WorldWideScience

Sample records for biofilm extracellular polymeric

  1. Isolation of Extracellular Polymeric Substances from Biofilms of the Thermoacidophilic Archaeon Sulfolobus acidocaldarius

    OpenAIRE

    Jachlewski, Silke; Jachlewski, Witold D.; Linne, Uwe; Bräsen, Christopher; Wingender, Jost; Siebers, Bettina

    2015-01-01

    Extracellular polymeric substances (EPS) are the major structural and functional components of microbial biofilms. The aim of this study was to establish a method for EPS isolation from biofilms of the thermoacidophilic archaeon, Sulfolobus acidocaldarius, as a basis for EPS analysis. Biofilms of S. acidocaldarius were cultivated on the surface of gellan gum-solidified Brock medium at 78°C for 4 days. Five EPS extraction methods were compared, including shaking of biofilm suspensions in phosp...

  2. Paparan zat besi pada ekspresi protein spesifik extracellular polymeric substance biofilm Aggregatibacter actinomycetemcomitans

    Directory of Open Access Journals (Sweden)

    Marchella Hendrayanti W

    2014-06-01

    Full Text Available Background: The study of biofilms bacteria could be an alternative of preventive treatment in reducing prevalence of aggressive periodontitis in the community, because biofilm protects the bacteria from environmental conditions, including the attack of immune system and antimicrobial. Aggregatibacter actinomycetemcomitans is a major cause of bacterial aggressive periodontitis. Purpose: This study aims to examine the iron exposure to specific protein expression of extracellular polymeric substance (EPS of Aggregatibacter actinomycetemcomitans biofilm. Methods: Protein containing EPS biofilm was isolated from cultures of A.actinomycetemcomitans. The protein was processed through several procedures: electrophoresis , electroelution , immunization of rabbits , serum isolation , and purification of antibodies. After the Western blotting procedure the antibody was used. Protein containing EPS biofilms exposed to iron, then once again isolated from cultures of A. actinomycetemcomitans. The electrophoresis and Western blotting were done on the isolated protein. Results: The result showed that the the expression of specific proteins in EPS biofilm decreased in response to iron exposure. Conclusions: Iron exposure could influenced the specific protein expression in EPS biofilm of Aggregatibacter actinomycetemcomitans.Latar belakang: Penelitian terhadap bakteri biofilm dapat menjadi alternatif perawatan preventif dalam menurunkan prevalensi periodontitis agresif di masyarakat, karena biofilm melindungi bakteri terhadap kondisi lingkungan, termasuk serangan sistem imun dan antimikroba. Aggregatibacter actinomycetemcomitans merupakan bakteri penyebab utama periodontitis agresif. Tujuan: Studi ini bertujuan meneliti paparan zat besi terhadap ekspresi protein spesifik extracellular polymeric substance (EPS Aggregatibacter actinomycetemcomitans. Metode: Protein yang mengandung EPS biofilm diisolasi dari kultur A. actinomycetemcomitans. Protein yang diisolasi

  3. Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms.

    Science.gov (United States)

    Staudt, C; Horn, H; Hempel, D C; Neu, T R

    2004-12-01

    In this study an enrichment culture developed from activated sludge was used to investigate the architecture of fully hydrated multispecies biofilms. The assessment of biofilm structure and volume was carried out using confocal laser scanning microscopy (CLSM). Bacterial cell distribution was determined with the nucleic acid-specific stain SYTO 60, whereas glycoconjugates of extracellular polymeric substances (EPS) were stained with the Alexa-488-labeled lectin of Aleuria aurantia. Digital image analysis was employed for visualization and quantification of three-dimensional CLSM data sets. The specific volumes of the polymeric and cellular biofilm constituents were quantified. In addition, gravimetric measurements were done to determine dry mass and thickness of the biofilms. The data recorded by the CLSM technique and the gravimetric data were then compared. It was shown that the biofilm thicknesses determined with both methods agree well for slow-growing heterotrophic and chemoautotrophic biofilms. In addition, for slow-growing biofilms, the volumes and masses calculated from CLSM and the biomass calculated from gravimetric measurements were also comparable. For fast-growing heterotrophic biofilms cultivated with high glucose concentrations the data sets fit to a lesser degree, but still showed the same common trend. Compared with traditional gravimetric measurements, CLSM allowed differential recording of multiple biofilm parameters with subsequent three-dimensional visualization and quantification. The quantitative three-dimensional results recorded by CLSM are an important basis for understanding, controlling, exploiting, and modeling of biofilms. PMID:15470707

  4. Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms

    OpenAIRE

    Steele, Deborah J.; Franklin, Daniel J.; Underwood, Graham J.C.

    2014-01-01

    Diatom biofilms are abundant in the marine environment. It is assumed (but untested) that extracellular polymeric substances (EPS), produced by diatoms, enable cells to cope with fluctuating salinity. To determine the protective role of EPS, Cylindrotheca closterium was grown in xanthan gum at salinities of 35, 50, 70 and 90 ppt. A xanthan matrix significantly increased cell viability (determined by SYTOX-Green), growth rate and population density by up to 300, 2,300 and 200%, respectively. D...

  5. Isolation of extracellular polymeric substances from biofilms of the thermoacidophilic archaeon Sulfolobus acidocaldarius

    Directory of Open Access Journals (Sweden)

    Silke eJachlewski

    2015-08-01

    Full Text Available Extracellular polymeric substances (EPS are the major structural and functional components of microbial biofilms. The aim of this study was to establish a method for EPS isolation from biofilms of the thermoacidophilic archaeon Sulfolobus acidocaldarius as a basis for EPS analysis. Biofilms of S. acidocaldarius were cultivated on the surface of gellan gum-solidified Brock medium at 78 °C for 4 days. Five EPS extraction methods were compared, including shaking of biofilm suspensions in phosphate buffer, cation-exchange resin (CER extraction and stirring with addition of EDTA, crown ether or NaOH. With respect to EPS yield, impact on cell viability and compatibility with subsequent biochemical analysis, the CER extraction method was found to be the best suited isolation procedure resulting in the detection of carbohydrates and proteins as the major constituents and DNA as a minor component of the EPS. Culturability of CER-treated cells was not impaired. Analysis of the extracellular proteome using two-dimensional gel electrophoresis resulted in the detection of several hundredshundred of protein spots, mainly with molecular masses of 25 kDa to 116 kDa and pI values of 5 to 8. Identification of proteins suggested a cytoplasmic origin for many of these proteins, possibly released via membrane vesicles or biofilm-inherent cell lysis during biofilm maturation. Functional analysis of EPS proteins, using fluorogenic substrates as well as zymography, demonstrated the activity of diverse groups of enzymes such as proteases, lipases, esterases, phosphatases and glucosidases. In conclusion, the CER extraction method, as previously applied to bacterial biofilms, also represents a suitable method for isolation of water soluble EPS from the archaeal biofilms of S. acidocaldarius, allowing the investigation of composition and function of EPS components in these types of biofilms.

  6. Isolation of Extracellular Polymeric Substances from Biofilms of the Thermoacidophilic Archaeon Sulfolobus acidocaldarius.

    Science.gov (United States)

    Jachlewski, Silke; Jachlewski, Witold D; Linne, Uwe; Bräsen, Christopher; Wingender, Jost; Siebers, Bettina

    2015-01-01

    Extracellular polymeric substances (EPS) are the major structural and functional components of microbial biofilms. The aim of this study was to establish a method for EPS isolation from biofilms of the thermoacidophilic archaeon, Sulfolobus acidocaldarius, as a basis for EPS analysis. Biofilms of S. acidocaldarius were cultivated on the surface of gellan gum-solidified Brock medium at 78°C for 4 days. Five EPS extraction methods were compared, including shaking of biofilm suspensions in phosphate buffer, cation-exchange resin (CER) extraction, and stirring with addition of EDTA, crown ether, or NaOH. With respect to EPS yield, impact on cell viability, and compatibility with subsequent biochemical analysis, the CER extraction method was found to be the best suited isolation procedure resulting in the detection of carbohydrates and proteins as the major constituents and DNA as a minor component of the EPS. Culturability of CER-treated cells was not impaired. Analysis of the extracellular proteome using two-dimensional gel electrophoresis resulted in the detection of several hundreds of protein spots, mainly with molecular masses of 25-116 kDa and pI values of 5-8. Identification of proteins suggested a cytoplasmic origin for many of these proteins, possibly released via membrane vesicles or biofilm-inherent cell lysis during biofilm maturation. Functional analysis of EPS proteins, using fluorogenic substrates as well as zymography, demonstrated the activity of diverse enzyme classes, such as proteases, lipases, esterases, phosphatases, and glucosidases. In conclusion, the CER extraction method, as previously applied to bacterial biofilms, also represents a suitable method for isolation of water soluble EPS from the archaeal biofilms of S. acidocaldarius, allowing the investigation of composition and function of EPS components in these types of biofilms. PMID:26380258

  7. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation.

    Science.gov (United States)

    Janissen, Richard; Murillo, Duber M; Niza, Barbara; Sahoo, Prasana K; Nobrega, Marcelo M; Cesar, Carlos L; Temperini, Marcia L A; Carvalho, Hernandes F; de Souza, Alessandra A; Cotta, Monica A

    2015-01-01

    Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation. PMID:25891045

  8. Evaluation of Fluorescently Labeled Lectins for Noninvasive Localization of Extracellular Polymeric Substances in Sphingomonas Biofilms

    OpenAIRE

    Johnsen, Anders R.; Hausner, Martina; Schnell, Annette; Wuertz, Stefan

    2000-01-01

    Three strains of Sphingomonas were grown as biofilms and tested for binding of five fluorescently labeled lectins (Con A-type IV-TRITC or -Cy5, Pha-E-TRITC, PNA-TRITC, UEA 1-TRITC, and WGA-Texas red). Only ConA and WGA were significantly bound by the biofilms. Binding of the five lectins to artificial biofilms made of the commercially available Sphingomonas extracellular polysaccharides was similar to binding to living biofilms. Staining of the living and artificial biofilms by ConA might be ...

  9. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Yang, Liang; Hu, Yifan; Liu, Yang;

    2011-01-01

    polysaccharides are also essential for subpopulation interactions and macrocolony formation in the later stages of P. aeruginosa PAO1 biofilm formation. Pel and Psl polysaccharides have different impacts on Pseudomonas quinolone signal‐mediated extracellular DNA release in P. aeruginosa PAO1 biofilms. Psl...

  10. Inorganic fractions in extracellular polymeric substance extracted from activated sludge and biofilm samples by different methods.

    Science.gov (United States)

    Zhang, Leiyan; Geng, Jinju; Ding, Lili; Ren, Hongqiang

    2012-01-01

    This study highlighted the inorganic fractions in the extracellular polymeric substance (EPS) extract from two activated sludges and one biofilm. Nine EPS extraction methods (centrifugation, sonication, cation exchange resin (CER) + sonication, CER, heating, formaldehyde + heating, formaldehyde + NaOH, ethanol and EDTA) were used in the study. The EPS extracts had large inorganic fractions, which ranged from 28% to 94% of the EPS dry weight. The EPS inorganic fraction was dependent on the source of the sludge and wastewater, the kinds of bacteria and the extraction method. The EPS extracts obtained by heating and sonication had smaller inorganic fractions than those obtained by centrifugation. The compositions of the inorganic fraction of EPS extracts obtained with CER and sonication + CER showed similar trends. The chemical extraction methods could contaminate the inorganic composition of EPS extracts by impurities, carrying over of the extractant itself or by changing the pH of the solution. Ethanol was the most effective extractant for obtaining inorganic ions. PMID:22828296

  11. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation.

    Science.gov (United States)

    Zhang, Yinping; Wang, Fang; Zhu, Xiaoshu; Zeng, Jun; Zhao, Qiguo; Jiang, Xin

    2015-10-01

    The hypothesis that extracellular polymeric substances (EPS) affect the formation of biofilms for subsequent enhanced biodegradation of polycyclic aromatic hydrocarbons was tested. Controlled formation of biofilms on humin particles and biodegradation of phenanthrene and pyrene were performed with bacteria and EPS-extracted bacteria of Micrococcus sp. PHE9 and Mycobacterium sp. NJS-P. Bacteria without EPS extraction developed biofilms on humin, in contrast the EPS-extracted bacteria could not attach to humin particles. In the subsequent biodegradation of phenanthrene and pyrene, the biodegradation rates by biofilms were significantly higher than those of EPS-extracted bacteria. Although, both the biofilms and EPS-extracted bacteria showed increases in EPS contents, only the EPS contents in biofilms displayed significant correlations with the biodegradation efficiencies of phenanthrene and pyrene. It is proposed that the bacterial-produced EPS was a key factor to mediate bacterial attachment to other surfaces and develop biofilms, thereby increasing the bioavailability of poorly soluble PAH for enhanced biodegradation. PMID:26141288

  12. Extraction and characterization of extracellular polymeric substances in biofilm and sludge via completely autotrophic nitrogen removal over nitrite system.

    Science.gov (United States)

    Chen, You-Peng; Li, Chun; Guo, Jin-Song; Fang, Fang; Gao, Xu; Zhang, Peng; Li, Shan

    2013-01-01

    Extracellular polymeric substances (EPS) were extracted from sludge and biofilm via the completely autotrophic nitrogen removal over nitrite (CANON) system. Tightly bound (TB)-EPS were extracted using four physical methods, namely, cationic exchange resin (CER), sonication, heating, and steaming. CER was the most effective and most suitable method for extraction among the four methods. Moreover, the ultraviolet-vis spectra of TB-EPS indicated that few cells were destroyed by the CER method. The major component contents of total EPS, proteins, carbohydrates, humic substances, and DNA in sludge were 60.77, 49.84, 21.63, and 9.01 mg/g volatile suspended solids (VSS) and 90.03, 29.01, 15.96, and 10.04 mg/g VSS in biofilm, respectively. The Fourier transform infrared (FT-IR) spectra results indicated differences in the EPS functional groups between biofilm and sludge. The results of the batch experiments showed that the biofilm activity was significantly higher than that of the sludge in the CANON system. Furthermore, biomass activity was probably influenced by the EPS composition and distribution in the sludge and biofilm. PMID:23239415

  13. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Swearingen, Matthew C; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J; Falzarano, Anthony R; Wozniak, Daniel J; Hall-Stoodley, Luanne; Stoodley, Paul

    2016-02-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples. PMID:26536894

  14. Characterization of extracellular polymeric substances in the biofilms of typical bacteria by the sulfur K-edge XANES spectroscopy.

    Science.gov (United States)

    Lin, Huirong; Ye, Chengsong; Lv, Lu; Zheng, Clark Renjun; Zhang, Shenghua; Zheng, Lei; Zhao, Yidong; Yu, Xin

    2014-08-01

    A combined approach of physicochemical extraction and sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy was applied to characterize the extracellular polymeric substances (EPS) of typical bacterial biofilms in this study. Physicochemical analysis showed variation of the contents of DNA, polysaccharide and protein in different fractions of EPS in different mediums. The sulfur K-edge XANES analysis yielded a variety of spectra. Spectral fitting of the XANES spectra utilizing a large set of model compounds showed that there was more reduced sulfur in both LB-EPS (loosely bound EPS) and TB-EPS (tightly bound EPS) of all the biofilms in LB medium than in R2A medium. More oxidized sulfur was identified in LB-EPS than that in TB-EPS, suggesting different niches and physiological heterogeneity in the biofilms. Our results suggested that the sulfur K-edge XANES can be a useful tool to analyze the sulfur speciation in EPS of biofilms. PMID:25108733

  15. Characteristics of extracellular polymeric substances from sludge and biofilm in a simultaneous nitrification and denitrification system under high salinity stress.

    Science.gov (United States)

    Zhao, Linting; She, Zonglian; Jin, Chunji; Yang, Shiying; Guo, Liang; Zhao, Yangguo; Gao, Mengchun

    2016-09-01

    The composition and distribution of extracellular polymeric substance (EPS) both from suspended sludge and attached biofilm were investigated in a simultaneous nitrification and denitrification (SND) system with the increase of the salinity from 1.0 to 3.0 %. Fourier-transform infrared (FTIR) spectroscopy and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy were used to examine proteins (PN), polysaccharides (PS) and humic substances (HS) present in EPS. High total nitrogen removal (above 83.9 %) via SND was obtained in the salinity range of 1.0-2.5 %. Total EPS in the sludge increased from 150.2 to 200.6 mg/gVSS with the increase of salinity from 1.0 to 3.0 %, whereas the corresponding values in the biofilm achieved the maximum of 288.6 mg/g VSS at 2.0 % salinity. Dominant composition of EPS was detected as HS in both sludge and biofilm, having the percentages of 50.6-68.6 and 41.1-69.9 % in total EPS, respectively. Both PN and PS contents in soluble EPS (S-EPS), loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) of sludge and biofilm increased with the increased salinity. The FTIR spectrum and 3D-EEM fluorescence spectroscopy of S-EPS, LB-EPS and TB-EPS in the sludge and biofilm showed the changes of functional groups and conformations of the compositions in EPS with the increase of salinity. The results demonstrated that the characteristics of EPS varied from sludge to biofilm. The obtained results could provide a better understanding of the salinity effect on the EPS characteristics in a SND system. PMID:27126502

  16. Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge.

    Science.gov (United States)

    Liang, Zhiwei; Li, Wenhong; Yang, Shangyuan; Du, Ping

    2010-10-01

    The composition and the distribution of extracellular polymeric substances (EPS) and pellets of autotrophic nitrifying biofilm and activated sludge were investigated in this work. Fourier-transform Infrared Spectroscopy, fluorescent in situ hybridization and fluorescence staining were used to examine proteins, carbohydrates, humic substances and DNA being present in the biofilms and the sludge samples. To investigate extraction efficiency and its effect on characterization of tightly bounded EPS, four extraction methods (ethylenediamine tetraacetic acid (EDTA), NaOH, cationic exchange resin (CER), ultrasound) were compared. EDTA and ultrasound showed more effective extraction ability than NaOH and CER. NaOH and ultrasound extraction led to high activity of glucose-6-phosphate dehydrogenase from cell lysis, which was confirmed by fluorescence staining analysis. Ultrasound and NaOH extraction yielded 18% and 11% of dead cells in biofilm, respectively, whereas they obtained 11% and 9% of dead cells in activated sludge, respectively. Four layers of extractible products were separated from autotrophic nitrifiering flocs. The extraction results indicated that extraction yield in different layers varied in a wide range: 3-6% of soluble EPS, 5-10% of loosely bound EPS, 34-67% of tightly bound EPS and 30-60% of pellets. PMID:20655088

  17. Distribution and hydrophobic properties of Extracellular Polymeric Substances in biofilms in relation towards cohesion.

    Science.gov (United States)

    Ras, M; Lefebvre, D; Derlon, N; Hamelin, J; Bernet, N; Paul, E; Girbal-Neuhauser, E

    2013-05-20

    A heterotrophic biofilm (B1) and a mixed autotrophic-heterotrophic biofilm (B2) were developed in an annular reactor and submitted to an erosion test in order to selectively detach top layers from the bottom layers. Densities of the basal layers were 5-fold higher and 3-fold higher than the densities of the entire biofilms B1 and B2, respectively. After extraction, EPS content in B1 biofilm was found higher in the basal layer (95 mg g⁻¹ VSS) compared to the top layer (30 mg g⁻¹ VSS), while B2 biofilm had a higher EPS content in the top layer (303 mg g⁻¹ VSS) compared to the basal layer (135 mg g⁻¹ VSS). Hydrophobic Interaction Chromatography (HIC) indicates that hydrophobic EPS (HEPS) in both biofilms reached 21% of EPS in basal cohesive layers, and remained slightly lower or identical (16-19%) in top detached biofilm layers. Strong interacting HEPS were found in a higher proportion in the mixed autotrophic-heterotrophic B2 which was also more diversified in terms of bacterial populations than the B1 heterotrophic biofilm. These results show that HEPS content correlates better with cohesive properties of the biofilm layers than global EPS content and that strong hydrophobic adhesion forces may be related to microbial populations such as the presence of nitrifiers. PMID:23524058

  18. Extracellular polymeric substances (EPS of freshwater biofilms stabilize and modify CeO2 and Ag nanoparticles.

    Directory of Open Access Journals (Sweden)

    Alexandra Kroll

    Full Text Available Streams are potential receiving compartments for engineered nanoparticles (NP. In streams, NP may remain dispersed or settle to the benthic compartment. Both dispersed and settling NP can accumulate in benthic biofilms called periphyton that are essential to stream ecosystems. Periphytic organisms excrete extracellular polymeric substances (EPS that interact with any material reaching the biofilms. To understand the interaction of NP with periphyton it is therefore crucial to study the interaction of NP with EPS. We investigated the influence of EPS on the physicochemical properties of selected NP (CeO2, Ag under controlled conditions at pH 6, 7.6, 8.6 and light or dark exposure. We extracted EPS from five different periphyton communities, characterized the extracts, and exposed CeO2 and carbonate-stabilized Ag NP (0.5 and 5 mg/L, both 25 nm primary particle size and AgNO3 to EPS (10 mg/L over two weeks. We measured NP size distribution, shape, primary particle size, surface plasmon resonance, and dissolution. All EPS extracts were composed of biopolymers, building blocks of humic substances, low molecular weight (Mr acids, and small amphiphilic or neutral compounds in varying concentrations. CeO2 NP were stabilized by EPS independent of pH and light/dark while dissolution increased over time in the dark at pH 6. EPS induced a size increase in Ag NP in the light with decreasing pH and the formation of metallic Ag NP from AgNO3 at the same conditions via EPS-enhanced photoreduction. NP transformation and formation were slower in the extract with the lowest biopolymer and low Mr acid concentrations. Periphytic EPS in combination with naturally varying pH and light/dark conditions influence the properties of the Ag and CeO2 NP tested and thus the exposure conditions within biofilms. Our results indicate that periphytic organisms may be exposed to a constantly changing mixture of engineered and naturally formed Ag NP and Ag+.

  19. Comparison of the extracellular polymeric substances of Candida albicans and Candida dubliniensis biofilms

    OpenAIRE

    Henriques, Mariana; M.C. Fernandes; Azeredo, Joana; Oliveira, Rosário

    2006-01-01

    Candida albicans and Candida dubliniensis live as benign commensal organisms in the oral cavity of both healthy and unhealthy individuals behaving, under certain conditions, as opportunistic pathogens, causing candidiasis. These two Candida species have been mismatched for years, but recently Candida dubliniensis was recovered from the mouth of imunnosupressed patients and identified as a different species. Candidiasis is usually related with the Candida capacity of forming biofilms on inert ...

  20. Filamentation and spatiotemporal distribution of extracellular polymeric substances: role on X.fastidiosa single cell adhesion and biofilm formation (Conference Presentation)

    Science.gov (United States)

    Janissen, Richard; Murillo, Duber M.; Niza, Barbara; Sahoo, Prasana K.; Monteiro, Moniellen P.; César, Carlos L.; Carvalho, Hernandes F.; de Souza, Alessandra A.; Cotta, Monica A.

    2016-04-01

    Biofilms can be defined as a community of microorganisms attached to a surface, living embedded in a self- produced matrix of hydrated extracellular polymeric substances (EPS) which comprises most of the biofilm mass. We have recently used an extensive pool of microscopy techniques (confocal fluorescence, electron and scanning probe microscopies) at the micro and nanoscales in order to create a detailed temporal observation of Xylella fastidiosa biofilm formation, using both wild type strain and Green Fluorescent Protein (GFP)-modified cells of this citrus phytopathogen. We have identified three different EPS compositions, as well as their spatial and temporal distribution from single cell to mature biofilm formation stages. In the initial adhesion stage, soluble-EPS (S-EPS) accumulates at cell polar regions and forms a surface layer which facilitates irreversible cell attachment and cell cluster formation. These small clusters are subsequently connected by filamentous cells; further S-EPS surface coverage facilitates cell attachment and form filaments, leading to a floating framework of mature biofilms. The important role of EPS in X.fastidiosa biology was further investigated by imunolabelling experiments to detect the distribution of XadA1 adhesin, which is expressed in early stages of biofilm formation and released in outer membrane vesicles. This protein is located mainly in S-EPS covered areas, as well as on the filaments, indicating a molecular pathway to the enhanced cell attachment previously observed. These results suggest that S-EPS may thus represent an important target for disease control, slow plant colonization by the bacteria, keeping the plant more productive in the field.

  1. Extracellular polymeric bacterial coverages as minimal surfaces

    CERN Document Server

    Saa, A; Saa, Alberto; Teschke, Omar

    2005-01-01

    Surfaces formed by extracellular polymeric substances enclosing individual and some small communities of {\\it Acidithiobacillus ferrooxidans} on plates of hydrophobic silicon and hydrophilic mica are analyzed by means of atomic force microscopy imaging. Accurate nanoscale descriptions of such coverage surfaces are obtained. The good agreement with the predictions of a rather simple but realistic theoretical model allows us to conclude that they correspond, indeed, to minimal area surfaces enclosing a given volume associated with the encased bacteria. This is, to the best of our knowledge, the first shape characterization of the coverage formed by these biomolecules, with possible applications to the study of biofilms.

  2. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms

    OpenAIRE

    Klein, Marlise I.; Hwang, Geelsu; Santos, Paulo H. S.; Campanella, Osvaldo H.; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria...

  3. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms

    OpenAIRE

    Marlise eKlein; Geelsu eHwang; Paulo eSantos; Osvaldo eCampanella; Hyun eKoo

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria....

  4. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2009-07-01

    Full Text Available Extracellular polymeric substances (EPS produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  5. A Look inside the Listeria monocytogenes Biofilms Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Angelo Colagiorgi

    2016-07-01

    Full Text Available Listeria monocytogenes is a foodborne pathogen able to persist in food industry and is responsible for a severe illness called listeriosis. The ability of L. monocytogenes to persist in environments is due to its capacity to form biofilms that are a sessile community of microorganisms embedded in a self-produced matrix of extracellular polymeric substances (EPS’s. In this review, we summarized recent efforts performed in order to better characterize the polymeric substances that compose the extracellular matrix (ECM of L. monocytogenes biofilms. EPS extraction and analysis led to the identification of polysaccharides, proteins, extracellular DNA, and other molecules within the listerial ECM. All this knowledge will be useful for increasing food protection, suggesting effective strategies for the minimization of persistence of L. monocytogenes in food industry environments.

  6. Extracellular polymeric substances of the marine fouling diatom Amphora rostrata Wm. Sm.

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Bhosle, N.B.

    decrease. Planktonic ('free') and biofilm extracellular polymeric substances (EPS) from the adherent cells of A. rostrata were studied. Both types of EPS were produced during the logarithmic phase of growth. However, production was higher during...

  7. 胞外高分子物质对基质在复合生物膜内传质速率影响的测定%Evaluation of the Influence of Extracellular Polymeric Substances on the Mass Transport of Substrate within Multispecies Biofilms

    Institute of Scientific and Technical Information of China (English)

    曹宏斌; 李鑫钢; 姜斌; 孙津生; 张懿

    2004-01-01

    A model, for evaluating the effect of porosity and volume fraction of extracellular polymeric substances(EPS) within multispecies biofilms on the effective diffusivity, is developed and experimentally validated, based on the extraction of EPS from intact biofilms. The amount of EPS in biofilms significantly affects the effective diffusivity. For biofilms with porosity of 77%-95% in the top layers and 54%-58% in the bottom layers, the value of De/Dw decreases from 0.52-0.83 in the top layers to 0.23-0.31 in the bottom layers. Generally, the effective diffusivity in the heterotrophic/autotrophic biofilms is slightly lower than that in the heterotrophic biofilms, due to the lower porosity in the heterotrophic/autotrophic biofilms.

  8. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms.

    Science.gov (United States)

    Klein, Marlise I; Hwang, Geelsu; Santos, Paulo H S; Campanella, Osvaldo H; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases. PMID:25763359

  9. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms

    Directory of Open Access Journals (Sweden)

    Marlise eKlein

    2015-02-01

    Full Text Available Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS, eDNA and lipoteichoic acid (LTA. EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases.

  10. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances

    Science.gov (United States)

    Shiga toxin–producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their pla...

  11. Role of extracellular DNA in Candida albicans biofilms

    OpenAIRE

    Martins, Margarida; Henriques, Mariana; Lopez-Ribot, José L.; Oliveira, Rosário

    2009-01-01

    DNA has been described as a structural component of the extracellular matrix in bacterial biofilms. However, in Candida albicans there is a scarce knowledge concerning the contribution of extracellular DNA (ecDNA) to biofilm matrix and overall structure. The main objective of this work was to examine the effect of Deoxyribonuclease I (DNase) treatment and the addition of exogenous DNA on C. albicans biofilm as indicators of the role of ecDNA in biofilm structure and developm...

  12. Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption

    International Nuclear Information System (INIS)

    To evaluate the importance of the extracellular matrix in relation to heavy metal binding capacity in extreme acidic environments, the extracellular polymeric substances (EPS) composition of 12 biofilms isolated from Rio Tinto (SW, Spain) was analyzed. Each biofilm was composed mainly by one or two species of eukaryotes, although other microorganisms were present. EPS ranged from 130 to 439 mg g-1 biofilm dry weight, representing between 15% and the 40% of the total biofilm dry weight (DW). Statistically significant differences (p -1 dry weight; 10% to 30% of the total biofilm dry weight. Capsular EPS ranged from 50 to 318 mg g-1 dry weight; 5% to 30% of the total biofilm dry weight. Seven of the 12 biofilms showed higher amounts of capsular than colloidal EPS (p -1 biofilm dry weight, reaching up to 16% of the total composition. In general, the heavy metal composition of the EPS extracted from the biofilms closely resembled the metal composition of the water from which the biofilms were collected

  13. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    to various persistent infections in humans and animals, and to a variety of complications in industry, where solid–water interfaces occur. Knowledge about the molecular mechanisms involved in biofilm formation is necessary for creating strategies to control biofilms. Recent studies have shown that......Bacteria in nature primarily live in surface-associated communities commonly known as biofilms. Because bacteria in biofilms, in many cases, display tolerance to host immune systems, antibiotics, and biocides, they are often difficult or impossible to eradicate. Biofilm formation, therefore, leads...... extracellular DNA is an important component of the extracellular matrix of microbial biofilms. The present chapter is focussed on extracellular DNA as matrix component in biofilms formed by Pseudomonas aeruginosa as an example from the Gram-negative bacteria, and Streptococcus and Staphylococcus as examples...

  14. Biochemical composition and changes of extracellular polysaccharides (ECPS) produced during microphytobenthic biofilm development (Marennes-Oléron, France).

    OpenAIRE

    Pierre, Guillaume; Graber, Marianne; Rafiliposon, Beby; Dupuy, Christine; Orvain, Francis; De Crignis, Margot; Maugard, Thierry

    2012-01-01

    The main goal of this work was to study the dynamics and biochemical composition of ExtraCellular Polysaccharides (ECPS), a fraction of the Extracellular Polymeric Substances (EPS) produced during the development of a microphytobenthic biofilm in a European intertidal mudflat (Marennes-Oléron Bay, France) during winter. Microphytobenthic biomass was surveyed during four consecutive emersion periods to confirm the biofilm growth. Bacteria abundance was also checked considering the importance o...

  15. TOL plasmid carriage enhances biofilm formation and increases extracellular DNA content in Pseudomonas putida KT2440

    DEFF Research Database (Denmark)

    D'Alvise, Paul; Sjoholm, O.R.; Yankelevich, T.;

    2010-01-01

    Adherent growth of Pseudomonas putida KT2440 with and without the TOL plasmid (pWWO) at the solid-liquid and air-liquid interface was examined. We compared biofilm formation on glass in flow cells, and assayed pellicle (air-liquid interface biofilm) formation in stagnant liquid cultures by confocal...... laser scanning microscopy. The TOL-carrying strains formed pellicles and thick biofilms, whereas the same strains without the plasmid displayed little adherent growth. Microscopy using fluorescent nucleic acid-specific stains revealed differences in the production of extracellular polymeric substances......: TOL carriage leads to more extracellular DNA (eDNA) in pellicles and biofilms. Pellicles were dissolved by DNase I treatment. Enhanced cell lysis due to plasmid carriage was ruled out as the mechanism for eDNA release. We report, for the first time, that carriage of a conjugative plasmid leads to...

  16. Extracellular DNA formation during biofilm development by freshwater bacteria

    DEFF Research Database (Denmark)

    Tang, Lone; Schramm, Andreas; Revsbech, Niels Peter;

    2011-01-01

    a transient peak at 6 hours, and in Rheinheimera the concentration peaked at 12 hours and remained high. Interestingly, the Rheinheimera biofilm dispersed immediately after the eDNA concentration peaked. The antimicrobial effect of eDNA was tested in growth experiments, and Rheinheimera was strongly......Extracellular DNA (eDNA) has been shown to be important for biofilm formation, both in the initial step of biofilm formation (attachment), and for securing the structural stability of the mature biofilm. It is unclear whether a general consensus exists for when in biofilm formation the presence of...... eDNA is most important. In this study, we investigated the significance of eDNA during biofilm formation in four freshwater isolates. The aim was to relate the quantity and timing of eDNA production to the isolates’ ability to form biofilms. eDNA and biofilm biomass was quantified over time during...

  17. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms

    OpenAIRE

    Martins, M.; Uppuluri, Priya; Thomas, Derek P.; Cleary, Ian A.; Henriques, Mariana; Lopez-Ribot, José L.; Oliveira, Rosário

    2009-01-01

    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm devel...

  18. Ratiometric Imaging of Extracellular pH in Dental Biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Dige, Irene

    2016-01-01

    The pH in bacterial biofilms on teeth is of central importance for dental caries, a disease with a high worldwide prevalence. Nutrients and metabolites are not distributed evenly in dental biofilms. A complex interplay of sorption to and reaction with organic matter in the biofilm reduces the...... diffusion paths of solutes and creates steep gradients of reactive molecules, including organic acids, across the biofilm. Quantitative fluorescent microscopic methods, such as fluorescence life time imaging or pH ratiometry, can be employed to visualize pH in different microenvironments of dental biofilms......) carboxylic acid (C-SNARF-4) is employed to monitor extracellular pH in in vivo grown dental biofilms of unknown species composition. Upon exposure to glucose the dye is up-concentrated inside all bacterial cells in the biofilms; it is thus used both as a universal bacterial stain and as a marker of...

  19. Effects of temperature on the morphological, polymeric, and mechanical properties of Staphylococcus epidermidis bacterial biofilms.

    Science.gov (United States)

    Pavlovsky, Leonid; Sturtevant, Rachael A; Younger, John G; Solomon, Michael J

    2015-02-17

    Changes in temperature were found to affect the morphology, cell viability, and mechanical properties of Staphylococcus epidermidis bacterial biofilms. S. epidermidis biofilms are commonly associated with hospital-acquired medical device infections. We observed the effect of heat treatment on three physical properties of the biofilms: the bacterial cell morphology and viability, the polymeric properties of the extracellular polymeric substance (EPS), and the rheological properties of the bulk biofilm. After application of a 1 h heat treatment at 45 °C, cell reproduction had ceased, and at 60 °C, cell viability was significantly reduced. Size exclusion chromatography was used to fractionate the extracellular polymeric substance (EPS) based on size. Chemical analysis of each fraction showed that the relative concentrations of the polysaccharide, protein, and DNA components of the EPS were unchanged by the heat treatment at 45 and 60 °C. The results suggest that the EPS molecular constituents are not significantly degraded by the temperature treatment. However, some aggregation on the scale of 100 nm was found by dynamic light scattering at 60 °C. Finally, relative to control biofilms maintained at 37 °C, we observed an order of magnitude reduction in the biofilm yield stress after 60 °C temperature treatment. No such difference was found for treatment at 45 °C. From these results, we conclude that the yield stress of bacterial biofilms is temperature-sensitive and that this sensitivity is correlated with cell viability. The observed significant decrease in yield stress with temperature suggests a means to weaken the mechanical integrity of S. epidermidis biofilms with applications in areas such as the treatment of biofilm-infected medical devices. PMID:25602470

  20. Imaging Pseudomonas aeruginosa Biofilm Extracellular Polymer Scaffolds with Amphiphilic Carbon Dots.

    Science.gov (United States)

    Ritenberg, Margarita; Nandi, Sukhendu; Kolusheva, Sofiya; Dandela, Rambabu; Meijler, Michael M; Jelinek, Raz

    2016-05-20

    Biofilm formation is a critical facet of pathogenesis and resilience of human, animal, and plant bacteria. Extracellular polymeric substances (EPS) constitute the physical scaffolding for bacterial biofilms and thus play central roles in their development and virulence. We show that newly synthesized amphiphilic fluorescent carbon dots (C-dots) readily bind to the EPS scaffold of Pseudomonas aeruginosa, a major biofilm-forming pathogen, resulting in unprecedented microscopic visualization of the EPS structural features. Fluorescence microscopy analysis utilizing the C-dots reveals that the P. aeruginosa EPS matrix exhibits a remarkable dendritic morphology. The experiments further illuminate the growth kinetics of the EPS and the effect of external factors such as temperature. We also show that the amphiphilic C-dot platform enabled screening of substances disrupting biofilm development, specifically quorum sensing inhibitors. PMID:26882175

  1. Extracellular DNA Shields against Aminoglycosides in Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Nilsson, Martin; Jensen, Peter Østrup;

    2013-01-01

    Within recent years, it has been established that extracellular DNA is a key constituent of the matrix of microbial biofilms. In addition, it has recently been demonstrated that DNA binds positively charged antimicrobials such as aminoglycosides and antimicrobial peptides. In the present study, we...... provide evidence that extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. We show that exogenously supplemented DNA integrates into P. aeruginosa biofilms and increases their tolerance toward aminoglycosides. We provide evidence that biofilms formed by a DNA release......-deficient P. aeruginosa quorum-sensing mutant are more susceptible to aminoglycoside treatment than wild-type biofilms but become rescued from the detrimental action of aminoglycosides upon supplementation with exogenous DNA. Furthermore, we demonstrate that exposure to lysed polymorphonuclear leukocytes...

  2. Microscopic monitoring of extracellular pH in dental biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Garcia, Javier; Greve, Matilde;

    then employed digital image analysis to remove the bacterial biomass from the microscopic images and adequately calculate extracellular pH values. As a proof of concept, we monitored the extracellular pH drop in six replicate dental biofilms fermenting glucose. The observed pH drops differed between...... been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit to monitor horizontal pH gradients in real-time. Quantitative fluorescent microscopic techniques, such as fluorescence lifetime imaging or p...... differ considerably, and only extracellular pH in dental biofilms affects the underlying tooth. We here developed a method to reliably monitor extracellular pH in dental biofilm microscopically with the ratiometric pH-sensitive dye C-SNARF-4. Fluorescent emissions of CSNARF- 4 can be used to calculate...

  3. Stabilization of extracellular polymeric substances (Bacillus subtilis) by adsorption to and coprecipitation with Al forms

    OpenAIRE

    Mikutta, R.; Zang, U.; Chorover, J.; Haumaier, L.; Kalbitz, K.

    2011-01-01

    Extracellular polymeric substances (EPS) are continuously produced by bacteria during their growth and metabolism. In soils, EPS are bound to cell surfaces, associated with biofilms, or released into solution where they can react with other solutes and soil particle surfaces. If such reaction results in a decrease in EPS bioaccessibility, it may contribute to stabilization of microbial-derived organic carbon (OC) in soil. Here we examined: (i) the chemical fractionation of EPS produced by a c...

  4. Studies on cyanobacterial extracellular polymeric substances: functional groups, calcite biomineralization and formation of capsular polymeric substances

    Science.gov (United States)

    Dittrich, M.; Sibler, S.; Matsko, N.

    2006-12-01

    Extracellular polymeric substances (EPS) of microbial origin are an important class of polymeric materials which have been involved in different processes such as biofilm development or mineral precipitation. Cyanobacteria have been known as potential EPS producers for a long time. Despite their ubiquitous distribution, there is still a great lack of knowledge concerning the diversity of EPS binding sites of different picocyanobacterial strains on the one hand and the specific components of EPS which are responsible for calcite precipitation and crystal morphology on the other hand. It is generally accepted that capsular extracellular polymeric substances are the main components of biofilm matrixes. In this context, it is important to understand under which conditions cyanobacteria produce surface polysaccharides. In a recent study, we characterized the binding sites of EPS of three unicellular autotrophic picocyanobacterial strains of the Synechococcus-type. Potentiometric titrations were conducted to determine different types of functional groups present at the various sites. Precipitation experiments with EPS of different strains allowed for estimating the potential of EPS to precipitate calcium carbonate and the impact of functional groups composition on crystal morphology. In order to clarify the conditions under which cyanobacteria formed capsular EPS, we performed growth experiments in nutrients medium with different phosphorus concentrations (0.4, 4.1, 8.2 and 41 mgP/l). Cyanobacterial cells produced capsular EPS under phosphorus concentrations of 0.4, 4.1 and 8.2 mgP/l, while no capsular EPS were observed for the highest P concentration (41 mgP/l). At this concentration, however, calcium rich storage products were detected in the cells. The results thus suggest that both extracellular and intracellular products are regulated through phosphorus concentrations in growth solutions. Titrations reveal five or six distinct sites on surfaces of picocyanobacterial

  5. Role of Extracellular DNA during Biofilm Formation by Listeria monocytogenes

    DEFF Research Database (Denmark)

    Harmsen, Morten; Lappann, Martin; Knøchel, S;

    2010-01-01

    (eDNA) may be the only central component of the biofilm matrix and that it is necessary for both initial attachment and early biofilm formation for 41 L. monocytogenes strains that were tested. DNase I treatment resulted in dispersal of biofilms, not only in microtiter tray assays but also in flow......Listeria monocytogenes is a food-borne pathogen that is capable of living in harsh environments. It is believed to do this by forming biofilms, which are surface-associated multicellular structures encased in a self-produced matrix. In this paper we show that in L. monocytogenes extracellular DNA...... cell biofilm assays. However, it was also demonstrated that in a culture without eDNA, neither Listeria genomic DNA nor salmon sperm DNA by itself could restore the capacity to adhere. A search for additional necessary components revealed that peptidoglycan (PG), specifically N-acetylglucosamine (NAG...

  6. Helicobacter pylori ATCC 43629/NCTC 11639 Outer Membrane Vesicles (OMVs) from Biofilm and Planktonic Phase Associated with Extracellular DNA (eDNA)

    OpenAIRE

    Grande, Rossella; Di Marcantonio, Maria C.; Robuffo, Iole; Pompilio, Arianna; Celia, Christian; Di Marzio, Luisa; Paolino, Donatella; Codagnone, Marilina; Muraro, Raffaella; Stoodley, Paul; Hall-Stoodley, Luanne; Mincione, Gabriella

    2015-01-01

    Helicobacter pylori persistence is associated with its capacity to develop biofilms as a response to changing environmental conditions and stress. Extracellular DNA (eDNA) is a component of H. pylori biofilm matrix but the lack of DNase I activity supports the hypothesis that eDNA might be protected by other extracellular polymeric substances (EPS) and/or Outer Membrane Vesicles (OMVs), which bleb from the bacteria surface during growth. The aim of the present study was to both identify the e...

  7. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment

    OpenAIRE

    Brown, Helen L.; Hanman, Kate; Reuter, Mark; Betts, Roy P.; van Vliet, Arnoud H. M.

    2015-01-01

    Biofilms make an important contribution to survival and transmission of bacterial pathogens in the food chain. The human pathogen Campylobacter jejuni is known to form biofilms in vitro in food chain-relevant conditions, but the exact roles and composition of the extracellular matrix are still not clear. Extracellular DNA has been found in many bacterial biofilms and can be a major component of the extracellular matrix. Here we show that extracellular DNA is also an important component of the...

  8. Structure of Bacterial Extracellular Polymeric Substances at Different pH Values as Determined by SAXS

    OpenAIRE

    Dogsa, Iztok; Kriechbaum, Manfred; Stopar, David; Laggner, Peter

    2005-01-01

    Extracellular polymeric substances (EPS) play an important role in cell aggregation, cell adhesion, and biofilm formation, and protect cells from a hostile environment. The EPS was isolated by trichloroacetic acid/ethanol extraction from broth culture of a marine bacterium isolate. The EPS was composed of glucose and galactose as determined by HPLC and TLC; the protein content was on average 15 ± 5% of EPS dry mass. The solution structure of EPS at different values of pH was revealed by small...

  9. Microbial extracellular polymeric substances in marine biogeochemical processes

    Digital Repository Service at National Institute of Oceanography (India)

    Bhaskar, P.V.; Bhosle, N.B.

    research. M ICROBIAL extracellular polymeric substances (EPS) pro- duced by both prokaryotes (eubacteria and archaebacteria) and eukaryotes (phytoplankton, fungi, and algae) have been a topic of current research interest. The importance of microbial... and the marine food web (Figure 4). The entire biogeochemical process in Figure 4 can be segregated into biotic and abiotic controlled pro- esses. The photosynthetic fixation of atmospheric carbon by phytoplankton, its aggregation and formation of marin snow...

  10. Ratiometric Imaging of Extracellular pH in Bacterial Biofilms with C-SNARF-4

    OpenAIRE

    Schlafer, Sebastian; Garcia, Javier E.; Greve, Matilde; Merete K Raarup; Nyvad, Bente; Dige, Irene

    2014-01-01

    pH in the extracellular matrix of bacterial biofilms is of central importance for microbial metabolism. Biofilms possess a complex three-dimensional architecture characterized by chemically different microenvironments in close proximity. For decades, pH measurements in biofilms have been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit the monitoring of horizontal pH gradients in biofilms in rea...

  11. Biofilms

    OpenAIRE

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-01-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and ...

  12. Biochemical composition and changes of extracellular polysaccharides (ECPS) produced during microphytobenthic biofilm development (Marennes-Oléron, France).

    Science.gov (United States)

    Pierre, Guillaume; Graber, Marianne; Rafiliposon, Beby Alibay; Dupuy, Christine; Orvain, Francis; De Crignis, Margot; Maugard, Thierry

    2012-01-01

    The main goal of this work was to study the dynamics and biochemical composition of extracellular polysaccharides (ECPS), a fraction of the extracellular polymeric substances (EPS) produced during the development of a microphytobenthic biofilm in a European intertidal mudflat (Marennes-Oléron Bay, France) during winter. Microphytobenthic biomass was surveyed during four consecutive emersion periods to confirm the biofilm growth. Bacteria abundance was also checked considering the importance of heterotrophic bacteria observed by various authors in the dynamics of EPS. Various colorimetric assays, coupled to biochemical chromatographic analysis, were used to characterize the three main fractions of extracted EPS: colloidal, bound, and residual. The monosaccharide distribution of colloidal ECPS highlighted their role of carbon source for bacteria (>50% of glucose) even if no increase of colloidal carbohydrate amounts was observed during the tidal exposure. Bound ECPS were composed of deoxy or specific sugars (30% rhamnose) and uronic acids (18% galacturonic acid). Their levels and dynamics could be correlated to the development of the microphytobenthic biofilm, enhancing the stabilization of the sediment or increasing binding forces accordingly. Residual fractions, containing refractory bound ECPS and other internal polymeric substances, were composed of various carbohydrates. The high ratio of glucose in these fractions (18% to 43%) was interesting, as it was once attributed to colloidal sugars due to poor extraction procedures. Finally, the presence of inositol (15%) was significant since no author has highlighted it before, knowing that inositol is a major growth factor for heterotrophic bacteria. PMID:22001998

  13. Xylella fastidiosa Extracellular Genomic DNA May Play a Role For Enhancing Biofilm Formation In Vitro

    Science.gov (United States)

    Xylella fastidiosa (Xf) produces extracellular DNA in PD3 liquid medium. This extracellular DNA may play a role in enhancing biofilm formation, a factor that is required by Xf to establish infection in host plants. Amounts of extracellular DNA generated by Xf in vitro were positively correlated with...

  14. Extracellular DNA contributes to dental biofilm formation: an ex vivo study

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke Louise; Dige, Irene;

    The extracellular matrix of dental biofilms plays an important role during caries development. It increases the mechanical stability of the biofilm, it prevents desiccation, it serves as a reservoir for nutrients and it contributes to the long-term preservation of acidic microenvironments. Research...... stability, and that the enzymatic removal of extracellular DNA might be used as a therapeutic approach to biofilm diseases. Here, we investigate the effect of treatment with DNase I (100 Kunitz) on in vivo grown young dental biofilms. A total of 300 biofilm samples were grown on glass slabs placed on...... acrylic splints for 2.5, 5, 7.5, 16.5 and 24 h and subsequently treated with DNase I or heat-inactivated DNase I for 1 h. Biovolumes were quantified by confocal microscopy and digital analysis of 16200 images. All samples taken together, DNase-treatment led to a strong reduction of the biofilm biovolume...

  15. Extracellular Polysaccharides in Microbial Biofilm and Their Influence on the Electrophoretic Properties of Microbial Cells

    OpenAIRE

    Růžička, F.; Horká, M. (Marie); Holá, V.

    2011-01-01

    The surfaces of biofilm-positive microorganisms are usually covered with biofilm-specific extracellular polysaccharide substances that play a key role in a biofilm formation and function [1,2] The presence of this substance on the surface can affect the physicochemical properties of the bacterial cell, including the cell-surface hydrophobicity and surface charge The differences in the surface charges lead to the different isoelectric points and the different electromigration characteristics o...

  16. Mycobacterium avium Possesses Extracellular DNA that Contributes to Biofilm Formation, Structural Integrity, and Tolerance to Antibiotics.

    Directory of Open Access Journals (Sweden)

    Sasha J Rose

    Full Text Available Mycobacterium avium subsp. hominissuis is an opportunistic pathogen that is associated with biofilm-related infections of the respiratory tract and is difficult to treat. In recent years, extracellular DNA (eDNA has been found to be a major component of bacterial biofilms, including many pathogens involved in biofilm-associated infections. To date, eDNA has not been described as a component of mycobacterial biofilms. In this study, we identified and characterized eDNA in a high biofilm-producing strain of Mycobacterium avium subsp. hominissuis (MAH. In addition, we surveyed for presence of eDNA in various MAH strains and other nontuberculous mycobacteria. Biofilms of MAH A5 (high biofilm-producing strain and MAH 104 (reference strain were established at 22°C and 37°C on abiotic surfaces. Acellular biofilm matrix and supernatant from MAH A5 7 day-old biofilms both possess abundant eDNA, however very little eDNA was found in MAH 104 biofilms. A survey of MAH clinical isolates and other clinically relevant nontuberculous mycobacterial species revealed many species and strains that also produce eDNA. RAPD analysis demonstrated that eDNA resembles genomic DNA. Treatment with DNase I reduced the biomass of MAH A5 biofilms when added upon biofilm formation or to an already established biofilm both on abiotic surfaces and on top of human pharyngeal epithelial cells. Furthermore, co-treatment of an established biofilm with DNase 1 and either moxifloxacin or clarithromycin significantly increased the susceptibility of the bacteria within the biofilm to these clinically used antimicrobials. Collectively, our results describe an additional matrix component of mycobacterial biofilms and a potential new target to help treat biofilm-associated nontuberculous mycobacterial infections.

  17. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms.

    Science.gov (United States)

    Schwartz, Kelly; Ganesan, Mahesh; Payne, David E; Solomon, Michael J; Boles, Blaise R

    2016-01-01

    Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology. PMID:26365835

  18. Pattern formation in a growing bacterial colony facilitated by extra-cellular polymeric substances

    Science.gov (United States)

    Ghosh, Pushpita; Mondal, Jagannath; Ben-Jacob, Eshel; Levine, Herbert

    2015-03-01

    Self-organization in bacterial colony is quite pervasive and diverse phenomena. Bacteria are known to self-organize into multicellular communities, commonly known as biofilms, in which microbial cells live in close association with a solid surface and are embedded in a self-produced extracellular polymeric substances(EPS). In such dense systems mechanical interactions among the structural components can be expected to significantly contribute to the morphological properties. By a simple particle-based simulation model of nonmotile rod-shaped bacterial cells and EPS secreted in a growing colony, we investigate how the combined mechanical effects can give rise naturally spatial heterogeneity observed in a biofilm. In our individual-based simulation model all the components interact mechanically via repulsive forces by pushing each other away as bacterial cells grow and divide consuming diffusing nutrient and produce EPS. We show that mechanical interactions control the collective behavior of the system, particularly, we show that the presence of non-adsorbing EPS leads spontaneous aggregation of bacterial cells by depletion attraction and generates phase separated patterns in a nonequilibrium growing colony.

  19. Ratiometric Imaging of Extracellular pH in Dental Biofilms Using C-SNARF-4

    DEFF Research Database (Denmark)

    Dige, Irene; Nyvad, Bente; Bælum, Vibeke; Schlafer, Sebastian

    H-sensitive ratiometric dye and as a bacterial stain. We tested the method on natural 48-h in-situ-grown dental biofilms from two individuals. Four biofilms per person were collected on standardized glass slabs mounted in intra-oral appliances. Digital image analysis was employed to remove the bacterial biomass from the...... fluorescent microscopy can overcome these problems. The aim of this demonstration study was to monitor extracellular biofilm pH microscopically with the ratiometric pH-sensitive dye C-SNARF-4 in in-situ-grown dental biofilms. Methods: Using confocal microscopy, the dye C-SNARF-4 was employed both as p...

  20. Activation of phagocytic cells by Staphylococcus epidermidis biofilms: effects of extracellular matrix proteins and the bacterial stress protein GroEL on netosis and MRP-14 release.

    Science.gov (United States)

    Dapunt, Ulrike; Gaida, Matthias M; Meyle, Eva; Prior, Birgit; Hänsch, Gertrud M

    2016-07-01

    The recognition and phagocytosis of free-swimming (planktonic) bacteria by polymorphonuclear neutrophils have been investigated in depth. However, less is known about the neutrophil response towards bacterial biofilms. Our previous work demonstrated that neutrophils recognize activating entities within the extracellular polymeric substance (EPS) of biofilms (the bacterial heat shock protein GroEL) and that this process does not require opsonization. Aim of this study was to evaluate the release of DNA by neutrophils in response to biofilms, as well as the release of the inflammatory cytokine MRP-14. Neutrophils were stimulated with Staphylococcus epidermidis biofilms, planktonic bacteria, extracted EPS and GroEL. Release of DNA and of MRP-14 was evaluated. Furthermore, tissue samples from patients suffering from biofilm infections were collected and evaluated by histology. MRP-14 concentration in blood samples was measured. We were able to show that biofilms, the EPS and GroEL induce DNA release. MRP-14 was only released after stimulation with EPS, not GroEL. Histology of tissue samples revealed MRP-14 positive cells in association with neutrophil infiltration and MRP-14 concentration was elevated in blood samples of patients suffering from biofilm infections. Our data demonstrate that neutrophil-activating entities are present in the EPS and that GroEL induces DNA release by neutrophils. PMID:27109773

  1. Optimization for extracellular polymeric substances extraction of microbial aggregates.

    Science.gov (United States)

    Zhu, Liang; Yu, Haitian; Liu, Yimei; Qi, Hanying; Xu, Xiangyang

    2015-01-01

    The extracellular polymeric substances (EPS) are important macromolecular components in microbial aggregates. The three EPS extraction methods - ultrasound + cation exchange resins (CER) + sulfide, ultrasound + formamide + NaOH, and ultrasound + heat - were investigated in the study, and the component differences of extracted EPS from the loose flocs and dense aerobic granules were compared using chemical analysis and three-dimensional excitation-emission matrix (3D-EEM). Results showed that the contents of EPS were extracted effectively by ultrasound + formamide + NaOH and ultrasound + heat methods, and the ultrasound + CER + sulfide method did not extract the polysaccharides (PS) or protein (PN) contents from the sludge samples. The 3D-EEM analysis indicated that the nature of peak B/D, peak C/E/F, and peak A/G were attributed to PN-like, humic acid-like and fulvic acid-like fluorophores. All fluorophores can be detected from the EPS extracted through the ultrasound + heat method. Hopefully this will provide more information about the EPS interaction mechanism of microbial aggregates. PMID:25860715

  2. Extracellular DNA Is Essential for Maintaining Bordetella Biofilm Integrity on Abiotic Surfaces and in the Upper Respiratory Tract of Mice

    OpenAIRE

    Conover, Matt S.; Mishra, Meenu; Deora, Rajendar

    2011-01-01

    Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the Gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and extracellular...

  3. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly

    OpenAIRE

    Stewart, Elizabeth J.; Mahesh Ganesan; Younger, John G.; Solomon, Michael J.

    2015-01-01

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) co...

  4. Visualization of extracellular matrix components within sectioned Salmonella biofilms on the surface of human gallstones.

    Directory of Open Access Journals (Sweden)

    Joanna M Marshall

    Full Text Available Chronic carriage of Salmonella Typhi is mediated primarily through the formation of bacterial biofilms on the surface of cholesterol gallstones. Biofilms, by definition, involve the formation of a bacterial community encased within a protective macromolecular matrix. Previous work has demonstrated the composition of the biofilm matrix to be complex and highly variable in response to altered environmental conditions. Although known to play an important role in bacterial persistence in a variety of contexts, the Salmonella biofilm matrix remains largely uncharacterized under physiological conditions. Initial attempts to study matrix components and architecture of the biofilm matrix on gallstone surfaces were hindered by the auto-fluorescence of cholesterol. In this work we describe a method for sectioning and direct visualization of extracellular matrix components of the Salmonella biofilm on the surface of human cholesterol gallstones and provide a description of the major matrix components observed therein. Confocal micrographs revealed robust biofilm formation, characterized by abundant but highly heterogeneous expression of polysaccharides such as LPS, Vi and O-antigen capsule. CsgA was not observed in the biofilm matrix and flagellar expression was tightly restricted to the biofilm-cholesterol interface. Images also revealed the presence of preexisting Enterobacteriaceae encased within the structure of the gallstone. These results demonstrate the use and feasibility of this method while highlighting the importance of studying the native architecture of the gallstone biofilm. A better understanding of the contribution of individual matrix components to the overall biofilm structure will facilitate the development of more effective and specific methods to disrupt these bacterial communities.

  5. Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice.

    Directory of Open Access Journals (Sweden)

    Matt S Conover

    Full Text Available Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and extracellular DNA (eDNA. In this report, we investigated the function of DNA in Bordetella biofilm development. We show that DNA is a significant component of Bordetella biofilm matrix. Addition of DNase I at the initiation of biofilm growth inhibited biofilm formation. Treatment of pre-established mature biofilms formed under both static and flow conditions with DNase I led to a disruption of the biofilm biomass. We next investigated whether eDNA played a role in biofilms formed in the mouse respiratory tract. DNase I treatment of nasal biofilms caused considerable dissolution of the biofilm biomass. In conclusion, these results suggest that eDNA is a crucial structural matrix component of both in vitro and in vivo formed Bordetella biofilms. This is the first evidence for the ability of DNase I to disrupt bacterial biofilms formed on host organs.

  6. Implications of Extracellular Polymeric Substance Matrices of Microbial Habitats Associated with Coastal Aquaculture Systems

    Directory of Open Access Journals (Sweden)

    Juan Carlos Camacho-Chab

    2016-08-01

    Full Text Available Coastal zones support fisheries that provide food for humans and feed for animals. The decline of fisheries worldwide has fostered the development of aquaculture. Recent research has shown that extracellular polymeric substances (EPS synthesized by microorganisms contribute to sustainable aquaculture production, providing feed to the cultured species, removing waste and contributing to the hygiene of closed systems. As ubiquitous components of coastal microbial habitats at the air–seawater and seawater–sediment interfaces as well as of biofilms and microbial aggregates, EPS mediate deleterious processes that affect the performance and productivity of aquaculture facilities, including biofouling of marine cages, bioaccumulation and transport of pollutants. These biomolecules may also contribute to the persistence of harmful algal blooms (HABs and their impact on cultured species. EPS may also exert a positive influence on aquaculture activity by enhancing the settling of aquaculturally valuable larvae and treating wastes in bioflocculation processes. EPS display properties that may have biotechnological applications in the aquaculture industry as antiviral agents and immunostimulants and as a novel source of antifouling bioproducts.

  7. Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria

    International Nuclear Information System (INIS)

    The role of extracellular polymeric substances (EPS) in Cd adsorption by Bacillus subtilis and Pseudomonas putida was investigated using a combination of batch adsorption experiments, potentiometric titrations, Fourier transform infrared spectroscopy (FTIR). An increased adsorption capacity of Cd was observed for untreated bacteria relative to that for EPS-free bacteria. Surface complexation modeling of titration data showed the similar pKa values of functional groups (carboxyl, phosphate and hydroxyl) between untreated and EPS-free bacteria. However, site concentrations on the untreated bacteria were found to be higher than those on the EPS-free bacteria. FTIR spectra also showed that no significant difference in peak positions was observed between untreated and EPS-free bacteria and carboxyl and phosphate groups were responsible for Cd adsorption on bacterial cells. The information obtained in this study is of fundamental significance for understanding the interaction mechanisms between heavy metals and biofilms in natural environments. - Highlights: → The presence of EPS on bacterial surfaces facilitates the adsorption of Cd. → The promoting effects on Cd adsorption are more remarkable on Gram-positive B. subtilis cells than that on Gram-negative P. putida cells. → Carboxyl and phosphate groups are mostly responsible for Cd binding on untreated and EPS-free cells. → Intact bacterial cells and EPS-free cells have similar binding mechanisms for Cd. - Intact bacterial cells and EPS-free cells have similar binding mechanisms for Cd.

  8. Comparison of extracellular polymeric substances (EPS) extraction from two different activated sludges.

    Science.gov (United States)

    Zhang, Leiyan; Ren, Hongqiang; Ding, Lili

    2012-01-01

    The characteristics of extracellular polymeric substances (EPS) extracted with five different extraction protocols from two different activated sludges were studied. The results showed that the major EPS constituent extracted by centrifugation was protein for the sludge in sequencing batch reactor treating chemical wastewater, and nucleic acid for the sludge in moving bed biofilm reactor treating synthetic urban wastewater. The order of EPS extraction amounting from the two sludges was formaldehyde + NaOH > formaldehyde + heating > EDTA > heating > centrifugation. The different extraction methods, the wastewater type, and activated sludge source greatly affected the amount and composition of EPS. The chemical extracted methods were more effective than the physical methods in extracting EPS for the two sludges. Moreover, formaldehyde combined NaOH was most effective in extracting EPS for the two sludges. However, chemical extraction could contaminate the EPS solution, which was pointed out by infra-red analysis and was also proved by cell lyses during EPS extraction and carrying over of the chemical extractant. Therefore, this study highlights that the choice of EPS extraction method should consider both the extraction yield and content and the contamination of extracting reagents to the EPS solution. The extraction procedures should be optimized and most effective. PMID:22864444

  9. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering.

    Science.gov (United States)

    Neyens, Elisabeth; Baeyens, Jan; Dewil, Raf; De heyder, Bart

    2004-01-30

    The management of wastewater sludge, now often referred to as biosolids, accounts for a major portion of the cost of the wastewater treatment process and represents significant technical challenges. In many wastewater treatment facilities, the bottleneck of the sludge handling system is the dewatering operation. Advanced sludge treatment (AST) processes have been developed in order to improve sludge dewatering and to facilitate handling and ultimate disposal. The authors have extensively reported lab-scale, semi-pilot and pilot investigations on either thermal and thermochemical processes, or chemical oxidation using hydrogen peroxide. To understand the action of these advanced sludge technologies, the essential role played by extracellular polymeric substances (EPS) needs to be understood. EPS form a highly hydrated biofilm matrix, in which the micro-organisms are embedded. Hence they are of considerable importance in the removal of pollutants from wastewater, in bioflocculation, in settling and in dewatering of activated sludge. The present paper reviews the characteristics of EPS and the influence of thermochemical and oxidation mechanisms on degradation and flocculation of EPS. Experimental investigations on waste activated sludge are conducted by the authors to evaluate the various literature findings. From the experiments, it is concluded that AST methods enhance cake dewaterability in two ways: (i) they degrade EPS proteins and polysaccharides reducing the EPS water retention properties; and (ii) they promote flocculation which reduces the amount of fine flocs. PMID:15177096

  10. DNA builds and strengthens the extracellular matrix in Myxococcus xanthus biofilms by interacting with exopolysaccharides.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available One intriguing discovery in modern microbiology is the extensive presence of extracellular DNA (eDNA within biofilms of various bacterial species. Although several biological functions have been suggested for eDNA, including involvement in biofilm formation, the detailed mechanism of eDNA integration into biofilm architecture is still poorly understood. In the biofilms formed by Myxococcus xanthus, a Gram-negative soil bacterium with complex morphogenesis and social behaviors, DNA was found within both extracted and native extracellular matrices (ECM. Further examination revealed that these eDNA molecules formed well organized structures that were similar in appearance to the organization of exopolysaccharides (EPS in ECM. Biochemical and image analyses confirmed that eDNA bound to and colocalized with EPS within the ECM of starvation biofilms and fruiting bodies. In addition, ECM containing eDNA exhibited greater physical strength and biological stress resistance compared to DNase I treated ECM. Taken together, these findings demonstrate that DNA interacts with EPS and strengthens biofilm structures in M. xanthus.

  11. Extracellular polymeric substances: quantification and use in erosion experiments

    Science.gov (United States)

    Perkins, R. G.; Paterson, D. M.; Sun, H.; Watson, J.; Player, M. A.

    2004-10-01

    Extracellular polymeric substances (EPS) is a generic term often applied to high molecular weight polymers implicated in the biostabilisation of natural sediments. Quantitative analysis of in situ EPS production rates and sediment contents has usually involved extraction of EPS in saline media prior to precipitation in alcohol and quantification against a glucose standard (phenol-sulphuric acid assay). Extracted and synthetic EPS has also been used to create engineered sediments for erosion experiments. This study investigated two steps in the EPS extraction procedure, saline extraction and alcohol precipitation. Comparisons of the effects of different extracted polymers were made in sediment erosion experiments using engineered sediments. Sediment EPS content decreased as the salinity of the extractant increased, with highest values obtained for extraction in fresh water. Potential errors were observed in the quantification of the soluble colloidal polymer fraction when divided into EPS and lower molecular weight polymers (LMW) as used in many studies. In erosion studies, 15 mg kg-1 of alcohol (IMS) extracted EPS polymer (in 5 g kg-1 IMS precipitate, equivalent to approximately 5 g salt kg-1 sediment dry weight) decreased the erosion threshold of cohesive sediments whereas 30 mg kg-1 (in 10 g kg-1 IMS precipitate, approximately 10 g salt kg-1 sediment dry weight) had no effect compared to controls. This could be due to the influence of EPS on water content: low levels of EPS did not bind but prevented desiccation, lowering sediment stability against controls. At higher EPS content, binding effects balanced water content effects. Salt alone (at 10 g kg-1) slightly increased the erosion threshold after a 6-h desiccation period. In comparison, carbohydrates produced without alcohol precipitation (rotary evaporation) increased the erosion threshold at both 0.5 and 1.0 g EPS kg-1 dry weight of sediment. It was concluded that the role of microphytobenthic polymers in

  12. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Yang, Liang; Qu, Di;

    2009-01-01

    in overnight cultures had no effect on established P. aeruginosa biofilms and planktonic growth. These findings reveal that P. aeruginosa extracellular products are important microbial competition factors that overcome competition with S. epidermidis, and the results may provide clues for the development...

