WorldWideScience

Sample records for biofilm extracellular polymeric

  1. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Yang, Liang; Hu, Yifan; Liu, Yang

    2011-01-01

    Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self‐generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self‐assembly process and several d...... polysaccharide is more important than Pel polysaccharide in P. aeruginosa PAO1 biofilm formation and antibiotic resistance. Our study thus suggests that different EPS materials play distinct roles during bacterial biofilm formation.......Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self‐generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self‐assembly process and several...

  2. Paparan zat besi pada ekspresi protein spesifik extracellular polymeric substance biofilm Aggregatibacter actinomycetemcomitans

    Directory of Open Access Journals (Sweden)

    Marchella Hendrayanti W

    2014-06-01

    Full Text Available Background: The study of biofilms bacteria could be an alternative of preventive treatment in reducing prevalence of aggressive periodontitis in the community, because biofilm protects the bacteria from environmental conditions, including the attack of immune system and antimicrobial. Aggregatibacter actinomycetemcomitans is a major cause of bacterial aggressive periodontitis. Purpose: This study aims to examine the iron exposure to specific protein expression of extracellular polymeric substance (EPS of Aggregatibacter actinomycetemcomitans biofilm. Methods: Protein containing EPS biofilm was isolated from cultures of A.actinomycetemcomitans. The protein was processed through several procedures: electrophoresis , electroelution , immunization of rabbits , serum isolation , and purification of antibodies. After the Western blotting procedure the antibody was used. Protein containing EPS biofilms exposed to iron, then once again isolated from cultures of A. actinomycetemcomitans. The electrophoresis and Western blotting were done on the isolated protein. Results: The result showed that the the expression of specific proteins in EPS biofilm decreased in response to iron exposure. Conclusions: Iron exposure could influenced the specific protein expression in EPS biofilm of Aggregatibacter actinomycetemcomitans.Latar belakang: Penelitian terhadap bakteri biofilm dapat menjadi alternatif perawatan preventif dalam menurunkan prevalensi periodontitis agresif di masyarakat, karena biofilm melindungi bakteri terhadap kondisi lingkungan, termasuk serangan sistem imun dan antimikroba. Aggregatibacter actinomycetemcomitans merupakan bakteri penyebab utama periodontitis agresif. Tujuan: Studi ini bertujuan meneliti paparan zat besi terhadap ekspresi protein spesifik extracellular polymeric substance (EPS Aggregatibacter actinomycetemcomitans. Metode: Protein yang mengandung EPS biofilm diisolasi dari kultur A. actinomycetemcomitans. Protein yang diisolasi

  3. Characteristics of extracellular polymeric substances of phototrophic biofilms at different aquatic habitats.

    Science.gov (United States)

    Fang, Fang; Lu, Wen-Tao; Shan, Qi; Cao, Jia-Shun

    2014-06-15

    Three different phototrophic biofilms obtained from a natural lake (Sample 1), drinking water plant (Sample 2) and wastewater treatment plant (Sample 3) were investigated. Diatoms and green algae were the dominant algae of three biofilms, and the biomass was highest in biofilm of Sample 2. The three phototrophic biofilms also had variable extracellular polymeric substances (EPS) concentrations and compositions. Total EPS concentration of 14.80 mg/g DW was highest in biofilm of Sample 2, followed by biofilms of Samples 3 and 1 (13.11 and 12.29 mg/g DW). Tightly bound EPS (TB-EPS) were the main fraction, and polysaccharides and protein were the main components of total EPS in all three biofilms. However, the compositions of loosely bound EPS (LB-EPS) and TB-EPS were different in three biofilms. Fourier-transform infrared and fluorescence spectra indicated different structure and compositions of LB-EPS and TB-EPS. These results demonstrated the characteristics of EPS produced by phototrophic biofilms varied and had compact relation to their growth environmental conditions.

  4. Isolation of Extracellular Polymeric Substances from Biofilms of the Thermoacidophilic Archaeon Sulfolobus acidocaldarius.

    Science.gov (United States)

    Jachlewski, Silke; Jachlewski, Witold D; Linne, Uwe; Bräsen, Christopher; Wingender, Jost; Siebers, Bettina

    2015-01-01

    Extracellular polymeric substances (EPS) are the major structural and functional components of microbial biofilms. The aim of this study was to establish a method for EPS isolation from biofilms of the thermoacidophilic archaeon, Sulfolobus acidocaldarius, as a basis for EPS analysis. Biofilms of S. acidocaldarius were cultivated on the surface of gellan gum-solidified Brock medium at 78°C for 4 days. Five EPS extraction methods were compared, including shaking of biofilm suspensions in phosphate buffer, cation-exchange resin (CER) extraction, and stirring with addition of EDTA, crown ether, or NaOH. With respect to EPS yield, impact on cell viability, and compatibility with subsequent biochemical analysis, the CER extraction method was found to be the best suited isolation procedure resulting in the detection of carbohydrates and proteins as the major constituents and DNA as a minor component of the EPS. Culturability of CER-treated cells was not impaired. Analysis of the extracellular proteome using two-dimensional gel electrophoresis resulted in the detection of several hundreds of protein spots, mainly with molecular masses of 25-116 kDa and pI values of 5-8. Identification of proteins suggested a cytoplasmic origin for many of these proteins, possibly released via membrane vesicles or biofilm-inherent cell lysis during biofilm maturation. Functional analysis of EPS proteins, using fluorogenic substrates as well as zymography, demonstrated the activity of diverse enzyme classes, such as proteases, lipases, esterases, phosphatases, and glucosidases. In conclusion, the CER extraction method, as previously applied to bacterial biofilms, also represents a suitable method for isolation of water soluble EPS from the archaeal biofilms of S. acidocaldarius, allowing the investigation of composition and function of EPS components in these types of biofilms.

  5. Isolation of extracellular polymeric substances from biofilms of the thermoacidophilic archaeon Sulfolobus acidocaldarius

    Directory of Open Access Journals (Sweden)

    Silke eJachlewski

    2015-08-01

    Full Text Available Extracellular polymeric substances (EPS are the major structural and functional components of microbial biofilms. The aim of this study was to establish a method for EPS isolation from biofilms of the thermoacidophilic archaeon Sulfolobus acidocaldarius as a basis for EPS analysis. Biofilms of S. acidocaldarius were cultivated on the surface of gellan gum-solidified Brock medium at 78 °C for 4 days. Five EPS extraction methods were compared, including shaking of biofilm suspensions in phosphate buffer, cation-exchange resin (CER extraction and stirring with addition of EDTA, crown ether or NaOH. With respect to EPS yield, impact on cell viability and compatibility with subsequent biochemical analysis, the CER extraction method was found to be the best suited isolation procedure resulting in the detection of carbohydrates and proteins as the major constituents and DNA as a minor component of the EPS. Culturability of CER-treated cells was not impaired. Analysis of the extracellular proteome using two-dimensional gel electrophoresis resulted in the detection of several hundredshundred of protein spots, mainly with molecular masses of 25 kDa to 116 kDa and pI values of 5 to 8. Identification of proteins suggested a cytoplasmic origin for many of these proteins, possibly released via membrane vesicles or biofilm-inherent cell lysis during biofilm maturation. Functional analysis of EPS proteins, using fluorogenic substrates as well as zymography, demonstrated the activity of diverse groups of enzymes such as proteases, lipases, esterases, phosphatases and glucosidases. In conclusion, the CER extraction method, as previously applied to bacterial biofilms, also represents a suitable method for isolation of water soluble EPS from the archaeal biofilms of S. acidocaldarius, allowing the investigation of composition and function of EPS components in these types of biofilms.

  6. Characterization of extracellular polymeric matrix, and treatment of Fusobacterium nucleatum and Porphyromonas gingivalis biofilms with DNase I and proteinase K

    Directory of Open Access Journals (Sweden)

    Marwan Mansoor Ali Mohammed

    2013-01-01

    Full Text Available Background: Biofilms are organized communities of microorganisms embedded in a self-produced extracellular polymeric matrix (EPM, often with great phylogenetic variety. Bacteria in the subgingival biofilm are key factors that cause periodontal diseases; among these are the Gram-negative bacteria Fusobacterium nucleatum and Porphyromonas gingivalis. The objectives of this study were to characterize the major components of the EPM and to test the effect of deoxyribonuclease I (DNase I and proteinase K. Methods: F. nucleatum and P. gingivalis bacterial cells were grown in dynamic and static biofilm models. The effects of DNase I and proteinase K enzymes on the major components of the EPM were tested during biofilm formation and on mature biofilm. Confocal laser scanning microscopy was used in observing biofilm structure. Results: Proteins and carbohydrates were the major components of the biofilm matrix, and extracellular DNA (eDNA was also present. DNase I and proteinase K enzymes had little effect on biofilms in the conditions used. In the flow cell, F. nucleatum was able to grow in partially oxygenated conditions while P. gingivalis failed to form biofilm alone in similar conditions. F. nucleatum supported the growth of P. gingivalis when they were grown together as dual species biofilm. Conclusion: DNase I and proteinase K had little effect on the biofilm matrix in the conditions used. F. nucleatum formed biofilm easily and supported the growth of P. gingivalis, which preferred anaerobic conditions.

  7. Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization.

    Science.gov (United States)

    Cao, Bin; Ahmed, Bulbul; Kennedy, David W; Wang, Zheming; Shi, Liang; Marshall, Matthew J; Fredrickson, Jim K; Isern, Nancy G; Majors, Paul D; Beyenal, Haluk

    2011-07-01

    The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) to U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells with minimal EPS, we show that (i) bEPS from Shewanella sp. HRCR-1 biofilms contribute significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; (ii) bEPS can be considered a functional extension of the cells for U(VI) immobilization and they likely play more important roles at lower initial U(VI) concentrations; and (iii) the U(VI) reduction efficiency is dependent upon the initial U(VI) concentration and decreases at lower concentrations. To quantify the relative contributions of sorption and reduction to U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(VI). We found that, when reduced, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated the reactivity of laEPS, while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, possibly facilitated U(VI) reduction.

  8. Contribution of Extracellular Polymeric Substances from Shewanella sp. HRCR-1 Biofilms to U(VI) Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Bin; Ahmed, B.; Kennedy, David W.; Wang, Zheming; Shi, Liang; Marshall, Matthew J.; Fredrickson, Jim K.; Isern, Nancy G.; Majors, Paul D.; Beyenal, Haluk

    2011-06-05

    The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) in U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells without EPS, we showed that i) bEPS from Shewanella sp. HRCR-1 biofilms contributed significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; ii) bEPS could be considered as a functional extension of the cells for U(VI) immobilization and they likely play more important roles at initial U(VI) concentrations; and iii) U(VI) reduction efficiency was found to be dependent upon initial U(VI) concentration and the efficiency decreased at lower concentrations. To quantify relative contribution of sorption and reduction in U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(V). We found that, when in reduced form, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated reactivity of laEPS while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, might facilitate U(VI) reduction.

  9. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation.

    Science.gov (United States)

    Zhang, Yinping; Wang, Fang; Zhu, Xiaoshu; Zeng, Jun; Zhao, Qiguo; Jiang, Xin

    2015-10-01

    The hypothesis that extracellular polymeric substances (EPS) affect the formation of biofilms for subsequent enhanced biodegradation of polycyclic aromatic hydrocarbons was tested. Controlled formation of biofilms on humin particles and biodegradation of phenanthrene and pyrene were performed with bacteria and EPS-extracted bacteria of Micrococcus sp. PHE9 and Mycobacterium sp. NJS-P. Bacteria without EPS extraction developed biofilms on humin, in contrast the EPS-extracted bacteria could not attach to humin particles. In the subsequent biodegradation of phenanthrene and pyrene, the biodegradation rates by biofilms were significantly higher than those of EPS-extracted bacteria. Although, both the biofilms and EPS-extracted bacteria showed increases in EPS contents, only the EPS contents in biofilms displayed significant correlations with the biodegradation efficiencies of phenanthrene and pyrene. It is proposed that the bacterial-produced EPS was a key factor to mediate bacterial attachment to other surfaces and develop biofilms, thereby increasing the bioavailability of poorly soluble PAH for enhanced biodegradation.

  10. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Swearingen, Matthew C; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J; Falzarano, Anthony R; Wozniak, Daniel J; Hall-Stoodley, Luanne; Stoodley, Paul

    2016-02-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples.

  11. Interaction of Pb(II) and biofilm associated extracellular polymeric substances of a marine bacterium Pseudomonas pseudoalcaligenes NP103

    Science.gov (United States)

    Kumari, Supriya; Mangwani, Neelam; Das, Surajit

    2017-02-01

    Three-dimensional excitation-emission matrix (3D EEM) fluorescence spectroscopy and attenuated total reflectance fourier-transformed infrared spectroscopy (ATR-FTIR) was used to evaluate the interaction of biofilm associated extracellular polymeric substances (EPS) of a marine bacterium Pseudomonas pseudoalcaligenes NP103 with lead [Pb(II)]. EEM fluorescence spectroscopic analysis revealed the presence of one protein-like fluorophore in the EPS of P. pseudoalcaligenes NP103. Stern-Volmer equation indicated the existence of only one binding site (n = 0.789) in the EPS of P. pseudoalcaligenes NP103. The interaction of Pb(II) with EPS was spontaneous at room temperature (∆ G = - 2.78 kJ/K/mol) having binding constant (Kb) of 2.59 M- 1. ATR-FTIR analysis asserted the involvement of various functional groups such as sulphydryl, phosphate and hydroxyl and amide groups of protein in Pb(II) binding. Scanning electron microscopy (SEM) and fluorescence microscopy analysis displayed reduced growth of biofilm with altered surface topology in Pb(II) supplemented medium. Energy dispersive X-ray spectroscopy (EDX) analysis revealed the entrapment of Pb in the EPS. Uronic acid, a characteristic functional group of biofilm, was observed in 1H NMR spectroscopy. The findings suggest that biofilm associated EPS are perfect organic ligands for Pb(II) complexation and may significantly augment the bioavailability of Pb(II) in the metal contaminated environment for subsequent sequestration.

  12. Characteristics of extracellular polymeric substances from sludge and biofilm in a simultaneous nitrification and denitrification system under high salinity stress.

    Science.gov (United States)

    Zhao, Linting; She, Zonglian; Jin, Chunji; Yang, Shiying; Guo, Liang; Zhao, Yangguo; Gao, Mengchun

    2016-09-01

    The composition and distribution of extracellular polymeric substance (EPS) both from suspended sludge and attached biofilm were investigated in a simultaneous nitrification and denitrification (SND) system with the increase of the salinity from 1.0 to 3.0 %. Fourier-transform infrared (FTIR) spectroscopy and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy were used to examine proteins (PN), polysaccharides (PS) and humic substances (HS) present in EPS. High total nitrogen removal (above 83.9 %) via SND was obtained in the salinity range of 1.0-2.5 %. Total EPS in the sludge increased from 150.2 to 200.6 mg/gVSS with the increase of salinity from 1.0 to 3.0 %, whereas the corresponding values in the biofilm achieved the maximum of 288.6 mg/g VSS at 2.0 % salinity. Dominant composition of EPS was detected as HS in both sludge and biofilm, having the percentages of 50.6-68.6 and 41.1-69.9 % in total EPS, respectively. Both PN and PS contents in soluble EPS (S-EPS), loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) of sludge and biofilm increased with the increased salinity. The FTIR spectrum and 3D-EEM fluorescence spectroscopy of S-EPS, LB-EPS and TB-EPS in the sludge and biofilm showed the changes of functional groups and conformations of the compositions in EPS with the increase of salinity. The results demonstrated that the characteristics of EPS varied from sludge to biofilm. The obtained results could provide a better understanding of the salinity effect on the EPS characteristics in a SND system.

  13. The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor.

    Science.gov (United States)

    Duan, Liang; Jiang, Wei; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W

    2013-11-01

    The characteristics of extracellular polymeric substances (EPS) and soluble microbial products (SMP) in conventional membrane bioreactor (MBR) and in moving bed biofilm reactor-membrane bioreactors (MBBR-MBR) were investigated in long-term (170 days) experiments. The results showed that all reactors had high removal efficiency of ammonium and COD, despite very different fouling conditions. The MBBR-MBR with media fill ratio of 26.7% had much lower total membrane resistance and no obvious fouling were detected during the whole operation. In contrast, MBR and MBBR-MBR with lower and higher media fill experienced more significant fouling. Low fouling at optimum fill ratio may be due to the higher percentage of small molecular size (100 kDa) of EPS and SMP in the reactor. The composition of EPS and SMP affected fouling due to different O-H bonds in hydroxyl functional groups, and less polysaccharides and lipids.

  14. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar Typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances.

