2012-02-01

    The formation of biofilm by anaerobic, Gram-negative bacteria in the subgingival crevice plays an important role in the development of chronic periodontitis. The aim of this study was to characterize the role of coaggregation between Fusobacterium nucleatum and Prevotella species in biofilm formation. Coaggregation between F. nucleatum and Prevotella species was determined by visual assay. Effect of co-culture of the species on biofilm formation was assessed by crystal violet staining. Effect of soluble factor on biofilm formation was also examined using culture supernatant and two-compartment co-culture separated by a porous membrane. Production of autoinducer-2 (AI-2) by the organisms was evaluated using Vibrio harveyi BB170. Cells of all F. nucleatum strains coaggregated with Prevotella intermedia or Prevotella nigrescens with a score of 1-4. Addition of ethylenediamine tetraacetic acid or l-lysine inhibited coaggregation. Coaggregation disappeared after heating of P. intermedia or P. nigrescens cells, or Proteinase K treatment of P. nigrescens cells. Co-culture of F. nucleatum ATCC 25586 with P. intermedia or P. nigrescens strains increased biofilm formation compared with single culture (p culture with culture supernatant of these strains, however, did not enhance biofilm formation by F. nucleatum. Production of AI-2 in Prevotella species was not related to enhancement of biofilm formation by F. nucleatum. These findings indicate that physical contact by coaggregation of F. nucleatum strains with P. intermedia or P. nigrescens plays a key role in the formation of biofilm by these strains. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. A transposon mutant library of Bacillus cereus ATCC 10987 reveals novel genes required for biofilm formation and implicates motility as an important factor for pellicle-biofilm formation.

    Science.gov (United States)

    Okshevsky, Mira; Louw, Matilde Greve; Lamela, Elena Otero; Nilsson, Martin; Tolker-Nielsen, Tim; Meyer, Rikke Louise

    2018-04-01

    Bacillus cereus is one of the most common opportunistic pathogens causing foodborne illness, as well as a common source of contamination in the dairy industry. B. cereus can form robust biofilms on food processing surfaces, resulting in food contamination due to shedding of cells and spores. Despite the medical and industrial relevance of this species, the genetic basis of biofilm formation in B. cereus is not well studied. In order to identify genes required for biofilm formation in this bacterium, we created a library of 5000 +  transposon mutants of the biofilm-forming strain B. cereusATCC 10987, using an unbiased mariner transposon approach. The mutant library was screened for the ability to form a pellicle biofilm at the air-media interface, as well as a submerged biofilm at the solid-media interface. A total of 91 genes were identified as essential for biofilm formation. These genes encode functions such as chemotaxis, amino acid metabolism and cellular repair mechanisms, and include numerous genes not previously known to be required for biofilm formation. Although the majority of disrupted genes are not directly responsible for motility, further investigations revealed that the vast majority of the biofilm-deficient mutants were also motility impaired. This observation implicates motility as a pivotal factor in the formation of a biofilm by B. cereus. These results expand our knowledge of the fundamental molecular mechanisms of biofilm formation by B. cereus. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  18. Inhibitory effect of Ti-Ag alloy on artificial biofilm formation.

    Science.gov (United States)

    Nakajo, Kazuko; Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo; Okuno, Osamu; Sasaki, Keiichi; Takahashi, Nobuhiro

    2014-01-01

    Titanium-silver (Ti-Ag) alloy has been improved for machinability and mechanical properties, but its anti-biofilm properties have not been elucidated yet. Thus, this study aimed to evaluate the effects of Ti-Ag alloy on biofilm formation and bacterial viability in comparison with pure Ti, pure Ag and silver-palladium (Ag-Pd) alloy. Biofilm formation on the metal plates was evaluated by growing Streptococcus mutans and Streptococcus sobrinus in the presence of metal plates. Bactericidal activity was evaluated using a film contact method. There were no significant differences in biofilm formation between pure Ti, pure Ag and Ag-Pd alloy, while biofilm amounts on Ti-20% Ag and Ti-25% Ag alloys were significantly lower (p<0.05). In addition, Ti-Ag alloys and pure Ti were not bactericidal, although pure Ag and Ag-Pd alloy killed bacteria. These results suggest that Ti-20% Ag and Ti-25% Ag alloys are suitable for dental material that suppresses biofilm formation without disturbing healthy oral microflora.

  19. Capsular Polysaccharide Interferes with Biofilm Formation by Pasteurella multocida Serogroup A

    Directory of Open Access Journals (Sweden)

    Briana Petruzzi

    2017-11-01

    Full Text Available Pasteurella multocida is an important multihost animal and zoonotic pathogen that is capable of causing respiratory and multisystemic diseases, bacteremia, and bite wound infections. The glycosaminoglycan capsule of P. multocida is an essential virulence factor that protects the bacterium from host defenses. However, chronic infections (such as swine atrophic rhinitis and the carrier state in birds and other animals may be associated with biofilm formation, which has not been characterized in P. multocida. Biofilm formation by clinical isolates was inversely related to capsule production and was confirmed with capsule-deficient mutants of highly encapsulated strains. Capsule-deficient mutants formed biofilms with a larger biomass that was thicker and smoother than the biofilm of encapsulated strains. Passage of a highly encapsulated, poor-biofilm-forming strain under conditions that favored biofilm formation resulted in the production of less capsular polysaccharide and a more robust biofilm, as did addition of hyaluronidase to the growth medium of all of the strains tested. The matrix material of the biofilm was composed predominately of a glycogen exopolysaccharide (EPS, as determined by gas chromatography-mass spectrometry, nuclear magnetic resonance, and enzymatic digestion. However, a putative glycogen synthesis locus was not differentially regulated when the bacteria were grown as a biofilm or planktonically, as determined by quantitative reverse transcriptase PCR. Therefore, the negatively charged capsule may interfere with biofilm formation by blocking adherence to a surface or by preventing the EPS matrix from encasing large numbers of bacterial cells. This is the first detailed description of biofilm formation and a glycogen EPS by P. multocida.

  20. [Detection of biofilm formation by selected pathogens relevant to the food industry].

    Science.gov (United States)

    Šilhová-Hrušková, L; Moťková, P; Šilha, D; Vytřasová, J

    2015-09-01

    Detection of biofilm formation by microbial pathogens relevant to the food industry and comparison of biofilm formation under different conditions of culture. The following microorganisms were selected for the study: Staphylococcus aureus, Listeria innocua, Listeria ivanovii, Cronobacter sakazakii, Cronobacter muytjensii, Arcobacter butzleri, Arcobacter cryaerophilus, Campylobacter jejuni, and Campylobacter coli. To detect biofilm formation the microtiter plate assay, as described by Christensen and culture on stainless steel coupons were used. The biofilm forming capacity was confirmed in all microorganisms tested, both on the microtiter plates and stainless steel coupons. Biofilm formation was influenced by the culture medium, material used, and culture duration as well as by the test microorganism. It was found that different species and strains of the same genus differ in biofilm formation. Differences were also found between the collection strains and isolates from the environment. Some bacteria tended to form biofilm more readily on the surface of the polyethylene microtiter plates and less readily on stainless steel coupons while others appeared to have an opposite tendency. Some pathogens were able to increase the planktonic cell density in the initial suspension even by three orders of magnitude within 72 hours while producing plenty of biofilm. The study of biofilm formation by high risk pathogens is of utmost importance, not only to the food industry. From the obtained results, it is evident that bacterial biofilms form rapidly (within 24 hours in the present study). Due to their architecture, these biofilms are difficult to eradicate, and therefore, it is crucial to prevent biofilm formation.

  1. The role of Proteus mirabilis cell wall features in biofilm formation.

    Science.gov (United States)

    Czerwonka, Grzegorz; Guzy, Anna; Kałuża, Klaudia; Grosicka, Michalina; Dańczuk, Magdalena; Lechowicz, Łukasz; Gmiter, Dawid; Kowalczyk, Paweł; Kaca, Wiesław

    2016-11-01

    Biofilms formed by Proteus mirabilis strains are a serious medical problem, especially in the case of urinary tract infections. Early stages of biofilm formation, such as reversible and irreversible adhesion, are essential for bacteria to form biofilm and avoid eradication by antibiotic therapy. Adhesion to solid surfaces is a complex process where numerous factors play a role, where hydrophobic and electrostatic interactions with solid surface seem to be substantial. Cell surface hydrophobicity and electrokinetic potential of bacterial cells depend on their surface composition and structure, where lipopolysaccharide, in Gram-negative bacteria, is prevailing. Our studies focused on clinical and laboratory P. mirabilis strains, where laboratory strains have determined LPS structures. Adherence and biofilm formation tests revealed significant differences between strains adhered in early stages of biofilm formation. Amounts of formed biofilm were expressed by the absorption of crystal violet. Higher biofilm amounts were formed by the strains with more negative values of zeta potential. In contrast, high cell surface hydrophobicity correlated with low biofilm amount.

  2. Investigating the link between imipenem resistance and biofilm formation by Pseudomonas aeruginosa.

    Science.gov (United States)

    Musafer, Hadeel K; Kuchma, Sherry L; Naimie, Amanda A; Schwartzman, Joseph D; Al-Mathkhury, Harith J Fahad; O'Toole, George A

    2014-07-01

    Pseudomonas aeruginosa, a ubiquitous environmental organism, is a difficult-to-treat opportunistic pathogen due to its broad-spectrum antibiotic resistance and its ability to form biofilms. In this study, we investigate the link between resistance to a clinically important antibiotic, imipenem, and biofilm formation. First, we observed that the laboratory strain P. aeruginosa PAO1 carrying a mutation in the oprD gene, which confers resistance to imipenem, showed a modest reduction in biofilm formation. We also observed an inverse relationship between imipenem resistance and biofilm formation for imipenem-resistant strains selected in vitro, as well as for clinical isolates. We identified two clinical isolates of P. aeruginosa from the sputum of cystic fibrosis patients that formed robust biofilms, but were sensitive to imipenem (MIC ≤ 2 μg/ml). To test the hypothesis that there is a general link between imipenem resistance and biofilm formation, we performed transposon mutagenesis of these two clinical strains to identify mutants defective in biofilm formation, and then tested these mutants for imipenem resistance. Analysis of the transposon mutants revealed a role for previously described biofilm factors in these clinical isolates of P. aeruginosa, including mutations in the pilY1, pilX, pilW, algC, and pslI genes, but none of the biofilm-deficient mutants became imipenem resistant (MIC ≥ 8 μg/ml), arguing against a general link between biofilm formation and resistance to imipenem. Thus, assessing biofilm formation capabilities of environmental isolates is unlikely to serve as a good predictor of imipenem resistance. We also discuss our findings in light of the limited literature addressing planktonic antibiotic resistance factors that impact biofilm formation.

  3. Blocking of bacterial biofilm formation by a fish protein coating

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2008-01-01

    Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development......, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition...... examined. The biofilm-reducing activity did, however, vary depending on the substratum physicochemical characteristics and the environmental conditions studied. These data illustrate the importance of protein conditioning layers with respect to bacterial biofilm formation and suggest that antiadhesive...

  4. Helicobacter pylori-coccoid forms and biofilm formation

    DEFF Research Database (Denmark)

    Andersen, Leif Percival; Rasmussen, Lone

    2009-01-01

    be detected by PCR in water supplies. There is no substantial evidence for viable H. pylori persisting in water supplies. Epidemiological studies suggest that environmental water is a risk factor for H. pylori infection when compared with tap water, and formation of H. pylori biofilm cannot be excluded....... Helicobacter pylori does not seem to take part in biofilm formation in the oral cavity even though the bacterium may be detected....

  5. Influence of culture conditions for clinically isolated non-albicans Candida biofilm formation.

    Science.gov (United States)

    Tan, Yulong; Leonhard, Matthias; Ma, Su; Schneider-Stickler, Berit

    2016-11-01

    Non-albicans Candida species have been isolated in increasing numbers in patients. Moreover, they are adept at forming biofilms. This study analyzed biofilm formation of clinically isolated non-albicans Candida, including Candida tropicalis, Candida krusei and Candida parapsilosis under the influence of different growth media (RPMI 1640, YPD and BHI) and several culture variables (inoculum concentration, incubation period and feeding conditions). The results showed that culture conditions strongly influenced non-albicans Candida species biofilm formation. YPD and BHI resulted in larger amount of biofilm formation with higher metabolic activity of biofilms. Furthermore, the growth media seems to have varying effects on adhesion and biofilm development. Growth conditions may also influence biofilm formation, which was enhanced when starting the culture with a larger inoculum, longer incubation period and using a fed-batch system. Therefore, the potential influences of external environmental factors should be considered when studying the non-albicans Candida biofilms in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    Full Text Available Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.

  7. Biofilm Formation by Mycobacterium bovis: Influence of Surface Kind and Temperatures of Sanitizer Treatments on Biofilm Control

    Directory of Open Access Journals (Sweden)

    Victoria O. Adetunji

    2014-01-01

    Full Text Available Mycobacterium bovis causes classic bovine tuberculosis, a zoonosis which is still a concern in Africa. Biofilm forming ability of two Mycobacterium bovis strains was assessed on coupons of cement, ceramic, or stainless steel in three different microbiological media at 37°C with agitation for 2, 3, or 4 weeks to determine the medium that promotes biofilm. Biofilm mass accumulated on coupons was treated with 2 sanitizers (sanitizer A (5.5 mg L−1 active iodine and sanitizer B (170.6 g1 alkyl dimethylbenzyl ammonium chloride, 78 g−1 didecyldimethyl ammonium chloride, 107.25 g L−1 glutaraldehyde, 146.25 g L−1 isopropanol, and 20 g L−1 pine oil at 28 and 45°C and in hot water at 85°C for 5 min. Residual biofilms on treated coupons were quantified using crystal violet binding assay. The two strains had a similar ability to form biofilms on the three surfaces. More biofilms were developed in media containing 5% liver extract. Biofilm mass increased as incubation time increased till the 3rd week. More biofilms were formed on cement than on ceramic and stainless steel surfaces. Treatment with hot water at 85°C reduced biofilm mass, however, sanitizing treatments at 45°C removed more biofilms than at 28°C. However, neither treatment completely eliminated the biofilms. The choice of processing surface and temperatures used for sanitizing treatments had an impact on biofilm formation and its removal from solid surfaces.

  8. Cranberry-derived proanthocyanidins prevent formation of Candida albicans biofilms in artificial urine through biofilm- and adherence-specific mechanisms.

    Science.gov (United States)

    Rane, Hallie S; Bernardo, Stella M; Howell, Amy B; Lee, Samuel A

    2014-02-01

    Candida albicans is a common cause of nosocomial urinary tract infections (UTIs) and is responsible for increased morbidity and healthcare costs. Moreover, the US Centers for Medicare & Medicaid Services no longer reimburse for hospital-acquired catheter-associated UTIs. Thus, development of specific approaches for the prevention of Candida urinary infections is needed. Cranberry juice-derived proanthocyanidins (PACs) have efficacy in the prevention of bacterial UTIs, partially due to anti-adherence properties, but there are limited data on their use for the prevention and/or treatment of Candida UTIs. Therefore, we sought to systematically assess the in vitro effect of cranberry-derived PACs on C. albicans biofilm formation in artificial urine. C. albicans biofilms in artificial urine were coincubated with cranberry PACs at serially increasing concentrations and biofilm metabolic activity was assessed using the XTT assay in static microplate and silicone disc models. Cranberry PAC concentrations of ≥16 mg/L significantly reduced biofilm formation in all C. albicans strains tested, with a paradoxical effect observed at high concentrations in two clinical isolates. Further, cranberry PACs were additive in combination with traditional antifungals. Cranberry PACs reduced C. albicans adherence to both polystyrene and silicone. Supplementation of the medium with iron reduced the efficacy of cranberry PACs against biofilms. These findings indicate that cranberry PACs have excellent in vitro activity against C. albicans biofilm formation in artificial urine. We present preliminary evidence that cranberry PAC activity against C. albicans biofilm formation is due to anti-adherence properties and/or iron chelation.

  9. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae.

    Science.gov (United States)

    Brown, Lindsey R; Caulkins, Rachel C; Schartel, Tyler E; Rosch, Jason W; Honsa, Erin S; Schultz-Cherry, Stacey; Meliopoulos, Victoria A; Cherry, Sean; Thornton, Justin A

    2017-01-01

    Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H 2 O 2 . Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms.

  10. Implications of Biofilm Formation on Urological Devices

    Science.gov (United States)

    Cadieux, Peter A.; Wignall, Geoffrey R.; Carriveau, Rupp; Denstedt, John D.

    2008-09-01

    Despite millions of dollars and several decades of research targeted at their prevention and eradication, biofilm-associated infections remain the major cause of urological device failure. Numerous strategies have been aimed at improving device design, biomaterial composition, surface properties and drug delivery, but have been largely circumvented by microbes and their plethora of attachment, host evasion, antimicrobial resistance, and dissemination strategies. This is not entirely surprising since natural biofilm formation has been going on for millions of years and remains a major part of microorganism survival and evolution. Thus, the fact that biofilms develop on and in the biomaterials and tissues of humans is really an extension of this natural tendency and greatly explains why they are so difficult for us to combat. Firstly, biofilm structure and composition inherently provide a protective environment for microorganisms, shielding them from the shear stress of urine flow, immune cell attack and some antimicrobials. Secondly, many biofilm organisms enter a metabolically dormant state that renders them tolerant to those antibiotics and host factors able to penetrate the biofilm matrix. Lastly, the majority of organisms that cause biofilm-associated urinary tract infections originate from our own oral cavity, skin, gastrointestinal and urogenital tracts and therefore have already adapted to many of our host defenses. Ultimately, while biofilms continue to hold an advantage with respect to recurrent infections and biomaterial usage within the urinary tract, significant progress has been made in understanding these dynamic microbial communities and novel approaches offer promise for their prevention and eradication. These include novel device designs, antimicrobials, anti-adhesive coatings, biodegradable polymers and biofilm-disrupting compounds and therapies.

  11. Elasticity and physico-chemical properties during drinking water biofilm formation.

    Science.gov (United States)

    Abe, Yumiko; Polyakov, Pavel; Skali-Lami, Salaheddine; Francius, Grégory

    2011-08-01

    Atomic force microscope techniques and multi-staining fluorescence microscopy were employed to study the steps in drinking water biofilm formation. During the formation of a conditioning layer, surface hydrophobic forces increased and the range of characteristic hydrophobic forces diversified with time, becoming progressively complex in macromolecular composition, which in return triggered irreversible cellular adhesion. AFM visualization of 1 to 8 week drinking water biofilms showed a spatially discontinuous and heterogeneous distribution comprising an extensive network of filamentous fungi in which biofilm aggregates were embedded. The elastic modulus of 40-day-old biofilms ranged from 200 to 9000 kPa, and the biofilm deposits with a height >0.5 μm had an elastic modulus water biofilms were composed of a soft top layer and a basal layer with significantly higher elastic modulus values falling in the range of fungal elasticity.

  12. Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Maria José Alves

    2014-08-01

    Full Text Available Microorganisms can colonize a wide variety of medical devices, putting patients in risk for local and systemic infectious complications, including local-site infections, catheter-related bloodstream infections, and endocarditis. These microorganisms are able to grow adhered to almost every surface, forming architecturally complex communities termed biofilms. The use of natural products has been extremely successful in the discovery of new medicine, and mushrooms could be a source of natural antimicrobials. The present study reports the capacity of wild mushroom extracts to inhibit in vitro biofilm formation by multi-resistant bacteria. Four Gram-negative bacteria biofilm producers (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Acinetobacter baumannii isolated from urine were used to verify the activity of Russula delica, Fistulina hepatica, Mycena rosea, Leucopaxilus giganteus, and Lepista nuda extracts. The results obtained showed that all tested mushroom extracts presented some extent of inhibition of biofilm production. Pseudomonas aeruginosa was the microorganism with the highest capacity of biofilm production, being also the most susceptible to the extracts inhibition capacity (equal or higher than 50%. Among the five tested extracts against E. coli, Leucopaxillus giganteus (47.8% and Mycenas rosea (44.8% presented the highest inhibition of biofilm formation. The extracts exhibiting the highest inhibitory effect upon P. mirabilis biofilm formation were Sarcodon imbricatus (45.4% and Russula delica (53.1%. Acinetobacter baumannii was the microorganism with the lowest susceptibility to mushroom extracts inhibitory effect on biofilm production (highest inhibition—almost 29%, by Russula delica extract. This is a pioneer study since, as far as we know, there are no reports on the inhibition of biofilm production by the studied mushroom extracts and in particular against multi-resistant clinical isolates; nevertheless, other

  13. Streptococcus suis Serotype 2 Biofilms Inhibit the Formation of Neutrophil Extracellular Traps.

    Science.gov (United States)

    Ma, Fang; Yi, Li; Yu, Ningwei; Wang, Guangyu; Ma, Zhe; Lin, Huixing; Fan, Hongjie

    2017-01-01

    Invasive infections caused by Streptococcus suis serotype 2 (SS2) has emerged as a clinical problem in recent years. Neutrophil extracellular traps (NETs) are an important mechanism for the trapping and killing of pathogens that are resistant to phagocytosis. Biofilm formation can protect bacteria from being killed by phagocytes. Until now, there have only been a few studies that focused on the interactions between bacterial biofilms and NETs. SS2 in both a biofilm state and a planktonic cell state were incubated with phagocytes and NETs, and bacterial survival was assessed. DNase I and cytochalasin B were used to degrade NET DNA or suppress phagocytosis, respectively. Extracellular DNA was stained with impermeable fluorescent dye to quantify NET formation. Biofilm formation increased up to 6-fold in the presence of neutrophils, and biofilms were identified in murine tissue. Both planktonic and biofilm cells induced neutrophils chemotaxis to the infection site, with neutrophils increasing by 85.1 and 73.8%, respectively. The bacteria in biofilms were not phagocytized. The bactericidal efficacy of NETs on the biofilms and planktonic cells were equal; however, the biofilm extracellular matrix can inhibit NET release. Although biofilms inhibit NETs release, NETs appear to be an important mechanism to eliminate SS2 biofilms. This knowledge advances the understanding of biofilms and may aid in the development of treatments for persistent infections with a biofilm component.

  14. Biofilm Formation by Bacteria Isolated from Intravenous Catheters

    Directory of Open Access Journals (Sweden)

    Sina Hedayati

    2015-10-01

    Full Text Available Background: Reports on the association of nosocomial bacterial infections with indwelling medical devices such as intravenous catheters (IVC has increased in recent years. The potential to form biofilm on these devices seems to be the main reason for establishment of such infections. The aim of this study was to measure the potential of biofilm formation by bacterialisolates from IVCs.Methods: Seventy-one IVCs were collected from hospitalized patients in ICU, NICU, hematology and oncology wards at Taleghani Hospital from Jan 2010 to Jan 2011. The bacterial isolates were identified using the standard biochemical tests and the potential to form biofilms was determined by the microtiter plate assay method (MTP and colony morphology using Congo red agar plates (CRA.Results: Overall, 54 (71% IVCs were colonized and 76 bacteria were isolated among which, 64 (84.2% were coagulase negative staphylococci (CoNS, 3 (3.9% S. aureus, 3 (3.9% Enterococcus spp., 2 (2.6% E. coli and 4 (5.3% were miscellaneous isolates not further identified. Among the CoNS, biofilm formation was observed in 68.7% and 82.8% of bacteriausing MTP and CRA methods, respectively. S. aureus and E. coli isolates also were biofilm producers but Enterococcus and other unknown isolates were biofilm negative.Conclusions: Our results confirm that the prevalent biofilm forming bacteria on IVCs were CoNS and that was the reason for high rates of nosocomial infections.

  15. Fibrinogen-Induced Streptococcus mutans Biofilm Formation and Adherence to Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Telma Blanca Lombardo Bedran

    2013-01-01

    Full Text Available Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis.

  16. Coexistence facilitates interspecific biofilm formation in complex microbial communities

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Røder, Henriette Lyng; Russel, Jakob

    2016-01-01

    Social interactions in which bacteria respond to one another by modifying their phenotype are central determinants of microbial communities. It is known that interspecific interactions influence the biofilm phenotype of bacteria; a phenotype that is central to the fitness of bacteria. However......, the underlying role of fundamental ecological factors, specifically coexistence and phylogenetic history, in biofilm formation remains unclear. This study examines how social interactions affect biofilm formation in multi-species co-cultures from five diverse environments. We found prevalence of increased...

  17. Adaptation to copper stress influences biofilm formation in Alteromonas macleodii.

    Science.gov (United States)

    Cusick, Kathleen D; Dale, Jason R; Fitzgerald, Lisa A; Little, Brenda J; Biffinger, Justin C

    2017-07-01

    An Alteromonas macleodii strain was isolated from copper-containing coupons incubated in surface seawater (Key West, FL, USA). In addition to the original isolate, a copper-adapted mutant was created and maintained with 0.78 mM Cu 2+ . Biofilm formation was compared between the two strains under copper-amended and low-nutrient conditions. Biofilm formation was significantly increased in the original isolate under copper amendment, while biofilm formation was significantly higher in the mutant under low-nutrient conditions. Biofilm expression profiles of diguanylate cyclase (DGC) genes, as well as genes involved in secretion, differed between the strains. Comparative genomic analysis demonstrated that both strains possessed a large number of gene attachment harboring cyclic di-GMP synthesis and/or degradation domains. One of the DGC genes, induced at very high levels in the mutant, possessed a degradation domain in the original isolate that was lacking in the mutant. The genetic and transcriptional mechanisms contributing to biofilm formation are discussed.

  18. Lactobacilli : Important in biofilm formation on voice prostheses

    NARCIS (Netherlands)

    Buijssen, Kevin J. D. A.; Harmsen, Hermie J. M.; van der Mei, Henny C.; Busscher, Henk J.; van der Laan, Bernard F. A. M.

    OBJECTIVE: We sought to identify bacterial strains responsible for biofilm formation on silicone rubber voice prostheses. STUDY DESIGN: We conducted an analysis of the bacterial population in biofilms on used silicone rubber voice prostheses by using new microbiological methods. METHODS: Two

  19. Relative Abundances of Candida albicans and Candida glabrata in In Vitro Coculture Biofilms Impact Biofilm Structure and Formation.

    Science.gov (United States)

    Olson, Michelle L; Jayaraman, Arul; Kao, Katy C

    2018-04-15

    Candida is a member of the normal human microbiota and often resides on mucosal surfaces such as the oral cavity or the gastrointestinal tract. In addition to their commensality, Candida species can opportunistically become pathogenic if the host microbiota is disrupted or if the host immune system becomes compromised. An important factor for Candida pathogenesis is its ability to form biofilm communities. The two most medically important species- Candida albicans and Candida glabrata -are often coisolated from infection sites, suggesting the importance of Candida coculture biofilms. In this work, we report that biofilm formation of the coculture population depends on the relative ratio of starting cell concentrations of C. albicans and C. glabrata When using a starting ratio of C. albicans to C. glabrata of 1:3, ∼6.5- and ∼2.5-fold increases in biofilm biomass were observed relative to those of a C. albicans monoculture and a C. albicans / C. glabrata ratio of 1:1, respectively. Confocal microscopy analysis revealed the heterogeneity and complex structures composed of long C. albicans hyphae and C. glabrata cell clusters in the coculture biofilms, and reverse transcription-quantitative PCR (qRT-PCR) studies showed increases in the relative expression of the HWP1 and ALS3 adhesion genes in the C. albicans / C. glabrata 1:3 biofilm compared to that in the C. albicans monoculture biofilm. Additionally, only the 1:3 C. albicans / C. glabrata biofilm demonstrated an increased resistance to the antifungal drug caspofungin. Overall, the results suggest that interspecific interactions between these two fungal pathogens increase biofilm formation and virulence-related gene expression in a coculture composition-dependent manner. IMPORTANCE Candida albicans and Candida glabrata are often coisolated during infection, and the occurrence of coisolation increases with increasing inflammation, suggesting possible synergistic interactions between the two Candida species in

  20. Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal

    DEFF Research Database (Denmark)

    Gjermansen, Morten; Ragas, Paula Cornelia; Tolker-Nielsen, Tim

    2006-01-01

    Microbial biofilm formation often causes problems in medical and industrial settings, and knowledge about the factors that are involved in biofilm development and dispersion is useful for creating strategies to control the processes. In this report, we present evidence that proteins with GGDEF...... and EAL domains are involved in the regulation of biofilm formation and biofilm dispersion in Pseudomonas putida. Overexpression in P. putida of the Escherichia coli YedQ protein, which contains a GGDEF domain, resulted in increased biofilm formation. Overexpression in P. putida of the E. coli Yhj......H protein, which contains an EAL domain, strongly inhibited biofilm formation. Induction of YhjH expression in P. putida cells situated in established biofilms led to rapid dispersion of the biofilms. These results support the emerging theme that GGDEF-domain and EAL-domain proteins are involved...

  1. Role of Multicellular Aggregates in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Kasper N. Kragh

    2016-03-01

    Full Text Available In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation.

  2. Identification of Genes Involved in Polysaccharide-Independent Staphylococcus aureus Biofilm Formation

    Science.gov (United States)

    Boles, Blaise R.; Thoendel, Matthew; Roth, Aleeza J.; Horswill, Alexander R.

    2010-01-01

    Staphylococcus aureus is a potent biofilm former on host tissue and medical implants, and biofilm growth is a critical virulence determinant for chronic infections. Recent studies suggest that many clinical isolates form polysaccharide-independent biofilms. However, a systematic screen for defective mutants has not been performed to identify factors important for biofilm formation in these strains. We created a library of 14,880 mariner transposon mutants in a S. aureus strain that generates a proteinaceous and extracellular DNA based biofilm matrix. The library was screened for biofilm defects and 31 transposon mutants conferred a reproducible phenotype. In the pool, 16 mutants overproduced extracellular proteases and the protease inhibitor α2-macroglobulin restored biofilm capacity to 13 of these mutants. The other 15 mutants in the pool displayed normal protease levels and had defects in genes involved in autolysis, osmoregulation, or uncharacterized membrane proteins. Two transposon mutants of interest in the GraRS two-component system and a putative inositol monophosphatase were confirmed in a flow cell biofilm model, genetically complemented, and further verified in a community-associated methicillin-resistant S. aureus (CA-MRSA) isolate. Collectively, our screen for biofilm defective mutants identified novel loci involved in S. aureus biofilm formation and underscored the importance of extracellular protease activity and autolysis in biofilm development. PMID:20418950

  3. Chicken Juice Enhances Surface Attachment and Biofilm Formation of Campylobacter jejuni

    Science.gov (United States)

    Brown, Helen L.; Reuter, Mark; Salt, Louise J.; Cross, Kathryn L.; Betts, Roy P.

    2014-01-01

    The bacterial pathogen Campylobacter jejuni is primarily transmitted via the consumption of contaminated foodstuffs, especially poultry meat. In food processing environments, C. jejuni is required to survive a multitude of stresses and requires the use of specific survival mechanisms, such as biofilms. An initial step in biofilm formation is bacterial attachment to a surface. Here, we investigated the effects of a chicken meat exudate (chicken juice) on C. jejuni surface attachment and biofilm formation. Supplementation of brucella broth with ≥5% chicken juice resulted in increased biofilm formation on glass, polystyrene, and stainless steel surfaces with four C. jejuni isolates and one C. coli isolate in both microaerobic and aerobic conditions. When incubated with chicken juice, C. jejuni was both able to grow and form biofilms in static cultures in aerobic conditions. Electron microscopy showed that C. jejuni cells were associated with chicken juice particulates attached to the abiotic surface rather than the surface itself. This suggests that chicken juice contributes to C. jejuni biofilm formation by covering and conditioning the abiotic surface and is a source of nutrients. Chicken juice was able to complement the reduction in biofilm formation of an aflagellated mutant of C. jejuni, indicating that chicken juice may support food chain transmission of isolates with lowered motility. We provide here a useful model for studying the interaction of C. jejuni biofilms in food chain-relevant conditions and also show a possible mechanism for C. jejuni cell attachment and biofilm initiation on abiotic surfaces within the food chain. PMID:25192991

  4. Biofilm formation in long-term central venous catheters in children with cancer

    DEFF Research Database (Denmark)

    Handrup, Mette Møller; Fuursted, Kurt; Funch, Peter

    2012-01-01

    Taurolidine has demonstrated inhibition of biofilm formation in vitro. The aim of this study was to compare the effect of catheter locking with taurolidine vs heparin in biofilm formation in central venous catheters. Forty-eight children with cancer were randomized to catheter locking by heparin (n...... = 22) or taurolidine (n = 26), respectively. After removal, catheters were examined by standardized scanning electron microscopy to assess quantitative biofilm formation. Biofilm was present if morphologically typical structures and bacterial cells were identified. Quantitative and semi...... in the intraluminal biofilm formation and the rate of bacterial colonization detected by scanning electron microscopy in the two groups....

  5. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms.

    Science.gov (United States)

    Schwartz, Kelly; Ganesan, Mahesh; Payne, David E; Solomon, Michael J; Boles, Blaise R

    2016-01-01

    Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  6. The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes.

    Science.gov (United States)

    Lemon, Katherine P; Freitag, Nancy E; Kolter, Roberto

    2010-08-01

    Listeria monocytogenes is a food-borne facultative intracellular pathogen. It is widespread in the environment and has several distinct life-styles. The key transcriptional activator PrfA positively regulates L. monocytogenes virulence genes to mediate the transition from extracellular, flagellum-propelled cell to intracellular pathogen. Here we report the first evidence that PrfA also has a significant positive impact on extracellular biofilm formation. Mutants lacking prfA were defective in surface-adhered biofilm formation. The DeltaprfA mutant exhibited wild-type flagellar motility, and its biofilm defect occurred after initial surface adhesion. We also observed that mutations that led to the constitutive expression of PrfA-dependent virulence genes had a minimal impact on biofilm formation. Furthermore, biofilm development was enhanced in a mutant encoding a PrfA protein variant unable to fully transition from the extracellular form to the virulent, intracellular activity conformation. These results indicate that PrfA positively regulates biofilm formation and suggest that PrfA has a global role in modulating the life-style of L. monocytogenes. The requirement of PrfA for optimal biofilm formation may provide selective pressure to maintain this critical virulence regulator when L. monocytogenes is outside host cells in the environment.

  7. The interconnection between biofilm formation and horizontal gene transfer

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Burmølle, Mette; Hansen, Lars H.

    2012-01-01

    Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because....... Biofilms, furthermore, promote plasmid stability and may enhance the host range of mobile genetic elements that are transferred horizontally. Plasmids, on the other hand, are very well suited to promote the evolution of social traits such as biofilm formation. This, essentially, transpires because plasmids...... of their believed importance in the understanding of the adaptation and subsequent evolution of social traits in bacteria. Here, we discuss current evidence for such interconnectedness centred on plasmids. Horizontal transfer rates are typically higher in biofilm communities compared with those in planktonic states...

  8. Isolate-specific effects of patulin, penicillic Acid and EDTA on biofilm formation and growth of dental unit water line biofilm isolates.

    Science.gov (United States)

    Liaqat, Iram; Bachmann, Robert Thomas; Sabri, Anjum Nasim; Edyvean, Robert G J

    2010-08-01

    Dental unit water line (DUWL) contamination by opportunistic pathogens has its significance in nosocomial infection of patients, health care workers, and life-threatening infections to immunocompromized persons. Recently, the quorum sensing (QS) system of DUWL isolates has been found to affect their biofilm-forming ability, making it an attractive target for antimicrobial therapy. In this study, the effect of two quorum-sensing inhibitory compounds (patulin; PAT, penicillic acid; PA) and EDTA on planktonic growth, AI-2 signalling and in vitro biofilm formation of Pseudomonas aeruginosa, Achromobacter xylosoxidans and Achromobacter sp. was monitored. Vibrio harveyi BB170 bioassay and crystal violet staining methods were used to detect the AI-2 monitoring and biofilm formation in DUWL isolates, respectively. The V. harveyi BB170 bioassay failed to induce bioluminescence in A. xylosoxidans and Achromobacter sp., while P. aeruginosa showed AI-2 like activity suggesting the need of some pretreatments prior to bioassay. All strains were found to form biofilms within 72 h of incubation. The QSIs/EDTA combination have isolate-specific effects on biofilm formation and in some cases it stimulated biofilm formation as often as it was inhibited. However, detailed information about the anti-biofilm effect of these compounds is still lacking.

  9. Biofilm Formation of Staphylococcus aureus on Various Surfaces and Their Resistance to Chlorine Sanitizer.

    Science.gov (United States)

    Lee, Jung-Su; Bae, Young-Min; Lee, Sook-Young; Lee, Sun-Young

    2015-10-01

    This study investigated the effect of material types (polystyrene, polypropylene, glass, and stainless steel) and glucose addition on Staphylococcus aureus biofilm formation, and the relationship between biofilm formation measured by crystal violet (CV) staining and the number of biofilm cells determined by cell counts was studied. We also evaluated the efficacy of chlorine sanitizer on inhibiting various different types of S. aureus biofilms on the surface of stainless steel. Levels of biofilm formation of S. aureus were higher on hydrophilic surfaces (glass and stainless steel) than on hydrophobic surfaces (polypropylene and polystyrene). With the exception of biofilm formed on glass, the addition of glucose in broth significantly increased the biofilm formation of S. aureus on all surfaces and for all tested strains (P ≤ 0.05). The number of biofilm cells was not correlated with the biomass of the biofilms determined using the CV staining method. The efficacy of chlorine sanitizer against biofilm of S. aureus was not significantly different depending on types of biofilm (P > 0.05). Therefore, further studies are needed in order to determine an accurate method quantifying levels of bacterial biofilm and to evaluate the resistance of bacterial biofilm on the material surface. Biofilm formation of Staphylococcus aureus on the surface was different depending on the surface characteristics and S. aureus strains. There was low correlation between crystal violet staining method and viable counts technique for measuring levels of biofilm formation of S. aureus on the surfaces. These results could provide helpful information for finding and understanding the quantification method and resistance of bacterial biofilm on the surface. © 2015 Institute of Food Technologists®

  10. The Yin and Yang of SagS: Distinct Residues in the HmsP Domain of SagS Independently Regulate Biofilm Formation and Biofilm Drug Tolerance

    Science.gov (United States)

    Dingemans, Jozef; Poudyal, Bandita

    2018-01-01

    ABSTRACT The formation of inherently drug-tolerant biofilms by the opportunistic pathogen Pseudomonas aeruginosa requires the sensor-regulator hybrid SagS, with ΔsagS biofilms being unstructured and exhibiting increased antimicrobial susceptibility. Recent findings indicated SagS to function as a switch to control biofilm formation and drug tolerance independently. Moreover, findings suggested the periplasmic sensory HmsP domain of SagS is likely to be the control point in the regulation of biofilm formation and biofilm cells transitioning to a drug-tolerant state. We thus asked whether specific amino acid residues present in the HmsP domain contribute to the switch function of SagS. HmsP domain residues were therefore subjected to alanine replacement mutagenesis to identify substitutions that block the sensory function(s) of SagS, which is apparent by attached cells being unable to develop mature biofilms and/or prevent transition to an antimicrobial-resistant state. Mutant analyses revealed 32 residues that only contribute to blocking one sensory function. Moreover, amino acid residues affecting attachment and subsequent biofilm formation but not biofilm tolerance also impaired histidine kinase signaling via BfiS. In contrast, residues affecting biofilm drug tolerance but not attachment and subsequent biofilm formation negatively impacted BrlR transcription factor levels. Structure prediction suggested the two sets of residues affecting sensory functions are located in distinct areas that were previously described as being involved in ligand binding interactions. Taken together, these studies identify the molecular basis for the dual regulatory function of SagS. IMPORTANCE The membrane-bound sensory protein SagS plays a pivotal role in P. aeruginosa biofilm formation and biofilm cells gaining their heightened resistance to antimicrobial agents, with SagS being the control point at which both pathways diverge. Here, we demonstrate for the first time that the two

  11. Biofilm formation in geometries with different surface curvature and oxygen availability

    International Nuclear Information System (INIS)

    Chang, Ya-Wen; Fragkopoulos, Alexandros A; Kim, Harold D; Fernández-Nieves, Alberto; Marquez, Samantha M; Angelini, Thomas E

    2015-01-01

    Bacteria in the natural environment exist as interface-associated colonies known as biofilms . Complex mechanisms are often involved in biofilm formation and development. Despite the understanding of the molecular mechanisms involved in biofilm formation, it remains unclear how physical effects in standing cultures influence biofilm development. The topology of the solid interface has been suggested as one of the physical cues influencing bacteria-surface interactions and biofilm development. Using the model organism Bacillus subtilis, we study the transformation of swimming bacteria in liquid culture into robust biofilms in a range of confinement geometries (planar, spherical and toroidal) and interfaces (air/water, silicone/water, and silicone elastomer/water). We find that B. subtilis form submerged biofilms at both solid and liquid interfaces in addition to air-water pellicles. When confined, bacteria grow on curved surfaces of both positive and negative Gaussian curvature. However, the confinement geometry does affect the resulting biofilm roughness and relative coverage. We also find that the biofilm location is governed by oxygen availability as well as by gravitational effects; these compete with each other in some situations. Overall, our results demonstrate that confinement geometry is an effective way to control oxygen availability and subsequently biofilm growth. (paper)

  12. Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation.

    Directory of Open Access Journals (Sweden)

    Blaise R Boles

    2010-04-01

    Full Text Available Staphylococcus aureus is a potent biofilm former on host tissue and medical implants, and biofilm growth is a critical virulence determinant for chronic infections. Recent studies suggest that many clinical isolates form polysaccharide-independent biofilms. However, a systematic screen for defective mutants has not been performed to identify factors important for biofilm formation in these strains. We created a library of 14,880 mariner transposon mutants in a S. aureus strain that generates a proteinaceous and extracellular DNA based biofilm matrix. The library was screened for biofilm defects and 31 transposon mutants conferred a reproducible phenotype. In the pool, 16 mutants overproduced extracellular proteases and the protease inhibitor alpha(2-macroglobulin restored biofilm capacity to 13 of these mutants. The other 15 mutants in the pool displayed normal protease levels and had defects in genes involved in autolysis, osmoregulation, or uncharacterized membrane proteins. Two transposon mutants of interest in the GraRS two-component system and a putative inositol monophosphatase were confirmed in a flow cell biofilm model, genetically complemented, and further verified in a community-associated methicillin-resistant S. aureus (CA-MRSA isolate. Collectively, our screen for biofilm defective mutants identified novel loci involved in S. aureus biofilm formation and underscored the importance of extracellular protease activity and autolysis in biofilm development.

  13. Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers

    International Nuclear Information System (INIS)

    Kevin Kim, Minyoung; Drescher, Knut; Shun Pak, On; Stone, Howard A; Bassler, Bonnie L

    2014-01-01

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development of S. aureus. We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in flows with curved streamlines to bridge the distances between corners, we developed a mathematical model based on resistive force theory of slender filaments. Understanding physical aspects of biofilm formation of S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen. (paper)

  14. Kaempferol Inhibits the Primary Attachment Phase of Biofilm Formation in Staphylococcus aureus.

    Science.gov (United States)

    Ming, Di; Wang, Dacheng; Cao, Fengjiao; Xiang, Hua; Mu, Dan; Cao, Junjie; Li, Bangbang; Zhong, Ling; Dong, Xiaoyun; Zhong, Xiaobo; Wang, Lin; Wang, Tiedong

    2017-01-01

    The ability to form biofilms on surfaces makes Staphylococcus aureus the main pathogenic factor in implanted medical device infections. The aim of this study was to discover a biofilm inhibitor distinct from the antibiotics used to prevent infections resulting from S. aureus biofilms. Here, we describe kaempferol, a small molecule with anti-biofilm activity that specifically inhibited the formation of S. aureus biofilms. Crystal violet (CV) staining and fluorescence microscopy clearly showed that 64 μg/ml kaempferol inhibited biofilm formation by 80%. Meanwhile, the minimum inhibitory concentration (MIC) and growth curve results indicated that kaempferol had no antibacterial activity against the tested bacterial strain. Kaempferol inhibited the primary attachment phase of biofilm formation, as determined by a fibrinogen-binding assay. Moreover, a fluorescence resonance energy transfer (FRET) assay and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analyses revealed that kaempferol reduced the activity of S. aureus sortaseA (SrtA) and the expression of adhesion-related genes. Based on these results, kaempferol provides a starting point for the development of novel anti-biofilm drugs, which may decrease the risk of bacterial drug resistance, to prevent S. aureus biofilm-related infections.

  15. Evaluation of various metallic coatings on steel to mitigate biofilm formation.

    Science.gov (United States)

    Kanematsu, Hideyuki; Ikigai, Hajime; Yoshitake, Michiko

    2009-02-01

    In marine environments and water systems, it is easy for many structures to form biofilms on their surfaces and to be deteriorated due to the corrosion caused by biofilm formation by bacteria. The authors have investigated the antibacterial effects of metallic elements in practical steels so far to solve food-related problems, using Escherichia coli and Staphylococcus aureus. However, from the viewpoint of material deterioration caused by bacteria and their antifouling measures, we should consider the biofilm behavior as aggregate rather than individual bacterium. Therefore, we picked up Pseudomonas aeruginosa and Pseudoalteromonas carageenovara in this study, since they easily form biofilms in estuarine and marine environments. We investigated what kind of metallic elements could inhibit the biofilm formation at first and then discussed how the thin films of those inhibitory elements on steels could affect biofilm formation. The information would lead to the establishment of effective antifouling measures against corrosion in estuarine and marine environments.

  16. Evaluation of Various Metallic Coatings on Steel to Mitigate Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Hajime Ikigai

    2009-02-01

    Full Text Available In marine environments and water systems, it is easy for many structures to form biofilms on their surfaces and to be deteriorated due to the corrosion caused by biofilm formation by bacteria. The authors have investigated the antibacterial effects of metallic elements in practical steels so far to solve food-related problems, using Escherichia coli and Staphylococcus aureus. However, from the viewpoint of material deterioration caused by bacteria and their antifouling measures, we should consider the biofilm behavior as aggregate rather than individual bacterium. Therefore, we picked up Pseudomonas aeruginosa and Pseudoalteromonas carageenovara in this study, since they easily form biofilms in estuarine and marine environments. We investigated what kind of metallic elements could inhibit the biofilm formation at first and then discussed how the thin films of those inhibitory elements on steels could affect biofilm formation. The information would lead to the establishment of effective antifouling measures against corrosion in estuarine and marine environments.

  17. Synergistic effect on biofilm formation between Fusobacterium nucleatum and Capnocytophaga ochracea.

    Science.gov (United States)

    Okuda, Tamaki; Okuda, Katsuji; Kokubu, Eitoyo; Kawana, Tomoko; Saito, Atsushi; Ishihara, Kazuyuki

    2012-02-01

    The formation of dental plaque biofilm by specific Gram-negative rods and spirochetes plays an important role in the development of periodontal disease. The aim of this study was to characterize biofilm formation by Fusobacterium nucleatum and Capnocytophaga ochracea. Coaggregation between F. nucleatum and Capnocytophaga species was determined by visual assay. Biofilm formation was assessed by crystal violet staining. Enhancement of biofilm formation by F. nucleatum via soluble factor of C. ochracea was evaluated by addition of culture supernatant and a two-compartment separated co-culture system. Production of autoinducer-2 by the tested organisms was evaluated using Vibrio harveyi BB170. F. nucleatum strains coaggregated with C. ochracea ATCC 33596 or ONO-26 strains. Ethylenediamine tetraacetic acid, N-acetyl-d-galactosamine or lysine inhibited coaggregation. Heating or proteinase K treatment of F. nucleatum cells affected coaggregation, whereas the same treatment of C. ochracea cells did not. Co-culture of F. nucleatum with C. ochracea in the same well resulted in a statistically significant increase in biofilm formation. Enhancement of F. nucleatum biofilm formation by a soluble component of C. ochracea was observed using the two-compartment co-culture system (P culture supernatant of C. ochracea (P < 0.01). The present findings indicate that induction of coaggregation and intracellular interaction by release of a diffusible molecule by C. ochracea play a significant role in the formation of biofilm by F. nucleatum and C. ochracea. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Fimbriae have distinguishable roles in Proteus mirabilis biofilm formation.

    Science.gov (United States)

    Scavone, Paola; Iribarnegaray, Victoria; Caetano, Ana Laura; Schlapp, Geraldine; Härtel, Steffen; Zunino, Pablo

    2016-07-01

    Proteus mirabilis is one of the most common etiological agents of complicated urinary tract infections, especially those associated with catheterization. This is related to the ability of P. mirabilis to form biofilms on different surfaces. This pathogen encodes 17 putative fimbrial operons, the highest number found in any sequenced bacterial species so far. The present study analyzed the role of four P. mirabilis fimbriae (MR/P, UCA, ATF and PMF) in biofilm formation using isogenic mutants. Experimental approaches included migration over catheter, swimming and swarming motility, the semiquantitative assay based on adhesion and crystal violet staining, and biofilm development by immunofluorescence and confocal microscopy. Different assays were performed using LB or artificial urine. Results indicated that the different fimbriae contribute to the formation of a stable and functional biofilm. Fimbriae revealed particular associated roles. First, all the mutants showed a significantly reduced ability to migrate across urinary catheter sections but neither swimming nor swarming motility were affected. However, some mutants formed smaller biofilms compared with the wild type (MRP and ATF) while others formed significantly larger biofilms (UCA and PMF) showing different bioarchitecture features. It can be concluded that P. mirabilis fimbriae have distinguishable roles in the generation of biofilms, particularly in association with catheters. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation

    Directory of Open Access Journals (Sweden)

    Mohammad Hassani Sangani

    2015-04-01

    Full Text Available Objective(s: Bacterial biofilm formation causes many persistent and chronic infections. The matrix protects biofilm bacteria from exposure to innate immune defenses and antibiotic treatments. The purpose of this study was to evaluate the biofilm formation of clinical isolates of Pseudomonas aeruginosa and the activity of zinc oxide nanoparticles (ZnO NPs on biofilm. Materials and Methods: After collecting bacteria from clinical samples of hospitalized patients, the ability of organisms were evaluated to create biofilm by tissue culture plate (TCP assay. ZnO NPs were synthesized by sol gel method and the efficacy of different concentrations (50- 350 µg/ml of ZnO NPs was assessed on biofilm formation and also elimination of pre-formed biofilm by using TCP method. Results:The average diameter of synthesized ZnO NPs was 20 nm. The minimum inhibitory concentration of nanoparticles was 150- 158 μg/ml and the minimum bactericidal concentration was higher (325 µg/ml. All 15 clinical isolates of P. aeruginosa were able to produce biofilm. Treating the organisms with nanoparticles at concentrations of 350 μg/ml resulted in more than 94% inhibition in OD reduction%. Molecular analysis showed that the presence of mRNA of pslA gene after treating bacteria with ZnO NPs for 30 minutes. Conclusion: The results showed that ZnO NPs can inhibit the establishment of P. aeruginosa biofilms and have less effective in removing pre-formed biofilm. However the tested nanoparticles exhibited anti-biofilm effect, but mRNA of pslA gene could be still detected in the medium by RT-PCR technique after 30 minutes treatment with ZnO.

  20. Biofilm formation on abiotic surfaces

    DEFF Research Database (Denmark)

    Tang, Lone

    2011-01-01

    Bacteria can attach to any surface in contact with water and proliferate into complex communities enclosed in an adhesive matrix, these communities are called biofilms. The matrix makes the biofilm difficult to remove by physical means, and bacteria in biofilm can survive treatment with many...

  1. A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis

    DEFF Research Database (Denmark)

    Lappann, M.; Claus, H.; van Alen, T.

    2010-01-01

    formation, whereas biofilm formation of cc with low point prevalence (ST-8 cc and ST-11 cc) was eDNA-independent. For initial biofilm formation, a ST-32 cc type strain, but not a ST-11 type strain, utilized eDNA. The release of eDNA was mediated by lytic transglycosylase and cytoplasmic N......-acetylmuramyl-l-alanine amidase genes. In late biofilms, outer membrane phospholipase A-dependent autolysis, which was observed in most cc, but not in ST-8 and ST-11 strains, was required for shear force resistance of microcolonies. Taken together, N. meningitidis evolved two different biofilm formation strategies, an e....... On the contrary, spreaders (ST-11 and ST-8 cc) are unable to use eDNA for biofilm formation and might compensate for poor colonization properties by high transmission rates....

  2. Pseudomonas aeruginosa Biofilm Infections

    DEFF Research Database (Denmark)

    Rybtke, Morten; Hultqvist, Louise Dahl; Givskov, Michael

    2015-01-01

    Studies of biopsies from infectious sites, explanted tissue and medical devises have provided evidence that biofilms are the underlying cause of a variety of tissue-associated and implant-associated recalcitrant human infections. With a need for novel anti-biofilm treatment strategies, research...... in biofilm infection microbiology, biofilm formation mechanisms and biofilm-associated antimicrobial tolerance has become an important area in microbiology. Substantial knowledge about biofilm formation mechanisms, biofilm-associated antimicrobial tolerance and immune evasion mechanisms has been obtained...... through work with biofilms grown in in vitro experimental setups, and the relevance of this information in the context of chronic infections is being investigated by the use of animal models of infection. Because our current in vitro experimental setups and animal models have limitations, new advanced...

  3. Spore formation and toxin production in Clostridium difficile biofilms.

    Science.gov (United States)

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  4. Spore formation and toxin production in Clostridium difficile biofilms.

    Directory of Open Access Journals (Sweden)

    Ekaterina G Semenyuk

    Full Text Available The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA, polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  5. Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Høiby, Niels

    2010-01-01

    Pseudomonas aeruginosa is the best described bacterium with regards to quorum sensing (QS), in vitro biofilm formation and the development of antibiotic tolerance. Biofilms composed of P. aeruginosa are thought to be the underlying cause of many chronic infections, including those in wounds...... and in the lungs of patients with cystic fibrosis. In this review, we provide an overview of the molecular mechanisms involved in QS, QS-enabled virulence, biofilm formation and biofilm-enabled antibiotic tolerance. We now have substantial knowledge of the multicellular behaviour of P. aeruginosa in vitro. A major...

  6. Salmonella biofilms

    NARCIS (Netherlands)

    Castelijn, G.A.A.

    2013-01-01

    Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm

  7. Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones.

    Science.gov (United States)

    Kayumov, Airat R; Khakimullina, Elvina N; Sharafutdinov, Irshad S; Trizna, Elena Y; Latypova, Lilia Z; Thi Lien, Hoang; Margulis, Anna B; Bogachev, Mikhail I; Kurbangalieva, Almira R

    2015-05-01

    Gram-positive bacteria can cause various infections including hospital-acquired infections. While in the biofilm, the resistance of bacteria to both antibiotics and the human immune system is increased causing difficulties in the treatment. Bacillus subtilis, a non-pathogenic Gram-positive bacterium, is widely used as a model organism for studying biofilm formation. Here we investigated the effect of novel synthesized chloro- and bromo-containing 2(5H)-furanones on biofilm formation by B. subtilis. Mucobromic acid (3,4-dibromo-5-hydroxy-2(5H)-furanone) and the two derivatives of mucochloric acid (3,4-dichloro-5-hydroxy-2(5H)-furanone)-F8 and F12-were found to inhibit the growth and to efficiently prevent biofilm formation by B. subtilis. Along with the low production of polysaccharide matrix and repression of the eps operon, strong repression of biofilm-related yqxM also occurred in the presence of furanones. Therefore, our data confirm that furanones affect significantly the regulatory pathway(s) leading to biofilm formation. We propose that the global regulator, Spo0A, is one of the potential putative cellular targets for these compounds.

  8. Adhesion, biofilm formation, cell surface hydrophobicity and antifungal planktonic susceptibility: relationship among Candida spp.

    Directory of Open Access Journals (Sweden)

    Ana Isabel Silva-Dias

    2015-03-01

    Full Text Available We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the CLSI protocol for yeast M27-A3 S4.Yeast cells of non-albicans species exhibit increased ability to adhere and form biofilm. However the correlation between adhesion and biofilm formation varied according to species and also with the methodology used for biofilm assessment. No association was found between strain´s site of isolation or planktonic antifungal susceptibility and adhesion or biofilm formation. Finally CSH seemed to be a good predictor for biofilm formation but not for adhesion.Despite the marked variability registered intra and inter species, C. tropicalis and C. parapsilosis were the species exhibiting high adhesion profile. C. tropicalis, C. guilliermondii and C. krusei revealed higher biofilm formation values in terms of biomass. C. parapsilosis was the species with lower biofilm metabolic activity.

  9. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp.

    Science.gov (United States)

    Silva-Dias, Ana; Miranda, Isabel M; Branco, Joana; Monteiro-Soares, Matilde; Pina-Vaz, Cidália; Rodrigues, Acácio G

    2015-01-01

    We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH) and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the CLSI protocol for yeast M27-A3 S4. Yeast cells of non-albicans species exhibit increased ability to adhere and form biofilm. However, the correlation between adhesion and biofilm formation varied according to species and also with the methodology used for biofilm assessment. No association was found between strain's site of isolation or planktonic antifungal susceptibility and adhesion or biofilm formation. Finally CSH seemed to be a good predictor for biofilm formation but not for adhesion. Despite the marked variability registered intra and inter species, C. tropicalis and C. parapsilosis were the species exhibiting high adhesion profile. C. tropicalis, C. guilliermondii, and C. krusei revealed higher biofilm formation values in terms of biomass. C. parapsilosis was the species with lower biofilm metabolic activity.

  10. Bacterial adhesion and biofilm formation on surfaces of variable roughness and hydrophobicity

    DEFF Research Database (Denmark)

    Tang, Lone; Pillai, Saju; Iversen, Anders

    L.Biofilm formation on surfaces in food production and processing can deteriorate the quality of food products and be a hazard to consumers. The food industry currently uses a number of approaches to either remove biofilm or prevent its formation. Due to the inherent resilience of bacteria...... in biofilm, a particularly attractive approach is the modification of surfaces with the aim to impede the first step in biofilm formation, namely bacterial adhesion. Surface properties such as hydrophobicity, roughness and predisposition for fouling by protein are recognised as important in bacterial...... adhesion. Sol-gel technology and the recent availability of organic modified silicas have lead to development of hybrid organic/inorganic glass ceramic coatings with specialised surface properties. In this study we investigate bacterial adhesion and the subsequent biofilm formation on stainless steel (SS...

  11. [Formation of microbial biofilms in causative agents of acute and chronic pyelonephritis].

    Science.gov (United States)

    Lagun, L V; Atanasova, Iu V; Tapal'skiĭ, D V

    2013-01-01

    Study the intensity of formation of microbial biofilms by Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus strains isolated during various forms of pyelonephritis. 150 clinical isolates of microorganisms isolated from urine ofpatientswith acute and chronic pyelonephritiswere included into the study. Determination of intensity of film-formation was carried out by staining of the formed biofilms by crystal violet with consequent extraction of the dye and measurement of its concentration in washout solution. Among causative agents ofpyelonephritis P. aeruginosa isolates had the maximum film-forming ability. The intensity of biofilm formation of these isolates was 2-3 time higher than staphylococcus and enterobacteria strains. Strains isolated from patients with chronic pyelonephritis by ability to form biofilms significantly surpassed strains isolated from acute pyelonephritis patients. A higher ability to form microbial biofilms for microorganisms--causative agents of pyelonephritis progressing against the background ofurolithiasis was noted. The ability to form biofilms is determined by both causative agent species and character of the infectious process in which this microorganism participates. Intensive formation of biofilms by E. coli, P. aeruginosa, K. pneumoniae, S. aureus clinical isolates may be an important factor of chronization of urinary tract infections.

  12. Study on Hydro-Alcoholic Extract Effect of Pomegranate Peel on Pseudomonas aeruginosa Biofilm Formation

    Directory of Open Access Journals (Sweden)

    R. Habibipour

    2015-10-01

    Full Text Available Introduction & Objective: Microorganisms form biomass as biofilm in response to many factors, in order to adapt to hostile extracellular environments and biocides. Using different herbal compounds are of those strategies to deal with biofilm. It has been proved that plants extracts such as pomegranate, raspberry and chamomile essential oils have anti-biofilm effects. This study aimed to evaluate the effect of different concentrations of black peel pomegranate ex-tract on Pseudomonas aeruginosa biofilm formation. Materials & Methods: In this experimental research the anti-biofilm effect, reducing the amount of biofilm formation and growth kinetics of Pseudomonas aeruginosa in different treatments was measured by microtiter and plate colorimetric crystal violet method. Biofilm formation was also examined using a microscope. Statistical analysis of data obtained from the reading of the ELISA was performed using SPSS software, P value 0.05. Results: Findings of this study showed that bacteria cannot form any biofilm in first 6 hours of incubation, in all treatments. The amount of biofilm formation after 12 hours in 0.01 and 0.05 g/ mL treatments were medium. Among treatments, after 18 and 24 hours of incubation 0.001 g/ mL concentration of pomegranate peel extract had medium and strong inhibitory effect on biofilm formation, respectively. Conclusion: Results of this study showed that biofilm formation and biofilm reduction percent-age is directly related to the duration of exposure of bacteria that could be due to the different phases of growth. Growth kinetics study also revealed that in the majority of treatments the growth was incremental up to about 15 hours and decrement afterwards due to the effective-ness of different treatments. After 18 hours, treatments have greatest influence on biofilm formation. The foregoing has been fully confirmed by the results of microscopic slides. (Sci J Hamadan Univ Med Sci 2015; 22 (3: 195-202

  13. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Margarida Carrolo

    Full Text Available Streptococcus pneumoniae (pneumococcus is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.

  14. Bacterial biofilm formation in different surfaces of food industries

    Directory of Open Access Journals (Sweden)

    Karine Angélica Dalla Costa

    2017-06-01

    Full Text Available The term biofilm describes the sessile microbial life form, characterized by microorganism adhesion to any surface and with the production of extracellular polymeric substances. In food industries, the formation of biofilms results in serious problems, since it can be a contamination source of the food product, compromising the final product quality and consumer health. The aim of this study was to verify the adhesion of biofilms (sessile cells of pathogenic and/or deteriorating bacteria against surfaces of the food industry. The bacterial species tested were Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213, Listeria monocytogenes ATCC 19117 and Salmonella Typhimurium ATCC 14028. It was used stainless steel and polypropylene coupons as contact surfaces. The results demonstrated that P. aeruginosa and S. Typhimurium showed higher biofilm formation capacity. Statistically, there was no difference in count of P. aeruginosa and S. Typhimurium (p > 0.05 cells. The same occurred between L. monocytogenes and S. aureus. However, the counts of P. aeruginosa and S. Typhimurium cells were statistically higher than S. aureus and L. monocytogenes (p < 0.05. By means of scanning electron microscopy it was also found increased adhesion of P. aeruginosa. The results revealed that P. aeruginosa was the bacterial species with higher biofilm formation capacity among the others.

  15. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease

    Science.gov (United States)

    Chao, Yashuan; Marks, Laura R.; Pettigrew, Melinda M.; Hakansson, Anders P.

    2015-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over one million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo. In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of pneumococcal biofilm

  16. [Investigation of biofilm formation properties of staphylococcus isolates].