  13. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections.

    Science.gov (United States)

    Baelo, Aida; Levato, Riccardo; Julián, Esther; Crespo, Anna; Astola, José; Gavaldà, Joan; Engel, Elisabeth; Mateos-Timoneda, Miguel Angel; Torrents, Eduard

    2015-07-10

    Infections caused by biofilm-forming bacteria are a major threat to hospitalized patients and the main cause of chronic obstructive pulmonary disease and cystic fibrosis. There is an urgent necessity for novel therapeutic approaches, since current antibiotic delivery fails to eliminate biofilm-protected bacteria. In this study, ciprofloxacin-loaded poly(lactic-co-glycolic acid) nanoparticles, which were functionalized with DNase I, were fabricated using a green-solvent based method and their antibiofilm activity was assessed against Pseudomonas aeruginosa biofilms. Such nanoparticles constitute a paradigm shift in biofilm treatment, since, besides releasing ciprofloxacin in a controlled fashion, they are able to target and disassemble the biofilm by degrading the extracellular DNA that stabilize the biofilm matrix. These carriers were compared with free-soluble ciprofloxacin, and ciprofloxacin encapsulated in untreated and poly(lysine)-coated nanoparticles. DNase I-activated nanoparticles were not only able to prevent biofilm formation from planktonic bacteria, but they also successfully reduced established biofilm mass, size and living cell density, as observed in a dynamic environment in a flow cell biofilm assay. Moreover, repeated administration over three days of DNase I-coated nanoparticles encapsulating ciprofloxacin was able to reduce by 95% and then eradicate more than 99.8% of established biofilm, outperforming all the other nanoparticle formulations and the free-drug tested in this study. These promising results, together with minimal cytotoxicity as tested on J774 macrophages, allow obtaining novel antimicrobial nanoparticles, as well as provide clues to design the next generation of drug delivery devices to treat persistent bacterial infections. PMID:25913364

  14. Ratiometric Imaging of Extracellular pH in Dental Biofilms Using C-SNARF-4

    DEFF Research Database (Denmark)

    Dige, Irene

    H-sensitive ratiometric dye and as a bacterial stain. We tested the method on natural 48-h in-situ-grown dental biofilms from two individuals. Four biofilms per person were collected on standardized glass slabs mounted in intra-oral appliances. Digital image analysis was employed to remove the bacterial biomass from the......pH in dental biofilms plays a central role for the development of caries lesions. For decades, pH measurements in biofilms have been limited to recording pH with electrodes/microelectrodes that do not permit monitoring horizontal pH gradients in biofilms in real-time. Quantitative fluorescent...... microscopy can overcome these problems. Objective: The aim of this demonstration study was to monitor extracellular biofilm pH microscopically with the ratiometric pH-sensitive dye C-SNARF-4 in in-situ-grown dental biofilms. Methods: Using confocal microscopy, the dye C-SNARF-4 was employed both as p...

  15. Biofouling on polymeric heat exchanger surfaces with E. coli and native biofilms.

    Science.gov (United States)

    Pohl, S; Madzgalla, M; Manz, W; Bart, H J

    2015-01-01

    The biofouling affinity of different polymeric surfaces (polypropylene, polysulfone, polyethylene terephthalate, and polyether ether ketone) in comparison to stainless steel (SS) was studied for the model bacterium Escherichia coli K12 DSM 498 and native biofilms originating from Rhine water. The biofilm mass deposited on the polymer surfaces was minimized by several magnitudes compared to SS. The cell count and the accumulated biomass of E. coli on the polymer surfaces showed an opposing linear trend. The promising low biofilm formation on the polymers is attributed to the combination of inherent surface properties (roughness, surface energy and hydrophobicity) when compared to SS. The fouling characteristics of E. coli biofilms show good conformity with the more complex native biofilms investigated. The results can be utilized for the development of new polymer heat exchangers when using untreated river water as coolant or for other processes needing antifouling materials. PMID:26479780

  16. Extracellular polymeric substances of bacteria and their potential environmental applications.

    Science.gov (United States)

    More, T T; Yadav, J S S; Yan, S; Tyagi, R D; Surampalli, R Y

    2014-11-01

    Biopolymers are considered a potential alternative to conventional chemical polymers because of their ease of biodegradability, high efficiency, non-toxicity and non-secondary pollution. Recently, extracellular polymeric substances (EPS, biopolymers produced by the microorganisms) have been recognised by many researchers as a potential flocculent for their applications in various water, wastewater and sludge treatment processes. In this context, literature information on EPS is widely dispersed and is very scarce. Thus, this review marginalizes various studies conducted so far about EPS nature-production-recovery, properties, environmental applications and moreover, critically examines future research needs and advanced application prospective of the EPS. One of the most important aspect of chemical composition and structural details of different moieties of EPS in terms of carbohydrates, proteins, extracellular DNA, lipid and surfactants and humic substances are described. These chemical characteristics of EPS in relation to formation and properties of microbial aggregates as well as degradation of EPS in the matrix (biomass, flocs etc) are analyzed. The important engineering properties (based on structural characteristics) such as adsorption, biodegradability, hydrophilicity/hydrophobicity of EPS matrix are also discussed in details. Different aspects of EPS production process such as bacterial strain maintenance; inoculum and factors affecting EPS production were presented. The important factors affecting EPS production include growth phase, carbon and nitrogen sources and their ratio, role of other nutrients (phosphorus, micronutrients/trace elements, and vitamins), impact of pH, temperature, metals, aerobic versus anaerobic conditions and pure and mixed culture. The production of EPS in high concentration with high productivity is essential due to economic reasons. Therefore, the knowledge about all the aspects of EPS production (listed above) is highly

  17. Extracellular Polymeric Substances as Catalysts for Dolomite Crystallization

    Science.gov (United States)

    Zhang, F.; Xu, H.; Shelobolina, E. S.; Shen, Z.; Converse, B.; Konishi, H.; Roden, E. E.

    2012-12-01

    The "Dolomite problem" has been a subject of scientific debate for decades. It has been proposed that the involvement of microorganisms, especially anaerobic microorganisms, is necessary to overcome the kinetic barriers to dolomite crystallization. However, an unequivocal explanation of this catalytic effect of microorganisms has yet to be defined. Here we show that extracellular polymeric substances (EPS) can catalyze dolomite precipitation. In contrast to previous dolomite syntheses in live microbial cultures, we extracted EPS from cultures of a natural anaerobic microbial consortium isolated from sediments of a dolomite-precipitating lake, and conducted dolomite synthesis in vitro in EPS-bearing solutions. Our data showed that with as low as 0.1 g/L EPS, disordered dolomite precipitated from solutions containing similar concentrations of Ca2+ and Mg2+ as that of modern sea water, whereas aragonite and hydrous Mg-carbonates precipitated from solutions containing the dead cell residues without EPS. High throughput sequencing analyses indicated that the anaerobic consortium was dominated by fermenters. To our best knowledge, this is the first report of the catalytic effect of fermenters on dolomite crystallization. Based on previous studies on dolomite synthesis in polysaccharides-bearing solutions (Zhang et al., 2012), we propose that polysaccharides in EPS may contribute significantly to dolomite precipitation. We suggest that polysaccharides may be strongly adsorbed on the growing Ca-Mg carbonate surfaces to lower the energy barrier to the dehydration of surface Mg2+-water complexes, and therefore to enhance dolomite crystallization. In natural environments, polysaccharides can also be produced by organic matter decay in addition to microbial excretion. All these polysaccharides may be key factors in sedimentary dolomite formation. This study sheds new light on understanding the role of anaerobic microorganisms in dolomite formation and the formation mechanism

  18. Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative.

    Science.gov (United States)

    Chen, Lulu; Ren, Zhi; Zhou, Xuedong; Zeng, Jumei; Zou, Jing; Li, Yuqing

    2016-01-01

    Dental caries, a biofilm-related oral disease, is a result of disruption of the microbial ecological balance in the oral environment. Streptococcus mutans, which is one of the primary cariogenic bacteria, produces glucosyltransferases (Gtfs) that synthesize extracellular polysaccharides (EPSs). The EPSs, especially water-insoluble glucans, contribute to the formation of dental plaque, biofilm stability, and structural integrity, by allowing bacteria to adhere to tooth surfaces and supplying the bacteria with protection against noxious stimuli and other environmental attacks. The identification of novel alternatives that selectively inhibit cariogenic organisms without suppressing oral microbial residents is required. The goal of the current study is to investigate the influence of an oxazole derivative on S. mutans biofilm formation and the development of dental caries in rats, given that oxazole and its derivatives often exhibit extensive and pharmacologically important biological activities. Our data shows that one particular oxazole derivative, named 5H6, inhibited the formation of S. mutans biofilms and prevented synthesis of extracellular polysaccharides by antagonizing Gtfs in vitro, without affecting the growth of the bacteria. In addition, topical applications with the inhibitor resulted in diminished incidence and severity of both smooth and sulcal surface caries in vivo with a lower percentage of S. mutans in the animals' dental plaque compared to the control group (P biofilm formation and cariogenicity of S. mutans. PMID:26526453

  19. Quantitation and relative distribution of extracellular matrix in Staphylococcus epidermidis biofilm

    International Nuclear Information System (INIS)

    The relationship between adherence of bacteria to foreign bodies and their deposition of extracellular matrix was examined on glass and suture material. To quantitate bacterial adherence, uptake of [3H]thymidine into bacterial DNA was analyzed. Corresponding amounts of extracellular matrix were measured by a new technique using [14C]glucose incorporation. This study shows that [14C]glucose preferentially labeled bacterial strains in proportion to biofilm production. The ratio of 3H14C in high biofilm producers was 0.9 and in low producers it was 3.7. Radioactive identification of organisms as high and low producers was confirmed by electron microscopy. The results presented here show that production and accumulation of biofilm over time is a stable characteristic in different strains of S. epidermidis. The use of ratios reflecting radiolabeling of bacteria and biofilm by [3H]thymidine and [14C]glucose, respectively, is a quantitative yet simple technique to assess extracellular matrix of different strains of S. epidermidis

  20. Release of Extracellular Polymeric Substance and Disintegration of Anaerobic Granular Sludge under Reduced Sulfur Compounds-Rich Conditions

    Directory of Open Access Journals (Sweden)

    Takuro Kobayashi

    2015-07-01

    Full Text Available The effect of reduced form of sulfur compounds on granular sludge was investigated. Significant release of extracellular polymeric substance (EPS from the granular sludge occurred in the presence of sulfide and methanethiol according to various concentrations. Granular sludge also showed a rapid increase in turbidity and decrease in diameter in accordance with sulfide concentration during the long-term shaking, suggesting that the strength of the granules was reduced with high-concentration sulfide. A continuous experiment of up-flow anaerobic sludge blanket reactors with different concentrations of sulfide (10, 200, 500 mg-S/L influence demonstrated that the reactor fed with higher concentration of sulfide allowed more washout of small particle-suspended solid (SS content and soluble carbohydrate and protein, which were considered as EPS released from biofilm. Finally, the presence of sulfide negatively affected methane production, chemical oxygen demand removal and sludge retention in operational performance.

  1. Extracellular Xylella fastidiosa genomic DNA enhances biofilm formation in vitro

    Science.gov (United States)

    Xylella fastidiosa (Xf) is a Gram negative, xylem-limited bacterium that causes Pierce’s Disease (PD) of grapevine, as well as other diseases of economically important crops and landscape plants. Many bacteria produce large amounts of extracellular DNA, which may function as a matrix component in b...

  2. Atomic Force Microscopy (AFM) for In-Situ Biofilm Surface Characterization during Free Chlorine and Monochloramine Exposure

    Science.gov (United States)

    Drinking water distribution system biofilm are attached to pipe walls and found in sediments. These biofilms are complex and contain a variety of microorganisms embedded in a matrix with extracellular polymeric substances (EPS), providing protection from disinfection. Without pro...

  3. Small molecule control of bacterial biofilms

    OpenAIRE

    Worthington, Roberta J.; Richards, Justin J.; Melander, Christian

    2012-01-01

    Bacterial biofilms are defined as a surface attached community of bacteria embedded in a matrix of extracellular polymeric substances that they have produced. When in the biofilm state, bacteria are more resistant to antibiotics and the host immune response than are their planktonic counterparts. Biofilms are increasingly recognized as being significant in human disease, accounting for 80% of bacterial infections in the body and diseases associated with bacterial biofilms include: lung infect...

  4. Microfluidic Approaches to Bacterial Biofilm Formation

    OpenAIRE

    Hee-Deung Park; Junghyun Kim; Seok Chung

    2012-01-01

    Bacterial biofilms—aggregations of bacterial cells and extracellular polymeric substrates (EPS)—are an important subject of research in the fields of biology and medical science. Under aquatic conditions, bacterial cells form biofilms as a mechanism for improving survival and dispersion. In this review, we discuss bacterial biofilm development as a structurally and dynamically complex biological system and propose microfluidic approaches for the study of bacterial biofilms. Biofilms develop t...

  5. Self-organization of bacterial biofilms is facilitated by extracellular DNA.

    Science.gov (United States)

    Gloag, Erin S; Turnbull, Lynne; Huang, Alan; Vallotton, Pascal; Wang, Huabin; Nolan, Laura M; Mililli, Lisa; Hunt, Cameron; Lu, Jing; Osvath, Sarah R; Monahan, Leigh G; Cavaliere, Rosalia; Charles, Ian G; Wand, Matt P; Gee, Michelle L; Prabhakar, Ranganathan; Whitchurch, Cynthia B

    2013-07-01

    Twitching motility-mediated biofilm expansion is a complex, multicellular behavior that enables the active colonization of surfaces by many species of bacteria. In this study we have explored the emergence of intricate network patterns of interconnected trails that form in actively expanding biofilms of Pseudomonas aeruginosa. We have used high-resolution, phase-contrast time-lapse microscopy and developed sophisticated computer vision algorithms to track and analyze individual cell movements during expansion of P. aeruginosa biofilms. We have also used atomic force microscopy to examine the topography of the substrate underneath the expanding biofilm. Our analyses reveal that at the leading edge of the biofilm, highly coherent groups of bacteria migrate across the surface of the semisolid media and in doing so create furrows along which following cells preferentially migrate. This leads to the emergence of a network of trails that guide mass transit toward the leading edges of the biofilm. We have also determined that extracellular DNA (eDNA) facilitates efficient traffic flow throughout the furrow network by maintaining coherent cell alignments, thereby avoiding traffic jams and ensuring an efficient supply of cells to the migrating front. Our analyses reveal that eDNA also coordinates the movements of cells in the leading edge vanguard rafts and is required for the assembly of cells into the "bulldozer" aggregates that forge the interconnecting furrows. Our observations have revealed that large-scale self-organization of cells in actively expanding biofilms of P. aeruginosa occurs through construction of an intricate network of furrows that is facilitated by eDNA. PMID:23798445

  6. Monitoring of extracellular pH in young dental biofilms grown in vivo in the presence and absence of sucrose

    DEFF Research Database (Denmark)

    Dige, Irene; Baelum, Vibeke; Nyvad, Bente;

    2016-01-01

    BACKGROUND AND OBJECTIVE: pH in dental biofilms is of central importance for the development of caries. We used the ratiometric pH-sensitive dye C-SNARF-4 in combination with digital image analysis to monitor extracellular pH in dental biofilms grown in situ with and without sucrose supply. DESIGN...... kind to apply the combination of pH ratiometry and digital image analysis to systematically record extracellular pH in intact dental biofilms from several individuals for up to 1 h. We observed highly heterogeneous pH landscapes and the presence of acidogenic microenvironments - 'acidogenic hotspots......: Dental biofilms (48 h) from 10 individuals were collected on glass slabs mounted on intra-oral appliances. During growth, appliances were immersed extra-orally in either physiological saline or 4% sucrose for 2 min, eight times per day. Fluorescence emissions of C-SNARF-4 in deep layers of the biofilms...

  7. Biofilm dispersion in Pseudomonas aeruginosa.

    Science.gov (United States)

    Kim, Soo-Kyoung; Lee, Joon-Hee

    2016-02-01

    In recent decades, many researchers have written numerous articles about microbial biofilms. Biofilm is a complex community of microorganisms and an example of bacterial group behavior. Biofilm is usually considered a sessile mode of life derived from the attached growth of microbes to surfaces, and most biofilms are embedded in self-produced extracellular matrix composed of extracellular polymeric substances (EPSs), such as polysaccharides, extracellular DNAs (eDNA), and proteins. Dispersal, a mode of biofilm detachment indicates active mechanisms that cause individual cells to separate from the biofilm and return to planktonic life. Since biofilm cells are cemented and surrounded by EPSs, dispersal is not simple to do and many researchers are now paying more attention to this active detachment process. Unlike other modes of biofilm detachment such as erosion or sloughing, which are generally considered passive processes, dispersal occurs as a result of complex spatial differentiation and molecular events in biofilm cells in response to various environmental cues, and there are many biological reasons that force bacterial cells to disperse from the biofilms. In this review, we mainly focus on the spatial differentiation of biofilm that is a prerequisite for dispersal, as well as environmental cues and molecular events related to the biofilm dispersal. More specifically, we discuss the dispersal-related phenomena and mechanisms observed in Pseudomonas aeruginosa, an important opportunistic human pathogen and representative model organism for biofilm study. PMID:26832663

  8. Monitoring of extracellular pH in young dental biofilms grown in vivo in the presence and absence of sucrose

    Directory of Open Access Journals (Sweden)

    Irene Dige

    2016-02-01

    Full Text Available Background and objective: pH in dental biofilms is of central importance for the development of caries. We used the ratiometric pH-sensitive dye C-SNARF-4 in combination with digital image analysis to monitor extracellular pH in dental biofilms grown in situ with and without sucrose supply. Design: Dental biofilms (48 h from 10 individuals were collected on glass slabs mounted on intra-oral appliances. During growth, appliances were immersed extra-orally in either physiological saline or 4% sucrose for 2 min, eight times per day. Fluorescence emissions of C-SNARF-4 in deep layers of the biofilms were recorded ex vivo with confocal microscopy for 15 min or for 1 h after exposure to 0.4% glucose. Extracellular pH was determined ratiometrically using digital image analysis. Results: Extracellular pH dropped rapidly in most examined sites after addition of glucose. Distinct pH microenvironments were observed within single biofilms. The variation in pH was similar between sites within the same biofilm and sites from different individuals. pH drop patterns did not differ between biofilms exposed to sucrose-free and sucrose-rich environments. Conclusion: The present study is the first of its kind to apply the combination of pH ratiometry and digital image analysis to systematically record extracellular pH in intact dental biofilms from several individuals for up to 1 h. We observed highly heterogeneous pH landscapes and the presence of acidogenic microenvironments – ‘acidogenic hotspots’ – within the biofilms. The data suggest that pH drops in young (48 h dental biofilms are independent of the sucrose supply during growth.

  9. Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium

    NARCIS (Netherlands)

    Ahmed, M.; Wijnholds, A.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Arthrospira platensis is a cyanobacterium known for its nutritional value and secondary metabolites. Extracellular polymeric substances (EPS) are an important trait of most cyanobacteria, including A. platensis. Here, we extracted and analysed different fractions of EPS from a locally isolated strai

  10. Presence of Extracellular DNA during Biofilm Formation by Xanthomonas citri subsp. citri Strains with Different Host Range

    Science.gov (United States)

    Sena-Vélez, Marta; Redondo, Cristina; Graham, James H.; Cubero, Jaime

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) A strain causes citrus bacterial canker, a serious leaf, fruit and stem spotting disease of several Citrus species. X. alfalfae subsp. citrumelonis (Xac) is the cause of citrus bacterial spot, a minor disease of citrus nursery plants and X. campestris pv. campestris (Xc) is a systemic pathogen that causes black rot of cabbage. Xanthomonas spp. form biofilms in planta that facilitate the host infection process. Herein, the role of extracellular DNA (eDNA) was evaluated in the formation and stabilization of the biofilm matrix at different stages of biofilm development. Fluorescence and light microscopy, as well as DNAse treatments, were used to determine the presence of eDNA in biofilms and bacterial cultures. DNAse treatments of Xcc strains and Xac reduced biofilm formation at the initial stage of development, as well as disrupted preformed biofilm. By comparison, no significant effect of the DNAse was detected for biofilm formation by Xc. DNAse effects on biofilm formation or disruption varied among Xcc strains and Xanthomonas species which suggest different roles for eDNA. Variation in the structure of fibers containing eDNA in biofilms, bacterial cultures, and in twitching motility was also visualized by microscopy. The proposed roles for eDNA are as an adhesin in the early stages of biofilm formation, as an structural component of mature bacterial aggregates, and twitching motility structures. PMID:27248687

  11. Helicobacter pylori ATCC 43629/NCTC 11639 Outer Membrane Vesicles (OMVs) from Biofilm and Planktonic Phase Associated with Extracellular DNA (eDNA).

    Science.gov (United States)

    Grande, Rossella; Di Marcantonio, Maria C; Robuffo, Iole; Pompilio, Arianna; Celia, Christian; Di Marzio, Luisa; Paolino, Donatella; Codagnone, Marilina; Muraro, Raffaella; Stoodley, Paul; Hall-Stoodley, Luanne; Mincione, Gabriella

    2015-01-01

    Helicobacter pylori persistence is associated with its capacity to develop biofilms as a response to changing environmental conditions and stress. Extracellular DNA (eDNA) is a component of H. pylori biofilm matrix but the lack of DNase I activity supports the hypothesis that eDNA might be protected by other extracellular polymeric substances (EPS) and/or Outer Membrane Vesicles (OMVs), which bleb from the bacteria surface during growth. The aim of the present study was to both identify the eDNA presence on OMVs segregated from H. pylori ATCC 43629/NCTC 11639 biofilm (bOMVs) and its planktonic phase (pOMVs) and to characterize the physical-chemical properties of the OMVs. The presence of eDNA in bOMVs and pOMVs was initially carried out using DNase I-gold complex labeling and Transmission Electron Microscope analysis (TEM). bOMVs and pOMVs were further isolated and physical-chemical characterization carried out using dynamic light scattering (DLS) analysis. eDNA associated with OMVs was detected and quantified using a PicoGreen spectrophotometer assay, while its extraction was performed with a DNA Kit. TEM images showed that eDNA was mainly associated with the OMV membrane surfaces; while PicoGreen staining showed a four-fold increase of dsDNA in bOMVs compared with pOMVs. The eDNA extracted from OMVs was visualized using gel electrophoresis. DLS analysis indicated that both planktonic and biofilm H. pylori phenotypes generated vesicles, with a broad distribution of sizes on the nanometer scale. The DLS aggregation assay suggested that eDNA may play a role in the aggregation of OMVs, in the biofilm phenotype. Moreover, the eDNA associated with vesicle membrane may impede DNase I activity on H. pylori biofilms. These results suggest that OMVs derived from the H. pylori biofilm phenotype may play a structural role by preventing eDNA degradation by nucleases, providing a bridging function between eDNA strands on OMV surfaces and promoting aggregation. PMID:26733944

  12. Extracellular Polysaccharides Matrix - An Often Forgotten Virulence Factor in Oral Biofilm Research

    Institute of Scientific and Technical Information of China (English)

    Hyun Koo; Jin Xiao; Marlise I. Klein

    2009-01-01

    @@ Oral diseases related to dental biofilms continue to afflict the majority of the world's population. Among them, dental caries continues to be the single most prevalent and costly oral infectious disease (Marsh, 2003; Dye et al., 2007). Dental caries results from the interaction of specific bacteria with constituents of the diet within a dental biofilm known as plaque (Bowen, 2002). Sucrose is considered to be the "arch criminal" from the dietary aspect because it serves as a substrate for synthesis of extracellular (EPS) and intracellular (IPS) polysaccharides in dental biofilm and is also fermentable (Bowen, 2002). However, it is important to emphasize that additional sugars and starch can certainly contribute to the pathogenesis (Bowen et al., 1980; Firestone et al., 1982; Thurnheer et al., 2008). Streptococcus mutans (S. mutans), a member of the oral microbial community, is generally regarded as the primary microbial culprit although additional microorganisms may be involved (Hamada and Slade, 1980; Loesche, 1986; Beighton, 2005). This bacterium (i) effectively utilizes dietary sucrose (and possibly starch) to synthesize large amounts of EPS through glucosyltransferases (Gtfs) and a fructosyltransferase (Ftfs), (ii) adheres tenaciously to glucan-coated surfaces, and (iii) is also acidogenic and acid-tolerant, which are critical virulence properties involved in the pathogenesis of dental caries.

  13. Monitoring of extracellular pH in young dental biofilms grown in vivo in the presence and absence of sucrose

    OpenAIRE

    Dige, Irene; Baelum, Vibeke; Nyvad, Bente; Schlafer, Sebastian

    2016-01-01

    Background and objective: pH in dental biofilms is of central importance for the development of caries. We used the ratiometric pH-sensitive dye C-SNARF-4 in combination with digital image analysis to monitor extracellular pH in dental biofilms grown in situ with and without sucrose supply.Design: Dental biofilms (48 h) from 10 individuals were collected on glass slabs mounted on intra-oral appliances. During growth, appliances were immersed extra-orally in either physiological saline or 4% s...

  14. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.

    OpenAIRE

    Luyan Ma; Matthew Conover; Haiping Lu; Parsek, Matthew R.; Kenneth Bayles; Wozniak, Daniel J.

    2009-01-01

    Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organis...

  15. Structure modification and extracellular polymeric substances conversion during sewage sludge biodrying process.

    Science.gov (United States)

    Cai, Lu; Krafft, Thomas; Chen, Tong-Bin; Gao, Ding; Wang, Li

    2016-09-01

    Biodrying, an economical and energy-saving biomass waste treatment, removes water from waste using the biological heat generated by organic matter degradation. Technical limitations associated with dewatering complicate the biodrying of sewage sludge. This study investigated the sludge alteration associated with its water removal, focusing on sludge form, extracellular polymeric substances, and free water release. An auto-feedback control technology was used for the biodrying; a scanning electron microscope was used to record the morphological change; three-dimensional excitation-emission matrix fluorescence spectroscopy was used to analyze extracellular polymeric substances (EPS) variation, and time domain reflectometry was used to assess the free water release. Over the 20-day biodrying, there was a 62% water removal rate during the first thermophilic phase. Biodrying created a hollow and stratified sludge structure. Aromatic proteins and soluble microbial byproducts in the EPS were significantly degraded. The thermophilic phase was the phase resulting in the greatest free water release. PMID:27262096

  16. Dynamic Membrane Formation in Anaerobic Dynamic Membrane Bioreactors: Role of Extracellular Polymeric Substances

    OpenAIRE

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2015-01-01

    Dynamic membrane (DM) formation in dynamic membrane bioreactors plays an important role in achieving efficient solid-liquid separation. In order to study the contribution of extracellular polymeric substances (EPS) to DM formation in anaerobic dynamic membrane bioreactor (AnDMBR) processes, EPS extraction from and re-addition to bulk sludge were carried out in short-term filtration tests. DM formation behaviors could be well simulated by cake filtration model, and sludge with EPS re-addition ...

  17. Influences of Extracellular Polymeric Substances on the Dewaterability of Sewage Sludge during Bioleaching

    OpenAIRE

    Zhou, Jun; Zheng, Guanyu; Zhang, Xueying; Zhou, Lixiang

    2014-01-01

    Extracellular polymeric substances (EPS) play important roles in regulating the dewaterability of sludge. This study sought to elucidate the influence of EPS on the dewaterability of sludge during bioleaching process. Results showed that, in bioleaching system with the co-inoculation of Acidithiobacillus thiooxidans TS6 and Acidithiobacillus ferrooxidans LX5 (A. t+A. f system), the capillary suction time (CST) of sludge reduced from 255.9 s to 25.45 s within 48 h, which was obviously better t...

  18. Composition and Distribution of Extracellular Polymeric Substances in Aerobic Flocs and Granular Sludge

    OpenAIRE

    McSwain, B. S.; Irvine, R. L.; Hausner, M.; Wilderer, P. A.

    2005-01-01

    Extracellular polymeric substances (EPS) were quantified in flocculent and aerobic granular sludge developed in two sequencing batch reactors with the same shear force but different settling times. Several EPS extraction methods were compared to investigate how different methods affect EPS chemical characterization, and fluorescent stains were used to visualize EPS in intact samples and 20-μm cryosections. Reactor 1 (operated with a 10-min settle) enriched predominantly flocculent sludge with...

  19. Biochemical characterization of Extracellular Polymeric Substances extracted from an intertidal mudflat using a cation exchange resin.

    OpenAIRE

    Pierre, Guillaume; Graber, Marianne; Orvain, Francis; Dupuy, Christine; Maugard, Thierry

    2010-01-01

    The biochemical characterization of Extracellular Polymeric Substances (EPS) excreted in a European intertidal mudflat (Marennes-Oléron Bay) was performed. Experiments were carried out for the first time in situ, by using an improved extraction recently developed. This innovative procedure, using a cation exchange resin (Dowex), allows separating precisely different fractions of EPS, especially pure bound EPS. Moreover, it avoids the contamination of EPS fractions by residual and intracellula...

  20. Effects of Experimental Conditions on Extraction Yield of Extracellular Polymeric Substances by Cation Exchange Resin

    OpenAIRE

    Jinwoo Cho; Hermanowicz, Slawomir W; Jin Hur

    2012-01-01

    Effects of experimental conditions on the yield of extracellular polymeric substances (EPSs) extraction by cation exchange resin (CER) were investigated using activated sludge flocs. The experimental variables included resin dose, extraction time, sample dilution, and storage time. An empirical model was proposed to describe the kinetics of extraction process. The extraction yield increases with the extraction time and CER dose until it reached the maximum amount of EPS extraction. The maximu...

  1. Composition and aggregation of extracellular polymeric substances (EPS) in hyperhaline and municipal wastewater treatment plants

    OpenAIRE

    Jie Zeng; Jun-Min Gao; You-Peng Chen; Peng Yan; Yang Dong; Yu Shen; Jin-Song Guo; Ni Zeng; Peng Zhang

    2016-01-01

    As important constituents of activated sludge flocs, extracellular polymeric substances (EPS) play significant roles in pollutants adsorption, the formation and maintenance of microbial aggregates, and the protection of microbes from external environmental stresses. In this work, EPS in activated sludge from a municipal wastewater treatment plant (M-WWTP) with anaerobic/anoxic/oxic (A2/O) process and a hyperhaline wastewater treatment plant (H-WWTP) with anaerobic/oxic (A/O) process were extr...

  2. Temporal changes in extracellular polymeric substances on hydrophobic and hydrophilic membrane surfaces in a submerged membrane bioreactor.

    Science.gov (United States)

    Matar, Gerald; Gonzalez-Gil, Graciela; Maab, Husnul; Nunes, Suzana; Le-Clech, Pierre; Vrouwenvelder, Johannes; Saikaly, Pascal E

    2016-05-15

    Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m(2) h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m(2) h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be

  3. Temporal Changes in Extracellular Polymeric Substances on Hydrophobic and Hydrophilic Membrane Surfaces in a Submerged Membrane Bioreactor

    KAUST Repository

    Matar, Gerald

    2016-03-02

    Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m2.h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m2.h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be considered

  4. Effects of microwave irradiation on dewaterability and extracellular polymeric substances of waste activated sludge.

    Science.gov (United States)

    Peng, Ge; Ye, Fenxia; Ye, Yangfang

    2013-03-01

    The effects of microwave irradiation on filterability and dewaterability of waste activated sludge measured by capillary suction time (CST) and dry solids in sludge cake were investigated. The results showed that the optimum irradiation time improved filterability, but that further increase of the time was detrimental. Dewaterability was enhanced significantly and increased with microwave time. Filterability and dewaterability were improved 25 to 28% and 1.3 times at the optimum times of 30 and 90 seconds for the sludge of 5 g total suspended solids (TSS)/L and 7 g TSS/L, respectively. The floc size decreased slightly. Loosely bound extracellular polymeric substances (LB-EPS) decreased under optimum time, but tightly bound extracellular polymeric substances did not change significantly after short irradiation time. The results implied that LB-EPS played a more important role in the observed changes of filterability and dewaterability and that the double-layered extracellular polymeric substances extraction method showed marked implications to dewaterability. PMID:23581243

  5. Bacterial Biofilm: Its Composition, Formation and Role in Human Infections

    OpenAIRE

    Muhsin Jama; Ufaq Tasneem; Tahir Hussain; Saadia Andleeb

    2015-01-01

    Biofilm is an association of micro-organisms in which microbial cells adhere to each other on a living or non-living surfaces within a self-produced matrix of extracellular polymeric substance. Bacterial biofilm is infectious in nature and can results in nosocomial infections. According to National Institutes of Health (NIH) about about 65% of all microbial infections, and 80% of all chronic infections are associated with biofilms. Biofilm formation is a multi-step process starting with attac...

  6. Extraction and Analysis of Extracellular Polymeric Substances (EPS): Comparison of Methods and EPS Levels in Salmonella pullorum SA 1685

    Science.gov (United States)

    The extracellular polymeric substances (EPS) production and composition for Salmonella pullorum SA 1685 exposed to artificial groundwater (AGW) has been examined utilizing three EPS extraction methods: lyophilization, ethanol, and sonication. Experiments were carried out to evaluate the robustness...

  7. Species of phosphorus in the extracellular polymeric substances of EBPR sludge.

    Science.gov (United States)

    Zhang, Hai-Ling; Fang, Wei; Wang, Yong-Peng; Sheng, Guo-Ping; Xia, Cheng-Wang; Zeng, Raymond J; Yu, Han-Qing

    2013-08-01

    In this study, the species of extracellular phosphorus and their transformation during extracellular polymeric substances (EPS) extraction were explored by using (31)P nuclear magnetic resonance spectroscopy. Results show that the extraction methods had a substantial influence on the phosphorus species in the extracted EPS. Cation exchange resin method was more appropriate for extracting EPS from the enhanced biological phosphorus removal (EBPR) sludge. Orthophosphate, pyrophosphate and polyphosphate were the main species of phosphorus found to be present in the EPS, which together accounted for about 6.6-10.5% of the total phosphorus in the EBPR sludge. The high percentage of extracellular phosphorus and their diverse species might reveal a new insight into the characteristics of the phosphorus in EPS in EBPR system. PMID:23751808

  8. Generalized Relationship between Numbers of Bacteria and Their Viability in Biofilms

    OpenAIRE

    Sjollema, Jelmer; Rustema-Abbing, Minie; van der Mei, Henny C; Busscher, Henk J.

    2011-01-01

    Bacterial biofilms are confined communities that are encapsulated in protective layers of extracellular polymeric substances. Microscopic evaluation of biofilms of diverse bacterial strains on various substrata reveals that, in general, the percentage of viable bacteria decreases with the total number of bacteria in a biofilm.

  9. Monitoring of extracellular pH in young dental biofilms grown in situ in the presence and absence of sucrose

    DEFF Research Database (Denmark)

    Dige, Irene; Bælum, Vibeke; Schlafer, Sebastian;

    pH in dental biofilms is of central importance for the development of caries. We used the ratiometric pH-sensitive dye C-SNARF-4 in combination with digital image analysis to monitor extracellular pH in dental biofilms grown in situ with and without sucrose supply. 48-h dental biofilms from 10......-free group: pH3-4min=6.39 (95% CI: 6.28-6.50), pH59-60min=5.63 (95% CI: 5.50-5.77); sucrose group: pH3-4min=6.38 (95% CI: 6.25-6.52); pH59-60min=5.59 (95% CI: 5.45-5.73)).The present study is the first to apply the combination of pH ratiometry and digital image analysis to systematically record extracellular...... pH in intact dental biofilms from several individuals for up to 1 h. We observed heterogeneous pH landscapes and the presence of highly acidogenic microenvironments within the biofilms. The data suggest that pH drops in young dental biofilm are independent of the sucrose supply during growth....

  10. Host Responses to Biofilm.

    Science.gov (United States)

    Watters, C; Fleming, D; Bishop, D; Rumbaugh, K P

    2016-01-01

    From birth to death the human host immune system interacts with bacterial cells. Biofilms are communities of microbes embedded in matrices composed of extracellular polymeric substance (EPS), and have been implicated in both the healthy microbiome and disease states. The immune system recognizes many different bacterial patterns, molecules, and antigens, but these components can be camouflaged in the biofilm mode of growth. Instead, immune cells come into contact with components of the EPS matrix, a diverse, hydrated mixture of extracellular DNA (bacterial and host), proteins, polysaccharides, and lipids. As bacterial cells transition from planktonic to biofilm-associated they produce small molecules, which can increase inflammation, induce cell death, and even cause necrosis. To survive, invading bacteria must overcome the epithelial barrier, host microbiome, complement, and a variety of leukocytes. If bacteria can evade these initial cell populations they have an increased chance at surviving and causing ongoing disease in the host. Planktonic cells are readily cleared, but biofilms reduce the effectiveness of both polymorphonuclear neutrophils and macrophages. In addition, in the presence of these cells, biofilm formation is actively enhanced, and components of host immune cells are assimilated into the EPS matrix. While pathogenic biofilms contribute to states of chronic inflammation, probiotic Lactobacillus biofilms cause a negligible immune response and, in states of inflammation, exhibit robust antiinflammatory properties. These probiotic biofilms colonize and protect the gut and vagina, and have been implicated in improved healing of damaged skin. Overall, biofilms stimulate a unique immune response that we are only beginning to understand. PMID:27571696

  11. Sorption of cadmium to bacterial extracellular polymeric sediment coatings under estuarine conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schlekat, C.E.; Decho, A.W.; Chandler, G.T. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Environmental Health Sciences

    1998-09-01

    Microbial extracellular polymeric substances (EPS) are ubiquitous features in aquatic environments. Produced by surface-adherent bacteria and microalgae, EPS are often present as coatings on surfaces of sediment particles and exhibit high affinities for divalent cationic metals. Thus, EPS sediment coatings may participate in the fate of potentially toxic metals. The authors coated particulate silica with EPS produced by NISC1, a bacterium isolated from estuarine sediments, in order to measure the metal binding characteristics of these coatings. They used the radioisotope {sup 109}Cd to measure effects of salinity, Cd concentration, and pH on Cd sorption to EPS-coated (EPS-silica) silica and to noncoated silica (NC-silica). Also, Cd sorption by NISC1 EPS coatings was compared to coatings of polymers formed by the bacterium, Alteromonas atlantica and the alga, Macrocystis porifera. Under all circumstances, EPS coatings increased the affinity of silica for Cd. Extracellular polymeric substance-particulate aggregates rapidly sorbed up to 90% of Cd from aqueous solution. Extracellular polymeric substance sediment coatings exhibited a maximum log distribution coefficient (K{sub d}) of 6.5 at 2.5%. Sorption of Cd to NC-silica was affected by salinity and metal concentration, whereas sorption of Cd to EPS-silica was only affected by salinity under high metal concentrations. Changes in pH had a dramatic effect on Cd sorption, with the proportion of free Cd to sorbed Cd changing from approximately 90% at pH 5 to 5% at pH 9. Desorption of Cd from EPS-silica was enhanced with increasing salinity. These experiments suggest that EPS coatings actively participate in binding dissolved overlying and pore-water metals in estuarine sediments.

  12. Bacillus mojavensis biofilm formation and biosurfactant production using a Laser Ablation Electrospray Ionization System

    Science.gov (United States)

    Biofilms are important extracellular polymeric compounds produced by bacteria that are useful for developmental phases including motility, swarming, signaling processes, and for hydrophobic nutrient utilization, all of which are important attributes for endophytic bacteria with biocontrol potential....

  13. Biofilm formation and dispersal in Gram-positive bacteria

    NARCIS (Netherlands)

    Abee, T.; Kovacs, A.T.; Kuipers, O.P.; Veen, van der S.

    2011-01-01

    Biofilms are structured communities of bacteria, which are adhered to a surface and embedded in a self-produced matrix of extracellular polymeric substances. Since biofilms are very resistant to antimicrobial agents, they are at the basis of a range of problems, including quality and safety issues i

  14. Aerobic granules with inhibitory strains and role of extracellular polymeric substances

    Energy Technology Data Exchange (ETDEWEB)

    Adav, Sunil S., E-mail: adavs@rediffmail.com [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lee, Duu-Jong, E-mail: djlee@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lai, Juin-Yih, E-mail: jylai@cycu.edu.tw [Center of Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chungli, Taiwan (China)

    2010-02-15

    Microorganisms compete with other species by secreting antimicrobial compounds. The compact structure of aerobic granules was generally assumed to provide spatial isolation, resulting in the co-occurrence of diverse strains that have similar or dissimilar functions. No studies have investigated whether stable, mature aerobic granules can be formed with two mutually inhibitory strains. The strain Acinetobacter sp. I8 competes with Bacillus sphaericus I5 in a well-mixed environment, but can form stable and mature granules at 400 mg L{sup -1} phenol by repeatedly replenishing fresh medium in a sequencing batch reactor. The supernatants collected from the I8 medium in its exponential-growth phase or from the I5 + I8 medium cultivated for 12 or 24 h significantly inhibited I5 growth. Addition of tightly bound extracellular polymeric substances (TBEPS) or loosely bound extracellular polymeric substances (LBEPS) extracted from I5 + I8 granules effectively suppressed the inhibitory effects of I8 on I5. The TBEPS or LBEPS physically separate strain I5 from I8 in the granule, and effectively adsorb the inhibitory substance(s) in the suspension.

  15. Aerobic granules with inhibitory strains and role of extracellular polymeric substances

    International Nuclear Information System (INIS)

    Microorganisms compete with other species by secreting antimicrobial compounds. The compact structure of aerobic granules was generally assumed to provide spatial isolation, resulting in the co-occurrence of diverse strains that have similar or dissimilar functions. No studies have investigated whether stable, mature aerobic granules can be formed with two mutually inhibitory strains. The strain Acinetobacter sp. I8 competes with Bacillus sphaericus I5 in a well-mixed environment, but can form stable and mature granules at 400 mg L-1 phenol by repeatedly replenishing fresh medium in a sequencing batch reactor. The supernatants collected from the I8 medium in its exponential-growth phase or from the I5 + I8 medium cultivated for 12 or 24 h significantly inhibited I5 growth. Addition of tightly bound extracellular polymeric substances (TBEPS) or loosely bound extracellular polymeric substances (LBEPS) extracted from I5 + I8 granules effectively suppressed the inhibitory effects of I8 on I5. The TBEPS or LBEPS physically separate strain I5 from I8 in the granule, and effectively adsorb the inhibitory substance(s) in the suspension.

  16. The role of microbial-produced extracellular polymeric matrix in the formation and survival of biological soil crusts

    Science.gov (United States)

    Rossi, Federico; Adessi, Alessandra; De Philippis, Roberto

    2016-04-01

    Biological soil crusts (BSCs) are complex communities commonly constituting organo-mineral layers in arid and semiarid environment having a major influence on these ecosystems (Belnap and Lange, 2001). They have high tolerance towards a-biotic stresses and fluctuations in moisture, illumination, salinity and nutrients. The plasticity exhibited by BSCs is hugely contributed by the presence of the extracellular polymeric matrix (EPM) that is synthesized by crustal organisms, notably cyanobacteria and microalgae. This polysaccharidic net plays key roles in biofilm relations with the surrounding constrained environment. Notably, EPM concurs in coping with water scarcity, freezing and salt stress; increases biolayers stability against erosion, and is involved in nutrient provision (Rossi and De Philippis, 2015). We conducted several investigations in a research area located in the Inner Mongolian desert (Inner Mongolia, China) where BSCs were induced over different sites through inoculation-based techniques performed in different years. Our studies were aimed at determining the role of EPM in BSC development and survival in such a hyper-arid system. This presentation will report the results concerning the role of EPM in water capture from non-rainfall sources, water maintenance at the topsoil, and in water infiltrability, the latter being a factor with important ecological implications. In additions we investigated the role of the matrix as a source of carbon for the crustal heterotrophs. Furthermore, EPM was extracted with methods optimized in our lab, aiming at removing tightly bound fractions and loosely bound fractions from BSCs having different ages. The fractions were analyzed in terms of monosaccharidic composition, and molecular weight (MW) distribution. We show how the relative amounts of uronic acids increase in the EPM with the age of the crusts, implying advantages for the community-water relations. In addition, we observed significant differences in MW

  17. Effects of extracellular polymeric substances on granulation of anoxic sludge in sequencing batch reactor.

    Science.gov (United States)

    Wang, Binbin; Liu, Shunlian; Zhao, Hongmei; Zhang, Xinyan; Peng, Dangcong

    2012-01-01

    Variations of extracellular polymeric substances (EPS) and its components with sludge granulation were examined in a lab-scale sequencing batch reactor (SBR) which was fed with sodium nitrate and sodium acetate. Ultrasonication plus cation exchange resin (CER) were used as the EPS extraction method. Results showed that after approximately 90 d cultivation, the sludge in the reactor was almost granulated. The content of extracellular polysaccharides increased from 10.36 mg/g-VSS (volatile suspended solids) at start-up with flocculent sludge to 23.18 mg/g-VSS at 91 d with matured granular sludge, while the content of extracellular proteins were almost unchanged. Polysaccharides were the major components of EPS in anoxic granular sludge, accounting for about 70.6-79.0%, while proteins and DNA accounted for about 16.5-18.9% and 4.6-9.9%, respectively. It is proposed that EPS play a positive role in anoxic sludge granulation and polysaccharides might be strongly involved in aggregation of flocs into granules. PMID:22744684

  18. An Update on the Management of Endodontic Biofilms Using Root Canal Irrigants and Medicaments

    OpenAIRE

    Mohammadi, Zahed; Soltani, Mohammad Karim; Shalavi, Sousan

    2014-01-01

    Microbial biofilm is defined as a sessile multicellular microbial community characterized by cells that are firmly attached to a surface and enmeshed in a self-produced matrix of extracellular polymeric substances. Biofilms play a very important role in pulp and periradicular pathosis. The aim of this article was to review the role of endodontic biofilms and the effects of root canal irrigants, medicaments as well as lasers on biofilms A Medline search was performed on the English articles pu...

  19. Inhibitory effects of Tamarix hispida extracts on planktonic form and biofilm formation of six pathogenic bacteria

    OpenAIRE

    Zianab Mohsenipour; Mehdi Hassanshahian

    2015-01-01

     Introduction: Biofilms are communities of microorganisms embedded in a self-produced extracellular polymeric matrix. Bacterial cells are protected from antimicrobial agents in biofilm structure. Biofilms formation cause many problems in industry, medicine and microbial drug resistance; thus it is essential to find new techniques for removing and inhibiting biofilms. This study aimed to examine the antimicrobial effect of Tamarix hispida alcoholic extracts against six path...

  20. Contributions of functional groups and extracellular polymeric substances on the biosorption of dyes by aerobic granules.

    Science.gov (United States)

    Gao, Jing-Feng; Zhang, Qian; Wang, Jin-Hui; Wu, Xue-Lei; Wang, Shu-Ying; Peng, Yong-Zhen

    2011-01-01

    The contributions of loosely bound extracellular polymeric substances (LB-EPS), tightly bound EPS (TB-EPS), residual sludge (the sludge left after EPS extraction) and functional groups such as amine, carboxyl, phosphate and lipid on aerobic granules on biosorption of four different dyes (Reactive Brilliant Blue KN-R (KN-R), Congo Red (CR), Reactive Brilliant Red K-2G (RBR) and Malachite Green (MG)) were investigated. EPS may be responsible for biosorption of cationic dyes. However, residual sludge always made greater contribution than that of EPS. The biosorption mechanisms were dependent on the functional groups on aerobic granules and dyes' chemical structures. The lipid and phosphate groups might be the main binding sites for KN-R biosorption. Amine, carboxyl, phosphate and lipid were all responsible for the binding of CR. The lipid fractions played an important role for RBR biosorption. For MG, the phosphate groups gave the largest contribution. PMID:20869236

  1. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review.

    Science.gov (United States)

    Sheng, Guo-Ping; Yu, Han-Qing; Li, Xiao-Yan

    2010-01-01

    A review concerning the definition, extraction, characterization, production and functions of extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment reactors is given in this paper. EPS are a complex high-molecular-weight mixture of polymers excreted by microorganisms, produced from cell lysis and adsorbed organic matter from wastewater. They are a major component in microbial aggregates for keeping them together in a three-dimensional matrix. Their characteristics (e.g., adsorption abilities, biodegradability and hydrophilicity/hydrophobicity) and the contents of the main components (e.g., carbohydrates, proteins, humic substances and nucleic acids) in EPS are found to crucially affect the properties of microbial aggregates, such as mass transfer, surface characteristics, adsorption ability, stability, the formation of microbial aggregates etc. However, as EPS are very complex, the knowledge regarding EPS is far from complete and much work is still required to fully understand their precise roles in the biological treatment process. PMID:20705128

  2. Production of Extracellular Polymeric Substances by Halophilic Bacteria of Solar Salterns

    Directory of Open Access Journals (Sweden)

    Jhuma Biswas

    2014-01-01

    Full Text Available Moderately halophilic aerobic bacteria were isolated from 31 soil and 18 water samples collected from multipond solar salterns of Gujarat, Orissa, and West Bengal, India. A total of 587 bacterial isolates with distinct morphological features were obtained from these samples following dilution and plating on MH agar medium supplemented with NaCl. The isolates were screened for growth associated extracellular polymeric substances (EPS production in MY medium under batch culture. In all, 20 isolates were selected as potent ones producing more than 1 g/L of EPS. These EPS producing isolates were characterized in detail for their morphological, physiological, and biochemical features and tentatively identified as members belonging to the genera Halomonas, Salinicoccus, Bacillus, Aidingimonas, Alteromonas, and Chromohalobacter. Apart from EPS production, these isolates also hold promise towards the production of various biomolecules of industrial importance.

  3. Fractional, biodegradable and spectral characteristics of extracted and fractionated sludge extracellular polymeric substances.

    Science.gov (United States)

    Wei, Liang-Liang; Wang, Kun; Zhao, Qing-Liang; Jiang, Jun-Qiu; Kong, Xiang-Juan; Lee, Duu-Jong

    2012-09-15

    Correlation between fractional, biodegradable and spectral characteristics of sludge extracellular polymeric substances (EPS) by different protocols has not been well established. This work extracted sludge EPS using alkaline extractants (NH₄OH and formaldehyde + NaOH) and physical protocols (ultrasonication, heating at 80 °C or cation exchange resin (CER)) and then fractionated the extracts using XAD-8/XAD-4 resins. The alkaline extractants yielded more sludge EPS than the physical protocols. However, the physical protocols extracted principally the hydrophilic components which were readily biodegradable by microorganisms. The alkaline extractants dissolved additional humic-like substances from sludge solids which were refractory in nature. Different extraction protocols preferably extracted EPS with distinct fractional, biodegradable and spectral characteristics which could be applied in specific usages. PMID:22732264

  4. The potential of bacteriophage cocktail in eliminating Methicillin-resistant Staphylococcus aureus biofilms in terms of different extracellular matrices expressed by PIA, ciaA-D and FnBPA genes

    OpenAIRE

    Abdulamir, Ahmed Sahib; Jassim, Sabah A. A.; Hafidh, Rand R; Bakar, Fatimah Abu

    2015-01-01

    Background This study assessed novel approach of using highly lytic phages against methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) biofilms with and without biofilm extracellular matrix- disrupting chemical. Method The resultant phage-based control was assessed in relation to the type of biofilm extracellular matrix namely, polysaccharide intercellular adhesion (PIA) or proteinacious fibronectin-binding protein A (FnBPA). The biofilm...

  5. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process.

    Science.gov (United States)

    Li, Wen-Wei; Zhang, Hai-Ling; Sheng, Guo-Ping; Yu, Han-Qing

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater. PMID:26143588

  6. Extracellular Polymeric Substances Govern the Surface Charge of Biogenic Elemental Selenium Nanoparticles

    KAUST Repository

    Jain, Rohan

    2015-02-03

    © 2014 American Chemical Society. The origin of the organic layer covering colloidal biogenic elemental selenium nanoparticles (BioSeNPs) is not known, particularly in the case when they are synthesized by complex microbial communities. This study investigated the presence of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in capping the extracellularly available BioSeNPs was also examined. Fourier transform infrared (FT-IR) spectroscopy and colorimetric measurements confirmed the presence of functional groups characteristic of proteins and carbohydrates on the BioSeNPs, suggesting the presence of EPS. Chemical synthesis of elemental selenium nanoparticles in the presence of EPS, extracted from selenite fed anaerobic granular sludge, yielded stable colloidal spherical selenium nanoparticles. Furthermore, extracted EPS, BioSeNPs, and chemically synthesized EPS-capped selenium nanoparticles had similar surface properties, as shown by ζ-potential versus pH profiles and isoelectric point measurements. This study shows that the EPS of anaerobic granular sludge form the organic layer present on the BioSeNPs synthesized by these granules. The EPS also govern the surface charge of these BioSeNPs, thereby contributing to their colloidal properties, hence affecting their fate in the environment and the efficiency of bioremediation technologies.

  7. Biofilms: an emergent form of bacterial life.

    Science.gov (United States)

    Flemming, Hans-Curt; Wingender, Jost; Szewzyk, Ulrich; Steinberg, Peter; Rice, Scott A; Kjelleberg, Staffan

    2016-08-11

    Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle. PMID:27510863

  8. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces.

    Science.gov (United States)

    Olofsson, Ann-Cathrin; Hermansson, Malte; Elwing, Hans

    2003-08-01

    N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces. PMID:12902275

  9. Antimicrobial targets localize to the extracellular vesicle-associated proteome of Pseudomonas aeruginosa grown in a biofilm

    Directory of Open Access Journals (Sweden)

    CezarMKhursigara

    2014-09-01

    Full Text Available Microbial biofilms are particularly resistant to antimicrobial therapies. These surface-attached communities are protected against host defenses’ and pharmacotherapy by a self-produced matrix that surrounds and fortifies them. Recent proteomic evidence also suggests that some bacteria, including the opportunistic pathogen Pseudomonas aeruginosa, undergo modifications within a biofilm that make them uniquely resistant compared to their planktonic (free-living counterparts. This study examines 50 proteins in the resistance subproteome of both surface-associated and free-living P. aeruginosa PAO1 over three time points. Proteins were grouped into categories based on their roles in antimicrobial: i binding, ii efflux, iii resistance, and iv susceptibility. In addition, the extracellular outer membrane vesicle-associated proteome is examined and compared between the two growth modes. We show that in whole cells between 12-24% of the proteins are present at significantly different abundance levels over time, with some proteins being unique to a specific growth mode; however, the total abundance levels in the four categories remain consistent. In contrast, marked differences are seen in the protein content of the outer membrane vesicles, which contain a greater number of drug-binding proteins in vesicles purified from late-stage biofilms. These results show how the method of analysis can impact the interpretation of proteomic data (i.e. individual proteins vs. systems, and highlight the advantage of using protein-based methods to identify potential antimicrobial resistance mechanisms in extracellular sample components. Furthermore, this information has the potential to inform the development of specific antipseudomonal therapies that quench possible drug-sequestering vesicle proteins. This strategy could serve as a novel approach for combating the high-level of antimicrobial resistance in P. aeruginosa biofilms.

  10. Biofilm formation, bacterial adhesion and host response on polymeric implants-issues and prevention

    International Nuclear Information System (INIS)

    Several polymeric materials find application in biomedical implants and devices due to their superior physicochemical properties. The main requirement for these polymers is that they should be biocompatible, which means they prevent bacterial adhesion and are blood compatible. Many parameters contribute to the degree of biocompatibility. This paper discusses the mechanism of the formation of biofilms and lists the factors that influence the bacterial adhesion and haemocompatibility. Polymer surfaces are also modified to enhance adsorption of host cells. The physical, chemical and biological techniques are meant to modify the surface of the biomaterial but at the same time retain the key properties. The various polymer treatment processes have advantages and disadvantages and a few techniques have been proved to be both highly effective at treatment and found suitable for various in vivo environments. The current research focus pertaining to smart materials, biodegradable polymers, combinatorial chemistry, computational modelling and newer analytical techniques to understand polymer-cell interaction holds promise in designing better, cost effective and biocompatible polymers

  11. Effect of adsorbed extracellular polymeric substances (EPS) on colloidal mobility of nanoparticulate iron oxides

    Science.gov (United States)

    Pradip Narvekar, Sneha; Totsche, Kai Uwe

    2013-04-01

    Solubility and transport of nutrients and pollutants is affected by the presence of colloidal nanoparticles (CNP) which may act as mobile geosorbents. In soils and aquifers, pure and organically modified Fe- and Mn-oxy-hydroxides are of particular importance due to their ubiquitous presence and also due to their progressive use for environmental cleanup. Stability and aggregation behavior control the mobility of CNP and depend on pH, ionic strength, and the presence of monovalent or divalent anions. In natural environments, however, iron oxides are usually covered by organic matter. Such coverage will completely change the colloidal surface properties and impose additional control on the colloidal mobility. Important sources for natural organic coatings are extracellular polymeric substances (EPS), i.e., complex mixtures of biopolymers consisting of polysaccharides and proteins and variable amounts of lipids and nucleic acids. The objective of our study was to quantify the effect of EPS coatings on the colloidal stability, mobility and reactivity of hematite by column experiments. Columns (10 cm × 5 cm) were filled with glass beads (0.25 mm ø) as porous medium and operated in sterile closed flow conditions. Nanoparticulate hematite was coated to different degrees by extracellular polymeric substances (EPS) extracted from, liquid cultures of Bacillus subtillis. The pH was kept constant at 7. The hematite particles exhibited increasing colloidal stability with increasing amounts of EPS. Critical colloidal concentration (CCC) of the particles increased from 95 mM NaCl for uncoated particles to 250 mM NaCl for coated particles. EPS coated hematite did not react with the porous medium and stayed mobile while the uncoated hematite was immobile due to adsorption to the glass beads. Also colloidally unstable hematite particles did not show any mobility. Thus the organic coatings enhanced the colloidal stability, which consecutively increased the mobility of the particles

  12. TOL Plasmid Carriage Enhances Biofilm Formation and Increases Extracellular DNA Content in Pseudomonas Putida KT2440

    DEFF Research Database (Denmark)

    Smets, Barth F.; D'Alvise, Paul; Yankelovich, T.; Sjøholm, O.; Jin, Y.; Wuertz, S.

    Adherent growth of Pseudomonas putida KT2440 with and without the TOL plasmid (pWWO) at the solid-liquid and air-liquid interface was examined. We compared biofilm formation on glass in flow cells, and assayed pellicle (air-liquid interface biofilm) formation in stagnant liquid cultures by confocal...... laser scanning microscopy. The TOL-carrying strains formed pellicles and thick biofilms, whereas the same strains without the plasmid displayed little adherent growth. Microscopy using fluorescent nucleic acid- specific stains (cytox orange, propidium iodide) revealed differences in production of...

  13. Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system.

    Science.gov (United States)

    Wang, Randeng; Peng, Yongzhen; Cheng, Zhanli; Ren, Nanqi

    2014-10-01

    The role of extracellular polymeric substances (EPS) in the enhanced biological phosphorus removal (EBPR) process was investigated in a P-accumulating granular sludge system by analyzing the distribution and transfer of P, K(+), Mg(2+) and Ca(2+) in the sludge phase, EPS, and the bulk liquid. In the sludge phase, about 30% P, 44.7% K(+), 27.7% Mg(2+), 28% Ca(2+) accumulated in the EPS at the end of aeration. The rate of P, K(+), Mg(2+) and Ca(2+) released from the EPS matrix into the bulk liquid in the anaerobic phase was faster than the rate they were adsorbed from the bulk liquid into the EPS in the aerobic phase. P, K(+), Mg(2+) and Ca(2+) were retained in EPS before transferring into the phosphorus accumulating organisms (PAOs). These results suggest that EPS play a critical role in facilitating the accumulation and transfer of P, K(+), Ca(2+) and Mg(2+) between PAO cells and bulk liquid. PMID:25063972

  14. Role and significance of extracellular polymeric substances on the property of aerobic granule.

    Science.gov (United States)

    Zhu, Liang; Lv, Mei-le; Dai, Xin; Yu, Yan-wen; Qi, Han-ying; Xu, Xiang-yang

    2012-03-01

    Because of the important role of extracellular polymeric substances (EPS) in microbial aggregates, the relationship of the EPS and physico-chemical properties of aerobic granule was studied in two sequencing airlift bioreactors (SABR) using two kinds of substrates, acetate+glucose and 4-chloroaniline (4-ClA). Higher amounts of the exopolymeric protein (PN) and lower polysaccharides (PS) and DNA level were extracted from aerobic granules in the SABRs, and the variations in the PN and PN/PS of aerobic granules were higher (770% and 360%) in the SABR using 4-ClA as substrate than that in the other reactor. At the same time, suitable operating parameters (surface gas velocity at about 2.4 cm s(-1) and settling time at 5-10 min) favored EPS production and sludge granulation. Furthermore, the minimal settling velocity, hydrophobicity, surface charge increased in accordance with PN content increase, and a negative correlation between the sludge volume index (SVI) and PN content was observed. PMID:22230774

  15. Dynamic Membrane Formation in Anaerobic Dynamic Membrane Bioreactors: Role of Extracellular Polymeric Substances.

    Directory of Open Access Journals (Sweden)

    Hongguang Yu

    Full Text Available Dynamic membrane (DM formation in dynamic membrane bioreactors plays an important role in achieving efficient solid-liquid separation. In order to study the contribution of extracellular polymeric substances (EPS to DM formation in anaerobic dynamic membrane bioreactor (AnDMBR processes, EPS extraction from and re-addition to bulk sludge were carried out in short-term filtration tests. DM formation behaviors could be well simulated by cake filtration model, and sludge with EPS re-addition showed the highest resistance coefficient, followed by sludge after EPS extraction. The DM layers exhibited a higher resistance and a lower porosity for the sludge sample after EPS extraction and for the sludge with EPS re-addition. Particle size of sludge flocs decreased after EPS extraction, and changed little with EPS re-addition, which was confirmed by interaction energy analysis. Further investigations by confocal laser scanning microscopy (CLSM analysis and batch tests suggested that the removal of in-situ EPS stimulated release of soluble EPS, and re-added EPS were present as soluble EPS rather than bound EPS, which thus improved the formation of DM. The present work revealed the role of EPS in anaerobic DM formation, and could facilitate the operation of AnDMBR processes.

  16. Random sequential adsorption of human adenovirus 2 onto polyvinylidene fluoride surface influenced by extracellular polymeric substances.

    Science.gov (United States)

    Lu, Ruiqing; Li, Qi; Nguyen, Thanh H

    2016-03-15

    Virus removal by membrane bioreactors depends on virus-membrane and virus-foulant interactions. The adsorption of human adenovirus 2 (HAdV-2) on polyvinylidene fluoride (PVDF) membrane and a major membrane foulant, extracellular polymeric substances (EPS), were measured in a quartz crystal microbalance. In 3-100mM CaCl2 solutions, irreversible adsorption of HAdV-2 was observed on both pristine and EPS-fouled PVDF surfaces. The HAdV-2 adsorption kinetics was successfully fitted with the random sequential adsorption (RSA) model. The applicability of the RSA model for HAdV-2 adsorption is confirmed by comparing the two fitting parameters, adsorption rate constant k(a) and area occupied by each adsorbed HAdV-2 particle a, with experimentally measured parameters. A linear correlation between the fitting parameter k(a) and the measured attachment efficiency was found, suggesting that the RSA model correctly describes the interaction forces dominating the HAdV-2 adsorption. By comparing the fitting parameter d(ads) with the hydrodynamic diameter of HAdV-2, we conclude that virus-virus and virus-surface interactions determine the area occupied by each adsorbed HAdV-2 particle, and thus influence the adsorption capacity. These results provide insights into virus retention and will benefit improving virus removal in membrane filtration. PMID:26720514

  17. Effects of Experimental Conditions on Extraction Yield of Extracellular Polymeric Substances by Cation Exchange Resin

    Directory of Open Access Journals (Sweden)

    Jinwoo Cho

    2012-01-01

    Full Text Available Effects of experimental conditions on the yield of extracellular polymeric substances (EPSs extraction by cation exchange resin (CER were investigated using activated sludge flocs. The experimental variables included resin dose, extraction time, sample dilution, and storage time. An empirical model was proposed to describe the kinetics of extraction process. The extraction yield increases with the extraction time and CER dose until it reached the maximum amount of EPS extraction. The maximum yield of EPS was affected as well by the sample dilution, exhibiting a decreasing trend with increasing dilution factor. It was also found that the amount of EPS extracted from a raw sample depends on the storage time. Once EPS was extracted from the sample, however, the EPS keeps its original quantity under storage at 4°C. Based on the model, the maximum amount of EPS extraction and yield rate could be estimated for different conditions. Comparing the model parameters allows one to quantitatively compare the extraction efficiencies under various extracting conditions. Based on the results, we recommend the original sample should be diluted with the volume ratio of above 1 : 2 and a raw sample should be treated quickly to prevent the reduction of sample homogeneity and original integrity.

  18. Influence of ferrous ions on extracellular polymeric substances content and sludge dewaterability during bioleaching.