    Science.gov (United States)

    Wang, Rong; Kalchayanand, Norasak; Schmidt, John W; Harhay, Dayna M

    2013-09-01

    Shiga toxin-producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their planktonic counterparts, so these foodborne pathogens in biofilms pose a serious food safety concern. We investigated how the coexistence of E. coli O157:H7 and Salmonella Typhimurium strains would affect bacterial planktonic growth competition and mixed biofilm composition. Furthermore, we also investigated how mixed biofilm formation would affect bacterial resistance to common sanitizers. Salmonella Typhimurium strains were able to outcompete E. coli strains in the planktonic growth phase; however, mixed biofilm development was highly dependent upon companion strain properties in terms of the expression of bacterial extracellular polymeric substances (EPS), including curli fimbriae and exopolysaccharide cellulose. The EPS-producing strains with higher biofilm-forming abilities were able to establish themselves in mixed biofilms more efficiently. In comparison to single-strain biofilms, Salmonella or E. coli strains with negative EPS expression obtained significantly enhanced resistance to sanitization by forming mixed biofilms with an EPS-producing companion strain of the other species. These observations indicate that the bacterial EPS components not only enhance the sanitizer resistance of the EPS-producing strains but also render protections to their companion strains, regardless of species, in mixed biofilms. Our study highlights the potential risk of cross-contamination by multispecies biofilms in food safety and the need for increased attention to proper sanitization practices in food processing facilities.

  15. Characterization of glycoconjugates of extracellular polymeric substances in tufa-associated biofilms by using fluorescence lectin-binding analysis.

    Science.gov (United States)

    Zippel, B; Neu, T R

    2011-01-01

    Freshwater tufa deposits are the result of calcification associated with biofilms dominated by cyanobacteria. Recent investigations highlighted the fact that the formation of microbial calcium carbonates is mainly dependent on the saturation index, which is determined by pH, the ion activity of Ca(2+) and CO(3)(2-), and the occurrence of extracellular polymeric substances (EPS) produced by microorganisms. EPS, which contain carboxyl and/or hydroxyl groups, can strongly bind cations. This may result in inhibition of CaCO(3) precipitation. In contrast, the formation of templates for crystal nucleation was reported by many previous investigations. The purposes of this study were (i) to characterize the in situ distribution of EPS glycoconjugates in tufa-associated biofilms of two German hard-water creeks by employing fluorescence lectin-binding analysis (FLBA), (ii) to verify the specific lectin-binding pattern by competitive-inhibition assays, and (iii) to assess whether carbonates are associated with structural EPS domains. Three major in situ EPS domains (cyanobacterial, network-like, and cloud-like structures) were detected by FLBA in combination with laser scanning microscopy (LSM). Based on lectin specificity, the EPS glycoconjugates produced by cyanobacteria contained mainly fucose, amino sugars (N-acetyl-glucosamine and N-acetyl-galactosamine), and sialic acid. Tufa deposits were irregularly covered by network-like EPS structures, which may originate from cyanobacterial EPS secretions. Cloud-like EPS glycoconjugates were dominated by sialic acid, amino sugars, and galactose. In some cases calcium carbonate crystals were associated with cyanobacterial EPS glycoconjugates. The detection of amino sugars and calcium carbonate in close association with decaying sheath material indicated that microbially mediated processes might be important for calcium carbonate precipitation in freshwater tufa systems.

  16. Extracellular polymeric substances (EPS of freshwater biofilms stabilize and modify CeO2 and Ag nanoparticles.

    Directory of Open Access Journals (Sweden)

    Alexandra Kroll

    Full Text Available Streams are potential receiving compartments for engineered nanoparticles (NP. In streams, NP may remain dispersed or settle to the benthic compartment. Both dispersed and settling NP can accumulate in benthic biofilms called periphyton that are essential to stream ecosystems. Periphytic organisms excrete extracellular polymeric substances (EPS that interact with any material reaching the biofilms. To understand the interaction of NP with periphyton it is therefore crucial to study the interaction of NP with EPS. We investigated the influence of EPS on the physicochemical properties of selected NP (CeO2, Ag under controlled conditions at pH 6, 7.6, 8.6 and light or dark exposure. We extracted EPS from five different periphyton communities, characterized the extracts, and exposed CeO2 and carbonate-stabilized Ag NP (0.5 and 5 mg/L, both 25 nm primary particle size and AgNO3 to EPS (10 mg/L over two weeks. We measured NP size distribution, shape, primary particle size, surface plasmon resonance, and dissolution. All EPS extracts were composed of biopolymers, building blocks of humic substances, low molecular weight (Mr acids, and small amphiphilic or neutral compounds in varying concentrations. CeO2 NP were stabilized by EPS independent of pH and light/dark while dissolution increased over time in the dark at pH 6. EPS induced a size increase in Ag NP in the light with decreasing pH and the formation of metallic Ag NP from AgNO3 at the same conditions via EPS-enhanced photoreduction. NP transformation and formation were slower in the extract with the lowest biopolymer and low Mr acid concentrations. Periphytic EPS in combination with naturally varying pH and light/dark conditions influence the properties of the Ag and CeO2 NP tested and thus the exposure conditions within biofilms. Our results indicate that periphytic organisms may be exposed to a constantly changing mixture of engineered and naturally formed Ag NP and Ag+.

  17. Filamentation and spatiotemporal distribution of extracellular polymeric substances: role on X.fastidiosa single cell adhesion and biofilm formation (Conference Presentation)

    Science.gov (United States)

    Janissen, Richard; Murillo, Duber M.; Niza, Barbara; Sahoo, Prasana K.; Monteiro, Moniellen P.; César, Carlos L.; Carvalho, Hernandes F.; de Souza, Alessandra A.; Cotta, Monica A.

    2016-04-01

    Biofilms can be defined as a community of microorganisms attached to a surface, living embedded in a self- produced matrix of hydrated extracellular polymeric substances (EPS) which comprises most of the biofilm mass. We have recently used an extensive pool of microscopy techniques (confocal fluorescence, electron and scanning probe microscopies) at the micro and nanoscales in order to create a detailed temporal observation of Xylella fastidiosa biofilm formation, using both wild type strain and Green Fluorescent Protein (GFP)-modified cells of this citrus phytopathogen. We have identified three different EPS compositions, as well as their spatial and temporal distribution from single cell to mature biofilm formation stages. In the initial adhesion stage, soluble-EPS (S-EPS) accumulates at cell polar regions and forms a surface layer which facilitates irreversible cell attachment and cell cluster formation. These small clusters are subsequently connected by filamentous cells; further S-EPS surface coverage facilitates cell attachment and form filaments, leading to a floating framework of mature biofilms. The important role of EPS in X.fastidiosa biology was further investigated by imunolabelling experiments to detect the distribution of XadA1 adhesin, which is expressed in early stages of biofilm formation and released in outer membrane vesicles. This protein is located mainly in S-EPS covered areas, as well as on the filaments, indicating a molecular pathway to the enhanced cell attachment previously observed. These results suggest that S-EPS may thus represent an important target for disease control, slow plant colonization by the bacteria, keeping the plant more productive in the field.

  18. Extracellular polymeric bacterial coverages as minimal surfaces

    CERN Document Server

    Saa, A; Saa, Alberto; Teschke, Omar

    2005-01-01

    Surfaces formed by extracellular polymeric substances enclosing individual and some small communities of {\\it Acidithiobacillus ferrooxidans} on plates of hydrophobic silicon and hydrophilic mica are analyzed by means of atomic force microscopy imaging. Accurate nanoscale descriptions of such coverage surfaces are obtained. The good agreement with the predictions of a rather simple but realistic theoretical model allows us to conclude that they correspond, indeed, to minimal area surfaces enclosing a given volume associated with the encased bacteria. This is, to the best of our knowledge, the first shape characterization of the coverage formed by these biomolecules, with possible applications to the study of biofilms.

  19. Extracellular DNA in oral microbial biofilms.

    Science.gov (United States)

    Jakubovics, Nicholas S; Burgess, J Grant

    2015-07-01

    The extracellular matrix of microbial biofilms is critical for surface adhesion and nutrient homeostasis. Evidence is accumulating that extracellular DNA plays a number of important roles in biofilm integrity and formation on hard and soft tissues in the oral cavity. Here, we summarise recent developments in the field and consider the potential of targeting DNA for oral biofilm control.

  20. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2009-07-01

    Full Text Available Extracellular polymeric substances (EPS produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  1. A Look inside the Listeria monocytogenes Biofilms Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Angelo Colagiorgi

    2016-07-01

    Full Text Available Listeria monocytogenes is a foodborne pathogen able to persist in food industry and is responsible for a severe illness called listeriosis. The ability of L. monocytogenes to persist in environments is due to its capacity to form biofilms that are a sessile community of microorganisms embedded in a self-produced matrix of extracellular polymeric substances (EPS’s. In this review, we summarized recent efforts performed in order to better characterize the polymeric substances that compose the extracellular matrix (ECM of L. monocytogenes biofilms. EPS extraction and analysis led to the identification of polysaccharides, proteins, extracellular DNA, and other molecules within the listerial ECM. All this knowledge will be useful for increasing food protection, suggesting effective strategies for the minimization of persistence of L. monocytogenes in food industry environments.

  2. 胞外高分子物质对基质在复合生物膜内传质速率影响的测定%Evaluation of the Influence of Extracellular Polymeric Substances on the Mass Transport of Substrate within Multispecies Biofilms

    Institute of Scientific and Technical Information of China (English)

    曹宏斌; 李鑫钢; 姜斌; 孙津生; 张懿

    2004-01-01

    A model, for evaluating the effect of porosity and volume fraction of extracellular polymeric substances(EPS) within multispecies biofilms on the effective diffusivity, is developed and experimentally validated, based on the extraction of EPS from intact biofilms. The amount of EPS in biofilms significantly affects the effective diffusivity. For biofilms with porosity of 77%-95% in the top layers and 54%-58% in the bottom layers, the value of De/Dw decreases from 0.52-0.83 in the top layers to 0.23-0.31 in the bottom layers. Generally, the effective diffusivity in the heterotrophic/autotrophic biofilms is slightly lower than that in the heterotrophic biofilms, due to the lower porosity in the heterotrophic/autotrophic biofilms.

  3. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms.

    Science.gov (United States)

    Klein, Marlise I; Hwang, Geelsu; Santos, Paulo H S; Campanella, Osvaldo H; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases.

  4. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms

    Directory of Open Access Journals (Sweden)

    Marlise eKlein

    2015-02-01

    Full Text Available Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS, eDNA and lipoteichoic acid (LTA. EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases.

  5. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances

    Science.gov (United States)

    Shiga toxin–producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their pla...

  6. Selective reactivity of monochloramine with extracellular matrix components affects the disinfection of biofilm and detached clusters.

    Science.gov (United States)

    Xue, Zheng; Lee, Woo Hyoung; Coburn, Kimberly M; Seo, Youngwoo

    2014-04-01

    The efficiency of monochloramine disinfection was dependent on the quantity and composition of extracellular polymeric substances (EPS) in biofilms, as monochloramine has a selective reactivity with proteins over polysaccharides. Biofilms with protein-based (Pseudomonas putida) and polysaccharide based EPS (Pseudomonas aeruginosa), as well as biofilms with varied amount of polysaccharide EPS (wild-type and mutant P. aeruginosa), were compared. The different reactivity of EPS components with monochloramine influenced disinfectant penetration, biofilm inactivation, as well as the viability of detached clusters. Monochloramine transport profiling measured by a chloramine-sensitive microelectrode revealed a broader diffusion boundary layer between bulk and biofilm surface in the P. putida biofilm compared to those of P. aeruginosa biofilms. The reaction with proteins in P. putida EPS multiplied both the time and the monochloramine mass required to achieve a full biofilm penetration. Cell viability in biofilms was also spatially influenced by monochloramine diffusion and reaction within biofilms, showing a lower survival in the surface section and a higher persistence in the middle section of the P. putida biofilm compared to the P. aeruginosa biofilms. While polysaccharide EPS promoted biofilm cell viability by obstructing monochloramine reactive sites on bacterial cells, protein EPS hindered monochloramine penetration by reacting with monochloramine and reduced its concentration within biofilms. Furthermore, the persistence of bacterial cells detached from biofilm (over 70% for P. putida and ∼40% for polysaccharide producing P. aeruginosa) suggested that currently recommended monochloramine residual levels may underestimate the risk of water quality deterioration caused by biofilm detachment.

  7. Extracellular DNA Shields against Aminoglycosides in Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Nilsson, Martin; Jensen, Peter Østrup

    2013-01-01

    , which are thought to be a source of extracellular DNA at sites of infections, increases the tolerance of P. aeruginosa biofilms toward aminoglycosides. Although biofilm-associated aminoglycoside tolerance recently has been linked to extracellular DNA-mediated activation of the pmr genes, we demonstrate...... that the aminoglycoside tolerance mediated by the presence of extracellular DNA is not caused by activation of the pmr genes in our P. aeruginosa biofilms but rather by a protective shield effect of the extracellular DNA....

  8. Biofilm formation and extracellular polymeric substances (EPS) production by Bacillus subtilis depending on nutritional conditions in the presence of polyester film.

    Science.gov (United States)

    Voběrková, Stanislava; Hermanová, Soňa; Hrubanová, Kamila; Krzyžánek, Vladislav

    2016-03-01

    The influence of biofilm formation as the mode of microorganism growth on degradation of synthetic polymers represents an important research topic. This study focuses on the effect of biofilm developed by Bacillus subtilis (BS) cultivated submerged under various nutrition conditions on biodeterioration of poly(ε-caprolactone) film. Polymer in the film form (thickness 0.7 mm) was incubated for 21 days either continuously or by regularly renewed system. The scission of polyester chain bonds took place in all biotic media and was enhanced by biofilm formation in nutrient-rich media.

  9. Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, Angeles [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain)], E-mail: aguileraba@inta.es; Souza-Egipsy, Virginia [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain); San Martin-Uriz, Patxi [Centro de Biologia Molecular (UAM-CSIC), Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Amils, Ricardo [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain); Centro de Biologia Molecular (UAM-CSIC), Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2008-07-30

    To evaluate the importance of the extracellular matrix in relation to heavy metal binding capacity in extreme acidic environments, the extracellular polymeric substances (EPS) composition of 12 biofilms isolated from Rio Tinto (SW, Spain) was analyzed. Each biofilm was composed mainly by one or two species of eukaryotes, although other microorganisms were present. EPS ranged from 130 to 439 mg g{sup -1} biofilm dry weight, representing between 15% and the 40% of the total biofilm dry weight (DW). Statistically significant differences (p < 0.05) were found in the amount of total EPS extracted from biofilms dominated by the same organism at different sampling points. The amount of EPS varied among different biofilms collected from the same sampling location. Colloidal EPS ranged from 42 to 313 mg g{sup -1} dry weight; 10% to 30% of the total biofilm dry weight. Capsular EPS ranged from 50 to 318 mg g{sup -1} dry weight; 5% to 30% of the total biofilm dry weight. Seven of the 12 biofilms showed higher amounts of capsular than colloidal EPS (p < 0.05). Total amount of EPS decreased when total cell numbers and pH increased. There was a positive correlation between EPS concentration and heavy metal concentration in the water. Observations by low temperature scanning electron microscopy (LTSEM) revealed the mineral adsorption in the matrix of EPS and onto the cell walls. EPS in all biofilms were primarily composed of carbohydrates, heavy metals and humic acid, plus small quantities of proteins and DNA. After carbohydrates, heavy metals were the second main constituents of the extracellular matrix. Their total concentrations ranged from 3 to 32 mg g{sup -1} biofilm dry weight, reaching up to 16% of the total composition. In general, the heavy metal composition of the EPS extracted from the biofilms closely resembled the metal composition of the water from which the biofilms were collected.

  10. Natural antigenic differences in the functionally equivalent extracellular DNABII proteins of bacterial biofilms provide a means for targeted biofilm therapeutics.

    Science.gov (United States)

    Rocco, C J; Davey, M E; Bakaletz, L O; Goodman, S D

    2017-04-01

    Bacteria that persist in the oral cavity exist within complex biofilm communities. A hallmark of biofilms is the presence of an extracellular polymeric substance (EPS), which consists of polysaccharides, extracellular DNA (eDNA), and proteins, including the DNABII family of proteins. The removal of DNABII proteins from a biofilm results in the loss of structural integrity of the eDNA and the collapse of the biofilm structure. We examined the role of DNABII proteins in the biofilm structure of the periodontal pathogen Porphyromonas gingivalis and the oral commensal Streptococcus gordonii. Co-aggregation with oral streptococci is thought to facilitate the establishment of P. gingivalis within the biofilm community. We demonstrate that DNABII proteins are present in the EPS of both S. gordonii and P. gingivalis biofilms, and that these biofilms can be disrupted through the addition of antisera derived against their respective DNABII proteins. We provide evidence that both eDNA and DNABII proteins are limiting in S. gordonii but not in P. gingivalis biofilms. In addition, these proteins are capable of complementing one another functionally. We also found that whereas antisera derived against most DNABII proteins are capable of binding a wide variety of DNABII proteins, the P. gingivalis DNABII proteins are antigenically distinct. The presence of DNABII proteins in the EPS of these biofilms and the antigenic uniqueness of the P. gingivalis proteins provide an opportunity to develop therapies that are targeted to remove P. gingivalis and biofilms that contain P. gingivalis from the oral cavity.