    Science.gov (United States)

    Öcal, Duygu Nilüfer; Dolapçı, İştar; Karahan, Zeynep Ceren; Tekeli, Alper

    2017-01-01

    Biofilm production is an important virulence factor which allows staphylococci to adhere to medical devices. The principal component of biofilm is a "polysaccharide intercellular adhesin (PIA)" which is composed of a beta-1,6-N-acetylglucosamine polymer synthesized by an enzyme (N-acetylglucosamine transferase) encoded by the ica operon found on the bacterial chromosome. This operon is composed of four genes (A, B, C, and D), and a transposable element IS256. In this study, we aimed to determine the biofilm production characteristics of invasive/non-invasive staphylococcus isolates and different staphylococcus species. Biofilm production of 166 staphylococci was phenotypically investigated on Congo Red Agar (CRA); the presence of icaA, icaD and IS256 genes were investigated by polymerase chain reaction (PCR). 74 of the isolates (44.6%) were identified as methicillin resistant Staphylococcus aureus (MRSA), 25 (15.1%) as methicillin sensitive S.aureus (MSSA), 25 (37.3%) as Staphylococcus hominis, 20 (12%) as S.epidermidis, ten (15%) as Staphylococcus haemolyticus, nine (13.4%) as Staphylococcus capitis, two (3%) Staphylococcus saprophyticus and one (1.5%) as Staphylococcus warnerii. Of the MRSA strains, 52 were isolated from blood and 22 from nose; all MSSA strains were isolated from nose cultures. Coagulase-negative staphylococci (CoNS) strains were composed of invasive and non-invasive strains isolated from nose, catheter tip and blood cultures from patients with catheter. Production with CRA method was found to be statistically significant in invasive isolates (paureus isolates produced biofilm on CRA (paureus when compared with CoNS. Carriage of three genes and biofilm formation capacity of invasive isolates can cause refractory infections and the importance of carriage and hospital infections of these bacteria, it is important to prevent the spread of these isolates. A combination of phenotypic and genotypic tests is recommended for the investigation of biofilm

  17. Effect of chlorhexidine on oral airway biofilm formation of Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    Ünase Büyükkoçak

    2015-12-01

    Full Text Available Objective: Biofilm formation of microorganisms on the surface of airways may lead to supraglottic colonization that may cause lower respiratuar tract infections. Studies searching the efficiency of local disinfectants on biofilm formation are limited. The aim of this study was to investigate the effects of chlorhexidine coated airways on biofilm formation of Staphylococcus epidermidis. Methods: Culture and electron microscopy methods were used for biofilm assessment. Airways were divided into two groups to investigate the effects of chlorhexidine on number of bacteria attached to the airway and biofilm formation. Group 1(control: naive material, S. epidermidis, Group 2: chlorhexidine coated material, S. epidermidis. No process was applied in Group 1. Chlorhexidine gluconate (0.2% was sprayed on the surface of naive material for four seconds and then left to dry in air, in Group to. Number of bacteria attached to the airway were counted by microbiological methods and biofilm formation was shown by Scanning Electron Microscope (SEM. Mann-Whitney u test was performed for statistical analyses. Results: In Group 2, bacteria numbers were 1x102-8x102 cfu/ml, whereas they were 3x103-1x104 cfu/ml in Group 1. Chlorhexidine decreased number of microorganisms attached to the airways with statistical significance (p=0.04. The results of the electron microscopic evaluation were in accordance with the acteriological findings. Conclusion: This study has shown that chlorhexidine coating can successfully reduce the number of adhered bacteria and biofilm formation on airways. J Microbiol Infect Dis 2015;5(4: 162-166

  18. AzaSite® inhibits Staphylococcus aureus and coagulase-negative Staphylococcus biofilm formation in vitro.

    Science.gov (United States)

    Wu, Eric C; Kowalski, Regis P; Romanowski, Eric G; Mah, Francis S; Gordon, Y Jerold; Shanks, Robert M Q

    2010-12-01

    The aim of this study was to analyze the effect of azithromycin (AZM) 1% ophthalmic solution in DuraSite® (AzaSite®) on biofilm formation by Staphylococcus aureus and coagulase-negative staphylococci in vitro. Susceptible and resistant clinical strains (n = 8) of S. aureus and coagulase-negative staphylococci were challenged with serial dilutions of AzaSite® and its components: AZM, benzalkonium chloride (BAK), and the DuraSite drug delivery vehicle. After 20 h of incubation, bacterial growth was quantified using a spectrophotometer (A = 600 nm). Plates were stained with crystal violet and biofilm formation was quantified spectrophotometrically at A = 590 nm. AzaSite® and AZM inhibited bacterial growth (P reduction in biofilm formation (P reduction in biofilm formation at concentrations from 1.25 to 10 mg/mL in most strains. DuraSite® inhibited biofilm formation at concentrations between 10% and 2.5% in all studied strains (P < 0.05), without affecting bacterial growth. BAK inhibited bacterial growth and biofilm formation in all strains between concentrations of 0.042 and 0.375 mg/mL (P < 0.05). AzaSite®, AZM, or BAK prevented biofilm formation by inhibiting growth of AZM-susceptible strains. AzaSite®, AZM, and DuraSite® also reduced biofilm formation at subinhibitory concentrations for growth. Our data indicate that AZM has a moderate inhibitory effect on biofilm formation, whereas DuraSite® appears to play a greater role in the inhibition of staphylococcal biofilm formation by AzaSite®.

  19. Emergent pattern formation in an interstitial biofilm

    Science.gov (United States)

    Zachreson, Cameron; Wolff, Christian; Whitchurch, Cynthia B.; Toth, Milos

    2017-01-01

    Collective behavior of bacterial colonies plays critical roles in adaptability, survivability, biofilm expansion and infection. We employ an individual-based model of an interstitial biofilm to study emergent pattern formation based on the assumptions that rod-shaped bacteria furrow through a viscous environment and excrete extracellular polymeric substances which bias their rate of motion. Because the bacteria furrow through their environment, the substratum stiffness is a key control parameter behind the formation of distinct morphological patterns. By systematically varying this property (which we quantify with a stiffness coefficient γ ), we show that subtle changes in the substratum stiffness can give rise to a stable state characterized by a high degree of local order and long-range pattern formation. The ordered state exhibits characteristics typically associated with bacterial fitness advantages, even though it is induced by changes in environmental conditions rather than changes in biological parameters. Our findings are applicable to a broad range of biofilms and provide insights into the relationship between bacterial movement and their environment, and basic mechanisms behind self-organization of biophysical systems.

  20. Calcium Increases Xylella fastidiosa Surface Attachment, Biofilm Formation, and Twitching Motility

    Science.gov (United States)

    Cruz, Luisa F.; Cobine, Paul A.

    2012-01-01

    Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl2. The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures. PMID:22194297

  1. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation.

    Science.gov (United States)

    Wu, C-C; Lin, C-T; Wu, C-Y; Peng, W-S; Lee, M-J; Tsai, Y-C

    2015-02-01

    Dental caries arises from an imbalance of metabolic activities in dental biofilms developed primarily by Streptococcus mutans. This study was conducted to isolate potential oral probiotics with antagonistic activities against S. mutans biofilm formation from Lactobacillus salivarius, frequently found in human saliva. We analysed 64 L. salivarius strains and found that two, K35 and K43, significantly inhibited S. mutans biofilm formation with inhibitory activities more pronounced than those of Lactobacillus rhamnosus GG (LGG), a prototypical probiotic that shows anti-caries activity. Scanning electron microscopy showed that co-culture of S. mutans with K35 or K43 resulted in significantly reduced amounts of attached bacteria and network-like structures, typically comprising exopolysaccharides. Spot assay for S. mutans indicated that K35 and K43 strains possessed a stronger bactericidal activity against S. mutans than LGG. Moreover, quantitative real-time polymerase chain reaction showed that the expression of genes encoding glucosyltransferases, gtfB, gtfC, and gtfD was reduced when S. mutans were co-cultured with K35 or K43. However, LGG activated the expression of gtfB and gtfC, but did not influence the expression of gtfD in the co-culture. A transwell-based biofilm assay indicated that these lactobacilli inhibited S. mutans biofilm formation in a contact-independent manner. In conclusion, we identified two L. salivarius strains with inhibitory activities on the growth and expression of S. mutans virulence genes to reduce its biofilm formation. This is not a general characteristic of the species, so presents a potential strategy for in vivo alteration of plaque biofilm and caries. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Biofilm Formation Derived from Ambient Air and the Characteristics of Apparatus

    International Nuclear Information System (INIS)

    Kanematsu, H; Kougo, H; Kuroda, D; Itho, H; Ogino, Y; Yamamoto, Y

    2013-01-01

    Biofilm is a kind of thin film on solidified matters, being derived from bacteria. Generally, planktonic bacteria float in aqueous environments, soil or air, most of which can be regarded as oligotrophic environments. Since they have to survive by instinct, they seek for nutrients that would exist on materials surfaces as organic matters. Therefore, bacteria attach materials surfaces reversibly. The attachment and detachment repeat for a while and finally, they attach on them irreversibly and the number of bacteria on them increases. At a threshold number, bacteria produce polymeric matters at the same time by quorum sensing mechanism and the biofilm produces on material surfaces. The biofilm produced in that way generally contains water (more than 80%), EPS (Exopolymeric Substance) and bacteria themselves. And they might bring about many industrial problems, fouling, corrosion etc. Therefore, it is very important for us to control and prevent the biofilm formation properly. However, it is generally very hard to produce biofilm experimentally and constantly in ambient atmosphere on labo scale. The authors invented an apparatus where biofilm could form on specimen's surfaces from house germs in the ambient air. In this experiment, we investigated the basic characteristics of the apparatus, reproducibility, the change of biofilm with experimental time, the quality change of water for biofilm formation and their significance for biofilm research.

  3. Mathematical modelling of CRISPR-Cas system effects on biofilm formation.

    Science.gov (United States)

    Ali, Qasim; Wahl, Lindi M

    2017-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR), linked with CRISPR associated (Cas) genes, can confer adaptive immunity to bacteria, against bacteriophage infections. Thus from a therapeutic standpoint, CRISPR immunity increases biofilm resistance to phage therapy. Recently, however, CRISPR-Cas genes have been implicated in reducing biofilm formation in lysogenized cells. Thus CRISPR immunity can have complex effects on phage-host-lysogen interactions, particularly in a biofilm. In this contribution, we develop and analyse a series of dynamical systems to elucidate and disentangle these interactions. Two competition models are used to study the effects of lysogens (first model) and CRISPR-immune bacteria (second model) in the biofilm. In the third model, the effect of delivering lysogens to a CRISPR-immune biofilm is investigated. Using standard analyses of equilibria, stability and bifurcations, our models predict that lysogens may be able to displace CRISPR-immune bacteria in a biofilm, and thus suggest strategies to eliminate phage-resistant biofilms.

  4. Vibriophages differentially influence biofilm formation by Vibrio anguillarum strains

    DEFF Research Database (Denmark)

    Tan, Demeng; Dahl, Amalie; Middelboe, Mathias

    2015-01-01

    different effects on the biofilm development. Addition of phage ΦH20 to strain BA35 showed efficient control of biofilm formation and density of free-living cells. The interactions between BA35 and ΦH20 were thus characterized by a strong phage control of the phage-sensitive population and subsequent...... against phage infection. By the formation of biofilms, strain PF430-3 created spatial refuges that protected the host from phage infection and allowed coexistence between phage-sensitive cells and lytic phage KVP40. Together, the results demonstrate highly variable phage protection mechanisms in two......-living and surface-associated growth conditions. In this study, we explored in vitro phage-host interactions in two different strains of V. anguillarum (BA35 and PF430-3) during growth in microcolonies, biofilms, and free-living cells. Two vibriophages, ΦH20 (Siphoviridae) and KVP40 (Myoviridae), had completely...

  5. A coverslip-based technique for evaluating Staphylococcus aureus biofilm formation on human plasma

    Directory of Open Access Journals (Sweden)

    Jennifer N Walker

    2012-03-01

    Full Text Available The ability of the opportunistic pathogen, Staphylococcus aureus, to form biofilms is increasingly being viewed as an important contributor to chronic infections. In vitro methods for analyzing S. aureus biofilm formation have focused on bacterial attachment and accumulation on abiotic surfaces, such as in microtiter plate and flow cell assays. Microtiter plates provide a rapid measure of relative biomass levels, while flow cells have limited experimental throughput but are superior for confocal microscopy biofilm visualization. Although these assays have proven effective at identifying mechanisms involved in cell attachment and biofilm accumulation, the significance of these assays in vivo remains unclear. Studies have shown that when medical devices are implanted they are coated with host factors, such as matrix proteins, that facilitate S. aureus attachment and biofilm formation. To address the challenge of integrating existing biofilm assay features with a biotic surface, we have established an in vitro biofilm technique utilizing UV-sterilized coverslips coated with human plasma. The substratum more closely resembles the in vivo state and provides a platform for S. aureus to establish a robust biofilm. Importantly, these coverslips are amenable to confocal microscopy imaging to provide a visual reference of the biofilm growth stage, effectively merging the benefits of the microtiter and flow cell assays. We confirmed the approach using clinical S. aureus isolates and mutants with known biofilm phenotypes. Altogether, this new biofilm assay can be used to assess the function of S. aureus virulence factors associated with biofilm formation and for monitoring the efficacy of biofilm treatment modalities.

  6. The contribution of cell-cell signaling and motility to bacterial biofilm formation

    DEFF Research Database (Denmark)

    Shrout, Joshua D; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    Many bacteria grow attached to a surface as biofilms. Several factors dictate biofilm formation, including responses by the colonizing bacteria to their environment. Here we review how bacteria use cell-cell signaling (also called quorum sensing) and motility during biofilm formation. Specifically...... gene expression important to the production of polysaccharides, rhamnolipid, and other virulence factors. Surface motility affects the assembly and architecture of biofilms, and some aspects of motility are also influenced by quorum sensing. While some genes and their function are specific to P....... aeruginosa, many aspects of biofilm development can be used as a model system to understand how bacteria differentially colonize surfaces....

  7. Bacterial biofilm and associated infections

    Directory of Open Access Journals (Sweden)

    Muhsin Jamal

    2018-01-01

    Full Text Available Microscopic entities, microorganisms that drastically affect human health need to be thoroughly investigated. A biofilm is an architectural colony of microorganisms, within a matrix of extracellular polymeric substance that they produce. Biofilm contains microbial cells adherent to one-another and to a static surface (living or non-living. Bacterial biofilms are usually pathogenic in nature and can cause nosocomial infections. The National Institutes of Health (NIH revealed that among all microbial and chronic infections, 65% and 80%, respectively, are associated with biofilm formation. The process of biofilm formation consists of many steps, starting with attachment to a living or non-living surface that will lead to formation of micro-colony, giving rise to three-dimensional structures and ending up, after maturation, with detachment. During formation of biofilm several species of bacteria communicate with one another, employing quorum sensing. In general, bacterial biofilms show resistance against human immune system, as well as against antibiotics. Health related concerns speak loud due to the biofilm potential to cause diseases, utilizing both device-related and non-device-related infections. In summary, the understanding of bacterial biofilm is important to manage and/or to eradicate biofilm-related diseases. The current review is, therefore, an effort to encompass the current concepts in biofilm formation and its implications in human health and disease.

  8. AI-2 of Aggregatibacter actinomycetemcomitans Inhibits Candida albicans Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Endang W. Bachtiar

    2014-07-01

    Full Text Available Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (AI-2, synthesized by LuxS, that plays an important role in expression of virulence factors, in intra- but also in interspecies communication. The aim of this study was to investigate the role of AI-2 based signaling in the interactions between C. albicans and A. actinomycetemcomitans. A. actinomycetemcomitans adhered to C. albicans and inhibited biofilm formation by means of a molecule that was secreted during growth. C. albicans biofilm formation increased significantly when co-cultured with A. actinomycetemcomitans luxS, lacking AI-2 production. Addition of wild-type-derived spent medium or synthetic AI-2 to spent medium of the luxS strain, restored inhibition of C. albicans biofilm formation to wild-type levels. Addition of synthetic AI-2 significantly inhibited hypha formation of C. albicans possibly explaining the inhibition of biofilm formation. AI-2 of A. actinomycetemcomitans is synthesized by LuxS, accumulates during growth and inhibits C. albicans hypha- and biofilm formation. Identifying the molecular mechanisms underlying the interaction between bacteria and fungi may provide important insight into the balance within complex oral microbial communities.

  9. Effects of commonly used food preservatives on biofilm formation of Streptococcus mutans in vitro.

    Science.gov (United States)

    Al-Ahmad, Ali; Wiedmann-Al-Ahmad, Margit; Auschill, Thorsten Mathias; Follo, Marie; Braun, Gabriele; Hellwig, Elmar; Arweiler, Nicole Birgit

    2008-08-01

    Sodium benzoate (SB), potassium sorbate (PS) and sodium nitrite (SN) are commonly used food preservatives. In this in vitro study, the effects of these substances on biofilm formation of Streptococcus mutans were analysed. In addition to the microtiter plate test (MPT), a biofilm reactor containing bovine enamel slabs (BES) was used to study the influence of food preservatives on biofilm formation in 5 independent periods of 4 days each. These included one period with chlorhexidine digluconate (CHX) as a positive control as well as a period with growth medium alone as a negative control. The vitality of the biofilm on BES was detected using live/dead staining and confocal laser scanning microscopy. Additionally, the number of colony forming units (CFU) was determined. In MPT 0.12% SN significantly reduced the biofilm formation. PS at a concentration of 0.4% tended to inhibit biofilm formation, whereas the inhibition for 0.8% PS was significant. Less inhibition was caused by 0.8% SB. In the biofilm reactor 0.06% of SN, 0.1% of SB and 0.1% PS significantly reduced the covering grade as well as the CFU of the biofilm. Biofilm vitality was reduced significantly by CHX to a level of 32.5% compared to the control. Only SB reduced the vitality to a level of 19.1%. SN and PS showed no influence on biofilm vitality. This study indicates the potential of food preservatives as inhibitory agents in S. mutans biofilm formation, which should be kept in mind when studying the effects of conserved food on dental plaque biofilm in situ.

  10. Brief ultrasonication improves detection of biofilm-formative bacteria around a metal implant.

    Science.gov (United States)

    Kobayashi, Naomi; Bauer, Thomas W; Tuohy, Marion J; Fujishiro, Takaaki; Procop, Gary W

    2007-04-01

    Biofilms are complex microenvironments produced by microorganisms on surfaces. Ultrasonication disrupts biofilms and may make the microorganism or its DNA available for detection. We determined whether ultrasonication could affect our ability to detect bacteria adherent to a metal substrate. A biofilm-formative Staphylococcus aureus strain was used for an in vitro implant infection model (biofilm-formative condition). We used quantitative culture and real time-polymerase chain reaction to determine the influence of different durations of ultrasound on bacterial adherence and viability. Sonication for 1 minute increased the yield of bacteria. Sonication longer than 5 minutes led to fewer bacterial colonies by conventional culture but not by polymerase chain reaction. This suggests short periods of sonication help release bacteria from the metal substrate by disrupting the biofilm, but longer periods of sonication lyse bacteria prohibiting their detection in microbiologic cultures. A relatively short duration of sonication may be desirable for maximizing detection of biofilm-formative bacteria around implants by culture or polymerase chain reaction.

  11. Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae

    DEFF Research Database (Denmark)

    Laue, H.; Schenk, A.; Li, H.

    2006-01-01

    formation, biofilms of Pseudomonas syringae strains with different EPS patterns were compared. The mucoid strain PG4180.muc, which produces levan and alginate, and its levan- and/or alginate-deficient derivatives all formed biofilms in the wells of microtitre plates and in flow chambers. Confocal laser...... by binding of the lectin from Naja mossambica to a fibrous structure in biofilms of all P. syringae derivatives. Production of the as yet uncharacterized additional EPS might be more important for biofilm formation than the syntheses of levan and alginate.......Exopolysaccharides (EPSs) play important roles in the attachment of bacterial cells to a surface and/or in building and maintaining the three-dimensional, complex structure of bacterial biofilms. To elucidate the spatial distribution and function of the EPSs levan and alginate during biofilm...

  12. In vivo biofilm formation on different dental ceramics.

    Science.gov (United States)

    Bremer, Felicia; Grade, Sebastian; Kohorst, Philipp; Stiesch, Meike

    2011-01-01

    To investigate the formation of oral biofilm on various dental ceramics in vivo. Five different ceramic materials were included: a veneering glass- ceramic, a lithium disilicate glass-ceramic, a yttrium-stabilized zirconia (Y-TZP), a hot isostatically pressed (HIP) Y-TZP ceramic, and an HIP Y-TZP ceramic with 25% alumina. Test specimens were attached to individually designed acrylic appliances; five volunteers wore these appliances for 24 hours in the maxillary arch. After intraoral exposure, the samples were removed from the appliances and the adhering biofilms vitally stained. Then, the two-dimensional surface coating and thickness of the adhering biofilm were determined by confocal laser scanning microscopy. Statistical analysis was performed using one-way ANOVA with the level of significance set at .05. Significant differences (P ceramic materials. The lowest surface coating (19.0%) and biofilm thickness (1.9 Μm) were determined on the HIP Y-TZP ceramic; the highest mean values were identified with the lithium disilicate glass-ceramic (46.8%, 12.6 Μm). Biofilm formation on various types of dental ceramics differed significantly; in particular, zirconia exhibited low plaque accumulation. In addition to its high strength, low plaque accumulation makes zirconia a promising material for various indications (including implant abutments and telescopic crowns) that previously were met only with metal-based materials.

  13. SMU.940 regulates dextran-dependent aggregation and biofilm formation in Streptococcus mutans.

    Science.gov (United States)

    Senpuku, Hidenobu; Yonezawa, Hideo; Yoneda, Saori; Suzuki, Itaru; Nagasawa, Ryo; Narisawa, Naoki

    2018-02-01

    The oral bacterium Streptococcus mutans is the principal agent in the development of dental caries. Biofilm formation by S. mutans requires bacterial attachment, aggregation, and glucan formation on the tooth surface under sucrose supplementation conditions. Our previous microarray analysis of clinical strains identified 74 genes in S. mutans that were related to biofilm morphology; however, the roles of almost all of these genes in biofilm formation are poorly understood. We investigated the effects of 21 genes randomly selected from our previous study regarding S. mutans biofilm formation, regulation by the complement pathway, and responses to competence-stimulating peptide. Eight competence-stimulating peptide-dependent genes were identified, and their roles in biofilm formation and aggregation were examined by mutational analyses of the S. mutansUA159 strain. Of these eight genes, the inactivation of the putative hemolysin III family SMU.940 gene of S. mutansUA159 promoted rapid dextran-dependent aggregation and biofilm formation in tryptic soy broth without dextrose (TSB) with 0.25% glucose and slightly reduced biofilm formation in TSB with 0.25% sucrose. The SMU.940 mutant showed higher expression of GbpC and gbpC gene than wild-type. GbpC is known to be involved in the dextran-dependent aggregation of S. mutans. An SMU.940-gbpC double mutant strain was constructed in the SMU.940 mutant background. The gbpC mutation completely abolished the dextran-dependent aggregation of the SMU.940 mutant. In addition, the aggregation of the mutant was abrogated by dextranase. These findings suggest that SMU.940 controls GbpC expression, and contributes to the regulation of dextran-dependent aggregation and biofilm formation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Genotypic and Phenotypic Characteristics Associated with Biofilm Formation by Human Clinical Escherichia coli Isolates of Different Pathotypes.

    Science.gov (United States)

    Schiebel, Juliane; Böhm, Alexander; Nitschke, Jörg; Burdukiewicz, Michał; Weinreich, Jörg; Ali, Aamir; Roggenbuck, Dirk; Rödiger, Stefan; Schierack, Peter

    2017-12-15

    Bacterial biofilm formation is a widespread phenomenon and a complex process requiring a set of genes facilitating the initial adhesion, maturation, and production of the extracellular polymeric matrix and subsequent dispersal of bacteria. Most studies on Escherichia coli biofilm formation have investigated nonpathogenic E. coli K-12 strains. Due to the extensive focus on laboratory strains in most studies, there is poor information regarding biofilm formation by pathogenic E. coli isolates. In this study, we genotypically and phenotypically characterized 187 human clinical E. coli isolates representing various pathotypes (e.g., uropathogenic, enteropathogenic, and enteroaggregative E. coli ). We investigated the presence of biofilm-associated genes ("genotype") and phenotypically analyzed the isolates for motility and curli and cellulose production ("phenotype"). We developed a new screening method to examine the in vitro biofilm formation ability. In summary, we found a high prevalence of biofilm-associated genes. However, we could not detect a biofilm-associated gene or specific phenotype correlating with the biofilm formation ability. In contrast, we did identify an association of increased biofilm formation with a specific E. coli pathotype. Enteroaggregative E. coli (EAEC) was found to exhibit the highest capacity for biofilm formation. Using our image-based technology for the screening of biofilm formation, we demonstrated the characteristic biofilm formation pattern of EAEC, consisting of thick bacterial aggregates. In summary, our results highlight the fact that biofilm-promoting factors shown to be critical for biofilm formation in nonpathogenic strains do not reflect their impact in clinical isolates and that the ability of biofilm formation is a defined characteristic of EAEC. IMPORTANCE Bacterial biofilms are ubiquitous and consist of sessile bacterial cells surrounded by a self-produced extracellular polymeric matrix. They cause chronic and device

  15. Exopolysaccharide biosynthesis enables mature biofilm formation on abiotic surfaces by Herbaspirillum seropedicae.

    Science.gov (United States)

    Balsanelli, Eduardo; de Baura, Válter Antonio; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Monteiro, Rose Adele

    2014-01-01

    H. seropedicae associates endophytically and epiphytically with important poaceous crops and is capable of promoting their growth. The molecular mechanisms involved in plant colonization by this microrganism are not fully understood. Exopolysaccharides (EPS) are usually necessary for bacterial attachment to solid surfaces, to other bacteria, and to form biofilms. The role of H. seropedicae SmR1 exopolysaccharide in biofilm formation on both inert and plant substrates was assessed by characterization of a mutant in the espB gene which codes for a glucosyltransferase. The mutant strain was severely affected in EPS production and biofilm formation on glass wool. In contrast, the plant colonization capacity of the mutant strain was not altered when compared to the parental strain. The requirement of EPS for biofilm formation on inert surface was reinforced by the induction of eps genes in biofilms grown on glass and polypropylene. On the other hand, a strong repression of eps genes was observed in H. seropedicae cells adhered to maize roots. Our data suggest that H. seropedicae EPS is a structural component of mature biofilms, but this development stage of biofilm is not achieved during plant colonization.

  16. Exopolysaccharide biosynthesis enables mature biofilm formation on abiotic surfaces by Herbaspirillum seropedicae.

    Directory of Open Access Journals (Sweden)

    Eduardo Balsanelli

    Full Text Available H. seropedicae associates endophytically and epiphytically with important poaceous crops and is capable of promoting their growth. The molecular mechanisms involved in plant colonization by this microrganism are not fully understood. Exopolysaccharides (EPS are usually necessary for bacterial attachment to solid surfaces, to other bacteria, and to form biofilms. The role of H. seropedicae SmR1 exopolysaccharide in biofilm formation on both inert and plant substrates was assessed by characterization of a mutant in the espB gene which codes for a glucosyltransferase. The mutant strain was severely affected in EPS production and biofilm formation on glass wool. In contrast, the plant colonization capacity of the mutant strain was not altered when compared to the parental strain. The requirement of EPS for biofilm formation on inert surface was reinforced by the induction of eps genes in biofilms grown on glass and polypropylene. On the other hand, a strong repression of eps genes was observed in H. seropedicae cells adhered to maize roots. Our data suggest that H. seropedicae EPS is a structural component of mature biofilms, but this development stage of biofilm is not achieved during plant colonization.

  17. Unintended Laboratory-Driven Evolution Reveals Genetic Requirements for Biofilm Formation by Desulfovibrio vulgaris Hildenborough

    Directory of Open Access Journals (Sweden)

    Kara B. De León

    2017-10-01

    Full Text Available Biofilms of sulfate-reducing bacteria (SRB are of particular interest as members of this group are culprits in corrosion of industrial metal and concrete pipelines as well as being key players in subsurface metal cycling. Yet the mechanism of biofilm formation by these bacteria has not been determined. Here we show that two supposedly identical wild-type cultures of the SRB Desulfovibrio vulgaris Hildenborough maintained in different laboratories have diverged in biofilm formation. From genome resequencing and subsequent mutant analyses, we discovered that a single nucleotide change within DVU1017, the ABC transporter of a type I secretion system (T1SS, was sufficient to eliminate biofilm formation in D. vulgaris Hildenborough. Two T1SS cargo proteins were identified as likely biofilm structural proteins, and the presence of at least one (with either being sufficient was shown to be required for biofilm formation. Antibodies specific to these biofilm structural proteins confirmed that DVU1017, and thus the T1SS, is essential for localization of these adhesion proteins on the cell surface. We propose that DVU1017 is a member of the lapB category of microbial surface proteins because of its phenotypic similarity to the adhesin export system described for biofilm formation in the environmental pseudomonads. These findings have led to the identification of two functions required for biofilm formation in D. vulgaris Hildenborough and focus attention on the importance of monitoring laboratory-driven evolution, as phenotypes as fundamental as biofilm formation can be altered.

  18. Spermidine promotes Bacillus subtilis biofilm formation by activating expression of the matrix regulator slrR.

    Science.gov (United States)

    Hobley, Laura; Li, Bin; Wood, Jennifer L; Kim, Sok Ho; Naidoo, Jacinth; Ferreira, Ana Sofia; Khomutov, Maxim; Khomutov, Alexey; Stanley-Wall, Nicola R; Michael, Anthony J

    2017-07-21

    Ubiquitous polyamine spermidine is not required for normal planktonic growth of Bacillus subtilis but is essential for robust biofilm formation. However, the structural features of spermidine required for B. subtilis biofilm formation are unknown and so are the molecular mechanisms of spermidine-stimulated biofilm development. We report here that in a spermidine-deficient B. subtilis mutant, the structural analogue norspermidine, but not homospermidine, restored biofilm formation. Intracellular biosynthesis of another spermidine analogue, aminopropylcadaverine, from exogenously supplied homoagmatine also restored biofilm formation. The differential ability of C-methylated spermidine analogues to functionally replace spermidine in biofilm formation indicated that the aminopropyl moiety of spermidine is more sensitive to C -methylation, which it is essential for biofilm formation, but that the length and symmetry of the molecule is not critical. Transcriptomic analysis of a spermidine-depleted B. subtilis speD mutant uncovered a nitrogen-, methionine-, and S -adenosylmethionine-sufficiency response, resulting in repression of gene expression related to purine catabolism, methionine and S -adenosylmethionine biosynthesis and methionine salvage, and signs of altered membrane status. Consistent with the spermidine requirement in biofilm formation, single-cell analysis of this mutant indicated reduced expression of the operons for production of the exopolysaccharide and TasA protein biofilm matrix components and SinR antagonist slrR Deletion of sinR or ectopic expression of slrR in the spermidine-deficient Δ speD background restored biofilm formation, indicating that spermidine is required for expression of the biofilm regulator slrR Our results indicate that spermidine functions in biofilm development by activating transcription of the biofilm matrix exopolysaccharide and TasA operons through the regulator slrR . © 2017 by The American Society for Biochemistry and

  19. Helicobacter pylori Biofilm Formation and Its Potential Role in Pathogenesis.

    Science.gov (United States)

    Hathroubi, Skander; Servetas, Stephanie L; Windham, Ian; Merrell, D Scott; Ottemann, Karen M

    2018-06-01

    Despite decades of effort, Helicobacter pylori infections remain difficult to treat. Over half of the world's population is infected by H. pylori , which is a major cause of duodenal and gastric ulcers as well as gastric cancer. During chronic infection, H. pylori localizes within the gastric mucosal layer, including deep within invaginations called glands; thanks to its impressive ability to survive despite the harsh acidic environment, it can persist for the host's lifetime. This ability to survive and persist in the stomach is associated with urease production, chemotactic motility, and the ability to adapt to the fluctuating environment. Additionally, biofilm formation has recently been suggested to play a role in colonization. Biofilms are surface-associated communities of bacteria that are embedded in a hydrated matrix of extracellular polymeric substances. Biofilms pose a substantial health risk and are key contributors to many chronic and recurrent infections. This link between biofilm-associated bacteria and chronic infections likely results from an increased tolerance to conventional antibiotic treatments as well as immune system action. The role of this biofilm mode in antimicrobial treatment failure and H. pylori survival has yet to be determined. Furthermore, relatively little is known about the H. pylori biofilm structure or the genes associated with this mode of growth. In this review, therefore, we aim to highlight recent findings concerning H. pylori biofilms and the molecular mechanism of their formation. Additionally, we discuss the potential roles of biofilms in the failure of antibiotic treatment and in infection recurrence. Copyright © 2018 American Society for Microbiology.

  20. Effects of Total Alkaloids of Sophora alopecuroides on Biofilm Formation in Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    Xue Li

    2016-01-01

    Full Text Available Staphylococcus epidermidis (S. epidermidis is an opportunistic pathogen with low pathogenicity and a cause of the repeated outbreak of bovine mastitis in veterinary clinical settings. In this report, a biofilm model of S. epidermidis was generated and the minimal inhibitory concentration (MIC and sub-MIC (SMIC on bacterial cultures were assessed for the following agents: total alkaloids of Sophora alopecuroides (TASA, ciprofloxacin (CIP, and erythromycin (ERY. The formation and characteristic parameters of biofilm were analyzed in terms of XTT assay, silver staining, and confocal laser scanning microscope (CLSM. Results showed that a sub-MIC of TASA could inhibit 50% biofilm of bacterial activity, while 250-fold MIC of CIP and ERY MICs only inhibited 50% and 47% of biofilm formation, respectively. All three agents could inhibit the biofilm formation at an early stage, but TASA showed a better inhibitory effect on the late stage of biofilm thickening. A morphological analysis using CLSM further confirmed the destruction of biofilm by these agents. These results thus suggest that TASA has an inhibitory effect on biofilm formation of clinic S. epidermidis, which may be a potential agent warranted for further study on the treatment prevention of infection related to S. epidermidis in veterinary clinic.

  1. Enhanced biofilm formation in dual-species culture of Listeria monocytogenes and Ralstonia insidiosa

    Directory of Open Access Journals (Sweden)

    Yunfeng Xu

    2017-09-01

    Full Text Available In the natural environments microorganisms coexist in communities as biofilms. Since foodborne pathogens have varying abilities to form biofilms, investigation of bacterial interactions in biofilm formation may enhance our understanding of the persistence of these foodborne pathogens in the environment. Thus the objective of this study was to investigate the interactions between Listeria monocytogenes and Ralstonia insidiosa in dual species biofilms. Biofilm development after 24 h was measured using crystal violet in 96-well microtiter plate. Scanning electron microscopy and cell enumeration were employed after growth on stainless steel coupons. When compared with their single species counterparts, the dual species biofilms exhibited a significant increase in biofilm biomass. The number of L. monocytogenes in co-culture biofilms on stainless steel also increased significantly. However, there was no effect on the biofilm formation of L. monocytogenes when cultured with R. insidiosa separated by a semi-permeable membrane-linked compartment or cultured in R. insidiosa cell-free supernatant, indicating that direct cell-cell contact is critical for this interaction.

  2. Effects of meat juice on biofilm formation of Campylobacter and Salmonella.

    Science.gov (United States)

    Li, Jiaqi; Feng, Jinsong; Ma, Lina; de la Fuente Núñez, César; Gölz, Greta; Lu, Xiaonan

    2017-07-17

    Campylobacter and Salmonella are leading causes of foodborne illnesses worldwide, vastly harboured by raw meat as their common food reservoir. Both microbes are prevalent in meat processing environments in the form of biofilms that contribute to cross-contamination and foodborne infection. This study applied raw meat juice (chicken juice and pork juice) as a minimally processed food model to study its effects on bacterial biofilm formation. Meat juice was collected during the freeze-thaw process of raw meat and sterilized by filtration. In 96-well polystyrene plates and glass chambers, supplementation of over 25% meat juice (v/v) in laboratory media led to an increase in biofilm formation of Campylobacter and Salmonella. During the initial attachment stage of biofilm development, more bacterial cells were present on surfaces treated with meat juice residues compared to control surfaces. Meat juice particulates on abiotic surfaces facilitated biofilm formation of Campylobacter and Salmonella under both static and flow conditions, with the latter being assessed using a microfluidic platform. Further, the deficiency in biofilm formation of selected Campylobacter and Salmonella mutant strains was restored in the presence of meat juice particulates. These results suggested that meat juice residues on the abiotic surfaces might act as a surface conditioner to support initial attachment and biofilm formation of Campylobacter and Salmonella. This study sheds light on a possible survival mechanism of Campylobacter and Salmonella in meat processing environments, and indicates that thorough cleaning of meat residues during meat production and handling is critical to reduce the bacterial load of Campylobacter and Salmonella. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. SarA is a negative regulator of Staphylococcus epidermidis biofilm formation

    DEFF Research Database (Denmark)

    Martin, Christer; Heinze, C.; Busch, M.

    2012-01-01

    Biofilm formation is essential for Staphylococcus epidermidis pathogenicity in implant-associated infections. Nonetheless, large proportions of invasive S. epidermidis isolates fail to show accumulative biofilm growth in vitro. We here tested the hypothesis that this apparent paradox is related...... virulence. Genetic analysis revealed that inactivation of sarA induced biofilm formation via over-expression of the giant 1 MDa extracellular matrix binding protein (Embp), serving as an intercellular adhesin. In addition to Embp, increased extracellular DNA (eDNA) release significantly contributed...... to biofilm formation in mutant 1585ΔsarA. Increased eDNA amounts indirectly resulted from up-regulation of metalloprotease SepA, leading to boosted processing of major autolysin AtlE, in turn inducing augmented autolysis and release of chromosomal DNA. Hence, this study identifies sarA as a negative...

  4. Biofilm formation capacity of Salmonella serotypes at different temperature conditions

    Directory of Open Access Journals (Sweden)

    Karen A. Borges

    Full Text Available ABSTRACT: Salmonella spp. are one of the most important agents of foodborne disease in several countries, including Brazil. Poultry-derived products are the most common food products, including meat and eggs, involved in outbreaks of human salmonellosis. Salmonella has the capacity to form biofilms on both biotic and abiotic surfaces. The biofilm formation process depends on an interaction among bacterial cells, the attachment surface and environmental conditions. These structures favor bacterial survival in hostile environments, such as slaughterhouses and food processing plants. Biofilms are also a major problem for public health because breakage of these structures can cause the release of pathogenic microorganisms and, consequently, product contamination. The aim of this study was to determine the biofilm production capacity of Salmonella serotypes at four different temperatures of incubation. Salmonella strains belonging to 11 different serotypes, isolated from poultry or from food involved in salmonellosis outbreaks, were selected for this study. Biofilm formation was investigated under different temperature conditions (37°, 28°, 12° and 3°C using a microtiter plate assay. The tested temperatures are important for the Salmonella life cycle and to the poultry-products process. A total of 92.2% of the analyzed strains were able to produce biofilm on at least one of the tested temperatures. In the testing, 71.6% of the strains produced biofilm at 37°C, 63% at 28°C, 52.3% at 12°C and 39.5% at 3°C, regardless of the serotype. The results indicate that there is a strong influence of temperature on biofilm production, especially for some serotypes, such as S. Enteritidis, S. Hadar and S. Heidelberg. The production of these structures is partially associated with serotype. There were also significant differences within strains of the same serotype, indicating that biofilm production capacity may be strain-dependent.

  5. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus

    Science.gov (United States)

    Mashruwala, Ameya A; van de Guchte, Adriana; Boyd, Jeffrey M

    2017-01-01

    Biofilms are communities of microorganisms attached to a surface or each other. Biofilm-associated cells are the etiologic agents of recurrent Staphylococcus aureus infections. Infected human tissues are hypoxic or anoxic. S. aureus increases biofilm formation in response to hypoxia, but how this occurs is unknown. In the current study we report that oxygen influences biofilm formation in its capacity as a terminal electron acceptor for cellular respiration. Genetic, physiological, or chemical inhibition of respiratory processes elicited increased biofilm formation. Impaired respiration led to increased cell lysis via divergent regulation of two processes: increased expression of the AtlA murein hydrolase and decreased expression of wall-teichoic acids. The AltA-dependent release of cytosolic DNA contributed to increased biofilm formation. Further, cell lysis and biofilm formation were governed by the SrrAB two-component regulatory system. Data presented support a model wherein SrrAB-dependent biofilm formation occurs in response to the accumulation of reduced menaquinone. DOI: http://dx.doi.org/10.7554/eLife.23845.001 PMID:28221135

  6. Reliability of Haemophilus influenzae biofilm measurement via static method, and determinants of in vitro biofilm production.

    Science.gov (United States)

    Obaid, Najla A; Tristram, Stephen; Narkowicz, Christian K; Jacobson, Glenn A

    2016-12-01

    Information is lacking regarding the precision of microtitre plate (MTP) assays used to measure biofilm. This study investigated the precision of an MTP assay to measure biofilm production by nontypeable Haemophilus influenzae (NTHi) and the effects of frozen storage and inoculation technique on biofilm production. The density of bacterial final growth was determined by absorbance after 18-20 h incubation, and biofilm production was then measured by absorbance after crystal violet staining. Biofilm formation was categorised as high and low for each strain. For the high biofilm producing strains of NTHi, interday reproducibility of NTHi biofilm formation measured using the MTP assay was excellent and met the acceptance criteria, but higher variability was observed in low biofilm producers. Method of inoculum preparation was a determinant of biofilm formation with inoculum prepared directly from solid media showing increased biofilm production for at least one of the high producing strains. In general, storage of NTHi cultures at -80 °C for up to 48 weeks did not have any major effect on their ability to produce biofilm.

  7. Effects of Cola-Flavored Beverages and Caffeine on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    Science.gov (United States)

    Dotsey, Roger P; Moser, Elizabeth A S; Eckert, George J; Gregory, Richard L

    To examine the effects of cola-flavored beverages and caffeine on growth and metabolism of Streptococcus mutans biofilm. This study was designed to determine if carbonated beverages or caffeine can increase S. mutans growth and biofilm formation and metabolic activity in vitro, potentially leading to increased S. mutans-associated cariogenicity in children that consume them. Six different cola-flavored products, plus pure caffeine, and pure high fructose corn syrup (HFCS), at different concentrations similar to those in the beverages were tested. A 16-hour culture of S. mutans was treated with different dilutions in bacteriological media. To test for the effect on biofilm formation, the biofilm was stained with crystal violet. The absorbance was determined to evaluate biofilm growth. Biofilm metabolic activity was measured based on biofilm having the ability to reduce XTT to a water-soluble orange compound. The inclusion of HFCS in the beverages, as well as pure HFCS, significantly enhanced bacterial biofilm formation and metabolic activity. Pure caffeine and the presence of caffeine in beverages did not significantly increase biofilm formation, but pure caffeine significantly increased metabolism, and Diet Coke had significantly greater metabolic activity than Caffeine-Free Diet Coke. HFCS increases both the biofilm formation and metabolism of S. mutans, and caffeine in some cases increases metabolism of S. mutans.

  8. Formation of biofilm by strains of Listeria monocytogenes isolated ...

    African Journals Online (AJOL)

    Quantification of biofilm formation by 40 Listeria monocytogenes strains from wara soft cheese and its processing environment was assessed on glass vials surfaces. Attachement to glass surface was quantified using a crystal violet binding assay. All the 40 strains produced biofilms after 48 and 72 h incubation at 37oC.

  9. The Effect of Cryopreserved Human Placental Tissues on Biofilm Formation of Wound-Associated Pathogens.

    Science.gov (United States)

    Mao, Yong; Singh-Varma, Anya; Hoffman, Tyler; Dhall, Sandeep; Danilkovitch, Alla; Kohn, Joachim

    2018-01-08

    Biofilm, a community of bacteria, is tolerant to antimicrobial agents and ubiquitous in chronic wounds. In a chronic DFU (Diabetic Foot Ulcers) clinical trial, the use of a human cryopreserved viable amniotic membrane (CVAM) resulted in a high rate of wound closure and reduction of wound-related infections. Our previous study demonstrated that CVAM possesses intrinsic antimicrobial activity against a spectrum of wound-associated bacteria under planktonic culture conditions. In this study, we evaluated the effect of CVAM and cryopreserved viable umbilical tissue (CVUT) on biofilm formation of S. aureus and P. aeruginosa , the two most prominent pathogens associated with chronic wounds. Firstly, we showed that, like CVAM, CVUT released antibacterial activity against multiple bacterial pathogens and the devitalization of CVUT reduced its antibacterial activity. The biofilm formation was then measured using a high throughput method and an ex vivo porcine dermal tissue model. We demonstrate that the formation of biofilm was significantly reduced in the presence of CVAM- or CVUT-derived conditioned media compared to control assay medium. The formation of P. aeruginosa biofilm on CVAM-conditioned medium saturated porcine dermal tissues was reduced 97% compared with the biofilm formation on the control medium saturated dermal tissues. The formation of S. auerus biofilm on CVUT-conditioned medium saturated dermal tissues was reduced 72% compared with the biofilm formation on the control tissues. This study is the first to show that human cryopreserved viable placental tissues release factors that inhibit biofilm formation. Our results provide an explanation for the in vivo observation of their ability to support wound healing.

  10. The Effect of Cryopreserved Human Placental Tissues on Biofilm Formation of Wound-Associated Pathogens

    Directory of Open Access Journals (Sweden)

    Yong Mao

    2018-01-01

    Full Text Available Biofilm, a community of bacteria, is tolerant to antimicrobial agents and ubiquitous in chronic wounds. In a chronic DFU (Diabetic Foot Ulcers clinical trial, the use of a human cryopreserved viable amniotic membrane (CVAM resulted in a high rate of wound closure and reduction of wound-related infections. Our previous study demonstrated that CVAM possesses intrinsic antimicrobial activity against a spectrum of wound-associated bacteria under planktonic culture conditions. In this study, we evaluated the effect of CVAM and cryopreserved viable umbilical tissue (CVUT on biofilm formation of S. aureus and P. aeruginosa, the two most prominent pathogens associated with chronic wounds. Firstly, we showed that, like CVAM, CVUT released antibacterial activity against multiple bacterial pathogens and the devitalization of CVUT reduced its antibacterial activity. The biofilm formation was then measured using a high throughput method and an ex vivo porcine dermal tissue model. We demonstrate that the formation of biofilm was significantly reduced in the presence of CVAM- or CVUT-derived conditioned media compared to control assay medium. The formation of P. aeruginosa biofilm on CVAM-conditioned medium saturated porcine dermal tissues was reduced 97% compared with the biofilm formation on the control medium saturated dermal tissues. The formation of S. auerus biofilm on CVUT-conditioned medium saturated dermal tissues was reduced 72% compared with the biofilm formation on the control tissues. This study is the first to show that human cryopreserved viable placental tissues release factors that inhibit biofilm formation. Our results provide an explanation for the in vivo observation of their ability to support wound healing.

  11. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential

    Directory of Open Access Journals (Sweden)

    Maíra Maciel Mattos de Oliveira

    2010-03-01

    Full Text Available An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4 stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 ºC and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.

  12. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential.

    Science.gov (United States)

    de Oliveira, Maíra Maciel Mattos; Brugnera, Danilo Florisvaldo; Alves, Eduardo; Piccoli, Roberta Hilsdorf

    2010-01-01

    An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4) stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 °C and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM) after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.

  13. Mycobacterium biofilms: factors involved in development, dispersal, and therapeutic strategies against biofilm-relevant pathogens.

    Science.gov (United States)

    Xiang, Xiaohong; Deng, Wanyan; Liu, Minqiang; Xie, Jianping

    2014-01-01

    Many bacteria can develop biofilm (BF), a multicellular structure largely combining bacteria and their extracellular polymeric substances (EPS). The formation of biofilm results in an alternative existence in which microbes ensure their survival in adverse environments. Biofilm-relevant infections are more persistent, resistant to most antibiotics, and more recalcitrant to host immunity. Mycobacterium tuberculosis, the causative agent of tuberculosis, can develop biofilm, though whether M. tuberculosis can form biofilm within tuberculosis patients has yet to be determined. Here, we summarize the factors involved in the development and dispersal of mycobacterial biofilms, as well as underlying regulatory factors and inhibitors against biofilm to deepen our understanding of their development and to elucidate potential novel modes of action for future antibiotics. Key factors in biofilm formation identified as drug targets represent a novel and promising avenue for developing better antibiotics.

  14. Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation

    DEFF Research Database (Denmark)

    Wu, Hong; Lee, Baoleri; Yang, Liang

    2011-01-01

    protected animal models from developing chronic lung infection by P. aeruginosa. In the present study, the effects of ginseng on the formation of P. aeruginosa biofilms were further investigated in vitro and in vivo. Ginseng aqueous extract at concentrations of 0.5-2.0% did not inhibit the growth of P......Biofilm-associated chronic Pseudomonas aeruginosa lung infections in patients with cystic fibrosis are virtually impossible to eradicate with antibiotics because biofilm-growing bacteria are highly tolerant to antibiotics and host defense mechanisms. Previously, we found that ginseng treatments....... aeruginosa, but significantly prevented P. aeruginosa from forming biofilm. Exposure to 0.5% ginseng aqueous extract for 24 h destroyed most 7-day-old mature biofilms formed by both mucoid and nonmucoid P. aeruginosa strains. Ginseng treatment enhanced swimming and twitching motility, but reduced swarming...

  15. Staphylococcus aureus biofilms: recent developments in biofilm dispersal.

    Science.gov (United States)

    Lister, Jessica L; Horswill, Alexander R

    2014-01-01

    Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and represents a significant burden on the healthcare system. S. aureus attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in the persistence of chronic infections. The formation of a biofilm, and encasement of cells in a polymer-based matrix, decreases the susceptibility to antimicrobials and immune defenses, making these infections difficult to eradicate. During infection, dispersal of cells from the biofilm can result in spread to secondary sites and worsening of the infection. In this review, we discuss the current understanding of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential applications of dispersal in the treatment of biofilm-mediated infections.

  16. Standardization and classification of In vitro biofilm formation by clinical isolates of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Singh

    2017-01-01

    Full Text Available Background: Staphylococcus aureus is Gram-positive bacterium commonly associated with nosocomial infections. The development of biofilm exhibiting drug resistance especially in foreign body associated infections has enabled the bacterium to draw considerable attention. However, till date, consensus guidelines for in vitro biofilm quantitation and categorization criterion for the bacterial isolates based on biofilm-forming capacity are lacking. Therefore, it was intended to standardize in vitro biofilm formation by clinical isolates of S. aureus and then to classify them on the basis of their biofilm-forming capacity. Materials and Methods: A study was conducted for biofilm quantitation by tissue culture plate (TCP assay employing 61 strains of S. aureus isolated from clinical samples during May 2015– December 2015 wherein several factors influencing the biofilm formation were optimized. Therefore, it was intended to propose a biofilm classification criteria based on the standard deviation multiples of the control differentiating them into non, low, medium, and high biofilm formers. Results: Brain-heart infusion broth was found to be more effective in biofilm formation compared to trypticase soy broth. Heat fixation was more effective than chemical fixation. Although, individually, glucose, sucrose, and sodium chloride (NaCl had no significant effect on biofilm formation, a statistically significant increase in absorbance was observed after using the supplement mix consisting of 222.2 mM glucose, 116.9 mM sucrose, and 1000 mM NaCl (P = 0.037. Conclusions: The present study puts forth a standardized in vitro TCP assay for biofilm biomass quantitation and categorization criteria for clinical isolates of S. aureus based on their biofilm-forming capacity. The proposed in vitro technique may be further evaluated for its usefulness in the management of persistent infections caused by the bacterium.

  17. Fresh garlic extract inhibits Staphylococcus aureus biofilm formation under chemopreventive and chemotherapeutic conditions

    Directory of Open Access Journals (Sweden)

    Panan Ratthawongjirakul

    2016-08-01

    Full Text Available Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA are the leading aetiological pathogens of nosocomial infections worldwide. These bacteria form biofilms on both biotic and abiotic surfaces causing biofilm-associated infections. Within the biofilm, these bacteria might develop persistent and antimicrobial resistant characteristics resulting in chronic infections and treatment failures. Garlic exhibits broad pharmaceutical properties and inhibitory activities against S. aureus. We investigated the effects of aqueous fresh garlic extract on biofilm formation in S. aureus ATCC25923 and MRSA strains under chemopreventive and chemotherapeutic conditions. The viable bacteria and biofilm levels were quantified through colony count and crystal violet staining, respectively. The use of fresh garlic extract under both conditions significantly inhibited biofilm formation in S. aureus strains ATCC25923 and MRSA. Garlic could be developed as either a prophylactic or therapeutic agent to manage S. aureus biofilm-associated infections.

  18. Inhibiting effects of Streptococcus salivarius on competence-stimulating peptide-dependent biofilm formation by Streptococcus mutans.

    Science.gov (United States)

    Tamura, S; Yonezawa, H; Motegi, M; Nakao, R; Yoneda, S; Watanabe, H; Yamazaki, T; Senpuku, H

    2009-04-01

    The effects of Streptococcus salivarius on the competence-stimulating peptide (CSP)-dependent biofilm formation by Streptococcus mutans were investigated. Biofilms were grown on 96-well microtiter plates coated with salivary components in tryptic soy broth without dextrose supplemented with 0.25% sucrose. Biofilm formations were stained using safranin and quantification of stained biofilms was performed by measuring absorbance at 492 nm. S. mutans formed substantial biofilms, whereas biofilms of S. salivarius were formed poorly in the medium conditions used. Furthermore, in combination cultures, S. salivarius strongly inhibited biofilm formation when cultured with S. mutans. This inhibition occurred in the early phase of biofilm formation and was dependent on inactivation of the CSP of S. mutans, which is associated with competence, biofilm formation, and antimicrobial activity of the bacterium, and is induced by expression of the comC gene. Comparisons between the S. mutans clinical strains FSC-3 and FSC-3DeltaglrA in separate dual-species cultures with S. salivarius indicated that the presence of the bacitracin transport ATP-binding protein gene glrA caused susceptibility to inhibition of S. mutans biofilm formation by S. salivarius, and was also associated with the regulation of CSP production by com gene-dependent quorum sensing systems. It is considered that regulation of CSP by glrA in S. mutans and CSP inactivation by S. salivarius are important functions for cell-to-cell communication between biofilm bacteria and oral streptococci such as S. salivarius. Our results provide useful information for understanding the ecosystem of oral streptococcal biofilms, as well as the competition between and coexistence of multiple species in the oral cavity.

  19. Surface modification of platelet concentrate bags to reduce biofilm formation and transfusion sepsis.

    Science.gov (United States)

    Wilson-Nieuwenhuis, Joels S T; Dempsey-Hibbert, Nina; Liauw, Christopher M; Whitehead, Kathryn A

    2017-12-01

    Bacterial contamination of blood products poses a major risk in transfusion medicine, including transfusions involving platelet products. Although testing systems are in place for routine screening of platelet units, the formation of bacterial biofilms in such units may decrease the likelihood that bacteria will be detected. This work determined the surface properties of p-PVC platelet concentrate bags and investigated how these characteristics influenced biofilm formation. Serratia marcescens and Staphylococcus epidermidis, two species commonly implicated in platelet contamination, were used to study biofilm growth. The platelet concentrate bags were physically flattened to determine if reducing the surface roughness altered biofilm formation. The results demonstrated that the flattening process of the platelet bags affected the chemistry of the surface and reduced the surface hydrophobicity. Flattening of the surfaces resulted in a reduction in biofilm formation for both species after 5 days, with S. marcescens demonstrating a greater reduction. However, there was no significant difference between the smooth and flat surfaces following 7 days' incubation for S. marcescens and no significant differences between any of the surfaces following 7 days' incubation for S. epidermidis. The results suggest that flattening the p-PVC surfaces may limit potential biofilm formation for the current duration of platelet storage time of 5 days. It is hoped that this work will enhance the understanding of how surface properties influence the development of microbial biofilms in platelet concentrate bags in order to devise a solution to discourage biofilm formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Screening of biofilm formation by beneficial vaginal lactobacilli and influence of culture media components.

    Science.gov (United States)

    Terraf, M C Leccese; Juárez Tomás, M S; Nader-Macías, M E F; Silva, C

    2012-12-01

    To assess the ability of vaginal lactobacilli to form biofilm under different culture conditions and to determine the relationship between their growth and the capability of biofilm formation by selected strains. Fifteen Lactobacillus strains from human vagina were tested for biofilm formation by crystal violet staining. Only Lactobacillus rhamnosus Centro de Referencia para Lactobacilos Culture Collection (CRL) 1332, Lact. reuteri CRL 1324 and Lact. delbrueckii CRL 1510 were able to grow and form biofilm in culture media without Tween 80. However, Lact. gasseri CRL 1263 (a non-biofilm-forming strain) did not grow in these media. Scanning electron microscopy showed that Lact. rhamnosus CRL 1332 and Lact. reuteri CRL 1324 formed a highly structured biofilm, but only Lact. reuteri CRL 1324 showed a high amount of extracellular material in medium without Tween. Biofilm formation was significantly influenced by the strain, culture medium, inoculum concentration, microbial growth and chemical nature of the support used for the assay. The results allow the selection of biofilm-forming vaginal Lactobacillus strains and the conditions and factors that affect this phenomenon. © 2012 The Society for Applied Microbiology.

  1. Phosphoenolpyruvate phosphotransferase system components positively regulate Klebsiella biofilm formation

    Directory of Open Access Journals (Sweden)

    Yu-Tze Horng

    2018-04-01

    Full Text Available Background/Purpose: Klebsiella pneumoniae is one of the leading causes of device-related infections (DRIs, which are associated with attachment of bacteria to these devices to form a biofilm. The latter is composed of not only bacteria but also extracellular polymeric substances (EPSes consisting of extracellular DNAs, polysaccharides, and other macromolecules. The phosphoenolpyruvate (PEP:carbohydrate phosphotransferase system (PTS regulates diverse processes of bacterial physiology. In the genome of K. pneumoniae MGH 78578, we found an uncharacterized enzyme II complex homolog of PTS: KPN00353 (EIIA homolog, KPN00352 (EIIB homolog, and KPN00351 (EIIC homolog. The aim of this study was to characterize the potential physiological role of KPN00353, KPN00352, and KPN00351 in biofilm formation by K. pneumoniae. Methods/Results: We constructed the PTS mutants and recombinant strains carrying the gene(s of PTS. The recombinant K. pneumoniae strain overexpressing KPN00353–KPN00352–KPN00351 produced more extracellular matrix than did the vector control according to transmission and scanning electron microscopy. Judging by quantification of biofilm formation, of extracellular DNA (eDNA, and of capsular polysaccharide, the recombinant strain overexpressing KPN00353-KPN00352-KPN00351 produced more biofilm and capsular polysaccharide after overnight culture and more eDNA in the log phase as compared to the vector control. Conclusion: The genes, KPN00353–KPN00352–KPN00351, encode a putative enzyme II complex in PTS and positively regulate biofilm formation by enhancing production of eDNA and capsular polysaccharide in K. pneumoniae. Five proteins related to chaperones, to the citric acid cycle, and to quorum sensing are upregulated by the KPN00353–KPN00352–KPN00351 system. Keywords: Klebsiella, PTS, Biofilm, eDNA, Polysaccharide

  2. Dynamics of biofilm formation in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The dynamics of biofilm formation in non-chlorinated groundwater-based drinking water was studied in a model distribution system. The formation of biofilm was closely monitored for a period of 522 days by total bacterial counts (AODC), heterotrophic plate counts (R2A media), and ATP content...

  3. Biofilm formation in Haemophilus parasuis: relationship with antibiotic resistance, serotype and genetic typing.

    Science.gov (United States)

    Zhang, Jianmin; Xu, Chenggang; Shen, Haiyan; Li, Jingyi; Guo, Lili; Cao, Guojie; Feng, Saixiang; Liao, Ming

    2014-10-01

    Biofilms are surface-associated microbial communities, which are encased in self-synthesized extracellular environment. Biofilm formation may trigger drug resistance and inflammation, resulting in persistent infections. Haemophilus parasuis is the etiological agent of a systemic disease, Glässer's disease, characterized by fibrinous polyserositis, arthritis and meningitis in pigs. The purpose of this study was to examine the correlation between biofilm and antibiotic resistance among the clinical isolates of H. parasuis. In the present study, we tested biofilm-forming ability of 110 H. parasuis isolates from various farms using polystyrene microtiter plate assays. Seventy-three isolates of H. parasuis (66.4%) showed biofilm formation and most of them performed weak biofilm-forming ability (38/73). All isolates were tested for antimicrobial susceptibility to 18 antimicrobial agents by the broth microdilution method. H. parasuis isolates showed very high resistance (>90%) to sulfanilamide, nalidixic acid, and trimethoprim. Resistance to eight antibiotics such as penicillin (41.1% vs 8.1%), ampicillin (31.5% vs 8.1%), amoxicillin (28.8% vs 5.4%), gentamicin (46.6% vs 24.3%), cefazolin (19.2% vs 2.7%), doxycycline (19.2% vs 8.1%), cefotaxime (11% vs 2.7%), and cefaclor (13.7% vs 5.4%) was comparatively higher among biofilm producers than non-biofilm producers. Pulsed-field gel electrophoresis (PFGE) analyses could distinguish various isolates. Our data indicated that H. parasuis field isolates were able to form biofilms in vitro. In addition, biofilm positive strains had positive correlation with resistance to β-lactams antibiotics. Thus, biofilm formation may play important roles during H. parasuis infections. Copyright © 2014. Published by Elsevier Ltd.

  4. Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont.

    Directory of Open Access Journals (Sweden)

    Steven A Frese

    Full Text Available Although vertebrates harbor bacterial communities in their gastrointestinal tract whose composition is host-specific, little is known about the mechanisms by which bacterial lineages become selected. The goal of this study was to characterize the ecological processes that mediate host-specificity of the vertebrate gut symbiont Lactobacillus reuteri, and to systematically identify the bacterial factors that are involved. Experiments with monoassociated mice revealed that the ability of L. reuteri to form epithelial biofilms in the mouse forestomach is strictly dependent on the strain's host origin. To unravel the molecular basis for this host-specific biofilm formation, we applied a combination of transcriptome analysis and comparative genomics and identified eleven genes of L. reuteri 100-23 that were predicted to play a role. We then determined expression and importance of these genes during in vivo biofilm formation in monoassociated mice. This analysis revealed that six of the genes were upregulated in vivo, and that genes encoding for proteins involved in epithelial adherence, specialized protein transport, cell aggregation, environmental sensing, and cell lysis contributed to biofilm formation. Inactivation of a serine-rich surface adhesin with a devoted transport system (the SecA2-SecY2 pathway completely abrogated biofilm formation, indicating that initial adhesion represented the most significant step in biofilm formation, likely conferring host specificity. In summary, this study established that the epithelial selection of bacterial symbionts in the vertebrate gut can be both specific and highly efficient, resulting in biofilms that are exclusively formed by the coevolved strains, and it allowed insight into the bacterial effectors of this process.

  5. Biofilm formation by asymptomatic and virulent urinary tract infectious Escherichia coli strains

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Ferrieres, Lionel; Klemm, Per

    2007-01-01

    have investigated the biofilm-forming capacity on abiotic surfaces of groups of ABU strains and UPEC strains in human urine. We found that there is a strong bias; ABU strains were significantly better biofilm formers than UPEC strains. Our data suggest that biofilm formation in urinary tract infectious...

  6. Role of Extracellular DNA during Biofilm Formation by Listeria monocytogenes

    DEFF Research Database (Denmark)

    Harmsen, Morten; Lappann, Martin; Knøchel, S

    2010-01-01

    (eDNA) may be the only central component of the biofilm matrix and that it is necessary for both initial attachment and early biofilm formation for 41 L. monocytogenes strains that were tested. DNase I treatment resulted in dispersal of biofilms, not only in microtiter tray assays but also in flow......Listeria monocytogenes is a food-borne pathogen that is capable of living in harsh environments. It is believed to do this by forming biofilms, which are surface-associated multicellular structures encased in a self-produced matrix. In this paper we show that in L. monocytogenes extracellular DNA...... cell biofilm assays. However, it was also demonstrated that in a culture without eDNA, neither Listeria genomic DNA nor salmon sperm DNA by itself could restore the capacity to adhere. A search for additional necessary components revealed that peptidoglycan (PG), specifically N-acetylglucosamine (NAG...

  7. Effects of ceftazidime and ciprofloxacin on biofilm formation in Proteus mirabilis rods.

    Science.gov (United States)

    Kwiecińska-Piróg, Joanna; Bogiel, Tomasz; Gospodarek, Eugenia

    2013-10-01

    Proteus mirabilis rods are one of the most commonly isolated species of the Proteus genus from human infections, mainly those from the urinary tract and wounds. They are often related to biofilm structure formation. The bacterial cells of the biofilm are less susceptible to routinely used antimicrobials, making the treatment more difficult. The aim of this study was to evaluate quantitatively the influence of ceftazidime and ciprofloxacin on biofilm formation on the polyvinyl chloride surface by 42 P. mirabilis strains isolated from urine, purulence, wound swab and bedsore samples. It has been shown that ceftazidime and ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular Proteus spp. strains decrease their ability to form biofilms. Moreover, ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular P. mirabilis strains reduces biofilm formation more efficiently than ceftazidime at the corresponding concentration values.

  8. Speleothem and biofilm formation in a granite/dolerite cave, Northern Sweden

    DEFF Research Database (Denmark)

    Sallstedt, T.; Ivarsson, M.; Lundberg, J.