    Science.gov (United States)

    Wong, Jonathan W C; Zhou, Jun; Kurade, Mayur B; Murugesan, Kumarasamy

    2015-03-01

    Pretreatment of activated sludge with sulfuric acid and bioleaching using Acidithiobacillus ferrooxidans along with addition of Fe(2+) on sludge dewaterability was investigated. The sludge dewatering efficiency in terms of capillary suction time (CST) and specific resistant to filtration (SRF) was increased with a decrease in sludge pH. A pH of 2.67 was found to be optimum for dewatering, at which 81% and 63% reduction of CST and SRF were achieved, respectively. The dewaterability of sludge was enhanced after the addition of Fe(2+) and A. ferrooxidans. Ideal concentration of Fe(2+) was 2 g/L for sludge dewaterability, which showed 96% and 88% reduction in CST and SRF, respectively. In the control sludge, maximum part of the biopolymeric macromolecules was contributing by the tightly bound extracellular polymeric substances (TB-EPS). At optimum Fe(2+) concentration, total EPS was reduced by 73%, enhancing sludge dewaterability. Bioleaching conducted by A. ferrooxidans could solubilized 88% Cu and 99% Zn within 120 h. PMID:25528607

  19. Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliellasalina under salt stress.

    Science.gov (United States)

    Mishra, Avinash; Jha, Bhavanath

    2009-07-01

    Extracellular polymeric substances (EPSs), produced by Dunaliella salina strain, increase concomitantly with salt concentration and maximum (944 mg/l) were obtained at 5M NaCl, whereas minimum (56 mg/l) at 0.5M salinity. Emulsifying activity was measured in terms of strength to retain the emulsion and comparatively 85.76% retention was observed at 0.5M salinity thereafter it intends to decline. The FT-IR-spectra reveal characteristic functional groups NH stretching, asymmetrical CH stretching vibration of aliphatic CH(2)-group, CC stretching of aromatic, CN stretch of aliphatic amine, NH wag of primary amine and CX stretch of alkyl-halides with a stretching of COC, CO corresponding to the presence of carbohydrates. The FT-IR-spectra substantiated the presence of primary amine-group, aromatic-compound, halide-group, aliphatic alkyl-group and polysaccharides. Four monosaccharides (glucose, galactose, fructose and xylose) were also detected by HPLC analysis. Production of EPSs may allow further exploration of D. salina as potential EPSs producer and make it as a promising candidate for biotechnological and industrial exploitation. PMID:19272770

  20. Mechanistic understanding of reduced AgNP phytotoxicity induced by extracellular polymeric substances.

    Science.gov (United States)

    Li, Cheng-Cheng; Wang, Yu-Jun; Dang, Fei; Zhou, Dong-Mei

    2016-05-01

    A knowledge gap concerning the potential effects of extracellular polymeric substances (EPS), a common organic material but highly variable in their composition of microbial origin, on the fate and phytotoxicity of silver nanoparticles (AgNP) still remains. A 48-h root elongation toxicity test showed that AgNP toxicity to wheat Triticum aestivum L. was dramatically alleviated by EPS isolated from Pseudomonas putida, as revealed by 7-59% increase in relative root elongation (RRE), 8-99% increase in root weight, 27-32% decrease in malondialdehyde (MDA) content and 11-43% decrease in H2O2 content compared to the treatment with AgNP in the absence of EPS. This was coincident with 7-69% decrease in root Ag concentrations. Our results showed that EPS could protect wheat seedlings from AgNP toxicity by reducing dissolved Ag concentration ([Ag]diss) and by forming AgNP-EPS complex. The FTIR spectra further showed that the amide, carboxyl, and phosphoryl functional groups of EPS were involved in binding with AgNP and/or Ag(+). All these processes worked simultaneously to reduce AgNP bioavailability, and subsequently mitigate AgNP toxicity. These findings highlight the importance of EPS in AgNP biogeochemistry in the terrestrial environment. EPS could be highly useful in developing strategies to counteract the phytotoxicty of metal-based nanoparticles in crops. PMID:26808239

  1. Effects of experimental conditions on extraction yield of extracellular polymeric substances by cation exchange resin.

    Science.gov (United States)

    Cho, Jinwoo; Hermanowicz, Slawomir W; Hur, Jin

    2012-01-01

    Effects of experimental conditions on the yield of extracellular polymeric substances (EPSs) extraction by cation exchange resin (CER) were investigated using activated sludge flocs. The experimental variables included resin dose, extraction time, sample dilution, and storage time. An empirical model was proposed to describe the kinetics of extraction process. The extraction yield increases with the extraction time and CER dose until it reached the maximum amount of EPS extraction. The maximum yield of EPS was affected as well by the sample dilution, exhibiting a decreasing trend with increasing dilution factor. It was also found that the amount of EPS extracted from a raw sample depends on the storage time. Once EPS was extracted from the sample, however, the EPS keeps its original quantity under storage at 4°C. Based on the model, the maximum amount of EPS extraction and yield rate could be estimated for different conditions. Comparing the model parameters allows one to quantitatively compare the extraction efficiencies under various extracting conditions. Based on the results, we recommend the original sample should be diluted with the volume ratio of above 1:2 and a raw sample should be treated quickly to prevent the reduction of sample homogeneity and original integrity. PMID:22919352

  2. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO 3 polymorphism

    Science.gov (United States)

    Kawaguchi, T.; Decho, A. W.

    2002-04-01

    Bahamian stromatolites are well-laminated structures, consisting of lithified layers alternating between unlithified layers containing fine-grained carbonate ooids. The lithified layers consist of abundant aragonite needles embedded within a matrix of extracellular polymeric secretions (EPS) by cyanobacteria, Schizothrix sp. Laboratory investigations were conducted using EPS extracted from natural stromatolites and laboratory isolates of Schizothrix sp., to chemically characterize EPS, and determine in vitro how EPS may influence CaCO 3 polymorphism. EPS mainly consisted of acidic polysaccharides and proteins. Biochemical analyses indicated that contents of uronic acids and carbohydrates in EPS from lithified layers decreased when compared with unlithified layer EPS, while the protein content remained relatively constant. CaCO 3 nucleation experiments demonstrated that EPS from the lithified layer, induced aragonite crystal formation in vitro, as confirmed by scanning electron microscopy and Fourier transform infrared (FT-IR) spectroscopy. In contrast, EPS from the unlithified layer or laboratory-cultured Schizothrix sp. induced calcite crystal formation. These laboratory results suggest the possibility that the biochemical composition, specifically small proteins, of EPS influences the resulting mineralogy of CaCO 3.

  3. Extracellular polymeric substances (EPS) from aerobic granular sludges: extraction, fractionation, and anionic properties.

    Science.gov (United States)

    Caudan, Cédric; Filali, Ahlem; Lefebvre, Dominique; Spérandio, Mathieu; Girbal-Neuhauser, Elisabeth

    2012-04-01

    A multi-method protocol previously proposed for the extraction of extracellular polymeric substances (EPS) from flocculated sludges was investigated on dense aerobic granules. The protocol combines mechanical disruption by sonication and chemical extraction using the Tween detergent and the cation chelator, EDTA. Polysaccharides were mainly recovered during the first sonication step while proteins were recovered all along the extractive procedure with a high prevalence in the EDTA step. These data confirmed the interest of the multi-method protocol for harvesting a diversified pool of EPS from dense granules and for fractionation of the polymers according to their physicochemical properties. In addition, the high extractability of proteins with EDTA confers a specific behavior of the aerobic granules towards the multi-method extraction protocol, supporting the idea that proteins are associated in the granule matrix through ionic interactions involving divalent cations. Analysis of the extracted EPS by anionic exchange chromatography confirmed the presence of highly anionic proteins that were specifically detected in the extracts obtained from granules. One important question is now to investigate whether these highly anionic proteins are involved in the aggregation and densification process and if their presence is related to the cohesive properties of these particles. PMID:22415780

  4. [Optimization of extracellular polymeric substance extraction method and its role in the dewaterability of sludge].

    Science.gov (United States)

    Zhou, Jun; Zhou, Li-Xiang; Wong, Woo-Chung

    2013-07-01

    Seven commonly adopted extraction schemes were selected to extract extracellular polymeric substance (EPS) from the sludge, and the dewaterability of sludge was also investigated before and after extracting EPS. Results showed that Formaldehyde + NaOH and 2% EDTA methods were proved to be effective in extracting EPS from the sludge, and the total EPS production of the total suspend solid was 128.86 mg x g(-1) and 42.38 mg x g(-1), respectively. However, the cell destructed seriously after extracted by Formaldehyde + NaOH and 2% EDTA methods. Heating method was a gentle and efficient method, and the total EPS production was 21.97 mg x g(-1). Sludge dewaterability was largely improved after extracted slime, loosely bound EPS and tightly bound EPS from the sludge flocs. It was also found that the higher content of EPS in slime, the worse dewaterability of sludge, and sludge dewaterability would be deteriorated when EPS was released from other layers to slime. Capillary suction time (CST) values of sludge from the ShekWuHui and Stonecutters Island Treatment works were 132.9 s and 229.9 s compared to 80.8 s and 79.4 s, separately after extracted Slime from sludge flocs, and the dewaterability of sludge was greatly improved. PMID:24028009

  5. A novel integrated approach to quantitatively evaluate the efficiency of extracellular polymeric substances (EPS) extraction process.

    Science.gov (United States)

    Sun, Min; Li, Wen-Wei; Yu, Han-Qing; Harada, Hideki

    2012-12-01

    A novel integrated approach is developed to quantitatively evaluate the extracellular polymeric substances (EPS) extraction efficiency after taking into account EPS yield, EPS damage, and cell lysis. This approach incorporates grey relational analysis and fuzzy logic analysis, in which the evaluation procedure is established on the basis of grey relational coefficients generation, membership functions construction, and fuzzy rules description. The flocculation activity and DNA content of EPS are chosen as the two evaluation responses. To verify the feasibility and effectiveness of this integrated approach, EPS from Bacillus megaterium TF10 are extracted using five different extraction methods, and their extraction efficiencies are evaluated as one real case study. Based on the evaluation results, the maximal extraction grades and corresponding optimal extraction times of the five extraction methods are ordered as EDTA, 10 h > formaldehyde + NaOH, 60 min > heating, 120 min > ultrasonication, 30 min > H₂SO₄, 30 min > control. The proposed approach here offers an effective tool to select appropriate EPS extraction methods and determine the optimal extraction conditions. PMID:23064456

  6. Investigation on extracellular polymeric substances from mucilaginous cyanobacterial blooms in eutrophic freshwater lakes.

    Science.gov (United States)

    Xu, Huacheng; Yu, Guanghui; Jiang, Helong

    2013-09-01

    Enhanced knowledge on extracellular polymeric substances (EPSs) of mucilaginous cyanobacterial blooms could improve our understanding of its ecological significance. This study for the first time investigated the extraction and fractionation of EPS matrix from cyanobacterial blooms in a eutrophic freshwater lake, and the changes in chemical compositions in EPS matrix during extraction were systematically investigated by two-dimensional correlation spectroscopy (2D-COS). The analyses demonstrated that organic matters were unevenly distributed among the EPS matrix, with most of organic matters being tightly bound to cyanobacterial cells. In addition, the soluble and loosely bound EPS fractions mainly consisted of proteins, while polysaccharides became the predominant compounds in the tightly bound EPS fraction. Heating extraction at 60°C for 30min led to a high EPS yield and low cell lysis when compared with other extraction methods. The 2D-COS results revealed a preferential release of OH in polysaccharides versus amide I in proteins in the initial heating; whereas further extension of heating resulted in EPS degradation, with degradation rates arranging in a decreased order from amide I, amide II, polysaccharides-like substances to polysaccharides. These results obtained would help enhance our insights into EPS characterization from cyanobacterial blooms in eutrophic lakes. PMID:23726883

  7. Dynamic Membrane Formation in Anaerobic Dynamic Membrane Bioreactors: Role of Extracellular Polymeric Substances.

    Science.gov (United States)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2015-01-01

    Dynamic membrane (DM) formation in dynamic membrane bioreactors plays an important role in achieving efficient solid-liquid separation. In order to study the contribution of extracellular polymeric substances (EPS) to DM formation in anaerobic dynamic membrane bioreactor (AnDMBR) processes, EPS extraction from and re-addition to bulk sludge were carried out in short-term filtration tests. DM formation behaviors could be well simulated by cake filtration model, and sludge with EPS re-addition showed the highest resistance coefficient, followed by sludge after EPS extraction. The DM layers exhibited a higher resistance and a lower porosity for the sludge sample after EPS extraction and for the sludge with EPS re-addition. Particle size of sludge flocs decreased after EPS extraction, and changed little with EPS re-addition, which was confirmed by interaction energy analysis. Further investigations by confocal laser scanning microscopy (CLSM) analysis and batch tests suggested that the removal of in-situ EPS stimulated release of soluble EPS, and re-added EPS were present as soluble EPS rather than bound EPS, which thus improved the formation of DM. The present work revealed the role of EPS in anaerobic DM formation, and could facilitate the operation of AnDMBR processes. PMID:26436551

  8. Composition and aggregation of extracellular polymeric substances (EPS) in hyperhaline and municipal wastewater treatment plants

    Science.gov (United States)

    Zeng, Jie; Gao, Jun-Min; Chen, You-Peng; Yan, Peng; Dong, Yang; Shen, Yu; Guo, Jin-Song; Zeng, Ni; Zhang, Peng

    2016-01-01

    As important constituents of activated sludge flocs, extracellular polymeric substances (EPS) play significant roles in pollutants adsorption, the formation and maintenance of microbial aggregates, and the protection of microbes from external environmental stresses. In this work, EPS in activated sludge from a municipal wastewater treatment plant (M-WWTP) with anaerobic/anoxic/oxic (A2/O) process and a hyperhaline wastewater treatment plant (H-WWTP) with anaerobic/oxic (A/O) process were extracted by ultrasound method. The proteins and polysaccharides contents in EPS were determined by using a modified Lowry method and anthrone colorimetry respectively to analyze the detail differences in two types of WWTPs. Fourier transform-infrared spectroscopy and three-dimensional excitation-emission matrix fluorescence spectroscopy demonstrated proteins and polysaccharides were the dominant components of the two types of EPS, and the aromatic protein-like substances accounted for a larger proportion in EPS proteins. The results of the aggregation test indicated that EPS were good for the sludge aggregation, and the EPS in oxic sludge were more beneficial to sludge aggregation than that in anoxic sludge. Anoxic sludge EPS in H-WWTP showed a negligible effect on sludge aggregation. Comparative study on EPS of different tanks in the M-WWTP and H-WWTP was valuable for understanding the characteristics of EPS isolated from two typical wastewater treatment processes. PMID:27220287

  9. A novel biosorbent for dye removal: Extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiqiang [State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment of Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Laboratoire de Sciences Analytiques (UMR CNRS 5180), Universite Claude Bernard Lyon 1, Universite de Lyon, 69622 Villeurbanne Cedex (France); Xia Siqing [State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment of Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)], E-mail: siqingxia@mail.tongji.edu.cn; Wang Xuejiang; Yang Aming; Xu Bin; Chen Ling; Zhu Zhiliang; Zhao Jianfu [State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment of Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Jaffrezic-Renault, Nicole; Leonard, Didier [Laboratoire de Sciences Analytiques (UMR CNRS 5180), Universite Claude Bernard Lyon 1, Universite de Lyon, 69622 Villeurbanne Cedex (France)

    2009-04-15

    This paper deals with the extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1 used as a novel biosorbent to remove dye from aqueous solution in batch systems. As a widely used and hazardous dye, basic blue 54 (BB54) was chosen as the model dye to examine the adsorption performance of the EPS. The effects of pH, initial dye concentration, contact time and temperature on the sorption of BB54 to the EPS were examined. At various initial dye concentrations (50-400 mg/L), the batch sorption equilibrium can be obtained in only 5 min. Kinetic studies suggested that the sorption followed the internal transport mechanism. According to the Langmuir model, the maximum BB54 uptake of 2.005 g/g was obtained. Chemical analysis of the EPS indicated the presence of protein (30.9%, w/w) and acid polysaccharide (63.1%, w/w). Scanning electron microscopy (SEM) images showed that the EPS with a crystal-linear structure was whole enwrapped by adsorbed dye molecules. FTIR spectrum result revealed the presence of adsorbing groups such as carboxyl, hydroxyl and amino groups in the EPS. High-molecular weight of the EPS with more binding-sites and stronger van der Waals forces together with its specific construct leads to the excellent performance of dye adsorption. The EPS shows potential board application as a biosorbent for both environmental protection and dye recovery.

  10. Silver nanoparticles formation by extracellular polymeric substances (EPS) from electroactive bacteria.

    Science.gov (United States)

    Li, Shan-Wei; Zhang, Xing; Sheng, Guo-Ping

    2016-05-01

    Microbial extracellular polymeric substances (EPS) excreted from microorganisms were a complex natural biological polymer mixture of proteins and polysaccharides, which played an important roles in the transport of metals, such as Ag(+). Electroactive bacteria, is an important class of environmental microorganisms, which can use iron or manganese mineral as terminal electron acceptors to generate energy for biosynthesis and cell maintenance. In this work, the EPS extracted of three electroactive bacteria (Shewanella oneidensis, Aeromonas hydrophila, and Pseudomonas putida) were used for reducing Ag(+) and forming silver nanoparticles (AgNPs). Results showed that all the three microbial EPS could reduce Ag(+) to AgNPs. The formed AgNPs were characterized in depth by the UV-visible spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. The main components in the EPS from the three electroactive bacteria were analyzed. The presence of cytochrome c in these EPS was confirmed, and they were found to contribute to the reduction of Ag(+) to AgNPs. The results indicated that the EPS of electroactive bacteria could act as a reductant for AgNPs synthesis and could provide new information to understand the fate of metals and their metal nanoparticles in the natural environments. PMID:26797954

  11. A novel biosorbent for dye removal: Extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1

    International Nuclear Information System (INIS)

    This paper deals with the extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1 used as a novel biosorbent to remove dye from aqueous solution in batch systems. As a widely used and hazardous dye, basic blue 54 (BB54) was chosen as the model dye to examine the adsorption performance of the EPS. The effects of pH, initial dye concentration, contact time and temperature on the sorption of BB54 to the EPS were examined. At various initial dye concentrations (50-400 mg/L), the batch sorption equilibrium can be obtained in only 5 min. Kinetic studies suggested that the sorption followed the internal transport mechanism. According to the Langmuir model, the maximum BB54 uptake of 2.005 g/g was obtained. Chemical analysis of the EPS indicated the presence of protein (30.9%, w/w) and acid polysaccharide (63.1%, w/w). Scanning electron microscopy (SEM) images showed that the EPS with a crystal-linear structure was whole enwrapped by adsorbed dye molecules. FTIR spectrum result revealed the presence of adsorbing groups such as carboxyl, hydroxyl and amino groups in the EPS. High-molecular weight of the EPS with more binding-sites and stronger van der Waals forces together with its specific construct leads to the excellent performance of dye adsorption. The EPS shows potential board application as a biosorbent for both environmental protection and dye recovery

  12. Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Nimisha, E-mail: joshi.nimisha@gmail.com [School of GeoSciences, Microbial Geochemistry Laboratory, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW (United Kingdom); Ngwenya, Bryne T. [School of GeoSciences, Microbial Geochemistry Laboratory, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW (United Kingdom); French, Christopher E. [School of Biological Sciences, Institute of Cell Biology, Darwin Building, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR (United Kingdom)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Demonstration that bacteria engineered for EPS overproduction have better survival against Ag nanotoxicity. Black-Right-Pointing-Pointer EPS destabilises Ag nanoparticles and promotes their aggregation. Black-Right-Pointing-Pointer TEM demonstration that EPS traps the Ag nanoparticles outside the cell. Black-Right-Pointing-Pointer EPS from overexpressing strains offers protection to non-EPS strains of bacteria. Black-Right-Pointing-Pointer EPS polymer analogues such as xanthan also produce a similar response. - Abstract: The increasing production and use of engineered nanoparticles, coupled with their demonstrated toxicity to different organisms, demands the development of a systematic understanding of how nanoparticle toxicity depends on important environmental parameters as well as surface properties of both cells and nanomaterials. We demonstrate that production of the extracellular polymeric substance (EPS), colanic acid by engineered Escherichia coli protects the bacteria against silver nanoparticle toxicity. Moreover, exogenous addition of EPS to a control strain results in an increase in cell viability, as does the addition of commercial EPS polymer analogue xanthan. Furthermore, we have found that an EPS producing strain of Sinorhizobium meliloti shows higher survival upon exposure to silver nanoparticles than the parent strain. Transmission electron microscopy (TEM) observations showed that EPS traps the nanoparticles outside the cells and reduces the exposed surface area of cells to incoming nanoparticles by inducing cell aggregation. Nanoparticle size characterization in the presence of EPS and xanthan indicated a marked tendency towards aggregation. Both are likely effective mechanisms for reducing nanoparticle toxicity in the natural environment.

  13. Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances

    International Nuclear Information System (INIS)

    Highlights: ► Demonstration that bacteria engineered for EPS overproduction have better survival against Ag nanotoxicity. ► EPS destabilises Ag nanoparticles and promotes their aggregation. ► TEM demonstration that EPS traps the Ag nanoparticles outside the cell. ► EPS from overexpressing strains offers protection to non-EPS strains of bacteria. ► EPS polymer analogues such as xanthan also produce a similar response. - Abstract: The increasing production and use of engineered nanoparticles, coupled with their demonstrated toxicity to different organisms, demands the development of a systematic understanding of how nanoparticle toxicity depends on important environmental parameters as well as surface properties of both cells and nanomaterials. We demonstrate that production of the extracellular polymeric substance (EPS), colanic acid by engineered Escherichia coli protects the bacteria against silver nanoparticle toxicity. Moreover, exogenous addition of EPS to a control strain results in an increase in cell viability, as does the addition of commercial EPS polymer analogue xanthan. Furthermore, we have found that an EPS producing strain of Sinorhizobium meliloti shows higher survival upon exposure to silver nanoparticles than the parent strain. Transmission electron microscopy (TEM) observations showed that EPS traps the nanoparticles outside the cells and reduces the exposed surface area of cells to incoming nanoparticles by inducing cell aggregation. Nanoparticle size characterization in the presence of EPS and xanthan indicated a marked tendency towards aggregation. Both are likely effective mechanisms for reducing nanoparticle toxicity in the natural environment.

  14. TOL Plasmid Carriage Enhances Biofilm Formation and Increases Extracellular DNA Content in Pseudomonas Putida KT2440

    DEFF Research Database (Denmark)

    Smets, Barth F.; D'Alvise, Paul; Yankelovich, T.;

    Adherent growth of Pseudomonas putida KT2440 with and without the TOL plasmid (pWWO) at the solid-liquid and air-liquid interface was examined. We compared biofilm formation on glass in flow cells, and assayed pellicle (air-liquid interface biofilm) formation in stagnant liquid cultures by confocal...... laser scanning microscopy. The TOL-carrying strains formed pellicles and thick biofilms, whereas the same strains without the plasmid displayed little adherent growth. Microscopy using fluorescent nucleic acid- specific stains (cytox orange, propidium iodide) revealed differences in production...... combined with specific cytostains; release of cytoplasmic material was assayed by a β-glucosidase assay. Enhanced cell lysis due to plasmid carriage was ruled out as the mechanism for eDNA release. We report, for the first time, that carriage of a conjugative plasmid leads to increased biofilm formation...

  15. Self-organization of bacterial biofilms is facilitated by extracellular DNA

    OpenAIRE

    Gloag, Erin S; Turnbull, Lynne; Huang, Alan; Vallotton, Pascal; Wang, Huabin; Nolan, Laura M.; Mililli, Lisa; Hunt, Cameron; Lu, Jing; Osvath, Sarah R.; Monahan, Leigh G.; Cavaliere, Rosalia; Charles, Ian G.; Wand, Matt P; Gee, Michelle L.

    2013-01-01

    Twitching motility-mediated biofilm expansion is a complex, multicellular behavior that enables the active colonization of surfaces by many species of bacteria. In this study we have explored the emergence of intricate network patterns of interconnected trails that form in actively expanding biofilms of Pseudomonas aeruginosa. We have used high-resolution, phase-contrast time-lapse microscopy and developed sophisticated computer vision algorithms to track and analyze individual cell movements...

  16. DNA as an Adhesin: Bacillus cereus Requires Extracellular DNA To Form Biofilms▿ †

    OpenAIRE

    Vilain, Sébastien; Pretorius, Jakobus M.; Theron, Jacques; Brözel, Volker S.

    2009-01-01

    The soil saprophyte Bacillus cereus forms biofilms at solid-liquid interfaces. The composition of the extracellular polymeric matrix is not known, but biofilms of other bacteria are encased in polysaccharides, protein, and also extracellular DNA (eDNA). A Tn917 screen for strains impaired in biofilm formation at a solid-liquid interface yielded several mutants. Three mutants deficient in the purine biosynthesis genes purA, purC, and purL were biofilm impaired, but they grew planktonically lik...

  17. Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols

    OpenAIRE

    Abzac, D', P.; Bordas, F; Van Hullebusch, E.; Lens, P. N. L.; Guibaud, G.

    2010-01-01

    The characteristics of the extracellular polymeric substances (EPS) extracted with nine different extraction protocols from four different types of anaerobic granular sludge were studied. The efficiency of four physical (sonication, heating, cationic exchange resin (CER), and CER associated with sonication) and four chemical (ethylenediaminetetraacetic acid, ethanol, formaldehyde combined with heating, or NaOH) EPS extraction methods was compared to a control extraction protocols (i.e., centr...

  18. Optimising extraction of extracellular polymeric substances (EPS) from benthic diatoms: comparison of the efficiency of six EPS extraction methods

    OpenAIRE

    Takahashi, Eri; Ledauphin, Jerome; Goux, Didier; Orvain, Francis

    2009-01-01

    There is no universal method that can be applied to extract bound extracellular polymeric substances (EPS) from benthic diatoms of intertidal sediments without causing cell lysis. Six extraction methods were tested on a diatom culture of Navicula jeffreyi to establish the best compromise between high yields of carbohydrate extraction and minimum cell lysis. Extraction with distilled water provoked cell lysis (as already known). The five other extraction methods (dowex resin, artificial seawat...

  19. Tracking the Dynamic Relationship between Cellular Systems and Extracellular Subproteomes in Pseudomonas aeruginosa Biofilms.

    Science.gov (United States)

    Park, Amber J; Murphy, Kathleen; Surette, Matthew D; Bandoro, Christopher; Krieger, Jonathan R; Taylor, Paul; Khursigara, Cezar M

    2015-11-01

    The transition of the opportunistic pathogen Pseudomonas aeruginosa from free-living bacteria into surface-associated biofilm communities represents a viable target for the prevention and treatment of chronic infectious disease. We have established a proteomics platform that identified 2443 and 1142 high-confidence proteins in P. aeruginosa whole cells and outer-membrane vesicles (OMVs), respectively, at three time points during biofilm development (ProteomeXchange identifier PXD002605). The analysis of cellular systems, specifically the phenazine biosynthetic pathway, demonstrates that whole-cell protein abundance correlates to end product (i.e., pyocyanin) concentrations in biofilm but not in planktonic cultures. Furthermore, increased cellular protein abundance in this pathway results in quantifiable pyocyanin in early biofilm OMVs and OMVs from both growth modes isolated at later time points. Overall, our data indicate that the OMVs being released from the surface of the biofilm whole cells have unique proteomes in comparison to their planktonic counterparts. The relative abundance of OMV proteins from various subcellular sources showed considerable differences between the two growth modes over time, supporting the existence and preferential activation of multiple OMV biogenesis mechanisms under different conditions. The consistent detection of cytoplasmic proteins in all of the OMV subproteomes challenges the notion that OMVs are composed of outer membrane and periplasmic proteins alone. Direct comparisons of outer-membrane protein abundance levels between OMVs and whole cells shows ratios that vary greatly from 1:1 and supports previous studies that advocate the specific inclusion, or "packaging", of proteins into OMVs. The quantitative analysis of packaged protein groups suggests biogenesis mechanisms that involve untethered, rather than absent, peptidoglycan-binding proteins. Collectively, individual protein and biological system analyses of biofilm OMVs

  20. Effect of silver nanoparticles on Pseudomonas putida biofilms at different stages of maturity

    International Nuclear Information System (INIS)

    Highlights: • Biofilm stages in static batch conditions were similar to dynamic conditions. • Expression of csgA gene increased earlier than alg8 gene in biofilm maturation. • AgNPs had higher effect on less mature biofilms. • Removal of extracellular polymeric substance made biofilms susceptible to AgNPs. - Abstract: This study determined the effect of silver nanoparticles (AgNPs) on Pseudomonas putida KT2440 biofilms at different stages of maturity. Three biofilm stages (1–3, representing early to late stages of development) were identified from bacterial adenosine triphosphate (ATP) activity under static (96-well plate) and dynamic conditions (Center for Disease Control and Prevention biofilm reactor). Extracellular polymeric substance (EPS) levels, measured using crystal violet and total carbohydrate assays, and expression of the EPS-associated genes, csgA and alg8, supported the conclusion that biofilms at later stages were older than those at earlier stages. More mature biofilms (stages 2 and 3) showed little to no reduction in ATP activity following exposure to AgNPs. In contrast, the same treatment reduced ATP activity by more than 90% in the less mature stage 1 biofilms. Regardless of maturity, biofilms with EPS stripped off were more susceptible to AgNPs than controls with intact EPS, demonstrating that EPS is critical for biofilm tolerance of AgNPs. The findings from this study show that stage of maturity is an important factor to consider when studying effect of AgNPs on biofilms

  1. Effect of silver nanoparticles on Pseudomonas putida biofilms at different stages of maturity

    Energy Technology Data Exchange (ETDEWEB)

    Thuptimdang, Pumis, E-mail: pumis.th@gmail.com [International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330 (Thailand); Center of Excellence on Hazardous Substance Management, Bangkok 10330 (Thailand); Limpiyakorn, Tawan, E-mail: tawan.l@chula.ac.th [Center of Excellence on Hazardous Substance Management, Bangkok 10330 (Thailand); Department of Environmental Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Research Unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok 10330 (Thailand); McEvoy, John, E-mail: john.mcevoy@ndsu.edu [Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108 (United States); Prüß, Birgit M., E-mail: birgit.pruess@ndsu.edu [Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108 (United States); Khan, Eakalak, E-mail: eakalak.khan@ndsu.edu [Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108 (United States)

    2015-06-15

    Highlights: • Biofilm stages in static batch conditions were similar to dynamic conditions. • Expression of csgA gene increased earlier than alg8 gene in biofilm maturation. • AgNPs had higher effect on less mature biofilms. • Removal of extracellular polymeric substance made biofilms susceptible to AgNPs. - Abstract: This study determined the effect of silver nanoparticles (AgNPs) on Pseudomonas putida KT2440 biofilms at different stages of maturity. Three biofilm stages (1–3, representing early to late stages of development) were identified from bacterial adenosine triphosphate (ATP) activity under static (96-well plate) and dynamic conditions (Center for Disease Control and Prevention biofilm reactor). Extracellular polymeric substance (EPS) levels, measured using crystal violet and total carbohydrate assays, and expression of the EPS-associated genes, csgA and alg8, supported the conclusion that biofilms at later stages were older than those at earlier stages. More mature biofilms (stages 2 and 3) showed little to no reduction in ATP activity following exposure to AgNPs. In contrast, the same treatment reduced ATP activity by more than 90% in the less mature stage 1 biofilms. Regardless of maturity, biofilms with EPS stripped off were more susceptible to AgNPs than controls with intact EPS, demonstrating that EPS is critical for biofilm tolerance of AgNPs. The findings from this study show that stage of maturity is an important factor to consider when studying effect of AgNPs on biofilms.

  2. Characterisation of the Physical Composition and Microbial Community Structure of Biofilms within a Model Full-Scale Drinking Water Distribution System

    OpenAIRE

    Fish, Katherine E.; Richard Collins; Nicola H. Green; Sharpe, Rebecca L.; Isabel Douterelo; A. Mark Osborn; Joby B Boxall

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms...

  3. Proanthocyanidins polymeric tannin from Stryphnodendron adstringens are active against Candida albicans biofilms

    OpenAIRE

    Luiz, Raul Leal Faria; Vila, Taissa Vieira Machado; de Mello, João Carlos Palazzo; Nakamura, Celso Vataru; Rozental, Sonia; Ishida, Kelly

    2015-01-01

    Background Biofilm formation is important in Candida albicans pathogenesis and constitutes a mechanism of antifungal resistance. Thus, we evaluated the effect of proanthocyanidins polymer-rich fractions from Stryphnodendron adstringens (fraction F2 and subfraction F2.4) against C. albicans biofilms. Methods Firstly, the antifungal activity of F2 and F2.4 against planktonic cells of Candida albicans (ATCC 10231) was determined using broth microdilution method. Anti-biofilm effect of F2 and F2....

  4. Early detection of biofilms using low-cost polymeric optical Lab-on-a-chip

    OpenAIRE

    Antúnez Vallès, Bernat

    2015-01-01

    In surface colonization, microorganisms tend to form complex biological structures containing cells and adhesion molecules, called biofilms, which provide them with high stability and resistance to biocide compounds. These biofilms are dynamic structures in which bacteria, individually or in layers, are continuously recruited and released with time. This dynamism makes biofilms a source of microorganism, sometimes pathogens, becoming elements of risk for public health. Up to now, most widespr...

  5. A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis

    DEFF Research Database (Denmark)

    Lappann, M.; Claus, H.; van Alen, T.;

    2010-01-01

    -acetylmuramyl-l-alanine amidase genes. In late biofilms, outer membrane phospholipase A-dependent autolysis, which was observed in most cc, but not in ST-8 and ST-11 strains, was required for shear force resistance of microcolonies. Taken together, N. meningitidis evolved two different biofilm formation strategies, an e......DNA-dependent one yielding shear force resistant microcolonies, and an eDNA-independent one. Based on the experimental findings and previous epidemiological observations, we hypothesize that most meningococcal cc display a settler phenotype, which is eDNA-dependent and results in a stable interaction with the host....... On the contrary, spreaders (ST-11 and ST-8 cc) are unable to use eDNA for biofilm formation and might compensate for poor colonization properties by high transmission rates....

  6. Critical assessment of extracellular polymeric substances extraction methods from mixed culture biomass.

    Science.gov (United States)

    Pellicer-Nàcher, Carles; Domingo-Félez, Carlos; Mutlu, A Gizem; Smets, Barth F

    2013-10-01

    Extracellular polymeric substances (EPS) have a presumed determinant role in the structure, architecture, strength, filterability, and settling behaviour of microbial solids in biological wastewater treatment processes. Consequently, numerous EPS extraction protocols have recently been published that aim to optimize the trade off between high EPS recovery and low cell lysis. Despite extensive efforts, the obtained results are often contradictory, even when analysing similar biomass samples and using similar experimental conditions, which greatly complicates the selection of an extraction protocol. This study presents a rigorous and critical assessment of existing physical and chemical EPS extraction methods applied to mixed-culture biomass samples (nitrifying, nitritation-anammox, and activated sludge biomass). A novel fluorescence-based method was developed and calibrated to quantify the lysis potential of different EPS extraction protocols. We concluded that commonly used methods to assess cell lysis (DNA concentrations or G6PDH activities in EPS extracts) do not correlate with cell viability. Furthermore, we discovered that the presence of certain chemicals in EPS extracts results in severe underestimation of protein and carbohydrate concentrations by using standard analytical methods. Keeping both maximum EPS extraction yields and minimal biomass lysis as criteria, it was identified a sonication-based extraction method as the best to determine and compare tightly-bound EPS fractions in different biomass samples. Protein was consistently the main EPS component in all analysed samples. However, EPS from nitrifying enrichments was richer in DNA, the activated sludge EPS had a higher content in humic acids and carbohydrates, and the nitritation-anammox EPS, while similar in composition to the nitrifier EPS, had a lower fraction of hydrophobic biopolymers. In general, the easily-extractable EPS fraction was more abundant in carbohydrates and humic substances, while

  7. Influences of extracellular polymeric substances on the dewaterability of sewage sludge during bioleaching.

    Directory of Open Access Journals (Sweden)

    Jun Zhou

    Full Text Available Extracellular polymeric substances (EPS play important roles in regulating the dewaterability of sludge. This study sought to elucidate the influence of EPS on the dewaterability of sludge during bioleaching process. Results showed that, in bioleaching system with the co-inoculation of Acidithiobacillus thiooxidans TS6 and Acidithiobacillus ferrooxidans LX5 (A. t+A. f system, the capillary suction time (CST of sludge reduced from 255.9 s to 25.45 s within 48 h, which was obviously better than the controls. The correlation analysis between sludge CST and sludge EPS revealed that the sludge EPS significantly impacted the dewaterability of sludge. Sludge CST had correlation with protein content in slime and both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers, and the decrease of protein content in slime and decreases of both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers improved sludge dewaterability during sludge bioleaching process. Moreover, the low sludge pH (2.92 and the increasing distribution of Fe in the solid phase were another two factors responsible for the improvement of sludge dewaterability during bioleaching. This study suggested that during sludge bioleaching the growth of Acidithiobacillus species resulted in the decrease of sludge pH, the increasing distribution of Fe in the solid phase, and the decrease of EPS content (mainly including protein and/or polysaccharide in the slime, TB-EPS, and Slime+LB+TB layers, all of which are helpful for sludge dewaterability enhancement.

  8. Towards understanding the role of extracellular polymeric substances in cyanobacterial Microcystis aggregation and mucilaginous bloom formation.

    Science.gov (United States)

    Xu, Huacheng; Jiang, Helong; Yu, Guanghui; Yang, Liuyan

    2014-12-01

    The development of mucilaginous cyanobacterial Microcystis blooms is a serious environmental and ecological problem, and information on the bloom-formation mechanism has been lacking until now. The aggregation of microbial cells was attributed to the matrix of extracellular polymeric substances (EPS). In this study, the quantitative role of EPS matrix in Microcystis aggregation and mucilaginous bloom formation was investigated. The results showed that when EPS matrix was extracted, the aggregation abilities decreased by 27.6% and 57.4% for the lab-cultured Microcystis suspension and the field-sampled Microcystis aggregates, respectively. The extended DLVO theory revealed that EPS extraction increased the energy barrier and the values of the second energy minimum, which accounted for the deteriorated aggregation. Further analysis showed an increasing attraction energy of EPS matrix during the Microcystis bloom development, whereas the predominant contribution originated from tightly bound EPS (TB-EPS) and loosely bound EPS (LB-EPS) for the lab-cultured and field-sampled Microcystis samples. The heterogeneous energy contribution of EPS subfractions was found to be associated with the variations in organic contents. Specifically, Microcystis aggregates exhibited a higher organic content of TB-EPS than of LB-EPS compared with the lab-cultured Microcystis suspension, whereas organic content in only the LB-EPS fraction for the bloom samples was significantly higher (p EPS function was proposed in which TB-EPS plays an important role in the formation of Microcystis aggregates, after which LB-EPS contributed to the subsequent development from Microcystis aggregates to mucilaginous bloom formation. PMID:25465953

  9. Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Lingzhan; Wang, Chao; Hou, Jun, E-mail: hhuhjyhj@126.com; Wang, Peifang; Ao, Yanhui; Li, Yi; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi [Hohai University, Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education (China)

    2015-10-15

    Stability of engineered nanoparticles in aquatic environment is an essential parameter to evaluate their fate, bioavailability, and potential toxic effects toward living organisms. As CuO NPs enter the wastewater systems, they will encounter extracellular polymeric substances (EPS) from microbial community before directly interacting with bacterial cells. EPS may play an important role in affecting the stability and the toxicity of CuO NPs in aquatic environment. In this study, the influences of flocculent sludge-derived EPS, as well as model protein (BSA) and natural polysaccharides (alginate) on the dissolution kinetics and colloidal stability of CuO NPs were investigated. Results showed that the presence of NOMs strongly suppressed CuO NPs aggregation, confirmed by DLS, zeta potentials, and TEM analysis. The enhanced stability of CuO NPs in the presence of EPS and alginate were attributed to the electrostatic combined with steric repulsion, while the steric-hindrance effect may be the predominant mechanism retarding nano-CuO aggregation for BSA. Higher degrees of copper release were achieved with the increasing concentrations of NOMs. EPS are more effective than alginate and BSA in releasing copper, probably due to the abundant functional groups and the excellent metal-binding capacity. The ratio of free-Cu{sup 2+}/total dissolved Cu significantly decreased in the presence of EPS, indicating that EPS may affect the speciation and Cu bioavailability in aqueous environment. These results may be important for assessing the fate and transport behaviors of CuO NPs in the environment as well as for setting up usage regulation and treatment strategy.

  10. Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment

    International Nuclear Information System (INIS)

    Stability of engineered nanoparticles in aquatic environment is an essential parameter to evaluate their fate, bioavailability, and potential toxic effects toward living organisms. As CuO NPs enter the wastewater systems, they will encounter extracellular polymeric substances (EPS) from microbial community before directly interacting with bacterial cells. EPS may play an important role in affecting the stability and the toxicity of CuO NPs in aquatic environment. In this study, the influences of flocculent sludge-derived EPS, as well as model protein (BSA) and natural polysaccharides (alginate) on the dissolution kinetics and colloidal stability of CuO NPs were investigated. Results showed that the presence of NOMs strongly suppressed CuO NPs aggregation, confirmed by DLS, zeta potentials, and TEM analysis. The enhanced stability of CuO NPs in the presence of EPS and alginate were attributed to the electrostatic combined with steric repulsion, while the steric-hindrance effect may be the predominant mechanism retarding nano-CuO aggregation for BSA. Higher degrees of copper release were achieved with the increasing concentrations of NOMs. EPS are more effective than alginate and BSA in releasing copper, probably due to the abundant functional groups and the excellent metal-binding capacity. The ratio of free-Cu2+/total dissolved Cu significantly decreased in the presence of EPS, indicating that EPS may affect the speciation and Cu bioavailability in aqueous environment. These results may be important for assessing the fate and transport behaviors of CuO NPs in the environment as well as for setting up usage regulation and treatment strategy.

  11. Toxicity assessment of 4-chlorophenol to aerobic granular sludge and its interaction with extracellular polymeric substances

    International Nuclear Information System (INIS)

    Highlights: • Toxicity of 4-CP to aerobic granular sludge process was evaluated. • 3D-EEM characterized the interaction between EPS and 4-CP. • Tryptophan was the main substance result in fluorescence quenching. • The mechanism of fluorescence quenching belongs to static quenching. - Abstract: The main objective of this study was to evaluate the toxicity of 4-chlorophenol (4-CP) to aerobic granular sludge in the process of treating ammonia rich wastewater. In the short-term exposure of 4-CP of 5 and 10 mg/L, ammonia nitrogen removal efficiencies in the batch reactors decreased to 87.18 ± 2.81 and 41.16 ± 3.55%, which were remarkably lower than that of control experiment (99.83 ± 0.54%). Correspondingly, the respirometric activities of heterotrophic and autotrophic bacteria of aerobic granular sludge were significantly inhibited in the presence of 4-CP. Moreover, the main components of extracellular polymeric substances (EPS) including polysaccharides and proteins increased from 18.74 ± 0.29 and 22.57 ± 0.34 mg/g SS to 27.79 ± 0.51 and 24.69 ± 0.38 mg/g SS, respectively, indicating that the presence of 4-CP played an important role on the EPS production. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy further showed that the intensities of EPS samples were obviously quenched with the increased of 4-CP concentrations. To be more detailed, synchronous fluorescence spectra indicated that the interaction between EPS and 4-CP was mainly caused by tryptophan residues. The mechanism of fluorescence quenching belongs to static quenching with a formation constant (KA) of 0.07 × 104 L/mol, implying the strong formation of EPS and 4-CP complex. The results could provide reliable and accurate information to determine the potential toxicity of 4-CP on the performance of aerobic granular sludge system

  12. Biofilms in wounds

    DEFF Research Database (Denmark)

    Cooper, R A; Bjarnsholt, Thomas; Alhede, M

    2014-01-01

    Following confirmation of the presence of biofilms in chronic wounds, the term biofilm became a buzzword within the wound healing community. For more than a century pathogens have been successfully isolated and identified from wound specimens using techniques that were devised in the nineteenth...... century by Louis Pasteur and Robert Koch. Although this approach still provides valuable information with which to help diagnose acute infections and to select appropriate antibiotic therapies, it is evident that those organisms isolated from clinical specimens with the conditions normally used in...... extracellular polymeric substances (EPS). Cells within such aggregations (or biofilms) display varying physiological and metabolic properties that are distinct from those of planktonic cells, and which contribute to their persistence. There are many factors that influence healing in wounds and the discovery of...

  13. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin

    OpenAIRE

    Das, Manash C.; Padmani Sandhu; Priya Gupta; Prasenjit Rudrapaul; Utpal C. De; Prosun Tribedi; Yusuf Akhter; Surajit Bhattacharjee

    2016-01-01

    Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pathogenic bacterium. Vitexin, a polyphenolic group of phytochemical with antimicrobial property, has been studied for its antibiofilm potential against Pseudomonas aeruginosa in combin...

  14. Is biofilm removal properly assessed? Comparison of different quantification methods in a 96-well plate system

    OpenAIRE

    Stiefel, Philipp; Rosenberg, Urs; Schneider, Jana; Mauerhofer, Stefan; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    Various methods have been reported to quantify total biofilm or different components of biofilm; however, these methods are often confusedly used, leading to discrepancies and misleading results. In this study, different methods for quantification of biofilm, including those for total biomass, total amount of bacterial cells, viable cell number, and amount of extracellular polymeric substances, were systematically compared in microtiter plates. To evaluate which method is suitable for assessm...

  15. Surface-associated microbes continue to surprise us in their sophisticated strategies for assembling biofilm communities

    OpenAIRE

    Wozniak, Daniel J.; Parsek, Matthew R.

    2014-01-01

    Microorganisms are rarely found in isolation. Frequently, they live as complex consortia or communities known as biofilms. The microbes within these complex structures are typically enmeshed in a matrix of macromolecules collectively known as the extracellular polymeric substances (EPS). The last decade has seen enormous growth in the breadth and depth of biofilm-related research. An important area of focus has been the study of pure culture biofilms of different model species. This work has ...

  16. Influence of culture conditions on Escherichia coli O157:H7 biofilm formation by atomic force microscopy

    International Nuclear Information System (INIS)

    Biofilms are complex microbial communities that are resistant against attacks by bacteriophages and removal by drugs and chemicals. In this study, biofilms of Escherichia coli O157:H7, a bacterial pathogen, were investigated using atomic force microscopy (AFM) in terms of the dynamic transition of morphology and surface properties of bacterial cells over the development of biofilms. The physical and topographical properties of biofilms are different, depending on nutrient availability. Compared to biofilms formed in a high nutrient medium, biofilms form faster and a higher number of bacterial cells were recovered on glass surface in a low nutrient medium. We demonstrate that AFM can obtain high-resolution images and the elastic information about biofilms. As E. coli biofilm becomes mature, the magnitude of the force between a tip and the surface of the biofilm gets stronger, suggesting that extracellular polymeric substances (EPSs), sticky components of biofilms, accumulate over the surface of cells upon the initial attachment of bacterial cells to surfaces

  17. Microscale Confinement features in microfluidic devices can affect biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Aloke [ORNL; Karig, David K [ORNL; Neethirajan, Suresh [University of Guelph; Acharya, Rajesh K [ORNL; Mukherjee, Partha P [ORNL; Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL

    2013-01-01

    Biofilms are aggregations of microbes that are encased by extra-cellular polymeric substances (EPS) and adhere to surfaces and interfaces. Biofilm development on abiotic surfaces is a dynamic process, which typically proceeds through an initial phase of adhesion of plankntonic microbes to the substrate, followed by events such as growth, maturation and EPS secretion. However, the coupling of hydrodynamics, microbial adhesion and biofilm growth remain poorly understood. Here, we investigate the effect of semiconfined features on biofilm formation. Using a microfluidic device and fluorescent time-lapse microscopy, we establish that confinement features can significantly affect biofilm formation. Biofilm dynamics change not only as a function of confinement features, but also of the total fluid flow rate, and our combination of experimental results and numerical simulations reveal insights into the link between hydrodynamics and biofilm formation.

  18. Toxicity assessment of 4-chlorophenol to aerobic granular sludge and its interaction with extracellular polymeric substances

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Dong; Wang, Yifan; Wang, Xiaodong; Li, Mengting; Han, Fei; Ju, Luyu; Zhang, Ge; Shi, Li; Li, Kai; Wang, Bingfeng [School of Resources and Environmental Sciences, University of Jinan, Jinan 250022 (China); Du, Bin, E-mail: dubin61@gmail.com [School of Resources and Environmental Sciences, University of Jinan, Jinan 250022 (China); Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Wei, Qin [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2015-05-30

    Highlights: • Toxicity of 4-CP to aerobic granular sludge process was evaluated. • 3D-EEM characterized the interaction between EPS and 4-CP. • Tryptophan was the main substance result in fluorescence quenching. • The mechanism of fluorescence quenching belongs to static quenching. - Abstract: The main objective of this study was to evaluate the toxicity of 4-chlorophenol (4-CP) to aerobic granular sludge in the process of treating ammonia rich wastewater. In the short-term exposure of 4-CP of 5 and 10 mg/L, ammonia nitrogen removal efficiencies in the batch reactors decreased to 87.18 ± 2.81 and 41.16 ± 3.55%, which were remarkably lower than that of control experiment (99.83 ± 0.54%). Correspondingly, the respirometric activities of heterotrophic and autotrophic bacteria of aerobic granular sludge were significantly inhibited in the presence of 4-CP. Moreover, the main components of extracellular polymeric substances (EPS) including polysaccharides and proteins increased from 18.74 ± 0.29 and 22.57 ± 0.34 mg/g SS to 27.79 ± 0.51 and 24.69 ± 0.38 mg/g SS, respectively, indicating that the presence of 4-CP played an important role on the EPS production. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy further showed that the intensities of EPS samples were obviously quenched with the increased of 4-CP concentrations. To be more detailed, synchronous fluorescence spectra indicated that the interaction between EPS and 4-CP was mainly caused by tryptophan residues. The mechanism of fluorescence quenching belongs to static quenching with a formation constant (K{sub A}) of 0.07 × 10{sup 4} L/mol, implying the strong formation of EPS and 4-CP complex. The results could provide reliable and accurate information to determine the potential toxicity of 4-CP on the performance of aerobic granular sludge system.

  19. Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies

    Czech Academy of Sciences Publication Activity Database

    Váchová, Libuše; Šťovíček, V.; Hlaváček, Otakar; Chernyavskiy, Oleksandr; Štěpánek, L.; Kubínová, Lucie; Palková, Z.

    2011-01-01

    Roč. 194, č. 5 (2011), s. 679-687. ISSN 0021-9525 R&D Projects: GA ČR GA204/08/0718; GA MŠk(CZ) LC531; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50110509 Keywords : CANDIDA-ALBICANS BIOFILMS * SACCHAROMYCES - CEREVISIAE * ABC TRANSPORTERS Subject RIV: EE - Microbiology, Virology Impact factor: 10.264, year: 2011

  20. Biofilm

    Czech Academy of Sciences Publication Activity Database

    Kvíderová, Jana

    Berlin: Springer, 2015 - (Amils, R.; Gargaud, M.; Cernicharo Quintanilla, J.; James Claves, H.; Irvine, W.; Pinti, D.; Viso, M.), s. 1-3 ISBN 978-3-642-27833-4 Institutional support: RVO:67985939 Keywords : biofilm * microbial mat * astrobiology Subject RIV: EF - Botanics

  1. Character of extracellular polymeric substances and soluble microbial products and their effect on membrane hydraulics during airlift membrane bioreactor applications.

    Science.gov (United States)

    Alvarez-Vazquez, Hector; Pidou, Marc; Holdner, Jennifer; Judd, Simon J

    2008-12-01

    The effect of extracellular polymeric substances and soluble microbial products developed from wastewater and mature landfill leachate biomass was assessed using a pilot-scale membrane bioreactor operating polymeric and ceramic air-lift sidestream multichannel membranes. The plant was operated under identical conditions of sludge retention time, system hydrodynamics ,and parity of food-to-microorganism ratios. Biomass samples were extracted and fractionated (fixed and bound material, carbohydrate and protein extracts) and chemically and physically analyzed with the feedwaters. Both ceramic and polymeric membranes were tested and the critical flux (J(C)) determined according to the classical flux-step analysis. Although permeability (K) of both materials reduced with increasing flux (J), the ceramic material had a higher resistance to fouling, demonstrating a higher K (by a factor of 1.2 and 3.2 for wastewater and leachate, respectively, at J of 30 L x m(-2) x h(-1)) and lower fouling rate (dP/dt) (by more than an order of magnitude at the same J) than the polymeric membrane. Evidence suggests that deterioration of membrane permeability resulting from leachate biomass arises from the feedwater itself, rather than the products derived from the biomass, and that colloidal and/or soluble total organic carbon is primarily responsible for it. PMID:19146096

  2. The role of hydrodynamic stress on the phenotypic characteristics of single and binary biofilms of Pseudomonas fluorescens

    OpenAIRE

    Simões, M; Pereira, Maria Olívia; Vieira, M. J.

    2007-01-01

    This study investigates the phenotype of turbulent (Re=5,200) and laminar (Re=2,000) flowgenerated Pseudomonas fluorescens biofilms. Three P. fluorescens strains, the type strain ATCC 13525 and two strains isolated from an industrial processing plant, D3-348 and D3-350, were used throughout this study. The isolated strains were used to form single and binary biofilms. The biofilm physiology (metabolic activity, cellular density, mass, extracellular polymeric substances, structural characteris...

  3. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  4. Effects of substrates on biofilm formation observed by atomic force microscopy

    International Nuclear Information System (INIS)

    Formation of biofilm is known to be strongly dependent on substrates including topography, materials, and chemical treatment. In this study, a variety of substrates are tested for understanding biofilm formation. Sheets of aluminum, steel, rubber, and polypropylene have been used to examine their effects on formation of Pseudomonas aeruginosa biofilm. In particular, the morphological variation, transition, and adhesiveness of biofilm were investigated through local measurement by atomic force microscopy (AFM). Mechanism of removing biofilm from adhering to substrate is also analyzed, thus the understanding of the mechanism can be potentially useful to prevent the biofilm formation. The results reveal that formation of biofilm can remain on rough surface regardless of substrates in hot water, which may easily induce extra-polymeric substances detachment from bacterial surface. By probing using AFM, local force-distance characterization of extra-cellular materials extracted from the bacteria can exhibit the progress of the biofilm formation and functional complexities.

  5. Metagenomic and metaproteomic analyses of Accumulibacter phosphatis-enriched floccular and granular biofilm.

    Science.gov (United States)

    Barr, Jeremy J; Dutilh, Bas E; Skennerton, Connor T; Fukushima, Toshikazu; Hastie, Marcus L; Gorman, Jeffrey J; Tyson, Gene W; Bond, Philip L

    2016-01-01

    Biofilms are ubiquitous in nature, forming diverse adherent microbial communities that perform a plethora of functions. Here we operated two laboratory-scale sequencing batch reactors enriched with Candidatus Accumulibacter phosphatis (Accumulibacter) performing enhanced biological phosphorus removal. Reactors formed two distinct biofilms, one floccular biofilm, consisting of small, loose, microbial aggregates, and one granular biofilm, forming larger, dense, spherical aggregates. Using metagenomic and metaproteomic methods, we investigated the proteomic differences between these two biofilm communities, identifying a total of 2022 unique proteins. To understand biofilm differences, we compared protein abundances that were statistically enriched in both biofilm states. Floccular biofilms were enriched with pathogenic secretion systems suggesting a highly competitive microbial community. Comparatively, granular biofilms revealed a high-stress environment with evidence of nutrient starvation, phage predation pressure, and increased extracellular polymeric substance and cell lysis. Granular biofilms were enriched in outer membrane transport proteins to scavenge the extracellular milieu for amino acids and other metabolites, likely released through cell lysis, to supplement metabolic pathways. This study provides the first detailed proteomic comparison between Accumulibacter-enriched floccular and granular biofilm communities, proposes a conceptual model for the granule biofilm, and offers novel insights into granule biofilm formation and stability. PMID:26279094

  6. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.

    Directory of Open Access Journals (Sweden)

    Luyan Ma

    2009-03-01

    Full Text Available Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell-cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications.

  7. Biofilm Matrix Proteins

    OpenAIRE

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enz...

  8. Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris.

    Directory of Open Access Journals (Sweden)

    Huabing Li

    Full Text Available Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC of carbon steels. MIC by sulfate reducing bacteria (SRB is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry.

  9. Microbial pathogenesis and biofilm development

    DEFF Research Database (Denmark)

    Reisner, A.; Høiby, N.; Tolker-Nielsen, Tim; Molin, Søren

    2004-01-01

    Microbial infections constitute a major cause of premature death in large parts of the world, and for several years we have seen an alarming tendency towards increasing problems of controlling such infections by antibiotic treatments. It is hoped that an improved understanding of the infectious...... been termed 'maturation', which is thought to be mediated by a differentiation process. Maturation into late stages of biofilm development resulting in stable and robust structures may require the formation of a matrix of extracellular polymeric substances (EPS), which are most often assumed to consist...... of polysaccharides. A recent striking finding is that DNA released from biofilm cells may be important as an initial matrix former [3]. At later times other EPS molecules may add to the shape and quality of the mature biofilm structure. Figure 1 summarizes the principle stepsinvolved in the...

  10. Biofilm growth on rugose surfaces

    Science.gov (United States)

    Rodriguez, D.; Einarsson, B.; Carpio, A.

    2012-12-01

    A stochastic model is used to assess the effect of external parameters on the development of submerged biofilms on smooth and rough surfaces. The model includes basic cellular mechanisms, such as division and spreading, together with an elementary description of the interaction with the surrounding flow and probabilistic rules for extracellular polymeric substance matrix generation, cell decay, and adhesion. Insight into the interplay of competing mechanisms such as the flow or the nutrient concentration change is gained. Erosion and growth processes combined produce biofilm structures moving downstream. A rich variety of patterns are generated: shrinking biofilms, patches, ripplelike structures traveling downstream, fingers, mounds, streamerlike patterns, flat layers, and porous and dendritic structures. The observed regimes depend on the carbon source and the type of bacteria.

  11. Biofilm architecture of Phanerozoic cryptic carbonate marine veneers

    Science.gov (United States)

    Riding, Robert

    2002-01-01

    Thin (bacterial biofilm. Morphologic attributes include rounded aggregate nanofabric, internal channels, external towers, mushrooms, and plumes. All can be interpreted as characteristics of attached bacterial communities, i.e., aggregates as microcolonies, originally embedded in a matrix of extracellular polymeric substances; channels as water conduits and/or uncolonized nutrient-poor spaces; external protuberances as localized growths; and plumes as surface streamers. Cryptic habitat favored pristine biofilm preservation by precluding disturbance and overgrowth, and suggests aphotic and anoxic conditions. These examples provide diagnostic morphologic criteria for wider recognition of biofilm in Phanerozoic and older carbonates.

  12. Fate of extracellular polymeric substances of anaerobically digested sewage sludge during pre-dewatering conditioning with Acidithiobacillus ferrooxidans culture.

    Science.gov (United States)

    Murugesan, Kumarasamy; Ravindran, Balasubramani; Selvam, Ammaiyappan; Kurade, Mayur B; Yu, Shuk-Man; Wong, Jonathan W C

    2016-10-01

    This study investigated the fate of extracellular polymeric substances (EPS) of anaerobically digested saline sewage sludge during its preconditioning. Sludge was conditioned with Acidithiobacillus ferrooxidans (AF) culture for 24h in the presence and absence of Fe(2+) as an energy substrate. pH decreased from 7.24 to 3.12 during sludge conditioning process. The capillary suction time (CST) of conditioned sludge significantly decreased to 94% as compared with control within 4h of conditioning with or without Fe(2+), indicating a significant (P<0.001) improvement in sludge dewaterability. A noticeable decrease in extractable EPS was observed in conditioned sludge. The EPS contents showed a significant negative correlation with dewaterability of sludge (P<0.05). The results suggest that bioacidification treatment using A. ferrooxidans effectively improved sludge dewaterability through modification of sludge EPS. PMID:27040507

  13. Effects of extraction procedures on metal binding properties of extracellular polymeric substances (EPS) from anaerobic granular sludges.

    Science.gov (United States)

    d'Abzac, Paul; Bordas, François; van Hullebusch, Eric; Lens, Piet N L; Guibaud, Gilles

    2010-10-15

    The effects of the extraction procedure of extracellular polymeric substances (EPS) on their proton/metal binding properties were studied. Nine extraction procedures (one control, four physical and four chemical procedures) were applied to four types of anaerobic granular sludges. The binding capacities between the EPS and lead or cadmium were investigated at pH 7 by a polarographic method. The composition of the EPS extracts varied according to the extraction technique and the origin of the sludge. This induced differences in the pK(a)s and the binding sites density of the EPS extracts. The carry-over of the extractant in the samples strongly affects the properties of the EPS from chemical extraction protocols. Lead and cadmium seem to be bound differently with the EPS, a higher binding capacity was observed for Pb(2+) than for Cd(2+). PMID:20580210

  14. Contribution of stratified extracellular polymeric substances to the gel-like and fractal structures of activated sludge.

    Science.gov (United States)

    Yuan, D Q; Wang, Y L; Feng, J

    2014-06-01

    The gel-like and fractal structures of activated sludge (AS) before and after extracellular polymeric substances (EPS) extraction as well as different EPS fractions were investigated. The contributions of individual components in different EPS fractions to the gel-like behavior of sludge samples by enzyme treatment were examined as well. The centrifugation and ultrasound method was employed to stratify the EPS into slime, loosely and tightly bound EPS (LB- and TB-EPS). It was observed that all samples behaved as weak gels with weak-link. TB-EPS and AS after LB-EPS extraction showed the strongest elasticity in higher concentrations and highest mass fractal dimension, which may indicate the key role of TB-EPS in the gel-like and fractal structures of the sludge. Effects of protease or amylase on the gel-like property of sludge samples differed in the presence of different EPS fractions. PMID:24651018

  15. Characteristics of extracellular polymeric substances and bacterial communities in an anaerobic membrane bioreactor coupled with online ultrasound equipment.

    Science.gov (United States)

    Yu, Zhiyong; Wen, Xianghua; Xu, Meilan; Huang, Xia

    2012-08-01

    Two parallel anaerobic membrane bioreactors (MBRs), integrated with or without ultrasound equipment for online membrane fouling control (US-AnMBR, or AnMBR) were established to digest waste activated sludge (WAS). The characteristics of bound extracellular polymeric substances (EPS) and bacterial communities in the systems were investigated for further understanding of the membrane fouling mechanisms. Ultrasound was an effective method for reducing cake layer resistance. A relatively high amount of bound EPS were found in the cake layer, especially for the US-AnMBR, by responding to the external forces (i.e. cross flow and ultrasound). High-throughput pyrosequencing and denaturing gradient gel electrophoresis (DGGE) were applied to analyze the bacterial diversity. Some bacterial populations contributing to membrane fouling were identified to accumulate in the cake layer, such as Peptococcaceae, Bacteroides and Syntrophobacterales. Since the ultrasounded retentate was recirculated back to the reactor, the bacterial community in the digested sludge was affected. PMID:22621809

  16. Polymerization of cardanol using soybean peroxidase and its potential application as anti-biofilm coating material.

    Science.gov (United States)

    Kim, Yong Hwan; An, Eun Suk; Song, Bong Keun; Kim, Dong Shik; Chelikani, Rahul

    2003-09-01

    Soybean peroxidase (20 mg) catalyzed the oxidative polymerization of cardanol in 2-propanol/phospate buffer solution (25 ml, 1:1 v/v) and yielded 62% polycardanol over 6 h. Cobalt naphthenate (0.5% w/w) catalyzed the crosslinking of polycardanol and the final hardness of crosslinked polycardanol film exceeded 9 H scale as pencil scratch hardness, which shows a high potential as a commercial coating material. In addition, it showed an excellent anti-biofouling activity to Pseudomonas fluorescens compared to other polymeric materials such as polypropylene. PMID:14571976

  17. Characterization of Mannheimia haemolytica biofilm formation in vitro.

    Science.gov (United States)

    Boukahil, Ismail; Czuprynski, Charles J

    2015-01-30

    Mannheimia haemolytica is the primary bacterial agent in the bovine respiratory disease complex. It is thought that M. haemolytica colonizes the tonsillar crypts of cattle as a commensal and subsequently descends into the lungs to cause disease. Many bacterial species persist in the host as biofilms. There is limited information about the ability of M. haemolytica to form biofilms. The aim of this study was to develop an in vitro model for M. haemolytica biofilm formation. We found that M. haemolytica required at least 36 h to form robust biofilms on plastic in vitro when incubated in RPMI-1640 tissue culture medium at 37 °C, with maximal biofilm formation being evident at 48 h. Biofilm formation was inhibited by adding the monosaccharides d(+) galactose and d(+) mannose to the growth medium. Addition of antibodies to the M. haemolytica surface protein OmpA also reduced biofilm formation. Upon evaluating the macromolecules within the biofilm extracellular polymeric substance we found it contained 9.7 μg/cm(2) of protein, 0.81 μg/cm(2) of total carbohydrate, and 0.47 μg/cm(2) of extracellular DNA. Furthermore, proteinase K treatment significantly decreased biofilms (Pbovine upper respiratory tract. PMID:25480166

  18. From a thin film model for passive suspensions towards the description of osmotic biofilm spreading

    CERN Document Server

    Trinschek, Sarah; Thiele, Uwe

    2016-01-01

    Biofilms are ubiquitous macro-colonies of bacteria that develop at various interfaces (solid-liquid, solid-gas or liquid-gas). The formation of biofilms starts with the attachment of individual bacteria to an interface, where they proliferate and produce a slimy polymeric matrix - two processes that result in colony growth and spreading. Recent experiments on the growth of biofilms on agar substrates under air have shown that for certain bacterial strains, the production of the extracellular matrix and the resulting osmotic influx of nutrient-rich water from the agar into the biofilm are more crucial for the spreading behaviour of a biofilm than the motility of individual bacteria. We present a model which describes the biofilm evolution and the advancing biofilm edge for this spreading mechanism. The model is based on a gradient dynamics formulation for thin films of biologically passive liquid mixtures and suspensions, supplemented by bioactive processes which play a decisive role in the osmotic spreading o...