  11. TOL Plasmid Carriage Enhances Biofilm Formation and Increases Extracellular DNA Content in Pseudomonas Putida KT2440

    DEFF Research Database (Denmark)

    Smets, Barth F.; D'Alvise, Paul; Yankelovich, T.;

    of extracellular polymeric substances: TOL carriage leads to more extracellular DNA (eDNA) in pellicles and biofilms. Pellicles were dissolved by DNAse I treatment. eDNA was observed as ominous fibrous structures. Quantitative analysis of live and dead cells in static cultures was performed by flow cytometry......Adherent growth of Pseudomonas putida KT2440 with and without the TOL plasmid (pWWO) at the solid-liquid and air-liquid interface was examined. We compared biofilm formation on glass in flow cells, and assayed pellicle (air-liquid interface biofilm) formation in stagnant liquid cultures by confocal...... combined with specific cytostains; release of cytoplasmic material was assayed by a β-glucosidase assay. Enhanced cell lysis due to plasmid carriage was ruled out as the mechanism for eDNA release. We report, for the first time, that carriage of a conjugative plasmid leads to increased biofilm formation...

  12. TOL plasmid carriage enhances biofilm formation and increases extracellular DNA content in Pseudomonas putida KT2440

    DEFF Research Database (Denmark)

    D'Alvise, Paul; Sjoholm, O.R.; Yankelevich, T.;

    2010-01-01

    : TOL carriage leads to more extracellular DNA (eDNA) in pellicles and biofilms. Pellicles were dissolved by DNase I treatment. Enhanced cell lysis due to plasmid carriage was ruled out as the mechanism for eDNA release. We report, for the first time, that carriage of a conjugative plasmid leads......Adherent growth of Pseudomonas putida KT2440 with and without the TOL plasmid (pWWO) at the solid-liquid and air-liquid interface was examined. We compared biofilm formation on glass in flow cells, and assayed pellicle (air-liquid interface biofilm) formation in stagnant liquid cultures by confocal...... laser scanning microscopy. The TOL-carrying strains formed pellicles and thick biofilms, whereas the same strains without the plasmid displayed little adherent growth. Microscopy using fluorescent nucleic acid-specific stains revealed differences in the production of extracellular polymeric substances...

  13. Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae.

    Science.gov (United States)

    Wu, Siva; Baum, Marc M; Kerwin, James; Guerrero, Debbie; Webster, Simon; Schaudinn, Christoph; VanderVelde, David; Webster, Paul

    2014-12-01

    Nontypeable Haemophilus influenzae (NTHi), a human respiratory tract pathogen, can form colony biofilms in vitro. Bacterial cells and the amorphous extracellular matrix (ECM) constituting the biofilm can be separated using sonication. The ECM from 24- and 96-h NTHi biofilms contained polysaccharides and proteinaceous components as detected by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) spectroscopy. More conventional chemical assays on the biofilm ECM confirmed the presence of these components and also DNA. Proteomics revealed eighteen proteins present in biofilm ECM that were not detected in planktonic bacteria. One ECM protein was unique to 24-h biofilms, two were found only in 96-h biofilms, and fifteen were present in the ECM of both 24- and 96-h NTHi biofilms. All proteins identified were either associated with bacterial membranes or cytoplasmic proteins. Immunocytochemistry showed two of the identified proteins, a DNA-directed RNA polymerase and the outer membrane protein OMP P2, associated with bacteria and biofilm ECM. Identification of biofilm-specific proteins present in immature biofilms is an important step in understanding the in vitro process of NTHi biofilm formation. The presence of a cytoplasmic protein and a membrane protein in the biofilm ECM of immature NTHi biofilms suggests that bacterial cell lysis may be a feature of early biofilm formation.

  14. Extracellular matrix structure governs invasion resistance in bacterial biofilms.

    Science.gov (United States)

    Nadell, Carey D; Drescher, Knut; Wingreen, Ned S; Bassler, Bonnie L

    2015-08-01

    Many bacteria are highly adapted for life in communities, or biofilms. A defining feature of biofilms is the production of extracellular matrix that binds cells together. The biofilm matrix provides numerous fitness benefits, including protection from environmental stresses and enhanced nutrient availability. Here we investigate defense against biofilm invasion using the model bacterium Vibrio cholerae. We demonstrate that immotile cells, including those identical to the biofilm resident strain, are completely excluded from entry into resident biofilms. Motile cells can colonize and grow on the biofilm exterior, but are readily removed by shear forces. Protection from invasion into the biofilm interior is mediated by the secreted protein RbmA, which binds mother-daughter cell pairs to each other and to polysaccharide components of the matrix. RbmA, and the invasion protection it confers, strongly localize to the cell lineages that produce it.

  15. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms.

    Science.gov (United States)

    Martins, Margarida; Uppuluri, Priya; Thomas, Derek P; Cleary, Ian A; Henriques, Mariana; Lopez-Ribot, José L; Oliveira, Rosário

    2010-05-01

    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.

  16. Comparison of extraction methods for extracellular polymeric substances from a drinking water biofilm-forming bacteria%管网生物膜菌株胞外聚合物的提取方法比较

    Institute of Scientific and Technical Information of China (English)

    邬卓颖; 郭峰; 叶成松; 张胜华; 于鑫

    2012-01-01

    以饮用水管网生物膜样品中一株强成膜能力的菌株Pleomorphomonas oryzae作为研究对象,考察了8种方法(高速离心法、超声法、加热法、EDTA法、H2SO4法、NaOH法、SDS法、甲醛法)对菌株胞外聚合物(EPS)的提取效果,并结合三维荧光光谱(EEM)和傅立叶红外光谱(FTIR)对提取的EPS进行成分分析.结果表明,EDTA法和H2SO4法既能提高EPS的提取效率,提取量分别为64.77 mg.g-1SS和74.43 mg.g-1SS,是离心方法提取量的1.62倍和1.86倍,又不会在提取过程中对菌株细胞造成破坏,是较为理想的EPS提取方法.EEM分析进一步证实,NaOH法对菌株细胞破坏严重,造成EPS成分变化较大.FTIR分析则说明,化学提取方法相较于物理提取方法会引入杂质对组分测定造成干扰.%Drinking water distribution systems(DWDS) often face the problem of biofilm formation,which results in microbial contamination,and furthermore influence the water quality and population health.The extracellular polymeric substances(EPS) is the major component of biofilm which accounts for over 90%,and its physical and chemical properties have effects on biofilm adhesion and formation.Eight methods for extracting EPS from a drinking water distribution system related bacteria,Pleomorphomonas oryzae,(centrifugation,sonication,heating,EDTA,H2SO4,NaOH,SDS,formaldehyde) were investigated,and then three-dimensional excitation and emission matrix(EEM) fluorescence spectroscopy and Fourier transform infrared(FTIR) spectroscopy were used to supplement the chemical analysis.The results showed that the EDTA and H2SO4 method were efficient and did not cause cell disruption.These two methods obtained 64.77 mg · g-1 SS and 74.43 mg · g-1 SS from bacterial culture,higher than that of the centrifugation method by 1.62 and 1.86 times,respectively.EEM fluorescence spectra of EPS extracted by NaOH method indicates that the method was so severe that cell

  17. Microscopic monitoring of extracellular pH in dental biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Garcia, Javier; Greve, Matilde

    pH in dental biofilm is a key virulence factor for the development of caries lesions. The complex three-dimensional architecture of dental biofilms leads to steep gradients of nutrients and metabolites, including organic acids, across the biofilm. For decades, measuring pH in dental biofilm has...... been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit to monitor horizontal pH gradients in real-time. Quantitative fluorescent microscopic techniques, such as fluorescence lifetime imaging or pH...... ratiometry, can be employed to map the pH landscape in dental biofilm with more detail. However, when pH sensitive fluorescent probes are used to visualize pH in biofilms, it is crucial to differentiate between extracellular and intracellular pH. Intracellular microbial pH and pH in the extracellular matrix...

  18. 活性污泥和生物膜的胞外聚合物提取方法比较%The Comparison of Effectiveness of Different Methods in Extracting Extracellular Polymeric Substances(EPS) from Biofilm and Activated Sludge

    Institute of Scientific and Technical Information of China (English)

    刘翔; 黄映恩; 刘燕; 代瑞华

    2011-01-01

    Five commonly used extraction,including heating,NaOH,H2SO4,cation exchange resin(CER),formaldehyde plus NaOH were selected to study their effectiveness in extracting extracellular polymeric substances(EPS) from five biofilm and activated sludge samples,using regular centrifugation as a control method.The results showed that the EPS content and the proportion of the components were strongly dependent on the extraction methods.The efficiency of the extraction methods,in decreasing order,for all sludge samples in general was: NaOH heating formaldehyde plus NaOH H2SO4CER regular centrifugation.The total EPS extracted by formaldehyde plus NaOH was similar to those extracted by heating,but the content of each components of EPS were quite different.The removal process of formaldehyde greatly affected the determination of the components of the EPS.The EPS extracted by NaOH constituted much more DNA than any other methods.Compared with the extraction results by formaldehyde plus NaOH,the NaOH method might cause cell lysis in some extent.%采用加热法、NaOH法、硫酸法、阳离子交换树脂(CER)法、甲醛-NaOH法对3个污水厂的5种生物膜和活性污泥的胞外聚合物(EPS)进行提取实验研究,并以常规高速离心作为对照组.结果表明,不同的提取方法对同一种污泥的EPS各组分构成影响较大.一般情况下,提取总量按从多到少排列如下:NaOH法〉加热法〉甲醛-NaOH法〉硫酸法〉CER法〉常规高速离心.其中,甲醛-NaOH法提取总量与加热法相近,但各组分的含量两者却有较大差别.甲醛的去除过程对EPS中组分的测定有干扰.NaOH法提取的EPS中DNA的含量远大于其他各种方法,通过甲醛-NaOH法的对比实验,可见NaOH法对细胞存在着一定的破坏.

  19. Ratiometric Imaging of Extracellular pH in Dental Biofilms.

    Science.gov (United States)

    Schlafer, Sebastian; Dige, Irene

    2016-03-09

    The pH in bacterial biofilms on teeth is of central importance for dental caries, a disease with a high worldwide prevalence. Nutrients and metabolites are not distributed evenly in dental biofilms. A complex interplay of sorption to and reaction with organic matter in the biofilm reduces the diffusion paths of solutes and creates steep gradients of reactive molecules, including organic acids, across the biofilm. Quantitative fluorescent microscopic methods, such as fluorescence life time imaging or pH ratiometry, can be employed to visualize pH in different microenvironments of dental biofilms. pH ratiometry exploits a pH-dependent shift in the fluorescent emission of pH-sensitive dyes. Calculation of the emission ratio at two different wavelengths allows determining local pH in microscopic images, irrespective of the concentration of the dye. Contrary to microelectrodes the technique allows monitoring both vertical and horizontal pH gradients in real-time without mechanically disturbing the biofilm. However, care must be taken to differentiate accurately between extra- and intracellular compartments of the biofilm. Here, the ratiometric dye, seminaphthorhodafluor-4F 5-(and-6) carboxylic acid (C-SNARF-4) is employed to monitor extracellular pH in in vivo grown dental biofilms of unknown species composition. Upon exposure to glucose the dye is up-concentrated inside all bacterial cells in the biofilms; it is thus used both as a universal bacterial stain and as a marker of extracellular pH. After confocal microscopic image acquisition, the bacterial biomass is removed from all pictures using digital image analysis software, which permits to exclusively calculate extracellular pH. pH ratiometry with the ratiometric dye is well-suited to study extracellular pH in thin biofilms of up to 75 µm thickness, but is limited to the pH range between 4.5 and 7.0.

  20. MATHEMATICAL MODELING OF EXTRACELLULAR ELECTRON TRANSFER IN BIOFILMS

    Energy Technology Data Exchange (ETDEWEB)

    Renslow, Ryan S.; Babauta, Jerome T.; Kuprat, Andrew P.; Schenk, Jim; Ivory, Cornelius; Fredrickson, Jim K.; Beyenal, Haluk

    2015-09-12

    Electrochemically active biofilms have a unique form of respiration in which they utilize solid external materials as terminal electron acceptors for their metabolism. Currently, two primary mechanisms have been identified for long-range extracellular electron transfer (EET): a diffusion- and a conduction-based mechanism. Evidence in the literature suggests that some biofilms, particularly Shewanella oneidensis, produce the requisite components for both mechanisms. In this study, a generic model is presented that incorporates the diffusion- and the conduction-based mechanisms and allows electrochemically active biofilms to utilize both simultaneously. The model was applied to S. oneidensis and Geobacter sulfurreducens biofilms using experimentally generated data found in the literature. Our simulation results show that 1) biofilms having both mechanisms available, especially if they can interact, may have a metabolic advantage over biofilms that can use only a single mechanism; 2) the thickness of G. sulfurreducens biofilms is likely not limited by conductivity; 3) accurate intrabiofilm diffusion coefficient values are critical for current generation predictions; and 4) the local biofilm potential and redox potential are two distinct parameters and cannot be assumed to have identical values. Finally, we determined that simulated cyclic and squarewave voltammetry based on our model are currently not capable of determining the specific percentages of extracellular electron transfer mechanisms in a biofilm. The developed model will be a critical tool for designing experiments to explain EET mechanisms.

  1. Role of Extracellular DNA during Biofilm Formation by Listeria monocytogenes

    DEFF Research Database (Denmark)

    Harmsen, Morten; Lappann, Martin; Knøchel, S

    2010-01-01

    Listeria monocytogenes is a food-borne pathogen that is capable of living in harsh environments. It is believed to do this by forming biofilms, which are surface-associated multicellular structures encased in a self-produced matrix. In this paper we show that in L. monocytogenes extracellular DNA...... (eDNA) may be the only central component of the biofilm matrix and that it is necessary for both initial attachment and early biofilm formation for 41 L. monocytogenes strains that were tested. DNase I treatment resulted in dispersal of biofilms, not only in microtiter tray assays but also in flow...... cell biofilm assays. However, it was also demonstrated that in a culture without eDNA, neither Listeria genomic DNA nor salmon sperm DNA by itself could restore the capacity to adhere. A search for additional necessary components revealed that peptidoglycan (PG), specifically N-acetylglucosamine (NAG...

  2. Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms.

    Science.gov (United States)

    Jia, Fangxu; Yang, Qing; Liu, Xiuhong; Li, Xiyao; Li, Baikun; Zhang, Liang; Peng, Yongzhen

    2017-02-27

    Sludge aggregation and biofilm formation are the most effective approaches to solve the washout of anammox microorganisms. In this study, the structure and composition of EPS (extracellular polymeric substances) were investigated to elucidate the factors for the anammox aggregation property. Anammox sludge taken from 18 lab-scale and pilot-scale reactors treating different types of wastewater was analyzed using EEM-PARAFAC (excitation-emission matrix and parallel factor analysis), FTIR (fourier transform infrared spectroscopy) and real-time PCR combined with multivariate statistical analysis. The results showed that slime and TB-EPS (tightly bound EPS) were closely related with water quality and sludge morphology, and could be used as the indicators for anammox microbial survival ability and microbial aggregate morphology. Furthermore, slime secreted from anammox bacterial cells may be exhibited higher viscosity to the sludge surface and easily formed the gel network to aggregate. Large amounts of hydrophobic groups of protein in TB-EPS promoted the microbial aggregation. The mechanisms of anammox aggregation explored in this study enhanced the understanding of anammox stability in wastewater treatment processes.

  3. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni.

    Science.gov (United States)

    Brown, Helen L; Reuter, Mark; Hanman, Kate; Betts, Roy P; van Vliet, Arnoud H M

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.

  4. Light Regimes Shape Utilization of Extracellular Organic C and N in a Cyanobacterial Biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Rhona K.; Mayali, Xavier; Boaro, Amy A.; Zemla, Adam; Everroad, R. Craig; Nilson, Daniel; Weber, Peter K.; Lipton, Mary; Bebout, Brad M.; Pett-Ridge, Jennifer; Thelen, Michael P.

    2016-06-28

    Although it is becoming clear that many microbial primary producers can also play a role as organic consumers, we know very little about the metabolic regulation of photoautotroph organic matter consumption. Cyanobacteria in phototrophic biofilms can reuse extracellular organic carbon, but the metabolic drivers of extracellular processes are surprisingly complex. We investigated the metabolic foundations of organic matter reuse by comparing exoproteome composition and incorporation of13C-labeled and15N-labeled cyanobacterial extracellular organic matter (EOM) in a unicyanobacterial biofilm incubated using different light regimes. In the light and the dark, cyanobacterial direct organic C assimilation accounted for 32% and 43%, respectively, of all organic C assimilation in the community. Under photosynthesis conditions, we measured increased excretion of extracellular polymeric substances (EPS) and proteins involved in micronutrient transport, suggesting that requirements for micronutrients may drive EOM assimilation during daylight hours. This interpretation was supported by photosynthesis inhibition experiments, in which cyanobacteria incorporated N-rich EOM-derived material. In contrast, under dark, C-starved conditions, cyanobacteria incorporated C-rich EOM-derived organic matter, decreased excretion of EPS, and showed an increased abundance of degradative exoproteins, demonstrating the use of the extracellular domain for C storage. Sequence-structure modeling of one of these exoproteins predicted a specific hydrolytic activity that was subsequently detected, confirming increased EOM degradation in the dark. Associated heterotrophic bacteria increased in abundance and upregulated transport proteins under dark relative to light conditions. Taken together, our results indicate that biofilm cyanobacteria are successful competitors for organic C and N and that cyanobacterial nutrient and energy requirements control the use of EOM.