    2014-01-01

    incorporated remains of microorganisms. Two types of microbial communities can be distinguished associated with the speleothems: an Actinobacteria-like biofilm and a fungal community. Actinobacteria seem to play an important role in the formation of speleothem while the fungal community acts as both...... a constructive and a destructive agent. A modern biofilm dominated by Actinobacteria is present in the speleothem-free parts of the dolerite and located in cave ceiling cracks. These biofilms may represent sites of early speleothem formation. Because of its unusual position in between two types of host rock...

  9. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation

    DEFF Research Database (Denmark)

    Schroll, C.; Barken, Kim Bundvig; Krogfelt, K.A.

    2010-01-01

    nosocomial infections. Most clinical K. pneumoniae isolates express two types of fimbrial adhesins, type 1 fimbriae and type 3 fimbriae. In this study, we characterized the role of type 1 and type 3 fimbriae in K. pneumoniae biofilm formation. Results: Isogenic fimbriae mutants of the clinical K. pneumoniae...... of planktonic cells. Type 1 fimbriae did not influence biofilm formation and the expression of type 1 fimbriae was found to be down-regulated in biofilm forming cells. In contrast, expression of type 3 fimbriae was found to strongly promote biofilm formation. Conclusion: By use of well defined isogenic mutants...... we found that type 3 fimbriae, but not type 1 fimbriae, strongly promote biofilm formation in K. pneumoniae C3091. As the vast majority of clinical K. pneumoniae isolates express type 3 fimbriae, this fimbrial adhesin may play a significant role in development of catheter associated K. pneumoniae...

  10. In vitro biofilm formation on resin-based composites after different finishing and polishing procedures.

    Science.gov (United States)

    Cazzaniga, Gloria; Ottobelli, Marco; Ionescu, Andrei C; Paolone, Gaetano; Gherlone, Enrico; Ferracane, Jack L; Brambilla, Eugenio

    2017-12-01

    To evaluate the influence of surface treatments of different resin-based composites (RBCs) on S. mutans biofilm formation. 4 RBCs (microhybrid, nanohybrid, nanofilled, bulk-filled) and 6 finishing-polishing (F/P) procedures (open-air light-curing, light-curing against Mylar strip, aluminum oxide discs, one-step rubber point, diamond bur, multi-blade carbide bur) were evaluated. Surface roughness (SR) (n=5/group), gloss (n=5/group), scanning electron microscopy morphological analysis (SEM), energy-dispersive X-ray spectrometry (EDS) (n=3/group), and S. mutans biofilm formation (n=16/group) were assessed. EDS analysis was repeated after the biofilm assay. A morphological evaluation of S. mutans biofilm was also performed using confocal laser-scanning microscopy (CLSM) (n=2/group). The data were analyzed using Wilcoxon (SR, gloss) and two-way ANOVA with Tukey as post-hoc tests (EDS, biofilm formation). F/P procedures as well as RBCs significantly influenced SR and gloss. While F/P procedures did not significantly influence S. mutans biofilm formation, a significant influence of RBCs on the same parameter was found. Different RBCs showed different surface elemental composition. Both F/P procedures and S. mutans biofilm formation significantly modified this parameter. The tested F/P procedures significantly influenced RBCs surface properties but did not significantly affect S. mutans biofilm formation. The significant influence of the different RBCs tested on S. mutans biofilm formation suggests that material characteristics and composition play a greater role than SR. F/P procedures of RBCs may unexpectedly play a minor role compared to that of the restoration material itself in bacterial colonization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis.

    Science.gov (United States)

    Kalishwaralal, Kalimuthu; BarathManiKanth, Selvaraj; Pandian, Sureshbabu Ram Kumar; Deepak, Venkataraman; Gurunathan, Sangiliyandi

    2010-09-01

    Biofilms are ensued due to bacteria that attach to surfaces and aggregate in a hydrated polymeric matrix. Formation of these sessile communities and their inherent resistance to anti-microbial agents are the source of many relentless and chronic bacterial infections. Such biofilms are responsible play a major role in development of ocular related infectious diseases in human namely microbial keratitis. Different approaches have been used for preventing biofilm related infections in health care settings. Many of these methods have their own demerits that include chemical based complications; emergent antibiotic resistant strains, etc. silver nanoparticles are renowned for their influential anti-microbial activity. Hence the present study over the biologically synthesized silver nanoparticles, exhibited a potential anti-biofilm activity that was tested in vitro on biofilms formed by Pseudomonas aeruginosa and Staphylococcus epidermidis during 24-h treatment. Treating these organisms with silver nanoparticles resulted in more than 95% inhibition in biofilm formation. The inhibition was known to be invariable of the species tested. As a result this study demonstrates the futuristic application of silver nanoparticles in treating microbial keratitis based on its potential anti-biofilm activity. Copyright 2010 Elsevier B.V. All rights reserved.

  12. A Nonbactericidal Zinc-Complexing Ligand as a Biofilm Inhibitor: Structure-Guided Contrasting Effects on Staphylococcus aureus Biofilm.

    Science.gov (United States)

    Kapoor, Vidushi; Rai, Rajanikant; Thiyagarajan, Durairaj; Mukherjee, Sandipan; Das, Gopal; Ramesh, Aiyagari

    2017-08-04

    Zinc-complexing ligands are prospective anti-biofilm agents because of the pivotal role of zinc in the formation of Staphylococcus aureus biofilm. Accordingly, the potential of a thiosemicarbazone (compound C1) and a benzothiazole-based ligand (compound C4) in the prevention of S. aureus biofilm formation was assessed. Compound C1 displayed a bimodal activity, hindering biofilm formation only at low concentrations and promoting biofilm growth at higher concentrations. In the case of C4, a dose-dependent inhibition of S. aureus biofilm growth was observed. Atomic force microscopy analysis suggested that at higher concentrations C1 formed globular aggregates, which perhaps formed a substratum that favored adhesion of cells and biofilm formation. In the case of C4, zinc supplementation experiments validated zinc complexation as a plausible mechanism of inhibition of S. aureus biofilm. Interestingly, C4 was nontoxic to cultured HeLa cells and thus has promise as a therapeutic anti-biofilm agent. The essential understanding of the structure-driven implications of zinc-complexing ligands acquired in this study might assist future screening regimes for identification of potent anti-biofilm agents. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.

    Science.gov (United States)

    Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung

    2013-05-15

    Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P biofilms on polyvinyl chloride compared to that on galvanized zinc. This study revealed both the in situ disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Ceftriaxone and tetracycline effect on biofilm-formation strains of Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    O. I. Sidashenko

    2014-04-01

    Full Text Available 122 strains of staphylococci were identified. Among the examined 122 clinical strains of staphylococci, 67 strains belonged to coagulase-positive, and 55 strains to the coagulase-negative ones. According to the study of physiological and biochemical properties, it was found that 37 strains (30.3% belonged to S. epidermidis species. One of the biological properties of many bacteria is the ability to film formation and these strains attract special attention, since it is known that the film antibiotic resistance is higher than in planktonic cultures. It was determined that 20 strains of those under study were film-forming, 17 strains – non-biofilm forming ones. The film was formed during three days, and settled to the bottom of the plate holes. The clinical (Cl strain of S. epidermidis was sensitive to ceftriaxone and tetracicline. The control (C strains of S. epidermidis were sensitive to ceftriaxone, tetracycline and sizomicine. The study of biofilm growth for 2, 3 and 4 days of incubation was carried out. The maximum rate of biofilm S. epidermidis C was observed during 2–3 days; there is the most intense increase of cells number from 5.2 × 108 CFU/ml, for S. epidermidis Cl to 5.6 × 108 CFU/ml. The effect of ceftriaxone and tetracycline on biofilm formation by 2 investigation strains of S. epidermidis was found. We determined differences in minimal inhibitory concentrations (MIC for planktonic cultures and biofilm of strains under study. It was established that MIC antibiotics inhibited the growth of planktonic cultures on average 2 times lower compared to the MIC which inhibited the biofilm formation. MIC for planktonic culture of S. epidermidis Cl defined for ceftriaxone was equal to 10 mg/ml, and for tetracycline – 1 mg/ml. MIC of ceftriaxone for the control strain was equal to 12 mg/ml, MIC of tetracycline – 0.7 mg/ml. MIC values for dynamics biofilm formation of S. epidermidis Cl strain on the plater were as follows: to

  15. Streptococcus pyogenes biofilmsformation, biology,and clinical relevance

    Directory of Open Access Journals (Sweden)

    Tomas eFiedler

    2015-02-01

    Full Text Available Streptococcus pyogenes (group A streptococci, GAS is an exclusive human bacterial pathogen. The virulence potential of this species is tremendous. Interactions with humans range from asymptomatic carriage over mild and superficial infections of skin and mucosal membranes up to systemic purulent toxic-invasive disease manifestations. Particularly the latter are a severe threat for predisposed patients and lead to significant death tolls worldwide. This places GAS among the most important Gram-positive bacterial pathogens. Many recent reviews have highlighted the GAS repertoire of virulence factors, regulators and regulatory circuits/networks that enable GAS to colonize the host and to deal with all levels of the host immune defense. This covers in vitro and in vivo studies, including animal infection studies based on mice and more relevant, macaque monkeys. It is now appreciated that GAS, like many other bacterial species, do not necessarily exclusively live in a planktonic lifestyle. GAS is capable of microcolony and biofilm formation on host cells and tissues. We are now beginning to understand that this feature significantly contributes to GAS pathogenesis. In this review we will discuss the current knowledge on GAS biofilm formation, the biofilm-phenotype associated virulence factors, regulatory aspects of biofilm formation, the clinical relevance, and finally contemporary treatment regimens and future treatment options.

  16. Identification of Streptococcus sanguinis Genes Required for Biofilm Formation and Examination of Their Role in Endocarditis Virulence▿

    Science.gov (United States)

    Ge, Xiuchun; Kitten, Todd; Chen, Zhenming; Lee, Sehmi P.; Munro, Cindy L.; Xu, Ping

    2008-01-01

    Streptococcus sanguinis is one of the pioneers in the bacterial colonization of teeth and is one of the most abundant species in the oral biofilm called dental plaque. S. sanguinis is also the most common viridans group streptococcal species implicated in infective endocarditis. To investigate the association of biofilm and endocarditis, we established a biofilm assay and examined biofilm formation with a signature-tagged mutagenesis library of S. sanguinis. Four genes that have not previously been associated with biofilm formation in any other bacterium, purB, purL, thrB, and pyrE, were putatively identified as contributing to in vitro biofilm formation in S. sanguinis. By examining 800 mutants for attenuation in the rabbit endocarditis model and for reduction in biofilm formation in vitro, we found some mutants that were both biofilm defective and attenuated for endocarditis. However, we also identified mutants with only reduced biofilm formation or with only attenuation in the endocarditis model. This result indicates that the ability to form biofilms in vitro is not associated with endocarditis virulence in vivo in S. sanguinis. PMID:18390999

  17. Identification of Streptococcus sanguinis genes required for biofilm formation and examination of their role in endocarditis virulence.

    Science.gov (United States)

    Ge, Xiuchun; Kitten, Todd; Chen, Zhenming; Lee, Sehmi P; Munro, Cindy L; Xu, Ping

    2008-06-01

    Streptococcus sanguinis is one of the pioneers in the bacterial colonization of teeth and is one of the most abundant species in the oral biofilm called dental plaque. S. sanguinis is also the most common viridans group streptococcal species implicated in infective endocarditis. To investigate the association of biofilm and endocarditis, we established a biofilm assay and examined biofilm formation with a signature-tagged mutagenesis library of S. sanguinis. Four genes that have not previously been associated with biofilm formation in any other bacterium, purB, purL, thrB, and pyrE, were putatively identified as contributing to in vitro biofilm formation in S. sanguinis. By examining 800 mutants for attenuation in the rabbit endocarditis model and for reduction in biofilm formation in vitro, we found some mutants that were both biofilm defective and attenuated for endocarditis. However, we also identified mutants with only reduced biofilm formation or with only attenuation in the endocarditis model. This result indicates that the ability to form biofilms in vitro is not associated with endocarditis virulence in vivo in S. sanguinis.

  18. Impact of early colonizers on in vitro subgingival biofilm formation.

    Directory of Open Access Journals (Sweden)

    Thomas W Ammann

    Full Text Available The aim of this study was to investigate the impact of early colonizing species on the structure and the composition of the bacterial community developing in a subgingival 10-species biofilm model system. The model included Streptococcus oralis, Streptococcus anginosus, Actinomycesoris, Fusobacterium nucleatum subsp. nucleatum, Veillonella dispar, Campylobacter rectus, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. Based on literature, we considered Streptococcus oralis, Streptococcus anginosus, and Actinomyces oris as early colonizers and examined their role in the biofilms by either a delayed addition to the consortium, or by not inoculating at all the biofilms with these species. We quantitatively evaluated the resulting biofilms by real-time quantitative PCR and further compared the structures using confocal laser scanning microscopy following fluorescence in situ hybridisation. The absence of the early colonizers did not hinder biofilm formation. The biofilms reached the same total counts and developed to normal thickness. However, quantitative shifts in the abundances of individual species were observed. In the absence of streptococci, the overall biofilm structure appeared looser and more dispersed. Moreover, besides a significant increase of P. intermedia and a decrease of P. gingivalis , P. intermedia appeared to form filamented long chains that resembled streptococci. A. oris, although growing to significantly higher abundance in absence of streptococci, did not have a visible impact on the biofilms. Hence, in the absence of the early colonizers, there is a pronounced effect on P. intermedia and P. gingivalis that may cause distinct shifts in the structure of the biofilm. Streptococci possibly facilitate the establishment of P. gingivalis into subgingival biofilms, while in their absence P. intermedia became more dominant and forms elongated chains.

  19. Biofilm in endodontics: A review

    Science.gov (United States)

    Jhajharia, Kapil; Parolia, Abhishek; Shetty, K Vikram; Mehta, Lata Kiran

    2015-01-01

    Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilms’ formation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to

  20. Comparison of the Candida albicans and biofilm formation amount on natural tooth,

    Directory of Open Access Journals (Sweden)

    Serdar Polat

    2012-03-01

    Full Text Available Objective: This study compared the retention of the Candidaalbicans and biofilm formation on natural teeth, porcelainand acrylic resin.Materials and methods: Samples are taken with thesterile ecuvion sticks from the buccal embrasures of thenatural tooth, porcelain and acrylic. The biofilm productionof candida reproducing strains was determined withmicroplate method. Samples are settled in 0.5 ml sterilephosphate buffered saline. Reproduction detected coloniesdefined to species in accordance with their macroscopicand microscopic features and germ tube test inmicrobiology laboratory.Results: There was significant differences for retention ofCandida albicans and biofilm formation on the surface oftooth, porcelain and acrylic (p<0.05.Conclusion: Adherence of Candida albicans and biofilmformation on the porcelain significantly less than naturaltooth and acrylic, and retention and biofilm formation onthe tooth less than acrylic.

  1. Optimized candidal biofilm microtiter assay

    NARCIS (Netherlands)

    Krom, Bastiaan P.; Cohen, Jesse B.; Feser, Gail E. McElhaney; Cihlar, Ronald L.

    Microtiter based candidal biofilm formation is commonly being used. Here we describe the analysis of factors influencing the development of candidal biofilms such as the coating with serum, growth medium and pH. The data reported here show that optimal candidal biofilm formation is obtained when

  2. Biofilm formation by Salmonella spp. in catfish mucus extract under industrial conditions.

    Science.gov (United States)

    Dhowlaghar, Nitin; De Abrew Abeysundara, Piumi; Nannapaneni, Ramakrishna; Schilling, Mark W; Chang, Sam; Cheng, Wen-Hsing; Sharma, Chander S

    2018-04-01

    The objective of this study was to determine the effect of strain and temperature on the growth and biofilm formation of Salmonella spp. in high and low concentrations of catfish mucus extract on different food-contact surfaces at 22 °C and 10 °C. The second objective of this study was to evaluate the efficacy of disinfectants at recommended concentrations and contact times for removing Salmonella biofilms cells on a stainless steel surface containing catfish mucus extract. Growth and biofilm formation of all Salmonella strains increased with higher concentrations of catfish mucus extract at both 10 °C and 22 °C. In 15 μg/ml of catfish mucus extract inoculated with 3 log CFU/ml, the biofilm levels of Salmonella on stainless steel surface reached to 3.5 log CFU/cm 2 at 10 °C or 5.5 log CFU/cm 2 at 22 °C in 7 days. In 375 μg/ml of catfish mucus extract inoculated with 3 log CFU/ml, the biofilm levels of Salmonella on the stainless steel surface reached 4.5 log CFU/cm 2 at 10 °C and 6.5 log CFU/cm 2 at 22 °C in 7 days. No differences were observed between Salmonella strains tested for biofilm formation in catfish mucus extract on the stainless steel surface. The biofilm formation by Salmonella Blockley (7175) in catfish mucus extract was less (P stainless steel, polyethylene and polyurethane surfaces. Salmonella biofilm cells were not detectable on the stainless steel surface after treatment with a mixture of disinfectants but were still present when single compound disinfectants were used. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cross-regulation by CrcZ RNA controls anoxic biofilm formation in Pseudomonas aeruginosa

    Science.gov (United States)

    Pusic, Petra; Tata, Muralidhar; Wolfinger, Michael T.; Sonnleitner, Elisabeth; Häussler, Susanne; Bläsi, Udo

    2016-12-01

    Pseudomonas aeruginosa (PA) can thrive in anaerobic biofilms in the lungs of cystic fibrosis (CF) patients. Here, we show that CrcZ is the most abundant PA14 RNA bound to the global regulator Hfq in anoxic biofilms grown in cystic fibrosis sputum medium. Hfq was crucial for anoxic biofilm formation. This observation complied with an RNAseq based transcriptome analysis and follow up studies that implicated Hfq in regulation of a central step preceding denitrification. CrcZ is known to act as a decoy that sequesters Hfq during relief of carbon catabolite repression, which in turn alleviates Hfq-mediated translational repression of catabolic genes. We therefore inferred that CrcZ indirectly impacts on biofilm formation by competing for Hfq. This hypothesis was supported by the findings that over-production of CrcZ mirrored the biofilm phenotype of the hfq deletion mutant, and that deletion of the crcZ gene augmented biofilm formation. To our knowledge, this is the first example where competition for Hfq by CrcZ cross-regulates an Hfq-dependent physiological process unrelated to carbon metabolism.

  4. Candidate Targets for New Anti-Virulence Drugs: Selected Cases of Bacterial Adhesion and Biofilm Formation

    DEFF Research Database (Denmark)

    Klemm, Per; Hancock, Viktoria; Kvist, Malin

    2007-01-01

    is particularly problematic in medical contexts because biofilm-associated bacteria are particularly hard to eradicate. Several promising candidate drugs that target bacterial adhesion and biofilm formation are being developed. Some of these might be valuable weapons for fighting infectious diseases in the future...... formation are highly attractive targets for new drugs. Specific adhesion provides bacteria with target selection and prevents removal by hydrodynamic flow forces. Bacterial adhesion is of paramount importance for bacterial pathogenesis. Adhesion is also the first step in biofilm formation. Biofilm formation...

  5. The Pseudomonas aeruginosa Type III Translocon Is Required for Biofilm Formation at the Epithelial Barrier

    DEFF Research Database (Denmark)

    Tran, Cindy S; Rangel, Stephanie M; Almblad, Henrik

    2014-01-01

    Clinical infections by Pseudomonas aeruginosa, a deadly Gram-negative, opportunistic pathogen of immunocompromised hosts, often involve the formation of antibiotic-resistant biofilms. Although biofilm formation has been extensively studied in vitro on glass or plastic surfaces, much less is known...... about biofilm formation at the epithelial barrier. We have previously shown that when added to the apical surface of polarized epithelial cells, P. aeruginosa rapidly forms cell-associated aggregates within 60 minutes of infection. By confocal microscopy we now show that cell-associated aggregates...... a previously unappreciated function for the type III translocon in the formation of P. aeruginosa biofilms at the epithelial barrier and demonstrate that biofilms may form at early time points of infection....

  6. Novel application for the prevention and treatment of Staphylococcus aureus biofilm formation

    Science.gov (United States)

    Traba, Christian

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this dissertation, the application of plasma from two very different facets was studied. In part one, the susceptibility of pre-formed Staphylococcus aureus biofilms on biomaterials to different plasmas was investigated. It was found that the distinct chemical/physical properties of plasmas generated from oxygen, nitrogen, and argon all demonstrated very potent but very different anti-biofilm mechanisms of action. An in depth analysis of these results show: 1) different reactive species produced in each plasma demonstrate specific activity, and 2) the commonly associated etching effect could be manipulated and even controlled, depending on experimental conditions and the discharge gas. These studies provide insights into the anti-biofilm mechanisms of plasma as well as the effects of different reactive species on biofilm inactivation. Under experimental parameters, bacterial cells in Staphylococcus aureus biofilms were killed (>99.9%) by plasmas within minutes of exposure and no bacteria nor biofilm re-growth from discharge gas treated biofilms was observed throughout the life-span of the re-growth experiment. The decontamination ability of plasmas for the treatment of biofilm related infections on biomedical materials was confirmed and novel applications involving the use of low power argon and oxygen for the treatment of biofilm contaminated biomaterials and indwelling devices is proposed. The second facet of this dissertation explores the interaction between biofilm forming Staphylococcus aureus bacteria on different antibacterial/anti-biofilm surfaces. The antibiotic-free anti-fouling surfaces constructed in this study were generated from the plasma-assisted graft polymerization technique. These sophisticated surfaces were stable, biocompatible and capable of preventing biofilm formation on biomaterials and medical devices. Under

  7. Assessment of biofilm formation in device-associated clinical bacterial isolates in a tertiary level hospital

    Directory of Open Access Journals (Sweden)

    Summaiya A Mulla

    2011-01-01

    Full Text Available Background: Biofilm formation is a developmental process with intercellular signals that regulate growth. Biofilms contaminate catheters, ventilators, and medical implants; they act as a source of disease for humans, animals, and plants. Aim: In this study we have done quantitative assessment of biofilm formation in device-associated clinical bacterial isolates in response to various concentrations of glucose in tryptic soya broth and with different incubation time. Materials and Methods: The study was carried out on 100 positive bacteriological cultures of medical devices, which were inserted in hospitalized patients. The bacterial isolates were processed as per microtitre plate method with tryptic soya broth alone and with varying concentrations of glucose and were observed in response to time. Results: Majority of catheter cultures were positive. Out of the total 100 bacterial isolates tested, 88 of them were biofilm formers. Incubation period of 16-20 h was found to be optimum for biofilm development. Conclusions: Availability of nutrition in the form of glucose enhances the biofilm formation by bacteria. Biofilm formation depends on adherence of bacteria to various surfaces. Time and availability of glucose are important factors for assessment of biofilm progress.

  8. Preventive effects of a phospholipid polymer coating on PMMA on biofilm formation by oral streptococci

    Science.gov (United States)

    Shibata, Yukie; Yamashita, Yoshihisa; Tsuru, Kanji; Ishihara, Kazuhiko; Fukazawa, Kyoko; Ishikawa, Kunio

    2016-12-01

    The regulation of biofilm formation on dental materials such as denture bases is key to oral health. Recently, a biocompatible phospholipid polymer, poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) coating, was reported to inhibit sucrose-dependent biofilm formation by Streptococcus mutans, a cariogenic bacterium, on the surface of poly(methyl methacrylate) (PMMA) denture bases. However, S. mutans is a minor component of the oral microbiome and does not play an important role in biofilm formation in the absence of sucrose. Other, more predominant oral streptococci must play an indispensable role in sucrose-independent biofilm formation. In the present study, the effect of PMB coating on PMMA was evaluated using various oral streptococci that are known to be initial colonizers during biofilm formation on tooth surfaces. PMB coating on PMMA drastically reduced sucrose-dependent tight biofilm formation by two cariogenic bacteria (S. mutans and Streptococcus sobrinus), among seven tested oral streptococci, as described previously [N. Takahashi, F. Iwasa, Y. Inoue, H. Morisaki, K. Ishihara, K. Baba, J. Prosthet. Dent. 112 (2014) 194-203]. Streptococci other than S. mutans and S. sobrinus did not exhibit tight biofilm formation even in the presence of sucrose. On the other hand, all seven species of oral streptococci exhibited distinctly reduced glucose-dependent soft biofilm retention on PMB-coated PMMA. We conclude that PMB coating on PMMA surfaces inhibits biofilm attachment by initial colonizer oral streptococci, even in the absence of sucrose, indicating that PMB coating may help maintain clean conditions on PMMA surfaces in the oral cavity.

  9. Mechanisms of nitrous oxide (N2 O) formation and reduction in denitrifying biofilms.

    Science.gov (United States)

    Sabba, Fabrizio; Picioreanu, Cristian; Nerenberg, Robert

    2017-12-01

    Nitrous oxide (N 2 O) is a potent greenhouse gas that can be formed in wastewater treatment processes by ammonium oxidizing and denitrifying microorganisms. While N 2 O emissions from suspended growth systems have been extensively studied, and some recent studies have addressed emissions from nitrifying biofilms, much less is known about N 2 O emissions from denitrifying biofilm processes. This research used modeling to evaluate the mechanisms of N 2 O formation and reduction in denitrifying biofilms. The kinetic model included formation and consumption of key denitrification species, including nitrate (NO3-), nitrite (NO2-), nitric oxide (NO), and N 2 O. The model showed that, in presence of excess of electron donor, denitrifying biofilms have two distinct layers of activity: an outer layer where there is net production of N 2 O and an inner layer where there is net consumption. The presence of oxygen (O 2 ) had an important effect on N 2 O emission from suspended growth systems, but a smaller effect on biofilm systems. The effects of NO3- and O 2 differed significantly based on the biofilm thickness. Overall, the effects of biofilm thickness and bulk substrate concentrations on N 2 O emissions are complex and not always intuitive. A key mechanism for denitrifying biofilms is the diffusion of N 2 O and other intermediates from one zone of the biofilm to another. This leads to zones of N 2 O formation or consumption transformations that would not exist in suspended growth systems. © 2017 Wiley Periodicals, Inc.

  10. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    Science.gov (United States)

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. SaeRS Is Responsive to Cellular Respiratory Status and Regulates Fermentative Biofilm Formation in Staphylococcus aureus.

    Science.gov (United States)

    Mashruwala, Ameya A; Gries, Casey M; Scherr, Tyler D; Kielian, Tammy; Boyd, Jeffrey M

    2017-08-01

    Biofilms are multicellular communities of microorganisms living as a quorum rather than as individual cells. The bacterial human pathogen Staphylococcus aureus uses oxygen as a terminal electron acceptor during respiration. Infected human tissues are hypoxic or anoxic. We recently reported that impaired respiration elicits a p rogrammed c ell l ysis (PCL) phenomenon in S. aureus leading to the release of cellular polymers that are utilized to form biofilms. PCL is dependent upon the AtlA murein hydrolase and is regulated, in part, by the SrrAB two-component regulatory system (TCRS). In the current study, we report that the SaeRS TCRS also governs fermentative biofilm formation by positively influencing AtlA activity. The SaeRS-modulated factor fibronectin-binding protein A (FnBPA) also contributed to the fermentative biofilm formation phenotype. SaeRS-dependent biofilm formation occurred in response to changes in cellular respiratory status. Genetic evidence presented suggests that a high cellular titer of phosphorylated SaeR is required for biofilm formation. Epistasis analyses found that SaeRS and SrrAB influence biofilm formation independently of one another. Analyses using a mouse model of orthopedic implant-associated biofilm formation found that both SaeRS and SrrAB govern host colonization. Of these two TCRSs, SrrAB was the dominant system driving biofilm formation in vivo We propose a model wherein impaired cellular respiration stimulates SaeRS via an as yet undefined signal molecule(s), resulting in increasing expression of AtlA and FnBPA and biofilm formation. Copyright © 2017 American Society for Microbiology.

  12. Adhesion of Porphyromonas gingivalis and Biofilm Formation on Different Types of Orthodontic Brackets

    Directory of Open Access Journals (Sweden)

    William Papaioannou

    2012-01-01

    Full Text Available Objectives. To examine the interaction between Porphyromonas gingivalis and 3 different orthodontic brackets in vitro, focusing on the effect of an early salivary pellicle and other bacteria on the formation of biofilms. Material and Methods. Mono- and multi-species P. gingivalis biofilms were allowed to form in vitro, on 3 different bracket types (stainless steel, ceramic and plastic with and without an early salivary pellicle. The brackets were anaerobically incubated for 3 days in Brain Heart Infusion Broth to form biofilms. Bacteria were quantified by trypsin treatment and enumeration of the total viable counts of bacteria recovered. Results. Saliva was found to significantly affect (<0.001 adhesion and biofilm formation of P. gingivalis, with higher numbers for the coated brackets. No significant effect was detected for the impact of the type of biofilm, although on stainless steel and plastic brackets there was a tendency for higher numbers of the pathogen in multi-species biofilms. Bracket material alone was not found to affect the number of bacteria. Conclusions. The salivary pellicle seems to facilitate the adhesion of P. gingivalis and biofilm formation on orthodontic brackets, while the material comprising the brackets does not significantly impact on the number of bacteria.

  13. Antifungal effects of undecylenic acid on the biofilm formation of Candida albicans.

    Science.gov (United States)

    Shi, Dongmei; Zhao, Yaxin; Yan, Hongxia; Fu, Hongjun; Shen, Yongnian; Lu, Guixia; Mei, Huan; Qiu, Ying; Li, Dongmei; Liu, Weida

    2016-05-01

    Undecylenic acid can effectively control skin fungal infection, but the mechanism of its fungal inhibition is unclear. Hyphal growth of Candida albicans (C. albicans) and biofilm formation have been well recognized as important virulence factors for the initiation of skin infection and late development of disseminated infection. In this study, we seek to investigate antifungal mechanisms of undecylenic acid by evaluating the virulence factors of C. albicans during biofilm formation. We found that undecylenic acid inhibits biofilm formation of C. albicans effectively with optimal concentration above 3 mM. In the presence of this compound, the morphological transition from yeast to filamentous phase is abolished ultimately when the concentration of undecylenic acid is above 4 mM. Meanwhile, the cell surface is crumpled, and cells display an atrophic appearance under scanning electron microscopy even with low concentration of drug treatment. On the other hand, the drug treatment decreases the transcriptions of hydrolytic enzymes such as secreted aspartic protease, lipase, and phospholipase. Hyphal formation related genes, like HWP1, are significantly reduced in transcriptional level in drug-treated biofilm condition as well. The down-regulated profile of these genes leads to a poorly organized biofilm in undecylenic acid treated environment.

  14. Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Baldry, Mara; Nielsen, Anita; Bojer, Martin S.

    2016-01-01

    characterise the mode of action of norlichexanthone and its effect on biofilm formation. We find that norlichexanthone reduces expression of both hla and RNAIII also in strain USA300. Structurally, norlichexanthone resembles ω-hydroxyemodin that recently was shown to bind the agr two component response......-hydroxyemodin however, norlichexanthone reduces staphylococcal biofilm formation. Transcriptomic analysis revealed that genes regulated by the SaeRS two-component system are repressed by norlichexanthone when compared to untreated cells, an effect that was mitigated in strain Newman carrying a partially constitutive...... SaeRS system. Our data show that norlichexanthone treatment reduces expression of key virulence factors in CA-MRSA strain USA300 via AgrA binding and represses biofilm formation....

  15. Acinetobacter baumannii in Southern Croatia: clonal lineages, biofilm formation, and resistance patterns.

    Science.gov (United States)

    Kaliterna, Vanja; Kaliterna, Mariano; Hrenović, Jasna; Barišić, Zvonimir; Tonkić, Marija; Goic-Barisic, Ivana

    2015-01-01

    Acinetobacter baumannii is one of the most prevalent causes of severe hospital-acquired infections and is responsible for the dramatic increase in carbapenem resistance in Croatia in the last 5 years. Such data have encouraged multicenter research focused on the organism's ability to form biofilm, susceptibility to antibiotics, and particular genotype lineage. Biofilm formation in 109 unrelated clinical isolates of A. baumannii recovered in six cities of Southern Croatia was investigated. Genotyping was performed by pulsed-field gel electrophoresis and antibiotic profile was tested by applying the disc diffusion method and confirmed by determining the minimum inhibitory concentrations. The ability to form biofilm in vitro was determined from overnight cultures of the collected isolates on microtiter plates, after staining with crystal violet, and quantified at 570 nm after solubilization with ethanol. The statistical relevance was calculated in an appropriate program with level of statistical confidence. There was no significant difference in biofilm formation due to the genotype lineage. Isolates collected from intensive care units (ICUs) and isolated from respiratory samples were more likely to create a biofilm compared with isolates from other departments and other samples. There was a significant difference in the ability to produce biofilm in relation to antibiotic resistance pattern. A large proportion of A. baumannii isolates that were resistant to ampicillin/sulbactam, carbapenems, and amikacin were found to be biofilm-negative. In contrast, isolates susceptible and intermediately susceptible to ampicillin/sulbactam, carbapenems, and amikacin were biofilm producers. Clinical isolates of A. baumannii from respiratory samples in ICUs with a particular susceptibility pattern are more prone to form biofilm.

  16. Surface proteins and the formation of biofilms by Staphylococcus aureus.

    Science.gov (United States)

    Kim, Sung Joon; Chang, James; Rimal, Binayak; Yang, Hao; Schaefer, Jacob

    2018-03-01

    Staphylococcus aureus biofilms pose a serious clinical threat as reservoirs for persistent infections. Despite this clinical significance, the composition and mechanism of formation of S. aureus biofilms are unknown. To address these problems, we used solid-state NMR to examine S. aureus (SA113), a strong biofilm-forming strain. We labeled whole cells and cell walls of planktonic cells, young biofilms formed for 12-24h after stationary phase, and more mature biofilms formed for up to 60h after stationary phase. All samples were labeled either by (i) [ 15 N]glycine and l-[1- 13 C]threonine, or in separate experiments, by (ii) l-[2- 13 C, 15 N]leucine. We then measured 13 C- 15 N direct bonds by C{N} rotational-echo double resonance (REDOR). The increase in peptidoglycan stems that have bridges connected to a surface protein was determined directly by a cell-wall double difference (biofilm REDOR difference minus planktonic REDOR difference). This procedure eliminates errors arising from differences in 15 N isotopic enrichments and from the routing of 13 C label from threonine degradation to glycine. For both planktonic cells and the mature biofilm, 20% of pentaglycyl bridges are not cross-linked and are potential surface-protein attachment sites. None of these sites has a surface protein attached in the planktonic cells, but one-fourth have a surface protein attached in the mature biofilm. Moreover, the leucine-label shows that the concentration of β-strands in leucine-rich regions doubles in the mature biofilm. Thus, a primary event in establishing a S. aureus biofilm is extensive decoration of the cell surface with surface proteins that are linked covalently to the cell wall and promote cell-cell adhesion. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Relative contributions of norspermidine synthesis and signaling pathways to the regulation of Vibrio cholerae biofilm formation.

    Directory of Open Access Journals (Sweden)

    Caitlin K Wotanis

    Full Text Available The polyamine norspermidine is one of the major polyamines synthesized by Vibrionales and has also been found in various aquatic organisms. Norspermidine is among the environmental signals that positively regulate Vibrio cholerae biofilm formation. The NspS/MbaA signaling complex detects extracellular norspermidine and mediates the response to this polyamine. Norspermidine binding to the NspS periplasmic binding protein is thought to inhibit the phosphodiesterase activity of MbaA, increasing levels of the biofilm-promoting second messenger cyclic diguanylate monophosphate, thus enhancing biofilm formation. V. cholerae can also synthesize norspermidine using the enzyme NspC as well as import it from the environment. Deletion of the nspC gene was shown to reduce accumulation of bacteria in biofilms, leading to the conclusion that intracellular norspermidine is also a positive regulator of biofilm formation. Because V. cholerae uses norspermidine to synthesize the siderophore vibriobactin it is possible that intracellular norspermidine is required to obtain sufficient amounts of iron, which is also necessary for robust biofilm formation. The objective of this study was to assess the relative contributions of intracellular and extracellular norspermidine to the regulation of biofilm formation in V. cholerae. We show the biofilm defect of norspermidine synthesis mutants does not result from an inability to produce vibriobactin as vibriobactin synthesis mutants do not have diminished biofilm forming abilities. Furthermore, our work shows that extracellular, but not intracellular norspermidine, is mainly responsible for promoting biofilm formation. We establish that the NspS/MbaA signaling complex is the dominant mediator of biofilm formation in response to extracellular norspermidine, rather than norspermidine synthesized by NspC or imported into the cell.

  18. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2009-07-01

    Full Text Available Extracellular polymeric substances (EPS produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  19. The Impact of Biofilm Formation on the Persistence of Candidemia

    Directory of Open Access Journals (Sweden)

    Wei-Sin Li

    2018-06-01

    Full Text Available This study aimed to determine the predictors of persistent candidemia and examine the impact of biofilm formation by Candida isolates in adult patients with candidemia. Of the adult patients with candidemia in Kaohsiung Chang Gung Memorial Hospital between January 2007 and December 2012, 68 case patients with persistent candidemia (repeated candidemia after a 3-day systemic antifungal therapy and 68 control patients with non-persistent candidemia (Candida clearance from the bloodstream after a 3-day systemic antifungal therapy were included based on propensity score matching and matching for the Candida species isolated. Biofilm formation by the Candida species was assessed in vitro using standard biomass assays. Presence of central venous catheters (CVCs at diagnosis (adjusted odd ratio [AOR], 3.77; 95% confidence interval [CI], 1.09–13.00, p = 0.04, infection with higher biofilm forming strains of Candida species (AOR, 8.03; 95% CI, 2.50–25.81; p < 0.01, and receipt of suboptimal fluconazole doses as initial therapy (AOR, 5.54; 95% CI, 1.53–20.10; p < 0.01 were independently associated with persistent candidemia. Biofilm formation by Candida albicans, C. tropicalis, and C. glabrata strains was significantly higher in the case patients than in the controls. There were no significant differences in the overall mortality and duration of hospitalization between the two groups. Our data suggest that, other than presence of retained CVCs and use of suboptimal doses of fluconazole, biofilm formation was highly associated with development of persistent candidemia.

  20. In Vitro Effects of Sports and Energy Drinks on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    Science.gov (United States)

    Vinson, LaQuia A; Goodlett, Amy K; Huang, Ruijie; Eckert, George J; Gregory, Richard L

    2017-09-15

    Sports and energy drinks are being increasingly consumed and contain large amounts of sugars, which are known to increase Streptococcus mutans biofilm formation and metabolic activity. The purpose of this in vitro study was to investigate the effects of sports and energy drinks on S. mutans biofilm formation and metabolic activity. S. mutans UA159 was cultured with and without a dilution (1:3 ratio) of a variety of sports and energy drinks in bacterial media for 24 hours. The biofilm was washed, fixed, and stained. Biofilm growth was evaluated by reading absorbance of the crystal violet. Biofilm metabolic activity was measured by the biofilm-reducing XTT to a water-soluble orange compound. Gatorade Protein Recovery Shake and Starbucks Doubleshot Espresso Energy were found to significantly increase biofilm (30-fold and 22-fold, respectively) and metabolic activity (2-fold and 3-fold, respectively). However, most of the remaining drinks significantly inhibited biofilm growth and metabolic activity. Several sports and energy drinks, with sugars or sugar substitutes as their main ingredients inhibited S. mutans biofilm formation. Among the drinks evaluated, Gatorade Protein Recovery Chocolate Shake and Starbucks Doubleshot Energy appear to have cariogenic potential since they increased the biofilm formation and metabolic activity of S. mutans.

  1. Cellular chain formation in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2009-01-01

    ; type I fimbriae expression significantly reduced cellular chain formation, presumably by steric hindrance. Cellular chain formation did not appear to be specific to E coli K-12. Although many urinary tract infection (UTI) isolates were found to form rather homogeneous, flat biofilms, three isolates...

  2. [The effect of biyuanshu oral liquid on the formation of Pseudomonas aeruginosa biofilms in vitro].

    Science.gov (United States)

    Liu, Xiang; Chen, Haihong; Wang, Shengqing

    2012-07-01

    To observe the effect of biyuanshu oral liquid on the formation of pseudomonas aeruginosa biofilms in vitro. Pseudomonas aeruginosa biofilm was established by plate culture and detected by Scanning electron microscopy and AgNO3 staining. After treated with different dosages of biyuanshu oral liquid and erythromycin, the pseudomonas aeruginosa biofilms were observed by AgNO3 staining and the number of viable bacteria were measured by serial dilution. The pseudomonas aeruginosa biofilms could be detected by SEM at the seventh culture day and it was consistent with the detection of AgNO3 staining. The biyuanshu oral liquid and erythromycin have the effect on inhibiting the formation of pseudomonas aeruginosa biofilms. But with the already formed pseudomonas aeruginosa biofilms the inhibition was not significant. The serial dilution method showed that the viable counts of bacteria of biyuanshu oral liquid and erythromycin treated groups were significantly lower than those untreated groups (P formation of pseudomonas aeruginosa biofilms in vitro.

  3. Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity.

    Science.gov (United States)

    Hu, Ping; Huang, Ping; Chen, Min Wei

    2013-10-01

    Sortase A is an enzyme responsible for the covalent attachment of Pac proteins to the cell wall in Streptococcus mutans. It has been shown to play a role in modulating the surface properties and the biofilm formation and influence the cariogenicity of S. mutans. Curcumin, an active ingredient of turmeric, was reported to be an inhibitor for Staphylococcus aureus sortase A. The aim of this study was to investigate the inhibitory ability of curcumin against S. mutans sortase A and the effect of curcumin for biofilm formation. The antimicrobial activity of the curcumin to the S. mutans and inhibitory ability of the curcumin against the purified sortase A in vitro were detected. Western-blot and real-time PCR were used to analysis the sortase A mediated Pac protein changes when the S. mutans was cultured with curcumin. The curcumin on the S. mutans biofilm formation was determined by biofilm formation analysis. Curcumin can inhibit purified S. mutans sortase A with a half-maximal inhibitory concentration (IC50) of (10.2±0.7)μmol/l, which is lower than minimum inhibitory concentration (MIC) of 175μmol/l. Curcumin (15μmol/l) was found to release the Pac protein to the supernatant and reduce S. mutans biofilm formation. These results indicated that curcumin is an S. mutans sortase A inhibitor and has promising anti-caries characteristics through an anti-adhesion-mediated mechanism. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  4. Relationship of biofilm formation and different virulence genes in uropathogenic Escherichia coli isolates from Northwest Iran

    Directory of Open Access Journals (Sweden)

    Fattahi, Sargol

    2015-07-01

    Full Text Available Background and objectives: The ( bacterium is one of the main causative agents of urinary tract infections (UTI worldwide. The ability of this bacterium to form biofilms on medical devices such as catheters plays an important role in the development of UTI. The aim of the present study was to investigate the possible relationship between virulence factors and biofilm formation of isolates responsible for urinary tract infection.Materials and methods: A total of 100 isolates isolated from patients with UTI were collected and characterized by routine bacteriological methods. In vitro biofilm formation by these isolates was determined using the 96-well microtiter-plate test, and the presence of , , and virulence genes was examined by PCR assay. Data analysis was performed using SPSS 16.0 software.Results: From 100 isolates isolated from UTIs, 92% were shown to be biofilm positive. The genes , , and were detected in 43%, 94% and 26% of isolates, respectively. Biofilm formation in isolates that expressed , , and genes was 100%, 93%, and 100%, respectively. A significant relationship was found between presence of the gene and biofilm formation in isolates isolated from UTI (<0.01, but there was no statistically significant correlation between presence of and genes with biofilm formation (<0.072, <0.104. Conclusion: Results showed that and genes do not seem to be necessary or sufficient for the production of biofilm in , but the presence of correlates with increased biofilm formation of urinary tract isolates. Overall, the presence of , , and virulence genes coincides with in vitro biofilm formation in uropathogenic

  5. Biofilm formation on a TiO2 nanotube with controlled pore diameter and surface wettability

    International Nuclear Information System (INIS)

    Anitha, V C; Narayan Banerjee, Arghya; Woo Joo, Sang; Lee, Jin-Hyung; Lee, Jintae; Ki Min, Bong

    2015-01-01

    Titania (TiO 2 ) nanotube arrays (TNAs) with different pore diameters (140 − 20 nm) are fabricated via anodization using hydrofluoric acid (HF) containing ethylene glycol (EG) by changing the HF-to-EG volume ratio and the anodization voltage. To evaluate the effects of different pore diameters of TiO 2 nanotubes on bacterial biofilm formation, Shewanella oneidensis (S. oneidensis) MR-1 cells and a crystal-violet biofilm assay are used. The surface roughness and wettability of the TNA surfaces as a function of pore diameter, measured via the contact angle and AFM techniques, are correlated with the controlled biofilm formation. Biofilm formation increases with the decreasing nanotube pore diameter, and a 20 nm TiO 2 nanotube shows the maximum biofilm formation. The measurements revealed that 20 nm surfaces have the least hydrophilicity with the highest surface roughness of ∼17 nm and that they show almost a 90% increase in the effective surface area relative to the 140 nm TNAs, which stimulate the cells more effectively to produce the pili to attach to the surface for more biofilm formation. The results demonstrate that bacterial cell adhesion (and hence, biofilm formation) can effectively be controlled by tuning the roughness and wettability of TNAs via controlling the pore diameters of TNA surfaces. This biofilm formation as a function of the surface properties of TNAs can be a potential candidate for both medical applications and as electrodes in microbial fuel cells. (paper)

  6. Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.

    Directory of Open Access Journals (Sweden)

    Matthew B Biggs

    Full Text Available Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.

  7. Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.

    Science.gov (United States)

    Biggs, Matthew B; Papin, Jason A

    2013-01-01

    Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.

  8. A Bacillus subtilis Sensor Kinase Involved in Triggering Biofilm Formation on the Roots of Tomato Plants

    Science.gov (United States)

    Chen, Yun; Cao, Shugeng; Chai, Yunrong; Clardy, Jon; Kolter, Roberto; Guo, Jian-hua; Losick, Richard

    2012-01-01

    SUMMARY The soil bacterium Bacillus subtilis is widely used in agriculture as a biocontrol agent able to protect plants from a variety of pathogens. Protection is thought to involve the formation of bacterial communities - biofilms - on the roots of the plants. Here we used confocal microscopy to visualize biofilms on the surface of the roots of tomato seedlings and demonstrated that biofilm formation requires genes governing the production of the extracellular matrix that holds cells together. We further show that biofilm formation was dependent on the sensor histidine kinase KinD and in particular on an extracellular CACHE domain implicated in small molecule sensing. Finally, we report that exudates of tomato roots strongly stimulated biofilm formation ex planta and that an abundant small molecule in the exudates, l-malic acid, was able to stimulate biofilm formation at high concentrations in a manner that depended on the KinD CACHE domain. We propose that small signaling molecules released by the roots of tomato plants are directly or indirectly recognized by KinD, triggering biofilm formation. PMID:22716461

  9. Subinhibitory concentrations of cell wall synthesis inhibitors promote biofilm formation of Enterococcus faecalis

    Science.gov (United States)

    Yu, Wen; Hallinen, Kelsey; Wood, Kevin

    Enterococcus faecalis are commonly associated with hospital acquired infections, because they readily form biofilms on instruments and medical devices. Biofilms are inherently more resistant to killing by antibiotics compared to planktonic bacteria, in part because of their heterogeneous spatial structure. Surprisingly, however, subminimal inhibitory concentrations (sub-MICs) of some antibiotics can actually promote biofilm formation. Unfortunately, much is still unknown about how low drug doses affect the composition and spatial structure of the biofilm. In this work, we investigate the effects of sub-MICs of ampicillin on the formation of E. faecalis biofilms. First, we quantified biofilm mass using crystal violet staining in polystyrene microtiter plates. We found that total biofilm mass is increased over a narrow range of ampicillin concentrations before ultimately declining at higher concentrations. Second, we show that sub-MICs of ampicillin can increase mass of E. faecalis biofilms while simultaneously increasing extracellular DNA/RNA and changing total number of viable cells under confocal microscopy. Further, we use RNA-seq to identify genes differentially expressed under sub-MICs of ampicillin. Finally, we show a mathematical model to explain this phenomenon. This work was funded by The Hartwell Foundation Individual Biomedical Research Award and NSF CAREER 1553208 to KBW.

  10. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Science.gov (United States)

    Wang, Zhejun; de la Fuente-Núñez, Cesar; Shen, Ya; Haapasalo, Markus; Hancock, Robert E W

    2015-01-01

    Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM), peptide 1018 was able to significantly (pbiofilm formation over 3 days. The activity of the peptide on preformed biofilms was found to be concentration-dependent since more than 60% of the total plaque biofilm cell population was killed by 10 μg/ml of peptide 1018 in 3 days, while at 5 μg/ml 50% of cells were dead and at 1 μg/ml the peptide triggered cell death in around 30% of the total bacterial population, as revealed by confocal microscopy. The presence of saliva did not affect peptide activity, since no statistically significant difference was found in the ability of peptide 1018 to kill oral biofilms using either saliva coated and non-saliva coated hydroxyapatite surfaces. Scanning electron microscopy experiments indicated that peptide 1018 induced cell lysis in plaque biofilms. Furthermore, combined treatment using peptide 1018 and chlorhexidine (CHX) increased the anti-biofilm activity of each compound compared to when these were used alone, resulting in >50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  11. Capillary isoelectric focusing--useful tool for detection of the biofilm formation in Staphylococcus epidermidis.

    Science.gov (United States)

    Ruzicka, Filip; Horka, Marie; Hola, Veronika; Votava, Miroslav

    2007-03-01

    The biofilm formation is an important factor of S. epidermidis virulence. Biofilm-positive strains might be clinically more important than biofilm-negative ones. Unlike biofilm-negative staphylococci, biofilm-positive staphylococci are surrounded with an extracellular polysaccharide substance. The presence of this substance on the surface can affect physico-chemical properties of the bacterial cell, including surface charge. 73 S. epidermidis strains were examined for the presence of ica operon, for the ability to form biofilm by Christensen test tube method and for the production of slime by Congo red agar method. Isoelectric points (pI) of these strains were determined by means of Capillary Isoelectric Focusing. The biofilm negative strains focused near pI value 2.3, while the pI values of the biofilm positive strains were near 2.6. Isoelectric point is a useful criterion for the differentiation between biofilm-positive and biofilm-negative S. epidermidis strains.

  12. Inhibition of Staphylococcus epidermidis Biofilm Formation by Traditional Thai Herbal Recipes Used for Wound Treatment.

    Science.gov (United States)

    Chusri, S; Sompetch, K; Mukdee, S; Jansrisewangwong, S; Srichai, T; Maneenoon, K; Limsuwan, S; Voravuthikunchai, S P

    2012-01-01

    Development of biofilm is a key mechanism involved in Staphylococcus epidermidis virulence during device-associated infections. We aimed to investigate antibiofilm formation and mature biofilm eradication ability of ethanol and water extracts of Thai traditional herbal recipes including THR-SK004, THR-SK010, and THR-SK011 against S. epidermidis. A biofilm forming reference strain, S. epidermidis ATCC 35984 was employed as a model for searching anti-biofilm agents by MTT reduction assay. The results revealed that the ethanol extract of THR-SK004 (THR-SK004E) could inhibit the formation of S. epidermidis biofilm on polystyrene surfaces. Furthermore, treatments with the extract efficiently inhibit the biofilm formation of the pathogen on glass surfaces determined by scanning electron microscopy and crystal violet staining. In addition, THR-SK010 ethanol extract (THR-SK010E; 0.63-5 μg/mL) could decrease 30 to 40% of the biofilm development. Almost 90% of a 7-day-old staphylococcal biofilm was destroyed after treatment with THR-SK004E (250 and 500 μg/mL) and THR-SK010E (10 and 20 μg/mL) for 24 h. Therefore, our results clearly demonstrated THR-SK004E could prevent the staphylococcal biofilm development, whereas both THR-SK004E and THR-SK010E possessed remarkable eradication ability on the mature staphylococcal biofilm.

  13. Identification of anti-biofilm components in Withania somnifera and their effect on virulence of Streptococcus mutans biofilms.

    Science.gov (United States)

    Pandit, S; Cai, J N; Song, K Y; Jeon, J G

    2015-08-01

    The aim of this study was to identify components of the Withania somnifera that could show anti-virulence activity against Streptococcus mutans biofilms. The anti-acidogenic activity of fractions separated from W. somnifera was compared, and then the most active anti-acidogenic fraction was chemically characterized using gas chromatography-mass spectroscopy. The effect of the identified components on the acidogenicity, aciduricity and extracellular polymeric substances (EPS) formation of S. mutans UA159 biofilms was evaluated. The change in accumulation and acidogenicity of S. mutans UA159 biofilms by periodic treatments (10 min per treatment) with the identified components was also investigated. Of the fractions, n-hexane fraction showed the strongest anti-acidogenic activity and was mainly composed of palmitic, linoleic and oleic acids. Of the identified components, linoleic and oleic acids strongly affected the acid production rate, F-ATPase activity and EPS formation of the biofilms. Periodic treatment with linoleic and oleic acids during biofilm formation also inhibited the biofilm accumulation and acid production rate of the biofilms without killing the biofilm bacteria. These results suggest that linoleic and oleic acids may be effective agents for restraining virulence of S. mutans biofilms. Linoleic and oleic acids may be promising agents for controlling virulence of cariogenic biofilms and subsequent dental caries formation. © 2015 The Society for Applied Microbiology.

  14. Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections

    DEFF Research Database (Denmark)

    Burmølle, Mette; Thomsen, Trine Rolighed; Fazli, Mustafa

    2010-01-01

    It has become evident that aggregation or biofilm formation is an important survival mechanism for bacteria in almost any environment. In this review, we summarize recent visualizations of bacterial aggregates in several chronic infections (chronic otitis media, cystic fibrosis, infection due...... to permanent tissue fillers and chronic wounds) both as to distribution (such as where in the wound bed) and organization (monospecies or multispecies microcolonies). We correlate these biofilm observations to observations of commensal biofilms (dental and intestine) and biofilms in natural ecosystems (soil......). The observations of the chronic biofilm infections point toward a trend of low bacterial diversity and sovereign monospecies biofilm aggregates even though the infection in which they reside are multispecies. In contrast to this, commensal and natural biofilm aggregates contain multiple species that are believed...

  15. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms.

    Science.gov (United States)

    van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Akos T

    2014-10-01

    In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express 'cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation.

  16. Formation of Biofilms by Foodborne Pathogens and Development of Laboratory In Vitro Model for the Study of Campylobacter Genus Bacteria Based on These Biofilms.

    Science.gov (United States)

    Efimochkina, N R; Bykova, I B; Markova, Yu M; Korotkevich, Yu V; Stetsenko, V V; Minaeva, L P; Sheveleva, S A

    2017-02-01

    We analyzed the formation of biofilms by 7 strains of Campylobacter genus bacteria and 18 strains of Enterobacteriaceae genus bacteria that were isolated from plant and animal raw materials, from finished products, and swabs from the equipment of the food industry. Biofilm formation on glass plates, slides and coverslips, microtubes made of polymeric materials and Petri dishes, and polystyrene plates of different profiles were analyzed. When studying the process of films formation, different effects on bacterial populations were simulated, including variation of growth factor composition of culture media, technique of creating of anaerobiosis, and biocide treatment (active chlorine solutions in a concentration of 100 mg/dm 3 ). The formation of biofilms by the studied cultures was assessed by the formation of extracellular matrix stained with aniline dyes on glass and polystyrene surfaces after incubation; 0.1% crystal violet solution was used as the dye. The presence and density of biomatrix were assessed by staining intensity of the surfaces of contact with broth cultures or by optical density of the stained inoculum on a spectrophotometer. Biofilms were formed by 57% Campylobacter strains and 44% Enterobacteriaceae strains. The intensity of the film formation depended on culturing conditions and protocols, species and genus of studied isolates, and largely on adhesion properties of abiotic surfaces. In 30% of Enterobacteriaceae strains, the biofilm formation capacity tended to increase under the influence of chlorine-containing biocide solutions. Thus, we developed and tested under laboratory conditions a plate version of in vitro chromogenic model for evaluation of biofilm formation capacity of C. jejuni strains and studied stress responses to negative environmental factors.

  17. Growing and analyzing biofilms in flow chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic......, and disassembly and cleaning of the system. In addition, embedding and fluorescent in situ hybridization of flow chamber-grown biofilms are addressed....

  18. Colistin-Resistant Acinetobacter baumannii Clinical Strains with Deficient Biofilm Formation

    Science.gov (United States)

    Dafopoulou, Konstantina; Xavier, Basil Britto; Hotterbeekx, An; Janssens, Lore; Lammens, Christine; Dé, Emmanuelle; Goossens, Herman; Tsakris, Athanasios; Malhotra-Kumar, Surbhi

    2015-01-01

    In two pairs of clinical colistin-susceptible/colistin-resistant (Csts/Cstr) Acinetobacter baumannii strains, the Cstr strains showed significantly decreased biofilm formation in static and dynamic assays (P Cstr strain and a frameshift mutation in CarO and the loss of a 47,969-bp element containing multiple genes associated with biofilm production in the other. PMID:26666921

  19. Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Jensen, Peter Ø; Briales, Alejandra; Brochmann, Rikke P; Wang, Hengzhuang; Kragh, Kasper N; Kolpen, Mette; Hempel, Casper; Bjarnsholt, Thomas; Høiby, Niels; Ciofu, Oana

    2014-04-01

    Antibiotic-tolerant, biofilm-forming Pseudomonas aeruginosa has long been recognized as a major cause of chronic lung infections of cystic fibrosis patients. The mechanisms involved in the activity of antibiotics on biofilm are not completely clear. We have investigated whether the proposed induction of cytotoxic hydroxyl radicals (OH˙) during antibiotic treatment of planktonically grown cells may contribute to action of the commonly used antibiotic ciprofloxacin on P. aeruginosa biofilms. For this purpose, WT PAO1, a catalase deficient ΔkatA and a ciprofloxacin resistant mutant of PAO1 (gyrA), were grown as biofilms in microtiter plates and treated with ciprofloxacin. Formation of OH˙ and total amount of reactive oxygen species (ROS) was measured and viability was estimated. Formation of OH˙ and total ROS in PAO1 biofilms treated with ciprofloxacin was shown but higher levels were measured in ΔkatA biofilms, and no ROS production was seen in the gyrA biofilms. Treatment with ciprofloxacin decreased the viability of PAO1 and ΔkatA biofilms but not of gyrA biofilms. Addition of thiourea, a OH˙ scavenger, decreased the OH˙ levels and killing of PAO1 biofilm. Our study shows that OH˙ is produced by P. aeruginosa biofilms treated with ciprofloxacin, which may contribute to the killing of biofilm subpopulations. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Essential roles and regulation of the Legionella pneumophila collagen-like adhesin during biofilm formation.

    Directory of Open Access Journals (Sweden)

    Julia Mallegol

    Full Text Available Legionellosis is mostly caused by Legionella pneumophila (Lp and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In a previous study, we showed that a glycosaminoglycan (GAG-binding adhesin of Lp, named Lcl, is produced during legionellosis and is unique to the L. pneumophila species. Importantly, a mutant depleted in Lcl (Δlpg2644 is impaired in adhesion to GAGs and epithelial cells and in biofilm formation. Here, we examine the molecular function(s of Lcl and the transcriptional regulation of its encoding gene during different stages of the biofilm development. We show that the collagen repeats and the C-terminal domains of Lcl are crucial for the production of biofilm. We present evidence that Lcl is involved in the early step of surface attachment but also in intercellular interactions. Furthermore, we address the relationship between Lcl gene regulation during biofilm formation and quorum sensing (QS. In a static biofilm assay, we show that Lcl is differentially regulated during growth phases and biofilm formation. Moreover, we show that the transcriptional regulation of lpg2644, mediated by a prototype of QS signaling homoserine lactone (3OC12-HSL, may play a role during the biofilm development. Thus, transcriptional down-regulation of lpg2644 may facilitate the dispersion of Lp to reinitiate biofilm colonization on a distal surface.

  1. The formation of green rust induced by tropical river biofilm components

    International Nuclear Information System (INIS)

    Jorand, F.; Zegeye, A.; Ghanbaja, J.; Abdelmoula, M.

    2011-01-01

    In the Sinnamary Estuary (French Guiana), a dense red biofilm grows on flooded surfaces. In order to characterize the iron oxides in this biofilm and to establish the nature of secondary minerals formed after anaerobic incubation, we conducted solid analysis and performed batch incubations. Elemental analysis indicated a major amount of iron as inorganic compartment along with organic matter. Solid analysis showed the presence of two ferric oxides ferrihydrite and lepidocrocite. Bacteria were abundant and represented more than 10 11 cells g -1 of dry weight among which iron reducers were revealed. Optical and electronic microscopy analysis revealed than the bacteria were in close vicinity of the iron oxides. After anaerobic incubations with exogenous electron donors, the biofilm's ferric material was reduced into green rust, a Fe II -Fe III layered double hydroxide. This green rust remained stable for several years. From this study and previous reports, we suggest that ferruginous biofilms should be considered as a favorable location for GR biomineralization when redox conditions and electron donors availability are gathered. - Research highlights: → Characterization of ferruginous biofilm components by solid analysis methods. → Lepidocrocite and ferrihydrite were the main iron oxides. → Anaerobic incubation of biofilm with electron donors produced green rust. → Biofilm components promote the formation of the green rust. → Ferruginous biofilm could contribute to the natural mercury attenuation.

  2. The formation of green rust induced by tropical river biofilm components

    Energy Technology Data Exchange (ETDEWEB)

    Jorand, F., E-mail: jorand@pharma.uhp-nancy.fr [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy-Universite, Institut Jean Barriol, 405 rue de Vandoeuvre, F-54600 Villers-les Nancy (France); Zegeye, A. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy-Universite, Institut Jean Barriol, 405 rue de Vandoeuvre, F-54600 Villers-les Nancy (France); Ghanbaja, J. [Service Commun de Microscopies Electroniques et Microanalyses X (SCMEM), Nancy-Universite, Bvd des Aiguillettes, BP 239, 54506, Vandoeuvre-les-Nancy (France); Abdelmoula, M. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy-Universite, Institut Jean Barriol, 405 rue de Vandoeuvre, F-54600 Villers-les Nancy (France)

    2011-06-01

    In the Sinnamary Estuary (French Guiana), a dense red biofilm grows on flooded surfaces. In order to characterize the iron oxides in this biofilm and to establish the nature of secondary minerals formed after anaerobic incubation, we conducted solid analysis and performed batch incubations. Elemental analysis indicated a major amount of iron as inorganic compartment along with organic matter. Solid analysis showed the presence of two ferric oxides ferrihydrite and lepidocrocite. Bacteria were abundant and represented more than 10{sup 11} cells g{sup -1} of dry weight among which iron reducers were revealed. Optical and electronic microscopy analysis revealed than the bacteria were in close vicinity of the iron oxides. After anaerobic incubations with exogenous electron donors, the biofilm's ferric material was reduced into green rust, a Fe{sup II}-Fe{sup III} layered double hydroxide. This green rust remained stable for several years. From this study and previous reports, we suggest that ferruginous biofilms should be considered as a favorable location for GR biomineralization when redox conditions and electron donors availability are gathered. - Research highlights: {yields} Characterization of ferruginous biofilm components by solid analysis methods. {yields} Lepidocrocite and ferrihydrite were the main iron oxides. {yields} Anaerobic incubation of biofilm with electron donors produced green rust. {yields} Biofilm components promote the formation of the green rust. {yields} Ferruginous biofilm could contribute to the natural mercury attenuation.

  3. Biofilm formation on materials into contact with water: hygienic and technical aspects

    International Nuclear Information System (INIS)

    Bonadonna, L; Memoli, G.; Chiaretti, G.