  19. Evaluation of efficacy of commercial denture cleansing agents to reduce the fungal biofilm activity from heat polymerized denture acrylic resin: An in vitro study

    OpenAIRE

    Mithilesh M Dhamande; Pakhan, Ashok J; Ram U Thombare; Shyam L Ghodpage

    2012-01-01

    Aims: To compare and evaluate Candida removing effects of three most commonly available varieties of commercial denture cleansers from heat polymerized acrylic resins. To compare and evaluate Candida lytic effects of denture cleansers. To assess the effect of time on ability of denture cleansers in reducing Candidal biofilm. Materials and Methods: A specially designed metal mold was fabricated to obtain wax plates of uniform dimensions which were used to fabricate heat cure acrylic resin plat...

  20. Bioaccumulation of the Herbicide Diclofop in Extracellular Polymers and Its Utilization by a Biofilm Community during Starvation

    OpenAIRE

    Wolfaardt, G. M.; Lawrence, J R; Robarts, R. D.; Caldwell, D E

    1995-01-01

    Continuous-flow cell systems were used to cultivate a degradative biofilm community with the herbicide diclofop methyl as the sole carbon and energy source. The aromatic character of this compound and its breakdown products enabled direct visualization of their accumulation in the biofilm matrix. This accumulation could be inhibited by addition of a more labile carbon source to the culture medium or by inhibition of cell activity. The fluorescence of diclofop-grown biofilms remained constant ...

  1. The BR domain of PsrP interacts with extracellular DNA to promote bacterial aggregation; structural insights into pneumococcal biofilm formation

    Science.gov (United States)

    Schulte, Tim; Mikaelsson, Cecilia; Beaussart, Audrey; Kikhney, Alexey; Deshmukh, Maya; Wolniak, Sebastian; Pathak, Anuj; Ebel, Christine; Löfling, Jonas; Fogolari, Federico; Henriques-Normark, Birgitta; Dufrêne, Yves F.; Svergun, Dmitri; Nygren, Per-Åke; Achour, Adnane

    2016-01-01

    The major human pathogen Streptococcus pneumoniae is a leading cause of disease and death worldwide. Pneumococcal biofilm formation within the nasopharynx leads to long-term colonization and persistence within the host. We have previously demonstrated that the capsular surface-associated pneumococcal serine rich repeat protein (PsrP), key factor for biofilm formation, binds to keratin-10 (KRT10) through its microbial surface component recognizing adhesive matrix molecule (MSCRAMM)-related globular binding region domain (BR187–385). Here, we show that BR187–385 also binds to DNA, as demonstrated by electrophoretic mobility shift assays and size exclusion chromatography. Further, heterologous expression of BR187–378 or the longer BR120–378 construct on the surface of a Gram-positive model host bacterium resulted in the formation of cellular aggregates that was significantly enhanced in the presence of DNA. Crystal structure analyses revealed the formation of BR187–385 homo-dimers via an intermolecular β-sheet, resulting in a positively charged concave surface, shaped to accommodate the acidic helical DNA structure. Furthermore, small angle X-ray scattering and circular dichroism studies indicate that the aggregate-enhancing N-terminal region of BR120–166 adopts an extended, non-globular structure. Altogether, our results suggest that PsrP adheres to extracellular DNA in the biofilm matrix and thus promotes pneumococcal biofilm formation. PMID:27582320

  2. msaABCR operon positively regulates biofilm development by repressing proteases and autolysis in Staphylococcus aureus

    OpenAIRE

    Sahukhal, Gyan S; Batte, Justin L.; Elasri, Mohamed O.

    2015-01-01

    Staphylococcus aureus is an important human pathogen that causes nosocomial and community-acquired infections. One of the most important aspects of staphylococcal infections is biofilm development within the host, which renders the bacterium resistant to the host’s immune response and antimicrobial agents. Biofilm development is very complex and involves several regulators that ensure cell survival on surfaces within the extracellular polymeric matrix. Previously, we identified the msaABCR op...

  3. Heavy metals removal from wastewater using extracellular polymeric substances produced by Cloacibacterium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods.

    Science.gov (United States)

    Nouha, Klai; Kumar, Ram Saurabh; Tyagi, R D

    2016-07-01

    Extracellular polymeric substances synthesis by Cloacibacterium was affected by different concentrations of glycerol in the medium. The concentration of EPS in 72h fermentation was increased from 13g/L with no external carbon supplementation to 21.3±0.7g/L with 2% (w/v) crude glycerol addition. Physical and chemical extraction methods (heating, centrifugation and ethylene diamine tetra-acetic acid (EDTA)) were used in this study and their performance to extract EPS was compared. A significant variation in concentration of extracted B-EPS (broth-EPS) by heating (20.8±0.5g/L) and centrifugation (21.3±0.7g/L) extraction methods was not observed. However, in case of extraction with EDTA (5g/L), the B-EPS concentration extracted was 25.5±0.9g/L, which exhibited high flocculation activity of 95.3±0.5% at optimum dose of 23.1mgB-EPS/gkaolin. Moreover, Ni removal efficiency of 80% from primary treated wastewater was achieved using 35mg/L of B-EPS extracted by centrifugation method. PMID:27089427

  4. Ameliorating effects of extracellular polymeric substances excreted by Thalassiosira pseudonana on algal toxicity of CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Saijin, E-mail: zhangs@tamug.edu [Department of Marine Science, Texas A and M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553 (United States); Jiang Yuelu, E-mail: jyuelu@gmail.com [Department of Marine Biology, Texas A and M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553 (United States); Chen, Chi-Shuo, E-mail: chen.chishuo@gmail.com [School of Engineering, University of California - Merced, Merced, CA 95344 (United States); Creeley, Danielle [Department of Marine Science, Texas A and M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553 (United States); Schwehr, Kathleen A., E-mail: schwerhk@tamug.edu [Department of Marine Science, Texas A and M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553 (United States); Quigg, Antonietta, E-mail: quigga@tamug.edu [Department of Marine Biology, Texas A and M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553 (United States); Department of Oceanography, Texas A and M University, College Station, TX 77843 (United States); Chin, Wei-Chun, E-mail: wchin2@ucmerced.edu [School of Engineering, University of California - Merced, Merced, CA 95344 (United States); Santschi, Peter H., E-mail: santschi@tamug.edu [Department of Marine Science, Texas A and M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553 (United States); Department of Oceanography, Texas A and M University, College Station, TX 77843 (United States)

    2013-01-15

    Quantum dots (QDs) are engineered nanoparticles (ENs) that have found increasing applications and shown great potential in drug delivery, biological imaging and industrial products. Knowledge of their stability, fate and transport in the aquatic environment is still lacking, including details of how these nanomaterials interact with marine phytoplankton. Here, we examined the toxicity of functionalized CdSe/ZnS QDs (amine- and carboxyl-) by exposing them for five days to Thalassiosira pseudonana (marine diatom) grown under different nutrient-conditions (enriched versus nitrogen-limited media). The released polysaccharides and proteins, the major components of extracellular polymeric substances (EPS), were measured to assess their potential effects on the interactions between QDs and T. pseudonana. The partitioning of QDs was analyzed by monitoring the concentration of Cd in different size fractions of the cultures (i.e., filtrate, <0.22 {mu}m and permeate, <3 kDa). We found that the Cd release of QDs in the T. pseudonana culture was dependent on the nutrient conditions and nature of QDs' surface coating. Both amine- and carboxyl-functionalized QDs exhibited higher rates of Cd release in N-limited cultures than in nutrient enriched cultures. The results also showed that amine-functionalized QDs aggregate with minimal Cd release, independent of nutrient conditions. Laser scanning confocal microscopy images confirmed that aggregates are composed of QDs and the culture matrix (EPS). In addition, both types of QDs showed limited toxicity to T. pseudonana. The increasing production of proteins induced by QDs suggests that extracellular proteins might be involved in the detoxification of QDs to T. pseudonana via the Cd release of QDs. Our results here demonstrated that EPS can play an ameliorating role in QD toxicity, fate and transport in the aquatic environment.

  5. Role of the Emp Pilus Subunits of Enterococcus faecium in Biofilm Formation, Adherence to Host Extracellular Matrix Components, and Experimental Infection.

    Science.gov (United States)

    Montealegre, Maria Camila; Singh, Kavindra V; Somarajan, Sudha R; Yadav, Puja; Chang, Chungyu; Spencer, Robert; Sillanpää, Jouko; Ton-That, Hung; Murray, Barbara E

    2016-05-01

    Enterococcus faecium is an important cause of hospital-associated infections, including urinary tract infections (UTIs), bacteremia, and infective endocarditis. Pili have been shown to play a role in the pathogenesis of Gram-positive bacteria, including E. faecium We previously demonstrated that a nonpiliated ΔempABC::cat derivative of E. faecium TX82 was attenuated in biofilm formation and in a UTI model. Here, we studied the contributions of the individual pilus subunits EmpA, EmpB, and EmpC to pilus architecture, biofilm formation, adherence to extracellular matrix (ECM) proteins, and infection. We identified EmpA as the tip of the pili and found that deletion of empA reduced biofilm formation to the same level as deletion of the empABC operon, a phenotype that was restored by reconstituting in situ the empA gene. Deletion of empB also caused a reduction in biofilm, while EmpC was found to be dispensable. Significant reductions in adherence to fibrinogen and collagen type I were observed with deletion of empA and empB, while deletion of empC had no adherence defect. Furthermore, we showed that each deletion mutant was significantly attenuated in comparison to the isogenic parental strain, TX82, in a mixed-inoculum UTI model (P infective endocarditis model (P = 0.0088). Our results indicate that EmpA and EmpB, but not EmpC, contribute to biofilm and adherence to ECM proteins; however, all the Emp pilins are important for E. faecium to cause infection in the urinary tract. PMID:26930703

  6. Immobilization of extracellular matrix on polymeric materials by carbon-negative-ion implantation

    Science.gov (United States)

    Tsuji, Hiroshi; Sommani, Piyanuch; Muto, Takashi; Utagawa, Yoshiyuki; Sakai, Shun; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo

    2005-08-01

    Effects of ion implantation into polystyrene (PS), silicone rubber (SR) and poly-L-lactic acid (PLA) have been investigated for immobilization of extracellular matrix. Carbon negative ions were implanted into PS and SR sheets at various energies between 5-30 keV and various doses between 1.0 × 1014-1.0 × 1016 ions/cm2. Contact angles of pure water on C-implanted surfaces of PS and SR were decreased as increase in ion energy and in dose due to formation of functional groups such as OH and C-O. Selective attachment of nerve cells was observed on C-implanted them at 10 keV and 3 × 1015 ions/cm2 after in vitro cell culture of nerve cells of PC-12 h. Neurite outgrowth also extended over the implanted area. After dipping in a serum medium and in a fibronectin solution for 2 h, the detection of N 1s electrons by X-ray induced photoelectron spectroscopic (XPS) revealed a significant distinction of protein adhesion on the implanted area. Thus, immobilization of proteins on surface is used for considering the selective cell-attachment. For PLA, the selective attachment of cells and protein depended on the implantation conditions.

  7. Polysaccharides serve as scaffold of biofilms formed by mucoid Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Yang, Liang; Hengzhuang, Wang; Wu, Hong;

    2012-01-01

    Chronic lung infection by mucoid Pseudomonas aeruginosa is one of the major pathologic features in patients with cystic fibrosis. Mucoid P. aeruginosa is notorious for its biofilm forming capability and resistance to immune attacks. In this study, the roles of extracellular polymeric substances f...

  8. Exposure of activated sludge to nanosilver and silver ion: Inhibitory effects and binding to the fractions of extracellular polymeric substances.

    Science.gov (United States)

    Geyik, Ayse Gul; Çeçen, Ferhan

    2016-07-01

    The main aim of the study was to determine the inhibitory effects of Ag(+) and AgNP (commercial and synthesized) on activated sludge by using respirometry. Along with this aim, also the changes taking place in extracellular polymeric substances (EPS) were studied. Additionally, the binding of Ag(+) or AgNP to the different fractions in EPS was assessed using voltammetry. Synthesized AgNP led to an obvious inhibition whereas commercial AgNP had no effect on activated sludge. For Ag(+) and AgNP, IC50 values were found between 2.3-3.0mg/L and 3.2-11.1mg/L, respectively. Thus, AgNP was less inhibitory than silver ion, since the release of free silver from AgNP was very small. The protein and carbohydrate content of EPS generally increased when Ag(+) was added. Both tightly- and loosely bound fractions in EPS could bind Ag(+) and AgNP. Silver binding capacity of EPS was seen to depend on the molecular weight of proteins. PMID:27060244

  9. The potential for hydrocarbon biodegradation and production of extracellular polymeric substances by aerobic bacteria isolated from a Brazilian petroleum reservoir.

    Science.gov (United States)

    Vasconcellos, S P; Dellagnezze, B M; Wieland, A; Klock, J-H; Santos Neto, E V; Marsaioli, A J; Oliveira, V M; Michaelis, W

    2011-06-01

    Extracellular polymeric substances (EPS) can contribute to the cellular degradation of hydrocarbons and have a huge potential for application in biotechnological processes, such as bioremediation and microbial enhanced oil recovery (MEOR). Four bacterial strains from a Brazilian petroleum reservoir were investigated for EPS production, emulsification ability and biodegradation activity when hydrocarbons were supplied as substrates for microbial growth. Two strains of Bacillus species had the highest EPS production when phenanthrene and n-octadecane were offered as carbon sources, either individually or in a mixture. While Pseudomonas sp. and Dietzia sp., the other two evaluated strains, had the highest hydrocarbon biodegradation indices, EPS production was not detected. Low EPS production may not necessarily be indicative of an absence of emulsifier activity, as indicated by the results of a surface tension reduction assay and emulsification indices for the strain of Dietzia sp. The combined results gathered in this work suggest that a microbial consortium consisting of bacteria with interdependent metabolisms could thrive in petroleum reservoirs, thus overcoming the limitations imposed on each individual species by the harsh conditions found in such environments. PMID:25187151

  10. Effects of acid/alkaline pretreatment and gamma-ray irradiation on extracellular polymeric substances from sewage sludge

    Science.gov (United States)

    Xie, Shuibo; Wu, Yuqi; Wang, Wentao; Wang, Jingsong; Luo, Zhiping; Li, Shiyou

    2014-04-01

    In order to investigate the mechanism of extracellular polymeric substances (EPS) influencing sludge characteristics, variations of extractable EPS from municipal sewage sludge by acid/alkaline pretreatment and gamma-ray irradiation were studied. The changes in constituents of EPS were analyzed by UV-vis spectra and SEM images. The effects of alkaline pretreatment and gamma-ray irradiation on the functional groups in EPS were investigated by Fourier transform infrared (FTIR) spectrometer. Results showed that the extractable EPS increased clearly with increasing irradiation dose from 0 to 15 kGy. UV-vis spectra indicated that a new absorption band from 240 nm to 300 nm existed in all irradiated samples, apart from acid condition. The results of FTIR spectroscopic analysis indicated that, irradiation influenced major functional groups in EPS, such as protein and polysaccharide, and these effects were clearer under alkaline condition. SEM images provided that after alkaline hydrolysis, gamma-ray irradiation was more effective in resulting in the sludge flocs and cells broken, compared with acid pretreatment (pH 2.50).

  11. Lack of influence of extracellular polymeric substances (EPS) level on hydroxyl radical mediated disinfection of Escherichia coli.

    Science.gov (United States)

    Gong, Amy S; Lanzl, Caylyn A; Cwiertny, David M; Walker, Sharon L

    2012-01-01

    Photolysis of nitrate, a prevalent constituent in agriculturally impacted waters, may influence pathogen attenuation in such systems through production of hydroxyl radical ((•)OH). This study focuses on the efficacy of (•)OH generated during nitrate photolysis in promoting E. coli die-off as a function of extracellular polymeric substances (EPS) coverage. EPS levels of four E. coli isolates were systematically altered through a sonication extraction method and photochemical batch experiments with a solar simulator examined isolate viability loss as a function of time in nitrate solutions. E. coli viability loss over time exhibited two regimes: an initial induction time, t(s), with little decay was followed by rapid exponential decay characterized by a first-order disinfection rate constant, k. Increasing steady-state (•)OH concentrations enhanced E. coli viability loss, increasing values of k and decreasing t(s) values, both of which were quantified with a multitarget bacterial disinfection model. Notably, at a given steady-state (•)OH concentration, values of t(s) and k were independent of EPS levels, nor did they vary among the different E. coli strains considered. Results herein show that while (•)OH generated via nitrate photolysis enhances rates of disinfection in surface water, the mechanism by which (•)OH kills E. coli is relatively insensitive to common bacterial variables. PMID:22082030

  12. [Extracellular polymeric substances (EPS) of white-rot fungus and their effects on Pb2+ adsorption by biomass].

    Science.gov (United States)

    Wang, Liang; Chen, Gui-Qiu; Zeng, Guang-Ming; Zhang, Wen-Juan; Fan, Jia-Qi; Shen, Guo-Li

    2011-03-01

    The extracellular polymeric substances (EPS) of P. chrysosporium and their effects on Pb2+ biosorption were studied. The product, composition of EPS and the effects on Pb2+ biosorption capacity were investigated in lab via flask experiments. The surface changes of mycelium before and after EPS extraction, before and after Pb2+ adsorption were researched by environment scanning electron microscope with energy-dispersive X-ray analysis (ESEM-EDX). Results showed that at 113 h, the maximum yield of EPS was 125.5 mg/L, which contained 46.6% - 54.3% of sugar and 31.2% - 35.1% of protein. The results of control test after EPS extraction displayed a decrease of biosorption capacity of Pb2+ among 2.12 mg/g (113 h) - 7.73 mg/g (41 h). The results of environment scanning electron microscope (ESEM) showed that the EPS extraction affected the cell wall of white-rot fungus and the Pb-contained globular particle after Pb2+ uptake, which was very useful for further study on heavy metal biosorption mechanism. PMID:21634177

  13. Effect of short-time aerobic digestion on bioflocculation of extracellular polymeric substances from waste activated sludge.

    Science.gov (United States)

    Zhang, Zhiqiang; Zhang, Jiao; Zhao, Jianfu; Xia, Siqing

    2015-02-01

    The effect of short-time aerobic digestion on bioflocculation of extracellular polymeric substances (EPSs) from waste activated sludge (WAS) was investigated. Bioflocculation of the EPS was found to be enhanced by 2∼6 h of WAS aerobic digestion under the conditions of natural sludge pH (about 7), high sludge concentration by gravity thickening, and dissolved oxygen of about 2 mg/L. With the same EPS extraction method, the total suspended solid content reduction of 0.20 and 0.36 g/L and the volatile suspended solid content reduction of 0.19 and 0.26 g/L were found for the WAS samples before and after aerobic digestion of 4 h. It indicates that more EPS is produced by short-time aerobic digestion of WAS. The scanning electron microscopy images of the WAS samples before and after aerobic digestion of 4 h showed that more EPS appeared on the surface of zoogloea by aerobic digestion, which reconfirmed that WAS aerobic digestion induced abundant formation of EPS. By WAS aerobic digestion, the flocculating rate of the EPS showed about 31 % growth, almost consistent with the growth of its yield (about 34 %). The EPSs obtained before and after the aerobic digestion presented nearly the same components, structures, and Fourier transform infrared spectra. These results revealed that short-time aerobic digestion of WAS enhanced the flocculation of the EPS by promoting its production. PMID:23771440

  14. Evaluation of the damage of cell wall and cell membrane for various extracellular polymeric substance extractions of activated sludge.

    Science.gov (United States)

    Guo, Xuesong; Liu, Junxin; Xiao, Benyi

    2014-10-20

    Extracellular polymeric substances (EPS) are susceptible to contamination by intracellular substances released during the extraction of EPS owing to the damage caused to microbial cell structures. The damage to cell walls and cell membranes in nine EPS extraction processes of activated sludge was evaluated in this study. The extraction of EPS (including proteins, carbohydrates and DNA) was the highest using the NaOH extraction method and the lowest using formaldehyde extraction. All nine EPS extraction methods in this study resulted in cell wall and membrane damage. The damage to cell walls, evaluated by 2-keto-3-deoxyoctonate (KDO) and N-acetylglucosamine content changes in extracted EPS, was the most significant in the NaOH extraction process. Formaldehyde extraction showed a similar extent of damage to cell walls to those detected in the control method (centrifugation), while those in the formaldehyde-NaOH and cation exchange resin extractions were slightly higher than those detected in the control. N-acetylglucosamine was more suitable than KDO for the evaluation of cell wall damage in the EPS extraction of activated sludge. The damage to cell membranes was characterized by two fluorochromes (propidium iodide and FITC Annexin V) with flow cytometry (FCM) measurement. The highest proportion of membrane-damaged cells was detected in NaOH extraction (26.54% of total cells) while membrane-damaged cells comprised 8.19% of total cells in the control. PMID:25173614

  15. Comparison of the characteristics of extracellular polymeric substances for two different extraction methods and sludge formation conditions.

    Science.gov (United States)

    Lee, Bo-Mi; Shin, Hyun-Sang; Hur, Jin

    2013-01-01

    The characteristics of extracellular polymeric substances (EPSs) were compared for two different extraction methods and dissimilar sludge formation conditions (aerobic versus anaerobic). The measured characteristics included specific ultraviolet absorbance (SUVA) values, fluorescence excitation-emission matrices, molecular weight distributions, Fourier transform infrared (FT-IR) spectra, and the binding affinities for pyrene and Hg(II). The analyses demonstrated that the EPS extracted using cation exchange resin (CER) were composed of more aromatic and more condensed structures with higher molecular weight than those using formaldehyde/NaOH. The FT-IR results further revealed that the EPS using CER contained relatively lower content of protein to carbohydrate and less acidic functional groups (i.e., COOH or OH groups). The observed differences between the two extraction methods were more pronounced for the EPS of anaerobic sludge compared to those of aerobic sludge. The extent of pyrene binding and the apparent stability constants for Hg(II) were very consistent with the implications from the previous EPS physicochemical characteristics. The highest extent of pyrene binding was observed for the EPS of anaerobic sludge using CER while no measurable Hg(II) stability constant was found for the same EPS sample. Our results demonstrated that the EPS characteristics including their binding affinities are likely strongly affected by the sludge formation conditions as well as the extraction methods although the latter produced more differences. PMID:22835866

  16. Influence of thermal extraction of extracellular polymeric substances on cell integrity in activated sludge and membrane bioreactor samples.

    Science.gov (United States)

    Antonelli, M; Bialek, K; Teli, A; Citterio, S; Malpei, F

    2011-02-01

    The influence of the soluble microbial products (SMP) and extracellular polymeric substances (EPS) heating extraction method on cell viability was evaluated for each phase of the protocol using epifluorescence microscopy. In addition, the effect of different centrifugation conditions (2700 g at 24 degrees C; 12,000 g at 4 degrees C) was also tested. Sludge samples were collected from a conventional wastewater treatment and a membrane bioreactor (MBR) pilot plant fed in parallel. Results show that different centrifugation parameters do not induce cell membrane damaging. Heating significantly influences membrane integrity; for instance, 75 to 90% of initial viable cells are damaged during this phase, possibly leading to the predominance of protein compared to carbohydrate content. The protein content in EPS is 60 to 88 mg bovine serum albumin/ g volatile suspended solids (VSS); higher values observed in MBR sludge samples are probably attributable to the different characteristics of microbial flocs and process operating parameters. Carbohydrate concentrations are not significantly different regardless of applied procedure and sludge type, and are between 10.4 to 11.6 mg glucose/g VSS. PMID:21449471

  17. Effects of acid/alkaline pretreatment and gamma-ray irradiation on extracellular polymeric substances from sewage sludge

    International Nuclear Information System (INIS)

    In order to investigate the mechanism of extracellular polymeric substances (EPS) influencing sludge characteristics, variations of extractable EPS from municipal sewage sludge by acid/alkaline pretreatment and gamma-ray irradiation were studied. The changes in constituents of EPS were analyzed by UV–vis spectra and SEM images. The effects of alkaline pretreatment and gamma-ray irradiation on the functional groups in EPS were investigated by Fourier transform infrared (FTIR) spectrometer. Results showed that the extractable EPS increased clearly with increasing irradiation dose from 0 to 15 kGy. UV–vis spectra indicated that a new absorption band from 240 nm to 300 nm existed in all irradiated samples, apart from acid condition. The results of FTIR spectroscopic analysis indicated that, irradiation influenced major functional groups in EPS, such as protein and polysaccharide, and these effects were clearer under alkaline condition. SEM images provided that after alkaline hydrolysis, gamma-ray irradiation was more effective in resulting in the sludge flocs and cells broken, compared with acid pretreatment (pH 2.50). - Highlights: • Effects of acid/alkaline pretreatment and gamma irradiation on EPS were examined. • Gamma irradiation and alkaline treatment generated remarkable synergistic effects. • The combined application could promote sludge disintegration and solubilization

  18. Optimization of Extracellular Polymeric Substances production using Azotobacter beijreinckii and Bacillus subtilis and its application in chromium (VI) removal.

    Science.gov (United States)

    Chug, Ravneet; Gour, Vinod Singh; Mathur, Shruti; Kothari, S L

    2016-08-01

    Extracellular Polymeric Substances (EPS) of microbial origin are complex biopolymers and vary greatly in their chemical composition. They have a great potential in chelation of metal ions. In this work, the effect of growth phase, temperature and pH on production of EPS by two bacteria Azotobacter beijreinckii and Bacillus subtilis have been studied. Extracted EPS was used to remove Cr(VI) from aqueous system. A. beijreinckii produced maximum EPS after 24h at pH 7 and temperature 30°C while B. subtilis produced maximum EPS after 96h at pH 7 and temperature 37°C. For an initial concentration of 10ppm, 26% and 48% Cr(VI) removal was recorded for EPS derived from A. beijreinckii and B. subtilis respectively. The presence of functional groups on EPS and their interaction with Cr(VI) was confirmed using Fourier-transform infrared (FTIR) spectra analysis. In both the bacteria, carboxyl and phosphate groups show involvement in metal binding. PMID:27183236

  19. Evaluation of the Influence of Extracellular Polymeric Substances on the Mass Transport of Substrate within Multispecies Biofilms

    Institute of Scientific and Technical Information of China (English)

    曹宏斌; 李鑫钢; 姜斌; 孙津生; 张懿

    2004-01-01

    A model, for evaluating the effect of porosity and volume fraction of extracellular polymeric substances (EPS) within multispecies biofilms on the effective diffusivity, is developed and experimentally validated, based on the extraction of EPS from intact biofilms. The amount of EPS in biofilms significantly affects the effective diffusivity. For biofilms with porosity of 77%—95% in the top layers and 54%—58% in the bottom layers, the value of De/Dw decreases from 0.52—0.83 in the top layers to 0.23—0.31 in the bottom layers. Generally, the effective diffusivity in the heterotrophic/autotrophic biofilms is slightly lower than that in the heterotrophic biofilms, due to the lower porosity in the heterotrophic/autotrophic biofilms.

  20. Strategies for antimicrobial drug delivery to biofilm.

    Science.gov (United States)

    Martin, Claire; Low, Wan Li; Gupta, Abhishek; Amin, Mohd Cairul Iqbal Mohd; Radecka, Iza; Britland, Stephen T; Raj, Prem; Kenward, Ken M A

    2015-01-01

    Biofilms are formed by the attachment of single or mixed microbial communities to a variety of biological and/or synthetic surfaces. Biofilm micro-organisms benefit from many advantages of the polymicrobial environment including increased resistance against antimicrobials and protection against the host organism's defence mechanisms. These benefits stem from a number of structural and physiological differences between planktonic and biofilm-resident microbes, but two main factors are the presence of extracellular polymeric substances (EPS) and quorum sensing communication. Once formed, biofilms begin to synthesise EPS, a complex viscous matrix composed of a variety of macromolecules including proteins, lipids and polysaccharides. In terms of drug delivery strategies, it is the EPS that presents the greatest barrier to diffusion for drug delivery systems and free antimicrobial agents alike. In addition to EPS synthesis, biofilm-based micro-organisms can also produce small, diffusible signalling molecules involved in cell density-dependent intercellular communication, or quorum sensing. Not only does quorum sensing allow microbes to detect critical cell density numbers, but it also permits co-ordinated behaviour within the biofilm, such as iron chelation and defensive antibiotic activities. Against this backdrop of microbial defence and cell density-specific communication, a variety of drug delivery systems have been developed to deliver antimicrobial agents and antibiotics to extracellular and/or intracellular targets, or more recently, to interfere with the specific mechanisms of quorum sensing. Successful delivery strategies have employed lipidic and polymeric-based formulations such as liposomes and cyclodextrins respectively, in addition to inorganic carriers e.g. metal nanoparticles. This review will examine a range of drug delivery systems and their application to biofilm delivery, as well as pharmaceutical formulations with innate antimicrobial properties

  1. Bacterial biofilms with emphasis on coagulase-negative staphylococci

    Directory of Open Access Journals (Sweden)

    A Oliveira

    2008-01-01

    Full Text Available In addition to their capacity to attach to surfaces, various groups of microorganisms also produce an extracellular polymeric substance known as "slime". This slime forms a thin layer around cells known as biofilm. Thus, biofilm structure comprises bacterial cells and an extracellular polymeric substance. It also presents a defined architecture, providing the microorganisms with an excellent protective environment and favoring the exchange of genetic material between cells as well as intercellular communication. The ability to produce biofilm is observed in a large group of bacteria, including coagulase-negative staphylococci (CNS which are the predominant microorganisms of normal skin flora and have been implicated as the causative agents of hospital infections. Bacteremia caused by these agents is common in immunodepressed persons, in patients with cancer, in adult and neonatal intensive care units (ICU and in patients using catheters or other prosthetic devices. The pathogenicity of CNS infections is probably related to the production of slime, which adheres preferentially to plastic and smooth surfaces, forming a biofilm that protects against attacks from the immune system and against antibiotic treatment, a fact hindering the eradication of these infections. The main objective of the present review was to describe basic and genetic aspects of biofilm formation and methods for its detection, with emphasis on biofilm creation by CNS and its relationship with diseases caused by these microorganisms which are becoming increasingly more frequent in the hospital environment.

  2. Molecular Control of Extracellular DNA Release and Degradation in Shewanella oneidensis MR-1 Biofilms: The Role of Phages and Nucleases

    OpenAIRE

    Binnenkade, Lucas

    2015-01-01

    Under natural conditions, most bacteria tend to form surface-associated multicellular communities that that are commonly referred to as biofilms. Biofilm formation is a complex and highly regulated process that enables bacteria to colonize almost every kind of surface and to resist diverse physical stresses, starvation, and antibiotics. Moreover, surface-associated growth increases virulence in many pathogenic bacteria and allows environmental bacteria to exploit surfaces as nutrient and ener...

  3. Photochemical Disinfection of Escherichia coli in the Presence of Natural Aquatic Sensitizers: Influence of Solution Chemistry and Extracellular Polymeric Substances

    OpenAIRE

    Gong, Amy Shin Hwei

    2011-01-01

    The objective of this dissertation study was to elucidate how the level and composition of bacterial surface extracellular polymeric substances (EPS) contribute to indirect photochemical disinfection processes. This study was developed to generate mechanistic information on EPS function in bacterial die-off under natural occurring sensitizing environments to inform future process design. Specifically, this researchfocused on whether EPS promotes or prohibits disinfection, or be able to facili...

  4. Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria

    OpenAIRE

    Pereira, Sara B.; Rita Mota; Vieira, Cristina P.; Jorge Vieira; Paula Tamagnini

    2015-01-01

    Many cyanobacteria produce extracellular polymeric substances (EPS) with particular characteristics (e.g. anionic nature and presence of sulfate) that make them suitable for industrial processes such as bioremediation of heavy metals or thickening, suspending or emulsifying agents. Nevertheless, their biosynthetic pathway(s) are still largely unknown, limiting their utilization. In this work, a phylum-wide analysis of genes/proteins putatively involved in the assembly and export of EPS in cya...

  5. Extracellular Polymeric Substances in Activated Sludge Flocs: Extraction, Identification, and Investigation of Their Link with Cations and Fate in Sludge Digestion

    OpenAIRE

    Park, Chul

    2007-01-01

    Extracellular polymeric substances (EPS) in activated sludge are known to account for the flocculent nature of activated sludge. Extensive studies over the last few decades have attempted to extract and characterize activated sludge EPS, but a lack of agreement between studies has also been quite common. The molecular makeup of EPS has, however, remained nearly unexplored, leaving their identity, function, and fate over various stages in the activated sludge system mainly unknown. In spite o...

  6. Continuous Drip Flow System to Develop Biofilm of E. faecalis under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Ana Maria Gonzalez

    2014-01-01

    Full Text Available Purpose. To evaluate a structurally mature E. faecalis biofilm developed under anaerobic/dynamic conditions in an in vitro system. Methods. An experimental device was developed using a continuous drip flow system designed to develop biofilm under anaerobic conditions. The inoculum was replaced every 24 hours with a fresh growth medium for up to 10 days to feed the system. Gram staining was done every 24 hours to control the microorganism purity. Biofilms developed under the system were evaluated under the scanning electron microscope (SEM. Results. SEM micrographs demonstrated mushroom-shaped structures, corresponding to a mature E. faecalis biofilm. In the mature biofilm bacterial cells are totally encased in a polymeric extracellular matrix. Conclusions. The proposed in vitro system model provides an additional useful tool to study the biofilm concept in endodontic microbiology, allowing for a better understanding of persistent root canal infections.

  7. Assessment of Biofilm Formation and Resistance to Imipenem and Ciprofloxacin among Clinical Isolates of Acinetobacter baumannii in Tehran

    OpenAIRE

    Abdi-Ali, Ahya; Hendiani, Saghar; Mohammadi, Parisa; Gharavi, Sara

    2014-01-01

    Background: Biofilms are communities of bacteria attached to the surfaces in an extracellular polymeric matrix which are associated with many chronic infections in humans. Acinetobacter spp. are emerging as a major cause of nosocomial infections and Acinetobacter baumannii is the predominant species associated with this kind of infections. Objectives: In the present study, the potential of biofilm formation of clinical isolates, A. baumannii, was assessed by using crystal violet method. Furth...

  8. The effects of three commonly used extraction methods on the redox properties of extracellular polymeric substances from activated sludge.

    Science.gov (United States)

    Lu, Qin; Chang, Ming; Yu, Zhen; Zhou, Shungui

    2015-01-01

    Recently, the redox properties of extracellular polymeric substances (EPS) have attracted the attention of scientists due to their associated environmental significance, such as organic pollutant (e.g. nitroaromatics and substituted nitrobenzenes) degradation and heavy metal (e.g. Cr(VI) and U(VI)) detoxification. Although the separation of EPS from bacterial cells is more often the first step in studies on EPS, and studies have demonstrated that extraction procedures can influence the sorption properties of EPS, few attempts have been made to investigate how separation methods affect the redox properties of the obtained EPS. In this study, three common extraction approaches, that is, centrifugation, formaldehyde+NaOH and ethylene diamine tetra-acetic acid (EDTA), were employed to extract EPS from activated sludge, and the obtained EPS were evaluated for their redox properties using electrochemical means, including cyclic voltammetry and chronoamperometry. In addition, spectroscopic techniques were utilized to explore the structural characteristics and composition of EPS. The results indicated that EPS extracted by EDTA clearly displayed reversible oxidation-reduction peaks in cyclic voltammograms and significantly higher electron-accepting capacity compared with EPS extracted using the other two approaches. Fourier transform infrared spectra and three-dimensional excitation-emission matrix spectra suggested that the EPS extracted with EDTA presented better redox properties because of the effective and efficient extraction of the humic substances, which are important components of the EPS of activated sludge. Therefore, extraction method has an impact on the composition and redox properties of EPS and should be chosen according to research purpose and EPS source. PMID:26027459

  9. Effects of cyanobacterial extracellular polymeric substances on the stability of ZnO nanoparticles in eutrophic shallow lakes

    International Nuclear Information System (INIS)

    Extracellular polymeric substances (EPS) from bloom-forming cyanobacteria exist ubiquitously in eutrophic waters, while their effects on the aggregation/stabilization of nanoparticles remain unknown. In this study, the stability of ZnO nanoparticles (ZNPs) upon adsorption of cyanobacterial EPS was investigated by using two dimensional ATR-FTIR correlation spectroscopy, XPS and DLVO theory. Results showed that the adsorption process followed the Langmuir isotherm and pseudo-second-order kinetics both for the total organic contents as well as the individual parallel factor-derived components. The physicochemical and spectroscopic techniques revealed the mechanism of both electrostatic attraction and surface complexation in EPS adsorption. Further analysis showed increased absorbance and turbidity of ZNPs solutions with EPS addition, demonstrating the enhanced colloidal stability. The DLVO theory explained that the increased energy barriers and values of second energy maximum were responsible for the stability enhancement. This study facilitates a deeper insight into the environmental behavior of nanoparticles in eutrophic algae-rich waters. - Highlights: • Effect of cyanobacterial EPS on ZNPs stability was studied by 2D ATR-FTIR COS, XPS and DLVO theory. • Both electrostatic attraction and surface complexation were involved in EPS adsorption on ZNPs. • The process of EPS adsorption enhanced the stability of ZNPs greatly. • Increased energy barrier and value of second energy maximum accounted for the enhanced stability. • ZNPs may exhibit higher potential toxicity in eutrophic algae-rich lakes than in oligotrophic waters. - ZNPs would exhibit higher stability in eutrophic algae-rich waters than in oligotrophic waters due to the adsorption of cyanobacterial EPS

  10. Characterization of copper binding properties of extracellular polymeric substances using a fluorescence quenching approach combining two-dimensional correlation spectroscopy

    Science.gov (United States)

    Hur, Jin; Lee, Bo-Mi

    2014-07-01

    Heterogeneous distributions of copper-binding sites within extracellular polymeric substances (EPS) were examined by using a fluorescence quenching titration method combined with two-dimensional correlation spectroscopy (2D-COS). The binding properties were compared for two types of the EPS extracted from the sludge formed under aerobic and anaerobic conditions. The quenching behaviors of the synchronous fluorescence spectra upon the addition of copper were similar for the two EPS. Protein-like fluorescence was substantially quenched by the copper addition while the changes of fulvic- and humic-like fluorescence were not obvious, suggesting that protein molecules were largely involved in binding copper for both EPS types. The logarithmic stability constants calculated at the wavelengths corresponding to the highest peaks were 4.73 and 4.22 for the aerobic and the anaerobic EPS, respectively. However, the 2D-COS revealed the possibility of the presence of multiple sites for copper binding within the protein-like fluorescent structures of the anaerobic EPS. No such heterogeneous distribution in the binding sites was found for the aerobic EPS. For the anaerobic EPS, the spectral change preferentially occurred in the wavelength order of 297 nm → 290 nm → 268 nm, exhibiting a range of the logarithmic values from 4.43 to 4.13. The extent of the binding affinities exactly followed the sequential orders interpreted from the 2D-COS results. Our study clearly demonstrated that fluorescence quenching combined with 2D-COS could be successfully used to provide a better understanding of the chemical heterogeneity associated with metal-binding sites within EPS.

  11. Effects of solution conditions on the physicochemical properties of stratification components of extracellular polymeric substances in anaerobic digested sludge.

    Science.gov (United States)

    Yuan, Dongqin; Wang, Yili

    2013-01-01

    The composition and effects of solution conditions on the physicochemical properties of the stratification components of extracellular polymeric substances (EPS) in anaerobic digested sludge were determined. The total EPS in anaerobic digested sludge were extracted by the cation exchange resin method. Another EPS extraction method, the centrifugation and sonication technique was employed to stratify the EPS into three fractions: slime, loosely bound (LB)-EPS, and tightly bound (TB)-EPS from the outside to the inside of the anaerobic digested sludge. Proteins and polysaccharides were dispersed uniformly across the different EPS fractions, and humic-like substances were mainly partitioned in the slime, with TB-EPS second. Protein was the major constituent of the LB-EPS and TB-EPS, and the corresponding ratios ranged from 54.0% to 65.6%. The hydrophobic part in the EPS chemical components was primarily comprised of protein and DNA, while the hydrophilic part was mainly composed of polysaccharide. In the slime, the hydrophobic values of several EPS chemical components (protein, polysaccharide, humic-like substances and DNA) were all below 50%. The protein/polysaccharide ratio had a significant influence on the Zeta potentials and isoelectric point values of the EPS: the greater the protein/polysaccharide ratio of the EPS was, the greater the Zeta potential and the higher the isoelectric point value were. All Zeta potentials of the EPS showed a decreasing trend with increasing pH. The corresponding isoelectric point values (pH) were 2.8 for total EPS, 2.2 for slime, 2.7 for LB-EPS, and 2.6 for TB-EPS. As the ionic strength increased, the Zeta potentials sharply increased and then gradually became constant without charge reversal. In addition, as the temperature increased (EPS decreased monotonically and then gradually became stable between 40 and 60 degrees C. PMID:23586310

  12. Step-by-step strategy for protein enrichment and proteome characterisation of extracellular polymeric substances in wastewater treatment systems.

    Science.gov (United States)

    Silva, Ana F; Carvalho, Gilda; Soares, Renata; Coelho, Ana V; Barreto Crespo, M Teresa

    2012-08-01

    Extracellular polymeric substances (EPS) are keys in biomass aggregation and settleability in wastewater treatment systems. In membrane bioreactors (MBR), EPS are an important factor as they are considered to be largely responsible for membrane fouling. Proteins were shown to be the major component of EPS produced by activated sludge and to be correlated with the properties of the sludge, like settling, hydrophobicity and cell aggregation. Previous EPS proteomic studies of activated sludge revealed several problems, like the interference of other EPS molecules in protein analysis. In this study, a successful strategy was outlined to identify the proteins from soluble and bound EPS extracted from activated sludge of a lab-scale MBR. EPS samples were first subjected to pre-concentration through lyophilisation, centrifugal ultrafiltration or concentration with a dialysis membrane coated by a highly absorbent powder of polyacrylate-polyalcohol, preceded or not by a dialysis step. The highest protein concentration factors were achieved with the highly absorbent powder method without previous dialysis step. Four protein precipitation methods were then tested: acetone, trichloroacetic acid (TCA), perchloric acid and a commercial kit. Protein profiles were compared in 4-12 % sodium dodecyl sulphate polyacrylamide gel electrophoresis gels. Both acetone and TCA should be applied for the highest coverage for soluble EPS proteins, whereas TCA was the best method for bound EPS proteins. All visible bands of selected profiles were subjected to mass spectrometry analysis. A high number of proteins (25-32 for soluble EPS and 17 for bound EPS) were identified. As a conclusion of this study, a workflow is proposed for the successful proteome characterisation of soluble and bound EPS from activated sludge samples. PMID:22622841

  13. Impact of certain household micropollutants on bacterial behavior. Toxicity tests/study of extracellular polymeric substances in sludge.

    Science.gov (United States)

    Pasquini, Laure; Merlin, Christophe; Hassenboehler, Lucille; Munoz, Jean-François; Pons, Marie-Noëlle; Görner, Tatiana

    2013-10-01

    The impact of eight household micropollutants (erythromycin, ofloxacin, ibuprofen, 4-nonylphenol, triclosan, sucralose, PFOA and PFOS (PFAAs)) on the laboratory bacterial strain Escherichia coli MG1655 and on activated sludge from an urban wastewater treatment plant was studied. Growth-based toxicity tests on E. coli were performed for each micropollutants. The effect of micropollutants on activated sludge (at concentrations usually measured in wastewater up to concentrations disturbing the bacterial growth of E. coli) was examined in batch reactors and by comparison to a control reactor (without micropollutants). The bound extracellular polymeric substances (EPS) secreted by the sludge were measured by size exclusion chromatography and their overexpression was considered as an indicator of bacteria sensitivity to environmental changes. The chemical oxygen demand (COD) and the ammonium concentration were monitored to evaluate the biomass ability to remove the macropollution. Some micropollutants induced an increase of bound EPS in activated sludge flocs at concentrations depending on the micropollutant: erythromycin from 100 μg/L, ofloxacin from 10 μg/L, triclosan from 0.5 μg/L, 4-nonylphenol from 5000 μg/L and PFAAs from 0.1 μg/L. This suggests that the biomass had to cope with new conditions. Moreover, at high concentrations of erythromycin (10 mg/L) and ibuprofen (5 mg/L) bacterial populations were no longer able to carry out the removal of macropollution. Ibuprofen induced a decrease of bound EPS at all the studied concentrations, probably reflecting a decrease of general bacterial activity. The biomass was not sensitive to sucralose in terms of EPS production, however at very high concentration (1 g/L) it inhibited the COD decrease. Micropollution removal was also assessed. Ibuprofen, erythromycin, ofloxacin, 4-nonylphenol and triclosan were removed from wastewater, mainly by biodegradation. Sucralose and PFOA were not removed from wastewater at all, and

  14. Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles.

    Science.gov (United States)

    Adeleye, Adeyemi S; Conway, Jon R; Perez, Thomas; Rutten, Paige; Keller, Arturo A

    2014-11-01

    The influence of phytoplankton-derived soluble extracellular polymeric substances (EPS), pH, and ionic strength (IS) on the dissolution, speciation, and stability of nano-CuO, nano-Cu, and Kocide (a micron sized Cu(OH)2-based fungicide) was investigated over 90 days. EPS improved the stability of commercial copper-based nanoparticles (CBNPs) in most conditions, in addition to influencing their dissolution. The dissolution rate was pH 4≫pH 7>pH 11. The presence of EPS correlated with higher dissolved Cu at pH 7 and 11, and lower dissolved Cu at pH 4. More dissolution was observed at higher IS (NaCl) due to complexation with Cl-. Dissolution of nano-CuO at pH 7 increased from 0.93% after 90 days (without EPS) to 2.01% (with 5 mg-C EPS/L) at 10 mM IS. Nano-CuO dissolved even more (2.42%) when IS was increased to 100 mM NaCl (with EPS). The ratio of free-Cu2+/total dissolved Cu decreased in the presence of EPS, or as pH and/or IS increased. On a Cu mass basis, Kocide had the highest dissolved and suspended Cu at pH 7. However, dissolution of nano-Cu resulted in a higher fraction of free Cu2+, which may make nano-Cu more toxic to pelagic organisms. PMID:25295836

  15. Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis

    Digital Repository Service at National Institute of Oceanography (India)

    Dusane, D.H.; Damare, S.R.; Nancharaiah, Y.V.; Ramaiah, N.; Venugopalan, V.P.; Kumar, A.R.; Zinjarde, S.S.

    and are particularly significant in the medical and industrial fields [1]. A variety of antimicrobial agents have been used to control biofilms. However, factors like lower efficacy and increased resistance of the biofilms towards these antimicrobial agents limit... with proteinase K (10 mg/ml; Sigma-Aldrich, USA) and trypsin (10 mg/ml; Sigma-Aldrich, USA) at 30uC for 1 h. The antimicrobial activity of the protein/ peptide in the supernatant was determined against the test cultures after inactivating the enzyme by incubating...

  16. Numerical Investigation of Evolution of the Biofilm Streamers

    Science.gov (United States)

    Karimi, Alireza

    2015-11-01

    Filamentous bacterial structures, called streamers, start to form when there is a sustained hydrodynamic flow over a biofilm. Recent experimental studies have reported formation of biofilm streamers in microfluidic chambers. It is speculated that development of an invisible array of extracellular polymeric substances (EPS) gives rise to aggregation of swimming cells and formation of bacterial filaments. In order to investigate this phenomenon, we employ a multiphase biofilm model which treats the bacterial cells, EPS, and background solvent as distinct phases of a complex fluid. Numerical simulations conducted using this theoretical framework reveals the impact of the viscoelasticity of the polymeric substances on the characteristics of the streamers and the complex interplay of shear flow and the bacterial filaments.

  17. Effect of glucose on Listeria monocytogenes biofilm formation, and assessment of the biofilm's sanitation tolerance.

    Science.gov (United States)

    Kyoui, Daisuke; Hirokawa, Eri; Takahashi, Hajime; Kuda, Takashi; Kimura, Bon

    2016-08-01

    Listeria monocytogenes is an important cause of human foodborne infections and its ability to form biofilms is a serious concern to the food industry. To reveal the effect of glucose conditions on biofilm formation of L. monocytogenes, 20 strains were investigated under three glucose conditions (0.1, 1.0, and 2.0% w v(-1)) by quantifying the number of cells in the biofilm and observing the biofilm structure after incubation for 24, 72, and 168 h. In addition, the biofilms were examined for their sensitivity to sodium hypochlorite. It was found that high concentrations of glucose reduced the number of viable cells in the biofilms and increased extracellular polymeric substance production. Moreover, biofilms formed at a glucose concentration of 1.0 or 2.0% were more resistant to sodium hypochlorite than those formed at a glucose concentration of 0.1%. This knowledge can be used to help design the most appropriate sanitation strategy. PMID:27353113

  18. Impact of biofilm on bacterial transport and deposition in porous media.

    Science.gov (United States)

    Bozorg, Ali; Gates, Ian D; Sen, Arindom

    2015-12-01

    Laboratory scale experiments were conducted to obtain insights into factors that influence bacterial transport and deposition in porous media. According to colloidal filtration theory, the removal efficiency of a filter medium is characterized by two main factors: collision efficiency and sticking efficiency. In the case of bacterial transport in porous media, bacteria attached to a solid surface can establish a thin layer of biofilm by excreting extracellular polymeric substances which can significantly influence both of these factors in a porous medium, and thus, affect the overall removal efficiency of the filter medium. However, such polymeric interactions in bacterial adhesion are not well understood and a method to calculate polymeric interactions is not yet available. Here, to determine how the migration of bacteria flowing within a porous medium is affected by the presence of surface-associated extracellular polymeric substances previously produced and deposited by the same bacterial species, a commonly used colloidal filtration model was applied to study transport and deposition of Pseudomonas fluorescens in small-scale columns packed with clean and biofilm coated glass beads. Bacterial recoveries were monitored in column effluents and used to quantify biofilm interactions and sticking efficiencies of the biofilm coated packed-beds. The results indicated that, under identical hydraulic conditions, the sticking efficiencies in packed-beds were improved consistently by 36% when covered by biofilm. PMID:26583740

  19. Impact of biofilm on bacterial transport and deposition in porous media

    Science.gov (United States)

    Bozorg, Ali; Gates, Ian D.; Sen, Arindom

    2015-12-01

    Laboratory scale experiments were conducted to obtain insights into factors that influence bacterial transport and deposition in porous media. According to colloidal filtration theory, the removal efficiency of a filter medium is characterized by two main factors: collision efficiency and sticking efficiency. In the case of bacterial transport in porous media, bacteria attached to a solid surface can establish a thin layer of biofilm by excreting extracellular polymeric substances which can significantly influence both of these factors in a porous medium, and thus, affect the overall removal efficiency of the filter medium. However, such polymeric interactions in bacterial adhesion are not well understood and a method to calculate polymeric interactions is not yet available. Here, to determine how the migration of bacteria flowing within a porous medium is affected by the presence of surface-associated extracellular polymeric substances previously produced and deposited by the same bacterial species, a commonly used colloidal filtration model was applied to study transport and deposition of Pseudomonas fluorescens in small-scale columns packed with clean and biofilm coated glass beads. Bacterial recoveries were monitored in column effluents and used to quantify biofilm interactions and sticking efficiencies of the biofilm coated packed-beds. The results indicated that, under identical hydraulic conditions, the sticking efficiencies in packed-beds were improved consistently by 36% when covered by biofilm.

  20. Persister cells in a biofilm treated with a biocide

    OpenAIRE

    Simões, Lúcia C.; Lemos, Madalena; Pereira, Ana M.; Ana C. Abreu; Saavedra, Maria J.; Simões, M.

    2011-01-01

    This study investigated the physiology and behaviour following treatment with ortho-phthalaldehyde (OPA), of Pseudomonas fluorescens in both the planktonic and sessile states. Steady-state biofilms and planktonic cells were collected from a bioreactor and their extracellular polymeric substances (EPS) were extracted using a method that did not destroy the cells. Cell structure and physiology after EPS extraction were compared in terms of respiratory activity, morphology, cell protein and poly...

  1. Scanning electron and atomic force microscopy investigation of extracellular polymeric substances, hematite and EPS-hematite colloids and aggregates

    Science.gov (United States)

    Wieczorek, Arkadiusz K.; Narvekar, Sneha; Totsche, Kai Uwe

    2013-04-01

    Natural colloids are involved in a multitude of biogeochemical and physicochemical processes in aqueous systems. However, the chemical composition, mineralogical diversity and morphological variability of natural colloids are the reasons for the difficulty to understand their formation, stability and mechanisms of interaction with other solutes. In this study we explore the effects of different amount of extracellular polymeric substances (EPS) of Bacillus subtilis on the aggregation and stability of hematite colloids. The hematite colloids were synthesized using Schwertmann and Cornell method [1], where ferric nitrite solution slowly drops into the boiling water. Bacillus subtilis EPS was obtained using Omoike and Chorover method [2], where EPS was precipitated from the supernatant solution by using three volumes of cold ethanol. Then the mixture was centrifuged and dialyzed to remove ethanol and residual media components and stored at -20C. Synthetic hematite was mixed with different amounts of EPS resulting in solutions with EPS/hematite ratios of 1:5, 1:2, 1:0.5 and 1:0.2. Droplets of the colloidal suspension were put on silicon wafer and subject to air drying. The wafers were then analyzed by Scanning Electron Microscopy (SEM) with energy-dispersive Xray spectroscopy and Atomic Force Microscopy (AFM). A control sample with pure synthetic hematite colloid was also prepared and analyzed. Pure hematite colloids form homogenic distribution of relatively small aggregates of 40 to 100 nm size. Theses aggregates loosely connect to each other creating skeletal or fisher-net like structures. The smallest amount of EPS results in coagulation of hematite in very large (up to 80 µm) islands/aggregates of tightly packed hematite nanoparticles. Adding EPS decreases the size of islands to the point where again only 40 to 100 nm size aggregates are visible, but they are strictly separated in comparison to the pure hematite colloid. Although separation of hematite aggregates

  2. Effects of solution conditions on the physicochemical properties of stratification components of extracellular polymeric substances in anaerobic digested sludge

    Institute of Scientific and Technical Information of China (English)

    Dongqin Yuan; Yili Wang

    2013-01-01

    The composition and effects of solution conditions on the physicochemical properties of the stratification components of extracellular polymeric substances (EPS) in anaerobic digested sludge were determined.The total EPS in anaerobic digested sludge were extracted by the cation exchange resin method.Another EPS extraction method,the centrifugation and sonication technique was employed to stratify the EPS into three fractions:slime,loosely bound (LB)-EPS,and tightly bound (TB)-EPS from the outside to the inside of the anaerobic digested sludge.Proteins and polysaccharides were dispersed uniformly across the different EPS fractions,and humic-like substances were mainly partitioned in the slime,with TB-EPS second.Protein was the major constituent of the LB-EPS and TB-EPS,and the corresponding ratios ranged from 54.0% to 65.6%.The hydrophobic part in the EPS chemical components was primarily comprised of protein and DNA,while the hydrophilic part was mainly composed of polysaccharide.In the slime,the hydrophobic values of several EPS chemical components (protein,polysaccharide,humic-like substances and DNA) were all below 50%.The protein/polysaccharide ratio had a significant influence on the Zeta potentials and isoelectric point values of the EPS:the greater the protein/polysaccharide ratio of the EPS was,the greater the Zeta potential and the higher the isoeleetric point value were.All Zeta potentials of the EPS showed a decreasing trend with increasing pH.The corresponding isoeleetric point values (pH) were 2.8 for total EPS,2.2 for slime,2.7 for LB-EPS,and 2.6 for TB-EPS.As the ionic strength increased,the Zeta potentials sharply increased and then gradually became constant without charge reversal.In addition,as the temperature increased (< 40℃),the apparent viscosity of the EPS decreased monotonically and then gradually became stable between 40 and 60℃.

  3. Impact of certain household micropollutants on bacterial behavior. Toxicity tests/study of extracellular polymeric substances in sludge

    Energy Technology Data Exchange (ETDEWEB)

    Pasquini, Laure, E-mail: laure.pasquini@univ-lorraine.fr [Laboratoire Environnement et Minéralurgie-CNRS, Université de Lorraine, 15 Avenue du Charmois, 54501 Vandoeuvre-lès-Nancy Cedex (France); Merlin, Christophe [Laboratoire de Chimie, Physique et Microbiologie pour l' Environnement-CNRS, Université de Lorraine, 15 Avenue du Charmois, 54501 Vandoeuvre-lès-Nancy Cedex (France); Hassenboehler, Lucille [Laboratoire Environnement et Minéralurgie-CNRS, Université de Lorraine, 15 Avenue du Charmois, 54501 Vandoeuvre-lès-Nancy Cedex (France); Munoz, Jean-François [Laboratoire d' Hydrologie de Nancy, ANSES, 40 rue Lionnois, 54000 Nancy (France); Pons, Marie-Noëlle [Laboratoire Réactions et Génie des Procédés-CNRS, Université de Lorraine, 1 Rue Grandville, 54001 Nancy Cedex (France); Görner, Tatiana [Laboratoire Environnement et Minéralurgie-CNRS, Université de Lorraine, 15 Avenue du Charmois, 54501 Vandoeuvre-lès-Nancy Cedex (France)

    2013-10-01

    The impact of eight household micropollutants (erythromycin, ofloxacin, ibuprofen, 4-nonylphenol, triclosan, sucralose, PFOA and PFOS (PFAAs)) on the laboratory bacterial strain Escherichia coli MG1655 and on activated sludge from an urban wastewater treatment plant was studied. Growth-based toxicity tests on E. coli were performed for each micropollutants. The effect of micropollutants on activated sludge (at concentrations usually measured in wastewater up to concentrations disturbing the bacterial growth of E. coli) was examined in batch reactors and by comparison to a control reactor (without micropollutants). The bound extracellular polymeric substances (EPS) secreted by the sludge were measured by size exclusion chromatography and their overexpression was considered as an indicator of bacteria sensitivity to environmental changes. The chemical oxygen demand (COD) and the ammonium concentration were monitored to evaluate the biomass ability to remove the macropollution. Some micropollutants induced an increase of bound EPS in activated sludge flocs at concentrations depending on the micropollutant: erythromycin from 100 μg/L, ofloxacin from 10 μg/L, triclosan from 0.5 μg/L, 4-nonylphenol from 5000 μg/L and PFAAs from 0.1 μg/L. This suggests that the biomass had to cope with new conditions. Moreover, at high concentrations of erythromycin (10 mg/L) and ibuprofen (5 mg/L) bacterial populations were no longer able to carry out the removal of macropollution. Ibuprofen induced a decrease of bound EPS at all the studied concentrations, probably reflecting a decrease of general bacterial activity. The biomass was not sensitive to sucralose in terms of EPS production, however at very high concentration (1 g/L) it inhibited the COD decrease. Micropollution removal was also assessed. Ibuprofen, erythromycin, ofloxacin, 4-nonylphenol and triclosan were removed from wastewater, mainly by biodegradation. Sucralose and PFOA were not removed from wastewater at all, and

  4. Impact of certain household micropollutants on bacterial behavior. Toxicity tests/study of extracellular polymeric substances in sludge

    International Nuclear Information System (INIS)

    The impact of eight household micropollutants (erythromycin, ofloxacin, ibuprofen, 4-nonylphenol, triclosan, sucralose, PFOA and PFOS (PFAAs)) on the laboratory bacterial strain Escherichia coli MG1655 and on activated sludge from an urban wastewater treatment plant was studied. Growth-based toxicity tests on E. coli were performed for each micropollutants. The effect of micropollutants on activated sludge (at concentrations usually measured in wastewater up to concentrations disturbing the bacterial growth of E. coli) was examined in batch reactors and by comparison to a control reactor (without micropollutants). The bound extracellular polymeric substances (EPS) secreted by the sludge were measured by size exclusion chromatography and their overexpression was considered as an indicator of bacteria sensitivity to environmental changes. The chemical oxygen demand (COD) and the ammonium concentration were monitored to evaluate the biomass ability to remove the macropollution. Some micropollutants induced an increase of bound EPS in activated sludge flocs at concentrations depending on the micropollutant: erythromycin from 100 μg/L, ofloxacin from 10 μg/L, triclosan from 0.5 μg/L, 4-nonylphenol from 5000 μg/L and PFAAs from 0.1 μg/L. This suggests that the biomass had to cope with new conditions. Moreover, at high concentrations of erythromycin (10 mg/L) and ibuprofen (5 mg/L) bacterial populations were no longer able to carry out the removal of macropollution. Ibuprofen induced a decrease of bound EPS at all the studied concentrations, probably reflecting a decrease of general bacterial activity. The biomass was not sensitive to sucralose in terms of EPS production, however at very high concentration (1 g/L) it inhibited the COD decrease. Micropollution removal was also assessed. Ibuprofen, erythromycin, ofloxacin, 4-nonylphenol and triclosan were removed from wastewater, mainly by biodegradation. Sucralose and PFOA were not removed from wastewater at all, and

  5. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms

    OpenAIRE

    Wozniak, Daniel J.; Wyckoff, Timna J. O.; Starkey, Melissa; Keyser, Rebecca; Azadi, Parastoo; O'Toole, George A.; Parsek, Matthew R.

    2003-01-01

    The bacterium Pseudomonas aeruginosa causes chronic respiratory infections in cystic fibrosis (CF) patients. Such infections are extremely difficult to control because the bacteria exhibit a biofilm-mode of growth, rendering P. aeruginosa resistant to antibiotics and phagocytic cells. During the course of infection, P. aeruginosa usually undergoes a phenotypic switch to a mucoid colony, which is characterized by the overproduction of the exopolysaccharide alginate. Alginate overproducti...

  6. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    KAUST Repository

    Zhang, Weipeng

    2013-11-11

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  7. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing

    Science.gov (United States)

    Chao, Yuanqing; Mao, Yanping; Wang, Zhiping; Zhang, Tong

    2015-06-01

    The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions.

  8. Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis.

    Directory of Open Access Journals (Sweden)

    Devendra H Dusane

    Full Text Available BACKGROUND: Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. METHODOLOGY/PRINCIPAL FINDINGS: B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275 derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. CONCLUSION/SIGNIFICANCE: We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent.

  9. Biofilm growth: a lattice Monte Carlo model

    Science.gov (United States)

    Tao, Yuguo; Slater, Gary

    2011-03-01

    Biofilms are complex colonies of bacteria that grow in contact with a wall, often in the presence of a flow. In the current work, biofilm growth is investigated using a new two-dimensional lattice Monte Carlo algorithm based on the Bond-Fluctuation Algorithm (BFA). One of the distinguishing characteristics of biofilms, the synthesis and physical properties of the extracellular polymeric substance (EPS) in which the cells are embedded, is explicitly taken into account. Cells are modelled as autonomous closed loops with well-defined mechanical and thermodynamic properties, while the EPS is modelled as flexible polymeric chains. This BFA model allows us to add biologically relevant features such as: the uptake of nutrients; cell growth, division and death; the production of EPS; cell maintenance and hibernation; the generation of waste and the impact of toxic molecules; cell mutation and evolution; cell motility. By tuning the structural, interactional and morphologic parameters of the model, the cell shapes as well as the growth and maturation of various types of biofilm colonies can be controlled.

  10. Bacterial biofilm mechanical properties persist upon antibiotic treatment and survive cell death

    International Nuclear Information System (INIS)

    Bacteria living on surfaces form heterogeneous three-dimensional consortia known as biofilms, where they exhibit many specific properties one of which is an increased tolerance to antibiotics. Biofilms are maintained by a polymeric network and display physical properties similar to that of complex fluids. In this work, we address the question of the impact of antibiotic treatment on the physical properties of biofilms based on recently developed tools enabling the in situ mapping of biofilm local mechanical properties at the micron scale. This approach takes into account the material heterogeneity and reveals the spatial distribution of all the small changes that may occur in the structure. With an Escherichia coli biofilm, we demonstrate using in situ fluorescent labeling that the two antibiotics ofloxacin and ticarcillin—targeting DNA replication and membrane assembly, respectively—induced no detectable alteration of the biofilm mechanical properties while they killed the vast majority of the cells. In parallel, we show that a proteolytic enzyme that cleaves extracellular proteins into short peptides, but does not alter bacterial viability in the biofilm, clearly affects the mechanical properties of the biofilm structure, inducing a significant increase of the material compliance. We conclude that conventional biofilm control strategy relying on the use of biocides targeting cells is missing a key target since biofilm structural integrity is preserved. This is expected to efficiently promote biofilm resilience, especially in the presence of persister cells. In contrast, the targeting of polymer network cross-links—among which extracellular proteins emerge as major players—offers a promising route for the development of rational multi-target strategies to fight against biofilms. (paper)

  11. Bacterial Biofilm: Its Composition, Formation and Role in Human Infections

    Directory of Open Access Journals (Sweden)

    Muhsin Jama

    2015-07-01

    Full Text Available Biofilm is an association of micro-organisms in which microbial cells adhere to each other on a living or non-living surfaces within a self-produced matrix of extracellular polymeric substance. Bacterial biofilm is infectious in nature and can results in nosocomial infections. According to National Institutes of Health (NIH about about 65% of all microbial infections, and 80% of all chronic infections are associated with biofilms. Biofilm formation is a multi-step process starting with attachment to a surface then formation of micro-colony that leads to the formation of three dimensional structure and finally ending with maturation followed by detachment. During biofilm formation many species of bacteria are able to communicate with one an-other through specific mechanism called quorum sensing. It is a system of stimulus to co-ordinate different gene expression. Bacterial biofilm is less accessible to antibiotics and human immune system and thus poses a big threat to public health because of its involvement in variety of infectious diseases. A greater understanding of bacterial biofilm is required for the de-velopment of novel, effective control strategies thus resulting improvement in patient management.