  5. Extracellular DNA contributes to dental biofilm formation: an ex vivo study

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke Louise; Dige, Irene;

    The extracellular matrix of dental biofilms plays an important role during caries development. It increases the mechanical stability of the biofilm, it prevents desiccation, it serves as a reservoir for nutrients and it contributes to the long-term preservation of acidic microenvironments. Research...... on the biofilm matrix in the field of dentistry has focused mainly on the synthesis, structure and function of extracellular polysaccharides. In recent years, studies conducted on biofilms from other habitats have shown that the presence of extracellular DNA contributes to biofilm formation and stability...

  6. Streptococcus suis Serotype 2 Biofilms Inhibit the Formation of Neutrophil Extracellular Traps

    Science.gov (United States)

    Ma, Fang; Yi, Li; Yu, Ningwei; Wang, Guangyu; Ma, Zhe; Lin, Huixing; Fan, Hongjie

    2017-01-01

    Invasive infections caused by Streptococcus suis serotype 2 (SS2) has emerged as a clinical problem in recent years. Neutrophil extracellular traps (NETs) are an important mechanism for the trapping and killing of pathogens that are resistant to phagocytosis. Biofilm formation can protect bacteria from being killed by phagocytes. Until now, there have only been a few studies that focused on the interactions between bacterial biofilms and NETs. SS2 in both a biofilm state and a planktonic cell state were incubated with phagocytes and NETs, and bacterial survival was assessed. DNase I and cytochalasin B were used to degrade NET DNA or suppress phagocytosis, respectively. Extracellular DNA was stained with impermeable fluorescent dye to quantify NET formation. Biofilm formation increased up to 6-fold in the presence of neutrophils, and biofilms were identified in murine tissue. Both planktonic and biofilm cells induced neutrophils chemotaxis to the infection site, with neutrophils increasing by 85.1 and 73.8%, respectively. The bacteria in biofilms were not phagocytized. The bactericidal efficacy of NETs on the biofilms and planktonic cells were equal; however, the biofilm extracellular matrix can inhibit NET release. Although biofilms inhibit NETs release, NETs appear to be an important mechanism to eliminate SS2 biofilms. This knowledge advances the understanding of biofilms and may aid in the development of treatments for persistent infections with a biofilm component. PMID:28373968

  7. Ratiometric imaging of extracellular pH in bacterial biofilms with C-SNARF-4.

    Science.gov (United States)

    Schlafer, Sebastian; Garcia, Javier E; Greve, Matilde; Raarup, Merete K; Nyvad, Bente; Dige, Irene

    2015-02-01

    pH in the extracellular matrix of bacterial biofilms is of central importance for microbial metabolism. Biofilms possess a complex three-dimensional architecture characterized by chemically different microenvironments in close proximity. For decades, pH measurements in biofilms have been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit the monitoring of horizontal pH gradients in biofilms in real time. Quantitative fluorescence microscopy can overcome these problems, but none of the hitherto employed methods differentiated accurately between extracellular and intracellular microbial pH and visualized extracellular pH in all areas of the biofilms. Here, we developed a method to reliably monitor extracellular biofilm pH microscopically with the ratiometric pH-sensitive dye C-SNARF-4, choosing dental biofilms as an example. Fluorescent emissions of C-SNARF-4 can be used to calculate extracellular pH irrespective of the dye concentration. We showed that at pH values of biofilm and visualized the entire bacterial biomass in in vivo-grown dental biofilms with unknown species composition. We then employed digital image analysis to remove the bacterial biomass from the microscopic images and adequately calculate extracellular pH values. As a proof of concept, we monitored the extracellular pH drop in in vivo-grown dental biofilms fermenting glucose. The combination of pH ratiometry with C-SNARF-4 and digital image analysis allows the accurate monitoring of extracellular pH in bacterial biofilms in three dimensions in real time and represents a significant improvement to previously employed methods of biofilm pH measurement.

  8. Extracellular polymeric substances play roles in extracellular electron transfer of Shewanella oneidensis MR-1

    DEFF Research Database (Denmark)

    Xiao, Yong; Zhang, En-Hua; Christensen, Hans Erik Mølager

    It is well known that microorganism is surrounded by extracellular polymeric substances (EPS) which include polysaccharides, proteins, glycoproteins, nucleic acids, phospholipids, and humic acids. However, previous studies on microbial extracellular electron transfer (EET) are conducted on cells...... the extraction (Figure 1.a and 1.b). Comparing to cells in control group, MR-1 treated at 38 °C for EPS extraction showed different electrochemical characterizations as revealed by differential pulse voltammetry (Figure 1.c). EPS extracted from MR-1 also was proved to be electrochemically active. The present...

  9. Ciliates as engineers of phototrophic biofilms

    NARCIS (Netherlands)

    Weerman, Ellen J.; van der Geest, Harm G.; van der Meulen, Myra D.; Manders, Erik M. M.; van de Koppel, Johan; Herman, Peter M. J.; Admiraal, Wim

    2011-01-01

    1. Phototrophic biofilms consist of a matrix of phototrophs, non-photosynthetic bacteria and extracellular polymeric substances (EPS) which is spatially structured. Despite widespread exploitation of algae and bacteria within phototrophic biofilms, for example by protozoans, the 'engineering' effect

  10. Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria.

    Science.gov (United States)

    Ercole, Claudia; Bozzelli, Paola; Altieri, Fabio; Cacchio, Paola; Del Gallo, Maddalena

    2012-08-01

    This study highlights the role of specific outer bacterial structures, such as the glycocalix, in calcium carbonate crystallization in vitro. We describe the formation of calcite crystals by extracellular polymeric materials, such as exopolysaccharides (EPS) and capsular polysaccharides (CPS) isolated from Bacillus firmus and Nocardia calcarea. Organic matrices were isolated from calcifying bacteria grown on synthetic medium--in the presence or absence of calcium ions--and their effect on calcite precipitation was assessed. Scanning electron microscopy observations and energy dispersive X-ray spectrometry analysis showed that CPS and EPS fractions were involved in calcium carbonate precipitation, not only serving as nucleation sites but also through a direct role in crystal formation. The utilization of different synthetic media, with and without addition of calcium ions, influenced the biofilm production and protein profile of extracellular polymeric materials. Proteins of CPS fractions with a molecular mass between 25 and 70 kDa were overexpressed when calcium ions were present in the medium. This higher level of protein synthesis could be related to the active process of bioprecipitation.

  11. THE COMPLEX EXTRACELLULAR POLYSACCHARIDES OF MAINLY CHAIN-FORMING FRESHWATER DIATOM SPECIES FROM EPILITHIC BIOFILMS(1).

    Science.gov (United States)

    Bahulikar, Rahul A; Kroth, Peter G

    2008-12-01

    Diatoms are dominant organisms in phototrophic biofilms in aquatic habitats. They produce copious amounts of extracellular polymeric substances (EPS), which mainly consist of carbohydrates and traces of proteins and glycoproteins. This study focuses on the characterization of EPS from a total of 14 diatoms belonging to the six genera Achnanthes, Cymbella, Fragilaria, Punctastriata, Staurosira, and Pseudostaurosira, all of which were isolated from epilithic biofilms of the littoral zone of Lake Constance. EPS from all isolates were extracted by a sequential extraction procedure resulting in five different fractions. The monosaccharide composition of each fraction was analyzed by HPLC equipped with a pulse amperiometric detector, yielding results similar to those obtained by probing the EPS structures with monomer-specific fluorophore-linked lectins. Significant differences in carbohydrate composition occurred in the different fractions of single isolates. Most of the diatom isolates in our study form chain-like colonies in which the cells are attached to each other by intercellular pads. Here we demonstrate that these pads can be dissolved in hot bicarbonate and that they show a heterogeneous composition of monosaccharides in contrast to other fractions, which mostly were dominated by one or two monosaccharides. Principal component analysis indicates a correlation between carbohydrate composition of EPS fractions and the phylogenetic relationship of the respective species, indicating that EPS analyses under defined culture conditions may support taxonomic analyses.

  12. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment

    Directory of Open Access Journals (Sweden)

    Helen L Brown

    2015-07-01

    Full Text Available Biofilms make an important contribution to survival and transmission of bacterial pathogens in the food chain. The human pathogen Campylobacter jejuni is known to form biofilms in vitro in food chain-relevant conditions, but the exact roles and composition of the extracellular matrix are still not clear. Extracellular DNA has been found in many bacterial biofilms and can be a major component of the extracellular matrix. Here we show that extracellular DNA is also an important component of the C. jejuni biofilm when attached to stainless steel surfaces, in aerobic conditions and on conditioned surfaces. Degradation of extracellular DNA by exogenous addition of DNase I led to rapid biofilm removal, without loss of C. jejuni viability. Following treatment of a surface with DNase I, C. jejuni was unable to re-establish a biofilm population within 48 hr. Similar results were obtained by digesting extracellular DNA with restriction enzymes, suggesting the need for high molecular weight DNA. Addition of C. jejuni genomic DNA containing an antibiotic resistance marker resulted in transfer of the antibiotic resistance marker to susceptible cells in the biofilm, presumably by natural transformation. Taken together, this suggest that eDNA is not only an important component of C. jejuni biofilms and subsequent food chain survival of C. jejuni, but may also contribute to the spread of antimicrobial resistance in C. jejuni. The degradation of extracellular DNA with enzymes such as DNase I is a rapid method to remove C. jejuni biofilms, and is likely to potentiate the activity of antimicrobial treatments and thus synergistically aid disinfection treatments.

  13. Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria

    Science.gov (United States)

    Li, Shan-Wei; Sheng, Guo-Ping; Cheng, Yuan-Yuan; Yu, Han-Qing

    2016-12-01

    Although the capacity for electroactive bacteria to convert environmental metallic minerals and organic pollutants is well known, the role of the redox properties of microbial extracellular polymeric substances (EPS) in this process is poorly understood. In this work, the redox properties of EPS from two widely present electroactive bacterial strains (Shewanella oneidensis and Pseudomonas putida) were explored. Electrochemical analysis demonstrates that the EPS extracted from the two strains exhibited redox properties. Spectroelectrochemical and protein electrophoresis analyses indicate that the extracted EPS from S. oneidensis and P. putida contained heme-binding proteins, which were identified as the possible redox components in the EPS. The results of heme-mediated behavior of EPS may provide an insight into the important roles of EPS in electroactive bacteria to maximize their redox capability for biogeochemical cycling, environmental bioremediation and wastewater treatment.

  14. Mycobacterium avium Possesses Extracellular DNA that Contributes to Biofilm Formation, Structural Integrity, and Tolerance to Antibiotics.

    Science.gov (United States)

    Rose, Sasha J; Babrak, Lmar M; Bermudez, Luiz E

    2015-01-01

    Mycobacterium avium subsp. hominissuis is an opportunistic pathogen that is associated with biofilm-related infections of the respiratory tract and is difficult to treat. In recent years, extracellular DNA (eDNA) has been found to be a major component of bacterial biofilms, including many pathogens involved in biofilm-associated infections. To date, eDNA has not been described as a component of mycobacterial biofilms. In this study, we identified and characterized eDNA in a high biofilm-producing strain of Mycobacterium avium subsp. hominissuis (MAH). In addition, we surveyed for presence of eDNA in various MAH strains and other nontuberculous mycobacteria. Biofilms of MAH A5 (high biofilm-producing strain) and MAH 104 (reference strain) were established at 22°C and 37°C on abiotic surfaces. Acellular biofilm matrix and supernatant from MAH A5 7 day-old biofilms both possess abundant eDNA, however very little eDNA was found in MAH 104 biofilms. A survey of MAH clinical isolates and other clinically relevant nontuberculous mycobacterial species revealed many species and strains that also produce eDNA. RAPD analysis demonstrated that eDNA resembles genomic DNA. Treatment with DNase I reduced the biomass of MAH A5 biofilms when added upon biofilm formation or to an already established biofilm both on abiotic surfaces and on top of human pharyngeal epithelial cells. Furthermore, co-treatment of an established biofilm with DNase 1 and either moxifloxacin or clarithromycin significantly increased the susceptibility of the bacteria within the biofilm to these clinically used antimicrobials. Collectively, our results describe an additional matrix component of mycobacterial biofilms and a potential new target to help treat biofilm-associated nontuberculous mycobacterial infections.

  15. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms.

    Science.gov (United States)

    Schwartz, Kelly; Ganesan, Mahesh; Payne, David E; Solomon, Michael J; Boles, Blaise R

    2016-01-01

    Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology.

  16. Extracellular DNA formation during biofilm development by freshwater bacteria

    DEFF Research Database (Denmark)

    Tang, Lone; Schramm, Andreas; Revsbech, Niels Peter

    2011-01-01

    of eDNA is most important. In this study, we investigated the significance of eDNA during biofilm formation in four freshwater isolates. The aim was to relate the quantity and timing of eDNA production to the isolates’ ability to form biofilms. eDNA and biofilm biomass was quantified over time during...

  17. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes.

    Science.gov (United States)

    Jin, Juntao; Guan, Yuntao

    2014-10-01

    New insights into the biocorrosion process may be gained through understanding of the interaction between extracellular polymeric substances (EPS) and iron. Herein, the effect of iron ions on the formation of biofilms and production of EPS was investigated. Additionally, the impact of EPS on the corrosion of cast iron coupons was explored. The results showed that a moderate concentration of iron ions (0.06 mg/L) promoted both biofilm formation and EPS production. The presence of EPS accelerated corrosion during the initial stage, while inhibited corrosion at the later stage. The functional groups of EPS acted as electron shuttles to enable the binding of iron ions. Binding of iron ions with EPS led to anodic dissolution and promoted corrosion, while corrosion was later inhibited through oxygen reduction and availability of phosphorus from EPS. The presence of EPS also led to changes in crystalline phases of corrosion products.

  18. The Danger Signal Extracellular ATP Is an Inducer of Fusobacterium nucleatum Biofilm Dispersal

    Science.gov (United States)

    Ding, Qinfeng; Tan, Kai Soo

    2016-01-01

    Plaque biofilm is the primary etiological agent of periodontal disease. Biofilm formation progresses through multiple developmental stages beginning with bacterial attachment to a surface, followed by development of microcolonies and finally detachment and dispersal from a mature biofilm as free planktonic bacteria. Tissue damage arising from inflammatory response to biofilm is one of the hallmark features of periodontal disease. A consequence of tissue damage is the release of ATP from within the cell into the extracellular space. Extracellular ATP (eATP) is an example of a danger associated molecular pattern (DAMP) employed by mammalian cells to elicit inflammatory and damage healing responses. Although, the roles of eATP as a signaling molecule in multi-cellular organisms have been relatively well studied, exogenous ATP also influences bacteria biofilm formation. Since plaque biofilms are continuously exposed to various stresses including exposure to the host damage factors such as eATP, we hypothesized that eATP, in addition to eliciting inflammation could potentially influence the biofilm lifecycle of periodontal associated bacteria. We found that eATP rather than nutritional factors or oxidative stress induced dispersal of Fusobacterium nucleatum, an organism associated with periodontal disease. eATP induced biofilm dispersal through chelating metal ions present in biofilm. Dispersed F. nucleatum biofilm, regardless of natural or induced dispersal by exogenous ATP, were more adhesive and invasive compared to planktonic or biofilm counterparts, and correspondingly activated significantly more pro-inflammatory cytokine production in infected periodontal fibroblasts. Dispersed F. nucleatum also showed higher expression of fadA, a virulence factor implicated in adhesion and invasion, compared to planktonic or biofilm bacteria. This study revealed for the first time that periodontal bacterium is capable of co-opting eATP, a host danger signaling molecule to detach

  19. Ratiometric Imaging of Extracellular pH in Dental Biofilms Using C-SNARF-4

    DEFF Research Database (Denmark)

    Dige, Irene

    H-sensitive ratiometric dye and as a bacterial stain. We tested the method on natural 48-h in-situ-grown dental biofilms from two individuals. Four biofilms per person were collected on standardized glass slabs mounted in intra-oral appliances. Digital image analysis was employed to remove the bacterial biomass from...... the microscopic images in order to exclusively determine extracellular pH. We monitored the pH drop at the biofilm-substratum interface in six microscopic fields of view per biofilm for 1h after exposure to 0.4% glucose. Results: Extracellular pH dropped rapidly in all specimens. In both individuals, analysis...... with C-SNARF-4 and digital image analysis allows monitoring of extracellular pH in in-situ biofilms without destroying the complex three-dimensional biofilm architecture. Within the limitations of this study using young biofilms and only two individuals the data suggest that biofilm pH differs more...

  20. Insight into the roles of tightly and loosely bound extracellular polymeric substances on a granular sludge in ammonium nitrogen removal.

    Science.gov (United States)

    Yan, Lilong; Zhang, Xiaolei; Hao, Guoxin; Guo, Yihan; Ren, Yuan; Yu, Liangbin; Bao, Xuefei; Zhang, Ying

    2016-12-01

    To explicitly understand the function of extracellular polymeric substances in the treatment of ammonium-nitrogen-rich wastewater using aerobic granular sludge, the three forms of nitrogen (ammonium, nitrite and nitrate nitrogen) contained in tightly and loosely bound extracellular polymeric substances were analyzed. The three forms of nitrogen were monitored in the tightly and loosely bound extracellular polymeric substances in aerobic granular sludge after adsorption. The ammonium nitrogen contained in the extracellular polymeric substances was distributed in both the tightly and loosely bound forms and decreased gradually as the aeration time increased. Ammonium nitrogen remained in the tightly bound extracellular polymeric substances even after aeration was complete. The nitrite and nitrate nitrogen species in the extracellular polymeric substances were mainly present in the loosely bound extracellular polymeric substances. The sources of the three nitrogen forms detected in the extracellular polymeric substances differed relative to the different nitrogen forms.