    2008-01-01

    Biofilm formation in man-made water systems has a hygienic concern when it is considered that the continuous detachment of this structure in the water flow, condition representing a potential source of contamination of plumbing and a risk for health, allows also pathogen microorganisms to reach consumers. The trend of biofilm formation was evaluated through series of microbiological analyses performed, under controlled conditions, on pipes made of materials that come into contact with drinking water according to the Decree of Ministry of Health n. 174. The investigation showed that, respect to the other materials, the reticulated polyethylene allows to sustain higher microorganisms concentrations. This characteristic was also observed in biofilms developed in condition of water stagnation compared to biofilm risen on surfaces of pipes under water flow [it

  4. Antibiotic tolerance and microbial biofilms

    DEFF Research Database (Denmark)

    Folkesson, Anders

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We study the dynamics of antibiotic action within hydrodynamic flow chamber biofilms of Escherichia coli and Pseudomonas aeruginosa using isogenic mutants and fluorescent gene...... expression reporters and we address the question of how biofilm organization affects antibiotic susceptibility. The dynamics of microbial killing is monitored by viable count determination, and confocal laser microscopy. Our work shows that the apparent increased antibiotic tolerance is due to the formation...... of antibiotic tolerant subpopulations within the biofilm. The formation of these subpopulations is highly variable and dependent on the antibiotic used, the biofilm structural organization and the induction of specific tolerance mechanisms....

  5. Comparative three-dimensional analysis of initial biofilm formation on three orthodontic bracket materials.

    Science.gov (United States)

    Dittmer, Marc Philipp; Hellemann, Carolina Fuchslocher; Grade, Sebastian; Heuer, Wieland; Stiesch, Meike; Schwestka-Polly, Rainer; Demling, Anton Phillip

    2015-04-10

    The purpose of the present study was to investigate and compare early biofilm formation on biomaterials, which are being used in contemporary fixed orthodontic treatment. This study comprised 10 healthy volunteers (5 females and 5 males) with a mean age of 27.3 +-3.7 years. Three slabs of different orthodontic materials (stainless steel, gold and ceramic) were placed in randomized order on a splint in the mandibular molar region. Splints were inserted intraorally for 48 h. Then the slabs were removed from the splints and the biofilms were stained with a two color fluorescence assay for bacterial viability (LIVE/DEAD BacLight-Bacterial Viability Kit 7012, Invitrogen, Mount Waverley, Australia). The quantitative biofilm formation was analyzed by using confocal laser scanning microscopy (CLSM). The biofilm coverage was 32.7 ± 37.7% on stainless steel surfaces, 59.5 ± 40.0% on gold surfaces and 56.8 ± 43.6% on ceramic surfaces. Statistical analysis showed significant differences in biofilm coverage between the tested materials (p=0.033). The Wilcoxon test demonstrated significantly lower biofilm coverage on steel compared to gold (p=0.011). Biofilm height on stainless steel surfaces was 4.0 ± 7.3 μm, on gold surfaces 6.0 ± 6.6 μm and on ceramic 6.5 ± 6.0 μm. The Friedman test revealed no significant differences between the tested materials (p=0.150). Pairwise comparison demonstrated significant differences between stainless steel and gold (p=0.047). Our results indicate that initial biofilm formation seemed to be less on stainless steel surfaces compared with other traditional materials in a short-term observation. Future studies should examine whether there is a difference in long-term biofilm accumulation between stainless steel, gold and ceramic brackets.

  6. Inhibition of Staphylococcus epidermidis Biofilm Formation by Traditional Thai Herbal Recipes Used for Wound Treatment

    Directory of Open Access Journals (Sweden)

    S. Chusri

    2012-01-01

    Full Text Available Development of biofilm is a key mechanism involved in Staphylococcus epidermidis virulence during device-associated infections. We aimed to investigate antibiofilm formation and mature biofilm eradication ability of ethanol and water extracts of Thai traditional herbal recipes including THR-SK004, THR-SK010, and THR-SK011 against S. epidermidis. A biofilm forming reference strain, S. epidermidis ATCC 35984 was employed as a model for searching anti-biofilm agents by MTT reduction assay. The results revealed that the ethanol extract of THR-SK004 (THR-SK004E could inhibit the formation of S. epidermidis biofilm on polystyrene surfaces. Furthermore, treatments with the extract efficiently inhibit the biofilm formation of the pathogen on glass surfaces determined by scanning electron microscopy and crystal violet staining. In addition, THR-SK010 ethanol extract (THR-SK010E; 0.63–5 μg/mL could decrease 30 to 40% of the biofilm development. Almost 90% of a 7-day-old staphylococcal biofilm was destroyed after treatment with THR-SK004E (250 and 500 μg/mL and THR-SK010E (10 and 20 μg/mL for 24 h. Therefore, our results clearly demonstrated THR-SK004E could prevent the staphylococcal biofilm development, whereas both THR-SK004E and THR-SK010E possessed remarkable eradication ability on the mature staphylococcal biofilm.

  7. Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion

    NARCIS (Netherlands)

    Wijman, J.G.E.; Leeuw, de P.P.L.A.; Moezelaar, R.; Zwietering, M.H.; Abee, T.

    2007-01-01

    Biofilm formation by Bacillus cereus was assessed using 56 strains of B. cereus, including the two sequenced strains, ATCC 14579 and ATCC 10987. Biofilm production in microtiter plates was found to be strongly dependent on incubation time, temperature, and medium, as well as the strain used, with

  8. Candida Biofilms: Development, Architecture, and Resistance

    Science.gov (United States)

    CHANDRA, JYOTSNA; MUKHERJEE, PRANAB K.

    2015-01-01

    Intravascular device–related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis–associated infections and also are commonly isolated from contact lens–related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms. PMID:26350306

  9. Shewanella putrefaciens Adhesion and Biofilm Formation on Food Processing Surfaces

    Science.gov (United States)

    Bagge, Dorthe; Hjelm, Mette; Johansen, Charlotte; Huber, Ingrid; Gram, Lone

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buffer adhered readily to stainless steel surfaces. Maximum numbers of adherent bacteria per square centimeter were reached in 8 h at 25°C and reflected the cell density in suspension. Numbers of adhering bacteria from a suspension containing 108 CFU/ml were much lower in a laminar flow system (modified Robbins device) (reaching 102 CFU/cm2) than in a batch system (reaching 107 CFU/cm2), and maximum numbers were reached after 24 h. When nutrients were supplied, S. putrefaciens grew in biofilms with layers of bacteria. The rate of biofilm formation and the thickness of the film were not dependent on the availability of carbohydrate (lactate or glucose) or on iron starvation. The number of S. putrefaciens bacteria on the surface was partly influenced by the presence of other bacteria (Pseudomonas fluorescens) which reduced the numbers of S. putrefaciens bacteria in the biofilm. Numbers of bacteria on the surface must be quantified to evaluate the influence of environmental factors on adhesion and biofilm formation. We used a combination of fluorescence microscopy (4′,6′-diamidino-2-phenylindole staining and in situ hybridization, for mixed-culture studies), ultrasonic removal of bacteria from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces. PMID:11319118

  10. An individual-based model for biofilm formation at liquid surfaces.

    Science.gov (United States)

    Ardré, Maxime; Henry, Hervé; Douarche, Carine; Plapp, Mathis

    2015-12-10

    The bacterium Bacillus subtilis frequently forms biofilms at the interface between the culture medium and the air. We present a mathematical model that couples a description of bacteria as individual discrete objects to the standard advection-diffusion equations for the environment. The model takes into account two different bacterial phenotypes. In the motile state, bacteria swim and perform a run-and-tumble motion that is biased toward regions of high oxygen concentration (aerotaxis). In the matrix-producer state they excrete extracellular polymers, which allows them to connect to other bacteria and to form a biofilm. Bacteria are also advected by the fluid, and can trigger bioconvection. Numerical simulations of the model reproduce all the stages of biofilm formation observed in laboratory experiments. Finally, we study the influence of various model parameters on the dynamics and morphology of biofilms.

  11. Methods for studying biofilm formation: flow cells and confocal laser scanning microscopy

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2014-01-01

    In this chapter methods for growing and analyzing biofilms under hydrodynamic conditions in flow cells are described. Use of flow cells allows for direct microscopic investigation of biofilm formation. The flow in these chambers is essentially laminar, which means that the biofilms can be grown u......, inoculation of the flow cells, running of the system, confocal laser scanning microscopy and image analysis, and disassembly and cleaning of the system....

  12. Inhibitory effects of flavonoids on biofilm formation by Staphylococcus aureus that overexpresses efflux protein genes.

    Science.gov (United States)

    Lopes, Laênia Angélica Andrade; Dos Santos Rodrigues, Jéssica Bezerra; Magnani, Marciane; de Souza, Evandro Leite; de Siqueira-Júnior, José P

    2017-06-01

    This study evaluated the efficacy of glycone (myricitrin, hesperidin and phloridzin) and aglycone flavonoids (myricetin, hesperetin and phloretin) in inhibiting biofilm formation by Staphylococcus aureus RN4220 and S. aureus SA1199B that overexpress the msrA and norA efflux protein genes, respectively. The minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC 50 - defined as the lowest concentration that resulted in ≥50% inhibition of biofilm formation) of flavonoids were determined using microdilution in broth procedures. The flavonoids showed MIC >1024 μg/mL against S. aureus RN4220 and S. aureus SA1199B; however, these compounds at lower concentrations (1-256 μg/mL) showed inhibitory effects on biofilm formation by these strains. Aglycone flavonoids showed lower MBIC 50 values than their respective glycone forms. The lowest MBIC 50 values (1 and 4 μg/mL) were observed against S. aureus RN4220. Myricetin, hesperetin and phloretin exhibited biofilm formation inhibition >70% for S. aureus RN4220, and lower biofilm formation inhibition against S. aureus SA1199B. These results indicate that sub-MICs of the tested flavonoids inhibit biofilm formation by S. aureus strains that overexpress efflux protein genes. These effects are more strongly established by aglycone flavonoids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm

    Directory of Open Access Journals (Sweden)

    Juliana Pacheco da Rosa

    Full Text Available ABSTRACT Streptomyces lunalinharesii strain 235 produces an antimicrobial substance that is active against sulfate reducing bacteria, the major bacterial group responsible for biofilm formation and biocorrosion in petroleum reservoirs. The use of this antimicrobial substance for sulfate reducing bacteria control is therefore a promising alternative to chemical biocides. In this study the antimicrobial substance did not interfere with the biofilm stability, but the sulfate reducing bacteria biofilm formation was six-fold smaller in carbon steel coupons treated with the antimicrobial substance when compared to the untreated control. A reduction in the most probable number counts of planktonic cells of sulfate reducing bacteria was observed after treatments with the sub-minimal inhibitory concentration, minimal inhibitory concentration, and supra-minimal inhibitory concentration of the antimicrobial substance. Additionally, when the treated coupons were analyzed by scanning electron microscopy, the biofilm formation was found to be substantially reduced when the supra-minimal inhibitory concentration of the antimicrobial substance was used. The coupons used for the biofilm formation had a small weight loss after antimicrobial substance treatment, but corrosion damage was not observed by scanning electron microscopy. The absence of the dsrA gene fragment in the scraped cell suspension after treatment with the supra-minimal inhibitory concentration of the antimicrobial substance suggests that Desulfovibrio alaskensis was not able to adhere to the coupons. This is the first report on an antimicrobial substance produced by Streptomyces active against sulfate reducing bacteria biofilm formation. The application of antimicrobial substance as a potential biocide for sulfate reducing bacteria growth control could be of great interest to the petroleum industry.

  14. Influence of l-amino acids on aggregation and biofilm formation in Azotobacter chroococcum and Trichoderma viride.

    Science.gov (United States)

    Velmourougane, K; Prasanna, R

    2017-10-01

    The effects of l-amino acids on growth and biofilm formation in Azotobacter chroococcum (Az) and Trichoderma viride (Tv) as single (Az, Tv) and staggered inoculated cultures (Az-Tv, Tv-Az) were investigated. A preliminary study using a set of 20 l-amino acids, identified 6 amino acids (l-Glu, l-Gln, l-His, l-Ser, l-Thr and l-Trp) which significantly enhanced growth and biofilm formation. Supplementation of these amino acids at different concentrations revealed that 40 mmol l -1 was most effective. l-Glu and l-Gln favoured planktonic growth in both single and in staggered inoculated cultures, while l-Trp and l-Thr, enhanced aggregation and biofilm formation. Addition of l-Glu or l-Gln increased carbohydrate content and planktonic population. Principal component analysis revealed the significant role of proteins in growth and biofilm formation, particularly with supplementation of l-Trp, l-Thr and l-Ser. Azotobacter was found to function better as biofilm under staggered inoculated culture with Trichoderma. The results illustrate that amino acids play crucial roles in microbial biofilm formation, by influencing growth, aggregation and carbohydrates synthesized. The differential and specific roles of amino acids on biofilm formation are of significance for agriculturally important micro-organisms that grow as biofilms, colonize and benefit the plants more effectively. © 2017 The Society for Applied Microbiology.

  15. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies.

    Science.gov (United States)

    Taylor, Patrick K; Yeung, Amy T Y; Hancock, Robert E W

    2014-12-10

    The growth of bacteria as structured aggregates termed biofilms leads to their protection from harsh environmental conditions such as physical and chemical stresses, shearing forces, and limited nutrient availability. Because of this highly adapted ability to survive adverse environmental conditions, bacterial biofilms are recalcitrant to antibiotic therapies and immune clearance. This is particularly problematic in hospital settings where biofilms are a frequent cause of chronic and device-related infections and constitute a significant burden on the health-care system. The major therapeutic strategy against infections is the use of antibiotics, which, due to adaptive resistance, are often insufficient to clear biofilm infections. Thus, novel biofilm-specific therapies are required. Specific features of biofilm development, such as surface adherence, extracellular matrix formation, quorum sensing, and highly regulated biofilm maturation and dispersal are currently being studied as targets to be exploited in the development of novel biofilm-specific treatments. Using Pseudomonas aeruginosa for illustrative purposes, this review highlights the antibiotic resistance mechanisms of biofilms, and discusses current research into novel biofilm-specific therapies. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Biofilm formation on membranes used for membrane aerated biological reactors, under different stress conditions

    International Nuclear Information System (INIS)

    Andrade-Molinar, C.; Ballinas-Casarrubias, M. L.; Solis-Martinez, F. J.; Rivera-Chavira, B. E.; Cuevas-Rodirguez, G.; Nevarez-Moorillon, G. V.

    2009-01-01

    Bacterial biofilm play an important role in wastewater treatment processes, and have been optimized in the membrane aerated biofilm reactors (MABR). In MABR, a hydrophobic membrane is used as support for the formation of biofilm, and supplements enough aeration to assure an aerobic process. (Author)

  17. Histophilus somni biofilm formation in cardiopulmonary tissue of the bovine host following respiratory challenge

    DEFF Research Database (Denmark)

    Sandal, Indra; Shao, Jian Q.; Annadata, Satish

    2009-01-01

    Biofilms form in a variety of host sites following infection with many bacterial species. However, the study of biofilms in a host is hindered due to the lack of protocols for the proper experimental investigation of biofilms in vivo. Histophilus somni is an agent of respiratory and systemic...... diseases in bovines, and readily forms biofilms in vitro. In the present study the capability of H. somni to form biofilms in cardiopulmonary tissue following experimental respiratory infection in the bovine host was examined by light microscopy, transmission electron microscopy, immunoelectron microscopy...... haemagglutinin (FHA), predicted to be involved in attachment. Thus, this investigation demonstrated that H. somni is capable of forming a biofilm in its natural host, that such a biofilm may be capable of harboring other bovine respiratory disease pathogens, and that the genes responsible for biofilm formation...

  18. Manipulatiaon of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Burkhalter, R.; Macnaughton, S.J.; Palmer, R.J.; Smith, C.A.; Whitaker, K.W.; White, D.C.; Zinn, M.; kirkegaard, R.

    1998-08-09

    The Biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms by generated. The most effective monitoring of biofilm formation, succession and desquamation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in the distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  19. Manipulation of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  20. Regulation of biofilm formation in Shewanella oneidensis by BpfA, BpfG, and BpfD

    Directory of Open Access Journals (Sweden)

    Guangqi eZhou

    2015-08-01

    Full Text Available Bacteria switch between two distinct life styles -- planktonic (free living and biofilm forming -- in keeping with their ever-changing environment. Such switch involves sophisticated signaling and tight regulation, which provides a fascinating portal for studying gene function and orchestrated protein interactions. In this work, we investigated the molecular mechanism underlying biofilm formation in S. oneidensis MR-1, an environmentally important model bacterium renowned for respiratory diversities, and uncovered a gene cluster coding for seven proteins involved in this process. The three key proteins, BpfA, BpfG, and BpfD, were studied in detail for the first time. BpfA directly participates in biofilm formation as extracellular glue; BpfG is not only indispensable for BpfA export during biofilm forming but also functions to turn BpfA into active form for biofilm dispersing. BpfD regulates biofilm development by interacting with both BpfA and BpfG, likely in response to signal molecule c-di-GMP. In addition, we found that 1:1 stoichiometry between BpfD and BpfG is critical for biofilm formation. Furthermore, we demonstrated that a biofilm over-producing phenotype can be induced by C116S mutation but not loss of BpfG.

  1. Glycerol metabolism induces Listeria monocytogenes biofilm formation at the air-liquid interface.

    Science.gov (United States)

    Crespo Tapia, Natalia; den Besten, Heidy M W; Abee, Tjakko

    2018-05-20

    Listeria monocytogenes is a food-borne pathogen that can grow as a biofilm on surfaces. Biofilm formation in food-processing environments is a big concern for food safety, as it can cause product contamination through the food-processing line. Although motile aerobic bacteria have been described to form biofilms at the air-liquid interface of cell cultures, to our knowledge, this type of biofilm has not been described in L. monocytogenes before. In this study we report L. monocytogenes biofilm formation at the air-liquid interface of aerobically grown cultures, and that this phenotype is specifically induced when the media is supplemented with glycerol as a carbon and energy source. Planktonic growth, metabolic activity assays and HPLC measurements of glycerol consumption over time showed that glycerol utilization in L. monocytogenes is restricted to growth under aerobic conditions. Gene expression analysis showed that genes encoding the glycerol transporter GlpF, the glycerol kinase GlpK and the glycerol 3-phosphate dehydrogenase GlpD were upregulated in the presence of oxygen, and downregulated in absence of oxygen. Additionally, motility assays revealed the induction of aerotaxis in the presence of glycerol. Our results demonstrate that the formation of biofilms at the air-liquid interface is dependent on glycerol-induced aerotaxis towards the surface of the culture, where L. monocytogenes has access to higher concentrations of oxygen, and is therefore able to utilize this compound as a carbon source. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. "It's a gut feeling" - Escherichia coli biofilm formation in the gastrointestinal tract environment

    DEFF Research Database (Denmark)

    Rossi, Elio; Cimdins, Annika; Luthje, Petra

    2018-01-01

    Escherichia coli can commonly be found, either as a commensal, probiotic or a pathogen, in the human gastrointestinal (GI) tract. Biofilm formation and its regulation is surprisingly variable, although distinct regulatory pattern of red, dry and rough (rdar) biofilm formation arise in certain pat...

  3. Calcium transcriptionally regulates the biofilm machinery of Xylella fastidiosa to promote continued biofilm development in batch cultures.

    Science.gov (United States)

    Parker, Jennifer K; Chen, Hongyu; McCarty, Sara E; Liu, Lawrence Y; De La Fuente, Leonardo

    2016-05-01

    The functions of calcium (Ca) in bacteria are less characterized than in eukaryotes, where its role has been studied extensively. The plant-pathogenic bacterium Xylella fastidiosa has several virulence features that are enhanced by increased Ca concentrations, including biofilm formation. However, the specific mechanisms driving modulation of this feature are unclear. Characterization of biofilm formation over time showed that 4 mM Ca supplementation produced denser biofilms that were still developing at 96 h, while biofilm in non-supplemented media had reached the dispersal stage by 72 h. To identify changes in global gene expression in X. fastidiosa grown in supplemental Ca, RNA-Seq of batch culture biofilm cells was conducted at three 24-h time intervals. Results indicate that a variety of genes are differentially expressed in response to Ca, including genes related to attachment, motility, exopolysaccharide synthesis, biofilm formation, peptidoglycan synthesis, regulatory functions, iron homeostasis, and phages. Collectively, results demonstrate that Ca supplementation induces a transcriptional response that promotes continued biofilm development, while biofilm cells in nonsupplemented media are driven towards dispersion of cells from the biofilm structure. These results have important implications for disease progression in planta, where xylem sap is the source of Ca and other nutrients for X. fastidiosa. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Current and future trends for biofilm reactors for fermentation processes.

    Science.gov (United States)

    Ercan, Duygu; Demirci, Ali

    2015-03-01

    Biofilms in the environment can both cause detrimental and beneficial effects. However, their use in bioreactors provides many advantages including lesser tendencies to develop membrane fouling and lower required capital costs, their higher biomass density and operation stability, contribution to resistance of microorganisms, etc. Biofilm formation occurs naturally by the attachment of microbial cells to the support without use of any chemicals agent in biofilm reactors. Biofilm reactors have been studied and commercially used for waste water treatment and bench and pilot-scale production of value-added products in the past decades. It is important to understand the fundamentals of biofilm formation, physical and chemical properties of a biofilm matrix to run the biofilm reactor at optimum conditions. This review includes the principles of biofilm formation; properties of a biofilm matrix and their roles in the biofilm formation; factors that improve the biofilm formation, such as support materials; advantages and disadvantages of biofilm reactors; and industrial applications of biofilm reactors.

  5. Soybean Lectin Enhances Biofilm Formation by Bradyrhizobium japonicum in the Absence of Plants

    Directory of Open Access Journals (Sweden)

    Julieta Pérez-Giménez

    2009-01-01

    Full Text Available Soybean lectin (SBL purified from soybean seeds by affinity chromatography strongly bound to Bradyrhizobium japonicum USDA 110 cell surface. This lectin enhanced biofilm formation by B. japonicum in a concentration-dependent manner. Presence of galactose during biofilm formation had different effects in the presence or absence of SBL. Biofilms were completely inhibited in the presence of both SBL and galactose, while in the absence of SBL, galactose was less inhibitory. SBL was very stable, since its agglutinating activity of B. japonicum cells as well as of human group A+ erythrocytes was resistant to preincubation for one week at 60°C. Hence, we propose that plant remnants might constitute a source of this lectin, which might remain active in soil and thus favor B. japonicum biofilm formation in the interval between soybean crop seasons.

  6. Air-liquid biofilm formation is dependent on ammonium depletion in a Saccharomyces cerevisiae flor strain.

    Science.gov (United States)

    Zara, Giacomo; Budroni, Marilena; Mannazzu, Ilaria; Zara, Severino

    2011-12-01

    Air-liquid biofilm formation appears to be an adaptive mechanism that promotes foraging of Saccharomyces cerevisiae flor strains in response to nutrient starvation. The FLO11 gene plays a central role in this phenotype as its expression allows yeast cells to rise to the liquid surface. Here, we investigated the role of ammonium depletion in air-liquid biofilm formation and FLO11 expression in a S. cerevisiae flor strain. The data obtained show that increasing ammonium concentrations from 0 to 450 m m reduce air-liquid biofilm in terms of biomass and velum formation and correlate with a reduction of FLO11 expression. Rapamycin inhibition of the TOR pathway and deletion of RAS2 gene significantly reduced biofilm formation and FLO11 expression. Taken together, these data suggest that ammonium depletion is a key factor in the induction of air-liquid biofilm formation and FLO11 expression in S. cerevisiae flor strains. Copyright © 2011 John Wiley & Sons, Ltd.

  7. The Composition and Metabolic Phenotype of Neisseria gonorrhoeae Biofilms

    Directory of Open Access Journals (Sweden)

    Michael A Apicella

    2011-04-01

    Full Text Available N. gonorrhoeae has been shown to form biofilms during cervical infection. Thus, biofilm formation may play an important role in the infection of women. The ability of N. gonorrhoeae to form membrane blebs is crucial to biofilm formation. Blebs contain DNA and outer membrane structures, which have been shown to be major constituents of the biofilm matrix. The organism expresses a DNA thermonuclease that is involved in remodeling of the biofilm matrix. Comparison of the transcriptional profiles of gonococcal biofilms and planktonic runoff indicate that genes involved in anaerobic metabolism and oxidative stress tolerance are more highly expressed in biofilm. The expression of aniA, ccp, and norB, which encode nitrite reductase, cytochrome c peroxidase, and nitric oxide reductase respectively, is required for mature biofilm formation over glass and human cervical cells. In addition, anaerobic respiration occurs in the substratum of gonococcal biofilms and disruption of the norB gene required for anaerobic respiration, results in a severe biofilm attenuation phenotype. It has been demonstrated that accumulation of nitric oxide (NO contributes to the phenotype of a norB mutant and can retard biofilm formation. However, NO can also enhance biofilm formation, and this is largely dependent on the concentration and donation rate or steady state kinetics of NO. The majority of the genes involved in gonococcal oxidative stress tolerance are also required for normal biofilm formation, as mutations in the following genes result in attenuated biofilm formation over cervical cells and/or glass: oxyR, gor, prx, mntABC, trxB, and estD. Overall, biofilm formation appears to be an adaptation for coping with the environmental stresses present in the female genitourinary tract. Therefore, this review will discuss the studies, which describe the composition and metabolic phenotype of gonococcal biofilms.

  8. Involvement of T6 pili in biofilm formation by serotype M6 Streptococcus pyogenes.

    Science.gov (United States)

    Kimura, Keiji Richard; Nakata, Masanobu; Sumitomo, Tomoko; Kreikemeyer, Bernd; Podbielski, Andreas; Terao, Yutaka; Kawabata, Shigetada

    2012-02-01

    The group A streptococcus (GAS) Streptococcus pyogenes is known to cause self-limiting purulent infections in humans. The role of GAS pili in host cell adhesion and biofilm formation is likely fundamental in early colonization. Pilus genes are found in the FCT (fibronectin-binding protein, collagen-binding protein, and trypsin-resistant antigen) genomic region, which has been classified into nine subtypes based on the diversity of gene content and nucleotide sequence. Several epidemiological studies have indicated that FCT type 1 strains, including serotype M6, produce large amounts of monospecies biofilm in vitro. We examined the direct involvement of pili in biofilm formation by serotype M6 clinical isolates. In the majority of tested strains, deletion of the tee6 gene encoding pilus shaft protein T6 compromised the ability to form biofilm on an abiotic surface. Deletion of the fctX and srtB genes, which encode pilus ancillary protein and class C pilus-associated sortase, respectively, also decreased biofilm formation by a representative strain. Unexpectedly, these mutant strains showed increased bacterial aggregation compared with that of the wild-type strain. When the entire FCT type 1 pilus region was ectopically expressed in serotype M1 strain SF370, biofilm formation was promoted and autoaggregation was inhibited. These findings indicate that assembled FCT type 1 pili contribute to biofilm formation and also function as attenuators of bacterial aggregation. Taken together, our results show the potential role of FCT type 1 pili in the pathogenesis of GAS infections.

  9. A putative ABC transporter is involved in negative regulation of biofilm formation by Listeria monocytogenes

    DEFF Research Database (Denmark)

    Zhu, Xinna; Long, Fei; Chen, Yonghui

    2008-01-01

    Listeria monocytogenes may persist for long periods in food processing environments. In some instances, this may be due to aggregation or biofilm formation. To investigate the mechanism controlling biofilm formation in the food-borne pathogen L. monocytogenes, we characterized LM-49, a mutant...... with enhanced ability of biofilm-formation generated via transposon Tn917 mutagenesis of L. monocytogenes 4b G. In this mutant, a Tn917 insertion has disrupted the coding region of the gene encoding a putative ATP binding cassette (ABC) transporter permease identical to Lmof2365_1771 (a putative ABC...... the same amount of biofilm biomass as the wild-type strain. Furthermore, transcription of the downstream lm.G_1770 was not influenced by the upstream Tn917 insertion, and the presence of Tn917 has no effect on biofilm formation. These results suggest that lm.G_1771 was solely responsible for the negative...

  10. Pyoverdine and PQS Mediated Subpopulation Interactions Involved in Pseudomonas aeruginosa Biofilm Formation

    DEFF Research Database (Denmark)

    Yang, Liang; Nilsson, Martin; Gjermansen, Morten

    2009-01-01

    Using flow chamber-grown Pseudomonas aeruginosa biofilms as model system, we show in the present study that formation of heterogeneous biofilms may occur through mechanisms that involve complex subpopulation interactions. One example of this phenomenon is expression of the iron...

  11. Molecular Basis for Saccharomyces cerevisiae Biofilm Development

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz

    In this study, I sought to identify genes regulating the global molecular program for development of sessile multicellular communities, also known as biofilm, of the eukaryotic microorganism, Saccharomyces cerevisiae (yeast). Yeast biofilm has a clinical interest, as biofilms can cause chronic...... infections in humans. Biofilm is also interesting from an evolutionary standpoint, as an example of primitive multicellularity. By using a genome-wide screen of yeast deletion mutants, I show that 71 genes are essential for biofilm formation. Two-thirds of these genes are required for transcription of FLO11......, but only a small subset is previously described as regulators of FLO11. These results reveal that the regulation of biofilm formation and FLO11 is even more complex than what has previously been described. I find that the molecular program for biofilm formation shares many essential components with two...

  12. Genetic adaptation of Streptococcus mutans during biofilm formation on different types of surfaces

    Directory of Open Access Journals (Sweden)

    Aharoni Reuven

    2010-02-01

    Full Text Available Abstract Background Adhesion and successful colonization of bacteria onto solid surfaces play a key role in biofilm formation. The initial adhesion and the colonization of bacteria may differ between the various types of surfaces found in oral cavity. Therefore, it is conceivable that diverse biofilms are developed on those various surfaces. The aim of the study was to investigate the molecular modifications occurring during in vitro biofilm development of Streptococcus mutans UA159 on several different dental surfaces. Results Growth analysis of the immobilized bacterial populations generated on the different surfaces shows that the bacteria constructed a more confluent and thick biofilms on a hydroxyapatite surface compared to the other tested surfaces. Using DNA-microarray technology we identified the differentially expressed genes of S. mutans, reflecting the physiological state of biofilms formed on the different biomaterials tested. Eight selected genes were further analyzed by real time RT-PCR. To further determine the impact of the tested material surfaces on the physiology of the bacteria, we tested the secretion of AI-2 signal by S. mutans embedded on those biofilms. Comparative transcriptome analyses indicated on changes in the S. mutans genome in biofilms formed onto different types of surfaces and enabled us to identify genes most differentially expressed on those surfaces. In addition, the levels of autoinducer-2 in biofilms from the various tested surfaces were different. Conclusions Our results demonstrate that gene expression of S. mutans differs in biofilms formed on tested surfaces, which manifest the physiological state of bacteria influenced by the type of surface material they accumulate onto. Moreover, the stressful circumstances of adjustment to the surface may persist in the bacteria enhancing intercellular signaling and surface dependent biofilm formation.

  13. Effect of Lactoferrin on Oral Biofilm Formation

    Science.gov (United States)

    2009-10-01

    effect of Lf on the early stages of single-species and multi- species oral biofilm development. Streptococcus gordonii (Sg), Streptococcus mutans ...and biofilm development by Pseudomonas aeruginosa and Streptococcus mutans have been demonstrated, limited studies have been conducted on its effect...the effect of Lf on the early stages of single- species and multi-species oral biofilm development. Streptococcus gordonii, Streptococcus mutans

  14. Antibiotic Resistance Pattern and Biofilm Formation Ability of Clinically Isolates of Salmonella enterica Serotype typhimurium

    Directory of Open Access Journals (Sweden)

    Hadi Ghasemmahdi

    2015-05-01

    Full Text Available Background: The emergence of antimicrobial-resistant bacteria with biofilm formation ability may be a major threat to public health and food safety and sanitation. Objectives: The aim of this study was to determine antibiotic resistance patterns and biofilm production characteristics of Salmonella typhimurium isolated from different species of birds. Materials and Methods: The antibiotic resistance patterns of 38 pre-identified isolates were screened by standard Kirby-Bauer disc-diffusion method performed on Mueller–Hinton agar to a panel of 17 antibiotics. The extent of biofilm formation was measured by Microtiter plate (MTP-based systems. Results: The highest antimicrobial resistance was detected against nalidixic acid (97%, followed by doxycycline (86%, colistin (84%, streptomycin (84% and tetracycline (84%. All isolates were sensitive to amikacin (100% and 97% and 95% of the isolates were sensitive to ceftazidime and ceftriaxone, respectively. Twenty one different antibiotic resistance patterns were observed among S. typhimurium isolates. According to the results of the microtitre plate biofilm assay, there was a wide variation in biofilm forming ability among S. typhimurium isolates. Most of the isolates (60.52% were not capable of producing biofilm, while 26.31%, 7.89%, and 5.26% isolates were weak, strong and moderate biofilm producers, respectively. Conclusions: It was concluded that nearly all S. typhimurium isolates revealed a high multiple antibiotic resistant with low biofilm forming capabilities which proposed low association between biofilm formation and antibiotic resistance of a major food important pathogen.

  15. Biofilm Formation and Immunomodulatory Activity of Proteus mirabilis Clinically Isolated Strains

    Directory of Open Access Journals (Sweden)

    Alessandra Fusco

    2017-02-01

    Full Text Available Urinary tract infections (UTIs and catheter-associated UTIs (CAUTIs are the principal hospital-acquired infections. Proteus mirabilis is characterized by several virulence factors able to promote adhesion and biofilm formation and ameliorate the colonization of urinary tract and the formation of crystalline biofilms on the abiotic surface of the urinary catheters. Since, to date, the role of P. mirabilis in the etiopathogenesis of different types of urinary tract infections is not well established, in this study we sought to characterize two different clinically isolated strains of P. mirabilis (PM1 and PM2 with distinctive phenotypes and analyzed various virulence factors possibly implicated in the ability to induce UTIs and CAUTIs. In particular, we analyzed motility, biofilm formation both on abiotic and biotic surfaces of PM1 and PM2 and paralleled these parameters with the ability to induce an inflammatory response in an epithelial cell model. Results showed that PM1 displayed major motility and a capacity to form biofilm and was associated with an anti-inflammatory response of host cells. Conversely, PM2 exhibited lack motility and a had slower organization in biofilm but promoted an increase of proinflammatory cytokine expression in infected epithelial cells. Our study provides data useful to start uncovering the pathologic basis of P. mirabilis-associated urinary infections. The evidence of different virulence factors expressed by PM1 and PM2 highlights the possibility to use precise and personalized therapies targeting specific virulence pathways.

  16. Biofilm Formation and Immunomodulatory Activity of Proteus mirabilis Clinically Isolated Strains.

    Science.gov (United States)

    Fusco, Alessandra; Coretti, Lorena; Savio, Vittoria; Buommino, Elisabetta; Lembo, Francesca; Donnarumma, Giovanna

    2017-02-15

    Urinary tract infections (UTIs) and catheter-associated UTIs (CAUTIs) are the principal hospital-acquired infections. Proteus mirabilis is characterized by several virulence factors able to promote adhesion and biofilm formation and ameliorate the colonization of urinary tract and the formation of crystalline biofilms on the abiotic surface of the urinary catheters. Since, to date, the role of P. mirabilis in the etiopathogenesis of different types of urinary tract infections is not well established, in this study we sought to characterize two different clinically isolated strains of P. mirabilis (PM1 and PM2) with distinctive phenotypes and analyzed various virulence factors possibly implicated in the ability to induce UTIs and CAUTIs. In particular, we analyzed motility, biofilm formation both on abiotic and biotic surfaces of PM1 and PM2 and paralleled these parameters with the ability to induce an inflammatory response in an epithelial cell model. Results showed that PM1 displayed major motility and a capacity to form biofilm and was associated with an anti-inflammatory response of host cells. Conversely, PM2 exhibited lack motility and a had slower organization in biofilm but promoted an increase of proinflammatory cytokine expression in infected epithelial cells. Our study provides data useful to start uncovering the pathologic basis of P. mirabilis -associated urinary infections. The evidence of different virulence factors expressed by PM1 and PM2 highlights the possibility to use precise and personalized therapies targeting specific virulence pathways.

  17. Kinetics of biofilm formation and desiccation survival of Listeria monocytogenes in single and dual species biofilms with Pseudomonas fluorescens, Serratia proteamaculans or Shewanella baltica on food-grade stainless steel surfaces.

    Science.gov (United States)

    Daneshvar Alavi, Hessam Edin; Truelstrup Hansen, Lisbeth

    2013-01-01

    This study investigated the dynamics of static biofilm formation (100% RH, 15 °C, 48-72 h) and desiccation survival (43% RH, 15 °C, 21 days) of Listeria monocytogenes, in dual species biofilms with the common spoilage bacteria, Pseudomonas fluorescens, Serratia proteamaculans and Shewanella baltica, on the surface of food grade stainless steel. The Gram-negative bacteria reduced the maximum biofilm population of L. monocytogenes in dual species biofilms and increased its inactivation during desiccation. However, due to the higher desiccation resistance of Listeria relative to P. fluorescens and S. baltica, the pathogen survived in greater final numbers. In contrast, S. proteamaculans outcompeted the pathogen during the biofilm formation and exhibited similar desiccation survival, causing the N21 days of Serratia to be ca 3 Log10(CFU cm(-2)) greater than that of Listeria in the dual species biofilm. Microscopy revealed biofilm morphologies with variable amounts of exopolymeric substance and the presence of separate microcolonies. Under these simulated food plant conditions, the fate of L. monocytogenes during formation of mixed biofilms and desiccation depended on the implicit characteristics of the co-cultured bacterium.

  18. Surface conditioning with Escherichia coli cell wall components can reduce biofilm formation by decreasing initial adhesion

    Directory of Open Access Journals (Sweden)

    Luciana C. Gomes

    2017-07-01

    Full Text Available Bacterial adhesion and biofilm formation on food processing surfaces pose major risks to human health. Non-efficient cleaning of equipment surfaces and piping can act as a conditioning layer that affects the development of a new biofilm post-disinfection. We have previously shown that surface conditioning with cell extracts could reduce biofilm formation. In the present work, we hypothesized that E. coli cell wall components could be implicated in this phenomena and therefore mannose, myristic acid and palmitic acid were tested as conditioning agents. To evaluate the effect of surface conditioning and flow topology on biofilm formation, assays were performed in agitated 96-well microtiter plates and in a parallel plate flow chamber (PPFC, both operated at the same average wall shear stress (0.07 Pa as determined by computational fluid dynamics (CFD. It was observed that when the 96-well microtiter plate and the PPFC were used to form biofilms at the same shear stress, similar results were obtained. This shows that the referred hydrodynamic feature may be a good scale-up parameter from high-throughput platforms to larger scale flow cell systems as the PPFC used in this study. Mannose did not have any effect on E. coli biofilm formation, but myristic and palmitic acid inhibited biofilm development by decreasing cell adhesion (in about 50%. These results support the idea that in food processing equipment where biofilm formation is not critical below a certain threshold, bacterial lysis and adsorption of cell components to the surface may reduce biofilm buildup and extend the operational time.

  19. The efficacy of sarang semut extract (Myrmecodia pendens Merr & Perry in inhibiting Porphyromonas gingivalis biofilm formation

    Directory of Open Access Journals (Sweden)

    Zulfan M. Alibasyah

    2017-06-01

    Full Text Available Background: Porphyromonas gingivalis (P. gingivalis is a pathogenic bacteria present in the oral cavity involved in the pathogenesis of chronic periodontitis and biofilm. This mass of microorganisms represents one of the virulent factors of P. gingivalis which plays an important role as an attachment initiator in host cells. Sarang semut is a natural material possessing the ability to inhibit the growth of P. gingivalis. Purpose: This study aims to analyze the effect of sarang semut extract on the formation of P. gingivalis biofilm. Methods: The study used methanol sarang semut extract and P. gingivalis ATCC 33277 and phosphomycin as a positive control. Treatment was initiated by means of culturing. Biofilm test and P. gingivalis biofilm formation observation were subsequently performed by means of a light microscope at a magnification of 400x. Results: The formation of P. gingivalis biofilms tended to increase at 3, 6, and 9 hours. Results of the violet crystal test showed that concentrations of 100% and 75% of the sarang semut extract successfully inhibited the formation of P. gingivalis biofilm according to the incubation time. Meanwhile, the sarang semut extracts at concentrations of 50%, 25%, 12.5%, and 6.125% resulted in weak inhibition of the formation of P. gingivalis biofilm. The biofilm mass profile observed by a microscope tended to decrease as an indicator of the effects of the sarang semut extract. Conclusion: Sarang semut extract can inhibit the formation of P. gingivalis biofilm, especially at concentrations of 100% and 75%. Nevertheless, phosphomycin has stronger antibiofilm of P. gingivalis effects than those of the sarang semut extract at all of the concentrations listed above.

  20. BIOFILM FORMATION OF Vibrio cholerae ON STAINLESS STEEL USED IN FOOD PROCESSING

    Directory of Open Access Journals (Sweden)

    Milagro FERNÁNDEZ-DELGADO

    2016-01-01

    Full Text Available Vibrio cholerae represents a significant threat to human health in developing countries. This pathogen forms biofilms which favors its attachment to surfaces and its survival and transmission by water or food. This work evaluated the in vitro biofilm formation of V. cholerae isolated from clinical and environmental sources on stainless steel of the type used in food processing by using the environmental scanning electron microscopy (ESEM. Results showed no cell adhesion at 4 h and scarce surface colonization at 24 h. Biofilms from the environmental strain were observed at 48 h with high cellular aggregations embedded in Vibrio exopolysaccharide (VPS, while less confluence and VPS production with microcolonies of elongated cells were observed in biofilms produced by the clinical strain. At 96 h the biofilms of the environmental strain were released from the surface leaving coccoid cells and residual structures, whereas biofilms of the clinical strain formed highly organized structures such as channels, mushroom-like and pillars. This is the first study that has shown the in vitro ability of V. cholerae to colonize and form biofilms on stainless steel used in food processing.

  1. BIOFILM FORMATION OF Vibrio cholerae ON STAINLESS STEEL USED IN FOOD PROCESSING.

    Science.gov (United States)

    Fernández-Delgado, Milagro; Rojas, Héctor; Duque, Zoilabet; Suárez, Paula; Contreras, Monica; García-Amado, M Alexandra; Alciaturi, Carlos

    2016-01-01

    Vibrio cholerae represents a significant threat to human health in developing countries. This pathogen forms biofilms which favors its attachment to surfaces and its survival and transmission by water or food. This work evaluated the in vitro biofilm formation of V. cholerae isolated from clinical and environmental sources on stainless steel of the type used in food processing by using the environmental scanning electron microscopy (ESEM). Results showed no cell adhesion at 4 h and scarce surface colonization at 24 h. Biofilms from the environmental strain were observed at 48 h with high cellular aggregations embedded in Vibrio exopolysaccharide (VPS), while less confluence and VPS production with microcolonies of elongated cells were observed in biofilms produced by the clinical strain. At 96 h the biofilms of the environmental strain were released from the surface leaving coccoid cells and residual structures, whereas biofilms of the clinical strain formed highly organized structures such as channels, mushroom-like and pillars. This is the first study that has shown the in vitro ability of V. cholerae to colonize and form biofilms on stainless steel used in food processing.

  2. Minocycline Inhibits Candida albicans Budded-to-Hyphal-Form Transition and Biofilm Formation.

    Science.gov (United States)

    Kurakado, Sanae; Takatori, Kazuhiko; Sugita, Takashi

    2017-09-25

    Candida albicans frequently causes bloodstream infections; its budded-to-hyphalform transition (BHT) and biofilm formation are major contributors to virulence. During an analysis of antibacterial compounds that inhibit C. albicans BHT, we found that the tetracycline derivative minocycline inhibited BHT and subsequent biofilm formation. Minocycline decreased expression of hypha-specific genes HWP1 and ECE1, and adhesion factor gene ALS3 of C. albicans. In addition, minocycline decreased cell surface hydrophobicity and the extracellular β-glucan level in biofilms. Minocycline has been widely used for catheter antibiotic lock therapy to prevent bacterial infection; this compound may also be prophylactically effective against Candida infection.

  3. Electro-active bio-films: formation, characterization and mechanisms

    International Nuclear Information System (INIS)

    Parot, Sandrine

    2007-01-01

    Some bacteria, which are able to exchange electrons with a conductive material without mediator form on conductive surfaces electro-active bio-films. This bacterial property has been recently discovered (2001). Objectives of this work are to develop electro-active bio-films in various natural environments from indigenous flora, then through complementary electrochemical techniques (chrono-amperometry and cyclic voltammetry), to evaluate electro-activity of isolates coming from so-formed bio-films and to characterize mechanisms of electron transfer between bacteria and materials. First, electro-active bio-films have been developed under chrono-amperometry in garden compost and in water coming from Guyana mangrove. These bio-films were respectively able to use an electrode as electron acceptor (oxidation) or as electron donor (reduction). In compost, results obtained in chrono-amperometry and cyclic voltammetry suggest a two-step electron transfer: slow substrate consumption, then rapid electron transfer between bacteria and the electrode. Thereafter, the ability to reduce oxygen was demonstrated with cyclic voltammetry for facultative aerobic isolates from compost bio-films (Enterobacter spp. and Pseudomonas spp.) and for aerobic isolates obtained from marine electro-active bio-films (Roseobacter spp. in majority). Finally, bio-films inducing current increase in chrono-amperometry were developed in bioreactor with synthetic medium from a pure culture of isolates. Hence, for the first time, electro-activity of several anaerobic strains of Geobacter bremensis isolated from compost bio-films was highlighted. (author) [fr

  4. A Functional DNase I Coating to Prevent Adhesion of Bacteria and the Formation of Biofilm

    NARCIS (Netherlands)

    Swartjes, Jan J. T. M.; Das, Theerthankar; Sharifi, Shahriar; Subbiahdoss, Guruprakash; Sharma, Prashant K.; Krom, Bastiaan P.; Busscher, Henk J.; van der Mei, Henny C.

    2013-01-01

    Biofilms are detrimental in many industrial and biomedical applications and prevention of biofilm formation has been a prime challenge for decades. Biofilms consist of communities of adhering bacteria, supported and protected by extracellular-polymeric-substances (EPS), the so-called house of

  5. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor.

    Science.gov (United States)

    Zhu, Yan; Zhang, Yan; Ren, Hong-Qiang; Geng, Jin-Ju; Xu, Ke; Huang, Hui; Ding, Li-Li

    2015-03-01

    This study aimed to investigate biofilm properties evolution coupled with different ages during the start-up period in a moving bed biofilm reactor system. Physicochemical characteristics including adhesion force, extracellular polymeric substances (EPS), morphology as well as volatile solid and microbial community were studied. Results showed that the formation and development of biofilms exhibited four stages, including (I) initial attachment and young biofilm formation, (II) biofilms accumulation, (III) biofilm sloughing and updating, and (IV) biofilm maturation. During the whole start-up period, adhesion force was positively and significantly correlated with the contents of EPS, especially the content of polysaccharide. In addition, increased adhesion force and EPS were beneficial for biofilm retention. Gram-negative bacteria mainly including Sphaerotilus, Zoogloea and Haliscomenobacter were predominant in the initial stage. Actinobacteria was beneficial to resist sloughing. Furthermore, filamentous bacteria were dominant in maturation biofilm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Klebsiella pneumoniae yfiRNB operon affects biofilm formation, polysaccharide production and drug susceptibility.

    Science.gov (United States)

    Huertas, Mónica G; Zárate, Lina; Acosta, Iván C; Posada, Leonardo; Cruz, Diana P; Lozano, Marcela; Zambrano, María M

    2014-12-01

    Klebsiella pneumoniae is an opportunistic pathogen important in hospital-acquired infections, which are complicated by the rise of drug-resistant strains and the capacity of cells to adhere to surfaces and form biofilms. In this work, we carried out an analysis of the genes in the K. pneumoniae yfiRNB operon, previously implicated in biofilm formation. The results indicated that in addition to the previously reported effect on type 3 fimbriae expression, this operon also affected biofilm formation due to changes in cellulose as part of the extracellular matrix. Deletion of yfiR resulted in enhanced biofilm formation and an altered colony phenotype indicative of cellulose overproduction when grown on solid indicator media. Extraction of polysaccharides and treatment with cellulase were consistent with the presence of cellulose in biofilms. The enhanced cellulose production did not, however, correlate with virulence as assessed using a Caenorhabditis elegans assay. In addition, cells bearing mutations in genes of the yfiRNB operon varied with respect to the WT control in terms of susceptibility to the antibiotics amikacin, ciprofloxacin, imipenem and meropenem. These results indicated that the yfiRNB operon is implicated in the production of exopolysaccharides that alter cell surface characteristics and the capacity to form biofilms--a phenotype that does not necessarily correlate with properties related with survival, such as resistance to antibiotics. © 2014 The Authors.

  7. Genes involved in Listeria monocytogenes biofilm formation at a simulated food processing plant temperature of 15 °C.

    Science.gov (United States)

    Piercey, Marta J; Hingston, Patricia A; Truelstrup Hansen, Lisbeth

    2016-04-16

    Listeria monocytogenes is a pathogenic foodborne bacterium whose persistence in food processing environments is in part attributed to its biofilm formation. Most biofilm studies have been carried out at 30-37 °C rather than at temperatures found in the food processing plants (i.e., 10-20 °C). The objective of the present study was to mine for novel genes that contribute to L. monocytogenes biofilm formation at 15 °C using the random insertional mutagenesis approach. A library of 11,024 L. monocytogenes 568 (serotype 1/2a) Himar1 insertional mutants was created. Mutants with reduced or enhanced biofilm formation at 15 °C were detected in microtiter plate assays with crystal violet and safranin staining. Fourteen mutants expressed enhanced biofilm phenotypes, and harbored transposon insertions in genes encoding cell wall biosynthesis, motility, metabolism, stress response, and cell surface associated proteins. Deficient mutants (n=5) contained interruptions in genes related to peptidoglycan, teichoic acid, or lipoproteins. Enhanced mutants produced significantly (pbiofilm formed on stainless steel (SS) coupons at 15 °C (48 h) than deficient mutants, which were also more sensitive to benzalkonium chloride. All biofilm deficient mutants and four enhanced mutants in the microtiter plate assay (flaA, cheR, lmo2563 and lmo2488) formed no biofilm in a peg lid assay (Calgary biofilm device) while insertions in lmo1224 and lmo0543 led to excess biofilm in all assays. Two enhanced biofilm formers were more resistant to enzymatic removal with DNase, proteinase K or pectinase than the parent strain. Scanning electron microscopy of individual biofilms made by five mutants and the parent on SS surfaces showed formation of heterogeneous biofilm with dense zones by immotile mutants, while deficient mutants exhibited sparse growth. In conclusion, interruptions of 9 genes not previously linked to biofilm formation in L. monocytogenes (lmo2572, lmo2488 (uvrA), lmo1224, lmo0434

  8. Investigation of biofilm formation on contact eye lenses caused by methicillin resistant Staphylococcus aureus.

    Science.gov (United States)

    Khalil, M A; Sonbol, F I

    2014-01-01

    The objective was to investigate the biofilm-forming capacity of methicillin resistant Staphylococcus aureus (MRSA) isolated from eye lenses of infected patients. A total of 32 MRSA isolated from contact lenses of patients with ocular infections were screened for their biofilm-forming capacity using tube method (TM), Congo red agar (CRA), and microtiter plate (MtP) methods. The effect of some stress factor on the biofilm formation was studied. The biofilm-forming related genes, icaA, icaD and 10 microbial surface components that recognize adhesive matrix molecule (MSCRAMM), of the selected MRSA were also detected using polymerase chain reaction. Of 32 MRSA isolates, 34.37%, 59.37%, and 81.25% showed positive results using CRA, TM or MtP, respectively. Biofilm production was found to be reduced in the presence of ethanol or ethylenediaminetetraacetic acid and at extreme pH values. On the other hand, glucose or heparin leads to a concentration dependent increase of biofilm production by the isolates. The selected biofilm producing MRSA isolate was found to harbor the icaA, icaD and up to nine of 10 tested MSCRAMM genes, whereas the selected non biofilm producing MRSA isolate did not carry any of the tested genes. The MtP method was found to be the most effective phenotypic screening method for detection of biofilm formation by MRSA. Furthermore, the molecular approach should be taken into consideration for the rapid and correct diagnosis of virulent bacteria associated with contact eye lenses.

  9. Novel approaches to mitigating bacterial biofilm formation and intercellular communication

    Science.gov (United States)

    Kasper, Stephen H.

    Long thought of as solitary single-cell organisms, it is now widely accepted that bacteria can act and cooperate as social organisms. Phenomena such as biofilm formation and quorum sensing (QS) are two intimately intertwined cooperative behaviors that significantly contribute to the pathogenesis of many bacteria. Biofilms are surface associated communities of bacteria encased in a secreted extracellular matrix, which provides several advantages over an individualized lifestyle, such as increased protection from antimicrobial agents as well as enhanced opportunity for the exchange of genetic material. Bacterial QS is a system of population-based communication through the production, sensing, and response to chemical signals, often controlling the expression of diverse virulence factors (e.g. toxins, proteases). Biofilm formation and QS are cooperative processes that are often leveraged as bacteria coordinate infection processes, and can therefore be novel targets for anti-infective treatments that differ from conventional antibiotic treatment. Our lab has previously identified a novel class of small molecules that inhibit biofilm formation and disrupt QS by the pathogenic bacterium Pseudomonas aeruginosa. These organosulfur-based compounds are either natural products or related derivatives of the tropical plant Petiveria alliacea. Because oral biofilm (e.g. dental plaque) is a major conduit of oral and systemic disease, and is also a site for horizontal transfer for genes encoding antibiotic resistance, there exists a need for novel strategies for inhibiting oral biofilm development. Therefore, a small library (˜50 compounds) of structural derivatives was developed and screened for their ability to inhibit biofilm formation by multiple orally associated bacteria. The screening effort uncovered several related compounds that inhibited oral biofilm development. To determine how natural product-based organosulfur compounds could be inducing QS inhibitory effects, an

  10. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates: BIOFILM DISTRIBUTION AND RATE SCALING

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhifeng [Institute of Surface-Earth System Science, Tianjin University, Tianjin China; Pacific Northwest National Laboratory, Richland WA USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland WA USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen China; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland WA USA; School of Earth Science and Engineering, Nanjing University, Nanjing China; Bailey, Vanessa L. [Pacific Northwest National Laboratory, Richland WA USA

    2017-11-01

    Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models, and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.

  11. Pseudomonas biofilm matrix composition and niche biology

    Science.gov (United States)

    Mann, Ethan E.; Wozniak, Daniel J.

    2014-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072

  12. The Influence of Prior Modes of Growth, Temperature, Medium, and Substrate Surface on Biofilm Formation by Antibiotic-Resistant Campylobacter jejuni.

    Science.gov (United States)

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2016-12-01

    Campylobacter jejuni is one of the most common causes of bacterial gastrointestinal food-borne infection worldwide. It has been suggested that biofilm formation may play a role in survival of these bacteria in the environment. In this study, the influence of prior modes of growth (planktonic or sessile), temperatures (37 and 42 °C), and nutrient conditions (nutrient broth and Mueller-Hinton broth) on biofilm formation by eight C. jejuni strains with different antibiotic resistance profiles was examined. The ability of these strains to form biofilm on different abiotic surfaces (stainless steel, glass, and polystyrene) as well as factors potentially associated with biofilm formation (bacterial surface hydrophobicity, auto-aggregation, and initial attachment) was also determined. The results showed that cells grown as sessile culture generally have a greater ability to form biofilm (P Biofilm was also greater (P biofilm formation in a strain-dependent manner. The strains were able to attach and form biofilms on different abiotic surfaces, but none of them demonstrated strong, complex, or structured biofilm formation. There were no clear trends between the bacterial surface hydrophobicity, auto-aggregation, attachment, and biofilm formation by the strains. This finding suggests that environmental factors did affect biofilm formation by C. jejuni, and they are more likely to persist in the environment in the form of mixed-species rather than monospecies biofilms.

  13. [Biofilm Formation by the Nonflagellated flhB1 Mutant of Azospirillum brasilense Sp245].

    Science.gov (United States)

    Shelud'ko, A V; Filip'echeva, Yu A; Shumiliva, E M; Khlebtsov, B N; Burov, A M; Petrova, L P; Katsy, E I

    2015-01-01

    Azospirillum brasilense Sp245 with mixed flagellation are able to form biofilms on various surfaces. A nonflagellated mutant of this strain with inactivated chromosomal copy of the flhB gene (flhB1) was shown to exhibit specific traits at the later stages of biofilm formation on a hydrophilic (glass) surface. Mature biofilms of the flhB1::Omegon-Km mutant Sp245.1063 were considerably thinner than those of the parent strain Sp245. The biofilms of the mutant were more susceptible to the forces of hydrodynamic shear. A. brasilense Sp245 cells in biofilms were not found to possess lateral flagella. Cells with polar flagella were, however, revealed by atomic force microscopy of mature native biofilms of strain Sp245. Preservation of a polar flagellum (probably nonmotile) on the cells of A. brasilense Sp245 may enhance the biofilm stability.

  14. Growing and Analyzing Biofilms in Flow Chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic......, and disassembly and cleaning of the system. In addition, embedding and fluorescent in situ hybridization of flow chamber–grown biofilms are addressed. Curr. Protoc. Microbiol. 21:1B.2.1-1B.2.17. © 2011 by John Wiley & Sons, Inc....

  15. Ethanol-independent biofilm formation by a flor wine yeast strain of Saccharomyces cerevisiae.

    Science.gov (United States)

    Zara, Severino; Gross, Michael K; Zara, Giacomo; Budroni, Marilena; Bakalinsky, Alan T

    2010-06-01

    Flor strains of Saccharomyces cerevisiae form a biofilm on the surface of wine at the end of fermentation, when sugar is depleted and growth on ethanol becomes dependent on oxygen. Here, we report greater biofilm formation on glycerol and ethyl acetate and inconsistent formation on succinic, lactic, and acetic acids.

  16. Histo-FISH protocol to detect bacterial compositions and biofilms formation in vivo.

    Science.gov (United States)

    Madar, M; Slizova, M; Czerwinski, J; Hrckova, G; Mudronova, D; Gancarcikova, S; Popper, M; Pistl, J; Soltys, J; Nemcova, R

    2015-01-01

    The study of biofilm function in vivo in various niches of the gastrointestinal tract (GIT) is rather limited. It is more frequently used in in vitro approaches, as an alternative to the studies focused on formation mechanisms and function of biofilms, which do not represent the actual in vivo complexity of microbial structures. Additionally, in vitro tests can sometimes lead to unreliable results. The goal of this study was to develop a simple approach to detect bacterial populations, particularly Lactobacillus and Bifidobacterium in biofilms, in vivo by the fluorescent in situ hybridisation (FISH) method. We standardised a new Histo-FISH method based on specific fluorochrome labelling probes which are able to detect Lactobacillus spp. and Bifidobacterium spp. within biofilms on the mucosal surface of the GIT embedded in paraffin in histological slices. This method is also suitable for visualisation of bacterial populations in the GIT internal content. Depending on the labelling probes, the Histo-FISH method has the potential to detect other probiotic strains or pathogenic bacteria. This original approach permits us to analyse bacterial colonisation processes as well as biofilm formation in stomach and caecum of BALB/c and germ-free mice.

  17. Effect of LongZhang Gargle on Biofilm Formation and Acidogenicity of Streptococcus mutans In Vitro

    Directory of Open Access Journals (Sweden)

    Yutao Yang

    2016-01-01

    Full Text Available Streptococcus mutans, with the ability of high-rate acid production and strong biofilm formation, is considered the predominant bacterial species in the pathogenesis of human dental caries. Natural products which may be bioactive against S. mutans have become a hot spot to researches to control dental caries. LongZhang Gargle, completely made from Chinese herbs, was investigated for its effects on acid production and biofilm formation by S. mutans in this study. The results showed an antimicrobial activity of LongZhang Gargle against S. mutans planktonic growth at the minimum inhibitory concentration (MIC of 16% and minimum bactericidal concentration (MBC of 32%. Acid production was significantly inhibited at sub-MIC concentrations. Biofilm formation was also significantly disrupted, and 8% was the minimum concentration that resulted in at least 50% inhibition of biofilm formation (MBIC50. A scanning electron microscopy (SEM showed an effective disruption of LongZhang Gargle on S. mutans biofilm integrity. In addition, a confocal laser scanning microscopy (CLSM suggested that the extracellular polysaccharides (EPS synthesis could be inhibited by LongZhang Gargle at a relatively low concentration. These findings suggest that LongZhang Gargle may be a promising natural anticariogenic agent in that it suppresses planktonic growth, acid production, and biofilm formation against S. mutans.

  18. Porphyromonas gingivalis and Treponema denticola synergistic polymicrobial biofilm development.

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    Full Text Available Chronic periodontitis has a polymicrobial biofilm aetiology and interactions between key bacterial species are strongly implicated as contributing to disease progression. Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia have all been implicated as playing roles in disease progression. P. gingivalis cell-surface-located protease/adhesins, the gingipains, have been suggested to be involved in its interactions with several other bacterial species. The aims of this study were to determine polymicrobial biofilm formation by P. gingivalis, T. denticola and T. forsythia, as well as the role of P. gingivalis gingipains in biofilm formation by using a gingipain null triple mutant. To determine homotypic and polymicrobial biofilm formation a flow cell system was employed and the biofilms imaged and quantified by fluorescent in situ hybridization using DNA species-specific probes and confocal scanning laser microscopy imaging. Of the three species, only P. gingivalis and T. denticola formed mature, homotypic biofilms, and a strong synergy was observed between P. gingivalis and T. denticola in polymicrobial biofilm formation. This synergy was demonstrated by significant increases in biovolume, average biofilm thickness and maximum biofilm thickness of both species. In addition there was a morphological change of T. denticola in polymicrobial biofilms when compared with homotypic biofilms, suggesting reduced motility in homotypic biofilms. P. gingivalis gingipains were shown to play an essential role in synergistic polymicrobial biofilm formation with T. denticola.

  19. Enhancing the formation and shear resistance of nitrifying biofilms on membranes by surface modification

    DEFF Research Database (Denmark)

    Lackner, Susanne; Holmberg, Maria; Terada, Akihiko

    2009-01-01

    Polypropylene (PP) membranes and polyethylene (PE) surfaces were modified to enhance formation and shear resistance of nitrifying biofilms for wastewater treatment applications. A combination of plasma polymerization and wet chemistry was employed to ultimately introduce poly(ethyleneglycol) (PEG......) chains with two different functional groups (-PEG-NH2 and -PEG-CH3). Biofilm growth experiments using a mixed nitrifying bacterial culture revealed that the specific combination of PEG chains with amino groups resulted in most biofilm formation on both PP and PE samples. Detachment experiments showed...... structure might be possible explanations of the superiority of the -PEG-NH2 modification. The success of the-PEG-NH2 modification was independent of the original surface and might, therefore, be used in wastewater treatment bioreactors to improve reactor performance by making biofilm formation more stable...

  20. Inhibitory activity of Iranian plant extracts on growth and biofilm formation by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Mansouri, S.

    2013-01-01

    Full Text Available Aims: Pseudomonas aeruginosa is a drug resistance opportunistic bacterium. Biofilm formation is key factor for survivalof P. aeruginosa in various environments. Polysaccharides may be involved in biofilm formation. The purpose of thisstudy was to evaluate antimicrobial and anti-biofilm activities of seven plant extracts with known alpha-glucosidaseinhibitory activities on different strains of P. aeruginosa.Methodology and results: Plants were extracted with methanol by the maceration method. Antimicrobial activities weredetermined by agar dilution and by growth yield as measured by OD560nm of the Luria Bertani broth (LB culture with orwithout extracts. In agar dilution method, extracts of Quercus infectoria inhibited the growth of all, while Myrtuscommunis extract inhibited the growth of 3 out of 8 bacterial strains with minimum inhibitory concentration (MIC of 1000μg/mL. All extracts significantly (p≤0.003 reduced growth rate of the bacteria in comparison with the control withoutextracts in LB broth at sub-MIC concentrations (500 μg/mL. All plant extracts significantly (p≤0.003 reduced biofilmformation compared to the controls. Glycyrrhiza glabra and Q. infectoria had the highest anti-biofilm activities. Nocorrelation between the alpha-glucosidase inhibitory activity with growth or the intensity of biofilm formation was found.Conclusion, significance and impact of study: Extracts of Q. infectoria and M. communis had the most antimicrobial,while Q. infectoria and G. glabra had the highest anti-biofilm activities. All plant extracts had anti-biofilm activities withmarginal effect on growth, suggesting that the mechanisms of these activities are unrelated to static or cidal effects.Further work to understand the relation between antimicrobial and biofilm formation is needed for development of newmeans to fight the infectious caused by this bacterium in future.