  12. Nutrient depletion in Bacillus subtilis biofilms triggers matrix production

    International Nuclear Information System (INIS)

    Many types of bacteria form colonies that grow into physically robust and strongly adhesive aggregates known as biofilms. A distinguishing characteristic of bacterial biofilms is an extracellular polymeric substance (EPS) matrix that encases the cells and provides physical integrity to the colony. The EPS matrix consists of a large amount of polysaccharide, as well as protein filaments, DNA and degraded cellular materials. The genetic pathways that control the transformation of a colony into a biofilm have been widely studied, and yield a spatiotemporal heterogeneity in EPS production. Spatial gradients in metabolites parallel this heterogeneity in EPS, but nutrient concentration as an underlying physiological initiator of EPS production has not been explored. Here, we study the role of nutrient depletion in EPS production in Bacillus subtilis biofilms. By monitoring simultaneously biofilm size and matrix production, we find that EPS production increases at a critical colony thickness that depends on the initial amount of carbon sources in the medium. Through studies of individual cells in liquid culture we find that EPS production can be triggered at the single-cell level by reducing nutrient concentration. To connect the single-cell assays with conditions in the biofilm, we calculate carbon concentration with a model for the reaction and diffusion of nutrients in the biofilm. This model predicts the relationship between the initial concentration of carbon and the thickness of the colony at the point of internal nutrient deprivation. (paper)

  13. Enzymes Enhance Biofilm Removal Efficiency of Cleaners.

    Science.gov (United States)

    Stiefel, Philipp; Mauerhofer, Stefan; Schneider, Jana; Maniura-Weber, Katharina; Rosenberg, Urs; Ren, Qun

    2016-06-01

    Efficient removal of biofilms from medical devices is a big challenge in health care to avoid hospital-acquired infections, especially from delicate devices like flexible endoscopes, which cannot be reprocessed using harsh chemicals or high temperatures. Therefore, milder solutions such as enzymatic cleaners have to be used, which need to be carefully developed to ensure efficacious performance. In vitro biofilm in a 96-well-plate system was used to select and optimize the formulation of novel enzymatic cleaners. Removal of the biofilm was quantified by crystal violet staining, while the disinfecting properties were evaluated by a BacTiter-Glo assay. The biofilm removal efficacy of the selected cleaner was further tested by using European standard (EN) for endoscope cleaning EN ISO 15883, and removal of artificial blood soil was investigated by treating TOSI (Test Object Surgical Instrument) cleaning indicators. Using the process described here, a novel enzymatic endoscope cleaner was developed, which removed 95% of Staphylococcus aureus and 90% of Pseudomonas aeruginosa biofilms in the 96-well plate system. With a >99% reduction of CFU and a >90% reduction of extracellular polymeric substances, this cleaner enabled subsequent complete disinfection and fulfilled acceptance criteria of EN ISO 15883. Furthermore, it efficiently removed blood soil and significantly outperformed comparable commercial products. The cleaning performance was stable even after storage of the cleaner for 6 months. It was demonstrated that incorporation of appropriate enzymes into the cleaner enhanced performance significantly. PMID:27044552

  14. Performance comparison of biofilm and suspended sludge from a sequencing batch biofilm reactor treating mariculture wastewater under oxytetracycline stress.

    Science.gov (United States)

    Zheng, Dong; Gao, Mengchun; Wang, Zhe; She, Zonglian; Jin, Chunji; Chang, Qingbo

    2016-09-01

    The performance, extracellular polymeric substances (EPS) and microbial community of a sequencing batch biofilm reactor (SBBR) were investigated in treating mariculture wastewater under oxytetracycline stress. The chemical oxygen demand and [Formula: see text]-N removal efficiencies of the SBBR decreased with the increase of oxytetracycline concentration, and no obvious [Formula: see text]-N and [Formula: see text]-N accumulation in the effluent appeared at less than 10 mg L(-1) oxytetracycline. The specific oxygen utilization rate of the suspended sludge was more than that of the biofilm at different oxytetracycline concentrations. The specific ammonium oxidation rate (SAOR) of the biofilm was more easily affected by oxytetracycline than that of the suspended sludge, whereas the effect of oxytetracycline on the specific nitrite oxidation rate (SNOR) of the biofilm was less than that of the suspended sludge. The specific nitrate reduction rate of both the biofilm and suspended sludge was higher than the sum of the SAOR and SNOR at different oxytetracycline concentrations. The protein and polysaccharide contents in the EPS of the biofilm and suspended sludge increased with the increase of oxytetracycline concentration. The appearance of oxytetracycline in the influent could affect the chemical composition of the loosely bound EPS and tightly bound EPS. The amino, carboxyl and hydroxyl groups might be involved with interaction between EPS and oxytetracycline. The denaturing gradient gel electrophoresis profiles indicated that the variation of oxytetracycline concentration in the influent could affect the microbial communities of both the biofilm and suspended sludge. PMID:26854088

  15. Single particle tracking reveals spatial and dynamic organization of the Escherichia coli biofilm matrix

    International Nuclear Information System (INIS)

    Biofilms are communities of surface-adherent bacteria surrounded by secreted polymers known as the extracellular polymeric substance. Biofilms are harmful in many industries, and thus it is of great interest to understand their mechanical properties and structure to determine ways to destabilize them. By performing single particle tracking with beads of varying surface functionalization it was found that charge interactions play a key role in mediating mobility within biofilms. With a combination of single particle tracking and microrheological concepts, it was found that Escherichia coli biofilms display height dependent charge density that evolves over time. Statistical analyses of bead trajectories and confocal microscopy showed inter-connecting micron scale channels that penetrate throughout the biofilm, which may be important for nutrient transfer through the system. This methodology provides significant insight into a particular biofilm system and can be applied to many others to provide comparisons of biofilm structure. The elucidation of structure provides evidence for the permeability of biofilms to microscale objects, and the ability of a biofilm to mature and change properties over time. (paper)

  16. Modern Technologies of Bacterial Biofilm Study

    Directory of Open Access Journals (Sweden)

    Chebotar I.V.

    2013-03-01

    Full Text Available The aim of the investigation was to estimate the availability of new biomedical technologies to identify bacterial biofilms and evaluate them on a staphylococcal biofilm model. Materials and Methods. We studied staphylococcal biofilms by mass spectrometry, laser scanning (confocal microscopy, scanning electron microscopy, enzymatic and oxidative destruction of extracellular biofilm matrix. Results. We demonstrated the capabilities of new biomedical technologies in identification of generic specificity of biofilm-forming staphylococcus, and in detection of the necessary characteristics of staphylococcal biofilm. Mass spectrometry enabled to identify the type of biofilm-forming staphylococcus (Staphylococcus aureus. Microscopic study using laser scanning confocal microscopic technique revealed 3-demensional organization typical of S. aureus biofilms. Scanning electron microscopy enabled to visualize the structures of extracellular S. aureus biofilm matrix. The extracellular matrix of the test biofilm was found to be formed of DNA-protein complexes.

  17. Bacteriophages and Biofilms

    OpenAIRE

    Harper, David R; Helena M. R. T. Parracho; James Walker; Richard Sharp; Gavin Hughes; Maria Werthén; Susan Lehman; Sandra Morales

    2014-01-01

    Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this commo...

  18. Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation.

    Science.gov (United States)

    Hou, Guangying; Hao, Xiaoyan; Zhang, Rui; Wang, Jing; Liu, Rutao; Liu, Chunguang

    2016-07-01

    Many research indicate antibiotics show adverse effect on methane fermentation, while few research focus on their effect on hydrogen fermentation. The present study aimed to gain insight of the effect of antibiotics on hydrogen fermentation with waste sludge and corn straw as substrate. For this purpose, tetracycline, as a model, was investigated with regard to tetracycline removal, hydrogen production, interaction with extracellular polymeric substances (EPSs) of substrate and volatile fatty acids (VFAs) on concentration and composition. Results show that tetracycline could be removed efficiently by hydrogen fermentation, and relative low-dose tetracycline (200mg/l) exposure affects little on hydrogen production. While tetracycline exposure could change hydrogen fermentation from butyric acid-type to propionic acid-type depending on tetracycline level. Based upon three-dimensional excitation-emission matrix fluorescence spectroscopy and UV-vis tetracycline changed the component and content of EPSs, and static quenching was the main mechanism between EPSs with tetracycline. PMID:27070285

  19. A comprehensive study into fouling properties of extracellular polymeric substance (EPS) extracted from bulk sludge and cake sludge in a mesophilic anaerobic membrane bioreactor.

    Science.gov (United States)

    Ding, Yi; Tian, Yu; Li, Zhipeng; Zuo, Wei; Zhang, Jun

    2015-09-01

    This study focused on the fouling behaviors of extracellular polymeric substances (EPS) in a mesophilic anaerobic membrane bioreactor (AnMBR) to obtain the relations of EPS specific constituents with membrane fouling. It was found that for the EPS extracted from bulk sludge, the LB-EPS induced the largest flux decline; however, for EPS extracted from cake sludge, the S-EPS caused the highest flux decline. The preferential rejection fraction by membrane further confirmed that the greater flux decline was exhibited with the higher percent rejection of EPS fractions. The adhesion and cohesion interactions of EPS fractions and membranes could explain the different rejection rates of the EPS components. The structural characteristics analysis indicated that the fouling layers of different EPS fractions with the greater loss of filterability had the smaller porosity. Further investigations demonstrated that these changes could be attributed to the different content of HPO-N in EPS fractions. PMID:26022972

  20. Characterization of biofilm formation by Borrelia burgdorferi in vitro.

    Directory of Open Access Journals (Sweden)

    Eva Sapi

    Full Text Available Borrelia burgdorferi, the causative agent of Lyme disease, has long been known to be capable of forming aggregates and colonies. It was recently demonstrated that Borrelia burgdorferi aggregate formation dramatically changes the in vitro response to hostile environments by this pathogen. In this study, we investigated the hypothesis that these aggregates are indeed biofilms, structures whose resistance to unfavorable conditions are well documented. We studied Borrelia burgdorferi for several known hallmark features of biofilm, including structural rearrangements in the aggregates, variations in development on various substrate matrices and secretion of a protective extracellular polymeric substance (EPS matrix using several modes of microscopic, cell and molecular biology techniques. The atomic force microscopic results provided evidence that multilevel rearrangements take place at different stages of aggregate development, producing a complex, continuously rearranging structure. Our results also demonstrated that Borrelia burgdorferi is capable of developing aggregates on different abiotic and biotic substrates, and is also capable of forming floating aggregates. Analyzing the extracellular substance of the aggregates for potential exopolysaccharides revealed the existence of both sulfated and non-sulfated/carboxylated substrates, predominately composed of an alginate with calcium and extracellular DNA present. In summary, we have found substantial evidence that Borrelia burgdorferi is capable of forming biofilm in vitro. Biofilm formation by Borrelia species might play an important role in their survival in diverse environmental conditions by providing refuge to individual cells.

  1. Mucosal biofilms of Candida albicans

    OpenAIRE

    Ganguly, Shantanu; Mitchell, Aaron P.

    2011-01-01

    Biofilms are microbial communities that form on surfaces and are embedded in an extracellular matrix. C. albicans forms pathogenic mucosal biofilms that are evoked by changes in host immunity or mucosal ecology. Mucosal surfaces are inhabited by many microbial species; hence these biofilms are polymicrobial. Several recent studies have applied paradigms of biofilm analysis to study mucosal C. albicans infections. These studies reveal that the Bcr1 transcription factor is a master regulator of...

  2. Evaluation of efficacy of commercial denture cleansing agents to reduce the fungal biofilm activity from heat polymerized denture acrylic resin: An in vitro study

    Directory of Open Access Journals (Sweden)

    Mithilesh M Dhamande

    2012-01-01

    Full Text Available Aims: To compare and evaluate Candida removing effects of three most commonly available varieties of commercial denture cleansers from heat polymerized acrylic resins. To compare and evaluate Candida lytic effects of denture cleansers. To assess the effect of time on ability of denture cleansers in reducing Candidal biofilm. Materials and Methods: A specially designed metal mold was fabricated to obtain wax plates of uniform dimensions which were used to fabricate heat cure acrylic resin plates. A square-shaped window of dimension 15 mm and thickness of 1.5 mm was provided in metal mould to simulate thickness of denture base. All samples used in this study were prepared using this mould. Candida albicans colonies were then cultured on this acrylic resin plates by colonization assay. Yeast removing test for samples was performed using microscope and yeast lytic test was performed using photo colorimeter. Results: Denture cleanser D2 showed the highest Candida removing activity when compared with cleansers D1, D3, and control solution. Denture cleansers D2 showed increased yeast lytic ability when compared with denture cleansers D1, D3, and control solution. More time span shared a definite influence on yeast lytic ability of denture cleansers. Conclusions: The effect of cleansing agents on removal of colonized yeasts particularly fungal biofilm from acrylic resins was assessed for clinical implications. The observation indicated superior performance of cleanser D2 when compared with D1 and D3 even though they all belong to same chemical group of alkaline peroxide. The increased effectiveness may be due to presence of sodium lauryl sulphate in formula of D2.

  3. [Recurrent cystitis and vaginitis: role of biofilms and persister cells. From pathophysiology to new therapeutic strategies].

    Science.gov (United States)

    Graziottin, A; Zanello, P P; D'Errico, G

    2014-10-01

    Recurrent vaginitis and cystitis are a daily challenge for the woman and the physician. The recurrence worsens the symptoms' severity, increases comorbidities, both pelvic (provoked vestibulodynia, bladder pain syndrome, levator ani hyperactivity, introital dyspareunia, obstructive constipation, chronic pelvic pain) and cerebral (neuroinflammation and depression), increases health costs, worsens the quality of life. Antibiotics increase the risk of bacterial resistences and devastate the ecosystems: intestinal, vaginal and mucocutaneous. Pathogenic biofilms are the (still) neglected etiology of recurrences. Biofilms are structured communities of bacteria and yeasts, protected by a self-produced polymeric matrix adherent to a living or inert structures, such as medical devices. Biofims can be intra or extracellular. Pathogens live in a resting state in the deep biofilm layers as "persister cells", resistant to antibiotics and host defences and ready to re-attack the host. The paper updates the evidence on biofilms and introduces new non-antibiotic strategies of preventing and modulating recurrent vaginitis and cystitis. PMID:25245998

  4. BioMig--A Method to Evaluate the Potential Release of Compounds from and the Formation of Biofilms on Polymeric Materials in Contact with Drinking Water.

    Science.gov (United States)

    Wen, Gang; Kötzsch, Stefan; Vital, Marius; Egli, Thomas; Ma, Jun

    2015-10-01

    In contact with water, polymeric materials (plastics) release compounds that can support suspended microbial growth and/or biofilm formation. The different methods presently used in the European Union to test plastics take 7-16 weeks to obtain a result. In industry, this delays material and product development as well as quality testing. Therefore, we developed a method package (BioMig) that allows testing of plastic materials with high reproducibility in 2 weeks for their potential biofilm (or biomass) formation and release of carbonaceous migration products when in contact with water. BioMig consists of (i) an extended migration potential test (seven times for 24 h at 60 °C), based on the European norm EN 12873-1 and the German UBA (Umweltbundesamt) guideline, and (ii) a biomass formation potential (BFP) test (14 days at 30 °C), which is a modified version of the Dutch biofilm production potential test. In the migration potential test, the amount of carbon released into water by the specimen is quantified by monitoring total and assimilable organic carbon over time; furthermore, the modular design of the test also allows one to assess additional parameters such as pathogen growth potential on the migration water or toxic effects on microbial growth. Flow cytometry (FCM)-based total cell counting (TCC) is used to quantify microbial growth in suspension and on surfaces after removal with mild sonication without affecting cell integrity. The BFP test allows one to determine both the planktonic (pBFP) and the sessile (sBFP) cell fractions. The sBFP consists of surface-attached cells after removal (>90% efficiency). Results for four standard test materials (PE-Xa, PE-Xc, EPDM 2%, and EPDM 20%), plus positive (PVC-P) and negative (glass) controls are presented. FCM-based TCC demonstrates that the release of growth-supporting carbon and proliferation of surface-attached cells stops increasing and stabilizes after 14 days of incubation; this allows for faster

  5. Biofilms in wounds: a review of present knowledge.

    Science.gov (United States)

    Cooper, R A; Bjarnsholt, T; Alhede, M

    2014-11-01

    Following confirmation of the presence of biofilms in chronic wounds, the term biofilm became a buzzword within the wound healing community. For more than a century pathogens have been successfully isolated and identified from wound specimens using techniques that were devised in the nineteenth century by Louis Pasteur and Robert Koch. Although this approach still provides valuable information with which to help diagnose acute infections and to select appropriate antibiotic therapies, it is evident that those organisms isolated from clinical specimens with the conditions normally used in diagnostic laboratories are mainly in a planktonic form that is unrepresentative of the way in which most microbial species exist naturally. Usually microbial species adhere to each other, as well as to living and non-living surfaces, where they form complex communities surrounded by collectively secreted extracellular polymeric substances (EPS). Cells within such aggregations (or biofilms) display varying physiological and metabolic properties that are distinct from those of planktonic cells, and which contribute to their persistence. There are many factors that influence healing in wounds and the discovery of biofilms in chronic wounds has provided new insight into the reasons why. Increased tolerance of biofilms to antimicrobial agents explains the limited efficacy of antimicrobial agents in chronic wounds and illustrates the need to develop new management strategies. This review aims to explain the nature of biofilms, with a view to explaining their impact on wounds. PMID:25375405

  6. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.

  7. Zinc sorption by a bacterial biofilm.

    Science.gov (United States)

    Toner, Brandy; Manceau, Alain; Marcus, Matthew A; Millet, Dylan B; Sposito, Garrison

    2005-11-01

    Microbial biofilms are present in soils, sediments, and natural waters. They contain bioorganic metal-complexing functional groups and are thought to play an important role in metal cycling in natural and contaminated environments. In this study, the metal-complexing functional groups present within a suspension of bacterial cell aggregates embedded in extracellular polymeric substances (EPS) were identified in Zn adsorption experiments conducted at pH 6.9 with the freshwater and soil bacterium Pseudomonas putida. The adsorption data were fit with the van Bemmelen-Freundlich model. The molecular speciation of Zn within the biofilm was examined with Zn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The Zn EXAFS data were analyzed by shell-by-shell fitting and linear least-squares fitting with reference spectra. Zinc sorption to the biofilm was attributed to predominantly Zn--phosphoryl (85 +/- 10 mol %) complexes, with a smaller contribution to sorption from carboxyl-type complexes (23 +/- 10 mol %). The results of this study spectroscopically confirm the importance of phosphoryl functional groups in Zn sorption by a bacterial biofilm at neutral pH. PMID:16294865

  8. The effects of different seeding ratios on nitrification performance and biofilm formation in marine recirculating aquaculture system biofilter.

    Science.gov (United States)

    Zhu, Songming; Shen, Jiazheng; Ruan, Yunjie; Guo, Xishan; Ye, Zhangying; Deng, Yale; Shi, Mingming

    2016-07-01

    Rapid start-up of biofilter is essential for intensive marine recirculating aquaculture system (RAS) production. This study evaluated the nitrifying biofilm formation using mature biofilm as an inoculum to accelerate the process in RAS practice. The effects of inoculation ratios (0-15 %) on the reactor performance and biofilm structure were investigated. Complete nitrification was achieved rapidly in reactors with inoculated mature biofilm (even in 32 days when 15 % seeding ratio was applied). However, the growth of target biofilm on blank carrier was affected by the mature biofilm inoculated through substrate competition. The analysis of extracellular polymeric substance (EPS) and nitrification rates confirmed the divergence of biofilm cultivation among reactors. Besides, three N-acyl-homoserine lactones (AHLs) were found in the process, which might regulate the activities of biofilm. Multivariate analysis based on non-metric multidimensional scaling (nMDS) also indicated the great roles of AHLs and substrate supply which might fundamentally determine varied cultivation performance on target biofilm. PMID:27068911

  9. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display a...... remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because the...... use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  10. Influence of uranium (VI) on the metabolic activity of stable multispecies biofilms studied by oxygen microsensors and fluorescence microscopy

    Science.gov (United States)

    Krawczyk-Bärsch, Evelyn; Grossmann, Kay; Arnold, Thuro; Hofmann, Susann; Wobus, Axel

    2008-11-01

    The effect of uranium added in ecologically relevant concentrations (1 × 10 -5 and 1 × 10 -6 M) to stable multispecies biofilms was studied by electrochemical oxygen microsensors with tip diameters of 10 μm and by confocal laser fluorescence microscopy (CLSM). The microsensor profile measurements in the stable multispecies biofilms exposed to uranium showed that the oxygen concentration decreased faster with increasing biofilm depth compared to the uranium free biofilms. In the uranium containing biofilms, the oxygen consumption, calculated from the steady-state microprofiles, showed high consumption rates of up to 61.7 nmol cm -3 s -1 in the top layer (0-70 μm) and much lower consumption rates in the lower zone of the biofilms. Staining experiments with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and 4,6-diamidino-2-phenylindole (DAPI) confirmed the high respiratory activities of the bacteria in the upper layer. Analysis of the amplified 16S rRNA gene fragments showed that the addition of uranium in ecologically relevant concentrations did not change the bacterial diversity in the stable multispecies biofilms and is therefore not responsible for the different oxygen profiles in the biofilms. The fast decrease in the oxygen concentrations in the biofilm profiles showed that the bacteria in the top region of the biofilms, i.e., the metabolically most active biofilm zone, battle the toxic effects of aqueous uranium with an increased respiratory activity. This increased respiratory activity results in O 2 depleted zones closer to the biofilm/air interface which may trigger uranium redox processes, since suitable redox partners, e.g., extracellular polymeric substance (EPS) and other organics (e.g., metabolites), are sufficiently available in the biofilm porewaters. Such redox reactions may lead to precipitation of uranium (IV) solids and consequently to a removal of uranium from the aqueous phase.

  11. Clay-Bacteria Systems and Biofilm Production

    Science.gov (United States)

    Steiner, J.; Alimova, A.; Katz, A.; Steiner, N.; Rudolph, E.; Gottlieb, P.

    2007-12-01

    Soil clots and the aerosol transport of bacteria and spores are promoted by the formation of biofilms (bacteria cells in an extracellular polymeric matrix). Biofilms protect microorganisms by promoting adhesion to both organic and inorganic surfaces. Time series experiments on bacteria-clay suspensions demonstrate that biofilm growth is catalyzed by the presence of hectorite in minimal growth media for the studied species: Gram negatives (Pseudomonas syringae and Escherichia coli,) and Gram positives (Staphylococcus aureus and Bacillus subtilis). Soil organisms (P. syringae, B. subtilis) and organisms found in the human population (E. coli, S. aureus) are both used to demonstrate the general applicability of clay involvement. Fluorescent images of the biofilms are acquired by staining with propidium iodide, a component of the BacLightTM Live/Dead bacterial viability staining kit (Molecular Probes, Eugene, OR). The evolving polysaccharide-rich biofilm reacts with the clay interlayer site causing a complex substitution of the two-water hectorite interlayer with polysaccharide. The result is often a three-peak composite of the (001) x-ray diffraction maxima resulting from polysaccharide-expanded clays and an organic-driven contraction of a subset of the clays in the reaction medium. X-ray diffractograms reveal that the expanded set creates a broad maximum with clay subsets at 1.84 nm and 1.41 nm interlayer spacings as approximated by a least squares double Lorentzian fit, and a smaller shoulder at larger 2q, deriving from a contraction of the interlayer spacing. Washing with chlorox removes organic material from the contracted clay and creates a 1-water hectorite single peak in place of the double peak. The clay response can be used as an indirect indicator of biofilm in an environmental system.

  12. A new classification paradigm of extracellular polymeric substances (EPS) in activated sludge: separation and characterization of exopolymers between floc level and microcolony level.

    Science.gov (United States)

    Wang, Bin-Bin; Chang, Qing; Peng, Dang-Cong; Hou, Yin-Ping; Li, Hui-Juan; Pei, Li-Ying

    2014-11-01

    Extracellular polymeric substances (EPS) play a crucial role in the formation of activated sludge flocs. However, until now, the EPS are rather classified by the method used for extraction than by a theoretical consideration of their function and composition. In this paper, a new classification paradigm of EPS was proposed, which offered a novel approach to identify the role of EPS in the formation of activated sludge flocs. The current study gave an exploration to distinguish the EPS in the floc level (extra-microcolony polymers, EMPS) and in the microcolony level (extra-cellular polymers, ECPS). It was found that cation exchange resin treatment is efficient to disintegrate the flocs for EMPS extraction, however, inefficient to disaggregate the microcolonies for ECPS harvesting. A two-steps extraction strategy (cation exchange resin treatment followed by ultrasonication-high speed centrifugation treatment) was suggested to separate these two types of EPS in activated sludge flocs and the physicochemical characteristics of EMPS and ECPS were compared. The protein/polysaccharide ratio of ECPS was higher than that of EMPS and the molecular weight of proteins in EMPS and ECPS were found to be different. The ECPS contained higher molecular weight proteins and more hydrophobic substances than the EMPS contained. The result of excitation-emission matrix fluorescence spectroscopy analysis also showed that the EMPS and the ECPS have different fluorescent expressions and the components of EMPS were more diverse than that of ECPS. All results reported herein demonstrated that two different types of exopolymers exist in the activated sludge flocs and the inter-particle forces for aggregation of activated sludge flocs are not identical between the floc level and the microcolony level. It suggested that cation bridging interactions are more crucial in floc level flocculation, while the entanglement and hydrophobic interactions are more important in microcolony level cohesion

  13. Comparison of RNA extraction methods from biofilm samples of Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    França Angela

    2011-12-01

    Full Text Available Abstract Background Microbial biofilms are communities of bacteria adhered to a surface and surrounded by an extracellular polymeric matrix. Biofilms have been associated with increased antibiotic resistance and tolerance to the immune system. Staphylococcus epidermidis is the major bacterial species found in biofilm-related infections on indwelling medical devices. Obtaining high quality mRNA from biofilms is crucial to validate the transcriptional measurements associated with the switching to the biofilm mode of growth. Therefore, we selected three commercially available RNA extraction kits with distinct characteristics, including those using silica membrane or organic extraction methods, and enzymatic or mechanical cell lysis, and evaluated the RNA quality obtained from two distinct S. epidermidis bacterial biofilms. Results RNA extracted using the different kits was evaluated for quantity, purity, integrity, and functionally. All kits were able to extract intact and functional total RNA from the biofilms generated from each S. epidermidis strain. The results demonstrated that the kit based on mechanical lysis and organic extraction (FastRNA® Pro Blue was the only one that was able to isolate pure and large quantities of RNA. Normalized expression of the icaA virulence gene showed that RNA extracted with PureLink™ had a significant lower concentration of icaA mRNA transcripts than the other kits tested. Conclusions When working with complex samples, such as biofilms, that contain a high content extracellular polysaccharide and proteins, special care should be taken when selecting the appropriate RNA extraction system, in order to obtain accurate, reproducible, and biologically significant results. Among the RNA extraction kits tested, FastRNA® Pro Blue was the best option for both S. epidermidis biofilms used.

  14. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching.

    Science.gov (United States)

    Mitsunobu, Satoshi; Zhu, Ming; Takeichi, Yasuo; Ohigashi, Takuji; Suga, Hiroki; Jinno, Muneaki; Makita, Hiroko; Sakata, Masahiro; Ono, Kanta; Mase, Kazuhiko; Takahashi, Yoshio

    2016-03-26

    We herein investigated the mechanisms underlying the contact leaching process in pyrite bioleaching by Acidithiobacillus ferrooxidans using scanning transmission X-ray microscopy (STXM)-based C and Fe near edge X-ray absorption fine structure (NEXAFS) analyses. The C NEXAFS analysis directly showed that attached A. ferrooxidans produces polysaccharide-abundant extracellular polymeric substances (EPS) at the cell-pyrite interface. Furthermore, by combining the C and Fe NEXAFS results, we detected significant amounts of Fe(II), in addition to Fe(III), in the interfacial EPS at the cell-pyrite interface. A probable explanation for the Fe(II) in detected EPS is the leaching of Fe(II) from the pyrite. The detection of Fe(II) also indicates that Fe(III) resulting from pyrite oxidation may effectively function as an oxidizing agent for pyrite at the cell-pyrite interface. Thus, our results imply that a key role of Fe(III) in EPS, in addition to its previously described role in the electrostatic attachment of the cell to pyrite, is enhancing pyrite dissolution. PMID:26947441

  15. Evaluation of the extracellular polymeric substances by confocal laser scanning microscopy in conventional activated sludge and advanced membrane bioreactors treating hospital wastewater.

    Science.gov (United States)

    Alrhmoun, Mousaab; Carrion, Claire; Casellas, Magali; Dagot, Christophe

    2014-01-01

    Confocal laser scanning microscopy (CLSM) combined with fluorescent viability indicators, was used in this study to investigate the impact of hospital wastewaters on floc structure and composition. In this work, three pilot-scale projects, two membrane bioreactors (MBRs) with a submerged or external membrane bioreactor and a conventional activated sludge, were installed and operated for 65 days. They were fed with an influent sampled directly from the hospital drainage system, which contained micropollutant concentrations ranging from ng/L to mg/L. Samples of flocs were observed using CLSM to characterize the extracellular polymeric substances (EPS) stained with concanavalin A-tetra methylrhodamine and fluorescein isothiocyanate solution and combined with a fluorescent viability indicator (Baclight(®) Bacterial Viability Kit, Molecular Probes), allowing visualization of isolated stained cells in the three-dimensional structure of flocs (damaged or not). The results of CLSM of the sludge composition were compared with classical biochemical analysis of EPS made through a thermal extraction method. The results showed a good relation between these analyses and the statistical treatment of microscopic pictures. PMID:24901624

  16. Characterization of extracellular polymeric substances and microbial diversity in anaerobic co-digestion reactor treated sewage sludge with fat, oil, grease.

    Science.gov (United States)

    Yang, Zhao-Hui; Xu, Rui; Zheng, Yue; Chen, Ting; Zhao, Li-Jun; Li, Min

    2016-07-01

    Performance of co-digesters, treated of sewage sludge (SS) with fat, oil and grease (FOG), were conducted semi-continuously in two mesophilic reactors over 180days. Compared with SS mono-digestion, biogas production and TS removal efficiency of co-digestion were significantly enhanced up to 35% and 26% by adding upper limit FOG (60% on VS). Enhancement in co-digestion performance was also stimulated by the release of extracellular polymeric substances (EPS), which was increased 40% in both loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) than that of mono-digester. Based on high-throughput sequencing (HTS), analysis of microbial 16S rRNA gene comprehensively revealed the dynamic change of microbial community. Results showed that both bacterial and archaeal undergone an apparent succession with FOG addition, and large amount of consortium like Methanosaeta and N09 were involved in the process. Redundancy analysis showed the acetoclastic genera Methanosaeta distinctly related with biogas production and EPS degradation. PMID:27099941

  17. Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus Mucor sp. GY-1.

    Science.gov (United States)

    Wang, Zhenyu; Zheng, Guanyu; Zhou, Lixiang

    2015-09-01

    Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18 × 10(10) m · L/kg · g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100 μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1. PMID:26086084

  18. 胞外聚合物生物除磷研究进展%Research Progress of Extracellular Polymeric Substances in Biological Phosphorus Removal

    Institute of Scientific and Technical Information of China (English)

    卢升; 龙向宇; 周从直; 唐然

    2014-01-01

    胞外聚合物是活性污泥絮体的主要成分,在污水处理中发挥着重要作用。介绍了胞外聚合物的组成结构、提取和分析测定方法,在此基础上综述了胞外聚合物在生物除磷中的研究现状,指出了该领域存在的问题,并对胞外聚合物生物除磷技术进行了展望。%Extracellular polymeric substances (EPS),which plays an important role in wastewater treat-ment,is an essential constituent in the sludge flocculation.In this paper,the composition structure,extraction and determination methods of EPS were introduced.Further,the research progress and the existing problems of EPS in biological phosphorus removal were reviewed.The technology of EPS in biological phosphorus removal was prospected.

  19. Persister cells in a biofilm treated with a biocide.

    Science.gov (United States)

    Simões, Lúcia C; Lemos, Madalena; Pereira, Ana M; Abreu, Ana C; Saavedra, Maria J; Simões, Manuel

    2011-04-01

    This study investigated the physiology and behaviour following treatment with ortho-phthalaldehyde (OPA), of Pseudomonas fluorescens in both the planktonic and sessile states. Steady-state biofilms and planktonic cells were collected from a bioreactor and their extracellular polymeric substances (EPS) were extracted using a method that did not destroy the cells. Cell structure and physiology after EPS extraction were compared in terms of respiratory activity, morphology, cell protein and polysaccharide content, and expression of the outer membrane proteins (OMP). Significant differences were found between the physiological parameters analysed. Planktonic cells were more metabolically active, and contained greater amounts of proteins and polysaccharides than biofilm cells. Moreover, biofilm formation promoted the expression of distinct OMP. Additional experiments were performed with cells after EPS extraction in order to compare the susceptibility of planktonic and biofilm cells to OPA. Cells were completely inactivated after exposure to the biocide (minimum bactericidal concentration, MBC = 0.55 ± 0.20 mM for planktonic cells; MBC = 1.7 ± 0.30 mM for biofilm cells). After treatment, the potential of inactivated cells to recover from antimicrobial exposure was evaluated over time. Planktonic cells remained inactive over 48 h while cells from biofilms recovered 24 h after exposure to OPA, and the number of viable and culturable cells increased over time. The MBC of the recovered biofilm cells after a second exposure to OPA was 0.58 ± 0.40 mM, a concentration similar to the MBC of planktonic cells. This study demonstrates that persister cells may survive in biocide-treated biofilms, even in the absence of EPS. PMID:21547756

  20. The effects of silver nanoparticles on intact wastewater biofilms

    Directory of Open Access Journals (Sweden)

    Zhiya eSheng

    2015-07-01

    Full Text Available Silver nanoparticles (Ag-NPs have strong antibacterial properties, which may adversely affect biological wastewater treatment processes. To determine the overall effect, intact biofilm samples were collected from the rotating biological contactor (RBC at the local wastewater treatment plant and treated with 200 mg Ag/L Ag-NPs for 24 h. The biofilm uptake of Ag-NPs was monitored with transmission electron microscopy (TEM. Forty-five min after Ag-NP application, Ag-NPs were seen in the biofilm extracellular polymeric substances (EPS. After 24 h, Ag-NPs had entered certain microbial cells, while other cells contained no observable Ag-NPs. Some cells were dying after the uptake of Ag-NPs. However, there was no significant reduction in cultivable bacteria in the biofilms, based on heterotrophic plate counts (HPC. While this may indicate that wastewater biofilms are highly resistant to Ag-NPs, the HPC represents only a small portion of the total microbial population. To further investigate the effects of Ag-NPs, a GeoChip microarray was used to directly detect changes in the functional gene structure of the microbial community in the biofilm. A clear decrease (34.6% decrease in gene number in gene diversity was evident in the GeoChip analysis. However, the complete loss of any specific gene was rare. Some gene families present in both treated and untreated biofilms. However, this doesn’t necessarily mean that there was no change in these families. Signal intensity decreased in certain variants in each family while other variants increased to compensate the effects of Ag-NPs. The results indicate that Ag-NP treatment decreased microbial community diversity but did not significantly affect the microbial community function. This provides direct evidence for the functional redundancy of microbial community in engineered ecosystems such as wastewater biofilms.

  1. Analysis of Dissolved Organic Nutrients in the Interstitial Water of Natural Biofilms.

    Science.gov (United States)

    Tsuchiya, Yuki; Eda, Shima; Kiriyama, Chiho; Asada, Tomoya; Morisaki, Hisao

    2016-07-01

    In biofilms, the matrix of extracellular polymeric substances (EPSs) retains water in the interstitial region of the EPS. This interstitial water is the ambient environment for microorganisms in the biofilms. The nutrient condition in the interstitial water may affect microbial activity in the biofilms. In the present study, we measured the concentrations of dissolved organic nutrients, i.e., saccharides and proteins, contained in the interstitial water of biofilms formed on the stones. We also analyzed the molecular weight distribution, chemical species, and availability to bacteria of some saccharides in the interstitial water. Colorimetric assays showed that the concentrations of saccharides and proteins in the biofilm interstitial water were significantly higher (ca. 750 times) than those in the surrounding lake waters (p Bacterial growth and production of EPS occurred simultaneously with the decrease in the low molecular-weight saccharide concentrations when a small portion of biofilm suspension was inoculated to the collected interstitial water, suggesting that the dissolved saccharides in the interstitial water support bacterial growth and formation of biofilms. PMID:26961802

  2. Detection of Intracellular Adhesion (ica Gene and Biofilm Formation Staphylococcus aureus Isolates from Clinical Blood Cultures

    Directory of Open Access Journals (Sweden)

    Mohsen Mirzaee

    2015-10-01

    Full Text Available Background: In fact the biofilms are composed of bacterial cells living inmulticellular structures such as tissues and organs embedded within a self-produced matrix of extracellular polymeric substance (EPS. Ability to attach and biofilm formation are the most important virulence factors Staphylococcus aureus isolates. The aims of this study were to detect intracellular adhesion (ica locus and its relation to the biofilm formation phenotype in clinical isolates of S. aureus isolated from bloodcultures.Methods: A total of 31 clinical S. aureus isolates were collected from Loghman Hospital of Tehran, Iran. In vitro biofilm formation ability was determined by microliter tissue culture plates. All clinical isolates were examined for determination the ica locus by using PCR method.Results: Twelve (38.7% of the isolates were strong biofilm producers. The results showed that 18(80.6% of the isolates carried icaD gene, whereas the prevalence of icaA, icaB and icaC were 51.6%, 45.1% and 77.4% respectively.Conclusions: S. aureus clinical isolates have different ability to form biofilm. This may be caused by the differences in the expression of biofilm related genes, genetic make-up and physiological conditions.

  3. Is biofilm removal properly assessed? Comparison of different quantification methods in a 96-well plate system.

    Science.gov (United States)

    Stiefel, Philipp; Rosenberg, Urs; Schneider, Jana; Mauerhofer, Stefan; Maniura-Weber, Katharina; Ren, Qun

    2016-05-01

    Various methods have been reported to quantify total biofilm or different components of biofilm; however, these methods are often confusedly used, leading to discrepancies and misleading results. In this study, different methods for quantification of biofilm, including those for total biomass, total amount of bacterial cells, viable cell number, and amount of extracellular polymeric substances, were systematically compared in microtiter plates. To evaluate which method is suitable for assessment of biofilm removal and for bacterial killing, biofilm samples were treated with various cleaners possessing removing and/or killing capacities. It was found that most of the methods tested in this study in general exhibited high reproducibility and repeatability. Crystal Violet staining was a simple but reliable method for total biomass quantification. Total bacteria cell numbers could be reliably quantified by the fluorescent DNA-binding dye Acridine Orange. Viable cells could be quantified by either an ATP-based assay or a proliferation assay. Both of these viability methods showed a broad detection range and led to precise measurement. For quantification of proteins in the biofilm, staining with fluorescein isothiocyanate was most suitable. Furthermore, it was revealed that a combination of different methods is required to determine if a cleaner kills or removes biofilm. PMID:26923144

  4. Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm

    International Nuclear Information System (INIS)

    The significance of biofilm on the transport and deposition behaviors of ZnO nanoparticles were examined under a series of environmentally relevant ionic strength at two fluid velocities of 4 m-d−1 and 8 m-d−1. Biofilm enhanced nanoparticles retention in porous media under all examined conditions. The greater deposition was also observed in extracellular polymeric substances (EPS) coated surfaces by employment of quartz microbalance with dissipation (QCM-D) system. Derjaguin–Landau–Verwey–Overbeek (DLVO) failed to interpret more ZnO nanoparticles deposition on biofilm (EPS) coated silica surfaces. Chemical interaction and physical morphology of biofilm contributed to this greater deposition (retention). Biofilm affected the spacial distribution of retained ZnO nanoparticles as well. Relatively steeper slope of retained profiles were observed in the presence of biofilm, corresponding to the greater deviation from colloid filtration theory (CFT). Pore space constriction via biofilm induced more nanoparticle trapped in the column inlet, leading to greater deviations (σln kf) from the CFT. Highlights: ► Biofilm reduced the mobility of ZnO nanoparticles in column. ► DLVO and non-DLVO interactions contributed the more nanoparticles deposition. ► Biofilm also affected the spacial distribution of ZnO nanoparticles in column. ► Greater deviation from classic filtration theory was observed with biofilm. ► Physical structure of biofilm induced greater deviation from log-linear prediction. -- Biofilm enhanced ZnO nanoparticle deposition and altered spacial distribution in porous media

  5. In vitro anti-biofilm and anti-bacterial activity of Junceella juncea for its biomedical application

    Institute of Scientific and Technical Information of China (English)

    P Kumar; S Senthamil Selvi; M Govindaraju

    2012-01-01

    Objective: To investigate the anti-biofilm and anti-bacterial activity of Junceella juncea (J. juncea) against biofilm forming pathogenic strains. Methods: Gorgonians were extracted with methanol and analysed with fourier transform infrared spectroscopy. Biofilm forming pathogens were identified by Congo red agar supplemented with sucrose. A quantitative spectrophotometric method was used to monitor in vitro biofilm reduction by microtitre plate assay. Anti-bacterial activity of methanolic gorgonian extract (MGE) was carried out by disc diffusion method followed by calculating the percentage of increase with crude methanol (CM). Results: The presence of active functional group was exemplified by FT-IR spectroscopy. Dry, black, crystalline colonies confirm the production of extracellular polymeric substances responsible for biofilm formation in Congo red agar. MGE exhibited potential anti-biofilm activity against all tested bacterial strains. The anti-bacterial activity of methanolic extract was comparably higher in Salmonella typhii followed by Escherichia coli, Vibrio cholerae and Shigella flexneri. The overall percentage of increase was higher by 50.2%to CM. Conclusions:To conclude, anti-biofilm and anti-bacterial efficacy of J. juncea is impressive over biofilm producing pathogens and are good source for novel anti-bacterial compounds.

  6. Seasonal dynamics of extracellular polymeric substances (EPS) in surface sediments of a diatom-dominated intertidal mudflat (Marennes-Oléron, France)

    Science.gov (United States)

    Pierre, Guillaume; Zhao, Jean-Michel; Orvain, Francis; Dupuy, Christine; Klein, Géraldine L.; Graber, Marianne; Maugard, Thierry

    2014-09-01

    Numerous field-based investigations have highlighted that the production of extracellular polymeric substances (EPS) is physico-chemically and ecologically important for intertidal mudflats. EPS are largely secreted by marine benthic diatoms and their quantity and quality are environmental-dependant. This paper focused on the dynamic pathways, concentration rates and monosaccharides composition of colloidal, bound and residual carbohydrates extracted by using a cationic exchange resin from a diatom-dominated intertidal mudflat (Marennes-Oléron, France) during two different sampling periods: winter (February 2008) and summer (July 2008). A wide range of biotic and abiotic parameters were also studied to better understand the effect of environmental parameters, e.g., chlorophyll a, salinity, pore water amount, emersion time, luminosity, C:N ratio and tidal coefficient. Multiple colorimetric assays coupled to gas chromatographic analyses were carried out to perform the biochemical characterizations. Firstly, the quantity of carbohydrates produced during winter (5.28 μg·μg chl a- 1) was more important than during summer (2.04 μg·μg chl a- 1). Yet, more proteins were found during summer for the colloidal and bound fractions (0.73 and 1.04 μg·μg chl a- 1). Further investigations showed that the dynamic pathways were equivalent between winter and summer: bound carbohydrates (BC) quantities increased during the sediment emersion periods on the contrary to colloidal carbohydrates (CC) which tended to drop throughout the emersion time. The quality in monosaccharides was fraction-dependant, whatever the season. CC were always glucose-rich confirming their role of carbon source. BC were mainly composed of rhamnose whose the ratio increased during the emersion period, thus conferring adhesive properties to the extracellular matrix bounding diatoms cells. Residual carbohydrates (RC) were composed of various monosaccharides and a major increase of glucose content was

  7. A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms

    Directory of Open Access Journals (Sweden)

    Joaquín eCaro-Astorga

    2015-01-01

    Full Text Available Bacillus cereus is a bacterial pathogen that is responsible for many recurrent disease outbreaks due to food contamination. Spores and biofilms are considered the most important reservoirs of B. cereus in contaminated fresh vegetables and fruits. Biofilms are bacterial communities that are difficult to eradicate from biotic and abiotic surfaces because of their stable and extremely strong extracellular matrix. These extracellular matrixes contain exopolysaccharides, proteins, extracellular DNA, and other minor components. Although B. cereus can form biofilms, the bacterial features governing assembly of the protective extracellular matrix are not known. Using the well-studied bacterium B. subtilis as a model, we identified two genomic loci in B. cereus, which encodes two orthologs of the amyloid-like protein TasA of B. subtilis and a SipW signal peptidase. Deletion of this genomic region in B. cereus inhibited biofilm assembly; notably, mutation of the putative signal peptidase SipW caused the same phenotype. However, mutations in tasA or calY did not completely prevent biofilm formation; strains that were mutated for either of these genes formed phenotypically different surface attached biofilms. Electron microscopy studies revealed that TasA polymerizes to form long and abundant fibers on cell surfaces, whereas CalY does not aggregate similarly. Heterologous expression of this amyloid-like cassette in a B. subtilis strain lacking the factors required for the assembly of TasA amyloid-like fibers revealed i the involvement of this B. cereus genomic region in formation of the air-liquid interphase pellicles and ii the intrinsic ability of TasA to form fibers similar to the amyloid-like fibers produced by its B. subtilis ortholog.

  8. [THE ROLE OF ANTISEPTICS AND STRATEGY OF BIOFILM REMOVAL IN CHRONIC WOUND].

    Science.gov (United States)

    Kucisec-Tepes, Nastja

    2016-03-01

    Chronic wound does not heal within the expected time frame because it remains in the inflammation phase of healing. The reason for this is the presence of necrotic tissue and a large number of microorganisms, primarily bacteria that secrete the biofilm, along with ischemia, hypoxia and edema. Biofilm is present in 90% of chronic wounds and 6% of the acute ones. Biofilm is a corporative association of microbes which adhere to the surface of the wound, guided by quorum sensing molecules. The association is surrounded by a moisturizing matrix of extracellular polymeric substances (slime) which protect the microbes from the impact of antibiotics, antiseptics, macro-organism defense and stress. Biofilm is the primary cause of the wound chronicity because it causes permanent inflammation, delayed granulation tissue formation and migration of epithelium cells, thus providing a reservoir of microbes that lead to infection of the chronic wound. The aim of good clinical practice is to enable healing of a chronic wound within the expected time frame. In order to achieve this aim, it is necessary to reduce and thoroughly remove the biofilm from the wound and prevent its reappearance. This is achieved by the application of active anti-biofilm compounds and procedures that disintegrate the quorum sensing molecules, degrade the extracellular polymeric substances and block adherence to the surfaces. Recent researches have shown that the application of antiseptics is effective in the prevention of infection and is a support to targeted treatment. However, the fact is that only some antiseptics are applicable to chronic wounds and can have an impact on biofilms of the primary infective agents such as Staphylococcus spp., Streptococcus spp., and Pseudomonas aeruginosa. Effective antiseptics are octenidine dihydrochloride, polyhexanides, povidone and cadexomer iodine, nanocrystal silver and Manuka-type honey. Immobile biofilm is a persistent problem of chronic and chronic infected

  9. Biosorption of Pb (II) from aqueous solution by extracellular polymeric substances extracted from Klebsiella sp. J1: Adsorption behavior and mechanism assessment

    Science.gov (United States)

    Wei, Wei; Wang, Qilin; Li, Ang; Yang, Jixian; Ma, Fang; Pi, Shanshan; Wu, Dan

    2016-01-01

    The adsorption performance and mechanism of extracellular polymeric substances (EPS) extracted from Klebsiella sp. J1 for soluble Pb (II) were investigated. The maximum biosorption capacity of EPS for Pb (II) was found to be 99.5 mg g−1 at pH 6.0 and EPS concentration of 0.2 g/L. The data for adsorption process satisfactorily fitted to both Langmuir isotherm and pseudo-second order kinetic model. The mean free energy E and activation energy Ea were determined at 8.22– 8.98 kJ mol−1 and 42.46 kJ mol−1, respectively. The liquid-film diffusion step might be the rate-limiting step. The thermodynamic parameters (ΔGo, ΔHo and ΔSo) revealed that the adsorption process was spontaneous and exothermic under natural conditions. The interactions between EPS system and Pb (II) ions were investigated by qualitative analysis methods (i.e Zeta potential, FT-IR and EDAX). Based on the strong experimental evidence from the mass balance of the related elements participating in the sorption process, an ion exchange process was identified quantitatively as the major mechanism responsible for Pb (II) adsorption by EPS. Molar equivalents of both K+ and Mg2+ could be exchanged with Pb2+ molar equivalents in the process and the contribution rate of ion exchange to adsorption accounted for 85.72% (Δmequiv = −0.000541). PMID:27514493

  10. Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc.

    Science.gov (United States)

    Basuvaraj, Mahendran; Fein, Jared; Liss, Steven N

    2015-10-01

    A full-scale (FS) activated sludge system treating wastewater from a meat rendering plant with a long history of sludge management problems (pin-point flocs; >80% of floc operated continuously over 1.5 years. Distinct differences in the proportion of proteins and polysaccharides associated with extracellular polymeric substances (EPS) were observed when comparing the properties of flocs from the FS and the LB systems. Further differences in the proportion of tightly bound (TB) and loosely bound (LB) fractions of EPS were also observed for flocs derived from conditions where differences in settling and dewatering properties of flocs occurred (i.e. FS and LS systems). FS flocs contained higher levels of EPS along with a higher proportion of LB than TB EPS, and possessing characteristics associated with non-filamentous bulking (SVI >150 mL/g). Floc formed in the LS system, following inoculation from sludge taken from the FS system, was markedly larger in size (>70% of floc >300 μm diameter), spherical in shape, compact and firm, and appeared to be granular in form. Flocs formed in the LS system, when an anoxic phase was introduced into the react stage of the SBR cycle, were found to be more hydrophobic and contained more TB and less loosely bound (LB) EPS when compared to the FS floc. TB-EPS contained a greater amount of protein, whereas the polysaccharide content of LB-EPS was larger. Protein was predominantly localized in the core region of granular flocs where cells were compactly packed. When assessing the operating conditions of the FS and LS systems parameters that appear to impact the floc properties and the transition to a granular form include dissolved oxygen (DO) concentration and food to microorganism (F/M) ratio. PMID:25997747

  11. Cyanobacterial reuse of extracellular organic carbon in microbial mats.

    Science.gov (United States)

    Stuart, Rhona K; Mayali, Xavier; Lee, Jackson Z; Craig Everroad, R; Hwang, Mona; Bebout, Brad M; Weber, Peter K; Pett-Ridge, Jennifer; Thelen, Michael P

    2016-05-01

    Cyanobacterial organic matter excretion is crucial to carbon cycling in many microbial communities, but the nature and bioavailability of this C depend on unknown physiological functions. Cyanobacteria-dominated hypersaline laminated mats are a useful model ecosystem for the study of C flow in complex communities, as they use photosynthesis to sustain a more or less closed system. Although such mats have a large C reservoir in the extracellular polymeric substances (EPSs), the production and degradation of organic carbon is not well defined. To identify extracellular processes in cyanobacterial mats, we examined mats collected from Elkhorn Slough (ES) at Monterey Bay, California, for glycosyl and protein composition of the EPS. We found a prevalence of simple glucose polysaccharides containing either α or β (1,4) linkages, indicating distinct sources of glucose with differing enzymatic accessibility. Using proteomics, we identified cyanobacterial extracellular enzymes, and also detected activities that indicate a capacity for EPS degradation. In a less complex system, we characterized the EPS of a cyanobacterial isolate from ES, ESFC-1, and found the extracellular composition of biofilms produced by this unicyanobacterial culture were similar to that of natural mats. By tracing isotopically labeled EPS into single cells of ESFC-1, we demonstrated rapid incorporation of extracellular-derived carbon. Taken together, these results indicate cyanobacteria reuse excess organic carbon, constituting a dynamic pool of extracellular resources in these mats. PMID:26495994

  12. Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Barken, Kim B; Pamp, Sünje J; Yang, Liang;

    2008-01-01

    When grown as a biofilm in laboratory flow chambers Pseudomonas aeruginosa can develop mushroom-shaped multicellular structures consisting of distinct subpopulations in the cap and stalk portions. We have previously presented evidence that formation of the cap portion of the mushroom......-shaped structures in P. aeruginosa biofilms occurs via bacterial migration and depends on type IV pili (Mol Microbiol 50: 61-68). In the present study we examine additional factors involved in the formation of this multicellular substructure. While pilA mutants, lacking type IV pili, are deficient in mushroom cap...

  13. Pseudomonas biofilm matrix composition and niche biology

    OpenAIRE

    Mann, Ethan E.; Wozniak, Daniel J.

    2012-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produ...

  14. sarA negatively regulates Staphylococcus epidermidis biofilm formation by modulating expression of 1 MDa extracellular matrix binding protein and autolysis‐dependent release of eDNA

    DEFF Research Database (Denmark)

    Christner, Martin; Heinze, Constanze; Busch, Michael;

    2012-01-01

    biofilm formation in mutant 1585ΔsarA. Increased eDNA amounts indirectly resulted from upregulation of metalloprotease SepA, leading to boosted processing of autolysin AtlE, in turn inducing augmented autolysis and release of eDNA. Hence, this study identifies sarA as a negative regulator of Embp‐ and e...

  15. Identification of ypqP as a New Bacillus subtilis Biofilm Determinant That Mediates the Protection of Staphylococcus aureus against Antimicrobial Agents in Mixed-Species Communities

    OpenAIRE

    Sanchez-Vizuete, Maria Pilar; Le Coq, Dominique; Bridier, Arnaud; Herry, Jean-Marie; Aymerich, Stephane; Briandet, Romain

    2014-01-01

    In most habitats, microbial life is organized in biofilms, three-dimensional edifices sustained by extracellular polymeric substances that enable bacteria to resist harsh and changing environments. Under multispecies conditions, bacteria can benefit from the polymers produced by other species ("public goods"), thus improving their survival under toxic conditions. A recent study showed that a Bacillus subtilis hospital isolate (NDmed) was able to protect Staphylococcus aureus from biocide acti...

  16. The ``Swiss cheese'' instability of bacterial biofilms

    Science.gov (United States)

    Jang, Hongchul; Rusconi, Roberto; Stocker, Roman

    2012-11-01

    Bacteria often adhere to surfaces, where they develop polymer-encased communities (biofilms) that display dramatic resistance to antibiotic treatment. A better understanding of cell detachment from biofilms may lead to novel strategies for biofilm disruption. Here we describe a new detachment mode, whereby a biofilm develops a nearly regular array of ~50-100 μm holes. Using surface-treated microfluidic devices, we create biofilms of controlled shape and size. After the passage of an air plug, the break-up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a ``Swiss cheese'' pattern is left in the residual biofilm. Fluorescent staining of the polymeric matrix (EPS) reveals that resistance to cell dislodgement correlates with local biofilm age, early settlers having had more time to hunker down. Because few survivors suffice to regrow a biofilm, these results point at the importance of considering microscale heterogeneity in assessing the effectiveness of biofilm removal strategies.

  17. Dispersal of human and plant pathogens biofilms via nitric oxide donors at 4 °C.

    Science.gov (United States)

    Marvasi, Massimiliano; Durie, Ian A; Henríquez, Tania; Satkute, Aiste; Matuszewska, Marta; Prado, Raphael Carvalho

    2016-12-01

    Recent studies suggest that nitric oxide donors capable of manipulating nitric oxide-mediated signaling in bacteria could induce dispersal of biofilms. Encased in extracellular polymeric substances, human and plant pathogens within biofilms are significantly more resistant to sanitizers. This is particularly a problem in refrigerated environments where food is processed. In an exercise aimed to study the potential of nitric oxide donors as biofilm dispersal in refrigerated conditions, we compared the ability of different nitric oxide donors (SNAP, NO-aspirin and Noc-5) to dislodge biofilms formed by foodborne, human and plant pathogens treated at 4 °C. The donors SNAP and Noc-5 were efficient in dispersing biofilms formed by Salmonella enterica, pathogenic Escherichia coli and Listeria innocua. The biomasses were decreased up to 30 % when compared with the untreated controls. When the plant pathogens Pectobacterium sp. and Xanthomonas sp. were tested the dispersion was mainly limited to Pectobacterium carotovorum biofilms, decreasing up to 15 % after exposure to molsidomine. Finally, the association of selected nitric oxide donors with sanitizers (DiQuat, H2O2, peracetic acid and PhenoTek II) was effective in dispersing biofilms. The best dispersal was achieved by pre-treating P. carotovorum with molsidomine and then peracetic acid. The synergistic effect was estimated up to ~35 % in dispersal when compared with peracetic acid alone. The association of nitric oxide donors with sanitizers could provide a foundation for an improved sanitization procedure for cleaning refrigerate environments. PMID:27457245

  18. Influence of phosphorus availability on the community structure and physiology of cultured biofilms.

    Science.gov (United States)

    Li, Shuangshuang; Wang, Chun; Qin, Hongjie; Li, Yinxia; Zheng, Jiaoli; Peng, Chengrong; Li, Dunhai

    2016-04-01

    Biofilms have important effects on nutrient cycling in aquatic ecosystems. However, publications about the community structure and functions under laboratory conditions are rare. This study focused on the developmental and physiological properties of cultured biofilms under various phosphorus concentrations performed in a closely controlled continuous flow incubator. The results showed that the biomass (Chl a) and photosynthesis of algae were inhibited under P-limitation conditions, while the phosphatase activity and P assimilation rate were promoted. The algal community structure of biofilms was more likely related to the colonization stage than with the phosphorus availability. Cyanobacteria were more competitive than other algae in biofilms, particularly when cultured under low P levels. A dominance shift occurred from non-filamentous algae in the early stage to filamentous algae in the mid and late stages under P concentrations of 0.01, 0.1 and 0.6mg/L. However, the total N content, dry weight biomass and bacterial community structure of biofilms were unaffected by phosphorus availability. This may be attributed to the low respiration rate, high accumulation of extracellular polymeric substances and high alkaline phosphatase activity in biofilms when phosphorus availability was low. The bacterial community structure differed over time, while there was little difference between the four treatments, which indicated that it was mainly affected by the colonization stage of the biofilms rather than the phosphorus availability. Altogether, these results suggested that the development of biofilms was influenced by the phosphorus availability and/or the colonization stage and hence determined the role that biofilms play in the overlying water. PMID:27090691

  19. Identification of ypqP as a New Bacillus subtilis biofilm determinant that mediates the protection of Staphylococcus aureus against antimicrobial agents in mixed-species communities.

    Science.gov (United States)

    Sanchez-Vizuete, Pilar; Le Coq, Dominique; Bridier, Arnaud; Herry, Jean-Marie; Aymerich, Stéphane; Briandet, Romain

    2015-01-01

    In most habitats, microbial life is organized in biofilms, three-dimensional edifices sustained by extracellular polymeric substances that enable bacteria to resist harsh and changing environments. Under multispecies conditions, bacteria can benefit from the polymers produced by other species ("public goods"), thus improving their survival under toxic conditions. A recent study showed that a Bacillus subtilis hospital isolate (NDmed) was able to protect Staphylococcus aureus from biocide action in multispecies biofilms. In this work, we identified ypqP, a gene whose product is required in NDmed for thick-biofilm formation on submerged surfaces and for resistance to two biocides widely used in hospitals. NDmed and S. aureus formed mixed biofilms, and both their spatial arrangement and pathogen protection were mediated by YpqP. Functional ypqP is present in other natural B. subtilis biofilm-forming isolates. However, the gene is disrupted by the SPβ prophage in the weak submerged-biofilm-forming strains NCIB3610 and 168, which are both less resistant than NDmed to the biocides tested. Furthermore, in a 168 laboratory strain cured of the SPβ prophage, the reestablishment of a functional ypqP gene led to increased thickness and resistance to biocides of the associated biofilms. We therefore propose that YpqP is a new and important determinant of B. subtilis surface biofilm architecture, protection against exposure to toxic compounds, and social behavior in bacterial communities. PMID:25326298

  20. Antibacterial and biofilm inhibitory activities of bacteria associated with polychaetes

    Directory of Open Access Journals (Sweden)

    Chellamnadar Vaikundavasagom Sunjaiy Shankar

    2015-06-01

    Full Text Available Objective: To study the antibacterial and antibiofilm activities expressed by epibiotic bacteria associated with the polychaetes Platynereis dumerilii and Syllis sp. Methods: A total of 32 cultivable bacterial strains were isolated from the two polychaete species. The crude extracts were tested for antibacterial activity and biofilm inhibitory activity against pathogenic and biofilm-forming bacterial strains. Extracts of the strains which showed strong activity were analyzed by thin-layer chromatography (TLC and the bacterial strains were identified based on 16S rRNA gene sequencing. Results: Extracts of 13 bacterial strains showed inhibitory activity against pathogenic and biofilm-forming bacteria. The crude extracts also affected the synthesis of extracellular polymeric substances and cell surface hydrophobicity of the Alteromonas sp. isolated from marine biofilm. The adhesion of Alteromonas sp. on glass surface showed significant variation between surface-associated bacterial crude extract treatment and control groups. Among the 13 bacteria, two strains PA8 and PA19 were further analyzed for bioactive fractions. Thinlayer chromatography indicated the presence of a single active fraction in the crude extract of both the bacterial strains. The epibiotic bacterial strains P8 and P19 were identified as Exiguobacterium sp. and Actinobacterium sp. respectively based on 16S rRNA gene sequencing. Conclusions: The present study indicates that bacteria associated with marine invertebrates inhabiting the coastal waters could be used as a potential source for the isolation of bioactive metabolites.

  1. MICROBIAL BIOFILMS PRODUCED BY PSEUDOMONAS FLUORESCENS ON SOLID SURFACES

    Directory of Open Access Journals (Sweden)

    Dagmar Kozelová

    2011-04-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 Normal 0 21 false false false MicrosoftInternetExplorer4 A biofilm is a complex aggregation of microorganisms growing on a solid substrate. Biofilms are characterized by structural heterogeneity, genetic diversity, complex community interactions, and an extracellular matrix of polymeric substances. The experimental part was focused on the adhesion of bacterial cells under static conditions and testing the effectiveness of disinfectants on created biofilm. In laboratory conditions we prepared and formed the bacterial biofilms Pseudomonas fluorescens in the four test surfaces of stainless steel, glass and plastic materials - PE (polyethylene and EPDM (ethylene propylene diene monomer. Over the next 72 hours and 72 hours were observed numbers of adhesion bacterial cells of P. fluorescens on solid surfaces of tested materials. The highest values adhesion cells reached P. fluorescens cells after 72 hours of cultivation on plastic surfaces, where  was increased in adhesion bacterial cells for EPDM in the values of 105 CFU/cm2 and for PE up to 106 CFU/cm2. The subsequent repeated 72-hour cultivation P. fluorescens was an increase (growth in the number of adhesion bacterial cells to all tested surfaces.doi:10.5219/18  

  2. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Garry Laverty

    2014-07-01

    Full Text Available Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl, pellicle Formation (Pel and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

  3. Investigating the Complex Conductivity Response of Different Biofilm Components

    Science.gov (United States)

    Atekwana, E. A.; Abdel Aal, G. Z.; Sarkisova, S. A.; Patrauchan, M.

    2013-12-01

    Microbial biofilms are structured communities of microorganisms commonly attached to a surface and embedded in a self-produced matrix. The matrix is composed of extracellular polymeric substances (EPS), which commonly include extracellular DNA, proteins, and polysaccharides. In addition, the biofilm structure may contain some other components such as metabolic byproducts and biogenic nanoparticle minerals. Biogeophysical studies have demonstrated the sensitivity of spectral induced polarization (SIP) measurements to the growth and development of biofilm in saturated porous media. However, the mechanisms are not very well understood. The overarching goal of this study is to determine the contribution of the different biofilm components to the spectral induced polarization (SIP) signatures in aqueous and/or porous media. We investigated the SIP response of different biofilm components including bacterial cells, alginate (exopolysaccharide), phenazine (redox-active metabolite) and magnetite (semi-conductive particulate matter). The porous media was glass beads with grain diameter of 1 mm. Each of the biofilm components was suspended in a low salt growth medium with electrolytic conductivity of 513 μS/cm. Using Pseudomonas aeruginosa PAO1 cells in suspension and in porous media, we observed the increase in SIP parameters with increasing cell density with a very well defined relaxation peak at a frequency of ~10 Hz, which was predicted by recently developed quantitative models. However, this characteristic relaxation peak was minimized in the presence of porous media. We also observed that cells suspended in alginate enhance the polarization and show a peak frequency at ~10 Hz. The study of alginate gelation in liquid phase and porous media in vitro revealed that solidified (gelated) alginate (from brown algae) increased the magnitude of imaginary conductivity while real conductivity increased very moderately. In contrast, the study of the SIP response within a porous

  4. 多聚β-1-6-N-乙酰氨基葡萄糖胺对鲍氏不动杆菌生物膜形成及耐药的影响%Influence of poly-β-1-6-N-acetylglucosamine on biofilm formation and drug resistance of Acinetobacter baumannii

    Institute of Scientific and Technical Information of China (English)

    郭海娜; 向军

    2015-01-01

    Acinetobacter baumannii has emerged as one of the leading bacteria for nosocomial infections,especially in burn wards and ICUs.The bacteria can easily form biofilm and readily attach to abiotic and biotic surfaces,resulting in persistent biofilm-mediated infections.Being surrounded by selfproduced extracellular polymeric substance (EPS),the microorganisms in biofilm can acquire protective property against detrimental environment and their tolerance toward antibiotics is increased.Poly-β-1-6-N-acetylglucosamine (PNAG),the common constituent of EPS in Acinetobacter baumannii,acts as the key virulence factor and plays a crucial role in biofilm formation process.This review describes the properties and functions of the PNAG and its influence on biofilm formation and drug resistance of Acinetobacter baumannii.

  5. Combating biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong;

    2012-01-01

    Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life is...... believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review......, strategies to control biofilms are discussed, including those of inhibition of microbial attachment, interference of biofilm structure development and differentiation, killing of biofilm cells and induction of biofilm dispersion....

  6. Investigation on the difference between biofilm morphologies of the vermifilter and conventional biofilter with the flow cytometer.