  1. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    to various persistent infections in humans and animals, and to a variety of complications in industry, where solid–water interfaces occur. Knowledge about the molecular mechanisms involved in biofilm formation is necessary for creating strategies to control biofilms. Recent studies have shown...

  2. Ratiometric Imaging of Extracellular pH in Dental Biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Dige, Irene

    2016-01-01

    The pH in bacterial biofilms on teeth is of central importance for dental caries, a disease with a high worldwide prevalence. Nutrients and metabolites are not distributed evenly in dental biofilms. A complex interplay of sorption to and reaction with organic matter in the biofilm reduces...... the diffusion paths of solutes and creates steep gradients of reactive molecules, including organic acids, across the biofilm. Quantitative fluorescent microscopic methods, such as fluorescence life time imaging or pH ratiometry, can be employed to visualize pH in different microenvironments of dental biofilms....... pH ratiometry exploits a pH-dependent shift in the fluorescent emission of pH-sensitive dyes. Calculation of the emission ratio at two different wavelengths allows determining local pH in microscopic images, irrespective of the concentration of the dye. Contrary to microelectrodes the technique...

  3. Activation of phagocytic cells by Staphylococcus epidermidis biofilms: effects of extracellular matrix proteins and the bacterial stress protein GroEL on netosis and MRP-14 release.

    Science.gov (United States)

    Dapunt, Ulrike; Gaida, Matthias M; Meyle, Eva; Prior, Birgit; Hänsch, Gertrud M

    2016-07-01

    The recognition and phagocytosis of free-swimming (planktonic) bacteria by polymorphonuclear neutrophils have been investigated in depth. However, less is known about the neutrophil response towards bacterial biofilms. Our previous work demonstrated that neutrophils recognize activating entities within the extracellular polymeric substance (EPS) of biofilms (the bacterial heat shock protein GroEL) and that this process does not require opsonization. Aim of this study was to evaluate the release of DNA by neutrophils in response to biofilms, as well as the release of the inflammatory cytokine MRP-14. Neutrophils were stimulated with Staphylococcus epidermidis biofilms, planktonic bacteria, extracted EPS and GroEL. Release of DNA and of MRP-14 was evaluated. Furthermore, tissue samples from patients suffering from biofilm infections were collected and evaluated by histology. MRP-14 concentration in blood samples was measured. We were able to show that biofilms, the EPS and GroEL induce DNA release. MRP-14 was only released after stimulation with EPS, not GroEL. Histology of tissue samples revealed MRP-14 positive cells in association with neutrophil infiltration and MRP-14 concentration was elevated in blood samples of patients suffering from biofilm infections. Our data demonstrate that neutrophil-activating entities are present in the EPS and that GroEL induces DNA release by neutrophils.

  4. Extracellular polymeric substances: quantification and use in erosion experiments

    Science.gov (United States)

    Perkins, R. G.; Paterson, D. M.; Sun, H.; Watson, J.; Player, M. A.

    2004-10-01

    Extracellular polymeric substances (EPS) is a generic term often applied to high molecular weight polymers implicated in the biostabilisation of natural sediments. Quantitative analysis of in situ EPS production rates and sediment contents has usually involved extraction of EPS in saline media prior to precipitation in alcohol and quantification against a glucose standard (phenol-sulphuric acid assay). Extracted and synthetic EPS has also been used to create engineered sediments for erosion experiments. This study investigated two steps in the EPS extraction procedure, saline extraction and alcohol precipitation. Comparisons of the effects of different extracted polymers were made in sediment erosion experiments using engineered sediments. Sediment EPS content decreased as the salinity of the extractant increased, with highest values obtained for extraction in fresh water. Potential errors were observed in the quantification of the soluble colloidal polymer fraction when divided into EPS and lower molecular weight polymers (LMW) as used in many studies. In erosion studies, 15 mg kg-1 of alcohol (IMS) extracted EPS polymer (in 5 g kg-1 IMS precipitate, equivalent to approximately 5 g salt kg-1 sediment dry weight) decreased the erosion threshold of cohesive sediments whereas 30 mg kg-1 (in 10 g kg-1 IMS precipitate, approximately 10 g salt kg-1 sediment dry weight) had no effect compared to controls. This could be due to the influence of EPS on water content: low levels of EPS did not bind but prevented desiccation, lowering sediment stability against controls. At higher EPS content, binding effects balanced water content effects. Salt alone (at 10 g kg-1) slightly increased the erosion threshold after a 6-h desiccation period. In comparison, carbohydrates produced without alcohol precipitation (rotary evaporation) increased the erosion threshold at both 0.5 and 1.0 g EPS kg-1 dry weight of sediment. It was concluded that the role of microphytobenthic polymers in

  5. Viscoelastic Properties of Extracellular Polymeric Substances Can Strongly Affect Their Washing Efficiency from Reverse Osmosis Membranes.

    Science.gov (United States)

    Ferrando Chavez, Diana Lila; Nejidat, Ali; Herzberg, Moshe

    2016-09-01

    The role of the viscoelastic properties of biofouling layers in their removal from the membrane was studied. Model fouling layers of extracellular polymeric substances (EPS) originated from microbial biofilms of Pseudomonas aeruginosa PAO1 differentially expressing the Psl polysaccharide were used for controlled washing experiments of fouled RO membranes. In parallel, adsorption experiments and viscoelastic modeling of the EPS layers were conducted in a quartz crystal microbalance with dissipation (QCM-D). During the washing stage, as shear rate was elevated, significant differences in permeate flux recovery between the three different EPS layers were observed. According to the amount of organic carbon remained on the membrane after washing, the magnitude of Psl production provides elevated resistance of the EPS layer to shear stress. The highest flux recovery during the washing stage was observed for the EPS with no Psl. Psl was shown to elevate the layer's shear modulus and shear viscosity but had no effect on the EPS adhesion to the polyamide surface. We conclude that EPS retain on the membrane as a result of the layer viscoelastic properties. These results highlight an important relation between washing efficiency of fouling layers from membranes and their viscoelastic properties, in addition to their adhesion properties.

  6. Implications of Extracellular Polymeric Substance Matrices of Microbial Habitats Associated with Coastal Aquaculture Systems

    Directory of Open Access Journals (Sweden)

    Juan Carlos Camacho-Chab

    2016-08-01

    Full Text Available Coastal zones support fisheries that provide food for humans and feed for animals. The decline of fisheries worldwide has fostered the development of aquaculture. Recent research has shown that extracellular polymeric substances (EPS synthesized by microorganisms contribute to sustainable aquaculture production, providing feed to the cultured species, removing waste and contributing to the hygiene of closed systems. As ubiquitous components of coastal microbial habitats at the air–seawater and seawater–sediment interfaces as well as of biofilms and microbial aggregates, EPS mediate deleterious processes that affect the performance and productivity of aquaculture facilities, including biofouling of marine cages, bioaccumulation and transport of pollutants. These biomolecules may also contribute to the persistence of harmful algal blooms (HABs and their impact on cultured species. EPS may also exert a positive influence on aquaculture activity by enhancing the settling of aquaculturally valuable larvae and treating wastes in bioflocculation processes. EPS display properties that may have biotechnological applications in the aquaculture industry as antiviral agents and immunostimulants and as a novel source of antifouling bioproducts.

  7. Influence of bacterial extracellular polymeric substances on the formation of carbonaceous and nitrogenous disinfection byproducts.

    Science.gov (United States)

    Wang, Zhikang; Kim, Junsung; Seo, Youngwoo

    2012-10-16

    Considering the regulatory presence of residual chlorine in water distribution systems, untreated organic matter may not be the sole contributor to disinfection byproduct (DBP) formation, given the presence of microbial biofilm with extracellular polymeric substances (EPS). This study investigated the influence of bacterial EPS on the formation of carbonaceous DBPs (C-DBPs) and nitrogenous DBPs (N-DBPs), reacting chlorine with Pseudomonas strains that produce different quantities and composition of EPS. When biomass is reacted in excess to chlorine, both C-DBPs and N-DBPs were produced without preference for speciation. However, under an excess of chlorine compared to biomass, increased EPS content led to enhanced formation of DBPs. The DBP yield of haloacetic acids (HAAs) was higher than that of trihalomethanes where dichloroacetic acid was dominant in HAA species. Additionally, chemical composition of EPS influenced the yields of DBPs. The N-DBP yield from P. putida EPS was two times higher than that of P. aeruginosa EPS, which suggested that higher organic nitrogen content in EPS contributes to higher N-DBP yield. Moreover, time-based experiments revealed that DBP formation from biomass occurs rapidly, reaching a maximum in less than four hours. Combined results suggest that bacterial EPS have significant roles in both the formation and fate of DBPs.

  8. Extracellular electron transfer mechanism in Shewanella loihica PV- 4 biofilms formed at indium tin oxide and graphite electrodes

    OpenAIRE

    2013-01-01

    Electroactive biofilms are capable of extracellular electron transfer to insoluble metal oxides and electrodes; such biofilms are relevant to biogeochemistry, bioremediation, and bioelectricity production. We investigated the extracellular electron transfer mechanisms in Shewanella loihica PV-4 viable biofilms grown at indium tin oxide (ITO) and graphite electrodes in potentiostat-controlled electrochemical cells poised at 0.2 V vs. Ag/AgCl. Chronoamperometry and confocal microscopy showed hi...

  9. Visualization of extracellular matrix components within sectioned Salmonella biofilms on the surface of human gallstones.

    Directory of Open Access Journals (Sweden)

    Joanna M Marshall

    Full Text Available Chronic carriage of Salmonella Typhi is mediated primarily through the formation of bacterial biofilms on the surface of cholesterol gallstones. Biofilms, by definition, involve the formation of a bacterial community encased within a protective macromolecular matrix. Previous work has demonstrated the composition of the biofilm matrix to be complex and highly variable in response to altered environmental conditions. Although known to play an important role in bacterial persistence in a variety of contexts, the Salmonella biofilm matrix remains largely uncharacterized under physiological conditions. Initial attempts to study matrix components and architecture of the biofilm matrix on gallstone surfaces were hindered by the auto-fluorescence of cholesterol. In this work we describe a method for sectioning and direct visualization of extracellular matrix components of the Salmonella biofilm on the surface of human cholesterol gallstones and provide a description of the major matrix components observed therein. Confocal micrographs revealed robust biofilm formation, characterized by abundant but highly heterogeneous expression of polysaccharides such as LPS, Vi and O-antigen capsule. CsgA was not observed in the biofilm matrix and flagellar expression was tightly restricted to the biofilm-cholesterol interface. Images also revealed the presence of preexisting Enterobacteriaceae encased within the structure of the gallstone. These results demonstrate the use and feasibility of this method while highlighting the importance of studying the native architecture of the gallstone biofilm. A better understanding of the contribution of individual matrix components to the overall biofilm structure will facilitate the development of more effective and specific methods to disrupt these bacterial communities.

  10. Extracellular polymeric substances of bacteria and their potential environmental applications.

    Science.gov (United States)

    More, T T; Yadav, J S S; Yan, S; Tyagi, R D; Surampalli, R Y

    2014-11-01

    Biopolymers are considered a potential alternative to conventional chemical polymers because of their ease of biodegradability, high efficiency, non-toxicity and non-secondary pollution. Recently, extracellular polymeric substances (EPS, biopolymers produced by the microorganisms) have been recognised by many researchers as a potential flocculent for their applications in various water, wastewater and sludge treatment processes. In this context, literature information on EPS is widely dispersed and is very scarce. Thus, this review marginalizes various studies conducted so far about EPS nature-production-recovery, properties, environmental applications and moreover, critically examines future research needs and advanced application prospective of the EPS. One of the most important aspect of chemical composition and structural details of different moieties of EPS in terms of carbohydrates, proteins, extracellular DNA, lipid and surfactants and humic substances are described. These chemical characteristics of EPS in relation to formation and properties of microbial aggregates as well as degradation of EPS in the matrix (biomass, flocs etc) are analyzed. The important engineering properties (based on structural characteristics) such as adsorption, biodegradability, hydrophilicity/hydrophobicity of EPS matrix are also discussed in details. Different aspects of EPS production process such as bacterial strain maintenance; inoculum and factors affecting EPS production were presented. The important factors affecting EPS production include growth phase, carbon and nitrogen sources and their ratio, role of other nutrients (phosphorus, micronutrients/trace elements, and vitamins), impact of pH, temperature, metals, aerobic versus anaerobic conditions and pure and mixed culture. The production of EPS in high concentration with high productivity is essential due to economic reasons. Therefore, the knowledge about all the aspects of EPS production (listed above) is highly

  11. Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice.

    Directory of Open Access Journals (Sweden)

    Matt S Conover

    Full Text Available Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and extracellular DNA (eDNA. In this report, we investigated the function of DNA in Bordetella biofilm development. We show that DNA is a significant component of Bordetella biofilm matrix. Addition of DNase I at the initiation of biofilm growth inhibited biofilm formation. Treatment of pre-established mature biofilms formed under both static and flow conditions with DNase I led to a disruption of the biofilm biomass. We next investigated whether eDNA played a role in biofilms formed in the mouse respiratory tract. DNase I treatment of nasal biofilms caused considerable dissolution of the biofilm biomass. In conclusion, these results suggest that eDNA is a crucial structural matrix component of both in vitro and in vivo formed Bordetella biofilms. This is the first evidence for the ability of DNase I to disrupt bacterial biofilms formed on host organs.

  12. DNA builds and strengthens the extracellular matrix in Myxococcus xanthus biofilms by interacting with exopolysaccharides.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available One intriguing discovery in modern microbiology is the extensive presence of extracellular DNA (eDNA within biofilms of various bacterial species. Although several biological functions have been suggested for eDNA, including involvement in biofilm formation, the detailed mechanism of eDNA integration into biofilm architecture is still poorly understood. In the biofilms formed by Myxococcus xanthus, a Gram-negative soil bacterium with complex morphogenesis and social behaviors, DNA was found within both extracted and native extracellular matrices (ECM. Further examination revealed that these eDNA molecules formed well organized structures that were similar in appearance to the organization of exopolysaccharides (EPS in ECM. Biochemical and image analyses confirmed that eDNA bound to and colocalized with EPS within the ECM of starvation biofilms and fruiting bodies. In addition, ECM containing eDNA exhibited greater physical strength and biological stress resistance compared to DNase I treated ECM. Taken together, these findings demonstrate that DNA interacts with EPS and strengthens biofilm structures in M. xanthus.

  13. Biofouling on polymeric heat exchanger surfaces with E. coli and native biofilms.

    Science.gov (United States)

    Pohl, S; Madzgalla, M; Manz, W; Bart, H J

    2015-01-01

    The biofouling affinity of different polymeric surfaces (polypropylene, polysulfone, polyethylene terephthalate, and polyether ether ketone) in comparison to stainless steel (SS) was studied for the model bacterium Escherichia coli K12 DSM 498 and native biofilms originating from Rhine water. The biofilm mass deposited on the polymer surfaces was minimized by several magnitudes compared to SS. The cell count and the accumulated biomass of E. coli on the polymer surfaces showed an opposing linear trend. The promising low biofilm formation on the polymers is attributed to the combination of inherent surface properties (roughness, surface energy and hydrophobicity) when compared to SS. The fouling characteristics of E. coli biofilms show good conformity with the more complex native biofilms investigated. The results can be utilized for the development of new polymer heat exchangers when using untreated river water as coolant or for other processes needing antifouling materials.

  14. Release of Extracellular Polymeric Substance and Disintegration of Anaerobic Granular Sludge under Reduced Sulfur Compounds-Rich Conditions

    Directory of Open Access Journals (Sweden)

    Takuro Kobayashi

    2015-07-01

    Full Text Available The effect of reduced form of sulfur compounds on granular sludge was investigated. Significant release of extracellular polymeric substance (EPS from the granular sludge occurred in the presence of sulfide and methanethiol according to various concentrations. Granular sludge also showed a rapid increase in turbidity and decrease in diameter in accordance with sulfide concentration during the long-term shaking, suggesting that the strength of the granules was reduced with high-concentration sulfide. A continuous experiment of up-flow anaerobic sludge blanket reactors with different concentrations of sulfide (10, 200, 500 mg-S/L influence demonstrated that the reactor fed with higher concentration of sulfide allowed more washout of small particle-suspended solid (SS content and soluble carbohydrate and protein, which were considered as EPS released from biofilm. Finally, the presence of sulfide negatively affected methane production, chemical oxygen demand removal and sludge retention in operational performance.

  15. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Yang, Liang; Qu, Di

    2009-01-01

    Multiple bacterial species often coexist as communities, and compete for environmental resources. Here, we describe how an opportunistic pathogen, Pseudomonas aeruginosa, uses extracellular products to interact with the nosocomial pathogen Staphylococcus epidermidis. S. epidermidis biofilms...... and planktonic cultures were challenged with P. aeruginosa supernatant cultures overnight. Results indicated that quorum-sensing-controlled factors from P. aeruginosa supernatant inhibited S. epidermidis growth in planktonic cultures. We also found that P. aeruginosa extracellular products, mainly...... in overnight cultures had no effect on established P. aeruginosa biofilms and planktonic growth. These findings reveal that P. aeruginosa extracellular products are important microbial competition factors that overcome competition with S. epidermidis, and the results may provide clues for the development...