  1. D-Tagatose inhibits the growth and biofilm formation of Streptococcus mutans

    Science.gov (United States)

    Hasibul, Khaleque; Nakayama-Imaohji, Haruyuki; Hashimoto, Masahito; Yamasaki, Hisashi; Ogawa, Takaaki; Waki, Junpei; Tada, Ayano; Yoneda, Saori; Tokuda, Masaaki; Miyake, Minoru; Kuwahara, Tomomi

    2018-01-01

    Dental caries is an important global health concern and Streptococcus mutans has been established as a major cariogenic bacterial species. Reports indicate that a rare sugar, D-tagatose, is not easily catabolized by pathogenic bacteria. In the present study, the inhibitory effects of D-tagatose on the growth and biofilm formation of S. mutans GS-5 were examined. Monitoring S. mutans growth over a 24 h period revealed that D-tagatose prolonged the lag phase without interfering with the final cell yield. This growth retardation was also observed in the presence of 1% sucrose, although it was abolished by the addition of D-fructose. S. mutans biofilm formation was significantly inhibited by growth in sucrose media supplemented with 1 and 4% D-tagatose compared with that in a culture containing sucrose alone, while S. mutans formed granular biofilms in the presence of this rare sugar. The inhibitory effect of D-tagatose on S. mutans biofilm formation was significantly more evident than that of xylitol. Growth in sucrose media supplemented with D-tagatose significantly decreased the expression of glucosyltransferase, exo-β-fructosidase and D-fructose-specific phosphotransferase genes but not the expression of fructosyltransferase compared with the culture containing sucrose only. The activity of cell-associated glucosyltransferase in S. mutans was inhibited by 4% D-tagatose. These results indicate that D-tagatose reduces water-insoluble glucan production from sucrose by inhibiting glucosyltransferase activities, which limits access to the free D-fructose released during this process and retards the growth of S. mutans. Therefore, foods and oral care products containing D-tagatose are anticipated to reduce the risk of caries by inhibiting S. mutans biofilm formation. PMID:29115611

  2. Ethanol-Independent Biofilm Formation by a Flor Wine Yeast Strain of Saccharomyces cerevisiae▿

    Science.gov (United States)

    Zara, Severino; Gross, Michael K.; Zara, Giacomo; Budroni, Marilena; Bakalinsky, Alan T.

    2010-01-01

    Flor strains of Saccharomyces cerevisiae form a biofilm on the surface of wine at the end of fermentation, when sugar is depleted and growth on ethanol becomes dependent on oxygen. Here, we report greater biofilm formation on glycerol and ethyl acetate and inconsistent formation on succinic, lactic, and acetic acids. PMID:20435772

  3. Current understanding of multi-species biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong

    2011-01-01

    every year worldwide to deal with damage to equipment, contaminations of products, energy losses, and infections in human beings resulted from microbial biofilms. Microorganisms compete, cooperate, and communicate with each other in multi-species biofilms. Understanding the mechanisms of multi......Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually......-species biofilm formation will facilitate the development of methods for combating bacterial biofilms in clinical, environmental, industrial, and agricultural areas. The most recent advances in the understanding of multi-species biofilms are summarized and discussed in the review....

  4. Biofilm formation enhances Helicobacter pylori survivability in vegetables.

    Science.gov (United States)

    Ng, Chow Goon; Loke, Mun Fai; Goh, Khean Lee; Vadivelu, Jamuna; Ho, Bow

    2017-04-01

    To date, the exact route and mode of transmission of Helicobacter pylori remains elusive. The detection of H. pylori in food using molecular approaches has led us to postulate that the gastric pathogen may survive in the extragastric environment for an extended period. In this study, we show that H. pylori prolongs its survival by forming biofilm and micro-colonies on vegetables. The biofilm forming capability of H. pylori is both strain and vegetable dependent. H. pylori strains were classified into high and low biofilm formers based on their highest relative biofilm units (BU). High biofilm formers survived longer on vegetables compared to low biofilm formers. The bacteria survived better on cabbage compared to other vegetables tested. In addition, images captured on scanning electron and confocal laser scanning microscopes revealed that the bacteria were able to form biofilm and reside as micro-colonies on vegetable surfaces, strengthening the notion of possible survival of H. pylori on vegetables for an extended period of time. Taken together, the ability of H. pylori to form biofilm on vegetables (a common food source for human) potentially plays an important role in its survival, serving as a mode of transmission of H. pylori in the extragastric environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk sporeformers.

    Science.gov (United States)

    Jindal, Shivali; Anand, Sanjeev; Huang, Kang; Goddard, Julie; Metzger, Lloyd; Amamcharla, Jayendra

    2016-12-01

    The development of bacterial biofilms on stainless steel (SS) surfaces poses a great threat to the quality of milk and other dairy products as the biofilm-embedded bacteria can survive thermal processing. Established biofilms offer cleaning challenges because they are resistant to most of the regular cleaning protocols. Sporeforming thermoduric organisms entrapped within biofilm matrix can also form heat-resistant spores, and may result in a long-term persistent contamination. The main objective of this study was to evaluate the efficacy of different nonfouling coatings [AMC 18 (Advanced Materials Components Express, Lemont, PA), Dursan (SilcoTek Corporation, Bellefonte, PA), Ni-P-polytetrafluoroethylene (PTFE, Avtec Finishing Systems, New Hope, MN), and Lectrofluor 641 (General Magnaplate Corporation, Linden, NJ)] on SS plate heat exchanger surfaces, to resist the formation of bacterial biofilms. It was hypothesized that modified SS surfaces would promote a lesser amount of deposit buildup and bacterial adhesion as compared with the native SS surface. Vegetative cells of aerobic sporeformers, Geobacillus stearothermophilus (ATCC 15952), Bacillus licheniformis (ATCC 6634), and Bacillus sporothermodurans (DSM 10599), were used to study biofilm development on the modified and native SS surfaces. The adherence of these organisms, though influenced by surface energy and hydrophobicity, exhibited no apparent relation with surface roughness. The Ni-P-PTFE coating exhibited the least bacterial attachment and milk solid deposition, and hence, was the most resistant to biofilm formation. Scanning electron microscopy, which was used to visualize the extent of biofilm formation on modified and native SS surfaces, also revealed lower bacterial attachment on the Ni-P-PTFE as compared with the native SS surface. This study thus provides evidence of reduced biofilm formation on the modified SS surfaces. Copyright © 2016 American Dairy Science Association. Published by Elsevier

  6. Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa

    OpenAIRE

    Cursino, Luciana; Li, Yaxin; Zaini, Paulo A.; De La Fuente, Leonardo; Hoch, Harvey C.; Burr, Thomas J.

    2017-01-01

    A mutation in the Xylella fastidiosa tonB1 gene resulted in loss of twitching motility and in significantly less biofilm formation as compared with a wild type. The altered motility and biofilm phenotypes were restored by complementation with a functional copy of the gene. The mutation affected virulence as measured by Pierce's disease symptoms on grapevines. The role of TonB1 in twitching and biofilm formation appears to be independent of the characteristic iron-uptake function of this prote...

  7. Data on enterobacteria activity on biofilm formation at surface mango fruit (Mangifera indica L. cv Ataulfo

    Directory of Open Access Journals (Sweden)

    Juan A. Ragazzo-Sánchez

    2016-12-01

    Full Text Available Abiotic factors influenced the capacity of the strains to form biofilms. Classification of the adhesion type is related with the optical density measured on the biofilm formation of tested strains. The relationship between the biofilm formation in real values with theoretical values of the strains was used to determine the mechanism involved during mixed cultures.

  8. Characterization of biofilm formation by Borrelia burgdorferi in vitro.

    Directory of Open Access Journals (Sweden)

    Eva Sapi

    Full Text Available Borrelia burgdorferi, the causative agent of Lyme disease, has long been known to be capable of forming aggregates and colonies. It was recently demonstrated that Borrelia burgdorferi aggregate formation dramatically changes the in vitro response to hostile environments by this pathogen. In this study, we investigated the hypothesis that these aggregates are indeed biofilms, structures whose resistance to unfavorable conditions are well documented. We studied Borrelia burgdorferi for several known hallmark features of biofilm, including structural rearrangements in the aggregates, variations in development on various substrate matrices and secretion of a protective extracellular polymeric substance (EPS matrix using several modes of microscopic, cell and molecular biology techniques. The atomic force microscopic results provided evidence that multilevel rearrangements take place at different stages of aggregate development, producing a complex, continuously rearranging structure. Our results also demonstrated that Borrelia burgdorferi is capable of developing aggregates on different abiotic and biotic substrates, and is also capable of forming floating aggregates. Analyzing the extracellular substance of the aggregates for potential exopolysaccharides revealed the existence of both sulfated and non-sulfated/carboxylated substrates, predominately composed of an alginate with calcium and extracellular DNA present. In summary, we have found substantial evidence that Borrelia burgdorferi is capable of forming biofilm in vitro. Biofilm formation by Borrelia species might play an important role in their survival in diverse environmental conditions by providing refuge to individual cells.

  9. ANTIBIOFILM EFFECTS of Citrus limonum and Zingiber officinale Oils on BIOFILM FORMATION of Klebsiella ornithinolytica, Klebsiella oxytoca and Klebsiella terrigena SPECIES.

    Science.gov (United States)

    Avcioglu, Nermin Hande; Sahal, Gulcan; Bilkay, Isil Seyis

    2016-01-01

    Microbial cells growing in biofilms, play a huge role in the spread of antimicrobial resistance. In this study, biofilm formation of Klebsiella strains belonging to 3 different Klebsiella species ( K. ornithinolytica , K. oxytoca and K. terrigena ), cooccurences' effect on biofilm formation amount and anti-biofilm effects of Citrus limon and Zingiber officinale essential oils on biofilm formations of highest biofilm forming K. ornithinolytica , K. oxytoca and K. terrigena strains were determined. Anti-biofilm effects of Citrus limon and Zingiber officinale essential oils on biofilm formations of highest biofilm forming K. ornithinolytica , K. oxytoca and K. terrigena strains were investigated. 57% of K. ornithinolytica strains and 50% of K. oxytoca strains were found as Strong Biofilm Forming (SBF), there wasn't any SBF strain in K. terrigena species. In addition to this, clinical materials of urine and sperm were found as the most frequent clinical materials for strong biofilm forming K. ornithinolytica and K. oxytoca isolations respectively (63%; 100%) Secondly, all K. ornithinolytica strains isolated from surgical intensive care unit and all K. oxytoca strains isolated from service units of urology were found as SBF. Apart from these, although the amount of biofilm, formed by co-occurence of K. ornithinolytica - K. oxytoca and K. oxytoca - K. terrigena were more than the amount ofbiofilm formed by themselves separately, biofilm formation amount of co-occurrence of K. ornitholytica - K. terrigena strains was lower than biofilm formation amount of K. ornithinolytica but higher than biofilm formation amount of K. terrigena . The antibiofilm effects of Citrus limonum and Zingiber officinale essential oils could be used against biofilm Klebsiella aquired infections.

  10. In vitro characterization of biofilms formed by Kingella kingae.

    Science.gov (United States)

    Kaplan, J B; Sampathkumar, V; Bendaoud, M; Giannakakis, A K; Lally, E T; Balashova, N V

    2017-08-01

    The Gram-negative bacterium Kingella kingae is part of the normal oropharyngeal mucosal flora of children biofilm formation has been coupled with pharyngeal colonization, osteoarticular infections, and infective endocarditis, no studies have investigated biofilm formation in K. kingae. In this study we measured biofilm formation by 79 K. kingae clinical isolates using a 96-well microtiter plate crystal violet binding assay. We found that 37 of 79 strains (47%) formed biofilms. All strains that formed biofilms produced corroding colonies on agar. Biofilm formation was inhibited by proteinase K and DNase I. DNase I also caused the detachment of pre-formed K. kingae biofilm colonies. A mutant strain carrying a deletion of the pilus gene cluster pilA1pilA2fimB did not produce corroding colonies on agar, autoaggregate in broth, or form biofilms. Biofilm forming strains have higher levels of pilA1 expression. The extracellular components of biofilms contained 490 μg cm -2 of protein, 0.68 μg cm -2 of DNA, and 0.4 μg cm -2 of total carbohydrates. We concluded that biofilm formation is common among K. kingae clinical isolates, and that biofilm formation is dependent on the production of proteinaceous pili and extracellular DNA. Biofilm development may have relevance to the colonization, transmission, and pathogenesis of this bacterium. Extracellular DNA production by K. kingae may facilitate horizontal gene transfer within the oral microbial community. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Chemoinformatics-assisted development of new anti-biofilm compounds

    DEFF Research Database (Denmark)

    Dürig, Anna; Kouskoumvekaki, Irene; Vejborg, Rebecca Munk

    2010-01-01

    Bacterial biofilms are associated with a large number of infections. Biofilm-dwelling bacteria are particularly resistant to antibiotics, making it hard to eradicate biofilm-associated infections. Here, we use a novel cross-disciplinary approach combining microbiology and chemoinformatics...... to identify new and efficient anti-biofilm drugs. We found that ellagic acid (present in green tea) significantly inhibited biofilm formation of Streptococcus dysgalactiae. Based on ellagic acid, we performed in silico screening of the Chinese Natural Product Database to predict a 2nd-generation list...... of compounds with similar characteristics. One of these, esculetin, proved to be more efficient in preventing biofilm formation by Staphylococcus aureus. From esculetin a 3rd-generation list of compounds was predicted. One of them, fisetin, was even better to abolish biofilm formation than the two parent...

  12. Raffinose Induces Biofilm Formation by Streptococcus mutans in Low Concentrations of Sucrose by Increasing Production of Extracellular DNA and Fructan.

    Science.gov (United States)

    Nagasawa, Ryo; Sato, Tsutomu; Senpuku, Hidenobu

    2017-08-01

    Streptococcus mutans is the primary etiological agent of dental caries and causes tooth decay by forming a firmly attached biofilm on tooth surfaces. Biofilm formation is induced by the presence of sucrose, which is a substrate for the synthesis of extracellular polysaccharides but not in the presence of oligosaccharides. Nonetheless, in this study, we found that raffinose, which is an oligosaccharide with an intestinal regulatory function and antiallergic effect, induced biofilm formation by S. mutans in a mixed culture with sucrose, which was at concentrations less than those required to induce biofilm formation directly. We analyzed the possible mechanism behind the small requirement for sucrose for biofilm formation in the presence of raffinose. Our results suggested that sucrose contributed to an increase in bacterial cell surface hydrophobicity and biofilm formation. Next, we examined how the effects of raffinose interacted with the effects of sucrose for biofilm formation. We showed that the presence of raffinose induced fructan synthesis by fructosyltransferase and aggregated extracellular DNA (eDNA, which is probably genomic DNA released from dead cells) into the biofilm. eDNA seemed to be important for biofilm formation, because the degradation of DNA by DNase I resulted in a significant reduction in biofilm formation. When assessing the role of fructan in biofilm formation, we found that fructan enhanced eDNA-dependent cell aggregation. Therefore, our results show that raffinose and sucrose have cooperative effects and that this induction of biofilm formation depends on supportive elements that mainly consist of eDNA and fructan. IMPORTANCE The sucrose-dependent mechanism of biofilm formation in Streptococcus mutans has been studied extensively. Nonetheless, the effects of carbohydrates other than sucrose are inadequately understood. Our findings concerning raffinose advance the understanding of the mechanism underlying the joint effects of sucrose and

  13. Antimicrobial peptide AMPNT-6 from Bacillus subtilis inhibits biofilm formation by Shewanella putrefaciens and disrupts its preformed biofilms on both abiotic and shrimp shell surfaces.

    Science.gov (United States)

    Deng, Qi; Pu, Yuehua; Sun, Lijun; Wang, Yaling; Liu, Yang; Wang, Rundong; Liao, Jianmeng; Xu, Defeng; Liu, Ying; Ye, Riying; Fang, Zhijia; Gooneratne, Ravi

    2017-12-01

    Shewanella putrefaciens biofilm formation is of great concern for the shrimp industry because it adheres easily to food and food-contact surfaces and is a source of persistent and unseen contamination that causes shrimp spoilage and economic losses to the shrimp industry. Different concentrations of an antimicrobial lipopeptide, the fermentation product of Bacillus subtilis, AMPNT-6, were tested for the ability to reduce adhesion and disrupt S. putrefaciens preformed biofilms on two different contact surfaces (shrimp shell, stainless steel sheet). AMPNT-6 displayed a marked dose- and time-dependent anti-adhesive effect>biofilm removal. 3MIC AMPNT-6 was able both to remove biofilm and prevent bacteria from forming biofilm in a 96-well polystyrene microplate used as the model surface. 2MIC AMPNT-6 prevented bacteria from adhering to the microplate surface to form biofilm for 3h and removed already existing biofilm within 24h. Secretion of extracellular polymeric substances incubated in LB broth for 24h by S. putrefaciens was minimal at 3× MIC AMPNT-6. Scanning electron microscopy showed that damage to S. putrefaciens bacteria by AMPNT-6 possibly contributed to the non-adherence to the surfaces. Disruption of the mature biofilm structure by AMPNT-6 contributed to biofilm removal. It is concluded that AMPNT-6 can be used effectively to prevent attachment and also detach S. putrefaciens biofilms from shrimp shells, stainless steel sheets and polystyrene surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of curcumin on Helicobacter pylori biofilm formation ...

    African Journals Online (AJOL)

    Three-dimensional structure of biofilm was imaged by scanning electron microscopy. The effect of curcumin on H. pylori adherence to HEp-2 cells was also investigated. Subinhibitory concentrations of curcumin inhibited the biofilm in dose dependent manner. However, H.pylori could restore ability to form biofilm during ...

  15. The streptococcal collagen-like protein-1 (Scl1 is a significant determinant for biofilm formation by group a Streptococcus

    Directory of Open Access Journals (Sweden)

    Oliver-Kozup Heaven A

    2011-12-01

    Full Text Available Abstract Background Group A Streptococcus (GAS is a human-specific pathogen responsible for a number of diseases characterized by a wide range of clinical manifestations. During host colonization GAS-cell aggregates or microcolonies are observed in tissues. GAS biofilm, which is an in vitro equivalent of tissue microcolony, has only recently been studied and little is known about the specific surface determinants that aid biofilm formation. In this study, we demonstrate that surface-associated streptococcal collagen-like protein-1 (Scl1 plays an important role in GAS biofilm formation. Results Biofilm formation by M1-, M3-, M28-, and M41-type GAS strains, representing an intraspecies breadth, were analyzed spectrophotometrically following crystal violet staining, and characterized using confocal and field emission scanning electron microscopy. The M41-type strain formed the most robust biofilm under static conditions, followed by M28- and M1-type strains, while the M3-type strains analyzed here did not form biofilm under the same experimental conditions. Differences in architecture and cell-surface morphology were observed in biofilms formed by the M1- and M41-wild-type strains, accompanied by varying amounts of deposited extracellular matrix and differences in cell-to-cell junctions within each biofilm. Importantly, all Scl1-negative mutants examined showed significantly decreased ability to form biofilm in vitro. Furthermore, the Scl1 protein expressed on the surface of a heterologous host, Lactococcus lactis, was sufficient to induce biofilm formation by this organism. Conclusions Overall, this work (i identifies variations in biofilm formation capacity among pathogenically different GAS strains, (ii identifies GAS surface properties that may aid in biofilm stability and, (iii establishes that the Scl1 surface protein is an important determinant of GAS biofilm, which is sufficient to enable biofilm formation in the heterologous host

  16. Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11.

    Science.gov (United States)

    Morici, Paola; Fais, Roberta; Rizzato, Cosmeri; Tavanti, Arianna; Lupetti, Antonella

    2016-01-01

    The aim of this study was to evaluate the in vitro activity of the synthetic peptide hLF1-11 against biofilm produced by clinical isolates of Candida albicans with different fluconazole susceptibility. The antibiofilm activity of the peptide hLF1-11 was assessed in terms of reduction of biofilm cellular density, metabolic activity and sessile cell viability. The extent of morphogenesis in hLF1-11 treated and untreated biofilms was also investigated microscopically. Transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production were analysed by qRT-PCR in hLF1-11 treated and untreated biofilms. Exogenous dibutyryl-cAMP (db-cAMP) was used to rescue morphogenesis in cells exposed to the peptide. The results revealed that hLF1-11 exhibited an inhibitory effect on biofilm formation by all C. albicans isolates tested in a dose-dependent manner, regardless of their fluconazole susceptibility. Visual inspection of treated or untreated biofilm cells with an inverted microscope revealed a significant reduction in hyphal formation by hLF1-11 treated cells, as early as 3 hours of incubation. Moreover, hLF1-11 showed a reduced activity on preadherent cells. hLF1-11 induced the down-regulation of biofilm and hyphal-associated genes, which were predominantly regulated via the Ras1-cAMP-Efg1 pathway. Indeed, exogenous db-cAMP restored morphogenesis in hLF1-11 treated cells. The hLF1-11 peptide significantly inhibited biofilm formation by C. albicans mainly at early stages, interfering with biofilm cellular density and metabolic activity, and affected morphogenesis through the Ras1-cAMP-Efg1 pathway. Our findings provide the first evidence that hLF1-11 could represent a potential candidate for the prevention of biofilm formation by C. albicans.

  17. Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11

    Science.gov (United States)

    Morici, Paola; Fais, Roberta; Rizzato, Cosmeri

    2016-01-01

    The aim of this study was to evaluate the in vitro activity of the synthetic peptide hLF1-11 against biofilm produced by clinical isolates of Candida albicans with different fluconazole susceptibility. The antibiofilm activity of the peptide hLF1-11 was assessed in terms of reduction of biofilm cellular density, metabolic activity and sessile cell viability. The extent of morphogenesis in hLF1-11 treated and untreated biofilms was also investigated microscopically. Transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production were analysed by qRT-PCR in hLF1-11 treated and untreated biofilms. Exogenous dibutyryl-cAMP (db-cAMP) was used to rescue morphogenesis in cells exposed to the peptide. The results revealed that hLF1-11 exhibited an inhibitory effect on biofilm formation by all C. albicans isolates tested in a dose-dependent manner, regardless of their fluconazole susceptibility. Visual inspection of treated or untreated biofilm cells with an inverted microscope revealed a significant reduction in hyphal formation by hLF1-11 treated cells, as early as 3 hours of incubation. Moreover, hLF1-11 showed a reduced activity on preadherent cells. hLF1-11 induced the down-regulation of biofilm and hyphal-associated genes, which were predominantly regulated via the Ras1-cAMP-Efg1 pathway. Indeed, exogenous db-cAMP restored morphogenesis in hLF1-11 treated cells. The hLF1-11 peptide significantly inhibited biofilm formation by C. albicans mainly at early stages, interfering with biofilm cellular density and metabolic activity, and affected morphogenesis through the Ras1-cAMP-Efg1 pathway. Our findings provide the first evidence that hLF1-11 could represent a potential candidate for the prevention of biofilm formation by C. albicans. PMID:27902776

  18. Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11.

    Directory of Open Access Journals (Sweden)

    Paola Morici

    Full Text Available The aim of this study was to evaluate the in vitro activity of the synthetic peptide hLF1-11 against biofilm produced by clinical isolates of Candida albicans with different fluconazole susceptibility. The antibiofilm activity of the peptide hLF1-11 was assessed in terms of reduction of biofilm cellular density, metabolic activity and sessile cell viability. The extent of morphogenesis in hLF1-11 treated and untreated biofilms was also investigated microscopically. Transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production were analysed by qRT-PCR in hLF1-11 treated and untreated biofilms. Exogenous dibutyryl-cAMP (db-cAMP was used to rescue morphogenesis in cells exposed to the peptide. The results revealed that hLF1-11 exhibited an inhibitory effect on biofilm formation by all C. albicans isolates tested in a dose-dependent manner, regardless of their fluconazole susceptibility. Visual inspection of treated or untreated biofilm cells with an inverted microscope revealed a significant reduction in hyphal formation by hLF1-11 treated cells, as early as 3 hours of incubation. Moreover, hLF1-11 showed a reduced activity on preadherent cells. hLF1-11 induced the down-regulation of biofilm and hyphal-associated genes, which were predominantly regulated via the Ras1-cAMP-Efg1 pathway. Indeed, exogenous db-cAMP restored morphogenesis in hLF1-11 treated cells. The hLF1-11 peptide significantly inhibited biofilm formation by C. albicans mainly at early stages, interfering with biofilm cellular density and metabolic activity, and affected morphogenesis through the Ras1-cAMP-Efg1 pathway. Our findings provide the first evidence that hLF1-11 could represent a potential candidate for the prevention of biofilm formation by C. albicans.

  19. Combating biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong

    2012-01-01

    Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life...... is believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review......, strategies to control biofilms are discussed, including those of inhibition of microbial attachment, interference of biofilm structure development and differentiation, killing of biofilm cells and induction of biofilm dispersion....

  20. Effect of Silver or Copper Nanoparticles-Dispersed Silane Coatings on Biofilm Formation in Cooling Water Systems

    Science.gov (United States)

    Ogawa, Akiko; Kanematsu, Hideyuki; Sano, Katsuhiko; Sakai, Yoshiyuki; Ishida, Kunimitsu; Beech, Iwona B.; Suzuki, Osamu; Tanaka, Toshihiro

    2016-01-01

    Biofouling often occurs in cooling water systems, resulting in the reduction of heat exchange efficiency and corrosion of the cooling pipes, which raises the running costs. Therefore, controlling biofouling is very important. To regulate biofouling, we focus on the formation of biofilm, which is the early step of biofouling. In this study, we investigated whether silver or copper nanoparticles-dispersed silane coatings inhibited biofilm formation in cooling systems. We developed a closed laboratory biofilm reactor as a model of a cooling pipe and used seawater as a model for cooling water. Silver or copper nanoparticles-dispersed silane coating (Ag coating and Cu coating) coupons were soaked in seawater, and the seawater was circulated in the laboratory biofilm reactor for several days to create biofilms. Three-dimensional images of the surface showed that sea-island-like structures were formed on silane coatings and low concentration Cu coating, whereas nothing was formed on high concentration Cu coatings and low concentration Ag coating. The sea-island-like structures were analyzed by Raman spectroscopy to estimate the components of the biofilm. We found that both the Cu coating and Ag coating were effective methods to inhibit biofilm formation in cooling pipes. PMID:28773758

  1. [Effect of luxS overexpression on biofilm formation by Streptococcus mutans].

    Science.gov (United States)

    He, Zhiyan; Wang, Yuxia; Huang, Zhengwei

    2015-09-01

    To evaluate the effect of quorum sensing luxS gene on biofilm formation through construction of a luxS overexpression strain by Streptococcus mutans (Sm). In order to construct pIB-luxS plasmid, the luxS gene fragment amplified by PCR was inserted into the shuttle plasmid pIB169 by corresponding double digests. The pIB-luxS plasmid was linearized electro-transformed into Sm cell and the overexpression strain was selected on chloramphenicol plate and testified by electrophoresis and western blot. The growth rate of both Sm wild type strain and its luxS overexpression strain were observed. Methyl thiazolyl tetrazolium (MTT) assay method was used to compare the biofilm formation quantification by both strains at different time points and containing different sucrose. The structures of the biofilms were observed by using confocal laser scanning microscopy, and biofilm-related gene expressions were investigated by real-time PCR. All experiments were performed in triplicate. The luxS overexpression strain was successfully constructed and confirmed by electrophoresis and Western blotting. The planktonic growth mode of the wild-type and luxS overexpression strain showed no difference, but biofilm formed by Sm overexpression strain was 0.400 ± 0.009 and 0.609 ± 0.041 at 14 and 24 h, higher than the wild type strain biofilm at the same time point (0.352 ± 0.028 and 0.533 ± 0.014, respectively, P overexpression strain raised to 1.041 ± 0.038, higher than that by the wild type strain (0.831 ± 0.020, P overexpression strain aggregated into distinct clusters on structure, genes expression including gtfB, ftf, gbpB, relA, brpA, smu630, comDE, vicR were increased (6.10 ± 0.12, 3.34 ± 0.07, 8.75 ± 0.13, 2.96 ± 0.04, 5.20 ± 0.19, 2.20 ± 0.06, 2.32 ± 0.07 and 10.67 ± 0.57 fold) compared to the wild-type strain (P < 0.05). Quorum sensing luxS gene can promote the biofilm formation of Sm.

  2. Histidine Metabolism and IGPD Play a Key Role in Cefquinome Inhibiting Biofilm Formation of Staphylococcus xylosus

    Directory of Open Access Journals (Sweden)

    Yong-hui Zhou

    2018-04-01

    Full Text Available Staphylococcus xylosus (S. xylosus is an AT-rich and coagulase-negative Staphylococcus (CNS. It is normally regarded as non-pathogenic, however, recent studies have demonstrated that it is related to human opportunistic infections and bovine mastitis. In addition, S. xylosus strains have the ability to form biofilm. Biofilms are also involved in chronic infections and antibiotic resistance, there are only a few reports about cefquinome inhibiting S. xylosus biofilm formation and the protein targets of cefquinome. In our study, we found that sub-MICs of cefquinome were sufficient to inhibit biofilm formation. To investigate the potential protein targets of cefquinome, we used iTRAQ for the analyses of cells at two different conditions: 1/2-MIC (0.125 μg/mL cefquinome treatment and no treatment. Using iTRAQ technique and KEGG database analysis, we found that proteins differently expression in histidine metabolism pathway may play a role in the process by which 1/2-MIC (0.125 μg/mL cefquinome inhibits S. xylosus biofilm formation. Interestingly, we found a sharply down-regulated enzyme [A0A068E9J3 imidazoleglycerol-phosphate dehydratase (IGPD] involved in histidine metabolism pathway in cefquinome-treated cells. We demonstrated the important role of IGPD in sub-MICs cefquinome inhibiting biofilm formation of S. xylosus by gene (hisB knockout, IGPD enzyme activity and histidine content assays. Thus, our data sheds light on important role of histidine metabolism in S. xylosus biofilm formation; especially, IGPD involved in histidine metabolism might play a crucial role in sub-MICs cefquinome inhibition of biofilm formation of S. xylosus, and we propose IGPD as an attractive protein target of cefquinome.

  3. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility

    DEFF Research Database (Denmark)

    Huber, B.; Riedel, K.; Hentzer, Morten

    2001-01-01

    Burkholderia cepacia and Pseudomonas aeruginosa often co-exist as mixed biofilms in the lungs of patients suffering from cystic fibrosis (CF). Here, the isolation of random mini-Tn5 insertion mutants of B. cepacia H111 defective in biofilm formation on an abiotic surface is reported. It is demons......Burkholderia cepacia and Pseudomonas aeruginosa often co-exist as mixed biofilms in the lungs of patients suffering from cystic fibrosis (CF). Here, the isolation of random mini-Tn5 insertion mutants of B. cepacia H111 defective in biofilm formation on an abiotic surface is reported...

  4. Biofilm inhibitors that target amyloid proteins.

    Science.gov (United States)

    Romero, Diego; Sanabria-Valentín, Edgardo; Vlamakis, Hera; Kolter, Roberto

    2013-01-24

    Bacteria establish stable communities, known as biofilms, that are resistant to antimicrobials. Biofilm robustness is due to the presence of an extracellular matrix, which for several species-among them Bacillus subtilis-includes amyloid-like protein fibers. In this work, we show that B. subtilis biofilms can be a simple and reliable tool for screening of molecules with antiamyloid activity. We identified two molecules, AA-861 and parthenolide, which efficiently inhibited biofilms by preventing the formation of amyloid-like fibers. Parthenolide also disrupted pre-established biofilms. These molecules also impeded the formation of biofilms of other bacterial species that secrete amyloid proteins, such as Bacillus cereus and Escherichia coli. Furthermore, the identified molecules decreased the conversion of the yeast protein New1 to the prion state in a heterologous host, indicating the broad range of activity of the molecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Development of molecularly imprinted polymers to block quorum sensing and inhibit bacterial biofilm formation.

    Science.gov (United States)

    Ma, Luyao; Feng, Shaolong; de la Fuente-Nunez, Cesar; Hancock, Robert E W; Lu, Xiaonan

    2018-05-16

    Bacterial biofilms are responsible for most clinical infections and show increased antimicrobial resistance. In this study, molecularly imprinted polymers (MIPs) were developed to specifically capture prototypical quorum sensing autoinducers [i.e., N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12AHL)], interrupt quorum sensing, and subsequently inhibit biofilm formation of Pseudomonas aeruginosa, an important human nosocomial pathogen. The synthesis of MIPs was optimized by considering the amount and type of the functional monomers itaconic acid (IA) and 2-hydroxyethyl methacrylate (HEMA). IA-based MIPs showed high adsorption affinity towards 3-oxo-C12AHL with an imprinting factor of 1.68. Compared to IA-based MIPs, the adsorption capacity of HEMA-based MIPs was improved 5-fold. HEMA-based MIPs significantly reduced biofilm formation (by ~65%), while biofilm suppression by IA-based MIPs was neutralized due to increased bacterial attachment. The developed MIPs represent promising alternative biofilm intervention agents that can be applied to surfaces relevant to clinical settings and food processing equipment.

  6. Extracellular DNA Contributes to Dental Biofilm Stability

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke Louise; Dige, Irene

    2017-01-01

    dental biofilms. This study aimed to determine whether eDNA was part of the matrix in biofilms grown in situ in the absence of sucrose and whether treatment with DNase dispersed biofilms grown for 2.5, 5, 7.5, 16.5, or 24 h. Three hundred biofilms from 10 study participants were collected and treated...... the amount of biofilm in very early stages of growth (up to 7.5 h), but the treatment effect decreased with increasing biofilm age. This study proves the involvement of eDNA in dental biofilm formation and its importance for biofilm stability in the earliest stages. Further research is required to uncover...

  7. Characteristics of microbial community involved in early biofilms formation under the influence of wastewater treatment plant effluent.

    Science.gov (United States)

    Peng, Yuke; Li, Jie; Lu, Junling; Xiao, Lin; Yang, Liuyan

    2018-04-01

    Effluents from wastewater treatment plants (WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been well characterized, little is known about the characteristics and interaction of bacteria, archaea and eukaryotes in the early colonization, especially under the influence of WWTP effluent. The aim of this study was to characterize the important bacterial, archaeal and eukaryotic species in the early stage of biofilm formation downstream of the WWTP outlet. Water and biofilm samples were collected 24 and 48hr after the deposition of bio-cords in the stream. Illumina Miseq sequencing of the 16S and 18S rDNA showed that, among the three domains, the bacterial biofilm community had the largest alpha and beta diversity. The early bacterial colonizers appeared to be "biofilm-specific", with only a few dominant operational taxonomic units (OTUs) shared between the biofilm and the ambient water environment. Alpha-proteobacteria and Ciliophora tended to dominate the bacterial and eukaryotic communities, respectively, of the early biofilm already at 24hr, whereas archaea played only a minor role during the early stage of colonization. The network analysis showed that the three domains of microbial community connected highly during the early colonization and it might be a characteristic of the microbial communities in the biofilm formation process where co-occurrence relationships could drive coexistence and diversity maintenance within the microbial communities. Copyright © 2017. Published by Elsevier B.V.

  8. UV-Induced prevention of biofilm formation inside medical tubes and catheters

    DEFF Research Database (Denmark)

    Pedersen, Jens Kristian Mølgaard; Nielsen, Kristian; Bang, Ole

    2014-01-01

    Biofilm formation inside medical tubes and catheters may often cause unwanted infections, illness andimpaired wound healing during medical treatment, resulting in extended hospitalization and - in worst case– life threatening conditions of the patients. In fact, it is estimated, that the infection...... of multi resistant bacteriacultures. Prevention of biofilm formation inside the tube or catheter, without risk of developing multiresistance, may be achieved by creating a UV-exposed environment in the interior. This may be realized bytransforming the tube itself into an optical waveguide supporting UV...... risk connected withthe use of medical tubes and catheters is the direct cause of more than 60% of all infections acquired inEuropean hospitals. Once formed, the biofilm is generally very tough to suppress by either the body’simmunity system or by use of antibiotics, which may even favor the population...

  9. Biofilm and capsule formation of the diatom Achnanthidium minutissimum are affected by a bacterium.

    Science.gov (United States)

    Windler, Miriam; Leinweber, Katrin; Bartulos, Carolina Rio; Philipp, Bodo; Kroth, Peter G

    2015-04-01

    Photoautotrophic biofilms play an important role in various aquatic habitats and are composed of prokaryotic and/or eukaryotic organisms embedded in extracellular polymeric substances (EPS). We have isolated diatoms as well as bacteria from freshwater biofilms to study organismal interactions between representative isolates. We found that bacteria have a strong impact on the biofilm formation of the pennate diatom Achnanthidium minutissimum. This alga produces extracellular capsules of insoluble EPS, mostly carbohydrates (CHO), only in the presence of bacteria (xenic culture). The EPS themselves also have a strong impact on the aggregation and attachment of the algae. In the absence of bacteria (axenic culture), A. minutissimum did not form capsules and the cells grew completely suspended. Fractionation and quantification of CHO revealed that the diatom in axenic culture produces large amounts of soluble CHO, whereas in the xenic culture mainly insoluble CHO were detected. For investigation of biofilm formation by A. minutissimum, a bioassay was established using a diatom satellite Bacteroidetes bacterium that had been shown to induce capsule formation of A. minutissimum. Interestingly, capsule and biofilm induction can be achieved by addition of bacterial spent medium, indicating that soluble hydrophobic molecules produced by the bacterium may mediate the diatom/bacteria interaction. With the designed bioassay, a reliable tool is now available to study the chemical interactions between diatoms and bacteria with consequences for biofilm formation. © 2015 Phycological Society of America.

  10. Passive control of quorum sensing: prevention of Pseudomonas aeruginosa biofilm formation by imprinted polymers.

    Science.gov (United States)

    Piletska, Elena V; Stavroulakis, Georgios; Larcombe, Lee D; Whitcombe, Michael J; Sharma, Anant; Primrose, Sandy; Robinson, Gary K; Piletsky, Sergey A

    2011-04-11

    Here we present the first molecular imprinted polymer (MIP) that is able to attenuate the biofilm formation of the opportunistic human pathogen Pseudomonas aeruginosa through specific sequestration of its signal molecule N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C(12)-AHL). The MIP was rationally designed using computational modeling, and its capacity and specificity and that of a corresponding blank polymer toward signal molecule of P. aeruginosa (3-oxo-C(12)-AHL) and its analogue were tested. The biofilm formation in the presence of polymers and without polymers was studied using scanning confocal laser microscopy. Staining with crystal violet dye was used for the quantification of the biofilm formation. A significant reduction of the biofilm growth was observed in the presence of MIP (>80%), which was superior to that of the resin prepared without template, which showed a reduction of 40% in comparison with biofilm, which was grown without polymer addition. It was shown that 3-oxo-C(12)-AHL-specific MIP prevented the development of quorum-sensing-controlled phenotypes (in this case, biofilm formation) from being up-regulated. The developed MIP could be considered as a new tool for the elimination of life-threatening infections in a multitude of practical applications; it could, for example, be grafted on the surface of medical devices such as catheters and lenses, be a component of paints, or be used as a wound adsorbent.

  11. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci.

    Science.gov (United States)

    Stepanović, Srdjan; Vuković, Dragana; Hola, Veronika; Di Bonaventura, Giovanni; Djukić, Slobodanka; Cirković, Ivana; Ruzicka, Filip

    2007-08-01

    The details of all steps involved in the quantification of biofilm formation in microtiter plates are described. The presented protocol incorporates information on assessment of biofilm production by staphylococci, gained both by direct experience as well as by analysis of methods for assaying biofilm production. The obtained results should simplify quantification of biofilm formation in microtiter plates, and make it more reliable and comparable among different laboratories.

  12. Corneal Biofilms: From Planktonic to Microcolony Formation in an Experimental Keratitis Infection with Pseudomonas Aeruginosa.

    Science.gov (United States)

    Saraswathi, Padmanabhan; Beuerman, Roger W

    2015-10-01

    Microbial biofilms commonly comprise part of the infectious scenario, complicating the therapeutic approach. The purpose of this study was to determine in a mouse model of corneal infection if mature biofilms formed and to visualize the stages of biofilm formation. A bacterial keratitis model was established using Pseudomonas aeruginosa ATCC 9027 (1 × 10(8) CFU/ml) to infect the cornea of C57BL/6 black mouse. Eyes were examined post-infection (PI) on days 1, 2, 3, 5, and 7, and imaged by slit lamp microscopy, and light, confocal, and electron microscopy to identify the stages of biofilm formation and the time of appearance. On PI day 1, Gram staining showed rod-shaped bacteria adherent on the corneal surface. On PI days 2 and 3, bacteria were seen within webs of extracellular polymeric substance (EPS) and glycocalyx secretion, imaged by confocal microscopy. Scanning electron microscopy demonstrated microcolonies of active infectious cells bound with thick fibrous material. Transmission electron microscopy substantiated the formation of classical biofilm architecture with P. aeruginosa densely packed within the extracellular polymeric substances on PI days 5 and 7. Direct visual evidence showed that biofilms routinely developed on the biotic surface of the mouse cornea. The mouse model can be used to develop new approaches to deal therapeutically with biofilms in corneal infections. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans.

    Science.gov (United States)

    Pammi, Mohan; Liang, Rong; Hicks, John; Mistretta, Toni-Ann; Versalovic, James

    2013-11-14

    Polymicrobial infections are responsible for significant mortality and morbidity in adults and children. Staphylococcus epidermidis and Candida albicans are the most frequent combination of organisms isolated from polymicrobial infections. Vascular indwelling catheters are sites for mixed species biofilm formation and pose a significant risk for polymicrobial infections. We hypothesized that enhancement of biofilms in a mixed species environment increases patient mortality and morbidity. Mixed species biofilms of S. epidermidis and C. albicans were evaluated in vitro and in a subcutaneous catheter infection model in vivo. Mixed species biofilms were enhanced compared to single species biofilms of either S. epidermidis or C. albicans. A mixed species environment increased catheter infection and increased dissemination of S. epidermidis in mice. Microarrays were used to explore differential gene expression of S. epidermidis in the mixed species biofilms. In mixed species biofilms, compared to single species S. epidermidis biofilms, 2.7% of S. epidermidis genes were upregulated and 6% were down regulated. Staphylococcal autolysis repressors lrgA and lrgB were down regulated 36-fold and 27-fold respectively. The role of biofilm extracellular DNA was investigated by quantitation and by evaluating the effects of DNAse in a concentration and time dependent manner. S. epidermidis specific eDNA was increased in mixed species biofilms and further confirmed by degradation with DNAse. Mixed-species biofilms are enhanced and associated with increased S. epidermidis-specific eDNA in vitro and greater systemic dissemination of S. epidermidis in vivo. Down regulation of the lrg operon, a repressor of autolysis, associated with increased eDNA suggests a possible role for bacterial autolysis in mixed species biofilms. Enhancement and systemic dissemination of S. epidermidis may explain adverse outcomes after clinical polymicrobial infections of S. epidermidis and C. albicans.

  14. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans

    Science.gov (United States)

    2013-01-01

    Background Polymicrobial infections are responsible for significant mortality and morbidity in adults and children. Staphylococcus epidermidis and Candida albicans are the most frequent combination of organisms isolated from polymicrobial infections. Vascular indwelling catheters are sites for mixed species biofilm formation and pose a significant risk for polymicrobial infections. We hypothesized that enhancement of biofilms in a mixed species environment increases patient mortality and morbidity. Results Mixed species biofilms of S. epidermidis and C. albicans were evaluated in vitro and in a subcutaneous catheter infection model in vivo. Mixed species biofilms were enhanced compared to single species biofilms of either S. epidermidis or C. albicans. A mixed species environment increased catheter infection and increased dissemination of S. epidermidis in mice. Microarrays were used to explore differential gene expression of S. epidermidis in the mixed species biofilms. In mixed species biofilms, compared to single species S. epidermidis biofilms, 2.7% of S. epidermidis genes were upregulated and 6% were down regulated. Staphylococcal autolysis repressors lrgA and lrgB were down regulated 36-fold and 27-fold respectively. The role of biofilm extracellular DNA was investigated by quantitation and by evaluating the effects of DNAse in a concentration and time dependent manner. S. epidermidis specific eDNA was increased in mixed species biofilms and further confirmed by degradation with DNAse. Conclusions Mixed-species biofilms are enhanced and associated with increased S. epidermidis-specific eDNA in vitro and greater systemic dissemination of S. epidermidis in vivo. Down regulation of the lrg operon, a repressor of autolysis, associated with increased eDNA suggests a possible role for bacterial autolysis in mixed species biofilms. Enhancement and systemic dissemination of S. epidermidis may explain adverse outcomes after clinical polymicrobial infections of S

  15. Effect of biofilm formation, and biocorrosion on denture base fractures.

    Science.gov (United States)

    Sahin, Cem; Ergin, Alper; Ayyildiz, Simel; Cosgun, Erdal; Uzun, Gulay

    2013-05-01

    The aim of this study was to investigate the destructive effects of biofilm formation and/or biocorrosive activity of 6 different oral microorganisms. Three different heat polymerized acrylic resins (Ivocap Plus, Lucitone 550, QC 20) were used to prepare three different types of samples. Type "A" samples with "V" type notch was used to measure the fracture strength, "B" type to evaluate the surfaces with scanning electron microscopy and "C" type for quantitative biofilm assay. Development and calculation of biofilm covered surfaces on denture base materials were accomplished by SEM and quantitative biofilm assay. According to normality assumptions ANOVA or Kruskal-Wallis was selected for statistical analysis (α=0.05). Significant differences were obtained among the adhesion potential of 6 different microorganisms and there were significant differences among their adhesion onto 3 different denture base materials. Compared to the control groups after contamination with the microorganisms, the three point bending test values of denture base materials decreased significantly (P.05). All the tested microorganisms had destructive effect over the structure and composition of the denture base materials.

  16. Biofilm formation as a method of survival of Escherichia coli and Pantoea spp in the marine environment

    Science.gov (United States)

    Buzoleva, L. S.; Golozubova, Y. S.; Eskova, A. I.; Kim, A. V.; Bogatyrenko, E. A.

    2018-01-01

    The article shows the formation of biofilms of bacteria Escherichia and Pantoea, which were isolated from sea water, both in monoculture and in associations with marine heterotrophs. It studied the influence of the nutrient medium and temperature on the biofilm-forming properties of marine strains. The highest biofilm formation properties were found in monoculture in family enterobacteria compared to saprophytic marine bacteria, regardless of the medium and the culture temperature. In association with saprophytes, Pantoea spp. possess more pronounced biofilm-forming properties at 37 ° C compared to the control than at 22 ° C and 5 ° C irrespective of the culture medium. Escherichia coli, in association with saprophytes, have less pronounced biofilm formation properties than monoculture, regardless of the temperature and culture medium.

  17. Contribution of Cell Elongation to the Biofilm Formation of Pseudomonas aeruginosa during Anaerobic Respiration

    Science.gov (United States)

    Park, Yongjin; Yoon, Sang Sun

    2011-01-01

    Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO2 −) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process. PMID:21267455

  18. Inhibition of Staphylococcus epidermidis Biofilm Formation by Traditional Thai Herbal Recipes Used for Wound Treatment

    OpenAIRE

    Chusri, S.; Sompetch, K.; Mukdee, S.; Jansrisewangwong, S.; Srichai, T.; Maneenoon, K.; Limsuwan, S.; Voravuthikunchai, S. P.

    2012-01-01

    Development of biofilm is a key mechanism involved in Staphylococcus epidermidis virulence during device-associated infections. We aimed to investigate antibiofilm formation and mature biofilm eradication ability of ethanol and water extracts of Thai traditional herbal recipes including THR-SK004, THR-SK010, and THR-SK011 against S. epidermidis. A biofilm forming reference strain, S. epidermidis ATCC 35984 was employed as a model for searching anti-biofilm agents by MTT reduction assay. The r...

  19. Orthodontic treatment with fixed appliances and biofilm formation-a potential public health threat?

    NARCIS (Netherlands)

    Ren, Yijin; Jongsma, Marije A.; Mei, Li; van der Mei, Henny C.; Busscher, Henk J.

    OBJECTIVES: Orthodontic treatment is highly popular for restoring functional and facial esthetics in juveniles and adults. As a downside, prevalence of biofilm-related complications is high. Objectives of this review are to (1) identify special features of biofilm formation in orthodontic patients

  20. Inhibition of Serratia marcescens Smj-11 biofilm formation by Alcaligenes faecalis STN17 crude extract

    International Nuclear Information System (INIS)

    Lutfi, Zainal; Ahmad, Asmat; Usup, Gires

    2014-01-01

    Serratia marcescens biofilms are formed when they are bound to surfaces in aqueous environments. S. marcescens utilizes N-acylhomoserine lactone (AHL) as its quorum sensing signal molecule. The accumulation of AHL indicates the bacteria to produce matrices to form biofilms. Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin), which causes red pigmentation in the colonies, are also produced when the AHL reaches a certain threshold. The Alcaligenes faecalis STN17 crude extract is believed to inhibit quorum sensing in the S. marcescens Smj-11 and, thus, impedes its biofilm formation ability. A. faecalis STN17 was grown in marine broth, and ethyl acetate extraction was carried out. The crude compound of A. faecalis STN17 was diluted at high concentration (0.2-6.4 mg/mL) and was taken to confirm anti-biofilm activity through the crystal violet method in 96-wells plate. Then, the crude extract underwent purification using simple solvents partitioning test to discern the respective compounds that had the anti-biofilm activity under the crystal violet method. The crystal violet test showed that the crude did have anti-biofilm activity on S. marcescens Smj-11, but did not kill the cells. This finding signifies that the suppression of biofilm formation in S. marcescens by A. faecalis STN17 has a strong correlation. The partitioning test showed that A. faecalis STN17 crude extract has several compounds and only the compound(s) in chloroform showed activities. In conclusion, the crude extract of A. faecalis STN17 has the ability to inhibit S. marcescens Smj-11 biofilm formation

  1. Inhibition of Serratia marcescens Smj-11 biofilm formation by Alcaligenes faecalis STN17 crude extract

    Energy Technology Data Exchange (ETDEWEB)

    Lutfi, Zainal; Ahmad, Asmat [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Usup, Gires [School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    Serratia marcescens biofilms are formed when they are bound to surfaces in aqueous environments. S. marcescens utilizes N-acylhomoserine lactone (AHL) as its quorum sensing signal molecule. The accumulation of AHL indicates the bacteria to produce matrices to form biofilms. Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin), which causes red pigmentation in the colonies, are also produced when the AHL reaches a certain threshold. The Alcaligenes faecalis STN17 crude extract is believed to inhibit quorum sensing in the S. marcescens Smj-11 and, thus, impedes its biofilm formation ability. A. faecalis STN17 was grown in marine broth, and ethyl acetate extraction was carried out. The crude compound of A. faecalis STN17 was diluted at high concentration (0.2-6.4 mg/mL) and was taken to confirm anti-biofilm activity through the crystal violet method in 96-wells plate. Then, the crude extract underwent purification using simple solvents partitioning test to discern the respective compounds that had the anti-biofilm activity under the crystal violet method. The crystal violet test showed that the crude did have anti-biofilm activity on S. marcescens Smj-11, but did not kill the cells. This finding signifies that the suppression of biofilm formation in S. marcescens by A. faecalis STN17 has a strong correlation. The partitioning test showed that A. faecalis STN17 crude extract has several compounds and only the compound(s) in chloroform showed activities. In conclusion, the crude extract of A. faecalis STN17 has the ability to inhibit S. marcescens Smj-11 biofilm formation.

  2. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses

    Directory of Open Access Journals (Sweden)

    Kohlmann Thomas

    2010-11-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is commonly associated with contact lens (CL -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS, EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ.

  3. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors.

    Science.gov (United States)

    Subramenium, Ganapathy Ashwinkumar; Vijayakumar, Karuppiah; Pandian, Shunmugiah Karutha

    2015-08-01

    The present study explores the efficacy of limonene, a cyclic terpene found in the rind of citrus fruits, for antibiofilm potential against species of the genus Streptococcus, which have been deeply studied worldwide owing to their multiple pathogenic efficacy. Limonene showed a concentration-dependent reduction in the biofilm formation of Streptococcus pyogenes (SF370), with minimal biofilm inhibitory concentration (MBIC) of 400 μg ml - 1. Limonene was found to possess about 75-95 % antibiofilm activity against all the pathogens tested, viz. Streptococcus pyogenes (SF370 and 5 clinical isolates), Streptococcus mutans (UA159) and Streptococcus mitis (ATCC 6249) at 400 μg ml - 1 concentration. Microscopic analysis of biofilm architecture revealed a quantitative breach in biofilm formation. Results of a surface-coating assay suggested that the possible mode of action of limonene could be by inhibiting bacterial adhesion to surfaces, thereby preventing the biofilm formation cascade. Susceptibility of limonene-treated Streptococcus pyogenes to healthy human blood goes in unison with gene expression studies in which the mga gene was found to be downregulated. Anti-cariogenic efficacy of limonene against Streptococcus mutans was confirmed, with inhibition of acid production and downregulation of the vicR gene. Downregulation of the covR, mga and vicR genes, which play a critical role in regulating surface-associated proteins in Streptococcus pyogenes and Streptococcus mutans, respectively, is yet further evidence to show that limonene targets surface-associated proteins. The results of physiological assays and gene expression studies clearly show that the surface-associated antagonistic mechanism of limonene also reduces surface-mediated virulence factors.

  4. Biofilms

    OpenAIRE

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-01-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and ...

  5. Comparative analysis of biofilm formation by Bacillus cereus reference strains and undomesticated food isolates and the effect of free iron.

    Science.gov (United States)

    Hayrapetyan, Hasmik; Muller, Lisette; Tempelaars, Marcel; Abee, Tjakko; Nierop Groot, Masja

    2015-05-04

    Biofilm formation of Bacillus cereus reference strains ATCC 14579 and ATCC 10987 and 21 undomesticated food isolates was studied on polystyrene and stainless steel as contact surfaces. For all strains, the biofilm forming capacity was significantly enhanced when in contact with stainless steel (SS) as a surface as compared to polystyrene (PS). For a selection of strains, the total CFU and spore counts in biofilms were determined and showed a good correlation between CFU counts and total biomass of these biofilms. Sporulation was favoured in the biofilm over the planktonic state. To substantiate whether iron availability could affect B. cereus biofilm formation, the free iron availability was varied in BHI by either the addition of FeCl3 or by depletion of iron with the scavenger 2,2-Bipyridine. Addition of iron resulted in increased air-liquid interface biofilm on polystyrene but not on SS for strain ATCC 10987, while the presence of Bipyridine reduced biofilm formation for both materials. Biofilm formation was restored when excess FeCl3 was added in combination with the scavenger. Further validation of the iron effect for all 23 strains in microtiter plate showed that fourteen strains (including ATCC10987) formed a biofilm on PS. For eight of these strains biofilm formation was enhanced in the presence of added iron and for eleven strains it was reduced when free iron was scavenged. Our results show that stainless steel as a contact material provides more favourable conditions for B. cereus biofilm formation and maturation compared to polystyrene. This effect could possibly be linked to iron availability as we show that free iron availability affects B. cereus biofilm formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effect of antibacterial dental adhesive on multispecies biofilms formation.

    Science.gov (United States)

    Zhang, K; Wang, S; Zhou, X; Xu, H H K; Weir, M D; Ge, Y; Li, M; Wang, S; Li, Y; Xu, X; Zheng, L; Cheng, L

    2015-04-01

    Antibacterial adhesives have favorable prospects to inhibit biofilms and secondary caries. The objectives of this study were to investigate the antibacterial effect of dental adhesives containing dimethylaminododecyl methacrylate (DMADDM) on different bacteria in controlled multispecies biofilms and its regulating effect on development of biofilm for the first time. Antibacterial material was synthesized, and Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis were chosen to form multispecies biofilms. Lactic acid assay and pH measurement were conducted to study the acid production of controlled multispecies biofilms. Anthrone method and exopolysaccharide (EPS):bacteria volume ratio measured by confocal laser scanning microscopy were performed to determine the EPS production of biofilms. The colony-forming unit counts, scanning electron microscope imaging, and dead:live volume ratio decided by confocal laser scanning microscopy were used to study the biomass change of controlled multispecies biofilms. The TaqMan real-time polymerase chain reaction and fluorescent in situ hybridization imaging were used to study the proportion change in multispecies biofilms of different groups. The results showed that DMADDM-containing adhesive groups slowed the pH drop and decreased the lactic acid production noticeably, especially lactic acid production in the 5% DMADDM group, which decreased 10- to 30-fold compared with control group (P biofilms compared with control group (P biofilm had a more healthy development tendency after the regulation of DMADDM. In conclusion, the adhesives containing DMADDM had remarkable antimicrobial properties to serve as "bioactive" adhesive materials and revealed its potential value for antibiofilm and anticaries clinical applications. © International & American Associations for Dental Research 2015.

  7. Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates.

    Science.gov (United States)

    Mori, Miho; Gomi, Mitsuhiro; Matsumune, Norihiko; Niizeki, Kazuma; Sakagami, Yoshikazu

    2013-01-01

    To evaluate the sanitary conditions of toilets, the bacterial counts of the toilet bowl biofilms in 5 Kansai area and 11 Kansai and Kanto area homes in Japan were measured in winter and summer seasons, respectively. Isolates (128 strains) were identified by analyzing 16S ribosomal RNA sequences. The number of colonies and bacterial species from biofilms sampled in winter tended to be higher and lower, respectively, than those in summer. Moreover, the composition of bacterial communities in summer and winter samples differed considerably. In summer samples, biofilms in Kansai and Kanto areas were dominated by Blastomonas sp. and Mycobacterium sp., respectively. Methylobacterium sp. was detected in all toilet bowl biofilms except for one sample. Methylobacterium sp. constituted the major presence in biofilms along with Brevundimonas sp., Sphingomonas sp., and/or Pseudomonas sp. The composition ratio of the sum of their genera was 88.0 from 42.9% of the total bacterial flora. The biofilm formation abilities of 128 isolates were investigated, and results suggested that Methylobacterium sp. and Sphingomonas sp. were involved in biofilm formation in toilet bowls. The biofilm formation of a mixed bacteria system that included bacteria with the highest biofilm-forming ability in a winter sample was greater than mixture without such bacteria. This result suggests that isolates possessing a high biofilm-forming activity are involved in the biofilm formation in the actual toilet bowl. A bactericidal test against 25 strains indicated that the bactericidal activities of didecyldimethylammonium chloride (DDAC) tended to be higher than those of polyhexamethylene biguanide (PHMB) and N-benzyl-N,N-dimethyldodecylammonium chloride (ADBAC). In particular, DDAC showed high bactericidal activity against approximately 90% of tested strains under the 5 h treatment.

  8. Biofilm formation in Hafnia alvei HUMV-5920, a human isolate

    Directory of Open Access Journals (Sweden)

    Itziar Chapartegui-González

    2016-11-01

    Full Text Available Hafnia alvei is a Gram-negative, rodshaped, facultative anaerobic bacterium of the family Enterobacteriaceae that has been isolated from various mammals, fish, insects and birds. In humans, case reports of Hafnia-associated enteric infections have been chiefly reported in Spain. Although H. alvei shares some virulence mechanisms with other Gram-negative enteropathogens little is known about the factors that contribute to its pathogenesis or virulence factors and regulatory circuits that may enhance the establishment and survival of H. alvei in the environment. The goal of the present study was to analyze the capacity of a H. alvei clinical isolate (strain HUMV-5920 to form biofilms. Biofilm formation by this strain increases during growth at 28 °C compared to 37 °C. Investigation of multicellular behavior by confocal microscopy, crystal violet and calcofluor staining in this strain showed biofilm formation associated with the production of cellulose. Importantly, several genes related to cellulose production including bcsABZC and yhjQ are present in the H. alvei HUMV-5920 chromosome. The ability of H. alvei to adhere to abiotic surfaces and to form biofilms likely contributes to its persistence in the hospital environment or food processing environments, increasing the probability of causing infections. Therefore, a better understanding of the adherence properties of this species will provide greater insights into the diseases it causes.

  9. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Science.gov (United States)

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation. PMID:25438014

  10. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Garry Laverty

    2014-07-01

    Full Text Available Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl, pellicle Formation (Pel and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

  11. Enterococcus hirae biofilm formation on hospital material surfaces and effect of new biocides.

    Science.gov (United States)

    Di Lodovico, Silvia; Cataldi, Valentina; Di Campli, Emanuela; Ancarani, Elisabetta; Cellini, Luigina; Di Giulio, Mara

    2017-08-02

    Nowadays, the bacterial contamination in the hospital environment is of particular concern because the hospital-acquired infections (HAIs), also known as nosocomial infections, are responsible for significant morbidity and mortality. This work evaluated the capability of Enterococcus hirae to form biofilm on different surfaces and the action of two biocides on the produced biofilms. The biofilm formation of E. hirae ATCC 10541 was studied on polystyrene and stainless steel surfaces through the biomass quantification and the cell viability at 20 and 37 °C. The effect of LH IDROXI FAST and LH ENZYCLEAN SPRAY biocides on biomasses was expressed as percentage of biofilm reduction. E. hirae at 20 and 37 °C produced more biofilm on the stainless steel in respect to the polystyrene surface. The amount of viable cells was greater at 20 °C than with 37 °C on the two analyzed surfaces. Biocides revealed a good anti-biofilm activity with the most effect for LH ENZYCLEAN SPRAY on polystyrene and stainless steel at 37 °C with a maximum biofilm reduction of 85.72 and 86.37%, respectively. E. hirae is a moderate biofilm producer depending on surface material and temperature, and the analyzed biocides express a remarkable antibiofilm action. The capability of E. hirae to form biofilm can be associated with its increasing incidence in hospital-acquired infections, and the adoption of suitable disinfectants is strongly recommended.

  12. Diversification of gene expression during formation of static submerged biofilms by Escherichia coli

    Directory of Open Access Journals (Sweden)

    Olga Besharova

    2016-10-01

    Full Text Available Many bacteria primarily exist in nature as structured multicellular communities, so called biofilms. Biofilm formation is a highly regulated process that includes the transition from the motile planktonic to sessile biofilm lifestyle. Cellular differentiation within a biofilm is a commonly accepted concept but it remains largely unclear when, where and how exactly such differentiation arises. Here we used fluorescent transcriptional reporters to quantitatively analyze spatio-temporal expression patterns of several groups of genes during the formation of submerged Escherichia coli biofilms in an open static system. We first confirm that formation of such submerged biofilms as well as pellicles at the liquid-air interface requires the major matrix component, curli, and flagella-mediated motility. We further demonstrate that in this system, diversification of gene expression leads to emergence of at least three distinct subpopulations of E. coli, which differ in their levels of curli and flagella expression, and in the activity of the stationary phase sigma factor σS. Our study reveals mutually exclusive expression of curli fibers and flagella at the single cell level, with high curli levels being confined to dense cell aggregates/microcolonies and flagella expression showing an opposite expression pattern. Interestingly, despite the known σS-dependence of curli induction, there was only a partial correlation between the σS activity and curli expression, with subpopulations of cells having high σS activity but low curli expression and vice versa. Finally, consistent with different physiology of the observed subpopulations, we show striking differences between the growth rates of cells within and outside of aggregates.

  13. Control of Biofilm Formation in Fungi Using Ethanol

    International Nuclear Information System (INIS)

    El Sebaey, R.T.

    2015-01-01

    The use of fungi in biotechnology requires that no cell loss takes place; a maximal level of cell-nutrient interaction is required to achieve efficient performance and avoid cell loss. The main aim of the present study is to use ethanol to control cell-cell and cell-surface adhesion through manipulating cell surface properties. A Fungal isolate with a phenol oxidase activity (43.2 U/ml) was chosen out of twelve isolates belonging to two main genera: Aspergillus sp. and Penicillium sp. The fungus isolate, assigned as the highest phenol oxidase producer, was morphologically identified as Penicillium purpurogenum. Penicillium purpurogenum formed a ring around the bottle in static and shaking conditions, therefore, a number of different stress conditions, such as ph, temperature, different nitrogen sources, gamma radiation and ethanol, were employed separately to control biofilm formation in the fungus under study. The fungus was tested for its morphology, mycelia weight, stress response (catalase, lipid peroxidation and red pigment synthesis) and extracellular and surface bound protein and exo polysaccharides. The obtained results correlate the biofilm formation to stress response and surface bound protein. Combining all types of stress did not result in more biofilm formation control; on the contrary, it posed more stress on the fungus and affected the biomass. Ethanol on its own was successively used to control biofilm, which was inhibited in the presence of 2.5% v/v ethanol without affecting the growth. The addition of ethanol also increased the intracellular phenol oxidase activity from 43.2 to 228.43 U/ml. scanning electron microscopy showed that the addition of ethanol resulted in the formation of loose mycelia network as compared to a tight mycelia network in ethanol free cultures. The presence of Yap1p gene, the detection of an oxidized form of glutathione (GSSG) and catalase after ethanol addition all suggest that a stress response might be involved in the

  14. Experimental model of biofilm implant-related osteomyelitis to test combination biomaterials using biofilms as initial inocula.