    Science.gov (United States)

    Di, Wanyin; Xing, Meiyan; Yang, Jian

    2016-09-01

    With the demand of new sludge reduction processes, a vermifilter (VF) was studied based on a conventional biofilter (BF). The biofilm morphology was investigated using a new technique, the flow cytometer (FCM), to find a way to optimize VF structure. VF was inoculated with Eisenia fetida, packed with ceramsites, and operated stably at the organic load of 1.2kg-VSSm(-3)d(-1) with BF as the control. Compared with BF, VF had about 13% more removal efficiency of excess sludge and 45% shorter biofilm update period. FCM profile showed the morphology of microbial cells in VF biofilms was significantly different from that in BF in upper layers, with decreases of average refractive index (about 72%) and size (about 22%), and suggested it was better to keep earthworms there to remove rod-shaped microorganisms with other filter media in lower layers to remove spherical ones combining the findings in SEM images and extracellular polymeric substances. PMID:27259185

  7. Biofilm formation and extracellular polymeric substances (EPS) production by Bacillus subtilis depending on nutritional conditions in the presence of polyester film

    Czech Academy of Sciences Publication Activity Database

    Voběrková, S.; Hermanová, S.; Hrubanová, Kamila; Krzyžánek, Vladislav

    2016-01-01

    Roč. 61, č. 2 (2016), s. 91-100. ISSN 0015-5632 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.000, year: 2014

  8. The biofilm matrix destabilizers, EDTA and DNaseI, enhance the susceptibility of nontypeable Hemophilus influenzae biofilms to treatment with ampicillin and ciprofloxacin

    OpenAIRE

    Cavaliere, Rosalia; Ball, Jessica L; Turnbull, Lynne; Whitchurch, Cynthia B.

    2014-01-01

    Nontypeable Hemophilus influenzae (NTHi) is a Gram-negative bacterial pathogen that causes chronic biofilm infections of the ears and airways. The biofilm matrix provides structural integrity to the biofilm and protects biofilm cells from antibiotic exposure by reducing penetration of antimicrobial compounds into the biofilm. Extracellular DNA (eDNA) has been found to be a major matrix component of biofilms formed by many species of Gram-positive and Gram-negative bacteria, including NTHi. In...

  9. An investigation of the regulation and physiological role of Listeria monocytogenes extracellular polymer

    OpenAIRE

    Wong, Ho Ting Lawrence

    2013-01-01

    It was shown that Listeria monocytogenes cells grown in a defined minimal, MCDB202, showed enhanced extracellular polymeric substances production compared to BHI. On the other hand, it was reported that in L. monocytogenes luxS mutant, AI-2 reduction and biofilm enhancement were seen. It is hypotheses that there could be a linkage between the AI-2 signaling system and the EPS formation. The expression of EPS could be induced by the reduction in AI-2. The main aim of the research is to st...

  10. The Role of Biofilms in the Sedimentology of Actively Forming Gypsum Deposits at Guerrero Negro, Mexico

    Science.gov (United States)

    Vogel, Marilyn B.; Des Marais, David J.; Turk, Kendra A.; Parenteau, Mary N.; Jahnke, Linda L.; Kubo, Michael D. Y.

    2009-11-01

    Actively forming gypsum deposits at the Guerrero Negro sabkha and saltern system provided habitats for stratified, pigmented microbial communities that exhibited significant morphological and phylogenetic diversity. These deposits ranged from meter-thick gypsum crusts forming in saltern seawater concentration ponds to columnar microbial mats with internally crystallized gypsum granules developing in natural anchialine pools. Gypsum-depositing environments were categorized as forming precipitation surfaces, biofilm-supported surfaces, and clastic surfaces. Each surface type was described in terms of depositional environment, microbial diversity, mineralogy, and sedimentary fabrics. Precipitation surfaces developed in high-salinity subaqueous environments where rates of precipitation outpaced the accumulation of clastic, organic, and/or biofilm layers. These surfaces hosted endolithic biofilms comprised predominantly of oxygenic and anoxygenic phototrophs, sulfate-reducing bacteria, and bacteria from the phylum Bacteroidetes. Biofilm-supported deposits developed in lower-salinity subaqueous environments where light and low water-column turbulence supported dense benthic microbial communities comprised mainly of oxygenic phototrophs. In these settings, gypsum granules precipitated in the extracellular polymeric substance (EPS) matrix as individual granules exhibiting distinctive morphologies. Clastic surfaces developed in sabkha mudflats that included gypsum, carbonate, and siliclastic particles with thin gypsum/biofilm components. Clastic surfaces were influenced by subsurface brine sheets and capillary evaporation and precipitated subsedimentary gypsum discs in deeper regions. Biofilms appeared to influence both chemical and physical sedimentary processes in the various subaqueous and subaerially exposed environments studied. Biofilm interaction with chemical sedimentary processes included dissolution and granularization of precipitation surfaces, formation of

  11. Pattern formation in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Parsek, Matthew R.; Tolker-Nielsen, Tim

    2008-01-01

    Bacteria are capable of forming elaborate multicellular communities called biofilms. Pattern formation in biofilms depends on cell proliferation and cellular migration in response to the available nutrients and other external cues, as well as on self-generated intercellular signal molecules and the...... production of an extracellular matrix that serves as a structural 'scaffolding' for the biofilm cells. Pattern formation in biofilms allows cells to position themselves favorably within nutrient gradients and enables buildup and maintenance of physiologically distinct subpopulations, which facilitates...... survival of one or more subpopulations upon environmental insult, and therefore plays an important role in the innate tolerance displayed by biofilms toward adverse conditions....

  12. Influence and mechanism of N-(3-oxooxtanoyl)-L-homoserine lactone (C8-oxo-HSL) on biofilm behaviors at early stage

    Institute of Scientific and Technical Information of China (English)

    Siqing Xia; Lijie Zhou; Zhiqiang Zhang; Jixiang Li

    2012-01-01

    N-acyl-homoserines quenching,enzymatic quenching of bacterial quorum sensing,has recently applied to mitigate biofilm in membrane bioreactor.However,the effect of AHLs on the behavior of biofilm formation is still sparse.In this study,Pseudomonas aeruginosa biofilm was formed on ultra-filtration membrane under a series of N-(3-oxooxtanoyl)-L-homoserine lactone (Cs-oxo-HSL)concentrations.Diffusing Cs-oxo-HSL increased the growth rate of cells on biofilm where the concentration of Cs-oxo-HSL was over 10-7 g/L.The C8-oxo-HSL gradient had no observable influence on cell density and extracellular polymeric substances of biofilm with over 10-7 g/L Cs-oxo-HSL.Surprisingly,10-11-10-8 g/L of Cs-oxo-HSL had no effect on cell growth in liquid culture.The cell analysis demonstrated that the quorum sensing system might enhance the growth of neighboring cells in contact with surfaces into biofilm and may influence the structure and organization of biofilm.

  13. Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms.

    Science.gov (United States)

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Geng, Nan; Yao, Yu; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2016-09-01

    The transport behaviors of copper oxide (CuO) NPs in wastewater matrix and their possible impacts on microbial activities of stable wastewater biofilms cultivated in a lab scale rotating biological contactor (RBC) were investigated. Significant aggregation of CuO NPs was observed in the wastewater samples, depending on their mass concentrations. Extracellular polymeric substance (EPS)-adsorbed copper accounted for a large proportion of the total copper accumulated in biofilms. The microelectrode profiles showed that a single pulse exposure to 50mg/L CuO resulted in a deeper penetration depth of oxygen in biofilms compared to the CuO NP free biofilms. The maximum oxygen consumption rate shifted to the deeper parts of biofilms, indicating that the respiration activities of bacteria in the top region of the biofilms was significantly inhibited by CuO NPs. Biofilms secreted more EPS in response to the nano-CuO stress, with higher production of proteins compared to polysaccharides. PMID:27281432

  14. Composition of EPS fractions from suspended sludge and biofilm and their roles in microbial cell aggregation.

    Science.gov (United States)

    Zhang, Peng; Fang, Fang; Chen, You-Peng; Shen, Yu; Zhang, Wei; Yang, Ji-Xiang; Li, Chun; Guo, Jin-Song; Liu, Shao-Yang; Huang, Yang; Li, Shan; Gao, Xu; Yan, Peng

    2014-12-01

    The adhesion and aggregation properties of microbial cell are closely related to extracellular polymeric substances (EPS). In this work, the composition and physicochemical characteristics of EPS in biofilm and suspended sludge (S-sludge) were determined to evaluate their roles in microbial cell aggregation. Raman spectroscopy and three-dimensional fluorescence spectra have been employed to reveal each EPS fraction in different composition. The flocculating capacity of each EPS fraction in the S-sludge shows extraordinary activity, comparing its counterpart in biofilm. Microbial cell surfaces present high hydrophobicity and increased zeta potentials upon EPS extraction. In addition, the respective contribution of EPS to cell aggregating was elucidated. The contribution of combined SEPS and LB-EPS was 23% for S-sludge sample, whereas that was negligible for biofilm sample. The contribution of LB-EPS and TB-EPS were 16% and 30% for S-sludge sample, and -6% and negligible for biofilm sample, respectively. Therefore, EPS promoted the S-sludge cells to aggregate, while in contrast, they showed a negligible or negative effect on the biofilm cells aggregating. PMID:24968163

  15. In situ biosensing of the nanomechanical property and electrochemical spectroscopy of Streptococcus mutans-containing biofilms

    International Nuclear Information System (INIS)

    This work presents in situ biosensing approaches to study the nanomechanical and electrochemical behaviour of Streptococcus mutans biofilms under different cultivation conditions and microenvironments. The surface characteristics and sub-surface electrochemistry of the cell wall of S. mutans were measured by atomic force microscopy (AFM) based techniques to monitor the in situ biophysical status of biofilms under common anti-pathogenic procedures such as ultraviolet (UV) radiation and alcohol treatment. The AFM nanoindentation suggested a positive correlation between nanomechanical strength and the level of UV radiation of S. mutans; scanning impedance spectroscopy of dehydrated biofilms revealed reduced electrical resistance that is distinctive from that of living biofilms, which can be explained by the discharge of cytoplasm after alcohol treatment. Furthermore, the localized elastic moduli of four regions of the biofilm were studied: septum (Z-ring), cell wall, the interconnecting area between two cells and extracellular polymeric substance (EPS) area. The results indicated that cell walls exhibit the highest elastic modulus, followed by Z-ring, interconnect and EPS. Our approach provides an effective alternative for the characterization of the viability of living cells without the use of biochemical labelling tools such as fluorescence dyeing, and does not rely on surface binding or immobilization for detection. These AFM-based techniques can be very promising approaches when the conventional methods fall short. (paper)

  16. In situ biosensing of the nanomechanical property and electrochemical spectroscopy of Streptococcus mutans-containing biofilms

    Science.gov (United States)

    Haochih Liu, Bernard; Li, Kun-Lin; Kang, Kai-Li; Huang, Wen-Ke; Liao, Jiunn-Der

    2013-07-01

    This work presents in situ biosensing approaches to study the nanomechanical and electrochemical behaviour of Streptococcus mutans biofilms under different cultivation conditions and microenvironments. The surface characteristics and sub-surface electrochemistry of the cell wall of S. mutans were measured by atomic force microscopy (AFM) based techniques to monitor the in situ biophysical status of biofilms under common anti-pathogenic procedures such as ultraviolet (UV) radiation and alcohol treatment. The AFM nanoindentation suggested a positive correlation between nanomechanical strength and the level of UV radiation of S. mutans; scanning impedance spectroscopy of dehydrated biofilms revealed reduced electrical resistance that is distinctive from that of living biofilms, which can be explained by the discharge of cytoplasm after alcohol treatment. Furthermore, the localized elastic moduli of four regions of the biofilm were studied: septum (Z-ring), cell wall, the interconnecting area between two cells and extracellular polymeric substance (EPS) area. The results indicated that cell walls exhibit the highest elastic modulus, followed by Z-ring, interconnect and EPS. Our approach provides an effective alternative for the characterization of the viability of living cells without the use of biochemical labelling tools such as fluorescence dyeing, and does not rely on surface binding or immobilization for detection. These AFM-based techniques can be very promising approaches when the conventional methods fall short.

  17. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin

    Science.gov (United States)

    Das, Manash C.; Sandhu, Padmani; Gupta, Priya; Rudrapaul, Prasenjit; de, Utpal C.; Tribedi, Prosun; Akhter, Yusuf; Bhattacharjee, Surajit

    2016-03-01

    Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pathogenic bacterium. Vitexin, a polyphenolic group of phytochemical with antimicrobial property, has been studied for its antibiofilm potential against Pseudomonas aeruginosa in combination with azithromycin and gentamicin. Vitexin shows minimum inhibitory concentration (MIC) at 260 μg/ml. It’s antibiofilm activity was evaluated by safranin staining, protein extraction, microscopy methods, quantification of EPS and in vivo models using several sub-MIC doses. Various quorum sensing (QS) mediated phenomenon such as swarming motility, azocasein degrading protease activity, pyoverdin and pyocyanin production, LasA and LasB activity of the bacteria were also evaluated. Results showed marked attenuation in biofilm formation and QS mediated phenotype of Pseudomonas aeruginosa in presence of 110 μg/ml vitexin in combination with azithromycin and gentamicin separately. Molecular docking of vitexin with QS associated LuxR, LasA, LasI and motility related proteins showed high and reasonable binding affinity respectively. The study explores the antibiofilm potential of vitexin against P. aeruginosa which can be used as a new antibiofilm agent against microbial biofilm associated pathogenesis.

  18. Biofilm formation on abiotic surfaces

    DEFF Research Database (Denmark)

    Tang, Lone

    2011-01-01

    Bacteria can attach to any surface in contact with water and proliferate into complex communities enclosed in an adhesive matrix, these communities are called biofilms. The matrix makes the biofilm difficult to remove by physical means, and bacteria in biofilm can survive treatment with many...... antibiotics, disinfectants and cleaning agents. Biofilms are therefore very difficult to eradicate, and an attractive approach to limit biofilm formation is to reduce bacterial adhesion. In this thesis it was shown that lowering the surface roughness had a greater effect on bacterial retention compared to...... changing the surface hydrophobicity. The influence of surface topography in the <100 nanometer range was less clear and its effect on bacterial retention depended on the strain used in the experiment. Extracellular DNA (eDNA) is an the ubiquitous biomolecule of great importance for bacterial adhesion. The...

  19. Enzymatic Detachment of Staphylococcus epidermidis Biofilms

    OpenAIRE

    Kaplan, Jeffrey B.; Ragunath, Chandran; Velliyagounder, Kabilan; Fine, Daniel H.; Ramasubbu, Narayanan

    2004-01-01

    The gram-positive bacterium Staphylococcus epidermidis is the most common cause of infections associated with catheters and other indwelling medical devices. S. epidermidis produces an extracellular slime that enables it to form adherent biofilms on plastic surfaces. We found that a biofilm-releasing enzyme produced by the gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans rapidly and efficiently removed S. epidermidis biofilms from plastic surfaces. The enzyme worked by ...

  20. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation

    DEFF Research Database (Denmark)

    Stapper, A.P.; Narasimhan, G.; Oman, D.E.;

    2004-01-01

    Extracellular polymers can facilitate the non-specific attachment of bacteria to surfaces and hold together developing biofilms. This study was undertaken to qualitatively and quantitatively compare the architecture of biofilms produced by Pseudomonas aeruginosa strain PAO1 and its alginate...... biofilm formation using confocal laser scanning microscopy. Biofilm Image Processing (BIP) and Community Statistics (COMSTAT) software programs were used to provide quantitative measurements of the two-dimensional biofilm images. All three strains formed distinguishable biofilm architectures, indicating...... that the production of alginate is not critical for biofilm formation. Observation over a period of 5 days indicated a three-stage development pattern consisting of initiation, establishment and maturation. Furthermore, this study showed that phenotypically distinguishable biofilms can be...

  1. The Pel Polysaccharide Can Serve a Structural and Protective Role in the Biofilm Matrix of Pseudomonas aeruginosa

    OpenAIRE

    Colvin, Kelly M.; Gordon, Vernita D.; Murakami, Keiji; Borlee, Bradley R; Wozniak, Daniel J.; Wong, Gerard C. L.; Parsek, Matthew R.

    2011-01-01

    Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in bio...

  2. Permeabilizing biofilms

    Science.gov (United States)

    Soukos, Nikolaos S.; Lee, Shun; Doukas, Apostolos G.

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  3. Role of biofilm in catheter-associated urinary tract infection

    OpenAIRE

    Trautner, Barbara W.; Darouiche, Rabih O.

    2004-01-01

    The predominant form of life for the majority of microorganisms in any hydrated biologic system is a cooperative community termed a “biofilm.” A biofilm on an indwelling urinary catheter consists of adherent microorganisms, their extracellular products, and host components deposited on the catheter. The biofilm mode of life conveys a survival advantage to the microorganisms associated with it and, thus, biofilm on urinary catheters results in persistent infections that are resistant to antimi...

  4. Differential biofilm formation and chemical disinfection resistance of Escherichia coli on stainless steel and polystyrene tissue culture plate

    Directory of Open Access Journals (Sweden)

    Anas Muazu

    2015-11-01

    Full Text Available Background: Biofilms are aggregates of microbial cells enclosed in an extracellular polymeric substance and attached to surfaces. Biofilm formation and its resistance to antimicrobials is becoming a serious challenge in food industries and hospital settings. The aim of this work was to study the formation of biofilm by E. coli on Stainless steel (SS and Polystyrene Tissue Culture Plate (TCP at 10 and 27 and deg;C, and also to assess the action Hydrogen Peroxide (HP, Para Acetic Acid (PAA, Sodium Hypochlorite (SH and mixture of PAA + SH disinfectants against the biofilm. Methods: 200 and micro;L of 108 suspension of E. coli ATCC 29922 was inoculated on the SS and into the wells of TCP, incubated at 10 and 27 and deg;C for 24, 48 72 and 168 hours. Biofilm developed at each incubation hour above was quantified by bead-vortex method followed by agar plating. The action of disinfectants was tested on 168 hours biofilm. The surfaces were exposed to the disinfectants and incubated at 27 and deg;C for 10 minutes, followed by deactivation for 5 minutes. Cells that resisted disinfectants action were vortexed and enumerated by agar plating. Results: From the results E. coli developed higher biofilm on SS than TCP at 72 hours and 27 and deg;C. After disinfection, HP was the most effective with log reduction value of 1.11 followed by PAA (1.07, then PAA + SH (1.04 while SH was the least (0.92. Conclusions: The result of this work showed that HP and PAA can be good disinfectants against E. coli biofilm. [Int J Res Med Sci 2015; 3(11.000: 3300-3307

  5. Mesoscale Elucidation of Biofilm Shear Behavior

    CERN Document Server

    Barai, Pallab; Mukherjee, Partha P

    2015-01-01

    Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regions: a) initial increase in stiffness due to strain stiffe...

  6. The role of biofilms in onychomycosis.

    Science.gov (United States)

    Gupta, Aditya K; Daigle, Deanne; Carviel, Jessie L

    2016-06-01

    Onychomycosis is a fungal infection of nails primarily caused by dermatophyte fungi. Fungi are traditionally understood as existing in the environment as planktonic organisms; however, recent advancements in microbiology suggest that fungi form biofilms-complex sessile microbial communities irreversibly attached to epithelial surfaces by means of an extracellular matrix. The extracellular matrix also acts as a protective barrier to the organisms within the biofilm. The biofilm is surprisingly resistant to injury and may act as a persistent source of infection possibly accounting for antifungal resistance in onychomycosis. PMID:27012826

  7. Gene Transfer Efficiency in Gonococcal Biofilms: Role of Biofilm Age, Architecture, and Pilin Antigenic Variation

    OpenAIRE

    Kouzel, Nadzeya; Oldewurtel, Enno R.; Maier, Berenike

    2015-01-01

    Extracellular DNA is an important structural component of many bacterial biofilms. It is unknown, however, to which extent external DNA is used to transfer genes by means of transformation. Here, we quantified the acquisition of multidrug resistance and visualized its spread under selective and nonselective conditions in biofilms formed by Neisseria gonorrhoeae. The density and architecture of the biofilms were controlled by microstructuring the substratum for bacterial adhesion. Horizontal t...

  8. A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 1: model development and numerical solution.

    Science.gov (United States)

    Tang, Youneng; Zhao, Heping; Marcus, Andrew K; Krajmalnik-Brown, Rosa; Rittmann, Bruce E

    2012-02-01

    A multispecies biofilm model is developed for simultaneous reduction of nitrate and perchlorate in the H(2)-based membrane biofilm reactor. The one-dimension model includes dual-substrate Monod kinetics for a steady-state biofilm with five solid and five dissolved components. The solid components are autotrophic denitrifying bacteria, autotrophic perchlorate-reducing bacteria, heterotrophic bacteria, inert biomass, and extracellular polymeric substances (EPS). The dissolved components are nitrate, perchlorate, hydrogen (H(2)), substrate-utilization-associated products, and biomass-associated products (BAP). The model explicitly considers four mechanisms involved in how three important operating conditions (H(2) pressure, nitrate loading, and perchlorate loading) affect nitrate and perchlorate removals: (1) competition for H(2), (2) promotion of PRB growth due to having two electron acceptors (nitrate and perchlorate), (3) competition between nitrate and perchlorate reduction for the same resources in the PRB: electrons and possibly reductase enzymes, and (4) competition for space in the biofilm. Two other special features are having H(2) delivered from the membrane substratum and solving directly for steady state using a novel three-step approach: finite-difference for approximating partial differential and/or integral equations, Newton-Raphson for solving nonlinear equations, and an iterative scheme to obtain the steady-state biofilm thickness. An example result illustrates the model's features. PMID:22191376

  9. Beneficial biofilms

    Directory of Open Access Journals (Sweden)

    Sara R Robertson

    2015-10-01

    Full Text Available Surface-adherent biofilm growth is a common trait of bacteria and other microorganisms in nature. Within biofilms, organisms are present in high density and are enmeshed in an organic matrix containing polysaccharides and other molecules. The close proximity of organisms within biofilms facilitates microbial interactions and signaling, including many metabolic processes in which consortia rather than individual organisms participate. Biofilm growth also enables microorganisms to withstand chemical and biological stresses. Here, we review some current literature and document representative beneficial aspects of biofilms using examples from wastewater treatment, microbial fuel cells, biological repair (biocementation of stonework, and biofilm protection against Candida albicans infections. Finally, we address a chemical ecology strategy whereby desired microbial succession and beneficial biofilm formation can be encouraged via manipulation of culture conditions and bacterial signaling.

  10. In Situ Confocal Raman Microscopy of Hydrated Early Stages of Bacterial Biofilm Formation on Various Surfaces in a Flow Cell.

    Science.gov (United States)

    Smith-Palmer, Truis; Lin, Sicheng; Oguejiofor, Ikenna; Leng, Tianyang; Pustam, Amanda; Yang, Jin; Graham, Lori L; Wyeth, Russell C; Bishop, Cory D; DeMont, M Edwin; Pink, David

    2016-02-01

    Bacterial biofilms are precursors to biofouling by other microorganisms. Understanding their initiation may allow us to design better ways to inhibit them, and thus to inhibit subsequent biofouling. In this study, the ability of confocal Raman microscopy to follow the initiation of biofouling by a marine bacterium, Pseudoalteromonas sp. NCIMB 2021 (NCIMB 2021), in a flow cell, using optical and confocal Raman microscopy, was investigated. The base of the flow cell comprised a cover glass. The cell was inoculated and the bacteria attached to, and grew on, the cover glass. Bright field images and Raman spectra were collected directly from the hydrated biofilms over several days. Although macroscopically the laser had no effect on the biofilm, within the first 24 h cells migrated away from the position of the laser beam. In the absence of flow, a buildup of extracellular substances occurred at the base of the biofilm. When different coatings were applied to cover glasses before they were assembled into the flow cells, the growth rate, structure, and composition of the resulting biofilm was affected. In particular, the ratio of Resonance Raman peaks from cytochrome c (CC) in the extracellular polymeric substances, to the Raman phenylalanine (Phe) peak from protein in the bacteria, depended on both the nature of the surface and the age of the biofilm. The ratios were highest for 24 h colonies on a hydrophobic surface. Absorption of a surfactant with an ethyleneoxy chain into the hydrophobic coating created a surface similar to that given with a simple PEG coating, where bacteria grew in colonies away from the surface rather than along the surface, and CC:Phe ratios were initially low but increased at least fivefold in the first 48 h. PMID:26903564

  11. Dynamic interactions of neutrophils and biofilms

    Directory of Open Access Journals (Sweden)

    Josefine Hirschfeld

    2014-12-01

    Full Text Available Background: The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. Objective/design: In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. Results/conclusion: Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.

  12. Biofilms and planktonic cells of Deinococcus geothermalis in extreme environments

    Science.gov (United States)

    Panitz, Corinna; Reitz, Guenther; Rabbow, Elke; Rettberg, Petra; Flemming, Hans-Curt; Wingender, Jost; Froesler, Jan

    In addition to the several extreme environments on Earth, Space can be considered as just another exceptional environment with a unique mixture of stress factors comprising UV radiation, vacuum, desiccation, temperature, ionizing radiation and microgravity. Life that processes in these environments can depend on the life forms and their state of living. The question is whether there are different strategies for individual microorganisms compared to communities of the same organisms to cope with the different factors of their surroundings. Comparative studies of the survi-val of these communities called biofilms and planktonic cell samples of Deinococcus geothermalis stand at the focal point of the presented investigations. A biofilm is a structured community of microorganisms that live encapsulated in a matrix of extracellular polymeric substances on a surface. Microorganisms living in a biofilm usually have significantly different properties to cooperate than individually living microorganisms of the same species. An advantage of the biofilm is increased resistance to various chemical and physical effects, while the dense extracellular matrix and the outer layer of the cells protect the interior of the microbial consortium. The space experiment BOSS (Biofilm organisms surfing Space) as part the ESA experimental unit EXPOSE R-2 with a planned launch date in July 2014 will be subsequently mounted on the Russian Svesda module outside the ISS. An international team of scientists coordinated by Dr. P. Rettberg will investigate the hypothesis whether microorganisms organized as biofilm outmatch the same microorganisms exposed individually in the long-term survival of the harsh environmental conditions as they occur in space and on Mars. Another protective function in the samples could be dust par-ticles for instance Mars regolith simulant contained inside the biofilms or mixed with the planktonic cells, as additional shelter especially against the extraterrestrial UV

  13. Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA

    Science.gov (United States)

    Arp, Gernot; Thiel, Volker; Reimer, Andreas; Michaelis, Walter; Reitner, Joachim

    1999-07-01

    Calcium carbonate precipitation and microbialite formation at highly supersaturated mixing zones of thermal spring waters and alkaline lake water have been investigated at Pyramid Lake, Nevada. Without precipitation, pure mixing should lead to a nearly 100-fold supersaturation at 40°C. Physicochemical precipitation is modified or even inhibited by the properties of biofilms, dependent on the extent of biofilm development and the current precipitation rate. Mucus substances (extracellular polymeric substances, EPS, e.g., of cyanobacteria) serve as effective Ca 2+-buffers, thus preventing seed crystal nucleation even in a highly supersaturated macroenvironment. Carbonate is then preferentially precipitated in mucus-free areas such as empty diatom tests or voids. After the buffer capacity of the EPS is surpassed, precipitation is observed at the margins of mucus areas. Hydrocarbon biomarkers extracted from (1) a calcifying Phormidium-biofilm, (2) the stromatolitic carbonate below, and (3) a fossil `tufa' of the Pleistocene pinnacles, indicate that the cyanobacterial primary producers have been subject to significant temporal changes in their species distribution. Accordingly, the species composition of cyanobacterial biofilms does not appear to be relevant for the formation of microbial carbonates in Pyramid Lake. The results demonstrate the crucial influence of mucus substances on carbonate precipitation in highly supersaturated natural environments.

  14. Potential risk and control strategy of biofilm pretreatment process treating raw water.

    Science.gov (United States)

    Yang, Guang-Feng; Feng, Li-Juan; Wang, Sha-Fei; Zhou, Jia-Heng; Guo, Cai-Rong; Xia, Tian; Sun, Wen-Xiong; Jiang, Yue-Jie; Sun, Xiao-Yan; Cao, Lian; Xu, Xiang-Yang; Zhu, Liang

    2015-12-01

    An enhanced lab-scale biofilm pretreatment process treating raw water obtained from eutrophicated water bodies was established and started up with a novel strategy of low-level nutrients addition and effluent recirculation. Results showed that the startup strategy was useful for biofilm formation and pollutants removal, but it had the risks of increasing substrate affinity constant (Ks) and biofilm decay in treating raw water. Fortunately, the increased Ks value did not affected the NH4(+)-N removal performance via keeping the NH4(+)-N loading rate larger than 6.29 mg L(-1)d(-1). In addition, lower hydraulic retention time (HRT) favored the removal of organic matters, and the maximum TOC removal rate of 76.5 mg L(-1)d(-1) were achieved at HRT of 2h. After long-term acclimatization at oligotrophic niche, the decrease of Ks value and increase of biomass, extracellular polymeric substances, bioactivity were achieved. Finally, the stable operation of biofilm pretreatment process was realized in treating polluted raw water. PMID:26413896

  15. Biofilms at work: Bio-, phyto- and rhizoremediation approaches for soils contaminated with polychlorinated biphenyls

    Directory of Open Access Journals (Sweden)

    Merily Horwat

    2015-09-01

    Full Text Available Organohalide contaminants such as polychlorinated biphenyls (PCBs have been released into the environment for decades due to anthropogenic activities, but are also naturally produced in small amounts through volcanic eruptions and geochemical processes. Although toxic to humans and other organisms, the natural production of these compounds has resulted in the evolution of naturally occurring organohalide-respiring bacteria that possess the enzymes necessary to degrade PCB compounds to non-toxic products. The efficiency of PCB degradation can be improved by facilitating the formation of organohalide-respiring biofilms. During biofilm colonization on a surface or interface, bacteria are encased in an extracellular polymeric substance (EPS or “slime,” which allows them to share nutrients and remain protected from environmental stresses. Effective bioremediation of PCBs involves facilitation of biofilm growth to promote cooperation between bacteria, which can be further enhanced by the presence of certain plant species. This review aims to give an overview of biofilm processes involved in the detoxification of PCBs including anaerobic and aerobic PCB degradation by bacteria as well as the ability of plants to stimulate microbial activity and degradation (rhizoremediation and phytoremediation.

  16. Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Webb, J.S.; Rao, D.;

    2006-01-01

    Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated...... specific interactions. In summary, our data strongly indicate that synergistic effects promote biofilm biomass and resistance of the biofilm to antimicrobial agents and bacterial invasion in multispecies biofilms.......Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated......-species biofilms resisted invasion to a greater extent than did the biofilms formed by the single species. Replacement of each strain by its cell-free culture supernatant suggested that synergy was dependent both on species-specific physical interactions between cells and on extracellular secreted factors or less...

  17. The Challenging World of Biofilm Physiology.

    Science.gov (United States)

    Donné, Joke; Dewilde, Sylvia

    2015-01-01

    Worldwide, infectious diseases are one of the leading causes of death among children. At least 65% of all infections are caused by the biofilm mode of bacterial growth. Bacteria colonise surfaces and grow as multicellular biofilm communities surrounded by a polymeric matrix as a common survival strategy. These sessile communities endow bacteria with high tolerance to antimicrobial agents and hence cause persistent and chronic bacterial infections, such as dental caries, periodontitis, otitis media, cystic fibrosis and pneumonia. The highly complex nature and the rapid adaptability of the biofilm population impede our understanding of the process of biofilm formation, but an important role for oxygen-binding proteins herein is clear. Much research on this bacterial lifestyle is already performed, from genome/proteome analysis to in vivo antibiotic susceptibility testing, but without significant progress in biofilm treatment or eradication. This review will present the multiple challenges of biofilm research and discuss possibilities to cross these barriers in future experimental studies. PMID:26616519

  18. Nanotechnology: Role in dental biofilms

    Directory of Open Access Journals (Sweden)

    Bhardwaj Sonia

    2009-01-01

    Full Text Available Biofilms are surface- adherent populations of microorganisms consisting of cells, water and extracellular matrix material Nanotechnology is promising field of science which can guide our understanding of the role of interspecies interaction in the development of biofilm. Streptococcus mutans with other species of bacteria has been known to form dental biofilm. The correlation between genetically modified bacteria Streptococcus mutans and nanoscale morphology has been assessed using AFMi.e atomic force microscopy. Nanotechnology application includes 16 O/ 18 O reverse proteolytic labeling,use of quantum dots for labeling of bacterial cells, selective removal of cariogenic bacteria while preserving the normal oral flora and silver antimicrobial nanotechnology against pathogens associated with biofilms. The future comprises a mouthwash full of smart nanomachines which can allow the harmless flora of mouth to flourish in a healthy ecosystem

  19. Optimization of Extracellular Polymeric Substance Extraction Method and Its Role in the Dewaterability of Sludge%污泥胞外聚合物的提取方法及其对污泥脱水性能的影响

    Institute of Scientific and Technical Information of China (English)

    周俊; 周立祥; 黄焕忠

    2013-01-01

    采用7种不同方法提取污泥胞外聚合物(EPS),并研究污泥不同层EPS剥离前后对污泥脱水性能的影响.结果表明,甲醛+ NaOH和2% EDTA提取法对污泥中紧密结合的胞外聚合物(tightly bound extracellular polymeric substances,TB-EPS)提取效率最高,总固体(SS)中的EPS提取量分别为128.9 mg·g-1和42.38 mg·g-1,但提取后细胞破裂严重,不能代表污泥EPS的真实含量,不宜采用.加热法较为温和,提取效率较高,总SS中EPS产量为21.97 mg·g-1.污泥剥离黏液层(Slime层)、松散结合的胞外聚合物(loosely bound extracellular polymeric substances,LB-EPS)和TB-EPS层后污泥的脱水性能大幅度改善,其中Slime层EPS含量越高污泥的脱水性能越差,当污泥EPS大量地释放到溶液中即Slime层时污泥的CST值大幅度升高,污泥的脱水性能变差.石湖墟和昂船舟污泥初始的毛细吸水时间(CST)为132.9 s和229.9 s,当剥离Slime层时这2种污泥的CST值分别为80.8 s和79.4 s,脱水性能得到明显改善.%Seven commonly adopted extraction schemes were selected to extract extracellular polymeric substance (EPS) from the sludge,and the dewaterability of sludge was also investigated before and after extracting EPS.Results showed that Formaldehyde + NaOH and 2% EDTA methods were proved to be effective in extracting EPS from the sludge,and the total EPS production of the total suspend solid was 128.86 mg·g-1 and 42.38 mg·g-1,respectively.However,the cell destructed seriously after extracted by Formaldehyde + NaOH and 2% EDTA methods.Heating method was a gentle and efficient method,and the total EPS production was 21.97 mg·g-1.Sludge dewaterability was largely improved after extracted slime,loosely bound EPS and tightly bound EPS from the sludge flocs.It was also found that the higher content of EPS in slime,the worse dewaterability of sludge,and sludge dewaterability would be deteriorated when EPS was released from other layers to slime

  20. Biofilm Infections

    DEFF Research Database (Denmark)

    A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized as...... being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections such as...... diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well as...

  1. Biofilm Infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Jensen, Peter Østrup; Moser, Claus Ernst; Høiby, Niels

    being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections such as......A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized as...... diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well as...

  2. Bactericidal Compounds Controlling Growth of the Plant Pathogen Pseudomonas syringae pv. actinidiae, Which Forms Biofilms Composed of a Novel Exopolysaccharide

    Science.gov (United States)

    Ghods, Shirin; Sims, Ian M.; Moradali, M. Fata

    2015-01-01

    Pseudomonas syringae pv. actinidiae is the major cause of bacterial canker and is a severe threat to kiwifruit production worldwide. Many aspects of the disease caused by P. syringae pv. actinidiae, such as the pathogenicity-relevant formation of a biofilm composed of extracellular polymeric substances (EPSs), are still unknown. Here, a highly virulent strain of P. syringae pv. actinidiae, NZ V-13, was studied with respect to biofilm formation and architecture using a flow cell system combined with confocal laser scanning microscopy. The biofilm formed by P. syringae pv. actinidiae NZ V-13 was heterogeneous, consisting of a thin cellular base layer 5 μm thick and microcolonies with irregular structures. The major component of the EPSs produced by P. syringae pv. actinidiae NZ V-13 bacteria was isolated and identified to be an exopolysaccharide. Extensive compositional and structural analysis showed that rhamnose, fucose, and glucose were the major constituents, present at a ratio of 5:1.5:2. Experimental evidence that P. syringae pv. actinidiae NZ V-13 produces two polysaccharides, a branched α-d-rhamnan with side chains of terminal α-d-Fucf and an α-d-1,4-linked glucan, was obtained. The susceptibility of the cells in biofilms to kasugamycin and chlorine dioxide was assessed. About 64 and 73% of P. syringae pv. actinidiae NZ V-13 cells in biofilms were killed when kasugamycin and chlorine dioxide were used at 5 and 10 ppm, respectively. Kasugamycin inhibited the attachment of P. syringae pv. actinidiae NZ V-13 to solid surfaces at concentrations of 80 and 100 ppm. Kasugamycin was bacteriostatic against P. syringae pv. actinidiae NZ V-13 growth in the planktonic mode, with the MIC being 40 to 60 ppm and a bactericidal effect being found at 100 ppm. Here we studied the formation, architecture, and composition of P. syringae pv. actinidiae biofilms as well as used the biofilm as a model to assess the efficacies of bactericidal compounds. PMID:25841017

  3. STAPHYLOCOCCUS AUREUS BIOFILM FORMATION ON POLYPYRROLE: AN ELECTRICAL OVERVIEW

    Directory of Open Access Journals (Sweden)

    Erlon R. Cordeiro

    2015-09-01

    Full Text Available The development of organic devices based on conducting polymers for biofilm detection requires the combination of superior electrical response and high surface area for biofilm incorporation. Polypyrrole is a potential candidate for application in biofilm detection and control due to its characteristic superior electrical response and strong interaction with bacteria, which enables the use of the bioelectric effect in resulting devices. In this study, chemically synthesized polypyrrole was applied as a support for biofilm growth of S. aureus. Modifications in the electrical response of the polymeric template were explored to identify general mechanisms established during the deposition of the biofilm.

  4. Diffusion in biofilms respiring on electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Renslow, Ryan S. [Washington State Univ., Pullman, WA (United States); Babauta, Jerome T. [Washington State Univ., Pullman, WA (United States); Majors, Paul D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Beyenal, Haluk [Washington State Univ., Pullman, WA (United States)

    2012-11-15

    The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (De) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed for noninvasive, nondestructive, high spatial resolution in situ De measurements in living biofilms respiring on electrodes. The electrodes were polarized so that they would act as the sole terminal electron acceptor for microbial metabolism. We present our results as both two-dimensional De heat maps and surface-averaged relative effective diffusion coefficient (Drs) depth profiles. We found that (1) Drs decreases with depth in G. sulfurreducens biofilms, following a sigmoid shape; (2) Drs at a given location decreases with G. sulfurreducens biofilm age; (3) average De and Drs profiles in G. sulfurreducens biofilms are lower than those in S. oneidensis biofilms—the G. sulfurreducens biofilms studied here were on average 10 times denser than the S. oneidensis biofilms; and (4) halting the respiration of a G. sulfurreducens biofilm decreases the De values. Density, reflected by De, plays a major role in the extracellular electron transfer strategies of electrochemically active biofilms.

  5. Biofilm Exopolysaccharides of Pathogenic Fungi: Lessons from Bacteria.

    Science.gov (United States)

    Sheppard, Donald C; Howell, P Lynne

    2016-06-10

    Exopolysaccharides play an important structural and functional role in the development and maintenance of microbial biofilms. Although the majority of research to date has focused on the exopolysaccharide systems of biofilm-forming bacteria, recent studies have demonstrated that medically relevant fungi such as Candida albicans and Aspergillus fumigatus also form biofilms during infection. These fungal biofilms share many similarities with those of bacteria, including the presence of secreted exopolysaccharides as core components of the extracellular matrix. This review will highlight our current understanding of fungal biofilm exopolysaccharides, as well as the parallels that can be drawn with those of their bacterial counterparts. PMID:27129222

  6. Medical Biofilms

    OpenAIRE

    Bryers, James D.

    2008-01-01

    For more than two decades, Biotechnology and Bioengineering has documented research focused on natural and engineered microbial biofilms within aquatic and subterranean ecosystems, wastewater and waste-gas treatment systems, marine vessels and structures, and industrial bioprocesses. Compared to suspended culture systems, intentionally engineered biofilms are heterogeneous reaction systems that can increase reactor productivity, system stability, and provide inherent cell: product separation....

  7. Salmonella biofilms

    NARCIS (Netherlands)

    Castelijn, G.A.A.

    2013-01-01

    Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm formation. A collectio

  8. Biofilm Development

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2015-01-01

    , and not by specific genetic programs. It appears that biofilm formation can occur through multiple pathways and that the spatial structure of the biofilms is species dependent as well as dependent on environmental conditions. Bacterial subpopulations, e.g., motile and nonmotile subpopulations, can develop...

  9. Pilot-scale tertiary MBBR nitrification at 1°C: characterization of ammonia removal rate, solids settleability and biofilm characteristics.

    Science.gov (United States)

    Young, Bradley; Delatolla, Robert; Ren, Baisha; Kennedy, Kevin; Laflamme, Edith; Stintzi, Alain

    2016-08-01

    Pilot-scale moving bed biofilm reactor (MBBR) is used to investigate the kinetics and biofilm response of municipal, tertiary nitrification at 1°C. The research demonstrates that significant rates of tertiary MBBR nitrification are attainable and stable for extended periods of operation at 1°C, with a maximum removal rate of 230 gN/m(3) d at 1°C. At conventional nitrogen loading rates, low ammonia effluent concentrations below 5 mg-N/L were achieved at 1°C. The biofilm thickness and dry weight biofilm mass (massdw) were shown to be stable, with thickness values showing a correlation to the protein/polysaccharide ratio of the biofilm extracellular polymeric substances. Lastly, tertiary MBBR nitrification is shown to increase the effluent suspended solids concentrations by approximately 3 mg total suspended solids /L, with 19-60% of effluent solids being removed after 30 min of settling. The settleability of the effluent solids was shown to be correlated to the nitrogen loading of the MBBR system. PMID:26789700

  10. Analysis of changes in attenuated total reflection FTIR fingerprints of Pseudomonas fluorescens from planktonic state to nascent biofilm state

    Science.gov (United States)

    Quilès, Fabienne; Humbert, François; Delille, Anne

    2010-02-01

    Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy is a useful method for monitoring biofilm in situ, non-destructively, in real time, and under fully hydrated conditions. In this work we focused on changes in Pseudomonas fluorescens ATR-FTIR fingerprint accompanying the very early stages of biofilm formation: initial bacterial adhesion and the very beginning of biofilm development in the presence of nutrients. To help interpreting variations in the ATR-FTIR fingerprint of sessile bacteria, ATR-FTIR spectra of planktonic bacteria in different growth phases were also examined, and the average surface coverage and spatial arrangement of bacteria on the ATR crystal were determined by epifluorescence microscopy. The proteins, nucleic acids and polysaccharides ATR-FTIR spectral data recorded during growth of sessile bacteria were shown to be linked to changes in the physiological state of the bacteria, possibly accompanied by extracellular polymeric substances production. This work clearly showed by spectroscopic method how bacteria change drastically their metabolism during the first hours of biofilm formation.

  11. Effect of mechanical stress on biofilms challenged by different chemicals

    OpenAIRE

    Simões, M; Pereira, Maria Olívia; Vieira, M. J.

    2005-01-01

    In this study a methodology was applied in order to ascertain the mechanical stability of biofilms, by using a stainlesssteel (SS) rotating device immersed in a biological reactor where biofilms formed by Pseudomonas fluorescens were allowed to grow for 7 days at a Reynolds number of agitation of 2400. The biofilms developed with this system were characterised in terms of amount of total, extracellular and intracellular proteins and polysaccharides, amount of mass, metabolic activ...

  12. Dispersal of Biofilms by Secreted, Matrix Degrading, Bacterial DNase

    OpenAIRE

    Nijland, Reindert; Hall, Michael J; Burgess, J. Grant

    2010-01-01

    Microbial biofilms are composed of a hydrated matrix of biopolymers including polypeptides, polysaccharides and nucleic acids and act as a protective barrier and microenvironment for the inhabiting microbes. While studying marine biofilms, we observed that supernatant produced by a marine isolate of Bacillus licheniformis was capable of dispersing bacterial biofilms. We investigated the source of this activity and identified the active compound as an extracellular DNase (NucB). We have shown ...

  13. Spatiotemporal evolution of bacterial biofilm colonies

    Science.gov (United States)

    Wilking, James; Koehler, Stephan; Sinha, Naveen; Seminara, Agnese; Brenner, Michael; Weitz, David

    2014-03-01

    Many bacteria on earth live in surface-attached communities known as biofilms. Gene expression in a biofilm is typically varied, resulting in a variety of phenotypes within a single film. These phenotypes play a critical role in biofilm physiology and development. We use time-resolved, wide-field fluorescence microscopy to image triple-labeled fluorescent Bacillus Subtilis colonies grown on agar to determine in a non-invasive fashion the evolving phenotypes. We infer their transition rates from the resulting spatiotemporal maps of gene expression. Moreover, we correlate these transition rates with local measurements of nutrient concentration to determine the influence of extracellular signals on gene expression.

  14. A Phytoanticipin Derivative, Sodium Houttuyfonate, Induces in Vitro Synergistic Effects with Levofloxacin against Biofilm Formation by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Jing Shao

    2012-09-01

    Full Text Available Antibiotic resistance has become the main deadly factor in infections, as bacteria can protect themselves by hiding in a self-constructed biofilm. Consequently, more attention is being paid to the search for “non-antibiotic drugs” to solve this problem. Phytoanticipins, the natural antibiotics from plants, could be a suitable alternative, but few works on this aspect have been reported. In this study, a preliminary study on the synergy between sodium houttuyfonate (SH and levofloxacin (LFX against the biofilm formation of Pseudomonas aeruginosa was performed. The minimal inhibitory concentrations (MIC of LFX and SH, anti-biofilm formation and synergistic effect on Pseudomonas aeruginosa, and quantification of alginate were determined by the microdilution method, crystal violet (CV assay, checkerboard method, and hydroxybiphenyl colorimetry. The biofilm morphology of Pseudomonas aeruginosa was observed by fluorescence microscope and scanning electric microscope (SEM. The results showed that: (i LFX and SH had an obvious synergistic effect against Pseudomonas aeruginosa with MIC values of 0.25 μg/mL and 128 μg/mL, respectively; (ii ½ × MIC SH combined with 2 × MIC LFX could suppress the biofilm formation of Pseudomonas aeruginosa effectively, with up to 73% inhibition; (iii the concentration of alginate decreased dramatically by a maximum of 92% after treatment with the combination of antibiotics; and (iv more dead cells by fluorescence microscope and more removal of extracellular polymeric structure (EPS by SEM were observed after the combined treatment of LFX and SH. Our experiments demonstrate the promising future of this potent antimicrobial agent against biofilm-associated infections.

  15. Capillary isoelectric focusing--useful tool for detection of the biofilm formation in Staphylococcus epidermidis.

    Science.gov (United States)

    Ruzicka, Filip; Horka, Marie; Hola, Veronika; Votava, Miroslav

    2007-03-01

    The biofilm formation is an important factor of S. epidermidis virulence. Biofilm-positive strains might be clinically more important than biofilm-negative ones. Unlike biofilm-negative staphylococci, biofilm-positive staphylococci are surrounded with an extracellular polysaccharide substance. The presence of this substance on the surface can affect physico-chemical properties of the bacterial cell, including surface charge. 73 S. epidermidis strains were examined for the presence of ica operon, for the ability to form biofilm by Christensen test tube method and for the production of slime by Congo red agar method. Isoelectric points (pI) of these strains were determined by means of Capillary Isoelectric Focusing. The biofilm negative strains focused near pI value 2.3, while the pI values of the biofilm positive strains were near 2.6. Isoelectric point is a useful criterion for the differentiation between biofilm-positive and biofilm-negative S. epidermidis strains. PMID:17157942

  16. Wound biofilms: lessons learned from oral biofilms

    OpenAIRE

    Mancl, Kimberly A.; Kirsner, Robert S.; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque,are a primary cause of oral diseases including caries, gingivitis and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible, thus biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well-elucidated. In contrast, wound research has relati...

  17. Putative Role of β-1,3 Glucans in Candida albicans Biofilm Resistance▿

    OpenAIRE

    Nett, Jeniel; Lincoln, Leslie; Marchillo, Karen; Massey, Randall; Holoyda, Kathleen; Hoff, Brian; VanHandel, Michelle; Andes, David

    2006-01-01

    Biofilms are microbial communities, embedded in a polymeric matrix, growing attached to a surface. Nearly all device-associated infections involve growth in the biofilm life style. Biofilm communities have characteristic architecture and distinct phenotypic properties. The most clinically important phenotype involves extraordinary resistance to antimicrobial therapy, making biofilm infections very difficulty to cure without device removal. The current studies examine drug resistance in Candid...

  18. Effect of biofilm on soil hydraulic properties: laboratory studies using xanthan as surrogate

    Science.gov (United States)

    Rosenkranz, H.; Iden, S. C.; Durner, W.

    2012-04-01

    Many soil bacteria produce extracellular polymeric substances (EPS) in which they are embedded while residing in the porous matrix. EPS are often attached as a biofilm to both the bacteria cell and the soil particles. As a consequence, their influence on water flow through variably saturated porous media often cannot be neglected. While the influence of attached microbial biomass and EPS on saturated water flow has been studied extensively, its investigation for unsaturated flow in soils has found significantly less attention. The objective of this study was the quantification of the effect of biofilms on the unsaturated soil hydraulic properties. We determined the soil water retention and unsaturated hydraulic conductivity functions of biofilm-affected soils by using xanthan as an EPS surrogate. Evaporation experiments were conducted on two sandy soil materials. The amount of added xanthan was varied in 6 stages from zero to 0.25 %. Additional measurements of soil water retention using the dewpoint method closed the remaining gap from the evaporation method to air-dryness. The experimental data were evaluated by the simplified evaporation method of Schindler. The results show that the unsaturated hydraulic conductivity is reduced markedly by added xanthan and the shape of the soil water retention curve is alterated significantly for all stages of xanthan addition. The reduction in hydraulic conductivity is high enough to fully suppress stage-one evaporation for xanthan-sand mixtures. The water-holding capacity of the xanthan and the alteration of the effective pore size distribution explain these results.

  19. A Candida Biofilm-Induced Pathway for Matrix Glucan Delivery: Implications for Drug Resistance

    OpenAIRE

    Taff, Heather T.; Nett, Jeniel E.; Zarnowski, Robert; Ross, Kelly M.; Sanchez, Hiram; Cain, Mike T.; Hamaker, Jessica; Mitchell, Aaron P.; Andes, David R.

    2012-01-01

    Extracellular polysaccharides are key constituents of the biofilm matrix of many microorganisms. One critical carbohydrate component of Candida albicans biofilms, β-1,3 glucan, has been linked to biofilm protection from antifungal agents. In this study, we identify three glucan modification enzymes that function to deliver glucan from the cell to the extracellular matrix. These enzymes include two predicted glucan transferases and an exo-glucanase, encoded by BGL2, PHR1, and XOG1, respectivel...

  20. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis

    Science.gov (United States)

    Trivedi, Abhishek; Mavi, Parminder Singh; Bhatt, Deepak; Kumar, Ashwani

    2016-01-01

    Mycobacterium tuberculosis (Mtb) forms biofilms harbouring antibiotic-tolerant bacilli in vitro, but the factors that induce biofilm formation and the nature of the extracellular material that holds the cells together are poorly understood. Here we show that intracellular thiol reductive stress (TRS) induces formation of Mtb biofilms in vitro, which harbour drug-tolerant but metabolically active bacteria with unchanged levels of ATP/ADP, NAD+/NADH and NADP+/NADPH. The development of these biofilms requires DNA, RNA and protein synthesis. Transcriptional analysis suggests that Mtb modulates only ∼7% of its genes for survival in biofilms. In addition to proteins, lipids and DNA, the extracellular material in these biofilms is primarily composed of polysaccharides, with cellulose being a key component. Our results contribute to a better understanding of the mechanisms underlying Mtb biofilm formation, although the clinical relevance of Mtb biofilms in human tuberculosis remains unclear. PMID:27109928

  1. The role of bacterial biofilm in persistent infections and control strategies

    OpenAIRE

    Chen, Li; Wen, Yu-Mei

    2011-01-01

    Bacterial biofilms can be viewed as a specific type of persistent bacterial infection. After initial invasion, microbes can attach to living and non-living surfaces, such as prosthetics and indwelling medical devices, and form a biofilm composed of extracellular polysaccharides, proteins, and other components. In hosts, biofilm formation may trigger drug resistance and inflammation, resulting in persistent infections. The clinical aspects of biofilm formation and leading strategies for biofil...

  2. FTIR Spectrum and Detoxication of Extracellular Polymeric Substances Secreted by Microorganism%微生物胞外聚合物对重金属镉的解毒作用及红外光谱分析

    Institute of Scientific and Technical Information of China (English)

    张海欧; 周维芝; 马玉洪; 赵海霞; 张玉忠

    2013-01-01

    In order to explore the effect of extracelluar polymeric substances (EPS) on resistance and removal of heavy metals , the production of EPS ,secreted by cadmium-resistant strain (SCSE425-7) and cadmium-removal strain (SCSE709-6) was inves-tigated combined with Fourier transform infrared spectroscopy (FTIR) .The results showed that the high resistance to cadmium of strain SCSE425-7 was related to the high production of soluble EPS ,whereas SCSE709-6 secreted more insoluble EPS resul-ting in better cadmium removal performance .It was indicated that soluble extracellular carbohydrates may help the bacteria to enhance resistance to Cd2+ ,and insoluble EPS could contribute to Cd2+ removal effectively .The FTIR spectra showed that the peaks of amide and carboxyl were main functional groups for Cd2+ adsorption .%为探索微生物胞外物在微生物对重金属的抗性和去除过程中的作用,比较分析了对重金属镉具有不同抗性和去除率的菌株SCSE425-7和SCSE709-6胞外物的产生情况和菌株的红外光谱谱图。结果表明,在含镉条件培养时,菌株SCSE425-7表现了较高的镉抗性,分泌了相对较多的可溶性胞外多糖;而菌株SCSE709-6镉抗性较SCSE425-7低,但镉的生物去除性能较好,分泌了更多不可溶胞外聚合物。这说明,在重金属毒性胁迫下,微生物分泌的可溶性胞外多糖可能有助于提高微生物对重金属的抗性,而不可溶性胞外聚合物有助于重金属的微生物吸附。菌株红外光谱分析结果表明不可溶胞外聚合物上的酰胺基和羧基是其吸附镉离子的主要官能团。

  3. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    Directory of Open Access Journals (Sweden)

    E. S. Vorobey

    2012-03-01

    Full Text Available Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molecules of the Quorum sensing system. Coordination of bacterial cells activity in the biofilms gives them significant advantages: in the biofilms bacteria are protected from the influence of the host protective factors and the antibacterial drugs.

  4. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    OpenAIRE

    E. S. Vorobey; O. S. Voronkova; A. I. Vinnikov

    2012-01-01

    Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molec...

  5. Physicochemical changes of microbe and solid surface properties during biofilm formation

    Science.gov (United States)

    Sfaelou, Stavroula; Vakros, John; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.

    2013-04-01

    .9 for PVA gel and MBBR, respectively. These values differ both from the pzc values found for PVA biocarriers (pzc = 9.4; no pzc value was obtained for MBBR as expected based on its hydrophobic nature and the absence of surface groups with acid-base behavior) and the pzc value of activated sludge (activated sludge mixed liquor: pzc = 8.0 to 8.2, solid activated sludge: pzc = 7.2 to 7.3). These results lead us to the conclusion that the formed biofilms have different acid-base behavior and properties in relation to the activated sludge and the biocarriers. This fact is in accordance to previous studies, where biofilm-associated cells can be differentiated from their suspended counterparts due to the generation of an extracellular polymeric substance (EPS) matrix. One other possible explanation is that the complicated processes of the biofilm formation can alter the distribution of different cells in the sludge compared with the cell distribution in the suspended unsupported sludge.

  6. Disturbance of the bacterial cell wall specifically interferes with biofilm formation.

    Science.gov (United States)

    Bucher, Tabitha; Oppenheimer-Shaanan, Yaara; Savidor, Alon; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2015-12-01

    In nature, bacteria communicate via chemical cues and establish complex communities referred to as biofilms, wherein cells are held together by an extracellular matrix. Much research is focusing on small molecules that manipulate and prevent biofilm assembly by modifying cellular signalling pathways. However, the bacterial cell envelope, presenting the interface between bacterial cells and their surroundings, is largely overlooked. In our study, we identified specific targets within the biosynthesis pathways of the different cell wall components (peptidoglycan, wall teichoic acids and teichuronic acids) hampering biofilm formation and the anchoring of the extracellular matrix with a minimal effect on planktonic growth. In addition, we provide convincing evidence that biofilm hampering by transglycosylation inhibitors and D-Leucine triggers a highly specific response without changing the overall protein levels within the biofilm cells or the overall levels of the extracellular matrix components. The presented results emphasize the central role of the Gram-positive cell wall in biofilm development, resistance and sustainment. PMID:26472159

  7. NEW METHODOLOGIES FOR BIOFILMS CONTROL IN FOOD INDUSTRY

    Directory of Open Access Journals (Sweden)

    Pavol Bajzík

    2010-07-01

    Full Text Available The complete removal of biofilms on food  equipment surfaces  is essential to ensure food safety and quality. However, cells in biofilms exhibit greater resistance against the action of sanitizers and other antimicrobial agents compared to their free living counterparts, making them much more difficult to remove. They can be a significant source of post - processing contamination and could potentially harbor pathogens in food processing platns. The biotechnology sector is just beginning to tackle the problem of biofilms by developing antimicrobial agents with novel mechanisms of action. Some studies seek to prevent biofilm formation, others aim to develop antimicrobial agents to treat existing biofilms, and still others are trying to disrupt the polymeric ties that bind the biofilms together. doi:10.5219/17

  8. Biofilms in Infections of the Eye

    Directory of Open Access Journals (Sweden)

    Paulo J. M. Bispo

    2015-03-01

    Full Text Available The ability to form biofilms in a variety of environments is a common trait of bacteria, and may represent one of the earliest defenses against predation. Biofilms are multicellular communities usually held together by a polymeric matrix, ranging from capsular material to cell lysate. In a structure that imposes diffusion limits, environmental microgradients arise to which individual bacteria adapt their physiologies, resulting in the gamut of physiological diversity. Additionally, the proximity of cells within the biofilm creates the opportunity for coordinated behaviors through cell–cell communication using diffusible signals, the most well documented being quorum sensing. Biofilms form on abiotic or biotic surfaces, and because of that are associated with a large proportion of human infections. Biofilm formation imposes a limitation on the uses and design of ocular devices, such as intraocular lenses, posterior contact lenses, scleral buckles, conjunctival plugs, lacrimal intubation devices and orbital implants. In the absence of abiotic materials, biofilms have been observed on the capsule, and in the corneal stroma. As the evidence for the involvement of microbial biofilms in many ocular infections has become compelling, developing new strategies to prevent their formation or to eradicate them at the site of infection, has become a priority.

  9. Understanding, preventing and eradicating Klebsiella pneumoniae biofilms.

    Science.gov (United States)

    Ribeiro, Suzana Meira; Cardoso, Marlon Henrique; Cândido, Elizabete de Souza; Franco, Octávio Luiz

    2016-04-01

    The ability of pathogenic bacteria to aggregate and form biofilm represents a great problem for public health, since they present extracellular components that encase these micro-organisms, making them more resistant to antibiotics and host immune attack. This may become worse when antibiotic-resistant bacterial strains form biofilms. However, antibiofilm screens with different compounds may reveal potential therapies to prevent/treat biofilm infections. Here, we focused on Klebsiella pneumoniae, an opportunistic bacterium that causes different types of infections, including in the bloodstream, meninges, lungs, urinary system and at surgical sites. We also highlight aspects involved in the formation and maintenance of K. pneumoniae biofilms, as well as resistance and the emergence of new trends to combat this health challenge. PMID:27064296

  10. Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus.

    Science.gov (United States)

    Nan, Li; Yang, Ke; Ren, Guogang

    2015-06-01

    Staphylococcus aureus (S. aureus) is a bacterium frequently found proliferating on metal surfaces such as stainless steels used in healthcare and food processing facilities. Past research has shown that a novel Cu-bearing 304 type stainless steel (304CuSS) exhibits excellent antibacterial ability (i.e. against S. aureus) in a short time period (24h.). This work was dedicated to investigate the 304CuSS's inhibition ability towards the S. aureus biofilm formation for an extended period of 7days after incubation. It was found that the antibacterial rate of the 304CuSS against sessile bacterial cells reached over 99.9% in comparison with the 304SS. The thickness and sizes of the biofilms on the 304SS surfaces increased markedly with period of contact, and thus expected higher risk of bio-contamination, indicated by the changes of surface free energy between biofilm and the steel surfaces. The results demonstrated that the 304CuSS exhibited strong inhibition on the growth and adherence of the biofilms. The surface free energy of the 304CuSS after contact with sessile bacterial cells was much lower than that of the 304SS towards the same culture times. The continuously dissolved Cu(2+) ions well demonstrated the dissolution ability of Cu-rich precipitates after exposure to S. aureus solution, from 3.1ppm (2days) to 4.5ppm (7days). For this to occur, a hypothesis mechanism might be established for 304CuSS in which the Cu(2+) ions were released from Cu-rich phases that bond with extracellular polymeric substances (EPS) of the microorganisms. And these inhibited the activities of cell protein/enzymes and effectively prevented planktonic bacterial cells attaching to the 304CuSS metal surface. PMID:25842145

  11. Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Li; Yang, Ke [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Ren, Guogang, E-mail: g.g.ren@herts.ac.uk [University of Hertfordshire, Hatfield AL10 9AB (United Kingdom)

    2015-06-01

    Staphylococcus aureus (S. aureus) is a bacterium frequently found proliferating on metal surfaces such as stainless steels used in healthcare and food processing facilities. Past research has shown that a novel Cu-bearing 304 type stainless steel (304CuSS) exhibits excellent antibacterial ability (i.e. against S. aureus) in a short time period (24 h.). This work was dedicated to investigate the 304CuSS's inhibition ability towards the S. aureus biofilm formation for an extended period of 7 days after incubation. It was found that the antibacterial rate of the 304CuSS against sessile bacterial cells reached over 99.9% in comparison with the 304SS. The thickness and sizes of the biofilms on the 304SS surfaces increased markedly with period of contact, and thus expected higher risk of bio-contamination, indicated by the changes of surface free energy between biofilm and the steel surfaces. The results demonstrated that the 304CuSS exhibited strong inhibition on the growth and adherence of the biofilms. The surface free energy of the 304CuSS after contact with sessile bacterial cells was much lower than that of the 304SS towards the same culture times. The continuously dissolved Cu{sup 2+} ions well demonstrated the dissolution ability of Cu-rich precipitates after exposure to S. aureus solution, from 3.1 ppm (2 days) to 4.5 ppm (7 days). For this to occur, a hypothesis mechanism might be established for 304CuSS in which the Cu{sup 2+} ions were released from Cu-rich phases that bond with extracellular polymeric substances (EPS) of the microorganisms. And these inhibited the activities of cell protein/enzymes and effectively prevented planktonic bacterial cells attaching to the 304CuSS metal surface.

  12. Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus

    International Nuclear Information System (INIS)

    Staphylococcus aureus (S. aureus) is a bacterium frequently found proliferating on metal surfaces such as stainless steels used in healthcare and food processing facilities. Past research has shown that a novel Cu-bearing 304 type stainless steel (304CuSS) exhibits excellent antibacterial ability (i.e. against S. aureus) in a short time period (24 h.). This work was dedicated to investigate the 304CuSS's inhibition ability towards the S. aureus biofilm formation for an extended period of 7 days after incubation. It was found that the antibacterial rate of the 304CuSS against sessile bacterial cells reached over 99.9% in comparison with the 304SS. The thickness and sizes of the biofilms on the 304SS surfaces increased markedly with period of contact, and thus expected higher risk of bio-contamination, indicated by the changes of surface free energy between biofilm and the steel surfaces. The results demonstrated that the 304CuSS exhibited strong inhibition on the growth and adherence of the biofilms. The surface free energy of the 304CuSS after contact with sessile bacterial cells was much lower than that of the 304SS towards the same culture times. The continuously dissolved Cu2+ ions well demonstrated the dissolution ability of Cu-rich precipitates after exposure to S. aureus solution, from 3.1 ppm (2 days) to 4.5 ppm (7 days). For this to occur, a hypothesis mechanism might be established for 304CuSS in which the Cu2+ ions were released from Cu-rich phases that bond with extracellular polymeric substances (EPS) of the microorganisms. And these inhibited the activities of cell protein/enzymes and effectively prevented planktonic bacterial cells attaching to the 304CuSS metal surface

  13. Metagenomic Sequencing of Marine Periphyton: Taxonomic and Functional Insights into Biofilm Communities

    Directory of Open Access Journals (Sweden)

    Kemal eSanli

    2015-10-01

    Full Text Available Periphyton communities are complex phototrophic, multispecies biofilms that develop on surfaces in aquatic environments. These communities harbor a large diversity of organisms comprising viruses, bacteria, algae, fungi, protozoans and metazoans. However, thus far the total biodiversity of periphyton has not been described. In this study, we use metagenomics to characterize periphyton communities from the marine environment of the Swedish west coast. Although we found approximately ten times more eukaryotic rRNA marker gene sequences compared to prokaryotic, the whole metagenome-based similarity searches showed that bacteria constitute the most abundant phyla in these biofilms. We show that marine periphyton encompass a range of heterotrophic and phototrophic organisms. Heterotrophic bacteria, including the majority of proteobacterial clades and Bacteroidetes, and eukaryotic macro-invertebrates were found to dominate periphyton. The phototrophic groups comprise Cyanobacteria and the alpha-proteobacterial genus Roseobacter, followed by different micro- and macro-algae. We also assess the metabolic pathways that predispose these communities to an attached lifestyle. Functional indicators of the biofilm form of life in periphyton involve genes coding for enzymes that catalyze the production and degradation of extracellular polymeric substances, mainly in the form of complex sugars such as starch and glycogen-like meshes together with chitin. Genes for 278 different transporter proteins were detected in the metagenome, constituting the most abundant protein complexes. Finally, genes encoding enzymes that participate in anaerobic pathways, such as denitrification and methanogenesis, were detected suggesting the presence of anaerobic or low-oxygen micro-zones within the biofilms.