  16. Microbial extracellular polymeric substances in marine biogeochemical processes

    Digital Repository Service at National Institute of Oceanography (India)

    Bhaskar, P.V.; Bhosle, N.B.

    highlighting their importance in marine environments3,4,11. Over the last decade, substantial work has been carried out, increasing our insight in the properties and distribution of EPS and mechanisms by which they regulate varous pro- cesses, including... submerged structures, affecting their strength and performance. Bacterial biofilms on meta surfaces are also involved in regulation of corrosion. Al- though EPS may not be directly involved in iducing or inhibiting corrosion of metals, the presence of EPS...

  17. Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Wilton, Mike; Charron-Mazenod, Laetitia; Moore, Richard; Lewenza, Shawn

    2015-11-09

    Biofilms consist of surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, exopolysaccharides, and proteins. Extracellular DNA (eDNA) has a structural role in the formation of biofilms, can bind and shield biofilms from aminoglycosides, and induces antimicrobial peptide resistance mechanisms. Here, we provide evidence that eDNA is responsible for the acidification of Pseudomonas aeruginosa planktonic cultures and biofilms. Further, we show that acidic pH and acidification via eDNA constitute a signal that is perceived by P. aeruginosa to induce the expression of genes regulated by the PhoPQ and PmrAB two-component regulatory systems. Planktonic P. aeruginosa cultured in exogenous 0.2% DNA or under acidic conditions demonstrates a 2- to 8-fold increase in aminoglycoside resistance. This resistance phenotype requires the aminoarabinose modification of lipid A and the production of spermidine on the bacterial outer membrane, which likely reduce the entry of aminoglycosides. Interestingly, the additions of the basic amino acid L-arginine and sodium bicarbonate neutralize the pH and restore P. aeruginosa susceptibility to aminoglycosides, even in the presence of eDNA. These data illustrate that the accumulation of eDNA in biofilms and infection sites can acidify the local environment and that acidic pH promotes the P. aeruginosa antibiotic resistance phenotype.

  18. Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative.

    Science.gov (United States)

    Chen, Lulu; Ren, Zhi; Zhou, Xuedong; Zeng, Jumei; Zou, Jing; Li, Yuqing

    2016-01-01

    Dental caries, a biofilm-related oral disease, is a result of disruption of the microbial ecological balance in the oral environment. Streptococcus mutans, which is one of the primary cariogenic bacteria, produces glucosyltransferases (Gtfs) that synthesize extracellular polysaccharides (EPSs). The EPSs, especially water-insoluble glucans, contribute to the formation of dental plaque, biofilm stability, and structural integrity, by allowing bacteria to adhere to tooth surfaces and supplying the bacteria with protection against noxious stimuli and other environmental attacks. The identification of novel alternatives that selectively inhibit cariogenic organisms without suppressing oral microbial residents is required. The goal of the current study is to investigate the influence of an oxazole derivative on S. mutans biofilm formation and the development of dental caries in rats, given that oxazole and its derivatives often exhibit extensive and pharmacologically important biological activities. Our data shows that one particular oxazole derivative, named 5H6, inhibited the formation of S. mutans biofilms and prevented synthesis of extracellular polysaccharides by antagonizing Gtfs in vitro, without affecting the growth of the bacteria. In addition, topical applications with the inhibitor resulted in diminished incidence and severity of both smooth and sulcal surface caries in vivo with a lower percentage of S. mutans in the animals' dental plaque compared to the control group (P < 0.05). Our results showed that this oxazole derivative has the capacity to inhibit biofilm formation and cariogenicity of S. mutans.

  19. Temporal expression of agrB, cidA, and alsS in the early development of Staphylococcus aureus UAMS-1 biofilm formation and the structural role of extracellular DNA and carbohydrates.

    Science.gov (United States)

    Grande, Rossella; Nistico, Laura; Sambanthamoorthy, Karthik; Longwell, Mark; Iannitelli, Antonio; Cellini, Luigina; Di Stefano, Antonio; Hall Stoodley, Luanne; Stoodley, Paul

    2014-04-01

    Extracellular DNA (eDNA) is an important component of the extracellular polymeric substance matrix and is important in the establishment and persistence of Staphylococcus aureus UAMS-1 biofilms. The aim of the study was to determine the temporal expression of genes involved in early biofilm formation and eDNA production. We used qPCR to investigate expression of agrB, which is associated with secreted virulence factors and biofilm dispersal, cidA, which is associated with biofilm adherence and genomic DNA release, and alsS, which is associated with cell lysis, eDNA release and acid tolerance. The contribution of eDNA to the stability of the biofilm matrix was assessed by digesting with DNase I (Pulmozyme) and quantifying structure by confocal microscopy and comstat image analysis. AgrB expression initially increased at 24 h but then dramatically decreased at 72 h in an inverse relationship to biomass, supporting its role in regulating biofilm dispersal. cidA and alsS expression steadily increased over 72 h, suggesting that eDNA was an important component of early biofilm development. DNase I had no effect on biomass, but did cause the biofilms to become more heterogeneous. Carbohydrates in the matrix appeared to play an important role in structural stability.

  20. A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis

    DEFF Research Database (Denmark)

    Lappann, M.; Claus, H.; van Alen, T.

    2010-01-01

    P>Major pathogenic clonal complexes (cc) of Neisseria meningitidis differ substantially in their point prevalence among healthy carriers. We show that frequently carried pathogenic cc (e.g. sequence type ST-41/44 cc and ST-32 cc) depend on extracellular DNA (eDNA) to initiate in vitro biofilm for....... On the contrary, spreaders (ST-11 and ST-8 cc) are unable to use eDNA for biofilm formation and might compensate for poor colonization properties by high transmission rates....

  1. Atomic Force Microscopy (AFM) for In-Situ Biofilm Surface Characterization during Free Chlorine and Monochloramine Exposure

    Science.gov (United States)

    Drinking water distribution system biofilm are attached to pipe walls and found in sediments. These biofilms are complex and contain a variety of microorganisms embedded in a matrix with extracellular polymeric substances (EPS), providing protection from disinfection. Without pro...

  2. Graft polymerization of styryl bisphosphonate monomer onto polypropylene films for inhibition of biofilm formation.

    Science.gov (United States)

    Steinmetz, Hanna P; Rudnick-Glick, Safra; Natan, Michal; Banin, Ehud; Margel, Shlomo

    2016-11-01

    There has been increased concern during the past few decades over the role bacterial biofilms play in causing a variety of health problems, especially since they exhibit a high degree of resistance to antibiotics and are able to survive in hostile environments. Biofilms consist of bacterial aggregates enveloped by a self-produced matrix attached to the surface. Ca(2+) ions promote the formation of biofilms, and enhance their stability, viscosity, and strength. Bisphosphonates exhibit a high affinity for Ca(2+) ions, and may inhibit the formation of biofilms by acting as sequestering agents for Ca(2+) ions. Although the antibacterial activity of bisphosphonates is well known, research into their anti-biofilm behavior is still in its early stages. In this study, we describe the synthesis of a new thin coating composed of poly(styryl bisphosphonate) grafted onto oxidized polypropylene films for anti-biofilm applications. This grafting process was performed by graft polymerization of styryl bisphosphonate vinylic monomer onto O2 plasma-treated polypropylene films. The surface modification of the polypropylene films was confirmed using surface measurements, including X-ray photoelectron spectroscopy, atomic force microscopy, and water contact angle goniometry. Significant inhibition of biofilm formation was achieved for both Gram-negative and Gram-positive bacteria.

  3. Interaction of Nanoparticles with Biofilms

    Science.gov (United States)

    In this work we have studied the interaction and adsorption of engineered nanoparticles such as TiO2, ZnO, CeO2 , and carbon nanotubes with biofilms. Biofilm is an extracellular polymeric substance coating comprised of living material and it is an aggregation of bacteria, algae, ...

  4. Microbial ecology of phototrophic biofilms

    NARCIS (Netherlands)

    Roeselers, G.

    2007-01-01

    Biofilms are layered structures of microbial cells and an extracellular matrix of polymeric substances, associated with surfaces and interfaces. Biofilms trap nutrients for growth of the enclosed microbial community and help prevent detachment of cells from surfaces in flowing systems. Phototrophic

  5. Monitoring of extracellular pH in young dental biofilms grown in vivo in the presence and absence of sucrose

    DEFF Research Database (Denmark)

    Dige, Irene; Baelum, Vibeke; Nyvad, Bente

    2016-01-01

    BACKGROUND AND OBJECTIVE: pH in dental biofilms is of central importance for the development of caries. We used the ratiometric pH-sensitive dye C-SNARF-4 in combination with digital image analysis to monitor extracellular pH in dental biofilms grown in situ with and without sucrose supply. DESIG...

  6. Influence of extracellular polymeric substances on deposition and redeposition of Pseudomonas aeruginosa to surfaces

    NARCIS (Netherlands)

    Gomez-Suarez, C; Pasma, J; van der Borden, AJ; Wingender, J; Flemming, HC; Busscher, HJ; van der Mei, HC

    2002-01-01

    In this study, the role of extracellular polymeric substances (EPS) in the initial adhesion of EPS-producing Pseudomonas aeruginosa SG91 and SG81R1, a non-EPS-producing strain, to substrata with different hydrophobicity was investigated. The release of EPS by SG81 was concurrent with a decrease in s

  7. Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium Arthrospira platensis strain MMG-9

    NARCIS (Netherlands)

    Ahmed, M.; Moerdijk-Poortvliet, T.C.W.; Wijnholds, A.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Arthrospira platensis is a cyanobacterium known for its nutritional value and secondary metabolites. Extracellular polymeric substances (EPS) are an important trait of most cyanobacteria, including A. platensis. Here, we extracted and analysed different fractions of EPS from a locally isolated strai

  8. Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium

    NARCIS (Netherlands)

    Ahmed, M.; Wijnholds, A.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Arthrospira platensis is a cyanobacterium known for its nutritional value and secondary metabolites. Extracellular polymeric substances (EPS) are an important trait of most cyanobacteria, including A. platensis. Here, we extracted and analysed different fractions of EPS from a locally isolated strai

  9. Influence of bacterial exopolymers on cell adhesion of Desulfovibrio vulgaris on high alloyed steel: Corrosion inhibition by extracellular polymeric substances (EPS)

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, R.; Wei, L.; Fuerbeth, W. [Karl-Winnacker-Institut, DECHEMA e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main (Germany); Grooters, M.; Kuklinski, A. [University of Duisburg-Essen, Biofilm Centre, Geibelstrasse 41, 47057 Duisburg (Germany)

    2010-12-15

    Extracellular polymeric substances (EPS) were studied with regard to their potential application as inhibitors of biocorrosion. EPS that have been isolated from biofilms of sulphate-reducing bacteria (SRB) were adsorbed on samples of high alloyed steel (type 1.4301) at different temperatures. The samples were exposed to SRB containing solution and afterwards analysed by fluorescence microscopy (FM). The results show that the EPS form an incomplete layer and lead to a smaller amount of cell adhesion when compared to pure surfaces. The results are discussed with regard to the application of EPS for the prevention of biofilm formation. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. The influence of antimicrobial peptides and mucolytics on the integrity of biofilms consisting of bacteria and yeasts as affecting voice prosthetic air flow resistances

    NARCIS (Netherlands)

    Oosterhof, JJH; Elving, GJ; Stokroos, [No Value; Amerongen, AV; van der Mei, HC; Busscher, HJ; van Weissenbruch, R; Albers, FWJ

    2003-01-01

    The integrity of biofilms on voice prostheses used to rehabilitate speech in laryngectomized patients causes unwanted increases in airflow resistance, impeding speech. Biofilm integrity is ensured by extracellular polymeric substances (EPS). This study aimed to determine whether synthetic salivary p

  11. Repeated applications of photodynamic therapy on Candida glabrata biofilms formed in acrylic resin polymerized.

    Science.gov (United States)

    de Figueiredo Freitas, Lírian Silva; Rossoni, Rodnei Dennis; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2017-04-01

    Previous studies have been suggested that photodynamic therapy (PDT) can be used as an adjuvant treatment for denture stomatitis. In this study, we evaluated the effects of multiple sessions of PDT on Candida glabrata biofilms in specimens of polymerized acrylic resin formed after 5 days. Subsequently, four applications of PDT were performed on biofilms in 24-h intervals (days 6-9). Also, we evaluated two types of PDT, including application of laser and methylene blue or light-emitting diode (LED) and erythrosine. The control groups were treated with physiological solution. The effects of PDT on biofilm were evaluated after the first and fourth application of PDT. The biofilm analysis was performed by counting the colony-forming units. The results showed that between the days 6 and 9, the biofilms not treated by PDT had an increase of 5.53 to 6.05 log (p = 0.0271). Regarding the treatments, after one application of PDT, the biofilms decreased from 5.53 to 0.89 log. When it was done four applications, the microbial reduction ranged from 6.05 log to 0.11 log. We observed that one application of PDT with laser or LED caused a reduction of 3.36 and 4.64 compared to the control groups, respectively (p = 0.1708). When it was done four applications of PDT, the reductions achieved were 1.57 for laser and 5.94 for LED (p = 0.0001). It was concluded that repeated applications of PDT on C. glabrata biofilms showed higher antimicrobial activity compared to single application. PDT mediated by LED and erythrosine was more efficient than the PDT mediated by laser and methylene blue.

  12. Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus

    OpenAIRE

    2015-01-01

    The mechanical properties of Rhodococcus RC291 were measured using force spectroscopy equipped with a bacterial cell probe. Rhodococcal cells in the late growth stage of development were found to have greater adhesion to a silicon oxide surface than those in the early growth stage. This is because there are more extracellular polymeric substances (EPS) that contain nonspecific binding sites available on the cells of late growth stage. It is found that EPS in the late exponential phase are les...

  13. Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Theerthankar Das

    Full Text Available Calcium (Ca(2+ has an important structural role in guaranteeing the integrity of the outer lipopolysaccharide layer and cell walls of bacterial cells. Extracellular DNA (eDNA being part of the slimy matrix produced by bacteria promotes biofilm formation through enhanced structural integrity of the matrix. Here, the concurrent role of Ca(2+ and eDNA in mediating bacterial aggregation and biofilm formation was studied for the first time using a variety of bacterial strains and the thermodynamics of DNA to Ca(2+ binding. It was found that the eDNA concentrations under both planktonic and biofilm growth conditions were different among bacterial strains. Whilst Ca(2+ had no influence on eDNA release, presence of eDNA by itself favours bacterial aggregation via attractive acid-base interactions in addition, its binding with Ca(2+ at biologically relevant concentrations was shown further increase in bacterial aggregation via cationic bridging. Negative Gibbs free energy (ΔG values in iTC data confirmed that the interaction between DNA and Ca(2+ is thermodynamically favourable and that the binding process is spontaneous and exothermic owing to its highly negative enthalpy. Removal of eDNA through DNase I treatment revealed that Ca(2+ alone did not enhance cell aggregation and biofilm formation. This discovery signifies the importance of eDNA and concludes that existence of eDNA on bacterial cell surfaces is a key facilitator in binding of Ca(2+ to eDNA thereby mediating bacterial aggregation and biofilm formation.

  14. Temporal Changes in Extracellular Polymeric Substances on Hydrophobic and Hydrophilic Membrane Surfaces in a Submerged Membrane Bioreactor

    KAUST Repository

    Matar, Gerald Kamil

    2016-03-02

    Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m2.h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m2.h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be considered

  15. Different Types of Diatom-Derived Extracellular Polymeric Substances Drive Changes in Heterotrophic Bacterial Communities from Intertidal Sediments

    Science.gov (United States)

    Bohórquez, Julio; McGenity, Terry J.; Papaspyrou, Sokratis; García-Robledo, Emilio; Corzo, Alfonso; Underwood, Graham J. C.

    2017-01-01

    Intertidal areas support extensive diatom-rich biofilms. Such microphytobenthic (MPB) diatoms exude large quantities of extracellular polymeric substances (EPS) comprising polysaccharides, glycoproteins and other biopolymers, which represent a substantial carbon pool. However, degradation rates of different EPS components, and how they shape heterotrophic communities in sediments, are not well understood. An aerobic mudflat-sediment slurry experiment was performed in the dark with two different EPS carbon sources from a diatom-dominated biofilm: colloidal EPS (cEPS) and the more complex hot-bicarbonate-extracted EPS. Degradation rate constants determined over 9 days for three sediment fractions [dissolved organic carbon (DOC), total carbohydrates (TCHO), and (cEPS)] were generally higher in the colloidal-EPS slurries (0.105–0.123 d−1) compared with the hot-bicarbonate-extracted-EPS slurries (0.060–0.096 d−1). Addition of hot-bicarbonate-EPS resulted in large increases in dissolved nitrogen and phosphorous by the end of the experiment, indicating that the more complex EPS is an important source of regenerated inorganic nutrients. Microbial biomass increased ~4–6-fold over 9 days, and pyrosequencing of bacterial 16S rRNA genes revealed that the addition of both types of EPS greatly altered the bacterial community composition (from 0 to 9 days) compared to a control with no added EPS. Bacteroidetes (especially Tenacibaculum) and Verrucomicrobia increased significantly in relative abundance in both the hot-bicarbonate-EPS and colloidal-EPS treatments. These differential effects of EPS fractions on carbon-loss rates, nutrient regeneration and microbial community assembly improve our understanding of coastal-sediment carbon cycling and demonstrate the importance of diverse microbiota in processing this abundant pool of organic carbon. PMID:28289404

  16. Helicobacter pylori ATCC 43629/NCTC 11639 outer membrane vesicles (OMVs from biofilm and planktonic phase associated with extracellular DNA (eDNA.