    Science.gov (United States)

    Williams, Dustin L; Haymond, Bryan S; Woodbury, Kassie L; Beck, J Peter; Moore, David E; Epperson, R Tyler; Bloebaum, Roy D

    2012-07-01

    Currently, the majority of animal models that are used to study biofilm-related infections use planktonic bacterial cells as initial inocula to produce positive signals of infection in biomaterials studies. However, the use of planktonic cells has potentially led to inconsistent results in infection outcomes. In this study, well-established biofilms of methicillin-resistant Staphylococcus aureus were grown and used as initial inocula in an animal model of a Type IIIB open fracture. The goal of the work was to establish, for the first time, a repeatable model of biofilm implant-related osteomyelitis, wherein biofilms were used as initial inocula to test combination biomaterials. Results showed that 100% of animals that were treated with biofilms developed osteomyelitis, whereas 0% of animals not treated with biofilm developed infection. The development of this experimental model may lead to an important shift in biofilm and biomaterials research by showing that when biofilms are used as initial inocula, they may provide additional insights into how biofilm-related infections in the clinic develop and how they can be treated with combination biomaterials to eradicate and/or prevent biofilm formation. Copyright © 2012 Wiley Periodicals, Inc.

  15. Antibiotic resistance and biofilm formation of some bacteria isolated from sediment, water and fish farms in Malaysia

    Science.gov (United States)

    Faja, Orooba Meteab; Usup, Gires; Ahmad, Asmat

    2018-04-01

    A total of 90 isolates of bacteria were isolated, from sediment (10) samples, water (10) samples and fish (12) samples (Sea bass, Snapper, Grouper and Tilapia). These include 22 isolates of bacteria from sediment, 28 isolates from water and 40 isolates from fish. All the isolates were tested for sensitivity to 13 antibiotics using disc diffusion method. The isolates showed high resistance to some antibiotics based on samples source. Isolates from sediment showed highest resistance toward novobiocin, kanamycin, ampicillin and streptomycin while isolates from water showed highest resistance against vancomycin, penicillin, streptomycin and tetracycline, in contrast, in fish sample showed highest resistance toward vancomycin, ampicillin, streptomycin and tetracycline. Most of the isolates showed biofilm formation ability with different degrees. Out of 22 bacteria isolates from water, two isolates were weak biofilm formers, six isolates moderate biofilm formers and fourteen isolates strong biofilm formers. While, out of 28 bacteria isolates from water one isolate was weak biofilm former, five isolates moderate biofilm formers and 22 strong biofilm formers Fish isolate showed three isolates (8%) moderate biofilm formers and 27 isolates strong biofilm formers. Biofilm formation was one of the factors that lead to antibiotic resistance of the bacterial isolates from these samples.

  16. Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes.

    Science.gov (United States)

    Kim, Hoikyung; Ryu, Jee-Hoon; Beuchat, Larry R

    2006-09-01

    Enterobacter sakazakii has been reported to form biofilms, but environmental conditions affecting attachment to and biofilm formation on abiotic surfaces have not been described. We did a study to determine the effects of temperature and nutrient availability on attachment and biofilm formation by E. sakazakii on stainless steel and enteral feeding tubes. Five strains grown to stationary phase in tryptic soy broth (TSB), infant formula broth (IFB), or lettuce juice broth (LJB) at 12 and 25 degrees C were examined for the extent to which they attach to these materials. Higher populations attached at 25 degrees C than at 12 degrees C. Stainless steel coupons and enteral feeding tubes were immersed for 24 h at 4 degrees C in phosphate-buffered saline suspensions (7 log CFU/ml) to facilitate the attachment of 5.33 to 5.51 and 5.03 to 5.12 log CFU/cm(2), respectively, before they were immersed in TSB, IFB, or LJB, followed by incubation at 12 or 25 degrees C for up to 10 days. Biofilms were not produced at 12 degrees C. The number of cells of test strains increased by 1.42 to 1.67 log CFU/cm(2) and 1.16 to 1.31 log CFU/cm(2) in biofilms formed on stainless steel and feeding tubes, respectively, immersed in IFB at 25 degrees C; biofilms were not formed on TSB and LJB at 25 degrees C, indicating that nutrient availability plays a major role in processes leading to biofilm formation on the surfaces of these inert materials. These observations emphasize the importance of temperature control in reconstituted infant formula preparation and storage areas in preventing attachment and biofilm formation by E. sakazakii.

  17. Establishing a laboratory model of dental unit waterlines bacterial biofilms using a CDC biofilm reactor.

    Science.gov (United States)

    Yoon, Hye Young; Lee, Si Young

    2017-11-01

    In this study, a laboratory model to reproduce dental unit waterline (DUWL) biofilms was developed using a CDC biofilm reactor (CBR). Bacteria obtained from DUWLs were filtered and cultured in Reasoner's 2A (R2A) for 10 days, and were subsequently stored at -70°C. This stock was cultivated on R2A in batch mode. After culturing for five days, the bacteria were inoculated into the CBR. Biofilms were grown on polyurethane tubing for four days. Biofilm accumulation and thickness was 1.3 × 10 5  CFU cm -2 and 10-14 μm respectively, after four days. Bacteria in the biofilms included cocci and rods of short and medium lengths. In addition, 38 bacterial genera were detected in biofilms. In this study, the suitability and reproducibility of the CBR model for DUWL biofilm formation were demonstrated. The model provides a foundation for the development of bacterial control methods for DUWLs.

  18. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation.

    Science.gov (United States)

    Janissen, Richard; Murillo, Duber M; Niza, Barbara; Sahoo, Prasana K; Nobrega, Marcelo M; Cesar, Carlos L; Temperini, Marcia L A; Carvalho, Hernandes F; de Souza, Alessandra A; Cotta, Monica A

    2015-04-20

    Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation.

  19. Human pathogens in plant biofilms: Formation, physiology, and detection.

    Science.gov (United States)

    Ximenes, Eduardo; Hoagland, Lori; Ku, Seockmo; Li, Xuan; Ladisch, Michael

    2017-07-01

    Fresh produce, viewed as an essential part of a healthy life style is usually consumed in the form of raw or minimally processed fruits and vegetables, and is a potentially important source of food-borne human pathogenic bacteria and viruses. These are passed on to the consumer since the bacteria can form biofilms or otherwise populate plant tissues, thereby using plants as vectors to infect animal hosts. The life cycle of the bacteria in plants differs from those in animals or humans and results in altered physiochemical and biological properties (e.g., physiology, immunity, native microflora, physical barriers, mobility, and temperature). Mechanisms by which healthy plants may become contaminated by microorganisms, develop biofilms, and then pass on their pathogenic burden to people are explored in the context of hollow fiber microfiltration by which plant-derived microorganisms may be recovered and rapidly concentrated to facilitate study of their properties. Enzymes, when added to macerated plant tissues, hydrolyze or alter macromolecules that would otherwise foul hollow-fiber microfiltration membranes. Hence, microfiltration may be used to quickly increase the concentration of microorganisms to detectable levels. This review discusses microbial colonization of vegetables, formation and properties of biofilms, and how hollow fiber microfiltration may be used to concentrate microbial targets to detectable levels. The use of added enzymes helps to disintegrate biofilms and minimize hollow fiber membrane fouling, thereby providing a new tool for more time effectively elucidating mechanisms by which biofilms develop and plant tissue becomes contaminated with human pathogens. Biotechnol. Bioeng. 2017;114: 1403-1418. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. ResDE Two-Component Regulatory System Mediates Oxygen Limitation-Induced Biofilm Formation by Bacillus amyloliquefaciens SQR9.

    Science.gov (United States)

    Zhou, Xuan; Zhang, Nan; Xia, Liming; Li, Qing; Shao, Jiahui; Shen, Qirong; Zhang, Ruifu

    2018-04-15

    Efficient biofilm formation and root colonization capabilities facilitate the ability of beneficial plant rhizobacteria to promote plant growth and antagonize soilborne pathogens. Biofilm formation by plant-beneficial Bacillus strains is triggered by environmental cues, including oxygen deficiency, but the pathways that sense these environmental signals and regulate biofilm formation have not been thoroughly elucidated. In this study, we showed that the ResDE two-component regulatory system in the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens strain SQR9 senses the oxygen deficiency signal and regulates biofilm formation. ResE is activated by sensing the oxygen limitation-induced reduction of the NAD + /NADH pool through its PAS domain, stimulating its kinase activity, and resulting in the transfer of a phosphoryl group to ResD. The phosphorylated ResD directly binds to the promoter regions of the qoxABCD and ctaCDEF operons to improve the biosynthesis of terminal oxidases, which can interact with KinB to activate biofilm formation. These results not only revealed the novel regulatory function of the ResDE two-component system but also contributed to the understanding of the complicated regulatory network governing Bacillus biofilm formation. This research may help to enhance the root colonization and the plant-beneficial efficiency of SQR9 and other Bacillus rhizobacteria used in agriculture. IMPORTANCE Bacillus spp. are widely used as bioinoculants for plant growth promotion and disease suppression. The exertion of their plant-beneficial functions is largely dependent on their root colonization, which is closely related to their biofilm formation capabilities. On the other hand, Bacillus is the model bacterium for biofilm study, and the process and molecular network of biofilm formation are well characterized (B. Mielich-Süss and D. Lopez, Environ Microbiol 17:555-565, 2015, https://doi.org/10.1111/1462-2920.12527; L. S. Cairns, L. Hobley, and

  1. Inhibition of Streptococcus mutans biofilm formation on composite resins containing ursolic acid

    Science.gov (United States)

    Kim, Soohyeon; Song, Minju; Roh, Byoung-Duck; Park, Sung-Ho

    2013-01-01

    Objectives To evaluate the inhibitory effect of ursolic acid (UA)-containing composites on Streptococcus mutans (S. mutans) biofilm. Materials and Methods Composite resins with five different concentrations (0.04, 0.1, 0.2, 0.5, and 1.0 wt%) of UA (U6753, Sigma Aldrich) were prepared, and their flexural strengths were measured according to ISO 4049. To evaluate the effect of carbohydrate source on biofilm formation, either glucose or sucrose was used as a nutrient source, and to investigate the effect of saliva treatment, the specimen were treated with either unstimulated whole saliva or phosphate-buffered saline (PBS). For biofilm assay, composite disks were transferred to S. mutans suspension and incubated for 24 hr. Afterwards, the specimens were rinsed with PBS and sonicated. The colony forming units (CFU) of the disrupted biofilm cultures were enumerated. For growth inhibition test, the composites were placed on a polystyrene well cluster, and S. mutans suspension was inoculated. The optical density at 600 nm (OD600) was recorded by Infinite F200 pro apparatus (TECAN). One-way ANOVA and two-way ANOVA followed by Bonferroni correction were used for the data analyses. Results The flexural strength values did not show significant difference at any concentration (p > 0.01). In biofilm assay, the CFU score decreased as the concentration of UA increased. The influence of saliva pretreatment was conflicting. The sucrose groups exhibited higher CFU score than glucose group (p composite showed inhibitory effect on S. mutans biofilm formation and growth. PMID:23741708

  2. Secreted single‐stranded DNA is involved in the initial phase of biofilm formation by Neisseria gonorrhoeae

    DEFF Research Database (Denmark)

    Zweig, Maria; Schork, Sabine; Koerdt, Andrea

    2014-01-01

    plays an important role in biofilm formation. Many clinical isolates contain a gonococcal genetic island that encodes a type IV secretion system (T4SS). The T4SS of N. gonorrhoeae strain MS11 secretes ssDNA directly into the medium. Biofilm formation, studied in continuous flow‐chamber systems...... was developed in which thermostable fluorescently labelled ssDNA‐ and ss/dsDNA‐binding proteins were used to visualize ssDNA and total DNA in biofilms and planktonic cultures. Remarkably, mainly dsDNA was detected in biofilms of the ssDNA secreting strain. We conclude that the secreted ssDNA facilitates initial...

  3. Extracellular dextran and DNA affect the formation of Enterococcus faecalis biofilms and their susceptibility to 2% chlorhexidine.

    Science.gov (United States)

    Li, Weilan; Liu, Hongyan; Xu, Qiong

    2012-07-01

    Enterococcus faecalis is frequently recovered from root-filled teeth with refractory apical periodontitis. The ability of E. faecalis to form a matrix-encased biofilm contributes to its pathogenicity; however, the role of extracellular dextran and DNA in biofilm formation and its effect on the susceptibility of the biofilm to chlorhexidine remains poorly understood. E. faecalis biofilms were incubated on dentin blocks. The effect of a dextran-degrading enzyme (dextranase) and DNase I on the adhesion of E. faecalis to dentin was measured using the colony-forming unit (CFU) counting method. CFU assays and confocal laser scanning microscopy were used to investigate the influence of dextranase and DNase I on the antimicrobial activity of 2% chlorhexidine. The CFU count assays indicated that the formation of biofilms by E. faecalis was reduced in cells treated with dextranase or DNase I compared with that in untreated cells (P biofilms with dextranase or DNase I effectively sensitized the biofilms to 2% chlorhexidine (P biofilms to 2% chlorhexidine. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Early staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study.

    Directory of Open Access Journals (Sweden)

    Hironobu Koseki

    Full Text Available Biofilms forming on the surface of biomaterials can cause intractable implant-related infections. Bacterial adherence and early biofilm formation are influenced by the type of biomaterial used and the physical characteristics of implant surface. In this in vitro research, we evaluated the ability of Staphylococcus epidermidis, the main pathogen in implant-related infections, to form biofilms on the surface of the solid orthopaedic biomaterials, oxidized zirconium-niobium alloy, cobalt-chromium-molybdenum alloy (Co-Cr-Mo, titanium alloy (Ti-6Al-4V, commercially pure titanium (cp-Ti and stainless steel. A bacterial suspension of Staphylococcus epidermidis strain RP62A (ATCC35984 was added to the surface of specimens and incubated. The stained biofilms were imaged with a digital optical microscope and the biofilm coverage rate (BCR was calculated. The total amount of biofilm was determined with the crystal violet assay and the number of viable cells in the biofilm was counted using the plate count method. The BCR of all the biomaterials rose in proportion to culture duration. After culturing for 2-4 hours, the BCR was similar for all materials. However, after culturing for 6 hours, the BCR for Co-Cr-Mo alloy was significantly lower than for Ti-6Al-4V, cp-Ti and stainless steel (P0.05. These results suggest that surface properties, such as hydrophobicity or the low surface free energy of Co-Cr-Mo, may have some influence in inhibiting or delaying the two-dimensional expansion of biofilm on surfaces with a similar degree of smoothness.

  5. The clinical impact of bacterial biofilms

    DEFF Research Database (Denmark)

    Høiby, Niels; Ciofu, Oana; Johansen, Helle Krogh

    2011-01-01

    Bacteria survive in nature by forming biofilms on surfaces and probably most, if not all, bacteria (and fungi) are capable of forming biofilms. A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and extracellular DNA....... Bacterial biofilms are resistant to antibiotics, disinfectant chemicals and to phagocytosis and other components of the innate and adaptive inflammatory defense system of the body. It is known, for example, that persistence of staphylococcal infections related to foreign bodies is due to biofilm formation....... Likewise, chronic Pseudomonas aeruginosa lung infections in cystic fibrosis patients are caused by biofilm growing mucoid strains. Gradients of nutrients and oxygen exist from the top to the bottom of biofilms and the bacterial cells located in nutrient poor areas have decreased metabolic activity...

  6. Abolition of Biofilm Formation in Urinary Tract Escherichia coli and Klebsiella Isolates by Metal Interference through Competition for Fur

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Dahl, Malin; Klemm, Per

    2010-01-01

    Bacterial biofilms are associated with a large number of persistent and chronic infections. Biofilm-dwelling bacteria are particularly resistant to antibiotics and immune defenses, which makes it hard if not impossible to eradicate biofilm-associated infections. In the urinary tract, free iron...... is strictly limited but is critical for bacterial growth. Biofilm-associated Escherichia coli cells are particularly desperate for iron. An attractive way of inhibiting biofilm formation is to fool the bacterial regulatory system for iron uptake. Here, we demonstrate that biofilm formation can be impaired...... by the addition of divalent metal ions, such as Zn(II) and Co(II), which inhibit iron uptake by virtue of their higher-than-iron affinity for the master controller protein of iron uptake, Fur. Reduced biofilm formation of urinary tract-infectious E. coli strains in the presence of Zn(II) was observed...

  7. Detection of biofilm production of Yersinia enterocolitica strains isolated from infected children and comparative antimicrobial susceptibility of biofilm versus planktonic forms.

    Science.gov (United States)

    Ioannidis, A; Kyratsa, A; Ioannidou, V; Bersimis, S; Chatzipanagiotou, S

    2014-06-01

    The ability of Yersinia species to produce biofilms has not been hitherto systematically studied, although there is evidence, that Y. enterocolitica is able to form biofilms on inanimate surfaces. The present study aimed to detect the production of biofilms by 60 clinical strains of Y. enterocolitica and to compare the antimicrobial susceptibility of planktonic versus biofilm-forming bacteria. Y. enterocolitica strains were collected from stool and blood cultures collected from β-thalassaemic children, with gastroenteritis and/or septicemia. The isolated bacterial strains were grouped by biotyping and serotyping and the antimicrobial susceptibility of the planktonic forms was investigated by MIC determination. Biofilm formation was detected by the use of silicone disks and for the biofilm forming strains the minimum inhibitory concentration for bacterial regrowth (MICBR) of 11 clinically important antimicrobials was determined. The presence of the waaE, a gene reported to be related with biofilm formation was investigated in all the strains. All of 60 strains were positive for biofilm production by the use of silicone disks. The great majority of the biofilm forms were resistant to all the antimicrobials. In antimicrobial concentrations far higher than the CLSI breakpoints, bacterial regrowth from the biofilms was still possible. None of the strains bore the waaE gene. These results, indicate that biofilm formation by Y. enterocolitica might be an inherent feature. The presence of biofilms increased dramatically the MICBR in all antimicrobials. The way in which biofilms could contribute to Y. enterocolitica pathogenicity in humans is a matter needing further investigation.

  8. BACTERIAL BIOFILM FORMATION UNDER MICROGRAVITY CONDITIONS. (R825503)

    Science.gov (United States)

    Although biofilm formation is widely documented on Earth, it has not been demonstrated in the absence of gravity. To explore this possibility, Pseudomonas aeruginosa, suspended in sterile buffer, was flown in a commercial payload on space shuttle flight STS-95. During earth or...

  9. Alpha-Toxin Promotes Mucosal Biofilm Formation by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Michele J Anderson

    2012-05-01

    Full Text Available Staphylococcus aureus causes numerous diseases in humans ranging from the mild skin infections to serious, life-threatening, superantigen-mediated Toxic Shock Syndrome (TSS. S. aureus may also be asymptomatically carried in the anterior nares, vagina or on the skin, which serve as reservoirs for infection. Pulsed-field gel electrophoresis clonal type USA200 is the most widely disseminated colonizer and a major cause of TSS. Our prior studies indicated that α-toxin was a major epithelial proinflammatory exotoxin produced by TSS S. aureus USA200 isolates. It also facilitated the penetration of TSS Toxin-1 (TSST-1 across vaginal mucosa. However, the majority of menstrual TSS isolates produce low α-toxin due to a nonsense point mutation at codon 113, designated hly, suggesting mucosal adaptation. The aim of this study was to characterize the differences between TSS USA200 strains [high (hla+ and low (hly+ α-toxin producers] in their abilities to infect and disrupt vaginal mucosal tissue. A mucosal model was developed using ex vivo porcine vaginal mucosa, LIVE/DEAD® staining and confocal microscropy to characterize biofilm formation and tissue viability of TSS USA 200 isolates CDC587 and MN8, which contain the α-toxin pseudogene (hly, MNPE (hla+ and MNPE isogenic hla knockout (hlaKO. All TSS strains grew to similar bacterial densities (1-5 x 108 CFU on the mucosa and were proinflammatory over 3 days. However, MNPE formed biofilms with significant reductions in the mucosal viability whereas neither CDC587, MN8 (hly+, or MNPE hlaKO, formed biofilms and were less cytotoxic. The addition of exogenous, purified α-toxin to MNPE hlaKO restored the biofilm phenotype. Our studies suggest α-toxin affects S. aureus phenotypic growth on vaginal mucosa, by promoting tissue disruption and biofilm formation; and α–toxin mutants (hly are not benign colonizers, but rather form a different type of infection, which we have termed high density pathogenic

  10. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Yang, Liang; Hu, Yifan; Liu, Yang

    2011-01-01

    Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self‐generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self‐assembly process and several d...... polysaccharide is more important than Pel polysaccharide in P. aeruginosa PAO1 biofilm formation and antibiotic resistance. Our study thus suggests that different EPS materials play distinct roles during bacterial biofilm formation.......Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self‐generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self‐assembly process and several...... distinguishable stages are observed during bacterial biofilm development. Biofilm formation is shown to be coordinated by EPS production, cell migration, subpopulation differentiation and interactions. However, the ways these different factors affect each other and contribute to community structural...

  11. Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa.

    Science.gov (United States)

    Cursino, Luciana; Li, Yaxin; Zaini, Paulo A; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J

    2009-10-01

    A mutation in the Xylella fastidiosa tonB1 gene resulted in loss of twitching motility and in significantly less biofilm formation as compared with a wild type. The altered motility and biofilm phenotypes were restored by complementation with a functional copy of the gene. The mutation affected virulence as measured by Pierce's disease symptoms on grapevines. The role of TonB1 in twitching and biofilm formation appears to be independent of the characteristic iron-uptake function of this protein. This is the first report demonstrating a functional role for a tonB homolog in X. fastidiosa.

  12. High Glucose Concentration Promotes Vancomycin-Enhanced Biofilm Formation of Vancomycin-Non-Susceptible Staphylococcus aureus in Diabetic Mice.

    Directory of Open Access Journals (Sweden)

    Chi-Yu Hsu

    Full Text Available We previously demonstrated that vancomycin treatment increased acquisition of eDNA and enhanced biofilm formation of drug-resistant Staphylococcus aureus through a cidA-mediated autolysis mechanism. Recently we found that such enhancement became more significant under a higher glucose concentration in vitro. We propose that besides improper antibiotic treatment, increased glucose concentration environment in diabetic animals may further enhance biofilm formation of drug-resistant S. aureus. To address this question, the diabetic mouse model infected by vancomycin-resistant S. aureus (VRSA was used under vancomycin treatment. The capacity to form biofilms was evaluated through a catheter-associated biofilm assay. A 10- and 1000-fold increase in biofilm-bound bacterial colony forming units was observed in samples from diabetic mice without and with vancomycin treatment, respectively, compared to healthy mice. By contrast, in the absence of glucose vancomycin reduced propensity to form biofilms in vitro through the increased production of proteases and DNases from VRSA. Our study highlights the potentially important role of increased glucose concentration in enhancing biofilm formation in vancomycin-treated diabetic mice infected by drug-resistant S. aureus.

  13. Biofilm development in fixed bed biofilm reactors: experiments and simple models for engineering design purposes.

    Science.gov (United States)

    Szilágyi, N; Kovács, R; Kenyeres, I; Csikor, Zs

    2013-01-01

    Biofilm development in a fixed bed biofilm reactor system performing municipal wastewater treatment was monitored aiming at accumulating colonization and maximum biofilm mass data usable in engineering practice for process design purposes. Initially a 6 month experimental period was selected for investigations where the biofilm formation and the performance of the reactors were monitored. The results were analyzed by two methods: for simple, steady-state process design purposes the maximum biofilm mass on carriers versus influent load and a time constant of the biofilm growth were determined, whereas for design approaches using dynamic models a simple biofilm mass prediction model including attachment and detachment mechanisms was selected and fitted to the experimental data. According to a detailed statistical analysis, the collected data have not allowed us to determine both the time constant of biofilm growth and the maximum biofilm mass on carriers at the same time. The observed maximum biofilm mass could be determined with a reasonable error and ranged between 438 gTS/m(2) carrier surface and 843 gTS/m(2), depending on influent load, and hydrodynamic conditions. The parallel analysis of the attachment-detachment model showed that the experimental data set allowed us to determine the attachment rate coefficient which was in the range of 0.05-0.4 m d(-1) depending on influent load and hydrodynamic conditions.

  14. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    Bacteria in nature primarily live in surface-associated communities commonly known as biofilms. Because bacteria in biofilms, in many cases, display tolerance to host immune systems, antibiotics, and biocides, they are often difficult or impossible to eradicate. Biofilm formation, therefore, leads...... to various persistent infections in humans and animals, and to a variety of complications in industry, where solid–water interfaces occur. Knowledge about the molecular mechanisms involved in biofilm formation is necessary for creating strategies to control biofilms. Recent studies have shown...... that extracellular DNA is an important component of the extracellular matrix of microbial biofilms. The present chapter is focussed on extracellular DNA as matrix component in biofilms formed by Pseudomonas aeruginosa as an example from the Gram-negative bacteria, and Streptococcus and Staphylococcus as examples...

  15. Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation

    DEFF Research Database (Denmark)

    Balestrino, D.; Haagensen, Janus Anders Juul; Rich, C.

    2005-01-01

    Quorum sensing is a process by which bacteria communicate by using secreted chemical signaling molecules called autoinducers. Many bacterial species modulate the expression of a wide variety of physiological functions in response to changes in population density by this mechanism. In this study, ...... steps of biofilm formation. These data suggest that a LuxS-dependent signal plays a role in the early stages of biofilm formation by K. pneumoniae....... observed in minimal medium supplemented with glycerol. To determine the potential role of luxS in colonization processes, a K. pneumoniae luxS isogenic mutant was constructed and tested for its capacity to form biofilms in vitro on an abiotic surface and to colonize the intestinal tract in a murine model....... No difference was observed in the level of intestinal colonization between the wild-type strain and the luxS mutant. Microscopic analysis of biofilm structures revealed that the luxS mutant was able to form a mature biofilm but with reduced capacities in the development of microcolonies, mostly in the early...

  16. Biofilms of vaginal Lactobacillus reuteri CRL 1324 and Lactobacillus rhamnosus CRL 1332: kinetics of formation and matrix characterization.

    Science.gov (United States)

    Leccese Terraf, María Cecilia; Juárez Tomás, María Silvina; Rault, Lucie; Le Loir, Yves; Even, Sergine; Nader-Macías, María Elena Fátima

    2016-09-01

    Adhesion and biofilm formation are strain properties that reportedly contribute to the permanence of lactobacilli in the human vagina. The kinetics of biofilm formation and the chemical nature of the biofilm matrix formed by Lactobacillus reuteri CRL (Centro de Referencia para Lactobacilos Culture Collection) 1324 and Lactobacillus rhamnosus CRL 1332, vaginal beneficial strains, were evaluated in this work. Crystal violet-stained microplate assay and techniques of epifluorescence, electron and confocal microscopy were applied. The highest density and complexity of biofilms of both vaginal lactobacilli were observed at 72 h of incubation. Protease, proteinase K, α-chymotrypsin and trypsin treatments efficiently detached L. reuteri CRL 1324 biofilm that was also partially affected by α-amylase. However, L. rhamnosus CRL 1332 biofilm was slightly affected by protease, proteinase K and α-amylase. Confocal microscopy revealed greater amount of polysaccharides in L. rhamnosus CRL 1332 biofilm matrix than in L. reuteri CRL 1324 biofilm matrix. The results indicate that proteins are one of the main components of the L. reuteri CRL 1324 biofilm, while the biofilm matrix of L. rhamnosus CRL 1332 is composed of carbohydrates and proteins. The results obtained support the knowledge, understanding and characterization of two biofilm-forming vaginal Lactobacillus strains.

  17. Cross-Contamination and Biofilm Formation by Salmonella enterica Serovar Enteritidis on Various Cutting Boards.

    Science.gov (United States)

    Dantas, Stéfani T A; Rossi, Bruna F; Bonsaglia, Erika C R; Castilho, Ivana G; Hernandes, Rodrigo T; Fernandes, Ary; Rall, Vera L M

    2018-02-01

    Cross-contamination is one of the main factors related to foodborne outbreaks. This study aimed to analyze the cross-contamination process of Salmonella enterica serovar Enteritidis from poultry to cucumbers, on various cutting board surfaces (plastic, wood, and glass) before and after washing and in the presence and absence of biofilm. Thus, 10 strains of Salmonella Enteritidis were used to test cross-contamination from poultry to the cutting boards and from thereon to cucumbers. Moreover, these strains were evaluated as to their capacity to form biofilm on hydrophobic (wood and plastic) and hydrophilic materials (glass). We recovered the 10 isolates from all unwashed boards and from all cucumbers that had contacted them. After washing, the recovery ranged from 10% to 100%, depending on the board material. In the presence of biofilm, the recovery of salmonellae was 100%, even after washing. Biofilm formation occurred more on wood (60%) and plastic (40%) than glass (10%) boards, demonstrating that bacteria adhered more to a hydrophobic material. It was concluded that the cutting boards represent a critical point in cross-contamination, particularly in the presence of biofilm. Salmonella Enteritidis was able to form a biofilm on these three types of cutting boards but glass showed the least formation.

  18. Colonization and biofilm formation by Staphylococcus aureus on endothelial cell layers under flow

    DEFF Research Database (Denmark)

    Grønnemose, Rasmus Birkholm; Antoinette Asferg, Cecilie; Kolmos, Hans Jørn

    Staphylococcus aureus is a major human pathogen and known for causing vascular infections such as sepsis and infective endocarditis. It has previously been proposed that S. aureus succeed in colonization of the endothelial wall by specific surface attachment likely followed by biofilm formation....... Furthermore, S. aureus is known to invade human cells, which has been proposed to promote persistence through immune and antibiotic evasion. In the current study, we sought to investigate endothelial colonization, invasion, and biofilm formation by S. aureus using a newly developed in vitro flow chamber model....... We show that under physiological shear rates, S. aureus utilizes cellular invasion to enable the following surface colonization and biofilm formation. These observations might help explain the success of S. aureus as a bloodstream pathogen and guide further studies in S. aureus pathogenesis...

  19. Intrinsic and Extrinsic Aspects on Campylobacter jejuni Biofilms

    Directory of Open Access Journals (Sweden)

    Roberta T. Melo

    2017-07-01

    Full Text Available Biofilm represents a way of life that allows greater survival of microorganisms in hostile habitats. Campylobacter jejuni is able to form biofilms in vitro and on surfaces at several points in the poultry production chain. Genetic determinants related to their formation are expressed differently between strains and external conditions are decisive in this respect. Our approach combines phylogenetic analysis and the presence of seven specific genes linked to biofilm formation in association with traditional microbiology techniques, using Mueller Hinton and chicken juice as substrates in order to quantify, classify, determine the composition and morphology of the biomass of simple and mixed biofilms of 30 C. jejuni strains. It also evaluates the inhibition of its formation by biocides commonly used in industry and also by zinc oxide nanoparticles. Genetic analysis showed high heterogeneity with the identification of 23 pulsotypes. Despite the diversity, the presence of flaA, cadF, luxS, dnaJ, htrA, cbrA, and sodB genes in all strains shows the high potential for biofilm formation. This ability was only expressed in chicken juice, where they presented phenotype of a strong biofilm producer, with a mean count of 7.37 log CFU/mL and an ultrastructure characteristic of mature biofilm. The composition of simple and mixed biofilms was predominantly composed by proteins. The exceptions were found in mixed biofilms with Pseudomonas aeruginosa, which includes a carbohydrate-rich matrix, lower ability to sessile form in chicken juice and compact architecture of the biofilm, this aspects are intrinsic to this species. Hypochlorite, chlorhexidine, and peracetic acid were more effective in controlling viable cells of C. jejuni in biofilm, but the existence of tolerant strains indicates exposure to sublethal concentrations and development of adaptation mechanisms. This study shows that in chicken juice C. jejuni presents greater potential in producing mature

  20. Biofilm architecture in a novel pressurized biofilm reactor.

    Science.gov (United States)

    Jiang, Wei; Xia, Siqing; Duan, Liang; Hermanowicz, Slawomir W

    2015-01-01

    A novel pure-oxygen pressurized biofilm reactor was operated at different organic loading, mechanical shear and hydrodynamic conditions to understand the relationships between biofilm architecture and its operation. The ultimate goal was to improve the performance of the biofilm reactor. The biofilm was labeled with seven stains and observed with confocal laser scanning microscopy. Unusual biofilm architecture of a ribbon embedded between two surfaces with very few points of attachment was observed. As organic loading increased, the biofilm morphology changed from a moderately rough layer into a locally smoother biomass with significant bulging protuberances, although the chemical oxygen demand (COD) removal efficiency remained unchanged at about 75%. At higher organic loadings, biofilms contained a larger fraction of active cells distributed uniformly within a proteinaceous matrix with decreasing polysaccharide content. Higher hydrodynamic shear in combination with high organic loading resulted in the collapse of biofilm structure and a substantial decrease in reactor performance (a COD removal of 16%). Moreover, the important role of proteins for the spatial distribution of active cells was demonstrated quantitatively.

  1. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus.

    Science.gov (United States)

    Lee, Jin-Hyung; Kim, Yong-Guy; Yong Ryu, Shi; Lee, Jintae

    2016-01-14

    Staphylococcal biofilms are problematic and play a critical role in the persistence of chronic infections because of their abilities to tolerate antimicrobial agents. Thus, the inhibitions of biofilm formation and/or toxin production are viewed as alternative means of controlling Staphylococcus aureus infections. Here, the antibiofilm activities of 560 purified phytochemicals were examined. Alizarin at 10 μg/ml was found to efficiently inhibit biofilm formation by three S. aureus strains and a Staphylococcus epidermidis strain. In addition, two other anthraquinones purpurin and quinalizarin were found to have antibiofilm activity. Binding of Ca(2+) by alizarin decreased S. aureus biofilm formation and a calcium-specific chelating agent suppressed the effect of calcium. These three anthraquinones also markedly inhibited the hemolytic activity of S. aureus, and in-line with their antibiofilm activities, increased cell aggregation. A chemical structure-activity relationship study revealed that two hydroxyl units at the C-1 and C-2 positions of anthraquinone play important roles in antibiofilm and anti-hemolytic activities. Transcriptional analyses showed that alizarin repressed the α-hemolysin hla gene, biofilm-related genes (psmα, rbf, and spa), and modulated the expressions of cid/lrg genes (the holin/antiholin system). These findings suggest anthraquinones, especially alizarin, are potentially useful for controlling biofilm formation and the virulence of S. aureus.

  2. Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Webb, J.S.; Rao, D.

    2006-01-01

    from the surface of the marine alga Ulva australis, were screened for synergistic interactions within biofilms when present together in different combinations. Four isolates, Microbacterium phyllosphaerae, Shewanella japonica, Dokdonia donghaensis, and Acinetobacter lwoffii, were found to interact......Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated...... synergistically in biofilms formed in 96-well microtiter plates: biofilm biomass was observed to increase by >167% in biofilms formed by the four strains compared to biofilms composed of single strains. When exposed to the antibacterial agent hydrogen peroxide or tetracycline, the relative activity (exposed...

  3. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

    Science.gov (United States)

    Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

    2014-10-20

    The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Development of an in vitro Assay, based on the BioFilm Ring Test®, for Rapid Profiling of Biofilm-Growing Bacteria

    Directory of Open Access Journals (Sweden)

    Enea Gino Di Domenico

    2016-09-01

    Full Text Available Microbial biofilm represents a major virulence factor associated with chronic and recurrent infections. Pathogenic bacteria embedded in biofilms are highly resistant to environmental and chemical agents, including antibiotics and therefore difficult to eradicate. Thus, reliable tests to assess biofilm formation by bacterial strains as well as the impact of chemicals or antibiotics on biofilm formation represent desirable tools for a most effective therapeutic management and microbiological risk control. Current methods to evaluate biofilm formation are usually time-consuming, costly, and hardly applicable in the clinical setting.The aim of the present study was to develop and assess a simple and reliable in vitro procedure for the characterization of biofilm-producing bacterial strains for future clinical applications based on the BioFilm Ring Test® (BRT technology. The procedure developed for clinical testing (cBRT can provide an accurate and timely (5 hours measurement of biofilm formation for the most common pathogenic bacteria seen in clinical practice. The results gathered by the cBRT assay were in agreement with the traditional crystal violet (CV staining test, according to the kappa coefficient test (kappa = 0.623. However, the cBRT assay showed higher levels of specificity (92.2% and accuracy (88.1% as compared to CV. The results indicate that this procedure offers an easy, rapid and robust assay to test microbial biofilm and a promising tool for clinical microbiology.

  5. The Ciprofloxacin Impact on Biofilm Formation by Proteus Mirabilis and P. Vulgaris Strains

    Science.gov (United States)

    Kwiecinska-Pirog, Joanna; Skowron, Krzysztof; Bartczak, Wojciech; Gospodarek-Komkowska, Eugenia

    2016-01-01

    Background Proteus spp. bacilli belong to opportunistic human pathogens, which are primarily responsible for urinary tract and wound infections. An important virulence factor is their ability to form biofilms that greatly reduce the effectiveness of antibiotics in the site of infection. Objectives The aim of this study was to determine the value of the minimum concentration of ciprofloxacin that eradicates a biofilm of Proteus spp. strains. Materials and Methods A biofilm formation of 20 strains of P. mirabilis and 20 strains of P. vulgaris were evaluated by a spectrophotometric method using 0.1% 2, 3, 5-Triphenyl-tetrazolium chloride solution (TTC, AVANTORTM). On the basis of the results of the absorbance of the formazan, a degree of reduction of biofilm and minimum biofilm eradication (MBE) values of MBE50 and MBE90 were determined. Results All tested strains formed a biofilm. A value of 1.0 μg/mL ciprofloxacin is MBE50 for the strains of both tested species. An MBE90 value of ciprofloxacin for isolates of P. vulgaris was 2 μg/mL and for P. mirabilis was 512 μg/mL. Conclusions Minimum biofilm eradication values of ciprofloxacin obtained in the study are close to the values of the minimal inhibition concentration (MIC). PMID:27303616

  6. Mechanisms of Candida biofilm drug resistance

    Science.gov (United States)

    Taff, Heather T; Mitchell, Kaitlin F; Edward, Jessica A; Andes, David R

    2013-01-01

    Candida commonly adheres to implanted medical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. As currently available antifungals have minimal activity against biofilms, new drugs to treat these recalcitrant infections are urgently needed. Recent investigations have begun to shed light on the mechanisms behind the profound resistance associated with the biofilm mode of growth. This resistance appears to be multifactorial, involving both mechanisms similar to conventional, planktonic antifungal resistance, such as increased efflux pump activity, as well as mechanisms specific to the biofilm lifestyle. A unique biofilm property is the production of an extracellular matrix. Two components of this material, β-glucan and extracellular DNA, promote biofilm resistance to multiple antifungals. Biofilm formation also engages several stress response pathways that impair the activity of azole drugs. Resistance within a biofilm is often heterogeneous, with the development of a subpopulation of resistant persister cells. In this article we review the molecular mechanisms underlying Candida biofilm antifungal resistance and their relative contributions during various growth phases. PMID:24059922

  7. Effects of Low-Dose Amoxicillin on Staphylococcus aureus USA300 Biofilms.

    Science.gov (United States)

    Mlynek, Kevin D; Callahan, Mary T; Shimkevitch, Anton V; Farmer, Jackson T; Endres, Jennifer L; Marchand, Mélodie; Bayles, Kenneth W; Horswill, Alexander R; Kaplan, Jeffrey B

    2016-05-01

    Previous studies showed that sub-MIC levels of β-lactam antibiotics stimulate biofilm formation in most methicillin-resistant Staphylococcus aureus (MRSA) strains. Here, we investigated this process by measuring the effects of sub-MIC amoxicillin on biofilm formation by the epidemic community-associated MRSA strain USA300. We found that sub-MIC amoxicillin increased the ability of USA300 cells to attach to surfaces and form biofilms under both static and flow conditions. We also found that USA300 biofilms cultured in sub-MIC amoxicillin were thicker, contained more pillar and channel structures, and were less porous than biofilms cultured without antibiotic. Biofilm formation in sub-MIC amoxicillin correlated with the production of extracellular DNA (eDNA). However, eDNA released by amoxicillin-induced cell lysis alone was evidently not sufficient to stimulate biofilm. Sub-MIC levels of two other cell wall-active agents with different mechanisms of action-d-cycloserine and fosfomycin-also stimulated eDNA-dependent biofilm, suggesting that biofilm formation may be a mechanistic adaptation to cell wall stress. Screening a USA300 mariner transposon library for mutants deficient in biofilm formation in sub-MIC amoxicillin identified numerous known mediators of S. aureus β-lactam resistance and biofilm formation, as well as novel genes not previously associated with these phenotypes. Our results link cell wall stress and biofilm formation in MRSA and suggest that eDNA-dependent biofilm formation by strain USA300 in low-dose amoxicillin is an inducible phenotype that can be used to identify novel genes impacting MRSA β-lactam resistance and biofilm formation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Acid environments affect biofilm formation and gene expression in isolates of Salmonella enterica Typhimurium DT104.

    Science.gov (United States)

    O'Leary, Denis; McCabe, Evonne M; McCusker, Matthew P; Martins, Marta; Fanning, Séamus; Duffy, Geraldine

    2015-08-03

    The aim of this study was to examine the survival and potential virulence of biofilm-forming Salmonella Typhimurium DT104 under mild acid conditions. Salmonella Typhimurium DT104 employs an acid tolerance response (ATR) allowing it to adapt to acidic environments. The threat that these acid adapted cells pose to food safety could be enhanced if they also produce biofilms in acidic conditions. The cells were acid-adapted by culturing them in 1% glucose and their ability to form biofilms on stainless steel and on the surface of Luria Bertani (LB) broth at pH7 and pH5 was examined. Plate counts were performed to examine cell survival. RNA was isolated from cells to examine changes in the expression of genes associated with virulence, invasion, biofilm formation and global gene regulation in response to acid stress. Of the 4 isolates that were examined only one (1481) that produced a rigid biofilm in LB broth at pH7 also formed this same structure at pH5. This indicated that the lactic acid severely impeded the biofilm producing capabilities of the other isolates examined under these conditions. Isolate 1481 also had higher expression of genes associated with virulence (hilA) and invasion (invA) with a 24.34-fold and 13.68-fold increase in relative gene expression respectively at pH5 compared to pH7. Although genes associated with biofilm formation had increased expression in response to acid stress for all the isolates this only resulted in the formation of a biofilm by isolate 1481. This suggests that in addition to the range of genes associated with biofilm production at neutral pH, there are genes whose protein products specifically aid in biofilm production in acidic environments. Furthermore, it highlights the potential for the use of lactic acid for the inhibition of Salmonella biofilms. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Formation of industrial mixed culture biofilm in chlorophenol cultivated medium of microbial fuel cell

    Science.gov (United States)

    Hassan, Huzairy; Jin, Bo; Dai, Sheng; Ngau, Cornelius

    2016-11-01

    The formation of microbial biofilm while maintaining the electricity output is a challenging topic in microbial fuel cell (MFC) studies. This MFC critical factor becomes more significant when handling with industrial wastewater which normally contains refractory and toxic compounds. This study explores the formation of industrial mixed culture biofilm in chlorophenol cultivated medium through observing and characterizing microscopically its establishment on MFC anode surface. The mixed culture was found to develop its biofilm on the anode surface in the chlorophenol environment and established its maturity and dispersal stages with concurrent electricity generation and phenolic degradation. The mixed culture biofilm engaged the electron transfer roles in MFC by generating current density of 1.4 mA/m2 and removing 53 % of 2,4-dichlorophenol. The results support further research especially on hazardous wastewater treatment using a benign and sustainable method.

  10. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism

    Science.gov (United States)

    2016-03-15

    RESEARCH ARTICLE Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism Francisco G...jaques.reifman.civ@mail.mil Abstract A hallmark of Pseudomonas aeruginosa is its ability to establish biofilm -based infections that are difficult to...eradicate. Biofilms are less susceptible to host inflammatory and immune responses and have higher antibiotic tolerance than free-living planktonic

  11. Propensity for biofilm formation by aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders.

    Science.gov (United States)

    Sadiq, Faizan A; Flint, Steve; Yuan, Lei; Li, Yun; Liu, TongJie; He, GuoQing

    2017-12-04

    Biofilms on the surface of dairy manufacturing plants are potential reservoirs of microbial contamination. These microbial aggregates may harbour pathogenic and spoilage organisms which contaminate dairy products. The biofilm forming capacity of many spore forming isolates of dairy origin has not been given much attention. The present study explored the biofilm forming potential of 148 isolates, comprising mesophilic and thermophilic bacteria, with particular emphasis on Bacillus licheniformis on polystyrene and stainless steel (SS) surfaces. We concluded that only four species are of significance for biofilm development on the surface of SS in the presence of skimmed milk, namely, B. licheniformis, Geobacillus stearothermophilus, Geobacillus thermoleovorans group and Anoxybacillus flavithermus. The maximum number of cells recovered from the biofilms developed on SS coupons in the presence of skimmed milk for these four species was as follows: 4.8, 5.2, 4.5 and 5.3logCFU/cm 2 , respectively. Number of cells recovered from biofilms on 1cm 2 SS coupons increased in the presence of tryptic soy broth (TSB) for all mesophiles including B. licheniformis, while decreased for G. stearothermophilus, G. thermoleovorans group and A. flavithermus. The crystal violet staining assay on polystyrene proved to be inadequate to predict cell counts on SS for the bacteria tested in our trial in the presence of either TSB or skimmed milk. The results support the idea that biofilm formation is an important part of bacterial survival strategy as only the most prevalent isolates from milk powders formed good biofilms on SS in the presence of skimmed milk. Biofilm formation also proved to be a strain-dependent characteristic and interestingly significant variation in biofilm formation was observed within the same RAPD groups of B. licheniformis which supports the previously reported genetic and phenotypic heterogeneity within the same RAPD based groups. The work reported in this manuscript

  12. Inhibition of Staphylococcus epidermidis Biofilm by Trimethylsilane Plasma Coating

    Science.gov (United States)

    Ma, Yibao; Jones, John E.; Ritts, Andrew C.; Yu, Qingsong

    2012-01-01

    Biofilm formation on implantable medical devices is a major impediment to the treatment of nosocomial infections and promotes local progressive tissue destruction. Staphylococcus epidermidis infections are the leading cause of biofilm formation on indwelling devices. Bacteria in biofilms are highly resistant to antibiotic treatment, which in combination with the increasing prevalence of antibiotic resistance among human pathogens further complicates treatment of biofilm-related device infections. We have developed a novel plasma coating technology. Trimethylsilane (TMS) was used as a monomer to coat the surfaces of 316L stainless steel and grade 5 titanium alloy, which are widely used in implantable medical devices. The results of biofilm assays demonstrated that this TMS coating markedly decreased S. epidermidis biofilm formation by inhibiting the attachment of bacterial cells to the TMS-coated surfaces during the early phase of biofilm development. We also discovered that bacterial cells on the TMS-coated surfaces were more susceptible to antibiotic treatment than their counterparts in biofilms on uncoated surfaces. These findings suggested that TMS coating could result in a surface that is resistant to biofilm development and also in a bacterial community that is more sensitive to antibiotic therapy than typical biofilms. PMID:22964248

  13. [Involvement of the global regulators GrrS, RpoS, and SplIR in formation of biofilms in Serratia plymuthica].

    Science.gov (United States)

    Zaĭtseva, Iu V; Voloshina, P V; Liu, X; Ovadis, M I; Berg, G; Chernin, L S; Khmel', I A

    2010-05-01

    Most bacteria exist in the natural environment as biofilms, multicellular communities attached to hard surfaces. Biofilms have a characteristic architecture and are enclosed in the exopolymer matrix. Bacterial cells in biofilms are extremely resistant to antibacterial factors. It was shown in this work that the GrrA/GrrS system of global regulators of gene expression and the sigma S subunit of RNA polymerase (RpoS) play a significant role in positive regulation of biofilm formation in the rhizospheric bacterium Serratia plymuthica IC1270. Inactivation of grrS and rpoS genes resulted in an up to six-to-sevenfold and four-to-fivefold reduction in biofilm formation, respectively. Mutations in the grrS gene decreased the capacity of the bacterium for swarming motility. The splIR Quorum Sensing (QS) system was shown to negatively influence the biofilm formation. Transfer of the recombinant plasmid containing cloned genes splI/splR of S. plymuthica HRO-C48 into S. plymuthica IC1270 cells led to a twofold decrease of their ability to form biofilms. Inactivation of the splI gene coding for the synthase of N-acyl-homoserine lactones in S. plymuthica HRO-C48 resulted in a 2-2.5-fold increase in the level of biofilm formation, whereas the inclusion of plasmid carrying the cloned splI/splR genes into these mutant cells restored the biofilm formation to the normal level. The results obtained demonstrate that the formation of biofilms in S. plymuthica is positively regulated by the GrrA/GrrS and RpoS global regulators and is negatively regulated by the SplIR QS system.

  14. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential

    OpenAIRE

    Oliveira,Maíra Maciel Mattos de; Brugnera,Danilo Florisvaldo; Alves,Eduardo; Piccoli,Roberta Hilsdorf

    2010-01-01

    An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4) stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 ?C and stirring of 50 rpm. The number of adhered cells was de...

  15. Regulation of Burkholderia cenocepacia biofilm formation by RpoN and the c-di-GMP effector BerB

    DEFF Research Database (Denmark)

    Fazli, Mustafa; Rybtke, Morten Levin; Steiner, Elisabeth

    2017-01-01

    Knowledge about the molecular mechanisms that are involved in the regulation of biofilm formation is essential for the development of biofilm-control measures. It is well established that the nucleotide second messenger cyclic diguanosine monophosphate (c-di-GMP) is a positive regulator of biofilm...... formation in many bacteria, but more knowledge about c-di-GMP effectors is needed. We provide evidence that c-di-GMP, the alternative sigma factor RpoN (σ54), and the enhancer-binding protein BerB play a role in biofilm formation of Burkholderia cenocepacia by regulating the production of a biofilm......-stabilizing exopolysaccharide. Our findings suggest that BerB binds c-di-GMP, and activates RpoN-dependent transcription of the berA gene coding for a c-di-GMP-responsive transcriptional regulator. An increased level of the BerA protein in turn induces the production of biofilm-stabilizing exopolysaccharide in response to high...

  16. FLO11 expression and lipid biosynthesis are required for air-liquid biofilm formation in a Saccharomyces cerevisiae flor strain.

    Science.gov (United States)

    Zara, Giacomo; Goffrini, Paola; Lodi, Tiziana; Zara, Severino; Mannazzu, Ilaria; Budroni, Marilena

    2012-11-01

    Air-liquid biofilm formation is largely dependent on Flo11p and seems related to cell lipid content and composition. Here, it is shown that in the presence of cerulenin, a known inhibitor of the fatty acid synthase complex, biofilm formation is inhibited together with FLO11 transcription in a flor strain of Saccharomyces cerevisiae, while the administration of saturated fatty acids to cerulenin-containing medium restores biofilm formation and FLO11 transcription. It is also shown that, in biofilm cells, the FLO11 transcription is accompanied by the transcription of ACC1, ACS1 and INO1 key genes in lipid biosynthesis and that biofilm formation is affected by the lack of inositol in flor medium. These results are compatible with the hypothesis that the air-liquid biofilm formation depends on FLO11 transcription levels as well as on fatty acids biosynthesis. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Anti-Candida activity assessment of Pelargonium graveolens oil free and nanoemulsion in biofilm formation in hospital medical supplies.

    Science.gov (United States)

    Giongo, Janice Luehring; de Almeida Vaucher, Rodrigo; Fausto, Viviane Pedroso; Quatrin, Priscilla Maciel; Lopes, Leonardo Quintana Soares; Santos, Roberto Christ Vianna; Gündel, André; Gomes, Patrícia; Steppe, Martin

    2016-11-01

    Infections due to microbial biofilm formation on the surface of catheters and other medical devices are constantly reported as a major cause of morbidity and mortality in patients admitted to hospitals. Furthermore, sessile cells are more resistant to phagocytosis and most antimicrobial, which complicates the treatment of such infections. Researches aimed at new antimicrobial originating mainly from plants have increased in recent years and the development of new strategies for their release is critical in combating the formation of biofilms. Geranium oil (GO) has proven antimicrobial activity. Because of this, the aim of this study was to develop nanoemulsions containing this oil (NEG) and evaluate its activity after the biofilm formation of Candida albicans, Candida tropicalis, Candida glabrata, and Candida krusei in hospital medical supplies. For quantification of the biofilm, crystal violet, total protein, and ATP-bioluminescence assays were used. The results revealed that GO and NEG showed lower MIC for C. albicans and C. tropicalis. The biofilms formed by different species of Candida on the surfaces of polyethylene and polyurethane were quantified. GO and NEG significantly inhibited the formation of biofilms in all species tested on the surfaces of polyethylene. However, NEG antibiofilm has had better activity than GO for C. albicans, C. tropicalis and C. glabrata, according to the surface potential analysis by atomic force microscopy (AFM). The analysis of the biofilm formation on the polyethylene surface by ATP-bioluminescence and CFU showed similar results. In both methods the formation of biofilm in the catheter occurred in greater quantity for C. albicans and C. tropicalis. GO did not significantly inhibit the formation of biofilms only in C. krusei, although NEG significantly increased this activity GO in all species tested when compared to the control training biofilm. The following study shows that the development of NEG may become an effective

  18. Effects of Miramistin and Phosprenil on Microbial Biofilms.

    Science.gov (United States)

    Danilova, T A; Danilina, G A; Adzhieva, A A; Minko, A G; Nikolaeva, T N; Zhukhovitskii, V G; Pronin, A V

    2017-08-01

    Effects of Miramistin and Phosprenil on biofilms of S. pyogenes, S. aureus, E. coli, L. acidophilus, and L. plantarum were studied. Significant differences in the effects of these substances on mature biofilms of microorganisms and the process of their formation were observed. Miramistin had significant inhibiting effects on the forming of biofilms and on the formed biofilms of all studied microorganisms. Treatment with Miramistin inhibited biofilm formation by 2-3 times compared to the control. This effect was found already after using of Miramistin in the low doses (3.12 μg/ml). Inhibition of the growth of a formed biofilm was observed only after treatment with Miramistin in the high doses (25-50 μg/ml). Phosprenil in the high doses (15-30 mg/ml) inhibited the forming of biofilms, especially the biofilms of S. pyogenes and L. plantarum (by 3-4.5 times). Treatment of formed biofilms with the agent in doses of 6.0 and 0.6 mg/ml was associated with pronounced stimulation of its growth in S. pyogenes, S. aureus, and L. acidophilus.

  19. Biofilm Formation on Different Materials Used in Oral Rehabilitation.

    Science.gov (United States)

    Souza, Júlio C M; Mota, Raquel R C; Sordi, Mariane B; Passoni, Bernardo B; Benfatti, Cesar A M; Magini, Ricardo S

    2016-01-01

    The aim of this study was to evaluate the density and the morphological aspects of biofilms adhered to different materials applied in oral rehabilitation supported by dental implants. Sixty samples were divided into four groups: feldspar-based porcelain, CoCr alloy, commercially pure titanium grade IV and yttria-stabilized zirconia. Human saliva was diluted into BHI supplemented with sucrose to grow biofilms for 24 or 48 h. After this period, biofilm was removed by 1% protease treatment and then analyzed by spectrophotometry (absorbance), colony forming unit method (CFU.cm-2) and field-emission guns scanning electron microscopy (FEG-SEM). The highest values of absorbance and CFU.cm-2 were recorded on biofilms grown on CoCr alloys when compared to the other test materials for 24 or 48 h. Also, FEG-SEM images showed a high biofilm density on CoCr. There were no significant differences in absorbance and CFU.cm-2 between biofilms grown on zirconia, porcelain and titanium (p<0.05). Microbiological assays associated with microscopic analyses detected a higher accumulation of oral biofilms on CoCr-based materials than that on titanium or zirconia that are used for prosthetic structures.

  20. Staphylococcus aureus biofilm removal by targeting biofilm-associated extracellular proteins

    Directory of Open Access Journals (Sweden)

    Sudhir K Shukla

    2017-01-01

    Methods: Biofilm assay was done in 96-well microtitre plate to evaluate the effect of proteinase K on biofilms of bovine mastitis S. Aureus isolates. Extracellular polymeric substances were extracted and evaluated for their composition (protein, polysaccharides and extracellular DNA, before and after the proteinase K treatment. Results: Biofilm assay showed that 2 μg/ml proteinase K significantly inhibited biofilm development in bap-positive S. aureus V329 as well as other S. aureus isolates (SA7, SA10, SA33, SA352, but not in bap-mutant M556 and SA392 (a weak biofilm-producing strain. Proteinase K treatment on S. aureus planktonic cells showed that there was no inhibition of planktonic growth up to 32 μg/ml of proteinase K. Proteinase K treatment on 24 h old preformed biofilms showed an enhanced dispersion of bap-positive V329 and SA7, SA10, SA33 and SA352 biofilms; however, proteinase K did not affect the bap-mutant S. aureus M556 and SA392 biofilms. Biofilm compositions study before and after proteinase K treatment indicated that Bap might also be involved in eDNA retention in the biofilm matrix that aids in biofilm stability. When proteinase K was used in combination with antibiotics, a synergistic effect in antibiotic efficacy was observed against all biofilm-forming S. aureus isolates. Interpretation & conclusions: Proteinase K inhibited biofilms growth in S. aureus bovine mastitis isolates but did not affect their planktonic growth. An enhanced dispersion of preformed S. aureus biofilms was observed on proteinase K treatment. Proteinase K treatment with antibiotics showed a synergistic effect against S. aureus biofilms. The study suggests that dispersing S. aureus by protease can be of use while devising strategies againstS. aureus biofilms.

  1. Biofilm characteristics and evaluation of the sanitation procedures of thermophilic Aeribacillus pallidus E334 biofilms.

    Science.gov (United States)

    Kilic, Tugba; Karaca, Basar; Ozel, Beste Piril; Ozcan, Birgul; Cokmus, Cumhur; Coleri Cihan, Arzu

    2017-04-01

    The ability of Aeribacillus pallidus E334 to produce pellicle and form a biofilm was studied. Optimal biofilm formation occurred at 60 °C, pH 7.5 and 1.5% NaCl. Extra polymeric substances (EPS) were composed of proteins and eDNA (21.4 kb). E334 formed biofilm on many surfaces, but mostly preferred polypropylene and glass. Using CLSM analysis, the network-like structure of the EPS was observed. The A. pallidus biofilm had a novel eDNA content. DNaseI susceptibility (86.8% removal) of eDNA revealed its importance in mature biofilms, but the purified eDNA was resistant to DNaseI, probably due to its extended folding outside the matrix. Among 15 cleaning agents, biofilms could be removed with alkaline protease and sodium dodecyl sulphate (SDS). The removal of cells from polypropylene and biomass on glass was achieved with combined SDS/alkaline protease treatment. Strong A. pallidus biofilms could cause risks for industrial processes and abiotic surfaces must be taken into consideration in terms of sanitation procedures.

  2. Bistability and Biofilm Formation in Bacillus subtilis

    Science.gov (United States)

    Chai, Yunrong; Chu, Frances; Kolter, Roberto; Losick, Richard

    2008-01-01

    Summary Biofilms of Bacillus subtilis consist of long chains of cells that are held together in bundles by an extracellular matrix of exopolysaccharide and the protein TasA. The exopolysaccharide is produced by enzymes encoded by the epsA-O operon and the gene encoding TasA is located in the yqxM-sipW-tasA operon. Both operons are under the control of the repressor SinR. Derepression is mediated by the antirepressor SinI, which binds to SinR with a 1:1 stoichiometry. Paradoxically, in medium promoting derepression of the matrix operons, the overall concentration of SinR in the culture greatly exceeded that of SinI. We show that under biofilm-promoting conditions sinI, which is under the control of the response regulator Spo0A, was expressed only in a small subpopulation of cells, whereas sinR was expressed in almost all cells. Activation of Spo0A is known to be subject to a bistable switch, and we infer that SinI reaches levels sufficient to trigger matrix production only in the subpopulation of cells in which Spo0A is active. Additionally, evidence suggests that sinI is expressed at intermediate, but not low or high, levels of Spo0A activity, which may explain why certain nutritional conditions are more effective in promoting biofilm formation than others. PMID:18047568

  3. Streptococcus mutans Can Modulate Biofilm Formation and Attenuate the Virulence of Candida albicans

    Science.gov (United States)

    Barbosa, Júnia Oliveira; Rossoni, Rodnei Dennis; Vilela, Simone Furgeri Godinho; de Alvarenga, Janaína Araújo; Velloso, Marisol dos Santos; Prata, Márcia Cristina de Azevedo; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Streptococcus mutans and Candida albicans are found together in the oral biofilms on dental surfaces, but little is known about the ecological interactions between these species. Here, we studied the effects of S. mutans UA159 on the growth and pathogencity of C. albicans. Initially, the effects of S. mutans on the biofilm formation and morphogenesis of C. albicans were tested in vitro. Next, we investigate the influence of S. mutans on pathogenicity of C. albicans using in vivo host models, in which the experimental candidiasis was induced in G. mellonella larvae and analyzed by survival curves, C. albicans count in hemolymph, and quantification of hyphae in the host tissues. In all the tests, we evaluated the direct effects of S. mutans cells, as well as the indirect effects of the subproducts secreted by this microorganism using a bacterial culture filtrate. The in vitro analysis showed that S. mutans cells favored biofilm formation by C. albicans. However, a reduction in biofilm viable cells and inhibition of hyphal growth was observed when C. albicans was in contact with the S. mutans culture filtrate. In the in vivo study, injection of S. mutans cells or S. mutans culture filtrate into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, a reduction in hyphal formation was observed in larval tissues when C. albicans was associated with S. mutans culture filtrate. These findings suggest that S. mutans can secrete subproducts capable to inhibit the biofilm formation, morphogenesis and pathogenicity of C. albicans, attenuating the experimental candidiasis in G. mellonella model. PMID:26934196

  4. The effect of environmental conditions on biofilm formation of Burkholderia pseudomallei clinical isolates.

    Directory of Open Access Journals (Sweden)

    Nur Siti K Ramli

    Full Text Available Burkholderia pseudomallei, a Gram-negative saprophytic bacterium, is the causative agent of the potentially fatal melioidosis disease in humans. In this study, environmental parameters including temperature, nutrient content, pH and the presence of glucose were shown to play a role in in vitro biofilm formation by 28 B. pseudomallei clinical isolates, including four isolates with large colony variants (LCVs and small colony variants (SCVs morphotypes. Enhanced biofilm formation was observed when the isolates were tested in LB medium, at 30 °C, at pH 7.2, and in the presence of as little as 2 mM glucose respectively. It was also shown that all SVCs displayed significantly greater capacity to form biofilms than the corresponding LCVs when cultured in LB at 37 °C. In addition, octanoyl-homoserine lactone (C(8-HSL, a quorum sensing molecule, was identified by mass spectrometry analysis in bacterial isolates referred to as LCV CTH, LCV VIT, SCV TOM, SCV CTH, 1 and 3, and the presence of other AHL's with higher masses; decanoyl-homoserine lactone (C(10-HSL and dodecanoyl-homoserine lactone (C(12-HSL were also found in all tested strain in this study. Last but not least, we had successfully acquired two Bacillus sp. soil isolates, termed KW and SA respectively, which possessed strong AHLs degradation activity. Biofilm formation of B. pseudomallei isolates was significantly decreased after treated with culture supernatants of KW and SA strains, demonstrating that AHLs may play a role in B. pseudomallei biofilm formation.

  5. Discovering Biofilms: Inquiry-Based Activities for the Classroom

    Science.gov (United States)

    Redelman, Carly V.; Marrs, Kathleen; Anderson, Gregory G.