  14. Individual growth detection of bacterial species in an in vitro oral polymicrobial biofilm model.

    Science.gov (United States)

    Tabenski, L; Maisch, T; Santarelli, F; Hiller, K-A; Schmalz, G

    2014-11-01

    Most in vitro studies on the antibacterial effects of antiseptics have used planktonic bacteria in monocultures. However, this study design does not reflect the in vivo situation in oral cavities harboring different bacterial species that live in symbiotic relationships in biofilms. The aim of this study was to establish a simple in vitro polymicrobial model consisting of only three bacterial strains of different phases of oral biofilm formation to simulate in vivo oral conditions. Therefore, we studied the biofilm formation of Actinomyces naeslundii (An), Fusobacterium nucleatum (Fn), and Enterococcus faecalis (Ef) on 96-well tissue culture plates under static anaerobic conditions using artificial saliva according to the method established by Pratten et al. that was supplemented with 1 g l(-1) sucrose. Growth was separately determined for each bacterial strain after incubation periods of up to 72 h by means of quantitative real-time polymerase chain reaction and live/dead staining. Presence of an extracellular polymeric substance (EPS) was visualized by Concanavalin A staining. Increasing incubation times of up to 72 h showed adhesion and propagation of the bacterial strains with artificial saliva formulation. An and Ef had significantly higher growth rates than Fn. Live/dead staining showed a median of 49.9 % (range 46.0-53.0 %) of living bacteria after 72 h of incubation, and 3D fluorescence microscopy showed a three-dimensional structure containing EPS. An in vitro oral polymicrobial biofilm model was established to better simulate oral conditions and had the advantage of providing the well-controlled experimental conditions of in vitro testing. PMID:25119373

  15. Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil

    OpenAIRE

    Wu Siva; McDonald Kent; Pandita Ragini; O'Keeffe Teresa; Kainović Aleksandra; Baum Marc M; Webster Paul

    2009-01-01

    Abstract Background Microbial biofilms represent an incompletely understood, but fundamental mode of bacterial growth. These sessile communities typically consist of stratified, morphologically-distinct layers of extracellular material, where numerous metabolic processes occur simultaneously in close proximity. Limited reports on environmental isolates have revealed highly ordered, three-dimensional organization of the extracellular matrix, which may hold important implications for biofilm ph...

  16. Recognition of a Biofilm at the Sediment-Water Interface of AN Acid Mine Drainage-Contaminated Stream, and its Role in Controlling Iron Flux

    Science.gov (United States)

    Boult, Stephen; Johnson, Nicholas; Curtis, Charles

    1997-03-01

    Material collected over a month on plates attached to the bed of the Afon Goch, Anglesey, a stream highly contaminated by acid mine drainage (AMD), was either examined intact by electron microscopy or suspended and cultured to reveal the presence of microbiota. Certain of the aerobic microbiota were identified, the genus Pseudomonas formed the commonest isolate and cultures of Serratia plymuthica were grown in order to compare the biofilms formed with the material collected in the Afon Goch. The material at the sediment-water interface of the Afon Goch was of similar underlying morphology to that of the cultured biofilms. However, the former had a superficial granular coating of equidimensional (60-100 nm) and evenly spaced iron rich particles (determined by X-ray microanalysis). The sediment-water interface of this AMD-contaminated stream is therefore best described as a highly contaminated biofilm. Evidence from previous work suggests that the streambed is active in iron removal from the water column. The intimate association of iron with microbiota at the streambed, therefore, implies that iron flux prediction may not be possible from physical and chemical data alone but requires knowledge of biofilm physiology and ecology.Microbially mediated metal precipitation, both by single bacteria and by biofilms, has been reported elsewhere but mass balance considerations suggest that this explanation cannot hold good for the large amounts of iron hydroxide depositing from waters of the prevalent pH and redox status. Filtered stream water analyses indicate the presence of colloidal iron hydroxide and also its removal downstream where ochreous (iron hydroxide rich) material accumulates. The process of iron immobilization is likely to be the attraction and physical trapping of colloidal iron hydroxide by extracellular polymeric substances (EPS) which constitute the matrix of biofilms.

  17. Nanowire Arrays as Cell Force Sensors To Investigate Adhesin-Enhanced Holdfast of Single Cell Bacteria and Biofilm Stability.

    Science.gov (United States)

    Sahoo, Prasana K; Janissen, Richard; Monteiro, Moniellen P; Cavalli, Alessandro; Murillo, Duber M; Merfa, Marcus V; Cesar, Carlos L; Carvalho, Hernandes F; de Souza, Alessandra A; Bakkers, Erik P A M; Cotta, Monica A

    2016-07-13

    Surface attachment of a planktonic bacteria, mediated by adhesins and extracellular polymeric substances (EPS), is a crucial step for biofilm formation. Some pathogens can modulate cell adhesiveness, impacting host colonization and virulence. A framework able to quantify cell-surface interaction forces and their dependence on chemical surface composition may unveil adhesiveness control mechanisms as new targets for intervention and disease control. Here we employed InP nanowire arrays to dissect factors involved in the early stage biofilm formation of the phytopathogen Xylella fastidiosa. Ex vivo experiments demonstrate single-cell adhesion forces up to 45 nN, depending on the cell orientation with respect to the surface. Larger adhesion forces occur at the cell poles; secreted EPS layers and filaments provide additional mechanical support. Significant adhesion force enhancements were observed for single cells anchoring a biofilm and particularly on XadA1 adhesin-coated surfaces, evidencing molecular mechanisms developed by bacterial pathogens to create a stronger holdfast to specific host tissues. PMID:27336224

  18. Anti-Biofilm Compounds Derived from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Christian Melander

    2011-10-01

    Full Text Available Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues—including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds.

  19. The roles of bacterial biofilm and oxidizing enzymes in the biodegradation of plastic by the bacterium Rhodococcus ruber (C208)

    Science.gov (United States)

    Sivan, A.; Gilan, I.; Santo, M.

    2011-12-01

    Synthetic polymers such as polyethylene are amongst the most durable plastic materials and, therefore are resistant to natural biodegradation resulting in their accumulation in the environment posing a global hazard. We have carried out a two-step enrichment procedure aimed at the isolation of polyethylene-degrading bacteria from soil. The initial enrichment was carried out in soil and the second, in a liquid mineral medium supplemented with linear low-density polyethylene (LDPE; MW 191,000) as the sole carbon source. UV-photooxidation may enhance biodegradation by the formation of carbonyl residues that can be utilized by microorganisms. This screening gave rise to several bacterial strains that were capable of degrading polyethylene. One of these strains (C208), identified as the actinomycete Rhodococcus ruber, colonized the polyethylene producing a biofilm which eventually lead to the degradation of the polyethylene. Adherence and colonization of planktonic C208 cells to the polyethylene surface occurred within minutes from exposure to the polyolefin. This resulted in formation of an initial biofilm that differentiated into cell-aggregation-forming microcolonies. Further organization yielded three-dimensional sessile structures as the mature biofilm. The ratio between the population densities, of the biofilm and planktonic, was about 60:1, indicating a high preference for the biofilm mode of growth. Analysis of the extra-cellular polymeric substances (EPS) in the biofilm of C208 revealed that the polysaccharides level was up to 2.5 folds higher than that of the protein. Surprisingly, the EPS also contained DNA that is actively excreted from live bacterial cells. This is supported by the reduction in biofilm content (but not in viability) following addition, of DNase 1 and RNAse A. The biofilm showed a high viability even after 60 days of incubation in a carbon free medium. This durability of the biofilm, can be attributed to biodegradation of polyethylene. A

  20. In Vitro Analysis of Tobramycin-Treated Pseudomonas aeruginosa Biofilms on Cystic Fibrosis-Derived Airway Epithelial Cells▿ †

    OpenAIRE

    Anderson, Gregory G.; Moreau-Marquis, Sophie; Stanton, Bruce A.; O'Toole, George A.

    2008-01-01

    P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known abiotic biofilm formation genes flgK and pilB. Treatm...

  1. Evaluation of leguminous lectins activities against bacterial biofilm formation

    OpenAIRE

    Carneiro, Victor Alves; Cavalcante, Theodora Thays Arruda; Teixeira, Edson Holanda; Cavada, Benildo Sousa; Oliveira, Rosário; Henriques, Mariana; Pereira, Maria Olívia

    2010-01-01

    Biofilms are composed by microbial cells that are irreversibly associated with a surface and enclosed in a matrix of polymeric material. Lectins are sugar binding proteins of non immune origin that agglutinate cells and ⁄ or precipitate glycoconjugate molecules. Due to their capacity to bind and recognize specific carbohydrates, lectins can be a potent tool in biofilm studies. The search for potential phytochemicals as anti-biofilm agents has become an active area of research, and these protei...

  2. Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: Carbon and energy flow contribute to the distinct biofilm growth state

    Directory of Open Access Journals (Sweden)

    Clark Melinda E

    2012-04-01

    Full Text Available Abstract Background Desulfovibrio vulgaris Hildenborough is a sulfate-reducing bacterium (SRB that is intensively studied in the context of metal corrosion and heavy-metal bioremediation, and SRB populations are commonly observed in pipe and subsurface environments as surface-associated populations. In order to elucidate physiological changes associated with biofilm growth at both the transcript and protein level, transcriptomic and proteomic analyses were done on mature biofilm cells and compared to both batch and reactor planktonic populations. The biofilms were cultivated with lactate and sulfate in a continuously fed biofilm reactor, and compared to both batch and reactor planktonic populations. Results The functional genomic analysis demonstrated that biofilm cells were different compared to planktonic cells, and the majority of altered abundances for genes and proteins were annotated as hypothetical (unknown function, energy conservation, amino acid metabolism, and signal transduction. Genes and proteins that showed similar trends in detected levels were particularly involved in energy conservation such as increases in an annotated ech hydrogenase, formate dehydrogenase, pyruvate:ferredoxin oxidoreductase, and rnf oxidoreductase, and the biofilm cells had elevated formate dehydrogenase activity. Several other hydrogenases and formate dehydrogenases also showed an increased protein level, while decreased transcript and protein levels were observed for putative coo hydrogenase as well as a lactate permease and hyp hydrogenases for biofilm cells. Genes annotated for amino acid synthesis and nitrogen utilization were also predominant changers within the biofilm state. Ribosomal transcripts and proteins were notably decreased within the biofilm cells compared to exponential-phase cells but were not as low as levels observed in planktonic, stationary-phase cells. Several putative, extracellular proteins (DVU1012, 1545 were also detected in the

  3. The Biofilm Challenge

    DEFF Research Database (Denmark)

    Alhede, Maria; Alhede, Morten

    2014-01-01

    The concept of biofilms has emerged in the clinical setting during the last decade. Infections involving biofilms have been documented in all parts of the human body, and it is currently believed that the presence of biofilm-forming bacteria is equivalent to chronic infection. A quick Pubmed search...... reveals the significance of biofilms, as evidenced by a dramatic increase in scientific publications on the topic, as well as in publications concerning wounds with biofilms, which reached 600 publications in 2013. Judged from the number of publications, it appears that biofilms play a significant role in...... wounds. However, the impact of biofilms is often debated, because infected wounds were also treated before the concept of biofilms was coined. In this short review, we will address the significance of biofilms and their role in wounds, and discuss the future tasks of the biofilm challenge....

  4. The Effect of Environmental pH on Polymeric Transfection Efficiency

    OpenAIRE

    Kang, Han Chang; Samsonova, Olga; Kang, Sun-Woong; Bae, You Han

    2011-01-01

    Although polymers, polyplexes, and cells are exposed to various extracellular and intracellular pH environments during polyplex preparation and polymeric transfection, the impact of environmental pH on polymeric transfection has not yet been investigated. This study aims to understand the influence of environmental pH on polymeric transfection by modulating the pH of the transfection medium or the culture medium. Changes in the extracellular pH affected polymeric transfection by way of comple...

  5. Bifunctional silica nanoparticles for the exploration of biofilms of Pseudomonas aeruginosa.

    Science.gov (United States)

    Mauline, L; Gressier, M; Roques, C; Hammer, P; Ribeiro, S J L; Caiut, J M A; Menu, M-J

    2013-01-01

    Luminescent silica nanoparticles are frequently employed for biotechnology applications mainly because of their easy functionalization, photo-stability, and biocompatibility. Bifunctional silica nanoparticles (BSNPs) are described here as new efficient tools for investigating complex biological systems such as biofilms. Photoluminescence is brought about by the incorporation of a silylated ruthenium(II) complex. The surface properties of the silica particles were designed by reaction with amino-organosilanes, quaternary ammonium-organosilanes, carboxylate-organosilanes and hexamethyldisilazane. BSNPs were characterized extensively by DRIFT, (13)C and (29)Si solid state NMR, XPS, and photoluminescence. Zeta potential and contact angle measurements exhibited various surface properties (hydrophilic/hydrophobic balance and electric charge) according to the functional groups. Confocal laser scanning microscopy (CLSM) measurements showed that the spatial distribution of these nanoparticles inside a biofilm of Pseudomonas aeruginosa PAO1 depends more on their hydrophilic/hydrophobic characteristics than on their size. CLSM observations using two nanosized particles (25 and 68 nm) suggest that narrow diffusion paths exist through the extracellular polymeric substances matrix. PMID:23805884

  6. Assessment of bacterial community structure in nitrifying biofilm under inorganic carbon-sufficient and -limited conditions.

    Science.gov (United States)

    Bae, Hyokwan; Chung, Yun-Chul; Yang, Heejeong; Lee, Changsoo; Aryapratama, Rio; Yoo, Young J; Lee, Seockheon

    2015-01-01

    In this work, nitrification and changes in the composition of the total bacterial community under inorganic carbon (IC)-limited conditions, in a nitrifying moving bed biofilm reactor, was investigated. A culture-independent analysis of cloning and sequencing based on the 16S rRNA gene was applied to quantify the bacterial diversity and to determine bacterial taxonomic assignment. IC concentrations had significant effects on the stability of ammonia-oxidation as indicated by the reduction of the nitrogen conversion rate with high NH4(+)-N loadings. The predominance of Nitrosomonas europaea was maintained in spite of changes in the IC concentration. In contrast, heterotrophic bacterial species contributed to a high bacterial diversity, and to a dynamic shift in the bacterial community structure, under IC-limited conditions. In this study, individual functions of heterotrophic bacteria were estimated based on taxonomic information. Possible key roles of coexisting heterotrophic bacteria are the assimilation of organic compounds of extracellular polymeric substances produced by nitrifiers, and biofilm formation by providing a filamentous structure and aggregation properties. PMID:25560266

  7. Biophysics of biofilm infection.

    Science.gov (United States)

    Stewart, Philip S

    2014-04-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could (1) allow prevailing hydrodynamic shear to remove biofilm, (2) increase the efficacy of designed interventions for removing biofilms, (3) enable phagocytic engulfment of softened biofilm aggregates, and (4) improve phagocyte mobility and access to biofilm. PMID:24376149

  8. DNase Inhibits Gardnerella vaginalis Biofilms In Vitro and In Vivo

    OpenAIRE

    Hymes, Saul R.; Randis, Tara M.; Sun, Thomas Yang; Adam J Ratner

    2013-01-01

    Bacterial vaginosis is a highly prevalent and poorly understood polymicrobial disorder of the vaginal microbiota, with significant adverse sequelae. Gardnerella vaginalis predominates in bacterial vaginosis. Biofilms of G. vaginalis are present in human infections and are implicated in persistent disease, treatment failure, and transmission. Here we demonstrate that G. vaginalis biofilms contain extracellular DNA, which is essential to their structural integrity. Enzymatic disruption of this ...

  9. Characterization, Microbial Community Structure, and Pathogen Occurrence in Urban Faucet Biofilms in South China

    Directory of Open Access Journals (Sweden)

    Huirong Lin

    2015-01-01

    Full Text Available The composition and microbial community structure of the drinking water system biofilms were investigated using microstructure analysis and 454 pyrosequencing technique in Xiamen city, southeast of China. SEM (scanning electron microscope results showed different features of biofilm morphology in different fields of PVC pipe. Extracellular matrix material and sparse populations of bacteria (mainly rod-shaped and coccoid were observed. CLSM (confocal laser scanning microscope revealed different distributions of attached cells, extracellular proteins, α-polysaccharides, and β-polysaccharides. The biofilms had complex bacterial compositions. Differences in bacteria diversity and composition from different tap materials and ages were observed. Proteobacteria was the common and predominant group in all biofilms samples. Some potential pathogens (Legionellales, Enterobacteriales, Chromatiales, and Pseudomonadales and corrosive microorganisms were also found in the biofilms. This study provides the information of characterization and visualization of the drinking water biofilms matrix, as well as the microbial community structure and opportunistic pathogens occurrence.

  10. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    Energy Technology Data Exchange (ETDEWEB)

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.; Mehta, Hardeep S.; Ewing, R James; Ewing, Thomas; Mueller, Karl T.; Beyenal, Haluk

    2014-03-01

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.

  11. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    International Nuclear Information System (INIS)

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms

  12. Redox Conductivity of Current-Producing Mixed Species Biofilms

    Science.gov (United States)

    Fan, Yanzhen; Liu, Hong

    2016-01-01

    While most biological materials are insulating in nature, efficient extracellular electron transfer is a critical property of biofilms associated with microbial electrochemical systems and several microorganisms are capable of establishing conductive aggregates and biofilms. Though construction of these conductive microbial networks is an intriguing and important phenomenon in both natural and engineered systems, few studies have been published related to conductive biofilms/aggregates and their conduction mechanisms, especially in mixed-species environments. In the present study, current-producing mixed species biofilms exhibited high conductivity across non-conductive gaps. Biofilm growth observed on the inactive electrode contributed to overall power outputs, suggesting that an electrical connection was established throughout the biofilm assembly. Electrochemical gating analysis of the biofilms over a range of potentials (-600–200 mV, vs. Ag/AgCl) resulted in a peak-manner response with maximum conductance of 3437 ± 271 μS at a gate potential of -360 mV. Following removal of the electron donor (acetate), a 96.6% decrease in peak conductivity was observed. Differential responses observed in the absence of an electron donor and over varying potentials suggest a redox driven conductivity mechanism in mixed-species biofilms. These results demonstrated significant differences in biofilm development and conductivity compared to previous studies using pure cultures. PMID:27159497

  13. Redox Conductivity of Current-Producing Mixed Species Biofilms.

    Science.gov (United States)

    Li, Cheng; Lesnik, Keaton Larson; Fan, Yanzhen; Liu, Hong

    2016-01-01

    While most biological materials are insulating in nature, efficient extracellular electron transfer is a critical property of biofilms associated with microbial electrochemical systems and several microorganisms are capable of establishing conductive aggregates and biofilms. Though construction of these conductive microbial networks is an intriguing and important phenomenon in both natural and engineered systems, few studies have been published related to conductive biofilms/aggregates and their conduction mechanisms, especially in mixed-species environments. In the present study, current-producing mixed species biofilms exhibited high conductivity across non-conductive gaps. Biofilm growth observed on the inactive electrode contributed to overall power outputs, suggesting that an electrical connection was established throughout the biofilm assembly. Electrochemical gating analysis of the biofilms over a range of potentials (-600-200 mV, vs. Ag/AgCl) resulted in a peak-manner response with maximum conductance of 3437 ± 271 μS at a gate potential of -360 mV. Following removal of the electron donor (acetate), a 96.6% decrease in peak conductivity was observed. Differential responses observed in the absence of an electron donor and over varying potentials suggest a redox driven conductivity mechanism in mixed-species biofilms. These results demonstrated significant differences in biofilm development and conductivity compared to previous studies using pure cultures. PMID:27159497

  14. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Margarida Carrolo

    Full Text Available Streptococcus pneumoniae (pneumococcus is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.

  15. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    Full Text Available Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.

  16. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis

    Science.gov (United States)

    Ge, Xiuchun; Shi, Xiaoli; Shi, Limei; Liu, Jinlin; Stone, Victoria; Kong, Fanxiang; Kitten, Todd; Xu, Ping

    2016-01-01

    Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation. PMID:26950587

  17. Delving through electrogenic biofilms: from anodes to cathodes to microbes

    Directory of Open Access Journals (Sweden)

    Lucie Semenec

    2015-08-01

    Full Text Available The study of electromicrobiology has grown into its own field over the last decades and involves microbially driven redox reactions at electrodes as part of a microbial electrochemical system (MES. The microorganisms known to use electrodes as either electron acceptors; electricigens, or electron donors; electrotrophs, drive the redox reactions within these systems through extracellular electron transfer (EET processes. These exoelectrogenic microorganisms form biofilms, referred to as electroactive biofilms (EAB, in order to maximize adherence and contact with electrode surfaces and with one another. In this review, we will discuss the key differences between biofilms that utilize the electrode as an electron acceptor or donor, including their mechanisms for electron transfer, structural and functional compositions as well as which species are enriched for in each microenvironment. Lastly, we will discuss the intricacies of interspecies and intraspecies biofilm formation in electrode biofilms and considerations required for future bioengineering efforts.

  18. DNase inhibits Gardnerella vaginalis biofilms in vitro and in vivo.

    Science.gov (United States)

    Hymes, Saul R; Randis, Tara M; Sun, Thomas Yang; Ratner, Adam J

    2013-05-15

    Bacterial vaginosis is a highly prevalent and poorly understood polymicrobial disorder of the vaginal microbiota, with significant adverse sequelae. Gardnerella vaginalis predominates in bacterial vaginosis. Biofilms of G. vaginalis are present in human infections and are implicated in persistent disease, treatment failure, and transmission. Here we demonstrate that G. vaginalis biofilms contain extracellular DNA, which is essential to their structural integrity. Enzymatic disruption of this DNA specifically inhibits biofilms, acting on both newly forming and established biofilms. DNase liberates bacteria from the biofilm to supernatant fractions and potentiates the activity of metronidazole, an antimicrobial agent used in the treatment of bacterial vaginosis. Using a new murine vaginal colonization model for G. vaginalis, we demonstrate >10-fold inhibition of G. vaginalis colonization by DNase. We conclude that DNase merits investigation as a potential nonantibiotic adjunct to existing bacterial vaginosis therapies in order to decrease the risk of chronic infection, recurrence, and associated morbidities. PMID:23431033

  19. CARBOHYDRATE ENHANCED BIOFILM GROWTH IN ANAEROBIC FLUIDIZED BED REACTOR TREATING SYNTHETIC WASTEWATER = EFEITO DA ADIÇÃO DE CARBOIDRATOS NO CRESCIMENTO DE BIOFILME EM REATOR ANAERÓBIO DE LEITO FLUIDIFICADO

    Directory of Open Access Journals (Sweden)

    Renata Medici Frayne Cuba

    2010-01-01

    Full Text Available Biofilm dynamics in anaerobic fluidized bed reactor was studied since start-up during a 600-day operation time. Specific methanogenic activity tests revealed gas production by the anaerobic biomass since 30th operation day. Scanning Electron Microscopy (SEM micrographs permitted to verify three bacterial development stages depending on the organic loading imposed to the system. Increasing of organic loading caused methanogenic specific activity depletion due to diffusion resistance through anaerobic biofilm. With maximum organic loading of 28.5 kg COD.m-3.day-1, almost 10% of the volatile solids fixed in inert particle surface were detected as polymeric extracellular material. = A dinâmica do biofilme em um reator anaeróbio de leito fluidificado foi estudada durante 600 dias desde a partida do sistema. Testes de atividade metanogênica específica revelaram produção de gás pela biomassa anaeróbia desde o trigésimo dia de operação. Microfotografias obtidas com microscópio eletrônico de varredura (MEV permitiram verificar três estágios no desenvolvimento das bactérias, dependendo da carga orgânica imposta ao sistema. O aumento de carga orgânica causou a diminuição da atividade metanogênica específica devido à resistência à difusividade ao longo do biofilme anaeróbio. Com carga orgânica máxima de 28,5 kg COD. m-3.dia-1, aproximadamente 10% dos sólidos voláteis aderidos na superfície das partículas inertes foi identificado como material polimérico extracelular.

  20. Contribution of Autolysin and Sortase A during Enterococcus faecalis DNA-Dependent Biofilm Development▿ †

    OpenAIRE

    Guiton, Pascale S.; Hung, Chia S.; Kline, Kimberly A.; Roth, Robyn; Kau, Andrew L.; Hayes, Ericka; Heuser, John; Dodson, Karen W.; Caparon, Michael G.; Hultgren, Scott J.

    2009-01-01

    Biofilm production is a major attribute of Enterococcus faecalis clinical isolates. Although some factors, such as sortases, autolysin, and extracellular DNA (eDNA), have been associated with E. faecalis biofilm production, the mechanisms underlying the contributions of these factors to this process have not been completely elucidated yet. In this study we define important roles for the major E. faecalis autolysin (Atn), eDNA, and sortase A (SrtA) during the developmental stages of biofilm fo...

  1. Elektroaktive polymerer

    DEFF Research Database (Denmark)

    West, K.

    Traditionelt tænker vi på polymerer (plastik) som elektrisk isolerende materialer - det som er udenpå ledningerne. I dag kender vi imidlertid også polymerer med intrinsisk elektrisk ledningsevne, og plast er på vej ind i anvendelser, der tidligereudelukkende var baseret på metaller og uorganiske...... halvledere. Hertil kommer, at en del af de ledende polymerer kan stimuleres til at skifte mellem en ledende og en halvledende tilstand, hvorved de ændret både form og farve. I foredraget gives der enrække eksempler på anvendelse af polymerer som elektriske komponenter - rækkende fra polymer elektronik over...

  2. In situ detection and characterization of potable water biofilms on materials by microscopic, spectroscopic and electrochemistry methods

    International Nuclear Information System (INIS)

    We studied biofilm formation on stainless steel occurring in a drinking water distribution system which operated in parallel at 20 and 37 deg. C, in order to focus on the effect of temperature rather than on other operational and water quality parameters. A surface conditioning step was followed as a function of time on this material until adhesion of bacterial colonies by using microscopic methods: scanning electron microscopy (SEM) and atomic force microscopy (AFM); a spectroscopic method: polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and an electrochemical method: rotating disk electrode (RDE). Correlations between surface analysis, the duration of immersion of the sample and the influence of temperature have been identified clearly before bacterial adhesion. In cold water, these results showed an initial conditioning step of surface occurring during the first 8 days, with detection of superficial acidic functions grafted on surface, until adsorption of proteins. After 12 days, formation of independent bacteria microcolonies, reaching 2-3 μm in length was observed. In tepid water, the first step was reduced to 2 days during which carbonates, acidic functions, and proteins were detected. After 90 days, the biofilm entered in a stable population state, which appeared as a bacteria rich film, including possibly Legionella. The spatial variation of the biofilm was limited as deduced from the thickness determination (about 4 μm for 3-month period), using a RDE. The combination of these different techniques confirms successive steps for biofilm formation on stainless steel in a tap water. Then, we scrutinized the external near environment of bacteria including extracellular polymeric substances (EPS) and then further characterize the morphology of dominant bacteria (shape, size, flagellum) on gold substrate by AFM in air

  3. Functional Relationship between Sucrose and a Cariogenic Biofilm Formation

    Science.gov (United States)

    Cai, Jian-Na; Jung, Ji-Eun; Dang, Minh-Huy; Kim, Mi-Ah; Yi, Ho-Keun; Jeon, Jae-Gyu

    2016-01-01

    Sucrose is an important dietary factor in cariogenic biofilm formation and subsequent initiation of dental caries. This study investigated the functional relationships between sucrose concentration and Streptococcus mutans adherence and biofilm formation. Changes in morphological characteristics of the biofilms with increasing sucrose concentration were also evaluated. S. mutans biofilms were formed on saliva-coated hydroxyapatite discs in culture medium containing 0, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, or 40% (w/v) sucrose. The adherence (in 4-hour biofilms) and biofilm composition (in 46-hour biofilms) of the biofilms were analyzed using microbiological, biochemical, laser scanning confocal fluorescence microscopic, and scanning electron microscopic methods. To determine the relationships, 2nd order polynomial curve fitting was performed. In this study, the influence of sucrose on bacterial adhesion, biofilm composition (dry weight, bacterial counts, and water-insoluble extracellular polysaccharide (EPS) content), and acidogenicity followed a 2nd order polynomial curve with concentration dependence, and the maximum effective concentrations (MECs) of sucrose ranged from 0.45 to 2.4%. The bacterial and EPS bio-volume and thickness in the biofilms also gradually increased and then decreased as sucrose concentration increased. Furthermore, the size and shape of the micro-colonies of the biofilms depended on the sucrose concentration. Around the MECs, the micro-colonies were bigger and more homogeneous than those at 0 and 40%, and were surrounded by enough EPSs to support their structure. These results suggest that the relationship between sucrose concentration and cariogenic biofilm formation in the oral cavity could be described by a functional relationship. PMID:27275603

  4. Extracellular DNA metabolism in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    ScottChimileski

    2014-02-01

    Full Text Available Extracellular DNA is found in all environments and is a dynamic component of the micro-bial ecosystem. Microbial cells produce and interact with extracellular DNA through many endogenous mechanisms. Extracellular DNA is processed and internalized for use as genetic information and as a major source of macronutrients, and plays several key roles within prokaryotic biofilms. Hypersaline sites contain some of the highest extracellular DNA con-centrations measured in nature–a potential rich source of carbon, nitrogen and phosphorus for halophilic microorganisms. We conducted DNA growth studies for the halophilic archaeon Haloferax volcanii DS2 and show that this model Halobacteriales strain is capable of using exogenous double-stranded DNA as a nutrient. Further experiments with varying medium composition, DNA concentration and DNA types revealed that DNA is utilized primarily as a phosphorus source, that growth on DNA is concentration-dependent and that DNA isolated from different sources is metabolized selectively, with a bias against highly divergent methylated DNA sources. Additionally, fluorescence microscopy experiments showed that labeled DNA colocalized with Haloferax volcanii cells. The gene Hvo_1477 was also identified using a comparative genomic approach as a factor likely to be involved in extracellular DNA processing at the cell surface, and deletion of Hvo_1477 created an H. volcanii strain deficient in its ability to grow on extracellular DNA. Widespread distribution of Hvo_1477 homologs in archaea suggests metabolism of extracellular DNA may be of broad ecological and physiological relevance in this domain of life.

  5. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating.

    Science.gov (United States)

    Han, Yosep; Hwang, Gukhwa; Kim, Donghyun; Bradford, Scott A; Lee, Byoungcheun; Eom, Igchun; Kim, Pil Je; Choi, Siyoung Q; Kim, Hyunjung

    2016-03-01

    The transport, retention, and long-term release of zinc oxide nanoparticle aggregates (denoted below as ZnO-NPs) were investigated in saturated, bare and biofilm (Pseudomonas putida) coated sand packed columns. Almost complete retention of ZnO-NPs occurred in bare and biofilm coated sand when the influent solution pH was 9 and the ionic strength (IS) was 0.1 or 10 mM NaCl, and the retention profiles were always hyper-exponential. Increasing the solution IS and biofilm coating produced enhanced retention of ZnO-NPs near the column inlet. The enhanced NPs retention at high IS was attributed to more favorable NP-silica and NP-NP interactions; this was consistent with the interaction energy calculations. Meanwhile, the greater NPs retention in the presence of biofilm was attributed to larger roughness heights which alter the mass transfer rate, the interaction energy profile, and lever arms associated with the torque balance; e.g., scanning electron and atomic force microscopy was used to determine roughness heights of 33.4 nm and 97.8 nm for bare sand and biofilm-coated sand, respectively. Interactions between NPs and extracellular polymeric substances may have also contributed to enhanced NP retention in biofilm-coated sand at low IS. The long-term release of retained ZnO-NPs was subsequently investigated by continuously injecting NP-free solution at pH 6, 9, or 10 and keeping the IS constant at 10 mM. The amount and rate of retained ZnO-NP removal was strongly dependent on the solution pH. Specifically, almost complete removal of retained ZnO-NPs was observed after 627 pore volumes when the solution pH was 6, whereas much less Zn was recovered when the eluting solution pH was buffered to pH = 9 and especially 10. This long-term removal was attributed to pH-dependent dissolution of retained ZnO-NPs because: (i) the solubility of ZnO-NPs increases with decreasing pH; and (ii) ZnO-NPs were not detected in the effluent. The presence of biofilm also decreased the

  6. Biofilm Fixed Film Systems

    Directory of Open Access Journals (Sweden)

    Dipesh Das

    2011-09-01

    Full Text Available The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, rotating biological contactors, fluidized bed bioreactors, submerged bed biofilm reactors, biological granular activated carbon, membrane bioreactors, and immobilized cell reactors. Innovative reactors, not easily classified, are then presented, followed by a section on biofilms on sand, soil and sediment.

  7. Activity of ciprofloxacin and azithromycin on biofilms produced in vitro by Haemophilus influenzae

    Institute of Scientific and Technical Information of China (English)

    WANG Dong; WANG Ying; LIU You-ning

    2009-01-01

    Background It is recognized that Haemophilus influenzae isolated from patients with otitis media forms biofilms both in vitro and in vivo, suggesting that biofilm formation in vivo might play an important role in the pathogenesis and chronicity of otitis media, but the effect of antibiotics on biofilm has not been well studied. We investigated the impact of ciprofloxacin and azithromycin on bacterial biofilms formed by Haemophilus influenzae in vitro in this study.Methods Eleven strains of Haemophilus influenzae were isolated from sputum specimens collected from patients with acute exacerbation of chronic obstructive pulmonary diseases. Formation of bacterial biofilm was examined by crystal violet assay and a scanning electron microscope. Alterations of biofilms were measured under varying concentrations of azithromycin and ciprofloxacin.Results Striking differences were observed among strains with regard to the ability to form biofilm. Typical membrane-like structure formed by bacterial cells and extracellular matrix was detected. Initial biofilm synthesis was inhibited by azithromycin and ciprofloxacin at concentrations higher than two-fold minimal inhibitory concentration.Disruption of mature biofilms could be achieved at relatively higher concentration, and ciprofloxacin displayed more powerful activity.Conclusions Haemophilus influenzae is capable of forming biofilm in vitro. Sufficient dosage might control early formation of biofilms. Ciprofloxacin exerts better effects on breakdown of biofilm than azithromycin at conventional concentration in clinics.

  8. 口腔微生物生物膜分散物质的研究进展%Progress in study of oral biofilm dispersal-inducing agents

    Institute of Scientific and Technical Information of China (English)

    朱彦; 杨靖梅; 段丁瑜; 徐屹

    2014-01-01

    Communities of bacteria wrapped in self-generated extracellular polymeric matrix and attached to a solid surface are known as biofilm. Biofilm formation and development can be divided into three stages: adhesion of cells to a surface, reproduction of the cells, and dispersion of cells. The procedure, which surface-attached biofilm disperses bacterial cells into the environment to colonize new sites, is defined as biofilm dispersal. Biofilm dispersal is an essential stage of biofilm life cycle. It plays an important role in the transmission of bacteria. For many pathogenic bacteria, biofilm dispersal can transform bacteria in biofilm into planktonic state and promote the spread of infection. The formation of biofilm may increase the resistance of bacteria to antimicrobial agent and host defence response compared with planktonic cells. In the oral cavity, oral microorganism can attach to the surface of oral tissue and prosthesis to form biofilm. Dental caries and periodontal disease are oral chronic infections diseases of the oral tissue. The occurrence of them has a close relationship with biofilm. The mechanism of dispersal is a hot topic in recent years. Some agents which promote dispersal might be a therapeutic potential against biofilm infections. The clinical implication of dispersal agents and potential application are promising. This article reviews the dispersal-inducing agents of oral biofilms.%生物膜是黏附在固体表面,包裹在自身产生的胞外多聚基质中的细菌群体。生物膜的形成和发展包括细菌的黏附、繁殖和分散。附着于某表面的生物膜将其中的细菌释放、分散到周围环境以传播到新的位置形成新的群落即生物膜的分散。生物膜分散是生物膜生长发展周期中一个重要的阶段,起到重要的传播作用。对许多致病菌而言,生物膜的分散能使生物膜的细菌转化为浮游状态,促进感染的扩散。生物膜的形成能提高细菌对抗

  9. Biofilm Fixed Film Systems

    OpenAIRE

    Dipesh Das; Yung-Tse Hung; Charles Moretti; Hasibul Hasan; Harvey Gullicks

    2011-01-01

    The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, r...

  10. Rheology of biofilms

    OpenAIRE

    Winston, M.; Rupp, C.J.; Vinogradov, A.; Towler, B.W.; Adams, H; Stoodley, P

    2003-01-01

    The paper describes an experimental study concerning the mechanical properties of bacterial biofilms formed from the early dental plaque colonizer Streptoccocus mutans and pond water biofilms. Experiments reported in this paper demonstrate that both types of biofilms exhibit mechanical behavior similar to that of rheological fluids. The time-dependent properties of both biofilms have been modeled using the principles of viscoelasticity theory. The Burger model has been found to accurately re...

  11. Biophysics of Biofilm Infection

    OpenAIRE

    Stewart, Philip S.

    2014-01-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofi...

  12. Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages

    Directory of Open Access Journals (Sweden)

    Stephen T. Abedon

    2015-09-01

    Full Text Available Bacteriophages, the viruses that infect bacteria, have for decades been successfully used to combat antibiotic-resistant, chronic bacterial infections, many of which are likely biofilm associated. Antibiotics as anti-biofilm agents can, by contrast, be inefficacious against even genetically sensitive targets. Such deficiencies in usefulness may result from antibiotics, as naturally occurring compounds, not serving their producers, in nature, as stand-alone disruptors of mature biofilms. Anti-biofilm effectiveness by phages, by contrast, may result from a combination of inherent abilities to concentrate lytic antibacterial activity intracellularly via bacterial infection and extracellularly via localized population growth. Considered here is the anti-biofilm activity of microorganisms, with a case presented for why, ecologically, bacteriophages can be more efficacious than traditional antibiotics as medically or environmentally applied biofilm-disrupting agents. Four criteria, it can be argued, generally must be met, in combination, for microorganisms to eradicate biofilms: (1 Furnishing of sufficiently effective antibacterial factors, (2 intimate interaction with biofilm bacteria over extended periods, (3 associated ability to concentrate antibacterial factors in or around targets, and, ultimately, (4 a means of physically disrupting or displacing target bacteria. In nature, lytic predators of bacteria likely can meet these criteria whereas antibiotic production, in and of itself, largely may not.

  13. Biofilms: A microbial home

    OpenAIRE

    Chandki, Rita; Banthia, Priyank; Banthia, Ruchi

    2011-01-01

    Microbial biofilms are mainly implicated in etiopathogenesis of caries and periodontal disease. Owing to its properties, these pose great challenges. Continuous and regular disruption of these biofilms is imperative for prevention and management of oral diseases. This essay provides a detailed insight into properties, mechanisms of etiopathogenesis, detection and removal of these microbial biofilms.

  14. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  15. Beneficial biofilms in marine aquaculture? Linking points of biofilm formation mechanisms in Pseudomonas aeruginosa and Pseudoalteromonas species

    Directory of Open Access Journals (Sweden)

    Wiebke Wesseling

    2015-07-01

    Full Text Available For marine aquaculture it is suggested that a specific substrate coated with a beneficial biofilm could prevent fish egg clutches from pathogenic infestations and improve the water quality and health of adult fish while, at the same time, minimising the need for the application of antibiotics. In marine biotopes, the habitat of Pseudoalteromonas species (a strain with suggested beneficial properties, biofilms are mostly discussed in the context of fouling processes. Hence research focuses on unravelling the mechanisms of biofilm formation aiming to prevent formation or to destroy existing biofilms. Initially in this review, particular components of biofilm formation in Pseudomonas aeruginosa, a gram-negative model organism that is responsible for nosocomial infections and considered as a food spoiling agent, are described (extracellular appendages, role of matrix components, cell-cell signalling to get an advanced understanding of biofilm formation. The aim of this treatise is to seek linking points for biofilm formation of P. aeruginosa and Pseudoalteromonas sp., respectively. Furthermore, approaches are discussed for how biofilm formation can be realized to improve fish (larvae rearing by species of the genus Pseudoalteromonas.

  16. A study on the effects of some laboratory-derived genetic mutations on biofilm formation by Listeria monocytogenes

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, S.; Parvathi, A.; George, J.; Krohne, G.; Karunasagar, Indrani; Karunasagar, Iddya

    polymeric substance, and the biofilm bacteria are resistant to antimicrobials such as plant disinfectants, UV light and drying. Biofilm formation in the food processing environment by pathogenic bacteria is of great concern, since such bacteria can... calculated for the O.D 595 values obtained and compared using Mann-Whitney U test (n=3, P<0.05). Results and discussion Biofilm formation by pathogenic microorganisms is of immense significance to food processing industries. L. monocytogenes is one...

  17. Degradation of Non-Diffusible Organic Matter in Biofilm Reactors

    DEFF Research Database (Denmark)

    Rohold, Lars Erik; Harremoës, Poul

    1993-01-01

    A simple laboratory test has been developed in order to demonstrate qualitatively, that the removal of non-diffusible organics in a biofilm reactor requires hydrolysis by extracellular enzymes in the bulk water of the reactor. The results demonstrate the effect of changing volume of bulk water on...

  18. Stress responses go three dimensional – the spatial order of physiological differentiation in bacterial macrocolony biofilms

    OpenAIRE

    Serra, Diego O.; Hengge, Regine

    2014-01-01

    In natural habitats, bacteria often occur in multicellular communities characterized by a robust extracellular matrix of proteins, amyloid fibres, exopolysaccharides and extracellular DNA. These biofilms show pronounced stress resistance including a resilience against antibiotics that causes serious medical and technical problems. This review summarizes recent studies that have revealed clear spatial physiological differentiation, complex supracellular architecture and striking morphology in ...

  19. Bioluminescence imaging of fungal biofilm development in live animals.

    Science.gov (United States)

    Vande Velde, Greetje; Kucharíková, Soňa; Van Dijck, Patrick; Himmelreich, Uwe

    2014-01-01

    Fungal biofilms formed on various types of medical implants represent a major problem for hospitalized patients. These biofilms and related infections are usually difficult to treat because of their resistance to the classical antifungal drugs. Animal models are indispensable for investigating host-pathogen interactions and for identifying new antifungal targets related to biofilm development. A limited number of animal models is available that can be used for testing novel antifungal drugs in vivo against C. albicans, one of the most common pathogens causing fungal biofilms. Fungal load in biofilms in these models is traditionally analyzed postmortem, requiring host sacrifice and enumeration of microorganisms from individual biofilms in order to evaluate the amount of colony forming units and the efficacy of antifungal treatment. Bioluminescence imaging (BLI) made compatible with small animal models for in vivo biofilm formation is a valuable noninvasive tool to follow-up biofilm development and its treatment longitudinally, reducing the number of animals needed for such studies. Due to the nondestructive and noninvasive nature of BLI, the imaging procedure can be repeated in the same animal, allowing follow-up of the biofilm growth in vivo without removing the implanted device or detaching the biofilm from its substrate. The method described here introduces BLI of C. albicans biofilm formation in vivo on subcutaneously implanted catheters in mice. One of the main challenges to overcome for BLI of fungi is the hampered intracellular substrate delivery through the fungal cell wall, which is managed by using extracellularly located Gaussia luciferase. Although detecting a quantifiable in vivo BLI signal from biofilms formed on the inside of implanted catheters is challenging, BLI proved to be a practical tool in the study of fungal biofilms. This method describing the use of BLI for in vivo follow-up of device-related fungal biofilm formation has the potential for

  20. Fate of deposited cells in an aerobic binary bacterial biofilm

    International Nuclear Information System (INIS)

    A biofilm is a matrix of microbial cells and their extracellular products that is associated with a solid surface. Previous studies on biofilm development have employed only dissolved compounds as growth limiting substrates, without the influence of microbial species invading from the bulk liquid. The goal of this research project was to quantify the kinetics of processes governing suspended biomass turnover in biofilm systems, and the accompanying effects of suspended cell deposition on biofilm population dynamics. Experiments were conducted with two species of bacteria, Pseudomonas putida ATCC 11172 grown on glucose, and Hyphomicrobium ZV620 grown on methanol. Cryptic growth and particulate hydrolysis studies were evaluated, using combinations of these two bacteria, by measuring the uptake of radiolabelled cell lysis products, under batch conditions. Biofilms studies were performed to investigate bacterial deposition, continual biofilm removal by shear induced erosion, and biofilm ecology. Biofilms were developed in a flow cell reactor, under laminar flow conditions. Bacterial species were differentiated by radioactively labelling each species with their carbon substrate. A mathematical model was developed to predict the biofilm ecology of mixed cultures. The equations developed predict biofilm accumulation, as well as substrate and oxygen consumption. Results indicate that cryptic growth will occur for bacteria growing on their own species soluble lysis products and in some cases, bacteria growing on the soluble lysis products of other species. Particulate hydrolysis only occurred for Pseudomonas putida growing on Pseudomonas putida lysis products, but the lack of particulate hydrolysis occurring in the other studies may have been due to the short experimental period

  1. The use of in vitro model systems to study dental biofilms associated with caries: a short review

    OpenAIRE

    Salli, Krista M.; Ouwehand, Arthur C.

    2015-01-01

    A dental biofilm forms a distinct environment where microorganisms live in a matrix of extracellular polysaccharides. The biofilm favors certain bacteria and creates a habitat that functions differently compared to planktonic bacteria. Reproducible model systems which help to address various questions related to biofilm formation, the process of caries development, and its prevention are needed and are continuously developed. Recent research using both batch culture, continuous culture and fl...

  2. Bottom-up and top-down solid-state NMR approaches for bacterial biofilm matrix composition

    Science.gov (United States)

    Cegelski, Lynette

    2015-04-01

    The genomics and proteomics revolutions have been enormously successful in providing crucial "parts lists" for biological systems. Yet, formidable challenges exist in generating complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell assemblies. Bacterial biofilms are complex multicellular bacterial communities protected by a slime-like extracellular matrix that confers protection to environmental stress and enhances resistance to antibiotics and host defenses. As a non-crystalline, insoluble, heterogeneous assembly, the biofilm extracellular matrix poses a challenge to compositional analysis by conventional methods. In this perspective, bottom-up and top-down solid-state NMR approaches are described for defining chemical composition in complex macrosystems. The "sum-of-the-parts" bottom-up approach was introduced to examine the amyloid-integrated biofilms formed by Escherichia coli and permitted the first determination of the composition of the intact extracellular matrix from a bacterial biofilm. An alternative top-down approach was developed to define composition in Vibrio cholerae biofilms and relied on an extensive panel of NMR measurements to tease out specific carbon pools from a single sample of the intact extracellular matrix. These two approaches are widely applicable to other heterogeneous assemblies. For bacterial biofilms, quantitative parameters of matrix composition are needed to understand how biofilms are assembled, to improve the development of biofilm inhibitors, and to dissect inhibitor modes of action. Solid-state NMR approaches will also be invaluable in obtaining parameters of matrix architecture.

  3. Influence of O Polysaccharides on Biofilm Development and Outer Membrane Vesicle Biogenesis in Pseudomonas aeruginosa PAO1

    OpenAIRE

    Murphy, Kathleen; Park, Amber J.; Hao, Youai; Brewer, Dyanne; Lam, Joseph S.; Khursigara, Cezar M.

    2014-01-01

    Pseudomonas aeruginosa is a common opportunistic human pathogen known for its ability to adapt to changes in its environment during the course of infection. These adaptations include changes in the expression of cell surface lipopolysaccharide (LPS), biofilm development, and the production of a protective extracellular exopolysaccharide matrix. Outer membrane vesicles (OMVs) have been identified as an important component of the extracellular matrix of P. aeruginosa biofilms and are thought to...

  4. Electrical spiking in bacterial biofilms

    OpenAIRE

    Masi, Elisa; Ciszak, Marzena; Santopolo, Luisa; Frascella, Arcangela; Giovannetti, Luciana; Marchi, Emmanuela; Viti, Carlo; Mancuso, Stefano

    2015-01-01

    In nature, biofilms are the most common form of bacterial growth. In biofilms, bacteria display coordinated behaviour to perform specific functions. Here, we investigated electrical signalling as a possible driver in biofilm sociobiology. Using a multi-electrode array system that enables high spatio-temporal resolution, we studied the electrical activity in two biofilm-forming strains and one non-biofilm-forming strain. The action potential rates monitored during biofilm-forming bacterial gro...

  5. Morphological changes in Proteus mirabilis O18 biofilm under the influence of a urease inhibitor and a homoserine lactone derivative.

    Science.gov (United States)

    Czerwonka, Grzegorz; Arabski, Michał; Wąsik, Sławomir; Jabłońska-Wawrzycka, Agnieszka; Rogala, Patrycja; Kaca, Wiesław

    2014-03-01

    Proteus mirabilis is a pathogenic gram-negative bacterium that frequently causes kidney infections, typically established by ascending colonization of the urinary tract. The present study is focused on ureolytic activity and urease inhibition in biofilms generated by P. mirabilis O18 cells. Confocal microscopy revealed morphological alterations in biofilms treated with urea and a urease inhibitor (acetohydroxamic acid, AHA), as some swarmer cells were found to protrude from the biofilm. The presence of a quorum-sensing molecule (N-butanoyl homoserine lactone, BHL) increased biofilm thickness and its ureolytic activity. Laser interferometric determination of diffusion showed that urea easily diffuses through P. mirabilis biofilm, while AHA is blocked. This may suggest that the use of urease inhibitors in CAUTIs may by less effective than in other urease-associated infections. Spectroscopic studies revealed differences between biofilm and planktonic cells indicating that polysaccharides and nucleic acids are involved in extracellular matrix and biofilm formation. PMID:24481535

  6. Effects of Low-Dose Amoxicillin on Staphylococcus aureus USA300 Biofilms.

    Science.gov (United States)

    Mlynek, Kevin D; Callahan, Mary T; Shimkevitch, Anton V; Farmer, Jackson T; Endres, Jennifer L; Marchand, Mélodie; Bayles, Kenneth W; Horswill, Alexander R; Kaplan, Jeffrey B

    2016-05-01

    Previous studies showed that sub-MIC levels of β-lactam antibiotics stimulate biofilm formation in most methicillin-resistant Staphylococcus aureus (MRSA) strains. Here, we investigated this process by measuring the effects of sub-MIC amoxicillin on biofilm formation by the epidemic community-associated MRSA strain USA300. We found that sub-MIC amoxicillin increased the ability of USA300 cells to attach to surfaces and form biofilms under both static and flow conditions. We also found that USA300 biofilms cultured in sub-MIC amoxicillin were thicker, contained more pillar and channel structures, and were less porous than biofilms cultured without antibiotic. Biofilm formation in sub-MIC amoxicillin correlated with the production of extracellular DNA (eDNA). However, eDNA released by amoxicillin-induced cell lysis alone was evidently not sufficient to stimulate biofilm. Sub-MIC levels of two other cell wall-active agents with different mechanisms of action-d-cycloserine and fosfomycin-also stimulated eDNA-dependent biofilm, suggesting that biofilm formation may be a mechanistic adaptation to cell wall stress. Screening a USA300 mariner transposon library for mutants deficient in biofilm formation in sub-MIC amoxicillin identified numerous known mediators of S. aureus β-lactam resistance and biofilm formation, as well as novel genes not previously associated with these phenotypes. Our results link cell wall stress and biofilm formation in MRSA and suggest that eDNA-dependent biofilm formation by strain USA300 in low-dose amoxicillin is an inducible phenotype that can be used to identify novel genes impacting MRSA β-lactam resistance and biofilm formation. PMID:26856828

  7. Chain Reaction Polymerization.

    Science.gov (United States)

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  8. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans.

    Science.gov (United States)

    Verma-Gaur, Jiyoti; Qu, Yue; Harrison, Paul F; Lo, Tricia L; Quenault, Tara; Dagley, Michael J; Bellousoff, Matthew; Powell, David R; Beilharz, Traude H; Traven, Ana

    2015-10-01

    The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability) we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease. PMID:26474309

  9. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Jiyoti Verma-Gaur

    2015-10-01

    Full Text Available The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease.

  10. Biofilm structure and its influence on clogging in drip irrigation emitters distributing reclaimed wastewater

    Institute of Scientific and Technical Information of China (English)

    YAN Dazhuang; BAI Zhihui; Mike Rowan; GU Likun; Ren Shumei; YANG Peiling

    2009-01-01

    Using reclaimed wastewater for crop irrigation is a practical alternative to discharge wastewater treatment plant effluents into surface waters.However,biofouling has been identified as a major contributor to emitter clogging in drip irrigation systems distributing reclaimed wastewater.Little is known about the biofilm structure and its influence on clogging in the drip emitter flow path.This study was first to investigate the microbial characteristics of mature biofilms present in the emitters and the effect of flow path structures on the biofilm microbial communities.The analysis of biofilm matrix structure using a scanning electron microscopy (SEM) revealed that particles in the matrix of the biofilm coupled extracellular polysaccharides (EPS) and formed sediment in the emitter flow path.Analysis of biofilm mass including protein,polysaccharide and phospholipid fatty acids (PLFAs) showed that emitter flow path style influenced biofilm community structure and diversity.The correlations of biofilm biomass and discharge reduction after 360 h irrigation were computed and suggest that PFLAs provide the best correlation coefficient.Comparatively,the emitter with the unsymmetrical dentate structure and shorter flow path (Emitter C) had the best anti-clogging capability.By optimizing the dentate structure,the internal flow pattern within the flow path could be enhanced as an important method to control the biofilm within emitter flow path.This study established electron microscope techniques and biochemical microbial analysis methods that may provide a framework for future emitter biofilm studies.

  11. Mechanism and kinetics of biofilm growth process influenced by shear stress in sewers.

    Science.gov (United States)

    Ai, Hainan; Xu, Jingwei; Huang, Wei; He, Qiang; Ni, Bingjie; Wang, Yinliang

    2016-01-01

    Sewer biofilms play an important role in the biotransformation of substances for methane and sulfide emission in sewer networks. The dynamic flows and the particular shear stress in sewers are the key factors determining the growth of the sewer biofilm. In this work, the development of sewer biofilm with varying shear stress is specifically investigated to gain a comprehensive understanding of the sewer biofilm dynamics. Sewer biofilms were cultivated in laboratory-scale gravity sewers under different hydraulic conditions with the corresponding shell stresses are 1.12 Pa, 1.29 Pa and 1.45 Pa, respectively. The evolution of the biofilm thickness were monitored using microelectrodes, and the variation in total solids (TS) and extracellular polymer substance (EPS) levels in the biofilm were also measured. The results showed that the steady-state biofilm thickness were highly related to the corresponding shear stresses with the biofilm thickness of 2.4 ± 0.1 mm, 2.7 ± 0.1 mm and 2.2 ± 0.1 mm at shear stresses of 1.12 Pa, 1.29 Pa and 1.45 Pa, respectively, which the chemical oxygen demand concentration is 400 mg/L approximately. Based on these observations, a kinetic model for describing the development of sewer biofilms was developed and demonstrated to be capable of reproducing all the experimental data. PMID:27054728

  12. Characterization of Biofilm in 200W Fluidized Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Michelle H.; Saurey, Sabrina D.; Lee, Brady D.; Parker, Kent E.; Eisenhauer, Emalee ER; Cordova, Elsa A.; Golovich, Elizabeth C.

    2014-09-29

    Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations were undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry evaluations, a more

  13. Physical solutions to the public goods dilemma in bacterial biofilms

    Science.gov (United States)

    Drescher, Knut; Nadell, Carey; Stone, Howard; Wingreen, Ned; Bassler, Bonnie

    2013-11-01

    Bacteria frequently live in densely populated surface-bound communities, termed biofilms. Biofilm-dwelling cells rely on secretion of extracellular substances to construct their communities and to capture nutrients from the environment. Some secreted factors behave as cooperative public goods: they can be exploited by non-producing cells. The means by which public good producing bacteria avert exploitation in biofilm environments are largely unknown. Using experiments with Vibrio cholerae, which secretes extracellular enzymes to digest its primary food source, the solid polymer chitin, we show that the public goods dilemma may be solved by two dramatically different, physical mechanisms: cells can produce thick biofilms that confine the goods to producers, or fluid flow can remove soluble products of chitin digestion, denying access to non-producers. Both processes limit the distance over which enzyme-secreting cells provide a benefit to neighbors, resulting in preferential benefit to nearby clonemates. Our results demonstrate how bacterial physiology and environmental conditions can interact with social phenotypes to influence the evolutionary dynamics of cooperation within biofilms.

  14. Genome-wide mutagenesis of Xanthomonas axonopodis pv. citri reveals novel genetic determinants and regulation mechanisms of biofilm formation.

    Directory of Open Access Journals (Sweden)

    Jinyun Li

    Full Text Available Xanthomonas axonopodis pv. citri (Xac causes citrus canker disease, a major threat to citrus production worldwide. Accumulating evidence suggests that the formation of biofilms on citrus leaves plays an important role in the epiphytic survival of this pathogen prior to the development of canker disease. However, the process of Xac biofilm formation is poorly understood. Here, we report a genome-scale study of Xac biofilm formation in which we identified 92 genes, including 33 novel genes involved in biofilm formation and 7 previously characterized genes, colR, fhaB, fliC, galU, gumD, wxacO, and rbfC, known to be important for Xac biofilm formation. In addition, 52 other genes with defined or putative functions in biofilm formation were identified, even though they had not previously reported been to be associated with biofilm formation. The 92 genes were isolated from 292 biofilm-defective mutants following a screen of a transposon insertion library containing 22,000 Xac strain 306 mutants. Further analyses indicated that 16 of the novel genes are involved in the production of extracellular polysaccharide (EPS and/or lipopolysaccharide (LPS, 7 genes are involved in signaling and regulatory pathways, and 5 genes have unknown roles in biofilm formation. Furthermore, two novel genes, XAC0482, encoding a haloacid dehalogenase-like phosphatase, and XAC0494 (designated as rbfS, encoding a two-component sensor protein, were confirmed to be biofilm-related genes through complementation assays. Our data demonstrate that the formation of mature biofilm requires EPS, LPS, both flagellum-dependent and flagellum-independent cell motility, secreted proteins and extracellular DNA. Additionally, multiple signaling pathways are involved in Xac biofilm formation. This work is the first report on a genome-wide scale of the genetic processes of biofilm formation in plant pathogenic bacteria. The report provides significant new information about the genetic

  15. The cabABC Operon Essential for Biofilm and Rugose Colony Development in Vibrio vulnificus.

    Directory of Open Access Journals (Sweden)

    Jin Hwan Park

    2015-09-01

    Full Text Available A transcriptome analysis identified Vibrio vulnificus cabABC genes which were preferentially expressed in biofilms. The cabABC genes were transcribed as a single operon. The cabA gene was induced by elevated 3',5'-cyclic diguanylic acid (c-di-GMP and encoded a calcium-binding protein CabA. Comparison of the biofilms produced by the cabA mutant and its parent strain JN111 in microtiter plates using crystal-violet staining demonstrated that CabA contributed to biofilm formation in a calcium-dependent manner under elevated c-di-GMP conditions. Genetic and biochemical analyses revealed that CabA was secreted to the cell exterior through functional CabB and CabC, distributed throughout the biofilm matrix, and produced as the biofilm matured. These results, together with the observation that CabA also contributes to the development of rugose colony morphology, indicated that CabA is a matrix-associated protein required for maturation, rather than adhesion involved in the initial attachment, of biofilms. Microscopic comparison of the structure of biofilms produced by JN111 and the cabA mutant demonstrated that CabA is an extracellular matrix component essential for the development of the mature biofilm structures in flow cells and on oyster shells. Exogenously providing purified CabA restored the biofilm- and rugose colony-forming abilities of the cabA mutant when calcium was available. Circular dichroism and size exclusion analyses revealed that calcium binding induces CabA conformational changes which may lead to multimerization. Extracellular complementation experiments revealed that CabA can assemble a functional matrix only when exopolysaccharides coexist. Consequently, the combined results suggested that CabA is a structural protein of the extracellular matrix and multimerizes to a conformation functional in building robust biofilms, which may render V. vulnificus to survive in hostile environments and reach a concentrated infective dose.

  16. Matrix polymer species have distinct effects on the mechanics of bacterial biofilms

    Science.gov (United States)

    Kovach, Kristin; Davis-Fields, Megan; Gordon, Vernita

    2015-03-01

    Biofilms are aggregates of microorganisms embedded in a self-produced extracellular polymer matrix. The matrix confers protection to these microorganisms against mechanical and chemical stresses that they may experience in their environment. The bacterium Pseudomonas aeruginosa is widely used as a model biofilm-forming organism because it is an opportunistic human pathogen common in hospital-acquired infections, in chronic wounds, and in cystic fibrosis lung disease. P. aeruginosa strain PA01 forms biofilms that are primarily structured by the extracellular polysaccharides Pel and Psl. Using bulk rheological measurements, we show that these polysaccharides each play a unique role in the mechanical robustness of the biofilm. Psl increases the elastic storage modulus while Pel increases the ductility of the biofilm. Increased expression of either Psl or Pel increases the yield stress by about the same amount. Identifying the mechanism(s) by which these polymers contribute to the mechanical toughness of the biofilm could allow new approaches to effective biofilm clearance, by revealing targets for disruption that would weaken the biofilm.

  17. Virulence of Staphylococcus epidermidis in a mouse model: significance of extracellular slime.

    OpenAIRE

    Deighton, M. A.; Borland, R; Capstick, J A

    1996-01-01

    The ability to produce large quantities of biofilm on solid surfaces in vitro is believed to distinguish potentially pathogenic strains of Staphylococcus epidermidis from commensals. Biofilm consists of staphylococcal cells encased in a matrix of extracellular polysaccharide (also referred to as slime), firmly adherent to each other and to the underlying surface structure. The association of slime with colonization of catheter surfaces in vivo has been examined extensively. Less attention has...

  18. Meningococcal biofilm formation

    DEFF Research Database (Denmark)

    Lappann, M.; Haagensen, Janus Anders Juul; Claus, H.;

    2006-01-01

    We show that in a standardized in vitro flow system unencapsulated variants of genetically diverse lineages of Neisseria meningitidis formed biofilms, that could be maintained for more than 96 h. Biofilm cells were resistant to penicillin, but not to rifampin or ciprofloxacin. For some strains......, microcolony formation within biofilms was observed. Microcolony formation in strain MC58 depended on a functional copy of the pilE gene encoding the pilus subunit pilin, and was associated with twitching of cells. Nevertheless, unpiliated pilE mutants formed biofilms showing that attachment and accumulation...... PilX alleles was identified among genetically diverse meningococcal strains. PilX alleles differed in their propensity to support autoaggregation of cells in suspension, but not in their ability to support microcolony formation within biofilms in the continuous flow system....

  19. DNase-sensitive and -resistant modes of biofilm formation by Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Marion eZetzmann

    2015-12-01

    Full Text Available Listeria monocytogenes is able to form biofilms on various surfaces and this ability is thought to contribute to persistence in the environment and on contact surfaces in the food industry. Extracellular DNA is a component of the biofilm matrix of many bacterial species and was shown to play a role in biofilm establishment of L. monocytogenes. In the present study, the effect of DNaseI treatment on biofilm formation of L. monocytogenes EGD-e was investigated under static and dynamic conditions in normal or diluted complex medium at different temperatures. Biofilm formation was quantified by crystal violet staining or visualized by confocal laser scanning microscopy. Biomass of surface-attached L. monocytogenes varies depending on temperature and dilution of media. Interestingly, L. monocytogenes EGD-e forms DNase-sensitive biofilms in diluted medium whereas in full strength medium DNaseI treatment had no effect. In line with these observations, extracellular DNA is present in the matrix of biofilms grown in diluted but not full strength medium and supernatants of biofilms grown in diluted medium contain chromosomal DNA. The DNase-sensitive phenotype could be clearly linked to reduced ionic strength in the environment since dilution of medium in PBS or saline abolished DNase sensitivity. Several other but not all species of the genus Listeria display DNase-sensitive and -resistant modes of biofilm formation. These results indicate that L. monocytogenes biofilms are DNase-sensitive especially at low ionic strength, which might favor bacterial lysis and release of chromosomal DNA. Since low nutrient concentrations with increased osmotic pressure are conditions frequently found in food processing environments, DNaseI treatment represents an option to prevent or remove Listeria biofilms in industrial settings.

  20. Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials.