    Directory of Open Access Journals (Sweden)

    Rossella eGrande

    2015-12-01

    Full Text Available Helicobacter pylori persistence is associated to its capability of developing biofilms as a response to environmental stress and changes. Extracellular DNA (eDNA is a component of H. pylori biofilm matrix but the lack of DNase I activity supports the hypothesis that eDNA might be protected by other extracellular polymeric substances and/or Outer Membrane Vesicles (OMVs, which bleb from the bacteria surface during growth. The aim of the present study was to both identify the eDNA presence on OMVs segregated from H. pylori biofilm (bOMVs and its planktonic phase (pOMVs and to characterize the physical-chemical properties of bOMVs and pOMVs. The presence of eDNA in bOMVs and pOMVs was carried out using a DNase I-gold complex and Transmission Electron Microscope analysis (TEM. bOMVs and pOMVs were further isolated and physical-chemical characterized using the dynamic light scattering (DLS analysis. The eDNA associated to OMVs was detected and quantified by using PicoGreen assay and spectrophotometer, while its extraction was performed through a DNA Kit. The TEM images showed that the eDNA was mainly isolated and identified on OMVs-membrane surface; while the PicoGreen staining showed a 4-fold increase of dsDNA in bOMVs compared to pOMVs. The eDNA extracted from OMVs was visualized by using gel electrophoresis. The DLS analysis demonstrated that H. pylori generate vesicles, both in its planktonic and biofilm phenotypes, with sizes in the nanometer scales and a broad size distribution. The DLS aggregation study of H. pylori OMVs demonstrated that eDNA may play a role in the OMVs aggregation, particularly for biofilm phenotype. The eDNA associated with vesicle membrane can affect the DNase I activity on H. pylori biofilms. OMVs derived from H. pylori ATCC 43629/NCTC 11639, particularly its biofilm phenotype, may play a structural role by preventing eDNA degradation by nucleases and provide a bridging function between eDNA strands.

  17. Ciliates as engineers of phototrophic biofilms.

    NARCIS (Netherlands)

    Weerman, E.J.; Geest, H.G.; Meulen, M.D.; Manders, E.M.M.; Van de Koppel, J.; Herman, P.M.J.; Admiraal, W.

    2011-01-01

    1.Phototrophic biofilms consist of a matrix of phototrophs, non-photosynthetic bacteria and extracellular polymeric substances (EPS) which is spatially structured. Despite widespread exploitation of algae and bacteria within phototrophic biofilms, for example by protozoans, the ‘engineering’ effects

  18. Ciliates as engineers of phototrophic biofilms.

    NARCIS (Netherlands)

    Weerman, E.J.; van der Geest, H.G.; van der Meulen, M.D; Manders, E.M.M.; van de Koppel, J.; Herman, P.M.J.; Admiraal, W.

    2011-01-01

    1. Phototrophic biofilms consist of a matrix of phototrophs, non-photosynthetic bacteria and extracellular polymeric substances (EPS) which is spatially structured. Despite widespread exploitation of algae and bacteria within phototrophic biofilms, for example by protozoans, the ‘engineering’ effect

  19. Extraction and Analysis of Extracellular Polymeric Substances (EPS): Comparison of Methods and EPS Levels in Salmonella pullorum SA 1685

    Science.gov (United States)

    The extracellular polymeric substances (EPS) production and composition for Salmonella pullorum SA 1685 exposed to artificial groundwater (AGW) has been examined utilizing three EPS extraction methods: lyophilization, ethanol, and sonication. Experiments were carried out to evaluate the robustness...

  20. Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols

    NARCIS (Netherlands)

    Abzac, D' P.; Bordas, F.; Hullebusch, E.; Lens, P.N.L.; Guibaud, G.

    2010-01-01

    The characteristics of the extracellular polymeric substances (EPS) extracted with nine different extraction protocols from four different types of anaerobic granular sludge were studied. The efficiency of four physical (sonication, heating, cationic exchange resin (CER), and CER associated with son

  1. Faecalibacterium prausnitzii Strain HTF-F and Its Extracellular Polymeric Matrix Attenuate Clinical Parameters in DSS-Induced Colitis.

    Directory of Open Access Journals (Sweden)

    Oriana Rossi

    Full Text Available A decrease in the abundance and biodiversity of intestinal bacteria within the Firmicutes phylum has been associated with inflammatory bowel disease (IBD. In particular, the anti-inflammatory bacterium Faecalibacterium prausnitzii, member of the Firmicutes phylum and one of the most abundant species in healthy human colon, is underrepresented in the microbiota of IBD patients. The aim of this study was to investigate the immunomodulatory properties of F. prausnitzii strain A2-165, the biofilm forming strain HTF-F and the extracellular polymeric matrix (EPM isolated from strain HTF-F. For this purpose, the immunomodulatory properties of the F. prausnitzii strains and the EPM were studied in vitro using human monocyte-derived dendritic cells. Then, the capacity of the F. prausnitzii strains and the EPM of HTF-F to suppress inflammation was assessed in vivo in the mouse dextran sodium sulphate (DSS colitis model. The F. prausnitzii strains and the EPM had anti-inflammatory effects on the clinical parameters measured in the DSS model but with different efficacy. The immunomodulatory effects of the EPM were mediated through the TLR2-dependent modulation of IL-12 and IL-10 cytokine production in antigen presenting cells, suggesting that it contributes to the anti-inflammatory potency of F. prausnitzii HTF-F. The results show that F. prausnitzii HTF-F and its EPM may have a therapeutic use in IBD.

  2. Optimization of Cultural Conditions for Production of Extracellular Polymeric Substances (EPS by Serpentine Rhizobacterium Cupriavidus pauculus KPS 201

    Directory of Open Access Journals (Sweden)

    Arundhati Pal

    2013-01-01

    Full Text Available Extracellular polymeric substances (EPS are complex biopolymers produced by a wide array of microorganisms for protection against dessication, aggregation, adhesion, and expression of virulence. Growth associated production of EPS by Ni-resistant Cupriavidus pauculus KPS 201 was determined in batch culture using sodium gluconate as the sole carbon source. The optimum pH and temperature for EPS production were 6.5 and 25°C, respectively. Optimal EPS yield (118 μg/mL was attained at 0.35% Na-gluconate after 72 h of growth. Cupriavidus KPS 201 cells also utilized glutamate, acetate, pyruvate, fumarate, malate, malonate, formate, citrate, and succinate for EPS production. Although EPS production was positively influenced by the increase of nitrogen and phosphate in the growth medium, it was negatively influenced by nickel ions. Compositional analysis of the purified EPS showed that it is a homopolymer of rhamnose containing uronic acid, protein, and nucleic acid. Presence of lipids was also detected with spectroscopy. Non-destructive EPS mediated biofilm formation of KPS 201 was also visualized by epifluorescence microscopy.

  3. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    Science.gov (United States)

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  4. Extracellular Polysaccharides Matrix - An Often Forgotten Virulence Factor in Oral Biofilm Research

    Institute of Scientific and Technical Information of China (English)

    Hyun Koo; Jin Xiao; Marlise I. Klein

    2009-01-01

    @@ Oral diseases related to dental biofilms continue to afflict the majority of the world's population. Among them, dental caries continues to be the single most prevalent and costly oral infectious disease (Marsh, 2003; Dye et al., 2007). Dental caries results from the interaction of specific bacteria with constituents of the diet within a dental biofilm known as plaque (Bowen, 2002). Sucrose is considered to be the "arch criminal" from the dietary aspect because it serves as a substrate for synthesis of extracellular (EPS) and intracellular (IPS) polysaccharides in dental biofilm and is also fermentable (Bowen, 2002). However, it is important to emphasize that additional sugars and starch can certainly contribute to the pathogenesis (Bowen et al., 1980; Firestone et al., 1982; Thurnheer et al., 2008). Streptococcus mutans (S. mutans), a member of the oral microbial community, is generally regarded as the primary microbial culprit although additional microorganisms may be involved (Hamada and Slade, 1980; Loesche, 1986; Beighton, 2005). This bacterium (i) effectively utilizes dietary sucrose (and possibly starch) to synthesize large amounts of EPS through glucosyltransferases (Gtfs) and a fructosyltransferase (Ftfs), (ii) adheres tenaciously to glucan-coated surfaces, and (iii) is also acidogenic and acid-tolerant, which are critical virulence properties involved in the pathogenesis of dental caries.

  5. Monitoring of extracellular pH in young dental biofilms grown in situ in the presence and absence of sucrose

    DEFF Research Database (Denmark)

    Dige, Irene; Bælum, Vibeke; Schlafer, Sebastian;

    biofilms. Fluorescence emissions of C-SNARF-4 in deep layers of each biofilm were recorded ex-vivo with confocal microscopy for 15 min (3 sites) or for 1 h (6 sites) after exposure to a 100 µl salivary solution with 0.4% glucose in custom-made wells. The ratiometric pH data were analyzed using a mixed......pH in dental biofilms is of central importance for the development of caries. We used the ratiometric pH-sensitive dye C-SNARF-4 in combination with digital image analysis to monitor extracellular pH in dental biofilms grown in situ with and without sucrose supply. 48-h dental biofilms from 10......-effects linear regression procedure. Extracellular pH dropped rapidly in most examined sites after addition of glucose. Distinct pH microenvironments were observed within single biofilms. Variance components analyses showed similar variation between sites within the same biofilm (var=0.02-0.04 (se=0...

  6. Roles of Extracellular Polysaccharides and Biofilm Formation in Heavy Metal Resistance of Rhizobia

    Directory of Open Access Journals (Sweden)

    Natalia Nocelli

    2016-05-01

    Full Text Available Bacterial surface components and extracellular compounds, particularly flagella, lipopolysaccharides (LPSs, and exopolysaccharides (EPSs, in combination with environmental signals and quorum-sensing signals, play crucial roles in bacterial autoaggregation, biofilm development, survival, and host colonization. The nitrogen-fixing species Sinorhizobium meliloti (S. meliloti produces two symbiosis-promoting EPSs: succinoglycan (or EPS I and galactoglucan (or EPS II. Studies of the S. meliloti/alfalfa symbiosis model system have revealed numerous biological functions of EPSs, including host specificity, participation in early stages of host plant infection, signaling molecule during plant development, and (most importantly protection from environmental stresses. We evaluated functions of EPSs in bacterial resistance to heavy metals and metalloids, which are known to affect various biological processes. Heavy metal resistance, biofilm production, and co-culture were tested in the context of previous studies by our group. A range of mercury (Hg II and arsenic (As III concentrations were applied to S. meliloti wild type strain and to mutant strains defective in EPS I and EPS II. The EPS production mutants were generally most sensitive to the metals. Our findings suggest that EPSs are necessary for the protection of bacteria from either Hg (II or As (III stress. Previous studies have described a pump in S. meliloti that causes efflux of arsenic from cells to surrounding culture medium, thereby protecting them from this type of chemical stress. The presence of heavy metals or metalloids in culture medium had no apparent effect on formation of biofilm, in contrast to previous reports that biofilm formation helps protect various microorganism species from adverse environmental conditions. In co-culture experiments, EPS-producing heavy metal resistant strains exerted a protective effect on AEPS-non-producing, heavy metal-sensitive strains; a phenomenon

  7. sarA negatively regulates Staphylococcus epidermidis biofilm formation by modulating expression of 1 MDa extracellular matrix binding protein and autolysis‐dependent release of eDNA

    DEFF Research Database (Denmark)

    Christner, Martin; Heinze, Constanze; Busch, Michael;

    2012-01-01

    Biofilm formation is essential for Staphylococcus epidermidis pathogenicity in implant‐associated infections. Nonetheless, large proportions of invasive Staphylococcus epidermidis isolates fail to form a biofilm in vitro. We here tested the hypothesis that this apparent paradox is related...... virulence. Genetic analysis revealed that inactivation of sarA induced biofilm formation via overexpression of the giant 1 MDa extracellular matrix binding protein (Embp), serving as an intercellular adhesin. In addition to Embp, increased extracellular DNA (eDNA) release significantly contributed...

  8. Important contribution of the novel locus comEB to extracellular DNA-dependent Staphylococcus lugdunensis biofilm formation.

    Science.gov (United States)

    Rajendran, Nithya Babu; Eikmeier, Julian; Becker, Karsten; Hussain, Muzaffar; Peters, Georg; Heilmann, Christine

    2015-12-01

    The coagulase-negative species Staphylococcus lugdunensis is an emerging cause of serious and potentially life-threatening infections, such as infective endocarditis. The pathogenesis of these infections is characterized by the ability of S. lugdunensis to form biofilms on either biotic or abiotic surfaces. To elucidate the genetic basis of biofilm formation in S. lugdunensis, we performed transposon (Tn917) mutagenesis. One mutant had a significantly reduced biofilm-forming capacity and carried a Tn917 insertion within the competence gene comEB. Site-directed mutagenesis and subsequent complementation with a functional copy of comEB verified the importance of comEB in biofilm formation. In several bacterial species, natural competence stimulates DNA release via lysis-dependent or -independent mechanisms. Extracellular DNA (eDNA) has been demonstrated to be an important structural component of many bacterial biofilms. Therefore, we quantified the eDNA in the biofilms and found diminished eDNA amounts in the comEB mutant biofilm. High-resolution images and three-dimensional data obtained via confocal laser scanning microscopy (CSLM) visualized the impact of the comEB mutation on biofilm integrity. The comEB mutant did not show reduced expression of autolysin genes, decreased autolytic activities, or increased cell viability, suggesting a cell lysis-independent mechanism of DNA release. Furthermore, reduced amounts of eDNA in the comEB mutant biofilms did not result from elevated levels or activity of the S. lugdunensis thermonuclease NucI. In conclusion, we defined here, for the first time, a role for the competence gene comEB in staphylococcal biofilm formation. Our findings indicate that comEB stimulates biofilm formation via a lysis-independent mechanism of DNA release.

  9. Sub-inhibitory tigecycline concentrations induce extracellular matrix binding protein Embp dependent Staphylococcus epidermidis biofilm formation and immune evasion.

    Science.gov (United States)

    Weiser, Julian; Henke, Hanae A; Hector, Nina; Both, Anna; Christner, Martin; Büttner, Henning; Kaplan, Jeffery B; Rohde, Holger

    2016-09-01

    Biofilm-associated Staphylococcus epidermidis implant infections are notoriously reluctant to antibiotic treatment. Here we studied the effect of sub-inhibitory concentrations of penicillin, oxacillin, vancomycin, daptomycin, linezolid and tigecycline on S. epidermidis 1585 biofilm formation, expression of extracellular matrix binding protein (Embp) and potential implications for S. epidermidis - macrophage interactions. Penicillin, vancomycin, daptomycin, and linezolid had no biofilm augmenting effect at any of the concentrations tested. In contrast, at sub-inhibitory concentrations tigecycline and oxacillin exhibited significant biofilm inducing activity. In S. epidermidis 1585, SarA is a negative regulator of giant 1 MDa Embp, and down regulation of sarA induces Embp-dependent assembly of a multi-layered biofilm architecture. Dot blot immune assays, confocal laser scanning microscopy, and qPCR showed that under biofilm inducing conditions, tigecycline augmented embp expression compared to the control grown without antibiotics. Conversely, expression of regulator sarA was suppressed, suggesting that tigecycline exerts its effects on embp expression through SarA. Tigecycline failed to induce biofilm formation in embp transposon mutant 1585-M135, proving that under these conditions Embp up-regulation is necessary for biofilm accumulation. As a functional consequence, tigecycline induced biofilm formation significantly impaired the up-take of S. epidermidis by mouse macrophage-like cell line J774A.1. Our data provide novel evidence for the molecular basis of antibiotic induced biofilm formation, a phenotype associated with inherently increased antimicrobial tolerance. While this could explain failure of antimicrobial therapies, persistence of S. epidermidis infections in the presence of sub-inhibitory antimicrobials is additionally propelled by biofilm-related impairment of macrophage-mediated pathogen eradication.

  10. A Functional DNase I Coating to Prevent Adhesion of Bacteria and the Formation of Biofilm

    NARCIS (Netherlands)

    Swartjes, Jan J. T. M.; Das, Theerthankar; Sharifi, Shahriar; Subbiahdoss, Guruprakash; Sharma, Prashant K.; Krom, Bastiaan P.; Busscher, Henk J.; van der Mei, Henny C.