    2012-01-01

    In nature, bacteria exist in and adapt to different environments by forming microbial communities called "biofilms." We propose simple, inquiry-based laboratory exercises utilizing a biofilm formation assay, which allows controlled biofilm growth. Students will be able to qualitatively assess biofilm growth via staining. Recently, we developed a…

  6. Novel method for quantitative estimation of biofilms

    DEFF Research Database (Denmark)

    Syal, Kirtimaan

    2017-01-01

    Biofilm protects bacteria from stress and hostile environment. Crystal violet (CV) assay is the most popular method for biofilm determination adopted by different laboratories so far. However, biofilm layer formed at the liquid-air interphase known as pellicle is extremely sensitive to its washing...... and staining steps. Early phase biofilms are also prone to damage by the latter steps. In bacteria like mycobacteria, biofilm formation occurs largely at the liquid-air interphase which is susceptible to loss. In the proposed protocol, loss of such biofilm layer was prevented. In place of inverting...... and discarding the media which can lead to the loss of the aerobic biofilm layer in CV assay, media was removed from the formed biofilm with the help of a syringe and biofilm layer was allowed to dry. The staining and washing steps were avoided, and an organic solvent-tetrahydrofuran (THF) was deployed...

  7. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains....... Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance...

  8. Effects of Oxygen on Biofilm Formation and the AtlA Autolysin of Streptococcus mutans▿

    OpenAIRE

    Ahn, Sang-Joon; Burne, Robert A.

    2007-01-01

    The Streptococcus mutans atlA gene encodes an autolysin required for biofilm maturation and biogenesis of a normal cell surface. We found that the capacity to form biofilms by S. mutans, one of the principal causative agents of dental caries, was dramatically impaired by growth of the organism in an aerated environment and that cells exposed to oxygen displayed marked changes in surface protein profiles. Inactivation of the atlA gene alleviated repression of biofilm formation in the presence ...

  9. Synergistic effects in mixed Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Holler, B.M.; Molin, Søren

    2006-01-01

    Bacterial biofilms, often composed of multiple species and genetically distinct strains, develop under complex influences of cell-cell interactions. Although detailed knowledge about the mechanisms underlying formation of single-species laboratory biofilms has emerged, little is known about...... the pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from...... the cocultivation of 403 undomesticated E. coli strains with a characterized E. coli K-12 strain was detected at a significant frequency. The survey suggests that different mechanisms underlie the observed stimulation, yet synergistic development of biofilm within the subset of E. coli isolates (n = 56) exhibiting...

  10. Efficacy of NVC-422 against Staphylococcus aureus biofilms in a sheep biofilm model of sinusitis.

    Science.gov (United States)

    Singhal, Deepti; Jekle, Andreas; Debabov, Dmitri; Wang, Lu; Khosrovi, Bez; Anderson, Mark; Foreman, Andrew; Wormald, Peter-John

    2012-01-01

    Bacterial biofilms are a major obstacle in management of recalcitrant chronic rhinosinusitis. NVC-422 is a potent, fast-acting, broad-spectrum, nonantibiotic, antimicrobial with a new mechanism of action effective against biofilm bacteria in in vitro conditions. The aim of this study was to investigate the safety and efficacy of NVC-422 as local antibiofilm treatment in a sheep model of rhinosinusitis. After accessing and occluding frontal sinus ostia in 24 merino sheep via staged endoscopic procedures, S. aureus clinical isolate was instilled in frontal sinuses. Following biofilm formation, ostial obstruction was removed and sinuses irrigated with 0.1% and 0.5% NVC-422 in 5 mM acetate isotonic saline at pH 4.0. Sheep were monitored for adverse effects and euthanized 24 hours after treatment. Frontal sinuses were assessed for infection and changes in mucosa after the treatment. S. aureus biofilms were identified with Baclight-confocal scanning microscopy protocol and the biofilm biomass assayed by applying the COMSTAT2 program to recorded image stacks. After 2 irrigations with 0.1% NVC-422, S. aureus biofilm biomass was reduced when compared to control sinuses (p = 0.0001), though this effect was variable in samples. NVC-422 0.5% solution irrigations reduced biofilm even more significantly and consistently over all samples (p biofilm biomass (p biofilms, with dose-dependent efficacy in this animal model of biofilm-associated sinusitis. Copyright © 2012 American Rhinologic Society-American Academy of Otolaryngic Allergy, LLC.

  11. Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Raghupathi, Prem Krishnan; Herschend, Jakob

    2015-01-01

    Bacterial attachment and biofilm formation can lead to poor hygienic conditions in food processing environments. Furthermore, interactions between different bacteria may induce or promote biofilm formation. In this study, we isolated and identified a total of 687 bacterial strains from seven......-culture biofilm production with high relevance for food safety and food production facilities....

  12. Biofilm formation and antimicrobial sensitivity of lactobacilli contaminants from sugarcane-based fuel ethanol fermentation.

    Science.gov (United States)

    Dellias, Marina de Toledo Ferraz; Borges, Clóvis Daniel; Lopes, Mário Lúcio; da Cruz, Sandra Helena; de Amorim, Henrique Vianna; Tsai, Siu Mui

    2018-02-24

    Industrial ethanol fermentation is subject to bacterial contamination that causes significant economic losses in ethanol fuel plants. Chronic contamination has been associated with biofilms that are normally more resistant to antimicrobials and cleaning efforts than planktonic cells. In this study, contaminant species of Lactobacillus isolated from biofilms (source of sessile cells) and wine (source of planktonic cells) from industrial and pilot-scale fermentations were compared regarding their ability to form biofilms and their sensitivity to different antimicrobials. Fifty lactobacilli were isolated and the most abundant species were Lactobacillus casei, Lactobacillus fermentum and Lactobacillus plantarum. The majority of the isolates (87.8%) were able to produce biofilms in pure culture. The capability to form biofilms and sensitivity to virginiamycin, monensin and beta-acids from hops, showed inter- and intra-specific variability. In the pilot-scale fermentation, Lactobacillus brevis, L. casei and the majority of L. plantarum isolates were less sensitive to beta-acids than their counterparts from wine; L. brevis isolates from biofilms were also less sensitive to monensin when compared to the wine isolates. Biofilm formation and sensitivity to beta-acids showed a positive and negative correlation for L. casei and L. plantarum, respectively.

  13. Inhibition of biofilm formation by D-tyrosine: Effect of bacterial type and D-tyrosine concentration.

    Science.gov (United States)

    Yu, Cong; Li, Xuening; Zhang, Nan; Wen, Donghui; Liu, Charles; Li, Qilin

    2016-04-01

    D-Tyrosine inhibits formation and triggers disassembly of bacterial biofilm and has been proposed for biofouling control applications. This study probes the impact of D-tyrosine in different biofilm formation stages in both G+ and G- bacteria, and reveals a non-monotonic correlation between D-tyrosine concentration and biofilm inhibition effect. In the attachment stage, cell adhesion was studied in a flow chamber, where D-tyrosine caused significant reduction in cell attachment. Biofilms formed by Pseudomonas aeruginosa and Bacillus subtilis were characterized by confocal laser scanning microscopy as well as quantitative analysis of cellular biomass and extracellular polymeric substances. D-Tyrosine exhibited strong inhibitive effects on both biofilms with an effective concentration as low as 5 nM; the biofilms responded to D-tyrosine concentration change in a non-monotonic, bi-modal pattern. In addition, D-tyrosine showed notable and different impact on EPS production by G+ and G- bacteria. Extracellular protein was decreased in P. aeruginosa biofilms, but increased in those of B. subtilis. Exopolysaccharides production by P. aeruginosa was increased at low concentrations and reduced at high concentrations while no impact was found in B. subtilis. These results suggest that distinct mechanisms are at play at different D-tyrosine concentrations and they may be species specific. Dosage of D-tyrosine must be carefully controlled for biofouling control applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Anti-Biofilm and Immunomodulatory Activities of Peptides That Inhibit Biofilms Formed by Pathogens Isolated from Cystic Fibrosis Patients

    Directory of Open Access Journals (Sweden)

    César de la Fuente-Núñez

    2014-10-01

    Full Text Available Cystic fibrosis (CF patients often acquire chronic respiratory tract infections due to Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc species. In the CF lung, these bacteria grow as multicellular aggregates termed biofilms. Biofilms demonstrate increased (adaptive resistance to conventional antibiotics, and there are currently no available biofilm-specific therapies. Using plastic adherent, hydroxyapatite and flow cell biofilm models coupled with confocal and scanning electron microscopy, it was demonstrated that an anti-biofilm peptide 1018 prevented biofilm formation, eradicated mature biofilms and killed biofilms formed by a wide range of P. aeruginosa and B. cenocepacia clinical isolates. New peptide derivatives were designed that, compared to their parent peptide 1018, showed similar or decreased anti-biofilm activity against P. aeruginosa biofilms, but increased activity against biofilms formed by the Gram-positive bacterium methicillin resistant Staphylococcus aureus. In addition, some of these new peptide derivatives retained the immunomodulatory activity of 1018 since they induced the production of the chemokine monocyte chemotactic protein-1 (MCP-1 and suppressed lipopolysaccharide-mediated tumor necrosis factor-α (TNF-α production by human peripheral blood mononuclear cells (PBMC and were non-toxic towards these cells. Peptide 1018 and its derivatives provide promising leads for the treatment of chronic biofilm infections and hyperinflammatory lung disease in CF patients.

  15. Biofilms in Infections of the Eye

    Directory of Open Access Journals (Sweden)

    Paulo J. M. Bispo

    2015-03-01

    Full Text Available The ability to form biofilms in a variety of environments is a common trait of bacteria, and may represent one of the earliest defenses against predation. Biofilms are multicellular communities usually held together by a polymeric matrix, ranging from capsular material to cell lysate. In a structure that imposes diffusion limits, environmental microgradients arise to which individual bacteria adapt their physiologies, resulting in the gamut of physiological diversity. Additionally, the proximity of cells within the biofilm creates the opportunity for coordinated behaviors through cell–cell communication using diffusible signals, the most well documented being quorum sensing. Biofilms form on abiotic or biotic surfaces, and because of that are associated with a large proportion of human infections. Biofilm formation imposes a limitation on the uses and design of ocular devices, such as intraocular lenses, posterior contact lenses, scleral buckles, conjunctival plugs, lacrimal intubation devices and orbital implants. In the absence of abiotic materials, biofilms have been observed on the capsule, and in the corneal stroma. As the evidence for the involvement of microbial biofilms in many ocular infections has become compelling, developing new strategies to prevent their formation or to eradicate them at the site of infection, has become a priority.

  16. Biofilm formation and disinfectant resistance of Salmonella sp. in mono- and dual-species with Pseudomonas aeruginosa.

    Science.gov (United States)

    Pang, X Y; Yang, Y S; Yuk, H G

    2017-09-01

    This study aimed to evaluate the biofilm formation and disinfectant resistance of Salmonella cells in mono- and dual-species biofilms with Pseudomonas aeruginosa, and to investigate the role of extracellular polymeric substances (EPS) in the protection of biofilms against disinfection treatment. The populations of Salmonella in mono- or dual-species biofilms with P. aeruginosa on stainless steel (SS) coupons were determined before and after exposure to commercial disinfectant, 50 μg ml -1 chlorine or 200 μg ml -1 Ecolab ® Whisper™ V (a blend of four effective quaternary ammonium compounds (QAC)). In addition, EPS amount from biofilms was quantified and biofilm structures were observed using scanning electron microscopy (SEM). Antagonistic interactions between Salmonella and P. aeruginosa resulted in lower planktonic population level of Salmonella, and lower density in dual-species biofilms compared to mono-species biofilms. The presence of P. aeruginosa significantly enhanced disinfectant resistance of S. Typhimurium and S. Enteritidis biofilm cells for 2 days, and led to an average of 50% increase in polysaccharides amount in dual-species biofilms than mono-species biofilms of Salmonella. Microscopy observation showed the presence of large microcolonies covered by EPS in dual-species biofilms but not in mono-species ones. The presence of P. aeruginosa in dual-species culture inhibited the growth of Salmonella cells in planktonic phase and in biofilms, but protected Salmonella cells in biofilms from disinfection treatment, by providing more production of EPS in dual-species biofilms than mono-species ones. This study provides insights into inter-species interaction, with regard to biofilm population dynamics and disinfectant resistance. Thus, a sanitation protocol should be designed considering the protective role of secondary species to pathogens in biofilms on SS surface which has been widely used at food surfaces and manufacturers. © 2017 The Society

  17. Mycobacterium avium Possesses Extracellular DNA that Contributes to Biofilm Formation, Structural Integrity, and Tolerance to Antibiotics.

    Directory of Open Access Journals (Sweden)

    Sasha J Rose

    Full Text Available Mycobacterium avium subsp. hominissuis is an opportunistic pathogen that is associated with biofilm-related infections of the respiratory tract and is difficult to treat. In recent years, extracellular DNA (eDNA has been found to be a major component of bacterial biofilms, including many pathogens involved in biofilm-associated infections. To date, eDNA has not been described as a component of mycobacterial biofilms. In this study, we identified and characterized eDNA in a high biofilm-producing strain of Mycobacterium avium subsp. hominissuis (MAH. In addition, we surveyed for presence of eDNA in various MAH strains and other nontuberculous mycobacteria. Biofilms of MAH A5 (high biofilm-producing strain and MAH 104 (reference strain were established at 22°C and 37°C on abiotic surfaces. Acellular biofilm matrix and supernatant from MAH A5 7 day-old biofilms both possess abundant eDNA, however very little eDNA was found in MAH 104 biofilms. A survey of MAH clinical isolates and other clinically relevant nontuberculous mycobacterial species revealed many species and strains that also produce eDNA. RAPD analysis demonstrated that eDNA resembles genomic DNA. Treatment with DNase I reduced the biomass of MAH A5 biofilms when added upon biofilm formation or to an already established biofilm both on abiotic surfaces and on top of human pharyngeal epithelial cells. Furthermore, co-treatment of an established biofilm with DNase 1 and either moxifloxacin or clarithromycin significantly increased the susceptibility of the bacteria within the biofilm to these clinically used antimicrobials. Collectively, our results describe an additional matrix component of mycobacterial biofilms and a potential new target to help treat biofilm-associated nontuberculous mycobacterial infections.

  18. The effect of biologically and chemically synthesized silver nanoparticles (AgNPs) on biofilm formation

    Science.gov (United States)

    Chojniak, Joanna; Biedroń, Izabela; Mendrek, Barbara; Płaza, Grażyna

    2017-11-01

    Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosynthetic and environmental-friendly technology for synthesis of nanomaterials. Different types of nanomaterials like copper, zinc, titanium, magnesium, gold, and silver have applied in the various industries but silver nanoparticles have proved to be most effective against bacteria, viruses and eukaryotic microorganisms. The antimicrobial property of silver nanoparticles are widely known. Due to strong antibacterial property silver nanoparticles are used, e.g. in clothing, food industry, sunscreens, cosmetics and many household and environmental appliances. The aim of the study was to compare the effect of silver nanoparticles (AgNPs) synthesized biologically and chemically on the biofilm formation. The biofilm was formed by the bacteria isolated from the water supply network. The commonly used crystal violet assay (CV) was applied for biofilm analysis. In this study effect of biologically synthesized Ag-NPs on the biofilm formation was evaluated.

  19. Zinc oxide nanoparticle reduced biofilm formation and antigen 43 expressions in uropathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ali Shakerimoghaddam

    2017-04-01

    Full Text Available Objective(s: This study aimed to investigate the effect of zinc oxide nanoparticles (ZnO-np on biofilm formation and expression of the flu gene in uropathogenic Escherichia coli (UPEC strains. Materials and Methods: Minimum inhibitory concentration (MIC of ZnO-np was determined by agar dilution method. The effect of MIC and sub-MIC concentrations of ZnO-np on biofilm formation were determined by microtiter plate assay. The expression level of the flu gene was assessed by Real-Time PCR assay. Results: MIC and sub-MIC ZnO-np concentrations reduced biofilm formation by 50% and 33.4%, respectively. Sub-MIC ZnO-np concentration significantly reduced the flu gene expression in the UPEC isolates (P

  20. Modelling the growth of a methanotrophic biofilm

    DEFF Research Database (Denmark)

    Arcangeli, J.-P.; Arvin, E.

    1999-01-01

    This article discusses the growth of methanotrophic biofilms. Several independent biofilm growths scenarios involving different inocula were examined. Biofilm growth, substrate removal and product formation were monitored throughout the experiments. Based on the oxygen consumption it was concluded...... that heterotrophs and nitrifiers co-existed with methanotrophs in the biofilm. Heterotrophic biomass grew on soluble polymers formed by the hydrolysis of dead biomass entrapped in the biofilm. Nitrifier populations developed because of the presence of ammonia in the mineral medium. Based on these experimental...... was performed on this model. It indicated that the most influential parameters were those related to the biofilm (i.e. density; solid-volume fraction; thickness). This suggests that in order to improve the model, further research regarding the biofilm structure and composition is needed....

  1. Dichromatic and monochromatic laser radiation effects on antibiotic resistance, biofilm formation, and division rate of Pantoea agglomerans

    Science.gov (United States)

    Thomé, A. M. C.; Souza, B. P.; Mendes, J. P. M.; Cardoso, A. F. R.; Soares, L. C.; Trajano, E. T. L.; Fonseca, A. S.

    2018-06-01

    Since infection is a common cause of delayed wound healing, it is important to understand the effect of low-level laser therapy (LLLT) in bacterial mechanisms. In this study we evaluated the effects of LLLT on antibiotic resistance, division rate, and biofilm formation of Pantoea agglomerans. P. agglomerans samples were isolated from human pressure injuries in humans and cultures were exposed to low-level monochromatic and simultaneous dichromatic laser radiation to study the susceptibility of an antimicrobial to ampicillin and piperacillin  +  tazobactam, quantification of areas of bacterial colonies, and biofilm formation of bacterial cells. Fluence, wavelength, and emission mode were used in the therapeutic protocols for wound healing. The data showed no changes in the areas of the colonies, but dichromatic laser radiation decreased biofilm formation, while a monochromatic red laser at low dose increased biofilm formation and infrared at high dose decreased antibiotic resistance to ampicillin. LLLT modulates antibiotic resistance and biofilm formation of P. agglomerans, but these depend on the laser irradiation parameters, since dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation. Thus, simultaneous dichromatic low-level red and infrared lasers could be a new option for the treatment of infected wounds, reducing biofilm formation, without altering antibiotic resistance and the division rate of P. agglomerans cultures.

  2. Biofilm formation by designed co-cultures of Caldicellulosiruptor species as a means to improve hydrogen productivity.

    Science.gov (United States)

    Pawar, Sudhanshu S; Vongkumpeang, Thitiwut; Grey, Carl; van Niel, Ed Wj

    2015-01-01

    Caldicellulosiruptor species have gained a reputation as being among the best microorganisms to produce hydrogen (H2) due to possession of a combination of appropriate features. However, due to their low volumetric H2 productivities (Q H2), Caldicellulosiruptor species cannot be considered for any viable biohydrogen production process yet. In this study, we evaluate biofilm forming potential of pure and co-cultures of Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor owensensis in continuously stirred tank reactors (CSTR) and up-flow anaerobic (UA) reactors. We also evaluate biofilms as a means to retain biomass in the reactor and its influence on Q H2. Moreover, we explore the factors influencing the formation of biofilm. Co-cultures of C. saccharolyticus and C. owensensis form substantially more biofilm than formed by C. owensensis alone. Biofilms improved substrate conversion in both of the reactor systems, but improved the Q H2 only in the UA reactor. When grown in the presence of each other's culture supernatant, both C. saccharolyticus and C. owensensis were positively influenced on their individual growth and H2 production. Unlike the CSTR, UA reactors allowed retention of C. saccharolyticus and C. owensensis when subjected to very high substrate loading rates. In the UA reactor, maximum Q H2 (approximately 20 mmol · L(-1)  · h(-1)) was obtained only with granular sludge as the carrier material. In the CSTR, stirring negatively affected biofilm formation. Whereas, a clear correlation was observed between elevated (>40 μM) intracellular levels of the secondary messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) and biofilm formation. In co-cultures C. saccharolyticus fortified the trade of biofilm formation by C. owensensis, which was mediated by elevated levels of c-di-GMP in C. owensensis. These biofilms were effective in retaining biomass of both species in the reactor and improving Q H2 in a UA reactor using

  3. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations

    NARCIS (Netherlands)

    Burt, Sara A|info:eu-repo/dai/nl/140114432; Ojo-Fakunle, Victoria T A; Woertman, Jenifer; Veldhuizen, Edwin J A|info:eu-repo/dai/nl/19545264X

    2014-01-01

    The formation of biofilm by bacteria confers resistance to biocides and presents problems in medical and veterinary clinical settings. Here we report the effect of carvacrol, one of the major antimicrobial components of oregano oil, on the formation of biofilms and its activity on existing biofilms.

  4. Agriculturally important microbial biofilms: Present status and future prospects.

    Science.gov (United States)

    Velmourougane, Kulandaivelu; Prasanna, Radha; Saxena, Anil Kumar

    2017-07-01

    Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers

    International Nuclear Information System (INIS)

    Kruszewski, Kristen M.; Nistico, Laura; Longwell, Mark J.; Hynes, Matthew J.; Maurer, Joshua A.; Hall-Stoodley, Luanne; Gawalt, Ellen S.

    2013-01-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (− CH 3 ) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an “active” antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively. - Highlights: ► SS316L was modified with glycol terminated SAMs in order to reduce biofilm growth. ► Antibiotics gentamicin and vancomycin were immobilized on SS316L via SAMs. ► Only the antibiotic modifications reduced biofilm development on SS316L

  6. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Kruszewski, Kristen M., E-mail: kruszewskik@duq.edu [Duquesne University, Department of Chemistry and Biochemistry, 600 Forbes Avenue, Pittsburgh, PA 15282 (United States); Nistico, Laura, E-mail: lnistico@wpahs.org [Allegheny General Hospital, Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 East North Avenue, 11th floor, South Tower, Pittsburgh, PA 15212 (United States); Longwell, Mark J., E-mail: mlongwel@wpahs.org [Allegheny General Hospital, Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 East North Avenue, 11th floor, South Tower, Pittsburgh, PA 15212 (United States); Hynes, Matthew J., E-mail: mjhynes@go.wustl.edu [Washington University in St. Louis, Department of Chemistry, One Brookings Drive, St. Louis, MO 63130 (United States); Maurer, Joshua A., E-mail: maurer@wustl.edu [Washington University in St. Louis, Department of Chemistry, One Brookings Drive, St. Louis, MO 63130 (United States); Hall-Stoodley, Luanne, E-mail: L.Hall-Stoodley@soton.ac.uk [Southampton Wellcome Trust Clinical Research Facility/NIHR Respiratory BRU, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, Hampshire SO16 6YD (United Kingdom); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Duquesne University, Department of Chemistry and Biochemistry, McGowan Institute for Regenerative Medicine, 600 Forbes Avenue, Pittsburgh, PA 15282 (United States)

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (− CH{sub 3}) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an “active” antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively. - Highlights: ► SS316L was modified with glycol terminated SAMs in order to reduce biofilm growth. ► Antibiotics gentamicin and vancomycin were immobilized on SS316L via SAMs. ► Only the antibiotic modifications reduced biofilm development on SS316L.

  7. Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: carbon and energy flow contribute to the distinct biofilm growth state.

    Science.gov (United States)

    Clark, Melinda E; He, Zhili; Redding, Alyssa M; Joachimiak, Marcin P; Keasling, Jay D; Zhou, Jizhong Z; Arkin, Adam P; Mukhopadhyay, Aindrila; Fields, Matthew W

    2012-04-16

    Desulfovibrio vulgaris Hildenborough is a sulfate-reducing bacterium (SRB) that is intensively studied in the context of metal corrosion and heavy-metal bioremediation, and SRB populations are commonly observed in pipe and subsurface environments as surface-associated populations. In order to elucidate physiological changes associated with biofilm growth at both the transcript and protein level, transcriptomic and proteomic analyses were done on mature biofilm cells and compared to both batch and reactor planktonic populations. The biofilms were cultivated with lactate and sulfate in a continuously fed biofilm reactor, and compared to both batch and reactor planktonic populations. The functional genomic analysis demonstrated that biofilm cells were different compared to planktonic cells, and the majority of altered abundances for genes and proteins were annotated as hypothetical (unknown function), energy conservation, amino acid metabolism, and signal transduction. Genes and proteins that showed similar trends in detected levels were particularly involved in energy conservation such as increases in an annotated ech hydrogenase, formate dehydrogenase, pyruvate:ferredoxin oxidoreductase, and rnf oxidoreductase, and the biofilm cells had elevated formate dehydrogenase activity. Several other hydrogenases and formate dehydrogenases also showed an increased protein level, while decreased transcript and protein levels were observed for putative coo hydrogenase as well as a lactate permease and hyp hydrogenases for biofilm cells. Genes annotated for amino acid synthesis and nitrogen utilization were also predominant changers within the biofilm state. Ribosomal transcripts and proteins were notably decreased within the biofilm cells compared to exponential-phase cells but were not as low as levels observed in planktonic, stationary-phase cells. Several putative, extracellular proteins (DVU1012, 1545) were also detected in the extracellular fraction from biofilm cells

  8. Strategies for combating bacterial biofilm infections

    DEFF Research Database (Denmark)

    Wu, Hong; Moser, Claus Ernst; Wang, Heng-Zhuang

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the di.......International Journal of Oral Science advance online publication, 12 December 2014; doi:10.1038/ijos.2014.65....

  9. The effects of stainless steel finish on Salmonella Typhimurium attachment, biofilm formation and sensitivity to chlorine.

    Science.gov (United States)

    Schlisselberg, Dov B; Yaron, Sima

    2013-08-01

    Bacterial colonization and biofilm formation on stainless steel (SS) surfaces can be sources for cross contamination in food processing facilities, possessing a great threat to public health and food quality. Here the aim was to demonstrate the influence of surface finish of AISI 316 SS on colonization, biofilm formation and susceptibility of Salmonella Typhimurium to disinfection. Initial attachment of S. Typhimurium on surfaces of SS was four times lower, when surface was polished by Bright-Alum (BA) or Electropolishing (EP), as compared to Mechanical Sanded (MS) or the untreated surface (NT). The correlation between roughness and initial bacterial attachment couldn't account on its own to explain differences seen. Biofilms with similar thickness (15-18 μm) were developed on all surfaces 1-day post inoculation, whereas EP was the least covered surface (23%). Following 5-days, biofilm thickness was lowest on EP and MS (30 μm) and highest on NT (62 μm) surfaces. An analysis of surface composition suggested a link between surface chemistry and biofilm development, where the higher concentrations of metal ions in EP and MS surfaces correlated with limited biofilm formation. Interestingly, disinfection of biofilms with chlorine was up to 130 times more effective on the EP surface (0.005% surviving) than on the other surfaces. Overall these results suggest that surface finish should be considered carefully in a food processing plant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effects of Aronia melanocarpa Constituents on Biofilm Formation of Escherichia coli and Bacillus cereus

    Directory of Open Access Journals (Sweden)

    Marie Bräunlich

    2013-12-01

    Full Text Available Many bacteria growing on surfaces form biofilms. Adaptive and genetic changes of the microorganisms in this structure make them resistant to antimicrobial agents. Biofilm-forming organisms on medical devices can pose serious threats to human health. Thus, there is a need for novel prevention and treatment strategies. This study aimed to evaluate the ability of Aronia melanocarpa extracts, subfractions and compounds to prevent biofilm formation and to inhibit bacterial growth of Escherichia coli and Bacillus cereus in vitro. It was found that several aronia substances possessed anti-biofilm activity, however, they were not toxic to the species screened. This non-toxic inhibition may confer a lower potential for resistance development compared to conventional antimicrobials.

  11. The type III protein secretion system contributes to Xanthomonas citri subsp. citri biofilm formation

    KAUST Repository

    Zimaro, Tamara

    2014-04-18

    Background: Several bacterial plant pathogens colonize their hosts through the secretion of effector proteins by a Type III protein secretion system (T3SS). The role of T3SS in bacterial pathogenesis is well established but whether this system is involved in multicellular processes, such as bacterial biofilm formation has not been elucidated. Here, the phytopathogen Xanthomonas citri subsp. citri (X. citri) was used as a model to gain further insights about the role of the T3SS in biofilm formation. Results: The capacity of biofilm formation of different X. citri T3SS mutants was compared to the wild type strain and it was observed that this secretion system was necessary for this process. Moreover, the T3SS mutants adhered proficiently to leaf surfaces but were impaired in leaf-associated growth. A proteomic study of biofilm cells showed that the lack of the T3SS causes changes in the expression of proteins involved in metabolic processes, energy generation, exopolysaccharide (EPS) production and bacterial motility as well as outer membrane proteins. Furthermore, EPS production and bacterial motility were also altered in the T3SS mutants. Conclusions: Our results indicate a novel role for T3SS in X. citri in the modulation of biofilm formation. Since this process increases X. citri virulence, this study reveals new functions of T3SS in pathogenesis. 2014 Zimaro et al.; licensee BioMed Central Ltd.

  12. Chlorhexidine with or without alcohol against biofilm formation: efficacy, adverse events and taste preference

    Directory of Open Access Journals (Sweden)

    Gabriela Otero dos SANTOS

    2017-05-01

    Full Text Available Abstract In recent years, different chlorhexidine formulations have been tested, including an alcohol-free alternative, but the effect of this solution on early biofilm formation is not clear. A crossover, randomized, double-blind clinical trial was conducted to evaluate the effect of two chlorhexidine solutions against supra- and subgingival biofilm formation (NCT#02656251. Thirty-five participants were randomized and asked to rinse twice daily with 15 ml of an alcohol-containing 0.12% chlorhexidine solution, an alcohol-free 0.12% chlorhexidine solution, or placebo. The study was conducted in three experimental periods of 4 days each, with a 10-day washout between the periods. All the experimental periods followed the same protocol, except that the solutions were switched. Biofilm distribution was evaluated every 24 hours by the Plaque-Free Zone Index, during 96 hours. Adverse events were self-reported and sensory evaluation was performed using a hedonic scale. Compared to the placebo, the chlorhexidine solutions resulted in a significantly higher number of surfaces free of plaque over 96 hours (p < 0.01, and were able to prevent subgingival biofilm formation (p < 0.01. The alcohol-free chlorhexidine solution was associated with a lower incidence of adverse events, compared with alcohol-containing chlorhexidine (p < 0.05; it also received better sensory evaluation and acceptance by trial participants, compared with the alcohol-containing chlorhexidine (p = 0.007, and had a similar inhibitory effect on the formation of supra- and subgingival biofilms.

  13. FtsEX-CwlO regulates biofilm formation by a plant-beneficial rhizobacterium Bacillus velezensis SQR9.

    Science.gov (United States)

    Li, Qing; Li, Zunfeng; Li, Xingxing; Xia, Liming; Zhou, Xuan; Xu, Zhihui; Shao, Jiahui; Shen, Qirong; Zhang, Ruifu

    2018-04-01

    Bacillus velezensis strain SQR9 is a well-investigated rhizobacterium with an outstanding ability to colonize roots, enhance plant growth and suppress soil-borne diseases. The recognition that biofilm formation by plant-beneficial bacteria is crucial for their root colonization and function has resulted in increased interest in understanding molecular mechanisms related to biofilm formation. Here, we report that the gene ftsE, encoding the ATP-binding protein of an FtsEX ABC transporter, is required for efficient SQR9 biofilm formation. FtsEX has been reported to regulate the atolysin CwlO. We provided evidence that FtsEX-CwlO was involved in the regulation of SQR9 biofilm formation; however, this effect has little to do with CwlO autolysin activity. We propose that regulation of biofilm formation by CwlO was exerted through the spo0A pathway, since transcription of spo0A cascade genes was altered and their downstream extracellular matrix genes were downregulated in SQR9 ftsE/cwlO deletion mutants. CwlO was also shown to interact physically with KinB/KinD. CwlO may therefore interact with KinB/KinD to interfere with the spo0A pathway. This study revealed that FtsEX-CwlO plays a previously undiscovered regulatory role in biofilm formation by SQR9 that may enhance root colonization and plant-beneficial functions of SQR9 and other beneficial rhizobacteria as well. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. Streptococcus gordonii LuxS/autoinducer-2 quorum-sensing system modulates the dual-species biofilm formation with Streptococcus mutans.

    Science.gov (United States)

    Wang, Xiao; Li, Xiaolan; Ling, Junqi

    2017-07-01

    Dental plaques are mixed-species biofilms that are related to the development of dental caries. Streptococcus mutans (S. mutans) is an important cariogenic bacterium that forms mixed-species biofilms with Streptococcus gordonii (S. gordonii), an early colonizer of the tooth surface. The LuxS/autoinducer-2(AI-2) quorum sensing system is involved in the regulation of mixed-species biofilms, and AI-2 is proposed as a universal signal for the interaction between bacterial species. In this work, a S. gordonii luxS deficient strain was constructed to investigate the effect of the S. gordonii luxS gene on dual-species biofilm formed by S. mutans and S. gordonii. In addition, AI-2 was synthesized in vitro by incubating recombinant LuxS and Pfs enzymes of S. gordonii together. The effect of AI-2 on S. mutans single-species biofilm formation and cariogenic virulence gene expression were also assessed. The results showed that luxS disruption in S. gordonii altered dual-species biofilm formation, architecture, and composition, as well as the susceptibility to chlorhexidine. And the in vitro synthesized AI-2 had a concentration-dependent effect on S. mutans biofilm formation and virulence gene expression. These findings indicate that LuxS/AI-2 quorum-sensing system of S. gordonii plays a role in regulating the dual-species biofilm formation with S. mutans. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Correlation between ability of biofilm formation with their responsible genes and MDR patterns in clinical and environmental Acinetobacter baumannii isolates.

    Science.gov (United States)

    Bardbari, Ali Mohammadi; Arabestani, Mohammad Reza; Karami, Manoochehr; Keramat, Fariba; Alikhani, Mohammad Yousef; Bagheri, Kamran Pooshang

    2017-07-01

    Acinetobacter baumannii potential to form biofilm and exhibit multiple antibiotic resistances may be responsible in its survival in hospital environment. Accordingly, our study was aimed to determine the correlation between ability of biofilm formation and the frequency of biofilm related genes with antibiotic resistance phenotypes, and also the categorization of their patterns in clinical and environmental isolates. A total of 75 clinical and 32 environmental strains of the A. baumannii were collected and identified via API 20NE. Antibiotic susceptibility was evaluated by disk diffusion and microdilution broth methods. Biofilm formation assay was performed by microtiter plate method. OXA types and biofilm related genes including Bla OXA-51 , Bla OXA-23 , Bla OXA-24 , Bla OXA-58 , bap, bla PER-1 , and ompA were amplified by PCR. The rate of MDR A. baumannii in clinical isolates (100%) was higher than environmental (81.2%) isolates (p baumannii isolates was associated with biofilm formation. There was a significant correlation between multiple drug resistance and biofilm formation. The clinical isolates had a higher ability to form strong biofilms compared to the environmental samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Biofilm formation is not a prerequisite for production of the antibacterial compound tropodithietic acid in Phaeobacter inhibens DSM17395

    DEFF Research Database (Denmark)

    Prol García, María Jesús; D'Alvise, Paul; Rygaard, Anita Mac

    2014-01-01

    Aims The goal of this study was to investigate if biofilm formation on population level is a physiological requirement for antagonism in Phaeobacter inhibens DSM17395, since the antibiotic compound tropodithietic acid (TDA) is produced by several Roseobacter clade species during growth as multice......Aims The goal of this study was to investigate if biofilm formation on population level is a physiological requirement for antagonism in Phaeobacter inhibens DSM17395, since the antibiotic compound tropodithietic acid (TDA) is produced by several Roseobacter clade species during growth...... as multicellular aggregates or biofilms at the air–liquid interface and is induced on single cell level upon attachment. Methods and Results A mutant library was created by Tn5 transposon insertion and 22 TDA-positive (brown) mutants with decreased biofilm formation or adhesion, and eight TDA-negative (white...... that are likely involved in EPS/LPS production, motility and chemotaxis, and redox regulation play a role in biofilm formation and/or adhesion in P. inhibens DSM17395. Conclusions Cell aggregation and biofilm formation are not physiological prerequisites for TDA production. Significance and Impact of the Study...

  17. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus.

    Science.gov (United States)

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species.

  18. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus

    Science.gov (United States)

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  19. Biofilm Formation Potential of Heat-Resistant Escherichia coli Dairy Isolates and the Complete Genome of Multidrug-Resistant, Heat-Resistant Strain FAM21845.

    Science.gov (United States)

    Marti, Roger; Schmid, Michael; Kulli, Sandra; Schneeberger, Kerstin; Naskova, Javorka; Knøchel, Susanne; Ahrens, Christian H; Hummerjohann, Jörg

    2017-08-01

    We tested the biofilm formation potential of 30 heat-resistant and 6 heat-sensitive Escherichia coli dairy isolates. Production of curli and cellulose, static biofilm formation on polystyrene (PS) and stainless steel surfaces, biofilm formation under dynamic conditions (Bioflux), and initial adhesion rates (IAR) were evaluated. Biofilm formation varied greatly between strains, media, and assays. Our results highlight the importance of the experimental setup in determining biofilm formation under conditions of interest, as correlation between different assays was often not a given. The heat-resistant, multidrug-resistant (MDR) strain FAM21845 showed the strongest biofilm formation on PS and the highest IAR and was the only strain that formed significant biofilms on stainless steel under conditions relevant to the dairy industry, and it was therefore fully sequenced. Its chromosome is 4.9 Mb long, and it harbors a total of five plasmids (147.2, 54.2, 5.8, 2.5, and 1.9 kb). The strain carries a broad range of genes relevant to antimicrobial resistance and biofilm formation, including some on its two large conjugative plasmids, as demonstrated in plate mating assays. IMPORTANCE In biofilms, cells are embedded in an extracellular matrix that protects them from stresses, such as UV radiation, osmotic shock, desiccation, antibiotics, and predation. Biofilm formation is a major bacterial persistence factor of great concern in the clinic and the food industry. Many tested strains formed strong biofilms, and especially strains such as the heat-resistant, MDR strain FAM21845 may pose a serious issue for food production. Strong biofilm formation combined with diverse resistances (some encoded on conjugative plasmids) may allow for increased persistence, coselection, and possible transfer of these resistance factors. Horizontal gene transfer may conceivably occur in the food production setting or the gastrointestinal tract after consumption. Copyright © 2017 Marti et al.

  20. Coinfection with Haemophilus influenzae promotes pneumococcal biofilm formation during experimental otitis media and impedes the progression of pneumococcal disease.

    Science.gov (United States)

    Weimer, Kristin E D; Armbruster, Chelsie E; Juneau, Richard A; Hong, Wenzhou; Pang, Bing; Swords, W Edward

    2010-10-01

    Otitis media is an extremely common pediatric infection and is mostly caused by bacteria that are carried within the nasopharyngeal microbiota. It is clear that most otitis media cases involve simultaneous infection with multiple agents. Chinchillas were infected with nontypeable Haemophilus influenzae, Streptococcus pneumoniae, or a combination of both organisms, and the course of disease was compared. In vitro experiments were also performed to address how coinfection impacts biofilm formation. The incidence of systemic disease was reduced in coinfected animals, compared with those infected with pneumococcus alone. Pneumococci were present within surface-attached biofilms in coinfected animals, and a greater proportion of translucent colony type was observed in the coinfected animals. Because this colony type has been associated with pneumococcal biofilms, the impact of coinfection on pneumococcal biofilm formation was investigated. The results clearly show enhanced biofilm formation in vitro by pneumococci in the presence of H. influenzae. Based on these data, we conclude that coinfection with H. influenzae facilitates pneumococcal biofilm formation and persistence on the middle ear mucosal surface. This enhanced biofilm persistence correlates with delayed emergence of opaque colony variants within the bacterial population and a resulting decrease in systemic infection.

  1. Control of Listeria innocua Biofilms on Food Contact Surfaces with Slightly Acidic Electrolyzed Water and the Risk of Biofilm Cells Transfer to Duck Meat.

    Science.gov (United States)

    Jeon, Hye Ri; Kwon, Mi Jin; Yoon, Ki Sun

    2018-04-01

    Biofilm formation on food contact surfaces is a potential hazard leading to cross-contamination during food processing. We investigated Listeria innocua biofilm formation on various food contact surfaces and compared the washing effect of slightly acidic electrolyzed water (SAEW) at 30, 50, 70, and 120 ppm with that of 200 ppm of sodium hypochlorite (NaClO) on biofilm cells. The risk of L. innocua biofilm transfer and growth on food at retail markets was also investigated. The viability of biofilms that formed on food contact surfaces and then transferred cells to duck meat was confirmed by fluorescence microscopy. L. innocua biofilm formation was greatest on rubber, followed by polypropylene, glass, and stainless steel. Regardless of sanitizer type, washing removed biofilms from polypropylene and stainless steel better than from rubber and glass. Among the various SAEW concentrations, washing with 70 ppm of SAEW for 5 min significantly reduced L. innocua biofilms on food contact surfaces during food processing. Efficiency of transfer of L. innocua biofilm cells was the highest on polypropylene and lowest on stainless steel. The transferred biofilm cells grew to the maximum population density, and the lag time of transferred biofilm cells was longer than that of planktonic cells. The biofilm cells that transferred to duck meat coexisted with live, injured, and dead cells, which indicates that effective washing is essential to remove biofilm on food contact surfaces during food processing to reduce the risk of foodborne disease outbreaks.

  2. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp.

    OpenAIRE

    Silva-Dias, Ana; Miranda, Isabel M.; Branco, Joana; Monteiro-Soares, Matilde; Pina-Vaz, Cid?lia; Rodrigues, Ac?cio G.

    2015-01-01

    We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH) and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the C...

  3. Nutrient transitions are a source of persisters in Escherichia coli biofilms.

    Directory of Open Access Journals (Sweden)

    Stephanie M Amato

    Full Text Available Chronic and recurrent infections have been attributed to persisters in biofilms, and despite this importance, the mechanisms of persister formation in biofilms remain unclear. The plethora of biofilm characteristics that could give rise to persisters, including slower growth, quorum signaling, oxidative stress, and nutrient heterogeneity, have complicated efforts to delineate formation pathways that generate persisters during biofilm development. Here we sought to specifically determine whether nutrient transitions, which are a common metabolic stress encountered within surface-attached communities, stimulate persister formation in biofilms and if so, to then identify the pathway. To accomplish this, we established an experimental methodology where nutrient availability to biofilm cells could be controlled exogenously, and then used that method to discover that diauxic carbon source transitions stimulated persister formation in Escherichia coli biofilms. Previously, we found that carbon source transitions stimulate persister formation in planktonic E. coli cultures, through a pathway that involved ppGpp and nucleoid-associated proteins, and therefore, tested the functionality of that pathway in biofilms. Biofilm persister formation was also found to be dependent on ppGpp and nucleoid-associated proteins, but the importance of specific proteins and enzymes between biofilm and planktonic lifestyles was significantly different. Data presented here support the increasingly appreciated role of ppGpp as a central mediator of bacterial persistence and demonstrate that nutrient transitions can be a source of persisters in biofilms.

  4. Nutrient transitions are a source of persisters in Escherichia coli biofilms.

    Science.gov (United States)

    Amato, Stephanie M; Brynildsen, Mark P

    2014-01-01

    Chronic and recurrent infections have been attributed to persisters in biofilms, and despite this importance, the mechanisms of persister formation in biofilms remain unclear. The plethora of biofilm characteristics that could give rise to persisters, including slower growth, quorum signaling, oxidative stress, and nutrient heterogeneity, have complicated efforts to delineate formation pathways that generate persisters during biofilm development. Here we sought to specifically determine whether nutrient transitions, which are a common metabolic stress encountered within surface-attached communities, stimulate persister formation in biofilms and if so, to then identify the pathway. To accomplish this, we established an experimental methodology where nutrient availability to biofilm cells could be controlled exogenously, and then used that method to discover that diauxic carbon source transitions stimulated persister formation in Escherichia coli biofilms. Previously, we found that carbon source transitions stimulate persister formation in planktonic E. coli cultures, through a pathway that involved ppGpp and nucleoid-associated proteins, and therefore, tested the functionality of that pathway in biofilms. Biofilm persister formation was also found to be dependent on ppGpp and nucleoid-associated proteins, but the importance of specific proteins and enzymes between biofilm and planktonic lifestyles was significantly different. Data presented here support the increasingly appreciated role of ppGpp as a central mediator of bacterial persistence and demonstrate that nutrient transitions can be a source of persisters in biofilms.

  5. Assessment and characterization of biofilm formation among human isolates of Streptococcus dysgalactiae subsp. equisimilis.

    Science.gov (United States)

    Genteluci, Gabrielle Limeira; Silva, Ligia Guedes; Souza, Maria Clara; Glatthardt, Thaís; de Mattos, Marcos Corrêa; Ejzemberg, Regina; Alviano, Celuta Sales; Figueiredo, Agnes Marie Sá; Ferreira-Carvalho, Bernadete Teixeira

    2015-12-01

    The capacity to form biofilm is considered a protective mechanism that allows the bacteria to survive and proliferate in hostile environments, facilitating the maintenance of the infectious process. Recently, biofilm has become a topic of interest in the study of the human pathogen group A Streptococcus (GAS). Although GAS has not been associated with infection on medical implants, the presence of microcolonies embedded in an extracellular matrix on infected tissues has been reported. Despite the similarity between GAS and Streptococcus dysgalactiae subspecies equisimilis (SDSE), there are no studies in the literature describing the production of biofilm by SDSE. In this work, we assessed and characterized biofilm development among SDSE human isolates of group C. The in vitro data showed that 59.3% of the 118 isolates tested were able to form acid-induced biofilm on glass, and 28% formed it on polystyrene surfaces. More importantly, biofilm was also formed in a foreign body model in mice. The biofilm structure was analyzed by confocal laser scanning microscopy, transmission electron microscopy, and scanning electron microscopy. Long fibrillar-like structures were observed by scanning electron microscopy. Additionally, the expression of a pilus associated gene of SDSE was increased for in vitro sessile cells compared with planktonics, and when sessile cells were collected from biofilms formed in the animal model compared with that of in vitro model. Results obtained from the immunofluorescence microscopy indicated the biofilm was immunogenic. Our data also suggested a role for proteins, exopolysaccharide and extracellular DNA in the formation and accumulation of biofilm by SDSE. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Effect of growth condition on biofilm formation by phenoldegrading bacteria isolated from polluted and nonpolluted sources

    Directory of Open Access Journals (Sweden)

    Arifah Khusnuryani

    2015-03-01

    Full Text Available Our previous research have isolated four phenol degrading bacteria. There are ATA6, DOK135, and DL120 which isolated from polluted source (hospital wastewater, also HP3 which isolated from non polluted source (peat soil. The purpose of this research is to analyze the effect of some environmental factors on the ability of four isolates to form biofilm. The environment factors were varied, such as growth medium, incubation temperature, and medium pH. Biofilm formation was measured using microtiter plate and crystal violet method, and the absorbance was read with microtiter auto reader at wavelenght 490 nm. The result showed that ATA6 was a strong biofilm former, DOK135 and HP3 were moderate biofilm former, and DL120 was a weak biofilm former. The results indicate that there is variation in the ability of selected isolates to form biofilm on various environmental factors. Generally, the isolates formed thicker biofilm in TSB medium which is a complex medium that provide more complete nutrient and formed biofilm optimally at 30oC. ATA6 formed biofilm optimally at pH 7 and HP3 at pH 9, while pH treatment did not affect on isolates DOK135 and DL120 to form biofilm.

  7. Differential effects of antifungal agents on expression of genes related to formation of Candida albicans biofilms.

    Science.gov (United States)

    Chatzimoschou, Athanasios; Simitsopoulou, Maria; Antachopoulos, Charalampos; Walsh, Thomas J; Roilides, Emmanuel

    2016-01-01

    The purpose of this study was to analyse specific molecular mechanisms involved in the intrinsic resistance of C. albicans biofilms to antifungals. We investigated the transcriptional profile of three genes (BGL2, SUN41, ECE1) involved in Candida cell wall formation in response to voriconazole or anidulafungin after the production of intermediate and mature biofilms. C. albicans M61, a well-documented biofilm producer strain, was used for the development of intermediate (12 h and 18 h) and completely mature biofilms (48 h). After exposure of cells from each biofilm growth mode to voriconazole (128 and 512 mg l(-1)) or anidulafungin (0.25 and 1 mg l(-1)) for 12-24 h, total RNA samples extracted from biofilm cells were analysed by RT-PCR. The voriconazole and anidulafungin biofilm MIC was 512 and 0.5 mg l(-1) respectively. Anidulafungin caused significant up-regulation of SUN41 (3.7-9.3-fold) and BGL2 (2.2-2.8 fold) in intermediately mature biofilms; whereas, voriconazole increased gene expression in completely mature biofilms (SUN41 2.3-fold, BGL2 2.1-fold). Gene expression was primarily down-regulated by voriconazole in intermediately, but not completely mature biofilms. Both antifungals caused down-regulation of ECE1 in intermediately mature biofilms. © 2015 Blackwell Verlag GmbH.

  8. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    Directory of Open Access Journals (Sweden)

    Yi-Huang Hsueh

    Full Text Available Zinc oxide nanoparticles (ZnO NPs are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm, with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.

  9. Red and Green Fluorescence from Oral Biofilms.

    Science.gov (United States)

    Volgenant, Catherine M C; Hoogenkamp, Michel A; Krom, Bastiaan P; Janus, Marleen M; Ten Cate, Jacob M; de Soet, Johannes J; Crielaard, Wim; van der Veen, Monique H

    2016-01-01

    Red and green autofluorescence have been observed from dental plaque after excitation by blue light. It has been suggested that this red fluorescence is related to caries and the cariogenic potential of dental plaque. Recently, it was suggested that red fluorescence may be related to gingivitis. Little is known about green fluorescence from biofilms. Therefore, we assessed the dynamics of red and green fluorescence in real-time during biofilm formation. In addition, the fluorescence patterns of biofilm formed from saliva of eight different donors are described under simulated gingivitis and caries conditions. Biofilm formation was analysed for 12 hours under flow conditions in a microfluidic BioFlux flow system with high performance microscopy using a camera to allow live cell imaging. For fluorescence images dedicated excitation and emission filters were used. Both green and red fluorescence were linearly related with the total biomass of the biofilms. All biofilms displayed to some extent green and red fluorescence, with higher red and green fluorescence intensities from biofilms grown in the presence of serum (gingivitis simulation) as compared to the sucrose grown biofilms (cariogenic simulation). Remarkably, cocci with long chain lengths, presumably streptococci, were observed in the biofilms. Green and red fluorescence were not found homogeneously distributed within the biofilms: highly fluorescent spots (both green and red) were visible throughout the biomass. An increase in red fluorescence from the in vitro biofilms appeared to be related to the clinical inflammatory response of the respective saliva donors, which was previously assessed during an in vivo period of performing no-oral hygiene. The BioFlux model proved to be a reliable model to assess biofilm fluorescence. With this model, a prediction can be made whether a patient will be prone to the development of gingivitis or caries.

  10. Red and Green Fluorescence from Oral Biofilms.

    Directory of Open Access Journals (Sweden)

    Catherine M C Volgenant

    Full Text Available Red and green autofluorescence have been observed from dental plaque after excitation by blue light. It has been suggested that this red fluorescence is related to caries and the cariogenic potential of dental plaque. Recently, it was suggested that red fluorescence may be related to gingivitis. Little is known about green fluorescence from biofilms. Therefore, we assessed the dynamics of red and green fluorescence in real-time during biofilm formation. In addition, the fluorescence patterns of biofilm formed from saliva of eight different donors are described under simulated gingivitis and caries conditions. Biofilm formation was analysed for 12 hours under flow conditions in a microfluidic BioFlux flow system with high performance microscopy using a camera to allow live cell imaging. For fluorescence images dedicated excitation and emission filters were used. Both green and red fluorescence were linearly related with the total biomass of the biofilms. All biofilms displayed to some extent green and red fluorescence, with higher red and green fluorescence intensities from biofilms grown in the presence of serum (gingivitis simulation as compared to the sucrose grown biofilms (cariogenic simulation. Remarkably, cocci with long chain lengths, presumably streptococci, were observed in the biofilms. Green and red fluorescence were not found homogeneously distributed within the biofilms: highly fluorescent spots (both green and red were visible throughout the biomass. An increase in red fluorescence from the in vitro biofilms appeared to be related to the clinical inflammatory response of the respective saliva donors, which was previously assessed during an in vivo period of performing no-oral hygiene. The BioFlux model proved to be a reliable model to assess biofilm fluorescence. With this model, a prediction can be made whether a patient will be prone to the development of gingivitis or caries.

  11. Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms.

    Science.gov (United States)

    Bonnichsen, Lise; Bygvraa Svenningsen, Nanna; Rybtke, Morten; de Bruijn, Irene; Raaijmakers, Jos M; Tolker-Nielsen, Tim; Nybroe, Ole

    2015-12-01

    Pseudomonads produce several lipopeptide biosurfactants that have antimicrobial properties but that also facilitate surface motility and influence biofilm formation. Detailed studies addressing the significance of lipopeptides for biofilm formation and architecture are rare. Hence, the present study sets out to determine the specific role of the lipopeptide viscosin in Pseudomonas fluorescens SBW25 biofilm formation, architecture and dispersal, and to relate viscA gene expression to viscosin production and effect. Initially, we compared biofilm formation of SBW25 and the viscosin-deficient mutant strain SBW25ΔviscA in static microtitre assays. These experiments demonstrated that viscosin had little influence on the amount of biofilm formed by SBW25 during the early stages of biofilm development. Later, however, SBW25 formed significantly less biofilm than SBW25ΔviscA. The indication that viscosin is involved in biofilm dispersal was confirmed by chemical complementation of the mutant biofilm. Furthermore, a fluorescent bioreporter showed that viscA expression was induced in biofilms 4 h prior to dispersal. Subsequent detailed studies of biofilms formed in flow cells for up to 5 days revealed that SBW25 and SBW25ΔviscA developed comparable biofilms dominated by well-defined, mushroom-shaped structures. Carbon starvation was required to obtain biofilm dispersal in this system. Dispersal of SBW25 biofilms was significantly greater than of SBW25ΔviscA biofilms after 3 h and, importantly, carbon starvation strongly induced viscA expression, in particular for cells that were apparently leaving the biofilm. Thus, the present study points to a role for viscosin-facilitated motility in dispersal of SBW25 biofilms.

  12. Antibiotic-Loaded Synthetic Calcium Sulfate Beads for Prevention of Bacterial Colonization and Biofilm Formation in Periprosthetic Infections

    Science.gov (United States)

    Howlin, R. P.; Brayford, M. J.; Webb, J. S.; Cooper, J. J.; Aiken, S. S.

    2014-01-01

    Periprosthetic infection (PI) causes significant morbidity and mortality after fixation and joint arthroplasty and has been extensively linked to the formation of bacterial biofilms. Poly(methyl methacrylate) (PMMA), as a cement or as beads, is commonly used for antibiotic release to the site of infection but displays variable elution kinetics and also represents a potential nidus for infection, therefore requiring surgical removal once antibiotics have eluted. Absorbable cements have shown improved elution of a wider range of antibiotics and, crucially, complete biodegradation, but limited data exist as to their antimicrobial and antibiofilm efficacy. Synthetic calcium sulfate beads loaded with tobramycin, vancomycin, or vancomycin-tobramycin dual treatment (in a 1:0.24 [wt/wt] ratio) were assessed for their abilities to eradicate planktonic methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis relative to that of PMMA beads. The ability of the calcium sulfate beads to prevent biofilm formation over multiple days and to eradicate preformed biofilms was studied using a combination of viable cell counts, confocal microscopy, and scanning electron microscopy of the bead surface. Biofilm bacteria displayed a greater tolerance to the antibiotics than their planktonic counterparts. Antibiotic-loaded beads were able to kill planktonic cultures of 106 CFU/ml, prevent bacterial colonization, and significantly reduce biofilm formation over multiple days. However, established biofilms were harder to eradicate. These data further demonstrate the difficulty in clearing established biofilms; therefore, early preventive measures are key to reducing the risk of PI. Synthetic calcium sulfate loaded with antibiotics has the potential to reduce or eliminate biofilm formation on adjacent periprosthetic tissue and prosthesis material and, thus, to reduce the rates of periprosthetic infection. PMID:25313221

  13. Identification of Streptococcus sanguinis Genes Required for Biofilm Formation and Examination of Their Role in Endocarditis Virulence▿

    OpenAIRE

    Ge, Xiuchun; Kitten, Todd; Chen, Zhenming; Lee, Sehmi P.; Munro, Cindy L.; Xu, Ping

    2008-01-01

    Streptococcus sanguinis is one of the pioneers in the bacterial colonization of teeth and is one of the most abundant species in the oral biofilm called dental plaque. S. sanguinis is also the most common viridans group streptococcal species implicated in infective endocarditis. To investigate the association of biofilm and endocarditis, we established a biofilm assay and examined biofilm formation with a signature-tagged mutagenesis library of S. sanguinis. Four genes that have not previousl...

  14. Inhibition effect of cashew stem bark extract (Anacardium Occidentale L. on biofilm formation of Streptococcus sanguinis

    Directory of Open Access Journals (Sweden)

    Rizni Amaliah

    2012-12-01

    Full Text Available Background: Biofilm is communities of microorganisms attached to solid surface and enclosed in extracellular matrix that protected microorganisms from antibacterial agents and host defense. One of bacteria might have a role in initial colonization of biofilm formation is Streptococcus sanguinis (S. sanguinis. Previous studies showed that cashew stem bark extract (Anacardium occidentale L. can inhibit the growth of Streptococcus strains. Purpose: The purpose of this study was to determine the inhibition effect of cashew (Anacardium occidentale L. stem bark ethanol extract on biofilm formation of S. sanguinis. Methods: Streptococcus sanguinis grown in Brain Heart Infusion (BHI + 2% sucrose medium by using microplate polystyrene 96 wells. The samples were divided into 3 groups, 5% polyethyleneglycol (PEG as negative control, cashew stem bark extract (concentration 3.125 mg/ml, 6.25 mg/ml, 9.375 mg/ml, and 12.5 mg/ml, and 0.12% chlorhexidine (as positive control. Biofilm was stained by 1% crystal violet. Afterwards, optical density (OD of samples were measured by microplate reader λ 595 nm. The data of biofilm formation inhibition percentage were analyzed by one way ANOVA and then continued by Least Significant Difference (LSD test. Results: The result of one way ANOVA showed that there were significant differences in inhibition of S. sanguinis biofilm formation (p<0.05. LSD test showed that concentration extract 3.125 mg/ml had significant difference with concentration 9.375 mg/ml and 12.5 mg/ml. Reciprocally, concentration 6.25 mg/ml had significant difference with concentration 9.375 mg/ml and 12.5 mg/ml. Conclusion: Cashew stem bark extract was able to inhibit biofilm formation of S. sanguinis.Latar belakang: Biofilm merupakan sekumpulan mikroorganisme yang melekat pada permukaan solid dan diselubungi oleh matriks ekstraseluler yang melindungi mikroorganisme dari bahan-bahan antibakteri dan sel-sel pertahanan tubuh. Salah satu bakteri yang

  15. Microbial biofilms in water-mixed metalworking fluids; Mikrobielle Biofilme in wassergemischten Kuehlschmierstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Thomas [Wisura GmbH, Bremen (Germany)

    2013-05-15

    The microbial load of water-miscible metalworking fluids (MWF) as well as the hygienic aspects and the cost-related impact on the production process due to the activity of microbes is in the focus of many scientific investigations and documented in the related publications. The majority of this research work is focused on the microbiology of the water body, i.e. with the microbial life in the liquid coolant. The habitat biofilm, i.e. the three-dimensional growth of bacteria and fungi on surfaces of the coolant systems has been scarcely considered. Based on the scientific findings made in the recent years studying biofilms it can be concluded, that the relevant microbial processes for the depletion of the MWF and its recontamination takes predominantly places in biofilms. This paper gives an overview of the structure, the formation and the life in biofilms and represents their relevance in MWF systems. (orig.)

  16. Biofilm-specific extracellular matrix proteins of non-typeable Haemophilus influenzae

    Science.gov (United States)

    Wu, Siva; Baum, Marc M.; Kerwin, James; Guerrero-Given, Debbie; Webster, Simon; Schaudinn, Christoph; VanderVelde, David; Webster, Paul

    2014-01-01

    Non-typeable Haemophilus influenzae (NTHi), a human respiratory tract pathogen can form colony biofilms in vitro. Bacterial cells and the amorphous extracellular matrix (ECM) constituting the biofilm can be separated using sonication. The ECM from 24 hr and 96 hr NTHi biofilms contained polysaccharides and proteinaceous components as detected by NMR and FTIR spectroscopy. More conventional chemical assays on the biofilm ECM confirmed the presence of these components and also DNA. Proteomics revealed eighteen proteins present in biofilm ECM that were not detected in planktonic bacteria. One ECM protein was unique to 24 hr biofilms, two were found only in 96 hr biofilms, and fifteen were present in the ECM of both 24 hr and 96 hr NTHi biofilms. All proteins identified were either associated with bacterial membranes or were cytoplasmic proteins. Immunocytochemistry showed two of the identified proteins, a DNA-directed RNA polymerase and the outer membrane protein OMP P2, associated with bacteria and biofilm ECM. Identification of biofilm-specific proteins present in immature biofilms is an important step in understanding the in vitro process of NTHi biofilm formation. The presence of a cytoplasmic protein and a membrane protein in the biofilm ECM of immature NTHi biofilms suggests that bacterial cell lysis may be a feature of early biofilm formation. PMID:24942343

  17. Hygrocin C from marine-derived Streptomyces sp. SCSGAA 0027 inhibits biofilm formation in Bacillus amyloliquefaciens SCSGAB0082 isolated from South China Sea gorgonian.

    Science.gov (United States)

    Wang, Jie; Nong, Xu-Hua; Amin, Muhammad; Qi, Shu-Hua

    2018-02-01

    Several ansamycins have been reported to inhibit bacterial biofilm formation and accelerate the eradication of developed biofilms, but little is known about the effect of hygrocin C, an ansamycin, on bacterial biofilm formation. Here, hygrocin C was isolated from the marine-derived Streptomyces sp. SCSGAA 0027 and reported for the first time to be capable of inhibiting the biofilm formation of Staphylococcus aureus and Bacillus amyloliquefaciens SCSGAB0082 with the production of anti-microbial lipopeptides from South China Sea gorgonian Subergorgia suberosa at concentrations of less than minimum inhibitory concentrations. Moreover, hygrocin C also promoted the eradication of developed biofilms, affected the biofilm architecture, and lowered the extracellular polymeric matrix formation, cell motility, and surface hydrophobicity in B. amyloliquefaciens, which was in accordance with the inhibition of biofilm formation. Furthermore, transcriptome analysis revealed that hygrocin C altered the transcripts of several genes associated with bacterial chemotaxis and flagellar, two-component system and the synthesis of arginine and histidine, which are important for bacterial biofilm formation. In conclusion, hygrocin C could be used as a potential biofilm inhibitor against S. aureus and B. amyloliquefaciens. But further genetic investigations are needed to provide more details for elucidation of the molecular mechanisms responsible for the effects of hygrocin C on B. amyloliquefaciens biofilm formation.

  18. Biofilm roughness determines Cryptosporidium parvum retention in environmental biofilms.

    Science.gov (United States)

    DiCesare, E A Wolyniak; Hargreaves, B R; Jellison, K L

    2012-06-01

    The genus Cryptosporidium is a group of waterborne protozoan parasites that have been implicated in significant outbreaks of gastrointestinal infections throughout the world. Biofilms trap these pathogens and can contaminate water supplies through subsequent release. Biofilm microbial assemblages were collected seasonally from three streams in eastern Pennsylvania and used to grow biofilms in laboratory microcosms. Daily oocyst counts in the influx and efflux flow allowed the calculation of daily oocyst retention in the biofilm. Following the removal of oocysts from the influx water, oocyst attachment to the biofilm declined to an equilibrium state within 5 days that was sustained for at least 25 days. Varying the oocyst loading rate for the system showed that biofilm retention could be saturated, suggesting that discrete binding sites determined the maximum number of oocysts retained. Oocyst retention varied seasonally but was consistent across all three sites; however, seasonal oocyst retention was not consistent across years at the same site. No correlation between oocyst attachment and any measured water quality parameter was found. However, oocyst retention was strongly correlated with biofilm surface roughness and roughness varied among seasons and across years. We hypothesize that biofilm roughness and oocyst retention are dependent on environmentally driven changes in the biofilm community rather than directly on water quality conditions. It is important to understand oocyst transport dynamics to reduce risks of human infection. Better understanding of factors controlling biofilm retention of oocysts should improve our understanding of oocyst transport at different scales.