    Science.gov (United States)

    Charlebois, Audrey; Jacques, Mario; Archambault, Marie

    2014-01-01

    Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxemia in animal species. Very little is known on the biofilm of C. perfringens and its exposure to subminimal inhibitory concentrations of antimicrobials. This study was undertaken to address these issues. Most of the C. perfringens human and animal isolates tested in this study were able to form biofilm (230/277). Porcine clinical isolates formed significantly more biofilm than the porcine commensal isolates. A subgroup of clinical and commensal C. perfringens isolates was randomly selected for further characterization. Biofilm was found to protect C. perfringens bacterial cells from exposure to high concentrations of tested antimicrobials. Exposure to low doses of some of these antimicrobials tended to lead to a diminution of the biofilm formed. However, a few isolates showed an increase in biofilm formation when exposed to low doses of tylosin, bacitracin, virginiamycin, and monensin. Six isolates were randomly selected for biofilm analysis using scanning laser confocal microscopy. Of those, four produced more biofilm in presence of low doses of bacitracin whereas biofilms formed without bacitracin were thinner and less elevated. An increase in the area occupied by bacteria in the biofilm following exposure to low doses of bacitracin was also observed in the majority of isolates. Morphology examination revealed flat biofilms with the exception of one isolate that demonstrated a mushroom-like biofilm. Matrix composition analysis showed the presence of proteins, beta-1,4 linked polysaccharides and extracellular DNA, but no poly-beta-1,6-N-acetyl-D-glucosamine. This study brings new information on the biofilm produced by C. perfringens and its exposure to low doses of antimicrobials. PMID:24795711

  1. Study on Hydro-Alcoholic Extract Effect of Pomegranate Peel on Pseudomonas aeruginosa Biofilm Formation

    Directory of Open Access Journals (Sweden)

    R. Habibipour

    2015-10-01

    Full Text Available Introduction & Objective: Microorganisms form biomass as biofilm in response to many factors, in order to adapt to hostile extracellular environments and biocides. Using different herbal compounds are of those strategies to deal with biofilm. It has been proved that plants extracts such as pomegranate, raspberry and chamomile essential oils have anti-biofilm effects. This study aimed to evaluate the effect of different concentrations of black peel pomegranate ex-tract on Pseudomonas aeruginosa biofilm formation. Materials & Methods: In this experimental research the anti-biofilm effect, reducing the amount of biofilm formation and growth kinetics of Pseudomonas aeruginosa in different treatments was measured by microtiter and plate colorimetric crystal violet method. Biofilm formation was also examined using a microscope. Statistical analysis of data obtained from the reading of the ELISA was performed using SPSS software, P value 0.05. Results: Findings of this study showed that bacteria cannot form any biofilm in first 6 hours of incubation, in all treatments. The amount of biofilm formation after 12 hours in 0.01 and 0.05 g/ mL treatments were medium. Among treatments, after 18 and 24 hours of incubation 0.001 g/ mL concentration of pomegranate peel extract had medium and strong inhibitory effect on biofilm formation, respectively. Conclusion: Results of this study showed that biofilm formation and biofilm reduction percent-age is directly related to the duration of exposure of bacteria that could be due to the different phases of growth. Growth kinetics study also revealed that in the majority of treatments the growth was incremental up to about 15 hours and decrement afterwards due to the effective-ness of different treatments. After 18 hours, treatments have greatest influence on biofilm formation. The foregoing has been fully confirmed by the results of microscopic slides. (Sci J Hamadan Univ Med Sci 2015; 22 (3: 195-202

  2. Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials

    Directory of Open Access Journals (Sweden)

    Audrey eCharlebois

    2014-04-01

    Full Text Available Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxemia in animal species. Very little is known on the biofilm of C. perfringens and its exposure to subminimal inhibitory concentrations of antimicrobials. This study was undertaken to address these issues. Most of the C. perfringens human and animal isolates tested in this study were able to form biofilm (230/277. Porcine clinical isolates formed significantly more biofilm than the porcine commensal isolates. A subgroup of clinical and commensal C. perfringens isolates was randomly selected for further characterization. Biofilm was found to protect C. perfringens bacterial cells from exposure to high concentrations of tested antimicrobials. Exposure to low doses of some of these antimicrobials tended to lead to a diminution of the biofilm formed. However, a few isolates showed an increase in biofilm formation when exposed to low doses of tylosin, bacitracin, virginiamycin and monensin. Six isolates were randomly selected for biofilm analysis using scanning laser confocal microscopy. Of those, four produced more biofilm in presence of low doses of bacitracin whereas biofilms formed without bacitracin were thinner and less elevated. An increase in the area occupied by bacteria in the biofilm following exposure to low doses of bacitracin was also observed in the majority of isolates. Morphology examination revealed flat biofilms with the exception of one isolate that demonstrated a mushroom-like biofilm. Matrix composition analysis showed the presence of proteins, beta 1-4 linked polysaccharides and extracellular DNA, but no poly-beta-1,6-N-acetyl-D-glucosamine (PNAG. This study brings new information on the biofilm produced by C. perfringens and its exposure to low doses of antimicrobials.

  3. Secreted single‐stranded DNA is involved in the initial phase of biofilm formation by Neisseria gonorrhoeae

    DEFF Research Database (Denmark)

    Zweig, Maria; Schork, Sabine; Koerdt, Andrea;

    2014-01-01

    Neisseria gonorrhoeae is an obligate human pathogen that colonizes the genital tract and causes gonorrhoea. Neisseria gonorrhoeae can form biofilms during natural cervical infections, on glass and in continuous flow‐chamber systems. These biofilms contain large amounts of extracellular DNA, which...... plays an important role in biofilm formation. Many clinical isolates contain a gonococcal genetic island that encodes a type IV secretion system (T4SS). The T4SS of N. gonorrhoeae strain MS11 secretes ssDNA directly into the medium. Biofilm formation, studied in continuous flow‐chamber systems by...

  4. Impact of oxidative and osmotic stresses on Candida albicans biofilm formation.

    Science.gov (United States)

    Pemmaraju, Suma C; Padmapriya, Kumar; Pruthi, Parul A; Prasad, R; Pruthi, Vikas

    2016-09-01

    Candida albicans possesses an ability to grow under different host-driven stress conditions by developing robust protective mechanisms. In this investigation the focus was on the impact of osmotic (2M NaCl) and oxidative (5 mM H2O2) stress conditions during C. albicans biofilm formation. Oxidative stress enhanced extracellular DNA secretion into the biofilm matrix, increased the chitin level, and reduced virulence factors, namely phospholipase and proteinase activity, while osmotic stress mainly increased extracellular proteinase and decreased phospholipase activity. Fourier transform infrared and nuclear magnetic resonance spectroscopy analysis of mannan isolated from the C. albicans biofilm cell wall revealed a decrease in mannan content and reduced β-linked mannose moieties under stress conditions. The results demonstrate that C. albicans adapts to oxidative and osmotic stress conditions by inducing biofilm formation with a rich exopolymeric matrix, modulating virulence factors as well as the cell wall composition for its survival in different host niches. PMID:27472386

  5. Comparison of biofilm formation in clinical isolates of Candida species in a tertiary care center, North India

    Directory of Open Access Journals (Sweden)

    Vivek Agwan

    2015-01-01

    Full Text Available Background and Objectives: Biofilms are colonies of microbial cells encased in a self-produced organic polymeric matrix. The biofilm production is more important for nonalbicans Candida (NAC; as C. albicans possess many other mechanisms to establish infections. Correct identification of Candida species has gained importance due to persistent rise in infections caused by NAC. We sought to isolate, identify Candida species in clinical isolates and study biofilm formation. Materials and Methods: Modified microtiter plate method was performed to study biofilm formation by isolates in Sabouraud's dextrose broth. It was then quantitatively assessed using a spectrophotometer. Biofilm formation was graded as negative, +1, +2, +3 and + 4 on the basis of percentage absorbance. Results: Biofilm formation was observed in 16 of 40 (40.0% isolates of C. albicans as compared to 39 of 78 (50.0% of isolates of NAC. Strong (+4 biofilm production was seen in maximum biofilm producers in C. tropicalis (12 of 27 followed by C. albicans (8 of 16. Total biofilm producers were significantly more among high vaginal swab isolates 63.2% (12 of 19 and urine isolates 59.2% (29 of 49, when compared to blood isolates 34.2% (13 of 38 as well as other isolates 27.5% (11 of 40. Interpretation and Conclusions: NAC species are qualitatively and quantitatively superior biofilm producers than C. albicans. Biofilm production is the most important virulence factor of NAC species and compared to other lesions, it is more significantly associated with luminal infections.

  6. Biofilm enhanced subsurface sequestration of supercritical CO2

    Science.gov (United States)

    Mitchell, A. C.; Phillips, A.; Hiebert, R.; Gerlach, R.; Kaszuba, J.; Cunningham, A.

    2007-12-01

    In order to develop subsurface CO2 storage as a viable engineered mechanism to reduce concentrations of atmospheric CO2, any potential ¡°leakage¡± of injected supercritical CO2 (scCO2) from the ground to the atmosphere must be reduced. Here, we investigate the utility of biofilms, which are microorganism assemblages firmly attached to a surface, as a means of reducing scCO2 leakage. Firstly, experiments were performed to test whether biofilms were more resilient than planctonic cells to scCO2. Bacillus mojavensis biofilms were grown on a sand support matrix in scCO2 extractor cartridges at 30°C. B. mojavensis was also grown under suspended planctonic conditions in the same media overnight and aliquots were decanted into scCO2 extractor cartridges. Biofilm and suspended B. mojavensis samples were processed on a Supercritical Fluid Extractor with pressurization to 2000 psi at 35°C, and a 20 minute flow of scCO2. Suspended growth samples revealed a 3 log reduction in cell viability while biofilm only showed a 1 log reduction, demonstrating that B. mojavensis biofilms are more resilient than planctonic cells to scCO2. Protective extra cellular polymeric substances which make up the biofilm matrix likely provide a protective barrier against scCO2. Secondly, the ability of biofilms to grow under high pressure and reduce the permeability of porous geological matrices was investigated using a unique high pressure (8.9MPa), moderate temperature (¡Ý 32°C) flow reactor containing 40 millidarcy Berea sandstone cores. The flow reactor was inoculated with the biofilm forming organism Shewanella fridgidimarina. Electron microscopy of the rock core revealed substantial biofilm accumulation in rock pores which resulted in core permeability. Permeability did not increase in response to starvation and scCO2 challenges. Viable population assays of organisms in the effluent indicated survival of the microorganisms following scCO2 challenges of <71h and starvation for <363h

  7. Extracellular matrix formation enhances the ability of Streptococcus pneumoniae to cause invasive disease.

    Directory of Open Access Journals (Sweden)

    Claudia Trappetti

    Full Text Available During infection, pneumococci exist mainly in sessile biofilms rather than in planktonic form, except during sepsis. However, relatively little is known about how biofilms contribute to pneumococcal pathogenesis. Here, we carried out a biofilm assay on opaque and transparent variants of a clinical serotype 19F strain WCH159. After 4 days incubation, scanning electron microscopy revealed that opaque biofilm bacteria produced an extracellular matrix, whereas the transparent variant did not. The opaque biofilm-derived bacteria translocated from the nasopharynx to the lungs and brain of mice, and showed 100-fold greater in vitro adherence to A549 cells than transparent bacteria. Microarray analysis of planktonic and sessile bacteria from transparent and opaque variants showed differential gene expression in two operons: the lic operon, which is involved in choline uptake, and in the two-component system, ciaRH. Mutants of these genes did not form an extracellular matrix, could not translocate from the nasopharynx to the lungs or the brain, and adhered poorly to A549 cells. We conclude that only the opaque phenotype is able to form extracellular matrix, and that the lic operon and ciaRH contribute to this process. We propose that during infection, extracellular matrix formation enhances the ability of pneumococci to cause invasive disease.

  8. Nanoscale characterization of effect of L-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy.

    Science.gov (United States)

    Sharma, Shivani; Lavender, Stacey; Woo, JungReem; Guo, Lihong; Shi, Wenyuan; Kilpatrick-Liverman, LaTonya; Gimzewski, James K

    2014-07-01

    A major aetiological factor of dental caries is the pathology of the dental plaque biofilms. The amino acid L-arginine (Arg) is found naturally in saliva as a free molecule or as a part of salivary peptides and proteins. Plaque bacteria metabolize Arg to produce alkali and neutralize glycolytic acids, promoting a less cariogenous oral microbiome. Here, we explored an alternative and complementary mechanism of action of Arg using atomic force microscopy. The nanomechanical properties of Streptococcus mutans biofilm extracellular matrix were characterized under physiological buffer conditions. We report the effect of Arg on the adhesive behaviour and structural properties of extracellular polysaccharides in S. mutans biofilms. High-resolution imaging of biofilm surfaces can reveal additional structural information on bacterial cells embedded within the surrounding extracellular matrix. A dense extracellular matrix was observed in biofilms without Arg compared to those grown in the presence of Arg. S. mutans biofilms grown in the presence of Arg could influence the production and/or composition of extracellular membrane glucans and thereby affect their adhesion properties. Our results suggest that the presence of Arg in the oral cavity could influence the adhesion properties of S. mutans to the tooth surface. PMID:24763427

  9. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Alexander K.; Pokroy, Boaz; Seminara, Agnese; Aizenberg, Joanna (Harvard)

    2011-09-28

    Most of the world's bacteria exist in robust, sessile communities known as biofilms, ubiquitously adherent to environmental surfaces from ocean floors to human teeth and notoriously resistant to antimicrobial agents. We report the surprising observation that Bacillus subtilis biofilm colonies and pellicles are extremely nonwetting, greatly surpassing the repellency of Teflon toward water and lower surface tension liquids. The biofilm surface remains nonwetting against up to 80% ethanol as well as other organic solvents and commercial biocides across a large and clinically important concentration range. We show that this property limits the penetration of antimicrobial liquids into the biofilm, severely compromising their efficacy. To highlight the mechanisms of this phenomenon, we performed experiments with mutant biofilms lacking ECM components and with functionalized polymeric replicas of biofilm microstructure. We show that the nonwetting properties are a synergistic result of ECM composition, multiscale roughness, reentrant topography, and possibly yet other factors related to the dynamic nature of the biofilm surface. Finally, we report the impenetrability of the biofilm surface by gases, implying defense capability against vapor-phase antimicrobials as well. These remarkable properties of B. subtilis biofilm, which may have evolved as a protection mechanism against native environmental threats, provide a new direction in both antimicrobial research and bioinspired liquid-repellent surface paradigms.

  10. Biofilm Formation Derived from Ambient Air and the Characteristics of Apparatus

    International Nuclear Information System (INIS)

    Biofilm is a kind of thin film on solidified matters, being derived from bacteria. Generally, planktonic bacteria float in aqueous environments, soil or air, most of which can be regarded as oligotrophic environments. Since they have to survive by instinct, they seek for nutrients that would exist on materials surfaces as organic matters. Therefore, bacteria attach materials surfaces reversibly. The attachment and detachment repeat for a while and finally, they attach on them irreversibly and the number of bacteria on them increases. At a threshold number, bacteria produce polymeric matters at the same time by quorum sensing mechanism and the biofilm produces on material surfaces. The biofilm produced in that way generally contains water (more than 80%), EPS (Exopolymeric Substance) and bacteria themselves. And they might bring about many industrial problems, fouling, corrosion etc. Therefore, it is very important for us to control and prevent the biofilm formation properly. However, it is generally very hard to produce biofilm experimentally and constantly in ambient atmosphere on labo scale. The authors invented an apparatus where biofilm could form on specimen's surfaces from house germs in the ambient air. In this experiment, we investigated the basic characteristics of the apparatus, reproducibility, the change of biofilm with experimental time, the quality change of water for biofilm formation and their significance for biofilm research.

  11. Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Franken, Jaco; Brandt, Bianca A; Tai, Siew L; Bauer, Florian F

    2013-01-01

    Levans are fructose polymers synthesized by a broad range of micro-organisms and a limited number of plant species as non-structural storage carbohydrates. In microbes, these polymers contribute to the formation of the extracellular polysaccharide (EPS) matrix and play a role in microbial biofilm formation. Levans belong to a larger group of commercially important polymers, referred to as fructans, which are used as a source of prebiotic fibre. For levan, specifically, this market remains untapped, since no viable production strategy has been established. Synthesis of levan is catalysed by a group of enzymes, referred to as levansucrases, using sucrose as substrate. Heterologous expression of levansucrases has been notoriously difficult to achieve in Saccharomyces cerevisiae. As a strategy, this study used an invertase (Δsuc2) null mutant and two separate, engineered, sucrose accumulating yeast strains as hosts for the expression of the levansucrase M1FT, previously cloned from Leuconostoc mesenteroides. Intracellular sucrose accumulation was achieved either by expression of a sucrose synthase (Susy) from potato or the spinach sucrose transporter (SUT). The data indicate that in both Δsuc2 and the sucrose accumulating strains, the M1FT was able to catalyse fructose polymerisation. In the absence of the predicted M1FT secretion signal, intracellular levan accumulation was significantly enhanced for both sucrose accumulation strains, when grown on minimal media. Interestingly, co-expression of M1FT and SUT resulted in hyper-production and extracellular build-up of levan when grown in rich medium containing sucrose. This study presents the first report of levan production in S. cerevisiae and opens potential avenues for the production of levan using this well established industrial microbe. Furthermore, the work provides interesting perspectives when considering the heterologous expression of sugar polymerizing enzymes in yeast. PMID:24147008

  12. Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jaco Franken

    Full Text Available Levans are fructose polymers synthesized by a broad range of micro-organisms and a limited number of plant species as non-structural storage carbohydrates. In microbes, these polymers contribute to the formation of the extracellular polysaccharide (EPS matrix and play a role in microbial biofilm formation. Levans belong to a larger group of commercially important polymers, referred to as fructans, which are used as a source of prebiotic fibre. For levan, specifically, this market remains untapped, since no viable production strategy has been established. Synthesis of levan is catalysed by a group of enzymes, referred to as levansucrases, using sucrose as substrate. Heterologous expression of levansucrases has been notoriously difficult to achieve in Saccharomyces cerevisiae. As a strategy, this study used an invertase (Δsuc2 null mutant and two separate, engineered, sucrose accumulating yeast strains as hosts for the expression of the levansucrase M1FT, previously cloned from Leuconostoc mesenteroides. Intracellular sucrose accumulation was achieved either by expression of a sucrose synthase (Susy from potato or the spinach sucrose transporter (SUT. The data indicate that in both Δsuc2 and the sucrose accumulating strains, the M1FT was able to catalyse fructose polymerisation. In the absence of the predicted M1FT secretion signal, intracellular levan accumulation was significantly enhanced for both sucrose accumulation strains, when grown on minimal media. Interestingly, co-expression of M1FT and SUT resulted in hyper-production and extracellular build-up of levan when grown in rich medium containing sucrose. This study presents the first report of levan production in S. cerevisiae and opens potential avenues for the production of levan using this well established industrial microbe. Furthermore, the work provides interesting perspectives when considering the heterologous expression of sugar polymerizing enzymes in yeast.

  13. pH landscapes in a novel five-species model of early dental biofilm.

    Directory of Open Access Journals (Sweden)

    Sebastian Schlafer

    Full Text Available BACKGROUND: Despite continued preventive efforts, dental caries remains the most common disease of man. Organic acids produced by microorganisms in dental plaque play a crucial role for the development of carious lesions. During early stages of the pathogenetic process, repeated pH drops induce changes in microbial composition and favour the establishment of an increasingly acidogenic and aciduric microflora. The complex structure of dental biofilms, allowing for a multitude of different ecological environments in close proximity, remains largely unexplored. In this study, we designed a laboratory biofilm model that mimics the bacterial community present during early acidogenic stages of the caries process. We then performed a time-resolved microscopic analysis of the extracellular pH landscape at the interface between bacterial biofilm and underlying substrate. METHODOLOGY/PRINCIPAL FINDINGS: Strains of Streptococcus oralis, Streptococcus sanguinis, Streptococcus mitis, Streptococcus downei and Actinomyces naeslundii were employed in the model. Biofilms were grown in flow channels that allowed for direct microscopic analysis of the biofilms in situ. The architecture and composition of the biofilms were analysed using fluorescence in situ hybridization and confocal laser scanning microscopy. Both biofilm structure and composition were highly reproducible and showed similarity to in-vivo-grown dental plaque. We employed the pH-sensitive ratiometric probe C-SNARF-4 to perform real-time microscopic analyses of the biofilm pH in response to salivary solutions containing glucose. Anaerobic glycolysis in the model biofilms created a mildly acidic environment. Decrease in pH in different areas of the biofilms varied, and distinct extracellular pH-microenvironments were conserved over several hours. CONCLUSIONS/SIGNIFICANCE: The designed biofilm model represents a promising tool to determine the effect of potential therapeutic agents on biofilm growth

  14. Characterization, Microbial Community Structure, and Pathogen Occurrence in Urban Faucet Biofilms in South China

    OpenAIRE

    Huirong Lin; Shuting Zhang; Song Gong; Shenghua Zhang; Xin Yu

    2015-01-01

    The composition and microbial community structure of the drinking water system biofilms were investigated using microstructure analysis and 454 pyrosequencing technique in Xiamen city, southeast of China. SEM (scanning electron microscope) results showed different features of biofilm morphology in different fields of PVC pipe. Extracellular matrix material and sparse populations of bacteria (mainly rod-shaped and coccoid) were observed. CLSM (confocal laser scanning microscope) revealed diffe...

  15. Oral biofilms: molecular analysis, challenges, and future prospects in dental diagnostics

    OpenAIRE

    Do T; Devine D; Marsh PD

    2013-01-01

    Thuy Do,1 Deirdre Devine,1 Philip D Marsh1,21Department of Oral Biology, Leeds Dental Institute, Leeds, 2Health Protection Agency Microbiology Services, Salisbury, UKAbstract: Oral biofilms are functionally and structurally organized polymicrobial communities that are embedded in an extracellular matrix of exopolymers on mucosal and dental surfaces. These biofilms are found naturally in health, and provide benefits to the host. However, this relationship can break down, and disease can occur;...

  16. A CsgD-Independent Pathway for Cellulose Production and Biofilm Formation in Escherichia coli†

    OpenAIRE

    Da Re, Sandra; Ghigo, Jean-Marc

    2006-01-01

    Bacterial growth on a surface often involves the production of a polysaccharide-rich extracellular matrix that provides structural support for the formation of biofilm communities. In Salmonella, cellulose is one of the major constituents of the biofilm matrix. Its production is regulated by CsgD and the diguanylate cyclase AdrA that activates cellulose synthesis at a posttranscriptional level. Here, we studied a collection of Escherichia coli isolates, and we found that the ability to produc...

  17. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms.

    Science.gov (United States)

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K; Osvath, Sarah R; Cárcamo-Oyarce, Gerardo; Gloag, Erin S; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G; Cavaliere, Rosalia; Ahrens, Christian H; Charles, Ian G; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B

    2016-01-01

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs. PMID:27075392

  18. Cellulase production by Aspergillus niger in biofilm, solid-state, and submerged fermentations.

    Science.gov (United States)

    Gamarra, Norma N; Villena, Gretty K; Gutiérrez-Correa, Marcel

    2010-06-01

    Cellulase production by Aspergillus niger was compared in three different culture systems: biofilm, solid-state, and submerged fermentation. Biofilm and solid-state fermentations were carried out on perlite as inert support, and lactose was used as a carbon source in the three culture systems. In cryo-scanning electron microscopy, biofilm and solid-state cultures gave similar morphological patterns and confirmed that both spore first attachment and hyphal adhered growth are helped by the production of an adhesive extracellular matrix. Biofilm cultures produced higher cellulase activities than those in submerged and solid-state cultures (1,768, 1,165, and 1,174 U l(-1), respectively). Although biofilm cultures grew less than the other cultures, they produced significantly higher cellulase yields (370, 212, and 217 U g(-1) lactose, respectively) and volumetric productivities (24, 16, and 16 U l(-1) h(-1), respectively). Likewise, endoglucanase and xylanase activities were higher in biofilm cultures. Under the conditions tested, it seems that fungal attached growth on perlite may favor better enzyme production. Biofilms are efficient systems for cellulase production and may replace solid-state fermentation. Biofilm fermentation holds promise for further optimization and development. The results of this work reveal that fungal biofilms may be used for the commercial production of cellulase employing the technology developed for submerged fermentation at high cell densities. PMID:20354693

  19. The LuxS based quorum sensing governs lactose induced biofilm formation by Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Danielle eDuanis-Assaf

    2016-01-01

    Full Text Available Bacillus species present a major concern in the dairy industry as they can form biofilms in pipelines and on surfaces of equipment and machinery used in the entire line of production. These biofilms represent a continuous hygienic problem and can lead to serious economic losses due to food spoilage and equipment impairment. Biofilm formation by Bacillus subtilis is apparently dependent on LuxS quorum sensing (QS by Autoinducer-2 (AI-2. However, the link between sensing environmental cues and AI-2 induced biofilm formation remains largely unknown. The aim of this study is to investigate the role of lactose, the primary sugar in milk, on biofilm formation by B. subtilis and its possible link to QS processes. Our phenotypic analysis shows that lactose induces formation of biofilm bundles as well as formation of colony type biofilms. Furthermore, using reporter strain assays, we observed an increase in AI-2 production by B. subtilis in response to lactose in a dose dependent manner. Moreover, we found that expression of eps and tapA operons, responsible for extracellular matrix synthesis in B. subtilis, were notably up-regulated in response to lactose. Importantly, we also observed that LuxS is essential for B. subtilis biofilm formation in the presence of lactose. Overall, our results suggest that lactose may induce biofilm formation by B. subtilis through the LuxS pathway.

  20. Imaging of bacterial multicellular behaviour in biofilms in liquid by atmospheric scanning electron microscopy.

    Science.gov (United States)

    Sugimoto, Shinya; Okuda, Ken-Ichi; Miyakawa, Reina; Sato, Mari; Arita-Morioka, Ken-Ichi; Chiba, Akio; Yamanaka, Kunitoshi; Ogura, Teru; Mizunoe, Yoshimitsu; Sato, Chikara

    2016-01-01

    Biofilms are complex communities of microbes that attach to biotic or abiotic surfaces causing chronic infectious diseases. Within a biofilm, microbes are embedded in a self-produced soft extracellular matrix (ECM), which protects them from the host immune system and antibiotics. The nanoscale visualisation of delicate biofilms in liquid is challenging. Here, we develop atmospheric scanning electron microscopy (ASEM) to visualise Gram-positive and -negative bacterial biofilms immersed in aqueous solution. Biofilms cultured on electron-transparent film were directly imaged from below using the inverted SEM, allowing the formation of the region near the substrate to be studied at high resolution. We visualised intercellular nanostructures and the exocytosis of membrane vesicles, and linked the latter to the trafficking of cargos, including cytoplasmic proteins and the toxins hemolysin and coagulase. A thick dendritic nanotube network was observed between microbes, suggesting multicellular communication in biofilms. A universal immuno-labelling system was developed for biofilms and tested on various examples, including S. aureus biofilms. In the ECM, fine DNA and protein networks were visualised and the precise distribution of protein complexes was determined (e.g., straight curli, flagella, and excreted cytoplasmic molecular chaperones). Our observations provide structural insights into bacteria-substratum interactions, biofilm development and the internal microbe community. PMID:27180609

  1. Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms.

    Science.gov (United States)

    Liu, Yong; Busscher, Henk J; Zhao, Bingran; Li, Yuanfeng; Zhang, Zhenkun; van der Mei, Henny C; Ren, Yijin; Shi, Linqi

    2016-04-26

    Biofilms cause persistent bacterial infections and are extremely recalcitrant to antimicrobials, due in part to reduced penetration of antimicrobials into biofilms that allows bacteria residing in the depth of a biofilm to survive antimicrobial treatment. Here, we describe the preparation of surface-adaptive, Triclosan-loaded micellar nanocarriers showing (1) enhanced biofilm penetration and accumulation, (2) electrostatic targeting at acidic pH toward negatively charged bacterial cell surfaces in a biofilm, and (3) antimicrobial release due to degradation of the micelle core by bacterial lipases. First, it was established that mixed-shell-polymeric-micelles (MSPM) consisting of a hydrophilic poly(ethylene glycol) (PEG)-shell and pH-responsive poly(β-amino ester) become positively charged at pH 5.0, while being negatively charged at physiological pH. This is opposite to single-shell-polymeric-micelles (SSPM) possessing only a PEG-shell and remaining negatively charged at pH 5.0. The stealth properties of the PEG-shell combined with its surface-adaptive charge allow MSPMs to penetrate and accumulate in staphylococcal biofilms, as demonstrated for fluorescent Nile red loaded micelles using confocal-laser-scanning-microscopy. SSPMs, not adapting a positive charge at pH 5.0, could not be demonstrated to penetrate and accumulate in a biofilm. Once micellar nanocarriers are bound to a staphylococcal cell surface, bacterial enzymes degrade the MSPM core to release its antimicrobial content and kill bacteria over the depth of a biofilm. This constitutes a highly effective pathway to control blood-accessible staphylococcal biofilms using antimicrobials, bypassing biofilm recalcitrance to antimicrobial penetration. PMID:26998731

  2. New insights on molecular regulation of biofilm formation in plant-associated bacteria

    Institute of Scientific and Technical Information of China (English)

    Luisa F. Castiblanco; George W. Sundin

    2016-01-01

    Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extrac-ellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems, vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multi-cellular behavior.

  3. Biofilms: An Underappreciated Mechanism of Treatment Failure and Recurrence in Vaginal Infections.

    Science.gov (United States)

    Muzny, Christina A; Schwebke, Jane R

    2015-08-15

    Biofilms are microbial communities of surface-attached cells embedded in a self-produced extracellular matrix. They are of major medical significance because they decrease susceptibility to antimicrobial agents and enhance the spread of antimicrobial resistance. Biofilm-associated bacterial and fungal microorganisms have increasingly been recognized to play a role in multiple infectious diseases, particularly in their persistence and recurrence. More recently, biofilms have also been implicated in vaginal infections, notably bacterial vaginosis (BV) and vulvovaginal candidiasis (VVC), particularly in the setting of treatment failure and recurrence. The purpose of this review is to discuss the impact of biofilms on the management and treatment of BV and recurrent VVC and highlight the need for additional research and development of novel therapeutics targeting pathogenic vaginal biofilms. PMID:25935553

  4. New insights on molecular regulation of biofilm formation in plant-associated bacteria.

    Science.gov (United States)

    Castiblanco, Luisa F; Sundin, George W

    2016-04-01

    Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extracellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems, vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multicellular behavior. PMID:26377849

  5. Microbial endolithic biofilms: a means of surviving the harsh conditions of the Antarctic

    Science.gov (United States)

    de Los Ríos, Asunción; Wierzchos, Jacek; Sancho, Leopoldo G.; Grube, Martín; Ascaso, Carmen

    2002-11-01

    Much of the Antarctic continent's microbiota is restricted to endolithic microecosystems which harbour distinct microbial communities as biofilms. The lithic substrate and the microorganisms comprising these films are intimately linked, giving rise to complex mineral-microbe interactions. The Antarctic biofilms analysed in this study were characterised by the presence of extracellular polymer substances. Cyanobacteria appeared as key components of these biofilms in zones where there were no nearby lichen thalli. Fungal cells were the predominant organisms in areas inhabited by epilithic lichens. The combined use of microscopy and molecular techniques enabled the identification of the different biological components of biofilms found in subsurface layers of the lighic substrate. It is proposed that in this extreme environment, the structure of the biofilm may favour the formation of microsites with specific physicochemical conditions that permit the survival of microbial communities.

  6. Structural and Biochemical Analysis of Tyrosine Phosphatase Related to Biofilm Formation A (TpbA) from the Opportunistic Pathogen Pseudomonas aeruginosa PAO1

    OpenAIRE

    Kun Xu; Shanshan Li; Wen Yang; Kan Li; Yuwei Bai; Yueyang Xu; Jin Jin; Yingying Wang; Mark Bartlam

    2015-01-01

    Biofilms are important for cell communication and growth in most bacteria, and are responsible for a number of human clinical infections and diseases. TpbA (PA3885) is a dual specific tyrosine phosphatase (DUSP) that negatively regulates biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa PAO1 by converting extracellular quorum sensing signals into internal gene cascade reactions that result in reduced biofilm formation. We have determined the three-dimensional crystal stru...

  7. The pulmonary extracellular lining.

    OpenAIRE

    George, G; Hook, G E

    1984-01-01

    The extracellular lining of the lungs is reviewed. The pulmonary extracellular lining is a complex mixture of phospholipids, proteins and carbohydrates which is absolutely essential for the maintenance of normal pulmonary functions such as gas exchange. Without the lining the lungs would collapse. Alterations in the pulmonary extracellular lining may underlie some disease conditions induced by toxic agents, especially those which interfere with the formation of pulmonary surfactant. The extra...

  8. The implication of Pseudomonas aeruginosa biofilms in infections

    DEFF Research Database (Denmark)

    Rybtke, Morten Theil; Jensen, Peter Ø; Høiby, Niels; Givskov, Michael Christian; Tolker-Nielsen, Tim; Bjarnsholt, Thomas

    2011-01-01

    Biofilm formation by bacteria is recognized as a major problem in chronic infections due to their recalcitrance against the immune defense and available antibiotic treatment schemes. The opportunistic pathogen Pseudomonas aeruginosa has drawn special attention in this regard due to its severity of...... extracellular matrix encasing the biofilm-associated bacteria as well as the elaborate signaling mechanisms employed by the bacterium enables it to withstand the continuous stresses imposed by the immune defense and administered antibiotics resulting in a state of chronic inflammation that damages the host. The...... immune response leading to this chronic inflammation is described. Finally, novel treatment strategies againstP. aeruginosa are described including, quorum-sensing inhibition and induced biofilm-dispersion. The tolerance towards currently available antimicrobials calls for development of alternative...

  9. Diffusion Retardation by Binding of Tobramycin in an Alginate Biofilm Model

    Science.gov (United States)

    Cao, Bao; Christophersen, Lars; Jensen, Peter Østrup; Sneppen, Kim; Høiby, Niels; Moser, Claus

    2016-01-01

    Microbial cells embedded in a self-produced extracellular biofilm matrix cause chronic infections, e. g. by Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. The antibiotic killing of bacteria in biofilms is generally known to be reduced by 100–1000 times relative to planktonic bacteria. This makes such infections difficult to treat. We have therefore proposed that biofilms can be regarded as an independent compartment with distinct pharmacokinetics. To elucidate this pharmacokinetics we have measured the penetration of the tobramycin into seaweed alginate beads which serve as a model of the extracellular polysaccharide matrix in P. aeruginosa biofilm. We find that, rather than a normal first order saturation curve, the concentration of tobramycin in the alginate beads follows a power-law as a function of the external concentration. Further, the tobramycin is observed to be uniformly distributed throughout the volume of the alginate bead. The power-law appears to be a consequence of binding to a multitude of different binding sites. In a diffusion model these results are shown to produce pronounced retardation of the penetration of tobramycin into the biofilm. This filtering of the free tobramycin concentration inside biofilm beads is expected to aid in augmenting the survival probability of bacteria residing in the biofilm. PMID:27100887

  10. Diffusion Retardation by Binding of Tobramycin in an Alginate Biofilm Model.

    Science.gov (United States)

    Cao, Bao; Christophersen, Lars; Kolpen, Mette; Jensen, Peter Østrup; Sneppen, Kim; Høiby, Niels; Moser, Claus; Sams, Thomas

    2016-01-01

    Microbial cells embedded in a self-produced extracellular biofilm matrix cause chronic infections, e. g. by Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. The antibiotic killing of bacteria in biofilms is generally known to be reduced by 100-1000 times relative to planktonic bacteria. This makes such infections difficult to treat. We have therefore proposed that biofilms can be regarded as an independent compartment with distinct pharmacokinetics. To elucidate this pharmacokinetics we have measured the penetration of the tobramycin into seaweed alginate beads which serve as a model of the extracellular polysaccharide matrix in P. aeruginosa biofilm. We find that, rather than a normal first order saturation curve, the concentration of tobramycin in the alginate beads follows a power-law as a function of the external concentration. Further, the tobramycin is observed to be uniformly distributed throughout the volume of the alginate bead. The power-law appears to be a consequence of binding to a multitude of different binding sites. In a diffusion model these results are shown to produce pronounced retardation of the penetration of tobramycin into the biofilm. This filtering of the free tobramycin concentration inside biofilm beads is expected to aid in augmenting the survival probability of bacteria residing in the biofilm. PMID:27100887

  11. Compaction and relaxation of biofilms

    KAUST Repository

    Valladares Linares, R.

    2015-06-18

    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  12. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the...... benefits and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial...

  13. The use of in vitro model systems to study dental biofilms associated with caries: a short review

    Directory of Open Access Journals (Sweden)

    Krista M. Salli

    2015-03-01

    Full Text Available A dental biofilm forms a distinct environment where microorganisms live in a matrix of extracellular polysaccharides. The biofilm favors certain bacteria and creates a habitat that functions differently compared to planktonic bacteria. Reproducible model systems which help to address various questions related to biofilm formation, the process of caries development, and its prevention are needed and are continuously developed. Recent research using both batch culture, continuous culture and flow cells in caries biofilm formation is presented. The development of new techniques and equipment has led to a deeper understanding of how caries biofilms function. Biofilm models have also been used in the development of materials inhibiting secondary caries. This short review summarizes available models to study these questions.

  14. Interactions in multispecies biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Ren, Dawei; Bjarnsholt, Thomas;

    2014-01-01

    The recent focus on complex bacterial communities has led to the recognition of interactions across species boundaries. This is particularly pronounced in multispecies biofilms, where synergistic interactions impact the bacterial distribution and overall biomass produced. Importantly, in a number...... of settings, the interactions in a multispecies biofilm affect its overall function, physiology, or surroundings, by resulting in enhanced resistance, virulence, or degradation of pollutants, which is of significant importance to human health and activities. The underlying mechanisms causing these...

  15. Factors contributing to the biofilm-deficient phenotype of Staphylococcus aureus sarA mutants.

    Directory of Open Access Journals (Sweden)

    Laura H Tsang

    Full Text Available Mutation of sarA in Staphylococcus aureus results in a reduced capacity to form a biofilm, but the mechanistic basis for this remains unknown. Previous transcriptional profiling experiments identified a number of genes that are differentially expressed both in a biofilm and in a sarA mutant. This included genes involved in acid tolerance and the production of nucleolytic and proteolytic exoenzymes. Based on this we generated mutations in alsSD, nuc and sspA in the S. aureus clinical isolate UAMS-1 and its isogenic sarA mutant and assessed the impact on biofilm formation. Because expression of alsSD was increased in a biofilm but decreased in a sarA mutant, we also generated a plasmid construct that allowed expression of alsSD in a sarA mutant. Mutation of alsSD limited biofilm formation, but not to the degree observed with the corresponding sarA mutant, and restoration of alsSD expression did not restore the ability to form a biofilm. In contrast, concomitant mutation of sarA and nuc significantly enhanced biofilm formation by comparison to the sarA mutant. Although mutation of sspA had no significant impact on the ability of a sarA mutant to form a biofilm, a combination of protease inhibitors (E-64, 1-10-phenanthroline, and dichloroisocoumarin that was shown to inhibit the production of multiple extracellular proteases without inhibiting growth was also shown to enhance the ability of a sarA mutant to form a biofilm. This effect was evident only when all three inhibitors were used concurrently. This suggests that the reduced capacity of a sarA mutant to form a biofilm involves extracellular proteases of all three classes (serine, cysteine and metalloproteases. Inclusion of protease inhibitors also enhanced biofilm formation in a sarA/nuc mutant, with the combined effect of mutating nuc and adding protease inhibitors resulting in a level of biofilm formation with the sarA mutant that approached that of the UAMS-1 parent strain. These results

  16. Solutions to the public goods dilemma in bacterial biofilms

    Science.gov (United States)

    Drescher, Knut; Nadell, Carey D.; Stone, Howard A.; Wingreen, Ned S.; Bassler, Bonnie L.

    2014-03-01

    Bacteria frequently live in densely populated surface-bound communities, termed biofilms. Biofilm-dwelling cells rely on secretion of extracellular substances to construct their communities and to capture nutrients from the environment. Some secreted factors behave as cooperative public goods: they can be exploited by non-producing cells. The means by which public-good-producing bacteria avert exploitation in biofilm environments are largely unknown. Using experiments with Vibrio cholerae, which secretes extracellular enzymes to digest its primary food source, the solid polymer chitin, we show that the public goods dilemma may be solved by two very different mechanisms: cells can produce thick biofilms that confine the goods to producers, or fluid flow can remove soluble products of chitin digestion, denying access to non-producers. Both processes are unified by limiting the distance over which enzyme-secreting cells provide benefits to neighbors, resulting in preferential benefit to nearby clonemates and allowing kin selection to favor public good production. Our results demonstrate new mechanisms by which the physical conditions of natural habitats can interact with bacterial physiology to promote the evolution of cooperation.

  17. Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Kader Abdul

    2007-07-01

    Full Text Available Abstract Background Curli, cellulose and the cell surface protein BapA are matrix components in Salmonella biofilms. In this study we have investigated the roles of these components for the morphology of bacteria grown as colonies on agar plates and within a biofilm on submerged mica surfaces by applying atomic force microscopy (AFM and light microscopy. Results AFM imaging was performed on colonies of Salmonella Typhimurium grown on agar plates for 24 h and on biofilms grown for 4, 8, 16 or 24 h on mica slides submerged in standing cultures. Our data show that in the wild type curli were visible as extracellular material on and between the cells and as fimbrial structures at the edges of biofilms grown for 16 h and 24 h. In contrast to the wild type, which formed a three-dimensional biofilm within 24 h, a curli mutant and a strain mutated in the global regulator CsgD were severely impaired in biofilm formation. A mutant in cellulose production retained some capability to form cell aggregates, but not a confluent biofilm. Extracellular matrix was observed in this mutant to almost the same extent as in the wild type. Overexpression of CsgD led to a much thicker and a more rapidly growing biofilm. Disruption of BapA altered neither colony and biofilm morphology nor the ability to form a biofilm within 24 h on the submerged surfaces. Besides curli, the expression of flagella and pili as well as changes in cell shape and cell size could be monitored in the growing biofilms. Conclusion Our work demonstrates that atomic force microscopy can efficiently be used as a tool to monitor the morphology of bacteria grown as colonies on agar plates or within biofilms formed in a liquid at high resolution.

  18. Effects of human activities on the ecological processes of river biofilms in a highly urbanized river

    Science.gov (United States)

    Hung, R.; Li, M.

    2013-12-01

    Many anthropogenic disturbances and their effects of aquatic ecosystem are difficult to quantify in urbanized rivers. In past, specific taxa analysis of community structure was a common approach in river health monitoring studies. However, it is still difficult to understand stream ecosystem integrity without considering ecosystem processes. The complex species composition and metabolism of a river biofilm have the capacity to interact and/or modulate their surrounding environment. Because of their short life cycles, species richness, and worldwide distribution, structure and function of river biofilm communities are sensitive to change in environmental conditions. Therefore, biofilms are widely used as early warning systems of water pollution for water quality monitoring studies. In this study, we used river biofilms as a bioindicator by examining their extracellular enzyme activities and photosynthesis efficiency to understand human activities on the ecological processes of river ecosystem in a highly urbanized river. We sampled four sites along the Keelung River, Taiwan, based on different intensities of anthropogenic disturbances including water pollution index, population densities, land use types and types of stream habitats. Two study sites are heavily influenced by human activities and the others are not. The activities of extracellular enzymes within the biofilm play an important function for organic matter decomposition and nutrient cycling. We measured seven extracellular enzyme activities (β-d-glucosidase, phosphatase, leucine-aminopeptidase, sulfatase, peroxidase, polyphenol oxidase, and esterase) to examine specific enzyme activity changes at four study sites monthly. In addition, relative proportion of each extracellular enzyme activity on total enzyme activities was calculated in order to examine the relationship between functional biofilm profiles and different urban intensities. Among four study sites, leucine-aminopeptidase and esterase

  19. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses

    Directory of Open Access Journals (Sweden)

    Kohlmann Thomas

    2010-11-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is commonly associated with contact lens (CL -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS, EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ.

  20. Adherence and biofilm production of invasive and non-invasive isolates of Streptococcus pyogenes after hyaluronidase treatment

    Directory of Open Access Journals (Sweden)

    Šmitran Aleksandra

    2013-01-01

    Full Text Available Biofilm represents a protected mode, which allows bacteria to survive and proliferate in a hostile environment. Little is known whether the ability to form biofilms is a characteristic of all groups of A streptococcal (GAS strains and whether there is a relationship between biofilm formation and a clinical source of isolates. A capsule physically covers superficial adhesins and other proteins, essential in bacterial attachment, as the first step in biofilm formation. It is also possible that hyaluronic acid could form part of the complex extracellular polymer matrix of biofilms and contribute to the three-dimensional architecture of the biofilm. The aim of this study was to investigate if there are differences in adherence and biofilm production between GAS strains with different pathogenic potential, and the possible role of the capsule in this process. A total of 122 isolates were divided into three groups: noninvasive (NI, low invasive (LI and highly invasive (HI. Adherence, SpeB and biofilm production were tested before and after hyaluronidase treatment. There was no difference in adherence between untreated GAS strains, but after capsule removal, NI and HI isolates adhered significantly better than the LI group. Before treatment, isolates of the HI group were the worst biofilm producers, but after capsule removal, they became the best biofilm producers. There was no difference in SpeB production among GAS isolates, regardless of the hyaluronidase treatment.

  1. Biofilms and the food industry

    Directory of Open Access Journals (Sweden)

    Nathanon Trachoo

    2003-11-01

    Full Text Available In the past, interest in biofilms was limited to research related to water distribution systems, waste water treatment and dental plaques. Biofilm has become a more popular research topic in many other areas in recent years including food safety. Biofilm formation can compromise the sanitation of food surfaces and environmental surfaces by spreading detached organisms to other areas of processing plants. Unfortunately, these detached organisms are not similar to normal microorganisms suspended in an aquatic environment but are more resistant to several stresses or microbial inactivation including some food preservation methods. Microstructures of biofilms as revealed by different types of microscopic techniques showed that biofilms are highly complex and consist of many symbiotic organisms, some of which are human pathogens. This article reviewed the process of biofilm formation, the significance of biofilms on food or food contact surfaces, their ability to protect foodborne pathogens from environmental stresses and recent methods for the study of biofilms on food contact surfaces.

  2. The effects of D-Tyrosine combined with amikacin on the biofilms of Pseudomonas aeruginosa.

    Science.gov (United States)

    She, Pengfei; Chen, Lihua; Liu, Hongbo; Zou, Yaru; Luo, Zhen; Koronfel, Asmaa; Wu, Yong

    2015-09-01

    The biofilm formation of microorganisms causes persistent tissue infections resistant to treatment with antimicrobial agents. Pseudomonas aeruginosa is commonly isolated from the airways of patients with chronic fibrosis (CF) and often forms biofilms, which are extremely hard to eradicate and a major cause of mortality and morbidity. Recent studies have shown that D-amino acids (D-AAs) inhibited and disrupted biofilm formation by causing the release of the protein component of the polymeric matrix. However, the effects of D-AAs combined with common antibiotics on biofilms have rarely been studied. The current study first determined whether D-AAs disrupted the biofilms of PAO1 and the clinical airway isolates of P. aeruginosa. It was then determined whether combinations of D-Tyr (the most effective one) and the antibiotic amikacin (AMK) enhanced the activity against these biofilms. The results of the current study showed that D-Tyr is the most effective among those that disassemble the D-amino acids (D-leucine, D-methionine, D-Tyrptophan, and D-tryptophan), and D-Tyr at concentrations higher than 5 mM significantly reduced the biofilm biomass of P. aeruginosa (p < 0.05) without influencing bacterial growth. It was also revealed that D-Tyr improved the efficacy of AMK to combat P. aeruginosa biofilms, as indicated by a reduction in the minimal biofilm-inhibiting concentration (MBIC50 and MBIC90) without a change in the minimal inhibitory concentration (MIC) of planktonic bacteria. Thus, the findings indicated that D-Tyr supplementation overcame the resistance of P. aeruginosa biofilms to AMK, which might be helpful for preventing AMK overuse when this specific D-Tyr is recommended for combatting these biofilms. Also, toxicity of the liver and kidney from AMK could be potentially mitigated by co-delivery with D-Tyr. PMID:26188263

  3. Biofilm control with natural and genetically-modified phages.

    Science.gov (United States)

    Motlagh, Amir Mohaghegh; Bhattacharjee, Ananda Shankar; Goel, Ramesh

    2016-04-01

    Bacteriophages, as the most dominant and diverse entities in the universe, have the potential to be one of the most promising therapeutic agents. The emergence of multidrug-resistant bacteria and the antibiotic crisis in the last few decades have resulted in a renewed interest in phage therapy. Furthermore, bacteriophages, with the capacity to rapidly infect and overcome bacterial resistance, have demonstrated a sustainable approach against bacterial pathogens-particularly in biofilm. Biofilm, as complex microbial communities located at interphases embedded in a matrix of bacterial extracellular polysaccharide substances (EPS), is involved in health issues such as infections associated with the use of biomaterials and chronic infections by multidrug resistant bacteria, as well as industrial issues such as biofilm formation on stainless steel surfaces in food industry and membrane biofouling in water and wastewater treatment processes. In this paper, the most recent studies on the potential of phage therapy using natural and genetically-modified lytic phages and their associated enzymes in fighting biofilm development in various fields including engineering, industry, and medical applications are reviewed. Phage-mediated prevention approaches as an indirect phage therapy strategy are also explored in this review. In addition, the limitations of these approaches and suggestions to overcome these constraints are discussed to enhance the efficiency of phage therapy process. Finally, future perspectives and directions for further research towards a better understanding of phage therapy to control biofilm are recommended. PMID:26931607

  4. Biofilm development in membrane bioreactors

    OpenAIRE

    Savnik, Veronika

    2010-01-01

    Prevention of biofilm development and its removal has crucial meaning in membrane reactor. Biofilm causes pore blocking on membranes, which causes a drop in efficiency of mixed liquor filtration and consequently deteriorates the efficiency of whole membrane bioreactor. This thesis deals with factors that affect biofilm development in membrane bioreactors. Structure and growth of biofilm are presented from its initial attachment of individual particles, their parameters of adhesion, hydrodynam...

  5. Microalgal biofilms for wastewater treatment

    OpenAIRE

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scenario analysis. Then biofilms were grown on wastewater treatment plant effluent in horizontal flow cells under different nutrient loads to determine the maximum uptake capacity of the biofilms for N...

  6. Molecule Targeting Glucosyltransferase Inhibits Streptococcus mutans Biofilm Formation and Virulence.

    Science.gov (United States)

    Ren, Zhi; Cui, Tao; Zeng, Jumei; Chen, Lulu; Zhang, Wenling; Xu, Xin; Cheng, Lei; Li, Mingyun; Li, Jiyao; Zhou, Xuedong; Li, Yuqing

    2016-01-01

    Dental plaque biofilms are responsible for numerous chronic oral infections and cause a severe health burden. Many of these infections cannot be eliminated, as the bacteria in the biofilms are resistant to the host's immune defenses and antibiotics. There is a critical need to develop new strategies to control biofilm-based infections. Biofilm formation in Streptococcus mutans is promoted by major virulence factors known as glucosyltransferases (Gtfs), which synthesize adhesive extracellular polysaccharides (EPS). The current study was designed to identify novel molecules that target Gtfs, thereby inhibiting S. mutans biofilm formation and having the potential to prevent dental caries. Structure-based virtual screening of approximately 150,000 commercially available compounds against the crystal structure of the glucosyltransferase domain of the GtfC protein from S. mutans resulted in the identification of a quinoxaline derivative, 2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-1,4-dihydro-2-quinoxalinylidene)ethanamine, as a potential Gtf inhibitor. In vitro assays showed that the compound was capable of inhibiting EPS synthesis and biofilm formation in S. mutans by selectively antagonizing Gtfs instead of by killing the bacteria directly. Moreover, the in vivo anti-caries efficacy of the compound was evaluated in a rat model. We found that the compound significantly reduced the incidence and severity of smooth and sulcal-surface caries in vivo with a concomitant reduction in the percentage of S. mutans in the animals' dental plaque (P biofilm formation and the cariogenicity of S. mutans. PMID:26482298

  7. Characterization of mixed-culture biofilms established in microbial fuel cells

    International Nuclear Information System (INIS)

    For the successful operation of a microbial fuel cell, it is important to characterize the biofilm on the anode. The behavior of MFCs during initial biofilm growth and characterization of anodic biofilm were studied using two-chamber MFCs with activated sludge as inoculum. After three times' replacement of the anodic growth medium, the biofilms were well developed, and a maximum closed circuit potential of 0.41 V and 0.37 V (1000 Ω resistor) was achieved using acetate and glucose, respectively. Electron microscopy revealed that there were rod-shaped cells 0.2–0.3 μm wide by 1.5–2.5 μm long in the anode biofilm in the acetate-fed MFC, and these cells were mainly arranged by monolayer. The biofilm in the glucose-fed MFC was made of cocci-shaped cells in chains and a thick matrix. Both using acetate and glucose, the anodic bacterial communities were different than those of the activated sludge. Cyclic voltammograms suggested that extracellular electron transfer in these MFCs was accomplished mainly by the biofilms on the anode and not by bacteria-produced mediators. -- Highlights: ► The mixed-culture biofilms established in MFCs were characterized. ► The possible electron transfer mechanism was presented. ► In these MFCs the anodic area should be much larger.

  8. Antibacterial Effect of Dental Adhesive Containing Dimethylaminododecyl Methacrylate on the Development of Streptococcus mutans Biofilm

    Directory of Open Access Journals (Sweden)

    Suping Wang

    2014-07-01

    Full Text Available Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05. In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives.

  9. Exploring Dangerous Connections between Klebsiella pneumoniae Biofilms and Healthcare-Associated Infections

    Directory of Open Access Journals (Sweden)

    Maria Bandeira

    2014-08-01

    Full Text Available Healthcare-associated infections (HAI are a huge public health concern, particularly when the etiological agents are multidrug resistant. The ability of bacteria to develop biofilm is a helpful skill, both to persist within hospital units and to increase antibiotic resistance. Although the links between antibiotic resistance, biofilms assembly and HAI are consensual, little is known about biofilms. Here, electron microscopy was adopted as a tool to investigate biofilm structures associated with increased antibiotic resistance. The K. pneumoniae strains investigated are able to assemble biofilms, albeit with different kinetics. The biofilm structure and the relative area fractions of bacteria and extracellular matrix depend on the particular strain, as well as the minimal inhibitory concentration (MIC for the antibiotics. Increased values were found for bacteria organized in biofilms when compared to the respective planktonic forms, except for isolates Kp45 and Kp2948, the MIC values for which remained unchanged for fosfomycin. Altogether, these results showed that the emergence of antimicrobial resistance among bacteria responsible for HAI is a multifactorial phenomenon dependent on antibiotics and on bacteria/biofilm features.

  10. Immobilization of selenium by biofilm of Shewanella putrefaciens with and without Fe(III)-citrate complex

    International Nuclear Information System (INIS)

    To investigate the effect of biofilms on selenium migration, we examined selenite reduction by biofilms of an iron-reducing bacterium, Shewanella putrefaciens, under anaerobic conditions. The biofilms were grown under static conditions on culture cover glasses coated with poly-L-lysine. Optical microscopic observation of the biofilms after staining with 0.1% crystal violet solution revealed that the cells were surrounded by filamentous extracellular polymer substances. Exposure of the biofilms to aqueous selenite resulted in the formation of red precipitates, which were assigned to nanoparticulate elemental selenium using X-ray absorption near-edge structure analysis. Micrographic observation showed that the precipitates immobilized at the biofilms. We also examined the selenite reduction in the presence of Fe(III)-citrate complex. In this case, a dark brown precipitate formed at the biofilms. X-ray absorption near-edge structure analysis revealed that the precipitate was a mixed compound with elemental selenium and iron selenide. These findings indicate that biofilms of iron-reducing bacteria in the environment can immobilize selenium by reducing Se(IV) to Se(0), and Fe(III)-citrate complex promotes the reduction of Se(0) to Se(-II). (author)

  11. "Click" i polymerer 2

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    "Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer......"Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer...

  12. Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    ShawnLewenza

    2013-02-01

    Full Text Available Extracellular DNA (eDNA is in the environment, bodily fluids, in the matrix of biofilms, and accumulates at infection sites. Extracellular DNA can function as a nutrient source, a universal biofilm matrix component and an innate immune effector in extracellular DNA traps. In biofilms, eDNA is required for attachment, aggregation and stabilization of microcolonies. We have recently shown that eDNA can sequester divalent metal cations, which has interesting implications on antibiotic resistance. Extracellular DNA binds metal cations and thus activates the Mg2+-responsive PhoPQ and PmrAB two-component systems. In Pseudomonas aeruginosa and many other Gram-negative bacteria, the PhoPQ/PmrAB systems control various genes required for virulence and resisting killing by antimicrobial peptides, including the pmr genes (PA3552-PA3559 that are responsible for the addition of aminoarabinose to lipid A. The PA4773-PA4775 genes are a second DNA-induced cluster and are required for the production of spermidine on the outer surface, which protects the outer membrane from antimicrobial peptide treatment. Both modifications mask the negative surface charges and limit membrane damage by antimicrobial peptides. DNA-enriched biofilms or planktonic cultures have increased antibiotic resistance phenotypes to antimicrobial peptides and aminoglycosides. These dual antibiotic resistance and immune evasion strategies may be expressed in DNA-rich environments and contribute to long-term survival.

  13. CORRELATION BETWEEN BIOFILM FORMATION OF UROPATHOGE NIC ESCHERICHIA COLI AND ITS ANTIBIOTIC RESISTANCE PATT ERN

    Directory of Open Access Journals (Sweden)

    SarojGolia

    2012-09-01

    Full Text Available ABSTRACT BACKGROUND: Microorganisms growing in multilayered cell cluste rs embedded in a matrix of extracellular polysaccharide (slime which facilitat es the adherence of these microorganisms to biomedical surfaces and protect them from host immun e system and antimicrobial therapy. There are various methods to detect biofilm producti on like Tissue Culture Plate (TCP ,Tube method (TM ,Modified Congo Red Agar Method (MCRA, bio luminescent assay ,piezoelectric sensors and fluorescent microscopic examination. OBJECTIVES : This study was conducted to compare three methods f or the detection of biofilms and compare with antibiotic sensitivity pat tern, in uropathogenic Escherichia coli. METHOD: This study was carried out at the Department of Microbiology Dr. B. R. Ambedkar Medical College from Dec 2011 to June 2012. Total n umber of 107 clinical Escherichia coli isolates were randomly selected from all age groups were subjected to biofilm detection methods and their antibiotic resistance pattern w as compared. Isolates were identified by standard phenotypic methods. Biofilm detection was te sted by TCP, TM and MCRA methods . Antibiotic susceptibility test of uropathogenic E co li was performed using Kirby –Bauer disc diffusion method according to CLSI guidelines. RESULTS: From the total of 107 clinical isolate 74 (69.1 % isolates showed biofilm formation by all the TCP, TM, CRP methods. Biofilm forming i solates from catheter associated UTI showed drug resistance to more than 6 drugs. Only 2(13.3% isolates from Asymptomatic UTI showed biofilm by TM & MCRA methods & were sensitive all d rugs. Biofilm forming isolates from symptomatic UTI showed mixed drug resistance pattern. CONCLUSION: We conclude from our study that biofilm formation is more common in catheterized patients. TCP method is more quantitati ve and reliable method for the detection of biofilm forming micro-organisms as compared to TM a nd MCRA methods. So TCP method can be recommended

  14. Effects of short-chain fatty acids on Actinomyces naeslundii biofilm formation.

    Science.gov (United States)

    Yoneda, S; Kawarai, T; Narisawa, N; Tuna, E B; Sato, N; Tsugane, T; Saeki, Y; Ochiai, K; Senpuku, H

    2013-10-01

    Actinomyces naeslundii is an early colonizer and has important roles in the development of the oral biofilm. Short-chain fatty acids (SCFA) are secreted extracellularly as a product of metabolism by gram-negative anaerobes, e.g. Porphyromonas gingivalis and Fusobacterium nucleatum; and the SCFA may affect biofilm development with interaction between A. naeslundii and gram-negative bacteria. Our aim was to investigate the effects of SCFA on biofilm formation by A. naeslundii and to determine the mechanism. We used the biofilm formation assay in 96-well microtiter plates in tryptic soy broth without dextrose and with 0.25% sucrose using safranin stain of the biofilm monitoring 492 nm absorbance. To determine the mechanism by SCFA, the production of chaperones and stress-response proteins (GrpE and GroEL) in biofilm formation was examined using Western blot fluorescence activity with GrpE and GroEL antibodies. Adding butyric acid (6.25 mm) 0, 6 and 10 h after beginning culture significantly increased biofilm formation by A. naeslundii, and upregulation was observed at 16 h. Upregulation was also observed using appropriate concentrations of other SCFA. In the upregulated biofilm, production of GrpE and GroEL was higher where membrane-damaged or dead cells were also observed. The upregulated biofilm was significantly reduced by addition of anti-GroEL antibody. The data suggest biofilm formation by A. naeslundii was upregulated dependent on the production of stress proteins, and addition of SCFA increased membrane-damaged or dead cells. Production of GroEL may physically play an important role in biofilm development. PMID:23731652

  15. Magnesium limitation is an environmental trigger of the Pseudomonas aeruginosa biofilm lifestyle.

    Directory of Open Access Journals (Sweden)

    Heidi Mulcahy

    Full Text Available Biofilm formation is a conserved strategy for long-term bacterial survival in nature and during infections. Biofilms are multicellular aggregates of cells enmeshed in an extracellular matrix. The RetS, GacS and LadS sensors control the switch from a planktonic to a biofilm mode of growth in Pseudomonas aeruginosa. Here we detail our approach to identify environmental triggers of biofilm formation by investigating environmental conditions that repress expression of the biofilm repressor RetS. Mg(2+ limitation repressed the expression of retS leading to increased aggregation, exopolysaccharide (EPS production and biofilm formation. Repression of retS expression under Mg(2+ limitation corresponded with induced expression of the GacA-controlled small regulatory RNAs rsmZ and rsmY and the EPS biosynthesis operons pel and psl. We recently demonstrated that extracellular DNA sequesters Mg(2+ cations and activates the cation-sensing PhoPQ two-component system, which leads to increased antimicrobial peptide resistance in biofilms. Here we show that exogenous DNA and EDTA, through their ability to chelate Mg(2+, promoted biofilm formation. The repression of retS in low Mg(2+ was directly controlled by PhoPQ. PhoP also directly controlled expression of rsmZ but not rsmY suggesting that PhoPQ controls the equilibrium of the small regulatory RNAs and thus fine-tunes the expression of genes in the RetS pathway. In summary, Mg(2+ limitation is a biologically relevant environmental condition and the first bonafide environmental signal identified that results in transcriptional repression of retS and promotes P. aeruginosa biofilm formation.

  16. Biofilm Cohesive Strength as a Basis for Biofilm Recalcitrance: Are Bacterial Biofilms Overdesigned?

    OpenAIRE

    Srijan Aggarwal; Philip S. Stewart; Hozalski, Raymond M.

    2016-01-01

    Bacterial biofilms are highly resistant to common antibacterial treatments, and several physiological explanations have been offered to explain the recalcitrant nature of bacterial biofilms. Herein, a biophysical aspect of biofilm recalcitrance is being reported on. While engineering structures are often overdesigned with a factor of safety (FOS) usually under 10, experimental measurements of biofilm cohesive strength suggest that the FOS is on the order of thousands. In other words, bacteria...

  17. Application of a bacterial extracellular polymeric substance in heavy metal adsorption in a co-contaminated aqueous system Aplicação de uma substância polimerica extracelular bacteriana na absorção de metais pesados em um sistema aquoso co-contaminado

    Directory of Open Access Journals (Sweden)

    Paula Salles de Oliveira Martins

    2008-12-01

    Full Text Available The application of a bacterial extracellular polymeric substance (EPS in the bioremediation of heavy metals (Cd, Zn and Cu by a microbial consortium in a hydrocarbon co-contaminated aqueous system was studied. At the low concentrations used in this work (1.00 ppm of each metal, it was not observed an inhibitory effect on the cellular growing. In the other hand, the application of the EPS lead to a lower concentration of the free heavy metals in solution, once a great part of them is adsorbed in the polymeric matrix (87.12% of Cd; 19.82% of Zn; and 37.64% of Cu, when compared to what is adsorbed or internalized by biomass (5.35% of Cd; 47.35% of Zn; and 24.93% of Cu. It was noted an increase of 24% in the consumption of ethylbenzene, among the gasoline components that were quantified, in the small interval of time evaluated (30 hours. Our results suggest that, if the experiments were conducted in a larger interval of time, it would possibly be noted a higher effect in the degradation of gasoline compounds. Still, considering the low concentrations that were evaluated, it is possible that a real system could be bioremediated by natural attenuation process, demonstrated by the low effect of those levels of contaminants and co-contaminants over the naturally present microbial consortium.A aplicação de uma substância polimérica extracelular (EPS bacteriana na biorremediação de metais pesados (Cd, Zn e Cu por um consórcio microbiano em um sistema aquoso co-contaminado com hidrocarbonetos foi estudada. Nas baixas concentrações usadas neste trabalho (1,00 ppm de cada metal, não foi observado um efeito inibitório no crescimento celular. Por outro lado, a aplicação da EPS bacteriana levou a uma menor concentração de metais livres em solução, uma vez que grande parte destes fica adsorvido na matriz polimérica (87,12% de Cd; 19,82% de Zn; e 37,64% de Cu quando comparado ao que é adsorvido ou interiorizado pela biomassa (5,35% de Cd; 47

  18. Low Fluid Shear Culture of Staphylococcus Aureus Represses hfq Expression and Induces an Attachment-Independent Biofilm Phenotype

    Science.gov (United States)

    Ott, C. Mark; Castro, S. L.; Nickerson, C. A.; Nelman-Gonzalez, M.

    2011-01-01

    Background: The opportunistic pathogen, Staphylococcus aureus, experiences fluctuations in fluid shear during infection and colonization of a human host. Colonization frequently occurs at mucus membrane sites such as in the gastrointestinal tract where the bacterium may experience low levels of fluid shear. The response of S. aureus to low fluid shear remains unclear. Methods: S. aureus was cultured to stationary phase using Rotating-Wall Vessel (RWV) bioreactors which produce a physiologically relevant low fluid shear environment. The bacterial aggregates that developed in the RWV were evaluated by electron microscopy as well as for antibiotic resistance and other virulence-associated stressors. Genetic expression profiles for the low-shear cultured S. aureus were determined by microarray analysis and quantitative real-time PCR. Results: Planktonic S. aureus cultures in the low-shear environment formed aggregates completely encased in high amounts of extracellular polymeric substances. In addition, these aggregates demonstrated increased antibiotic resistance indicating attachment-independent biofilm formation. Carotenoid production in the low-shear cultured S. aureus was significantly decreased, and these cultures displayed an increased susceptibility to oxidative stress and killing by whole blood. The hfq gene, associated with low-shear growth in Gram negative organisms, was also found to be down-regulated in S. aureus. Conclusions: Collectively, this data suggests that S. aureus decreases virulence characteristics in favor of a biofilm-dwelling colonization phenotype in response to a low fluid shear environment. Furthermore, the identification of an Hfq response to low-shear culture in S. aureus, in addition to the previously reported responses in Gram negative organisms, strongly suggests an evolutionarily conserved response to mechanical stimuli among structurally diverse prokaryotes.

  19. Differential Roles of Poly-N-Acetylglucosamine Surface Polysaccharide and Extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis Biofilms▿

    OpenAIRE

    Era A Izano; Amarante, Matthew A.; Kher, William B.; Kaplan, Jeffrey B.

    2007-01-01

    Staphylococcus aureus and Staphylococcus epidermidis are major human pathogens of increasing importance due to the dissemination of antibiotic-resistant strains. Evidence suggests that the ability to form matrix-encased biofilms contributes to the pathogenesis of S. aureus and S. epidermidis. In this study, we investigated the functions of two staphylococcal biofilm matrix polymers: poly-N-acetylglucosamine surface polysaccharide (PNAG) and extracellular DNA (ecDNA). We measured the ability o...

  20. Polymerization Reactor Engineering.

    Science.gov (United States)

    Skaates, J. Michael

    1987-01-01

    Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)