  19. Dynamic interactions of neutrophils and biofilms

    Directory of Open Access Journals (Sweden)

    Josefine Hirschfeld

    2014-12-01

    Full Text Available Background: The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. Objective/design: In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. Results/conclusion: Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.

  20. Effect of Food Residues in Biofilm Formation on Stainless Steel and Polystyrene Surfaces by Salmonella enterica Strains Isolated from Poultry Houses

    Directory of Open Access Journals (Sweden)

    Alba María Paz-Méndez

    2017-11-01

    Full Text Available Salmonella spp. is a major food-borne pathogen around the world. The ability of Salmonella to produce biofilm is one of the main obstacles in reducing the prevalence of these bacteria in the food chain. Most of Salmonella biofilm studies found in the literature used laboratory growth media. However, in the food chain, food residues are the principal source of nutrients of Salmonella. In this study, the biofilm formation, morphotype, and motility of 13 Salmonella strains belonging to three different subspecies and isolated from poultry houses was evaluated. To simulate food chain conditions, four different growth media (Tryptic Soy Broth at 1/20 dilution, milk at 1/20 dilution, tomato juice, and chicken meat juice, two different surfaces (stainless steel and polystyrene and two temperatures (6 °C and 22 °C were used to evaluate the biofilm formation. The morphotype, motility, and biofilm formation of Salmonella was temperature-dependent. Biofilm formation was significantly higher with 1/20 Tryptic Soy Broth in all the surfaces and temperatures tested, in comparison with the other growth media. The laboratory growth medium 1/20 Tryptic Soy Broth enhanced biofilm formation in Salmonella. This could explain the great differences in biofilm formation found between this growth medium and food residues. However, Salmonella strains were able to produce biofilm on the presence of food residues in all the conditions tested. Therefore, the Salmonella strain can use food residues to produce biofilm on common surfaces of the food chain. More studies combining more strains and food residues are necessary to fully understand the mechanism used by Salmonella to produce biofilm on the presence of these sources of nutrients.

  1. Effect of Food Residues in Biofilm Formation on Stainless Steel and Polystyrene Surfaces by Salmonella enterica Strains Isolated from Poultry Houses.

    Science.gov (United States)

    Paz-Méndez, Alba María; Lamas, Alexandre; Vázquez, Beatriz; Miranda, José Manuel; Cepeda, Alberto; Franco, Carlos Manuel

    2017-11-29

    Salmonella spp. is a major food-borne pathogen around the world. The ability of Salmonella to produce biofilm is one of the main obstacles in reducing the prevalence of these bacteria in the food chain. Most of Salmonella biofilm studies found in the literature used laboratory growth media. However, in the food chain, food residues are the principal source of nutrients of Salmonella . In this study, the biofilm formation, morphotype, and motility of 13 Salmonella strains belonging to three different subspecies and isolated from poultry houses was evaluated. To simulate food chain conditions, four different growth media (Tryptic Soy Broth at 1/20 dilution, milk at 1/20 dilution, tomato juice, and chicken meat juice), two different surfaces (stainless steel and polystyrene) and two temperatures (6 °C and 22 °C) were used to evaluate the biofilm formation. The morphotype, motility, and biofilm formation of Salmonella was temperature-dependent. Biofilm formation was significantly higher with 1/20 Tryptic Soy Broth in all the surfaces and temperatures tested, in comparison with the other growth media. The laboratory growth medium 1/20 Tryptic Soy Broth enhanced biofilm formation in Salmonella . This could explain the great differences in biofilm formation found between this growth medium and food residues. However, Salmonella strains were able to produce biofilm on the presence of food residues in all the conditions tested. Therefore, the Salmonella strain can use food residues to produce biofilm on common surfaces of the food chain. More studies combining more strains and food residues are necessary to fully understand the mechanism used by Salmonella to produce biofilm on the presence of these sources of nutrients.

  2. Exploiting social evolution in biofilms

    DEFF Research Database (Denmark)

    Boyle, Kerry E; Heilmann, Silja; van Ditmarsch, Dave

    2013-01-01

    Bacteria are highly social organisms that communicate via signaling molecules, move collectively over surfaces and make biofilm communities. Nonetheless, our main line of defense against pathogenic bacteria consists of antibiotics-drugs that target individual-level traits of bacterial cells...... and thus, regrettably, select for resistance against their own action. A possible solution lies in targeting the mechanisms by which bacteria interact with each other within biofilms. The emerging field of microbial social evolution combines molecular microbiology with evolutionary theory to dissect...... the molecular mechanisms and the evolutionary pressures underpinning bacterial sociality. This exciting new research can ultimately lead to new therapies against biofilm infections that exploit evolutionary cheating or the trade-off between biofilm formation and dispersal....

  3. Plasticity of Candida albicans Biofilms

    Science.gov (United States)

    Daniels, Karla J.

    2016-01-01

    SUMMARY Candida albicans, the most pervasive fungal pathogen that colonizes humans, forms biofilms that are architecturally complex. They consist of a basal yeast cell polylayer and an upper region of hyphae encapsulated in extracellular matrix. However, biofilms formed in vitro vary as a result of the different conditions employed in models, the methods used to assess biofilm formation, strain differences, and, in a most dramatic fashion, the configuration of the mating type locus (MTL). Therefore, integrating data from different studies can lead to problems of interpretation if such variability is not taken into account. Here we review the conditions and factors that cause biofilm variation, with the goal of engendering awareness that more attention must be paid to the strains employed, the methods used to assess biofilm development, every aspect of the model employed, and the configuration of the MTL locus. We end by posing a set of questions that may be asked in comparing the results of different studies and developing protocols for new ones. This review should engender the notion that not all biofilms are created equal. PMID:27250770

  4. Spectrum of bacteria associated with diabetic foot ulcer and biofilm formation: A prospective study

    Directory of Open Access Journals (Sweden)

    Asima Banu

    2015-09-01

    The organisms causing chronic diabetic foot ulcers were commonly multidrug-resistant; this was also observed among biofilm formers. Therefore, screening for biofilm formation, along with the usual antibiogram, needs to be performed as a routine procedure in chronic diabetic ulcers to formulate effective treatment strategies for these patients.

  5. The in vitro effect of xylitol on chronic rhinosinusitis biofilms.

    Science.gov (United States)

    Jain, R; Lee, T; Hardcastle, T; Biswas, K; Radcliff, F; Douglas, R

    2016-12-01

    Biofilms have been implicated in chronic rhinosinusitis (CRS) and may explain the limited efficacy of antibiotics. There is a need to find more effective, non-antibiotic based therapies for CRS. This study examines the effects of xylitol on CRS biofilms and planktonic bacteria. Crystal violet assay and spectrophotometry were used to quantify the effects of xylitol (5% and 10% solutions) against Staphylococcus epidermidis, Pseudomonas aeruginosa, and Staphylococcus aureus. The disruption of established biofilms, inhibition of biofilm formation and effects on planktonic bacteria growth were investigated and compared to saline and no treatment. Xylitol 5% and 10% significantly reduced biofilm biomass (S. epidermidis), inhibited biofilm formation (S. aureus and P. aeruginosa) and reduced growth of planktonic bacteria (S. epidermidis, S. aureus, and P. aeruginosa). Xylitol 5% inhibited formation of S. epidermidis biofilms more effectively than xylitol 10%. Xylitol 10% reduced S. epidermidis planktonic bacteria more effectively than xylitol 5%. Saline, xylitol 5% and 10% disrupted established biofilms of S. aureus when compared with no treatment. No solution was effective against established P. aeruginosa biofilm. Xylitol has variable activity against biofilms and planktonic bacteria in vitro and may have therapeutic efficacy in the management of CRS.

  6. Incorporation of Listeria monocytogenes strains in raw milk biofilms.

    Science.gov (United States)

    Weiler, Christiane; Ifland, Andrea; Naumann, Annette; Kleta, Sylvia; Noll, Matthias

    2013-02-01

    Biofilms develop successively on devices of milk production without sufficient cleaning and originate from the microbial community of raw milk. The established biofilm matrices enable incorporation of pathogens like Listeria monocytogenes, which can cause a continuous contamination of food processing plants. L. monocytogenes is frequently found in raw milk and non-pasteurized raw milk products and as part of a biofilm community in milk meters and bulk milk tanks. The aim of this study was to analyze whether different L. monocytogenes strains are interacting with the microbial community of raw milk in terms of biofilm formation in the same manner, and to identify at which stage of biofilm formation a selected L. monocytogenes strain settles best. Bacterial community structure and composition of biofilms were analyzed by a cloning and sequencing approach and terminal restriction fragment length polymorphism analysis (T-RFLP) based on the bacterial 16S rRNA gene. The chemical composition of biofilms was analyzed by Fourier transform infrared spectroscopy (FTIR), while settled L. monocytogenes cells were quantified by fluorescence in situ hybridization (FISH). Addition of individual L. monocytogenes strains to raw milk caused significant shifts in the biofilm biomass, in the chemical as well as in the bacterial community composition. Biofilm formation and attachment of L. monocytogenes cells were not serotype but strain specific. However, the added L. monocytogenes strains were not abundant since mainly members of the genera Citrobacter and Lactococcus dominated the bacterial biofilm community. Overall, added L. monocytogenes strains led to a highly competitive interaction with the raw milk community and triggered alterations in biofilm formation. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Comparison of Biofilm Formation between Methicillin-Resistant and Methicillin-Susceptible Isolates of Staphylococcus aureus.

    Science.gov (United States)

    Ghasemian, Abdolmajid; Najar Peerayeh, Shahin; Bakhshi, Bita; Mirzaee, Mohsen

    2016-07-01

    The aim of this study was to compare the biofilm formation and the prevalence of biofilm-associated genes between the isolates of methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) Staphylococcus aureus. In total, 209 S. aureus isolates were collected. The antibiotic susceptibility test was conducted using nine antibiotics according to the guidelines of Clinical and Laboratory Standards Institute. Phenotypic biofilm formation was performed with microtiter plate assay. The polymerase chain reaction was employed to detect icaA, icaD, icaB, icaC, clfA, clfB, fnbA, fnbB, fib, cna, eno, ebps, bbp, mecA, and SCCmec types as well as agr group genes with specific primers. Sixty-four (30.62%) isolates were resistant to methicillin, and 54 (83%) MRSA harbored SCCmec III. Furthermore, 122 (58.3%) isolates belonged to agr group I. Twenty-six (36.1%) MRSA and 42 (28.9%) MSSA isolates were strong biofilm producers (no significant difference). The prevalence of icaA, icaD, icaB, and icaC genes in MSSA isolates was 71, 41, 76, and 72%, respectively. The frequency of clfA, clfB, fnbA, fnbB, fib, cna, eno, ebps, and bbp in MSSA was 100, 100, 56, 46, 74, 54, 78, 11, and 1%, respectively. However, in MRSA isolates, the frequency was 97, 97, 64, 51, 76, 56, 79, and 12% with no track of bbp, respectively. Statistical difference between MSSA and MRSA regarding biofilm formation and the frequency of all biofilm-encoding genes was not significant. The majority of the S. aureus isolates harbored clfA, clfB, eno, fib, icaA, and icaD genes.

  8. HmsC Controls Yersinia pestis Biofilm Formation in Response to Redox Environment

    Directory of Open Access Journals (Sweden)

    Gai-Xian Ren

    2017-08-01

    Full Text Available Yersinia pestis biofilm formation, controlled by intracellular levels of the second messenger molecule cyclic diguanylate (c-di-GMP, is important for blockage-dependent plague transmission from fleas to mammals. HmsCDE is a tripartite signaling system that modulates intracellular c-di-GMP levels to regulate biofilm formation in Y. pestis. Previously, we found that Y. pestis biofilm formation is stimulated in reducing environments in an hmsCDE-dependent manner. However, the mechanism by which HmsCDE senses the redox state remains elusive. Using a dsbA mutant and the addition of Cu2+ to simulate reducing and oxidizing periplasmic environments, we found that HmsC protein levels are decreased and the HmsC-HmsD protein-protein interaction is weakened in a reducing environment. In addition, we revealed that intraprotein disulphide bonds are critical for HmsC since breakage lowers protein stability and diminishes the interaction with HmsD. Our results suggest that HmsC might play a major role in sensing the environmental changes.

  9. [Formation of the Pseudomonas aeruginosa PAO1 biofilms in the presence of hydrogen peroxide; the effect of the AiiA gene].

    Science.gov (United States)

    Pliuta, V A; Andreenko, Iu V; Kuznetsov, A E; Khmel', I A

    2013-01-01

    In the natural ecosystems, most bacteria exist as specifically organized biofilms attached to various surfaces; the biofilms have a complex architecture and are surrounded by an exopolymeric matrix. The bacteria in the biofilms are extremely resistant to antibacterial agents. The ability of the pathogenic bacteria to produce biofilms causes serious problems in medicine. Therefore, the study of the action of different compounds with antibacterial activity is of great interest. In this work, we studied the effect of the hydrogen peroxide (H2O2) on the formation of biofilms by Pseudomonas aeruginosa PAO1. It was shown that H2O2 in concentrations that do not suppress bacterial growth (or suppress it only weakly) stimulates the formation of the biofilms. At higher concentrations, H2O2 inhibits the formation of the biofilms. In order to determine if the stimulation of the biofilm formation depends on Quorum Sensing (QS) regulation, the plasmid pME6863 containing the heterologous gene aiiA encoding the N-acyl-homoserine lactonase AiiA was introduced into P. aeruginosa PAO1. The synthesis by cells of this enzyme degrading N-acyl-homoserine lactones (AHL), signaling molecules of the QS systems, led to the absence of the stimulation of the biofilm formation by the action of H2O2. This fact indicates that the stimulation of the biofilm formation in the presence of H2O2 depends on the functioning of the QS systems of the gene expression regulation of P. aeruginosa PAO1.

  10. Biofilm formation on stainless steel and gold wires for bonded retainers in vitro and in vivo and their susceptibility to oral antimicrobials.

    Science.gov (United States)

    Jongsma, Marije A; Pelser, Floris D H; van der Mei, Henny C; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J; Ren, Yijin

    2013-05-01

    Bonded retainers are used in orthodontics to maintain treatment result. Retention wires are prone to biofilm formation and cause gingival recession, bleeding on probing and increased pocket depths near bonded retainers. In this study, we compare in vitro and in vivo biofilm formation on different wires used for bonded retainers and the susceptibility of in vitro biofilms to oral antimicrobials. Orthodontic wires were exposed to saliva, and in vitro biofilm formation was evaluated using plate counting and live/dead staining, together with effects of exposure to toothpaste slurry alone or followed by antimicrobial mouthrinse application. Wires were also placed intra-orally for 72 h in human volunteers and undisturbed biofilm formation was compared by plate counting and live/dead staining, as well as by denaturing gradient gel electrophoresis for compositional differences in biofilms. Single-strand wires attracted only slightly less biofilm in vitro than multi-strand wires. Biofilms on stainless steel single-strand wires however, were much more susceptible to antimicrobials from toothpaste slurries and mouthrinses than on single-strand gold wires and biofilms on multi-strand wires. Also, in vivo significantly less biofilm was found on single-strand than on multi-strand wires. Microbial composition of biofilms was more dependent on the volunteer involved than on wire type. Biofilms on single-strand stainless steel wires attract less biofilm in vitro and are more susceptible to antimicrobials than on multi-strand wires. Also in vivo, single-strand wires attract less biofilm than multi-strand ones. Use of single-strand wires is preferred over multi-strand wires, not because they attract less biofilm, but because biofilms on single-strand wires are not protected against antimicrobials as in crevices and niches as on multi-strand wires.

  11. The biofilm matrix destabilizers, EDTA and DNaseI, enhance the susceptibility of nontypeable Hemophilus influenzae biofilms to treatment with ampicillin and ciprofloxacin.

    Science.gov (United States)

    Cavaliere, Rosalia; Ball, Jessica L; Turnbull, Lynne; Whitchurch, Cynthia B

    2014-08-01

    Nontypeable Hemophilus influenzae (NTHi) is a Gram-negative bacterial pathogen that causes chronic biofilm infections of the ears and airways. The biofilm matrix provides structural integrity to the biofilm and protects biofilm cells from antibiotic exposure by reducing penetration of antimicrobial compounds into the biofilm. Extracellular DNA (eDNA) has been found to be a major matrix component of biofilms formed by many species of Gram-positive and Gram-negative bacteria, including NTHi. Interestingly, the cation chelator ethylenediaminetetra-acetic acid (EDTA) has been shown to reduce the matrix strength of biofilms of several bacterial species as well as to have bactericidal activity against various pathogens. EDTA exerts its antimicrobial activity by chelating divalent cations necessary for growth and membrane stability and by destabilizing the matrix thus enhancing the detachment of bacterial cells from the biofilm. In this study, we have explored the role of divalent cations in NTHi biofilm development and stability. We have utilized in vitro static and continuous flow models of biofilm development by NTHi to demonstrate that magnesium cations enhance biofilm formation by NTHi. We found that the divalent cation chelator EDTA is effective at both preventing NTHi biofilm formation and at treating established NTHi biofilms. Furthermore, we found that the matrix destablilizers EDTA and DNaseI increase the susceptibility of NTHi biofilms to ampicillin and ciprofloxacin. Our observations indicate that DNaseI and EDTA enhance the efficacy of antibiotic treatment of NTHi biofilms. These observations may lead to new strategies that will improve the treatment options available to patients with chronic NTHi infections. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  12. Biofilm formation by Staphylococcus epidermidis on peritoneal dialysis catheters and the effects of extracellular products from Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Pihl, Maria; Arvidsson, Anna; Skepö, Marie

    2013-01-01

    Biofilm formation by Staphylococcus epidermidis is a cause of infections related to peritoneal dialysis (PD). We have used a PD catheter flow-cell model in combination with confocal scanning laser microscopy and atomic force microscopy to study biofilm formation by S. epidermidis. Adherence....... aeruginosa contain promising substances for the prevention and treatment of biofilm infections, although further work is required to identity more active components....

  13. Determination of virulence factors and biofilm formation among isolates of vulvovaginal candidiasis

    Directory of Open Access Journals (Sweden)

    Tapan Majumdar

    2016-01-01

    Full Text Available Context: Under morphogenesis-inducing conditions, Candida spp. begins to undergo yeast-to-hypha switch. This shift from commensal to pathogenic state is dependent on several virulence factors. Aim: To find out whether the isolated Candida spp. were pathogens causing vulvovaginal candidiasis or mere bystanders. Settings and Design: Cross-sectional observational study conducted on 275 symptomatic hospital patients in Tripura between August 2012 and April 2015. Subjects and Methods: Discharge was collected from patients and identified by Grams staining and wet mount test. Culturing was done in Sabouraud dextrose agar followed by speciation. To test for virulence factors, assays for adherence, plasma coagulase, phospholipase, lipase, protease, hemolysin, and biofilm formation were carried out. Statistical Analysis Used: Significance between two groups was compared using one-way analysis of variance along with Tukey test, and Chi-square 2 × 2 contingency table at 95% confidence interval. Results: Fifty-six Candida spp. could be isolated in the study which was used for further virulence tests. One hundred percent of isolates expressed adherence. Among other virulence factors, maximum virulence 25 (45% was shown through protease production. Hemolysin production and biofilm formation were the second most 22 (39% expressed virulence factors. In a comparison of virulence factors between biofilm-forming isolates and planktonic cells, significant difference was seen for plasma coagulase and hemolysin production. Conclusions: All the isolates expressed one or more virulence factors. Adherence was expressed in all isolates but highest number was observed for Candida albicans. Furthermore, C. albicans strain number was highest for protease, hemolysin and coagulase expression and biofilm formation. Candida krusei isolates were the least in number for expressing any of the virulence factors. Significantly higher number of biofilm forming isolates produced

  14. Killing of Serratia marcescens biofilms with chloramphenicol.

    Science.gov (United States)

    Ray, Christopher; Shenoy, Anukul T; Orihuela, Carlos J; González-Juarbe, Norberto

    2017-03-29

    Serratia marcescens is a Gram-negative bacterium with proven resistance to multiple antibiotics and causative of catheter-associated infections. Bacterial colonization of catheters mainly involves the formation of biofilm. The objectives of this study were to explore the susceptibility of S. marcescens biofilms to high doses of common antibiotics and non-antimicrobial agents. Biofilms formed by a clinical isolate of S. marcescens were treated with ceftriaxone, kanamycin, gentamicin, and chloramphenicol at doses corresponding to 10, 100 and 1000 times their planktonic minimum inhibitory concentration. In addition, biofilms were also treated with chemical compounds such as polysorbate-80 and ursolic acid. S. marcescens demonstrated susceptibility to ceftriaxone, kanamycin, gentamicin, and chloramphenicol in its planktonic form, however, only chloramphenicol reduced both biofilm biomass and biofilm viability. Polysorbate-80 and ursolic acid had minimal to no effect on either planktonic and biofilm grown S. marcescens. Our results suggest that supratherapeutic doses of chloramphenicol can be used effectively against established S. marcescens biofilms.

  15. Biofilm Formation by Pseudallescheria/Scedosporium Species: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Rodrigo Rollin-Pinheiro

    2017-08-01

    Full Text Available Pseudallescheria/Scedosporium species are medically important fungi that are present in soil and human impacted areas and capable of causing a wide spectrum of diseases in humans. Although little is known about their pathogenesis, their growth process and infection routes are very similar to those of Aspergillus species, which grow as biofilms in invasive infections. All nine strains tested here displayed the ability to grow as biofilms in vitro and to produce a dense network of interconnected hyphae on both polystyrene and the surfaces of central venous catheters, but with different characteristics. Scedosporium boydii and S. aurantiacum clinical isolates were able to form biofilms faster than the corresponding environmental strains, as evidenced in kinetic assays for S. boydii and CLSM for S. aurantiacum. Biofilms formed by Pseudallescheria/Scedosporium species had significantly higher resistance to the class of antifungal azole than was observed in planktonic cells, indicating a protective role for this structure. In addition, the clinical S. aurantiacum isolate that formed the most robust biofilms was also more virulent in a larvae Galleria mellonella infection model, suggesting that the ability to form biofilms enhances virulence in Pseudallescheria/Scedosporium species.

  16. Bisphosphonates enhance bacterial adhesion and biofilm formation on bone hydroxyapatite.

    Science.gov (United States)

    Kos, Marcin; Junka, Adam; Smutnicka, Danuta; Szymczyk, Patrycja; Gluza, Karolina; Bartoszewicz, Marzenna

    2015-07-01

    Because of the suspicion that bisphosphonates enhance bacterial colonization, this study evaluated adhesion and biofilm formation by Streptococcus mutans 25175, Staphylococcus aureus 6538, and Pseudomonas aeruginosa 14454 reference strains on hydroxyapatite coated with clodronate, pamidronate, or zoledronate. Bacterial strains were cultured on bisphosphonate-coated and noncoated hydroxyapatite discs. After incubation, nonadhered bacteria were removed by centrifugation. Biofilm formation was confirmed by scanning electron microscopy. Bacterial colonization was estimated using quantitative cultures compared by means with Kruskal-Wallis and post-hoc Student-Newman-Keuls tests. Modeling of the interactions between bisphosphonates and hydroxyapatite was performed using the Density Functional Theory method. Bacterial colonization of the hydroxyapatite discs was significantly higher for all tested strains in the presence of bisphosphonates vs. Adherence in the presence of pamidronate was higher than with other bisphosphonates. Density Functional Theory analysis showed that the protonated amine group of pamidronate, which are not present in clodronate or zoledronate, forms two additional hydrogen bonds with hydroxyapatite. Moreover, the reactive cationic amino group of pamidronate may attract bacteria by direct electrostatic interaction. Increased bacterial adhesion and biofilm formation can promote osteomyelitis, cause failure of dental implants or bisphosphonate-coated joint prostheses, and complicate bone surgery in patients on bisphosphonates. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. Evaluation of environmental and nutritional factors and sua gene on in vitro biofilm formation of Streptococcus uberis isolates.

    Science.gov (United States)

    Moliva, Melina Vanesa; Cerioli, Florencia; Reinoso, Elina Beatriz

    2017-06-01

    The pathogenesis of Streptococcus uberis is attributed to a combination of extracellular factors and properties such as adherence and biofilm formation. The aim of this work was to evaluate the influence of different factors, additives and bovine milk compounds on S. uberis biofilm formation, as the presence of the sua gene by PCR. Additionally, extracellular DNA and the effect of DNaseI were evaluated in the biofilms yielded. Optimal biofilm development was observed when the pH was adjusted to 7.0 and 37 °C. Additives as glucose and lactose reduced biofilm formation as bovine milk compounds tested. PCR assay showed that not all the isolates yielded sua gene. Extrachromosomal ADN was found in cell-free supernatants, suggesting that DNA released spontaneously to the medium. The results contribute to a better understanding of the factors involved in biofilm production of this important pathogen associated with mastitis in order to promote the design of new therapeutic approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The Effect of Carbon Source and Fluoride Concentrations in the "Streptococcus Mutans" Biofilm Formation

    Science.gov (United States)

    Paulino, Tony P.; Andrade, Ricardo O.; Bruschi-Thedei, Giuliana C. M.; Thedei, Geraldo, Jr.; Ciancaglini, Pietro

    2004-01-01

    The main objective of this class experiment is to show the influence of carbon source and of different fluoride concentrations on the biofilm formation by the bacterium "Streptococcus mutans." The observation of different biofilm morphology as a function of carbon source and fluoride concentration allows an interesting discussion regarding the…

  19. The Effect of Novel Heterocyclic Compounds on Cryptococcal Biofilm

    Science.gov (United States)

    Korem, Maya; Kagan, Sarah

    2017-01-01

    Biofilm formation by microorganisms depends on their communication by quorum sensing, which is mediated by small diffusible signaling molecules that accumulate in the extracellular environment. During human infection, the pathogenic yeast Cryptococcus neoformans can form biofilm on medical devices, which protects the organism and increases its resistance to antifungal agents. The aim of this study was to test two novel heterocyclic compounds, S-8 (thiazolidinedione derivative, TZD) and NA-8 (succinimide derivative, SI), for their anti-biofilm activity against strains of Cryptococcus neoformans and Cryptococcus gattii. Biofilms were formed in a defined medium in 96-well polystyrene plates and 8-well micro-slides. The effect of sub-inhibitory concentrations of S-8 and NA-8 on biofilm formation was measured after 48 h by a metabolic reduction assay and by confocal laser microscopy analysis using fluorescent staining. The formation and development of cryptococcal biofilms was inhibited significantly by these compounds in concentrations below the minimum inhibitory concentration (MIC) values. These compounds may have a potential role in preventing fungal biofilm development on indwelling medical devices or even as a therapeutic measure after the establishment of biofilm. PMID:29371559

  20. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    Bacteria in nature primarily live in surface-associated communities commonly known as biofilms. Because bacteria in biofilms, in many cases, display tolerance to host immune systems, antibiotics, and biocides, they are often difficult or impossible to eradicate. Biofilm formation, therefore, leads...

  1. The presence of biofilm forming microorganisms on hydrotherapy equipment and facilities.

    Science.gov (United States)

    Jarząb, Natalia; Walczak, Maciej

    2017-10-01

    Hydrotherapy equipment provides a perfect environment for the formation and growth of microbial biofilms. Biofilms may reduce the microbiological cleanliness of hydrotherapy equipment and harbour opportunistic pathogens and pathogenic bacteria. The aims of this study were to investigate the ability of microorganisms that colonize hydrotherapy equipment to form biofilms, and to assess the influence of temperature and nutrients on the rate of biofilm formation. Surface swab samples were collected from the whirlpool baths, inhalation equipment and submerged surfaces of a brine pool at the spa center in Ciechocinek, Poland. We isolated and identified microorganisms from the swab samples and measured their ability to form biofilms. Biofilm formation was observed at a range of temperatures, in both nutrient-deficient and nutrient-rich environments. We isolated and identified microorganisms which are known to form biofilms on medical devices (e.g. Stenotrophomonas maltophilia). All isolates were classified as opportunistic pathogens, which can cause infections in humans with weakened immunity systems. All isolates showed the ability to form biofilms in the laboratory conditions. The potential for biofilm formation was higher in the presence of added nutrients. In addition, the hydrolytic activity of the biofilm was connected with the presence of nutrients.

  2. Sticking together: building a biofilm the Bacillus subtilis way.

    Science.gov (United States)

    Vlamakis, Hera; Chai, Yunrong; Beauregard, Pascale; Losick, Richard; Kolter, Roberto

    2013-03-01

    Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long served as a robust model organism to examine the molecular mechanisms of biofilm formation, and a number of studies have revealed that this process is regulated by several integrated pathways. In this Review, we focus on the molecular mechanisms that control B. subtilis biofilm assembly, and then briefly summarize the current state of knowledge regarding biofilm disassembly. We also discuss recent progress that has expanded our understanding of B. subtilis biofilm formation on plant roots, which are a natural habitat for this soil bacterium.

  3. Electroactive biofilms of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Cordas, Cristina M.; Guerra, L. Tiago; Xavier, Catarina; Moura, Jose J.G.

    2008-01-01

    Biofilms formed from a pure strain of Desulfovibrio desulfuricans 27774 on stainless steel and graphite polarised surfaces were studied. The polarisation conditions applied were -0.4 V vs. SCE for different times. A cathodic current related with the biofilms growth was observed with a maximum intensity of -270 mA m -2 that remained stable for several days using graphite electrodes. These sulphate reducing bacteria biofilms present electrocatalytic activity towards hydrogen and oxygen reduction reactions. Electrode polarisation has a selective effect on the catalytic activity. The biofilms were also observed by scanning electronic microscopy revealing the formation of homogeneous films on the surfaces

  4. Formation and retention of staphylococcal biofilms on DLC and its hybrids compared to metals used as biomaterials.

    Science.gov (United States)

    Myllymaa, Katja; Levon, Jaakko; Tiainen, Veli-Matti; Myllymaa, Sami; Soininen, Antti; Korhonen, Hannu; Kaivosoja, Emilia; Lappalainen, Reijo; Konttinen, Yrjö Tapio

    2013-01-01

    Staphylococcus epidermidis and Staphylococcus aureus cause most of the implant-related infections. Antibiotic treatment often fails and cure requires surgical intervention. It was hypothesized that biomaterial coatings resistant to biofilms offer a preventive option. Physical vapour deposited diamond-like carbon (DLC) and its polytetrafluoroethylene (DLC-PTFE-h) and polydimethylsiloxane (DLC-PDMS-h) hybrids were compared to titanium (Ti), tantalum (Ta) and chromium (Cr) thin films on silicon wafers for their resistance against formation and/or retention of biofilms produced by S. epidermidis and S. aureus in vitro. Sample surfaces were characterized for surface topography, contact angle and zeta-potential, because such properties might affect the biofilm. Biofilm was stained using calcofluor white and analysed in fluorescence microscopy using morphometry. Sixteen hour incubation was selected in pilot tests; at this checkpoint Ti, Ta, Cr and DLC-PDMS-h were almost fully covered by biofilm, but DLC and DLC-PTFE-h were only partially biofilm coated by S. epidermidis (88±26%, pDLC and its PTFE hybrid offer a potential biofilm hostile surface coating for implants and medical devices. This ability to resist biofilm formation and attachment could not be explained by only one factor, but it seems to be related to a combination of various properties, with electrokinetic streaming potential and protein coating being particularly important for its outcome. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Role of bacterial biofilm in development of middle ear effusion.

    Science.gov (United States)

    Tawfik, Sedeek Abd El-Salam; Ibrahim, Ahmed Aly; Talaat, Iman Mamdoh; El-Alkamy, Soliman Samy Abd El-Raouf; Youssef, Ahmed

    2016-11-01

    Biofilms have been implicated in the development of several chronic upper respiratory tract infections. Role of bacterial biofilms has been well studied in the pathogenesis of chronic rhinosinusitis. However, its impact on development of middle ear effusion is still a matter of debate. To study the extent of surface adenoid biofilm and evaluate its role in the pathogenesis of chronic otitis media with effusion in children. The study was carried out on 40 children in Alexandria Main University Hospital between 1 and 16 years of age without sex predilection, who were divided into two groups. The first group (20 children) had otitis media with effusion associated with adenoid hypertrophy, whereas the second group (20 children) had adenoid hypertrophy without middle ear effusion. Adenoidectomy with ventilation tube insertion was done for group 1 cases, whereas, only Adenoidectomy was done for group 2 cases. The samples were processed for the detection of biofilms by scanning electron microscopy. The biofilm formation was graded according to extension. Biofilm formation was detected on all samples for group 1. Adenoids removed from patients with otitis media with effusion had higher-grade biofilm formation than the other group (P 0.0001). No correlation was found between adenoid size and biofilm formation. In pediatric population, adenoid surface biofilm formation may be involved in the pathogenesis otitis media with effusion.

  6. Biofilm Infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Jensen, Peter Østrup; Moser, Claus Ernst

    A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized...... as being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections...... such as diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well...

  7. Nanocoatings for Chronic Wound Repair—Modulation of Microbial Colonization and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Mara Mădălina Mihai

    2018-04-01

    Full Text Available Wound healing involves a complex interaction between immunity and other natural host processes, and to succeed it requires a well-defined cascade of events. Chronic wound infections can be mono- or polymicrobial but their major characteristic is their ability to develop a biofilm. A biofilm reduces the effectiveness of treatment and increases resistance. A biofilm is an ecosystem on its own, enabling the bacteria and the host to establish different social interactions, such as competition or cooperation. With an increasing incidence of chronic wounds and, implicitly, of chronic biofilm infections, there is a need for alternative therapeutic agents. Nanotechnology shows promising openings, either by the intrinsic antimicrobial properties of nanoparticles or their function as drug carriers. Nanoparticles and nanostructured coatings can be active at low concentrations toward a large variety of infectious agents; thus, they are unlikely to elicit emergence of resistance. Nanoparticles might contribute to the modulation of microbial colonization and biofilm formation in wounds. This comprehensive review comprises the pathogenesis of chronic wounds, the role of chronic wound colonization and infection in the healing process, the conventional and alternative topical therapeutic approaches designed to combat infection and stimulate healing, as well as revolutionizing therapies such as nanotechnology-based wound healing approaches.

  8. Contribution of glucan-binding protein A to firm and stable biofilm formation by Streptococcus mutans.

    Science.gov (United States)

    Matsumi, Y; Fujita, K; Takashima, Y; Yanagida, K; Morikawa, Y; Matsumoto-Nakano, M

    2015-06-01

    Glucan-binding proteins (Gbps) of Streptococcus mutans, a major pathogen of dental caries, mediate the binding of glucans synthesized from sucrose by the action of glucosyltransferases (GTFs) encoded by gtfB, gtfC, and gtfD. Several stress proteins, including DnaK and GroEL encoded by dnaK and groEL, are related to environmental stress tolerance. The contribution of Gbp expression to biofilm formation was analyzed by focusing on the expression levels of genes encoding GTFs and stress proteins. Biofilm-forming assays were performed using GbpA-, GbpB-, and GbpC-deficient mutant strains and the parental strain MT8148. The expression levels of gtfB, gtfC, gtfD, dnaK, and groEL were evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Furthermore, the structure of biofilms formed by these Gbp-deficient mutant strains was observed using confocal laser scanning microscopy (CLSM). Biofilm-forming assay findings demonstrated that the amount formed by the GbpA-deficient mutant strain (AD1) was nearly the same as that by the parental strain, while the GbpB- and GbpC-deficient mutant strains produced lower amounts than MT8148. Furthermore, RT-qPCR assay results showed that the expressions of gtfB, dnaK, and groEL in AD1 were elevated compared with MT8148. CLSM also revealed that the structure of biofilm formed by AD1 was prominently different compared with that formed by the parental strain. These results suggest that a defect in GbpA influences the expression of genes controlling biofilm formation, indicating its importance as a protein for firm and stable biofilm formation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Development of a high-throughput Candida albicans biofilm chip.

    Directory of Open Access Journals (Sweden)

    Anand Srinivasan

    2011-04-01

    Full Text Available We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B. Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  10. A Role for the Mannose-Sensitive Hemagglutinin in Biofilm Formation by Vibrio cholerae El Tor

    Science.gov (United States)

    Watnick, Paula I.; Fullner, Karla Jean; Kolter, Roberto

    1999-01-01

    While much has been learned regarding the genetic basis of host-pathogen interactions, less is known about the molecular basis of a pathogen’s survival in the environment. Biofilm formation on abiotic surfaces represents a survival strategy utilized by many microbes. Here it is shown that Vibrio cholerae El Tor does not use the virulence-associated toxin-coregulated pilus to form biofilms on borosilicate but rather uses the mannose-sensitive hemagglutinin (MSHA) pilus, which plays no role in pathogenicity. In contrast, attachment of V. cholerae to chitin is shown to be independent of the MSHA pilus, suggesting divergent pathways for biofilm formation on nutritive and nonnutritive abiotic surfaces. PMID:10348878

  11. Mutation of the Streptococcus gordonii Thiol-Disulfide Oxidoreductase SdbA Leads to Enhanced Biofilm Formation Mediated by the CiaRH Two-Component Signaling System.

    Directory of Open Access Journals (Sweden)

    Lauren Davey

    Full Text Available Streptococcus gordonii is a commensal inhabitant of human oral biofilms. Previously, we identified an enzyme called SdbA that played an important role in biofilm formation by S. gordonii. SdbA is thiol-disulfide oxidoreductase that catalyzes disulfide bonds in secreted proteins. Surprisingly, inactivation of SdbA results in enhanced biofilm formation. In this study we investigated the basis for biofilm formation by the ΔsdbA mutant. The results revealed that biofilm formation was mediated by the interaction between the CiaRH and ComDE two-component signalling systems. Although it did not affect biofilm formation by the S. gordonii parent strain, CiaRH was upregulated in the ΔsdbA mutant and it was essential for the enhanced biofilm phenotype. The biofilm phenotype was reversed by inactivation of CiaRH or by the addition of competence stimulating peptide, the production of which is blocked by CiaRH activity. Competition assays showed that the enhanced biofilm phenotype also corresponded to increased oral colonization in mice. Thus, the interaction between SdbA, CiaRH and ComDE affects biofilm formation both in vitro and in vivo.

  12. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of Escherichia coli O157:H7

    Science.gov (United States)

    Kim, Yong-Guy; Lee, Jin-Hyung; Gwon, Giyeon; Kim, Soon-Il; Park, Jae Gyu; Lee, Jintae

    2016-01-01

    Enterohemorrhagic Escherichia coli O157:H7 (EHEC) has caused foodborne outbreaks worldwide and the bacterium forms antimicrobial-tolerant biofilms. We investigated the abilities of various plant essential oils and their components to inhibit biofilm formation by EHEC. Bay, clove, pimento berry oils and their major common constituent eugenol at 0.005% (v/v) were found to markedly inhibit EHEC biofilm formation without affecting planktonic cell growth. In addition, three other eugenol derivatives isoeugenol, 2-methoxy-4-propylphenol, and 4-ethylguaiacol had antibiofilm activity, indicating that the C-1 hydroxyl unit, the C-2 methoxy unit, and C-4 alkyl or alkane chain on the benzene ring of eugenol play important roles in antibiofilm activity. Interestingly, these essential oils and eugenol did not inhibit biofilm formation by three laboratory E. coli K-12 strains that reduced curli fimbriae production. Transcriptional analysis showed that eugenol down-regulated 17 of 28 genes analysed, including curli genes (csgABDFG), type I fimbriae genes (fimCDH) and ler-controlled toxin genes (espD, escJ, escR, and tir), which are required for biofilm formation and the attachment and effacement phenotype. In addition, biocompatible poly(lactic-co-glycolic acid) coatings containing clove oil or eugenol exhibited efficient biofilm inhibition on solid surfaces. In a Caenorhabditis elegans nematode model, clove oil and eugenol attenuated the virulence of EHEC. PMID:27808174

  13. Spatial & Temporal Geophysical Monitoring of Microbial Growth and Biofilm Formation

    Science.gov (United States)

    Davis, C. A.; Pyrak-Nolte, L. J.; Atekwana, E. A.; Werkema, D. D.; Haugen, M. E.

    2009-12-01

    Previous studies have examined the effect of biogenic gases and biomineralization on the acoustic properties of porous media. In this study, we investigated the spatiotemporal effect of microbial growth and biofilm formation on compressional waves and complex conductivity in sand columns. A control column (non-biostimulated) and a biostimulated column were studied in a 2D acoustic scanning apparatus, and a second set of columns were constructed with Ag-AgCl electrodes for complex conductivity measurements. At the completion of the 29-day experiment, compressional wave amplitudes and arrival times for the control column were observed to be relatively uniform over the scanned 2D region. However, the biostimulated sample exhibited a high degree of spatial variability within the column for both the amplitude and arrival times. Furthermore, portions of the sample exhibited increased attenuation (~ 80%) concurrent with an increase in the arrival times, while other portions exhibited decreased attenuation (~ 45%) and decreased arrival time. The acoustic amplitude and arrival times changed significantly in the biostimulated column between Days 5 and 7 of the experiment and are consistent with a peak in the imaginary conductivity (σ”) values. The σ” response corresponds to different stages of biofilm development. That is, we interpret the peak σ” with the maximum biofilm thickness and decreasing σ” due to cell death or detachment. Environmental scanning electron microscope (ESEM) imaging confirmed microbial cell attachment to sand surfaces in the biostimulated columns, showed apparent differences in the morphology of attached biomass between regions of increased and decreased attenuation, and indicated no mineral precipitation or biomineralization. The heterogeneity in the elastic properties arises from the differences in the morphology and structure of attached biofilms. These results suggest that combining acoustic imaging and complex conductivity techniques

  14. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ryan, Robert P.; Lucey, Jean; O'Donovan, Karen

    2009-01-01

    residues (YN-GYP). Here we have investigated the role of these proteins in biofilm formation, virulence factor synthesis and virulence of P. aeruginosa. Mutation of PA4108 and PA4781 led to an increase in the level of cyclic-di-GMP in P. aeruginosa, consistent with the predicted activity of the encoded......2572 had a negative influence on swarming that was cryptic and was revealed only after removal of an uncharacterized C-terminal domain. Mutation of PA4108, PA4781 and PA2572 had distinct effects on biofilm formation and architecture of P. aeruginosa. All three proteins contributed to virulence of P...

  15. Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42.

    Science.gov (United States)

    Al-Ali, Ameen; Deravel, Jovana; Krier, François; Béchet, Max; Ongena, Marc; Jacques, Philippe

    2017-10-23

    In this work, the behavior in tomato rhizosphere of Bacillus velezensis FZB42 was analyzed taking into account the surfactin production, the use of tomato roots exudate as substrates, and the biofilm formation. B. velezensis FZB42 and B. amyloliquefaciens S499 have a similar capability to colonize tomato rhizosphere. Little difference in this colonization was observed with surfactin non producing B. velezensis FZB42 mutant strains. B. velezensis is able to grow in the presence of root exudate and used preferentially sucrose, maltose, glutamic, and malic acids as carbon sources. A mutant enable to produce exopolysaccharide (EPS - ) was constructed to demonstrate the main importance of biofilm formation on rhizosphere colonization. This mutant had completely lost its ability to form biofilm whatever the substrate present in the culture medium and was unable to efficiently colonize tomato rhizosphere.

  16. Penicillenols from a deep-sea fungus Aspergillus restrictus inhibit Candida albicans biofilm formation and hyphal growth.

    Science.gov (United States)

    Wang, Jie; Yao, Qi-Feng; Amin, Muhammad; Nong, Xu-Hua; Zhang, Xiao-Yong; Qi, Shu-Hua

    2017-06-01

    Penicillenols (A1, A2, B1, B2, C1 and C2) were isolated from Aspergillus restrictus DFFSCS006, and could differentially inhibit biofilm formation and eradicate pre-developed biofilms of Candida albicans. Their structure-bioactivity relationships suggested that the saturation of hydrocarbon chain at C-8, R-configuration of C-5 and trans-configuration of the double bond between C-5 and C-6 of pyrrolidine-2,4-dione unit were important for their anti-biofilm activities. Penicillenols A2 and B1 slowed the hyphal growth and suppressed the transcripts of hypha specific genes HWP1, ALS1, ALS3, ECE1 and SAP4. Moreover, penicillenols A2 and B1 were found to act synergistically with amphotericin B against C. albicans biofilm formation.

  17. Bacterial biofilms and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Liliana Caldas-Arias

    2015-04-01

    Full Text Available Biofilms give to bacteria micro-environmental benefits; confers protection against antimicrobials. Bacteria have antibiotic resistance by conventional and unusual mechanisms leading to delayed wound healing, to increase recurrent chronic infections and nosocomial contamination of medical devices. Objective: This narrative review aims to introduce the characteristics of Bacteria-biofilms, antimicrobial resistance mechanisms and potential alternatives for prevention and control of its formation. Methods: Search strategy was performed on records: PubMed / Medline, Lilacs, Redalyc; with suppliers such as EBSCO and thesaurus MeSH and DeCS. Conclusions: Knowledge and research performance of biofilm bacteria are relevant in the search of technology for detection and measuring sensitivity to antibiotics. The identification of Bacterial-biofilms needs no-traditional microbiological diagnosis.

  18. Evaluation of Candida albicans biofilm formation on various dental ...

    African Journals Online (AJOL)

    Evaluation of Candida albicans biofilm formation on various dental restorative material surfaces. ... Nigerian Journal of Clinical Practice ... was significantly lower on the resin-modified glass ionomer and glass-ionomer cement samples. ... Conclusion: This finding emphasizes the use of glass ionomer restorative cements and ...

  19. Biophysics of biofilm infection.

    Science.gov (United States)

    Stewart, Philip S

    2014-04-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could (1) allow prevailing hydrodynamic shear to remove biofilm, (2) increase the efficacy of designed interventions for removing biofilms, (3) enable phagocytic engulfment of softened biofilm aggregates, and (4) improve phagocyte mobility and access to biofilm. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. In Vitro Efficacy of Continuous Mild High Temperature on the Biofilm Formation of Aspergillus Niger.

    Science.gov (United States)

    Zeng, Rong; Tong, Jian Bo; Liu, Yu Zhen; Chen, Qing; Lin, Tong; Li, Min; Lü, Gui Xia

    2017-12-20

    Objective To investigate whether continuous mild high temperature (increased temperature without causing significant damage to host cells) can inhibit the biofilm formation of Aspergillus niger (A.niger) and its vitality.Methods A.niger biofilms were formed on a coverslip in 24-well tissue culture plate and were checked at the time points 4,8,10,16,24,48 and 72 hours.Confocal laser scanning microscopy (CLSM) was used to image and quantify A.niger biofilm formation under three different continuous mild high temperatures at 37℃,39℃,and 41℃.Furthermore,2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay was used to quantify the dynamic growth of A.niger biofilm under the above conditions.Results Compared with the culture condition 37℃,CLSM analysis at 39℃ or 41℃ showed that higher temperature induced later germination at 4 hours (t=8.603,P=0.047;t=14.550,P=0.008),poorer hyphal elongation at 8 hours(t=35.118,P=0.039;t=63.450,P=0.006),poorer polar growth,and reduced biofilm thickness from 10 to 24 hours.The XTT assay showed that higher temperature (39℃ or 41℃) lead to lower vitality at 10 hours,higher vitality at 16 hours,but finally lower vitality from 24 to 72 hours (t=24.262,P=0.038;t=7.556,P=0.031).Conclusion Continuous mild high temperature may have a negative regulatory effect on biofilm formation of A.niger and its vitality.

  1. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers.

    Science.gov (United States)

    Kruszewski, Kristen M; Nistico, Laura; Longwell, Mark J; Hynes, Matthew J; Maurer, Joshua A; Hall-Stoodley, Luanne; Gawalt, Ellen S

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (-CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an "active" antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. In Vitro Antimicrobial Susceptibility of Pathogenic Leptospira Biofilm.

    Science.gov (United States)

    Vinod Kumar, Kirubakaran; Lall, Chandan; Raj, Ratchagadasse Vimal; Vedhagiri, Kumaresan; Sunish, Ittoop Pulikkottil; Vijayachari, Paluru

    2016-10-01

    Pathogenic Leptospira spp. are the causative agent of leptospirosis. Biofilm formation in leptospires is a new area of study, and its role in pathogenesis is not fully explored. As in other biofilm-forming bacteria, Leptospira biofilm may play a significant role in antibiotic resistance. In this study, the antimicrobial susceptibility of Leptospira biofilm was investigated by 96-well plate assay using Alamar Blue. Leptospira biofilm showed five to sixfold increase in resistance in all the strains used. The range of minimal bactericidal concentrations for penicillin G, ampicillin, tetracycline, and doxycycline was 1,600 U/ml, 800-1,600 μg/ml, 800-1,600 μg/ml, and 800-1,600 μg/ml, respectively. In agar substrate, the biofilm showed six- to sevenfold increase in resistance to antibiotics compared to planktonic cell. The present study emphasizes the importance of biofilm formation and its antibiotic susceptibility patterns. This could pave the way for devising appropriate strategy to prevent the occurrence of potential chronic leptospirosis in endemic areas and also during an outbreak situation.

  3. Impact of osteitis and biofilm formation and correlation between both ...

    African Journals Online (AJOL)

    Background: The pathogenesis of diffuse sinonasal polyposis is still not completely established, possible explanations are osteitis, aeroallergens, fungal sinusitis and biofilms. There are no reports in Egypt about osteitis and biofilms in those patients. Purpose: To study the incidence and impact of osteitis and biofilms in ...

  4. Oral cavity anaerobic pathogens in biofilm formation on voice prostheses

    NARCIS (Netherlands)

    Bertl, Kristina; Zijnge, Vincent; Zatorska, Beata; Leonhard, Matthias; Schneider-Stickler, Berit; Harmsen, Hermie J. M.

    BACKGROUND: A polymerase chain reaction (PCR)-based method has been used to identify oral anaerobic pathogens in biofilms on voice prostheses. The purpose of the present study was to determine the location of those pathogens inside the biofilms. METHODS: Biofilms of 15 voice prostheses were sampled

  5. In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens.

    Science.gov (United States)

    Jongsma, Marije A; van der Mei, Henny C; Atema-Smit, Jelly; Busscher, Henk J; Ren, Yijin

    2015-03-23

    Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased pocket depth and bleeding on probing. This study compares in vivo biofilm formation on single-strand and multi-strand retention wires with different oral health-care regimens. Two-centimetre wires were placed in brackets that were bonded to the buccal side of the first molars and second premolars in the upper arches of 22 volunteers. Volunteers used a selected toothpaste with or without the additional use of a mouthrinse containing essential oils. Brushing was performed manually. Regimens were maintained for 1 week, after which the wires were removed and the oral biofilm was collected to quantify the number of organisms and their viability, determine the microbial composition and visualize the bacteria by electron microscopy. A 6-week washout period was employed between regimens. Biofilm formation was reduced on single-strand wires compared with multi-strand wires; bacteria were observed to adhere between the strands. The use of antibacterial toothpastes marginally reduced the amount of biofilm on both wire types, but significantly reduced the viability of the biofilm organisms. Additional use of the mouthrinse did not result in significant changes in biofilm amount or viability. However, major shifts in biofilm composition were induced by combining a stannous fluoride- or triclosan-containing toothpaste with the mouthrinse. These shifts can be tentatively attributed to small changes in bacterial cell surface hydrophobicity after the adsorption of the toothpaste components, which stimulate bacterial adhesion to the hydrophobic oil, as illustrated for a Streptococcus mutans strain.

  6. Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation.

    Science.gov (United States)

    Lattif, Ali Abdul; Mukherjee, Pranab K; Chandra, Jyotsna; Roth, Mary R; Welti, Ruth; Rouabhia, Mahmoud; Ghannoum, Mahmoud A

    2011-11-01

    Candida albicans-associated bloodstream infections are linked to the ability of this yeast to form biofilms. In this study, we used lipidomics to compare the lipid profiles of C. albicans biofilms and planktonic cells, in early and mature developmental phases. Our results showed that significant differences exist in lipid composition in both developmental phases. Biofilms contained higher levels of phospholipid and sphingolipids than planktonic cells (nmol per g biomass, Pbiofilms compared to planktonic cells (P≤0.05). The ratio of phosphatidylcholine to phosphatidylethanolamine was lower in biofilms compared to planktonic cells in both early (1.17 vs 2.52, P≤0.001) and late (2.34 vs 3.81, P≤0.001) developmental phases. The unsaturation index of phospholipids decreased with time, with this effect being particularly strong for biofilms. Inhibition of the biosynthetic pathway for sphingolipid [mannosyl diinositolphosphoryl ceramide, M(IP)₂C] by myriocin or aureobasidin A, and disruption of the gene encoding inositolphosphotransferase (Ipt1p), abrogated the ability of C. albicans to form biofilms. The differences in lipid profiles between biofilms and planktonic Candida cells may have important implications for the biology and antifungal resistance of biofilms.

  7. AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis.

    Science.gov (United States)

    Jung, Chiau-Jing; Hsu, Ron-Bin; Shun, Chia-Tung; Hsu, Chih-Chieh; Chia, Jean-San

    2017-09-01

    Host factors, such as platelets, have been shown to enhance biofilm formation by oral commensal streptococci, inducing infective endocarditis (IE), but how bacterial components contribute to biofilm formation in vivo is still not clear. We demonstrated previously that an isogenic mutant strain of Streptococcus mutans deficient in autolysin AtlA (Δ atlA ) showed a reduced ability to cause vegetation in a rat model of bacterial endocarditis. However, the role of AtlA in bacterial biofilm formation is unclear. In this study, confocal laser scanning microscopy analysis showed that extracellular DNA (eDNA) was embedded in S. mutans GS5 floes during biofilm formation on damaged heart valves, but an Δ atlA strain could not form bacterial aggregates. Semiquantification of eDNA by PCR with bacterial 16S rRNA primers demonstrated that the Δ atlA mutant strain produced dramatically less eDNA than the wild type. Similar results were observed with in vitro biofilm models. The addition of polyanethol sulfonate, a chemical lysis inhibitor, revealed that eDNA release mediated by bacterial cell lysis is required for biofilm initiation and maturation in the wild-type strain. Supplementation of cultures with calcium ions reduced wild-type growth but increased eDNA release and biofilm mass. The effect of calcium ions on biofilm formation was abolished in Δ atlA cultures and by the addition of polyanethol sulfonate. The VicK sensor, but not CiaH, was found to be required for the induction of eDNA release or the stimulation of biofilm formation by calcium ions. These data suggest that calcium ion-regulated AtlA maturation mediates the release of eDNA by S. mutans , which contributes to biofilm formation in infective endocarditis. Copyright © 2017 American Society for Microbiology.

  8. Candida Biofilms: Threats, Challenges, and Promising Strategies

    Directory of Open Access Journals (Sweden)

    Mafalda Cavalheiro

    2018-02-01

    Full Text Available Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.

  9. Candida Biofilms: Threats, Challenges, and Promising Strategies.

    Science.gov (United States)

    Cavalheiro, Mafalda; Teixeira, Miguel Cacho

    2018-01-01

    Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis , and Candida parapsilosis , highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.

  10. Candida Biofilms: Threats, Challenges, and Promising Strategies

    Science.gov (United States)

    Cavalheiro, Mafalda; Teixeira, Miguel Cacho

    2018-01-01

    Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed. PMID:29487851

  11. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action

    Science.gov (United States)

    Roy, Ranita; Tiwari, Monalisa; Donelli, Gianfranco; Tiwari, Vishvanath

    2018-01-01

    ABSTRACT Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. The biofilm matrix surrounding bacteria makes them tolerant to harsh conditions and resistant to antibacterial treatments. Moreover, the biofilms are responsible for causing a broad range of chronic diseases and due to the emergence of antibiotic resistance in bacteria it has really become difficult to treat them with efficacy. Furthermore, the antibiotics available till date are ineffective for treating these biofilm related infections due to their higher values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), which may result in in-vivo toxicity. Hence, it is critically important to design or screen anti-biofilm molecules that can effectively minimize and eradicate biofilm related infections. In the present article, we have highlighted the mechanism of biofilm formation with reference to different models and various methods used for biofilm detection. A major focus has been put on various anti-biofilm molecules discovered or tested till date which may include herbal active compounds, chelating agents, peptide antibiotics, lantibiotics and synthetic chemical compounds along with their structures, mechanism of action and their respective MICs, MBCs, minimum biofilm inhibitory concentrations (MBICs) as well as the half maximal inhibitory concentration (IC50) values available in the literature so far. Different mode of action of anti biofilm molecules addressed here are inhibition via interference in the quorum sensing pathways, adhesion mechanism, disruption of extracellular DNA, protein, lipopolysaccharides, exopolysaccharides and secondary messengers involved in various signaling pathways. From this study, we conclude that the molecules considered here might be used to treat biofilm-associated infections after significant structural modifications, thereby

  12. BIOFILM FORMATION OF Vibrio cholerae ON STAINLESS STEEL USED IN FOOD PROCESSING

    OpenAIRE

    FERNÁNDEZ-DELGADO, Milagro; ROJAS, Héctor; DUQUE, Zoilabet; SUÁREZ, Paula; CONTRERAS, Monica; GARCÍA-AMADO, M. Alexandra; ALCIATURI, Carlos

    2016-01-01

    Vibrio cholerae represents a significant threat to human health in developing countries. This pathogen forms biofilms which favors its attachment to surfaces and its survival and transmission by water or food. This work evaluated the in vitro biofilm formation of V. cholerae isolated from clinical and environmental sources on stainless steel of the type used in food processing by using the environmental scanning electron microscopy (ESEM). Results showed no cell adhesion at 4 h and scarce sur...

  13. Influence of subinhibitory-concentration (sub-MIC Cefetoxime on biofilm formation. SEM study of ESBL-producing Salmonella typhi

    Directory of Open Access Journals (Sweden)

    Rahul Narasanna, Manjunath Chavadi, Ajaykumar Oli

    2017-06-01

    Full Text Available Objectives: In the present study, we have analyzed ESBL-producing S. typhi’s capability in forming a significant amount of biofilm on plastic and glass surface, and the influence of cefetoxime on biofilm development at subinhibitory (Sub-MIC concentration. Methods: Nine strains of cefetoxime-mediated ESBL-producing S. typhi were used in the study. S. typhi formed biofilm on plastic and glass materials; it was demonstrated using micro titre plate (MTP and standard test tube methods. Comparative study of the influence of cefetoxime on biofilm formation in its MIC (128 µg/ml and at sub-MIC (64 µg/ml was demonstrated by microtitre plate method. The biofilm production was observed in SEM images, statistical analysis (ANOVA showed significant increase in cell surface and volume due to the influence of Cefetoxime. Results: Of the nine selected isolates, two S. typhi strains, namely BST 51 and BST 130, produced relatively strong biofilm in the presence of cefetoxime at sub-MIC level (64 µg/ml, comparatively weak biofilm formation at MIC level (128 µg/ml. Typical morphological changes were observed in cefetoxime-resistant strains, S. typhi BST 51 and BST 130, in comparison to cefetoxime-sensitive strain S. typhi BST 63 used as a control. We found an increase in surface and volume of a cell in response to cefetoxime and statistical data (ANOVA proved that resistant strains were significantly different from control strains. Conclusion: The above study clearly shows that cefetoxime at sub-MIC level efficiently induces biofilm formation and promotes changes in morphology of the cell. J Microbiol Infect Dis 2017; 7(2: 67-75

  14. The Interface between Fungal Biofilms and Innate Immunity

    Directory of Open Access Journals (Sweden)

    John F. Kernien

    2018-01-01

    Full Text Available Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus, and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.

  15. Actinomyces naeslundii in intial dental biofilm formation

    DEFF Research Database (Denmark)

    Dige, Irene; Raarup, Merete Krog; Nyengaard, Jens Randel

    2009-01-01

    Combined use of Confocal Laser Scanning Microscopy (CLSM) and Fluorescent in situ Hybridization (FISH) offers new opportunities for analysing the spatial relationships and temporal changes of specific members of microbial populations in intact dental biofilms. AIMS: The purpose of this study....... RESULTS: This study confirmed previous work that streptococci are the predominant colonizers of early dental biofilm along with A. naeslundii. There was a notable increase in the total number of bacteria, Streptococcus spp., and A. naeslundii over time with a tendency towards a slower growth rate for A......-layer dental biofilms up to 48 h definitively demonstrated that A. naeslundii preferentially occupied the inner layers. Some A. naeslundii microcolonies extended perpendicularly from the supporting surface surrounded by other bacteria forming chimneys of complex multilayered micro-colonies. CONCLUSIONS...

  16. Study on biofilm-forming properties of clinical isolates of Staphylococcus aureus.

    Science.gov (United States)

    Taj, Yasmeen; Essa, Farhan; Aziz, Faisal; Kazmi, Shahana Urooj

    2012-05-14

    The purpose of this study was to observe the formation of biofilm, an important virulence factor, by isolates of Staphylococcus aureus (S. aureus) in Pakistan by different conventional methods and through electron microscopy. We screened 115 strains of S. aureus isolated from different clinical specimens by tube method (TM), air-liquid interface coverslip assay method, Congo red agar (CRA) method, and scanning electron microscopy (SEM). Out of 115 S. aureus isolates, 63 (54.78%) showed biofilm formation by tube method. Biofilm forming bacteria were further categorized as high producers (n = 23, 20%) and moderate producers (n = 40, 34.78%). TM coordinated well with the coverslip assay for strong biofilm-producing strains in 19 (16.5%) isolates. By coverslip method, weak producers were difficult to differentiate from biofilm negative isolates. Screening on CRA showed biofilm formation only in four (3.47%) strains. Scanning electron micrographs showed the biofilm-forming strains of S. aureus arranged in a matrix on the propylene surface and correlated well with the TM. Biofilm production is a marker of virulence for clinically relevant staphylococcal infections. It can be studied by various methods but screening on CRA is not recommended for investigation of biofilm formation in Staphylococcus aureus. Electron micrograph images correlate well with the biofilm production as observed by TM.

  17. Mycobacterial biofilms: a greasy way to hold it together.

    Science.gov (United States)

    Zambrano, María Mercedes; Kolter, Roberto

    2005-12-02

    Microorganisms growing on surfaces can form biofilms under certain conditions. In this issue of Cell, Ojha et al. (2005) investigate biofilm formation in mycobacteria. They identify new cell-wall components that are required for the formation of architecturally complex mature biofilms in these bacteria and the surprising involvement of a chaperone protein in this process.

  18. Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases.

    Science.gov (United States)

    Traba, Christian; Liang, Jun F

    2011-08-01

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by discharge gas within minutes of exposure. Under optimal experimental conditions, no bacteria and biofilm re-growth from discharge gas treated biofilms was found. Further studies revealed that the anti-biofilm activity of the discharge gas occurred by two distinct mechanisms: (1) killing bacteria in biofilms by causing severe cell membrane damage, and (2) damaging the extracellular polymeric matrix in the architecture of the biofilm to release biofilm from the surface of the solid substratum. Information gathered from this study provides an insight into the anti-biofilm mechanisms of plasma and confirms the applications of discharge gas in the treatment of biofilms and biofilm related bacterial infections.

  19. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms.

    Science.gov (United States)

    Dashper, Stuart G; Catmull, Deanne V; Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E A; Huq, N Laila; Reynolds, Eric C

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.

  20. Electroactive biofilms of sulphate reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cordas, Cristina M.; Guerra, L. Tiago; Xavier, Catarina [Requimte-CQFB, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Moura, Jose J.G. [Requimte-CQFB, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)], E-mail: jose.moura@dq.fct.unl.pt

    2008-12-01

    Biofilms formed from a pure strain of Desulfovibrio desulfuricans 27774 on stainless steel and graphite polarised surfaces were studied. The polarisation conditions applied were -0.4 V vs. SCE for different times. A cathodic current related with the biofilms growth was observed with a maximum intensity of -270 mA m{sup -2} that remained stable for several days using graphite electrodes. These sulphate reducing bacteria biofilms present electrocatalytic activity towards hydrogen and oxygen reduction reactions. Electrode polarisation has a selective effect on the catalytic activity. The biofilms were also observed by scanning electronic microscopy revealing the formation of homogeneous films on the surfaces.