    2013-01-01

    Biofilms are detrimental in many industrial and biomedical applications and prevention of biofilm formation has been a prime challenge for decades. Biofilms consist of communities of adhering bacteria, supported and protected by extracellular-polymeric-substances (EPS), the so-called house of biofil

  11. Sorption of cadmium to bacterial extracellular polymeric sediment coatings under estuarine conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schlekat, C.E.; Decho, A.W.; Chandler, G.T. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Environmental Health Sciences

    1998-09-01

    Microbial extracellular polymeric substances (EPS) are ubiquitous features in aquatic environments. Produced by surface-adherent bacteria and microalgae, EPS are often present as coatings on surfaces of sediment particles and exhibit high affinities for divalent cationic metals. Thus, EPS sediment coatings may participate in the fate of potentially toxic metals. The authors coated particulate silica with EPS produced by NISC1, a bacterium isolated from estuarine sediments, in order to measure the metal binding characteristics of these coatings. They used the radioisotope {sup 109}Cd to measure effects of salinity, Cd concentration, and pH on Cd sorption to EPS-coated (EPS-silica) silica and to noncoated silica (NC-silica). Also, Cd sorption by NISC1 EPS coatings was compared to coatings of polymers formed by the bacterium, Alteromonas atlantica and the alga, Macrocystis porifera. Under all circumstances, EPS coatings increased the affinity of silica for Cd. Extracellular polymeric substance-particulate aggregates rapidly sorbed up to 90% of Cd from aqueous solution. Extracellular polymeric substance sediment coatings exhibited a maximum log distribution coefficient (K{sub d}) of 6.5 at 2.5%. Sorption of Cd to NC-silica was affected by salinity and metal concentration, whereas sorption of Cd to EPS-silica was only affected by salinity under high metal concentrations. Changes in pH had a dramatic effect on Cd sorption, with the proportion of free Cd to sorbed Cd changing from approximately 90% at pH 5 to 5% at pH 9. Desorption of Cd from EPS-silica was enhanced with increasing salinity. These experiments suggest that EPS coatings actively participate in binding dissolved overlying and pore-water metals in estuarine sediments.

  12. Withania somnifera attenuates acid production, acid tolerance and extra-cellular polysaccharide formation of Streptococcus mutans biofilms.

    Science.gov (United States)

    Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2014-01-01

    Withania somnifera (Ashwagandha) is a plant of the Solanaceae family. It has been widely used as a remedy for a variety of ailments in India and Nepal. The plant has also been used as a controlling agent for dental diseases. The aim of the present study was to evaluate the activity of the methanol extract of W. somnifera against the physiological ability of cariogenic biofilms and to identify the components of the extract. To determine the activity of the extract, assays for sucrose-dependent bacterial adherence, glycolytic acid production, acid tolerance, and extracellular polysaccharide formation were performed using Streptococcus mutans biofilms. The viability change of S. mutans biofilms cells was also determined. A phytochemical analysis of the extract was performed using TLC and LC/MS/MS. The extract showed inhibitory effects on sucrose-dependent bacterial adherence (≥ 100 μg/ml), glycolytic acid production (≥ 300 μg/ml), acid tolerance (≥ 300 μg/ml), and extracellular polysaccharide formation (≥ 300 μg/ml) of S. mutans biofilms. However, the extract did not alter the viability of S. mutans biofilms cells in all concentrations tested. Based on the phytochemical analysis, the activity of the extract may be related to the presence of alkaloids, anthrones, coumarines, anthraquinones, terpenoids, flavonoids, and steroid lactones (withanolide A, withaferin A, withanolide B, withanoside IV, and 12-deoxy withastramonolide). These data indicate that W. somnifera may be a potential agent for restraining the physiological ability of cariogenic biofilms.

  13. Identification of Bicarbonate as a Trigger and Genes Involved with Extracellular DNA Export in Mycobacterial Biofilms.

    Science.gov (United States)

    Rose, Sasha J; Bermudez, Luiz E

    2016-12-06

    Extracellular DNA (eDNA) is an integral biofilm matrix component of numerous pathogens, including nontuberculous mycobacteria (NTM). Cell lysis is the source of eDNA in certain bacteria, but the source of eDNA remains unidentified for NTM, as well as for other eDNA-containing bacterial species. In this study, conditions affecting eDNA export were examined, and genes involved with the eDNA export mechanism were identified. After a method for monitoring eDNA in real time in undisturbed biofilms was established, different conditions affecting eDNA were investigated. Bicarbonate positively influenced eDNA export in a pH-independent manner in Mycobacterium avium, M. abscessus, and M. chelonae The surface-exposed proteome of M. avium in eDNA-containing biofilms revealed abundant carbonic anhydrases. Chemical inhibition of carbonic anhydrases with ethoxzolamide significantly reduced eDNA export. An unbiased transposon mutant library screen for eDNA export in M. avium identified many severely eDNA-attenuated mutants, including one not expressing a unique FtsK/SpoIIIE-like DNA-transporting pore, two with inactivation of carbonic anhydrases, and nine with inactivation of genes belonging to a unique genomic region, as well as numerous mutants involved in metabolism and energy production. Complementation of nine mutants that included the FtsK/SpoIIIE and carbonic anhydrase significantly restored eDNA export. Interestingly, several attenuated eDNA mutants have mutations in genes encoding proteins that were found with the surface proteomics, and many more mutations are localized in operons potentially encoding surface proteins. Collectively, our data strengthen the evidence of eDNA export being an active mechanism that is activated by the bacterium responding to bicarbonate.

  14. Aerobic granules with inhibitory strains and role of extracellular polymeric substances

    Energy Technology Data Exchange (ETDEWEB)

    Adav, Sunil S., E-mail: adavs@rediffmail.com [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lee, Duu-Jong, E-mail: djlee@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lai, Juin-Yih, E-mail: jylai@cycu.edu.tw [Center of Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chungli, Taiwan (China)

    2010-02-15

    Microorganisms compete with other species by secreting antimicrobial compounds. The compact structure of aerobic granules was generally assumed to provide spatial isolation, resulting in the co-occurrence of diverse strains that have similar or dissimilar functions. No studies have investigated whether stable, mature aerobic granules can be formed with two mutually inhibitory strains. The strain Acinetobacter sp. I8 competes with Bacillus sphaericus I5 in a well-mixed environment, but can form stable and mature granules at 400 mg L{sup -1} phenol by repeatedly replenishing fresh medium in a sequencing batch reactor. The supernatants collected from the I8 medium in its exponential-growth phase or from the I5 + I8 medium cultivated for 12 or 24 h significantly inhibited I5 growth. Addition of tightly bound extracellular polymeric substances (TBEPS) or loosely bound extracellular polymeric substances (LBEPS) extracted from I5 + I8 granules effectively suppressed the inhibitory effects of I8 on I5. The TBEPS or LBEPS physically separate strain I5 from I8 in the granule, and effectively adsorb the inhibitory substance(s) in the suspension.

  15. The role of microbial-produced extracellular polymeric matrix in the formation and survival of biological soil crusts

    Science.gov (United States)

    Rossi, Federico; Adessi, Alessandra; De Philippis, Roberto

    2016-04-01

    Biological soil crusts (BSCs) are complex communities commonly constituting organo-mineral layers in arid and semiarid environment having a major influence on these ecosystems (Belnap and Lange, 2001). They have high tolerance towards a-biotic stresses and fluctuations in moisture, illumination, salinity and nutrients. The plasticity exhibited by BSCs is hugely contributed by the presence of the extracellular polymeric matrix (EPM) that is synthesized by crustal organisms, notably cyanobacteria and microalgae. This polysaccharidic net plays key roles in biofilm relations with the surrounding constrained environment. Notably, EPM concurs in coping with water scarcity, freezing and salt stress; increases biolayers stability against erosion, and is involved in nutrient provision (Rossi and De Philippis, 2015). We conducted several investigations in a research area located in the Inner Mongolian desert (Inner Mongolia, China) where BSCs were induced over different sites through inoculation-based techniques performed in different years. Our studies were aimed at determining the role of EPM in BSC development and survival in such a hyper-arid system. This presentation will report the results concerning the role of EPM in water capture from non-rainfall sources, water maintenance at the topsoil, and in water infiltrability, the latter being a factor with important ecological implications. In additions we investigated the role of the matrix as a source of carbon for the crustal heterotrophs. Furthermore, EPM was extracted with methods optimized in our lab, aiming at removing tightly bound fractions and loosely bound fractions from BSCs having different ages. The fractions were analyzed in terms of monosaccharidic composition, and molecular weight (MW) distribution. We show how the relative amounts of uronic acids increase in the EPM with the age of the crusts, implying advantages for the community-water relations. In addition, we observed significant differences in MW

  16. The roles of biofilm matrix polysaccharide Psl in mucoid Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Ma, Luyan; Wang, Shiwei; Wang, Di; Parsek, Matthew R; Wozniak, Daniel J

    2012-07-01

    The opportunistic pathogen Pseudomonas aeruginosa causes life-threatening, persistent infections in patients with cystic fibrosis (CF). Persistence is attributed to the ability of these bacteria to form structured communities (biofilms). Biofilms rely on an extracellular polymeric substances matrix to maintain structure. Psl exopolysaccharide is a key matrix component of nonmucoid biofilms, yet the role of Psl in mucoid biofilms is unknown. In this report, using a variety of mutants in a mucoid P. aeruginosa background, we found that deletion of Psl-encoding genes dramatically decreased their biofilm formation ability, indicating that Psl is also a critical matrix component of mucoid biofilms. Our data also suggest that the overproduction of alginate leads to mucoid biofilms, which occupy more space, whereas Psl-dependent biofilms are densely packed. These data suggest that Psl polysaccharide may have significant contributions in biofilm persistence in patients with CF and may be helpful for designing therapies for P. aeruginosa CF infection.

  17. Bacillus mojavensis biofilm formation and biosurfactant production using a Laser Ablation Electrospray Ionization System

    Science.gov (United States)

    Biofilms are important extracellular polymeric compounds produced by bacteria that are useful for developmental phases including motility, swarming, signaling processes, and for hydrophobic nutrient utilization, all of which are important attributes for endophytic bacteria with biocontrol potential....

  18. Characterisation of Lactobacillus plantarum single and multi-strain biofilms

    NARCIS (Netherlands)

    Fernández Ramírez, Mónica D.

    2016-01-01

    Biofilms consist of microorganisms attached to a surface and embedded in a protective matrix of extracellular polymeric substances. Within a biofilm, micro-organisms are protected from harsh environmental conditions including those resulting from cleaning and disinfecting agents leading to food

  19. Biofilm formation and dispersal in Gram-positive bacteria

    NARCIS (Netherlands)

    Abee, T.; Kovacs, A.T.; Kuipers, O.P.; Veen, van der S.

    2011-01-01

    Biofilms are structured communities of bacteria, which are adhered to a surface and embedded in a self-produced matrix of extracellular polymeric substances. Since biofilms are very resistant to antimicrobial agents, they are at the basis of a range of problems, including quality and safety issues i

  20. Critical assessment of extracellular polymeric substances extraction methods from mixed culture biomass

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Domingo Felez, Carlos; Mutlu, Ayten Gizem

    2013-01-01

    potential of different EPS extraction protocols. We concluded that commonly used methods to assess cell lysis (DNA concentrations or G6PDH activities in EPS extracts) do not correlate with cell viability. Furthermore, we discovered that the presence of certain chemicals in EPS extracts results in severe...... to the nitrifier EPS, had a lower fraction of hydrophobic biopolymers. In general, the easily-extractable EPS fraction was more abundant in carbohydrates and humic substances, while DNA could only be found in tightly bound EPS fractions. In conclusion, the methodology presented herein supports the rational......Extracellular polymeric substances (EPS) have a presumed determinant role in the structure, architecture, strength, filterability, and settling behaviour of microbial solids in biological wastewater treatment processes. Consequently, numerous EPS extraction protocols have recently been published...

  1. Production of Extracellular Polymeric Substances by Halophilic Bacteria of Solar Salterns

    Directory of Open Access Journals (Sweden)

    Jhuma Biswas

    2014-01-01

    Full Text Available Moderately halophilic aerobic bacteria were isolated from 31 soil and 18 water samples collected from multipond solar salterns of Gujarat, Orissa, and West Bengal, India. A total of 587 bacterial isolates with distinct morphological features were obtained from these samples following dilution and plating on MH agar medium supplemented with NaCl. The isolates were screened for growth associated extracellular polymeric substances (EPS production in MY medium under batch culture. In all, 20 isolates were selected as potent ones producing more than 1 g/L of EPS. These EPS producing isolates were characterized in detail for their morphological, physiological, and biochemical features and tentatively identified as members belonging to the genera Halomonas, Salinicoccus, Bacillus, Aidingimonas, Alteromonas, and Chromohalobacter. Apart from EPS production, these isolates also hold promise towards the production of various biomolecules of industrial importance.

  2. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    Science.gov (United States)

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production.

  3. Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria.

    Science.gov (United States)

    Wang, Jin; Li, Qing; Li, Ming-Ming; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo

    2014-07-01

    Competitive adsorption of heavy metals by extracellular polymeric substances (EPS) extracted from Desulfovibrio desulfuricans was investigated. Chemical analysis showed that different EPS compositions had different capacities for the adsorption of heavy metals which was investigated using Cu(2+) and Zn(2+). Batch adsorption tests indicated that EPS had a higher combined ability with Zn(2+) than Cu(2+). This was confirmed and explained by Fourier transform infrared (FTIR) and excitation-emission matrix (EEM) spectroscopy analysis. FTIR analysis showed that both polysaccharides and protein combined with Zn(2+) while only protein combined with Cu(2+). EEM spectra further revealed that tryptophan-like substances were the main compositions reacted with the heavy metals. Moreover, Zn(2+) had a higher fluorescence quenching ability than Cu(2+).

  4. Functions and behaviors of activated sludge extracellular polymeric substances (EPS): a promising environmental interest

    Institute of Scientific and Technical Information of China (English)

    TIAN Yu; ZHENG Lei; SUN De-zhi

    2006-01-01

    Extracellular polymeric substances (EPS) are the predominant constituents of activated sludge and represent up to 80% of the mass of activated sludge. They play a crucial role in the flocculation, settling and dewatering of activated sludge. Furthermore,EPS also show great efficiency in binding heavy metals. So EPS are key factors influencing reduction in sludge volume and mass, as well as activity and utilization of sludge. EPS are of considerable environmental interest and hundreds of articles on EPS have been published abroad, while information on EPS in China is limited. In this paper, results of over 60 publications related to constituents and characteristics of EPS and their influences on flocculation, settling and dewatering of sludge are compiled and analyzed.Metal-binding ability of EPS is also discussed, together with a brief consideration of possible research interests in the future.

  5. Membrane biofouling by extracellular polymeric substances or soluble microbial products from membrane bioreactor sludge.

    Science.gov (United States)

    Ramesh, A; Lee, D J; Lai, J Y

    2007-03-01

    This study extracted the soluble microbial products and loosely bound and tightly bound extracellular polymeric substances (EPS) from suspended sludge from a membrane bioreactor, original and aerobically/anaerobically digested, and compared their fouling potentials on a microfiltration membrane. The resistance of cake layer accounts for 95-98% of the total filtration resistances when filtering the whole sludges, with anaerobically digested sludge presenting the highest resistance among the three tested sludges. The tightly bound EPS has the highest potential to foul the membrane; however, the loosely bound EPS contribute most of the filtration resistances of the whole sludges. The foulants corresponding to the irreversible fouling have chemical fingerprints similar to those from loosely bound EPS, which have a greater predilection to proteins and humic substances than to polysaccharides.

  6. Influences of environmental factors on bacterial extracellular polymeric substances production in porous media

    Science.gov (United States)

    Xia, Lu; Zheng, Xilai; Shao, Haibing; Xin, Jia; Peng, Tao

    2014-11-01

    Bioclogging of natural porous media occurs frequently under a wide range of conditions. It may influence the performance of permeable reactive barrier and constructed wetland. It is also one of the factors that determine the effect of artificial groundwater recharge and in situ bioremediation process. In this study, a series of percolation column experiments were conducted to simulate bioclogging process in porous media. The predominant bacteria in porous media which induced clogging were identified to be Methylobacterium, Janthinobacterium, Yersinia, Staphylococcus and Acidovorax, most of which had been shown to effectively produce viscous extracellular polymeric substances (EPS). The column in which EPS production was maximized also coincided with the largest reduction in saturated hydraulic conductivity of porous media. In addition, carbon concentration was the most significant factor to affect polysaccharide, protein and EPS secretion, followed by phosphorus concentration and temperature. The coupled effect of carbon and phosphorus concentration was also very important to stimulate polysaccharide and EPS production.

  7. Extracellular polymeric substances and dewaterability of waste activated sludge during anaerobic digestion.

    Science.gov (United States)

    Ye, Fenxia; Liu, Xinwen; Li, Ying

    2014-01-01

    Anaerobic digestion of waste activated sludge was conducted to gain insight into the mechanisms underlying change in sludge dewaterability during its anaerobic digestion. Unexpectedly, the results indicated that sludge dewatering properties measured by capillary suction time only deteriorated after 10 days of anaerobic digestion, after which dewaterability recovered and remained stable. The loosely bound extracellular polymeric substance (LB-EPS) content increased three-fold after 20 days of anaerobic digestion, and did not change significantly during the remaining 30 days. The tightly bound EPS (TB-EPS) content reduced slightly after 20 days of anaerobic digestion, and stabilized during the last 30 days. Polysaccharides (PS) and proteins (PN) content in LB-EPS increased after 10 days of anaerobic digestion. However, PS and PN contents in TB-EPS decreased slightly. The relationship analysis showed that only LB-EPS correlated with dewaterability of the sludge during anaerobic digestion.

  8. Extracellular polymeric substances for Zn (II) binding during its sorption process onto aerobic granular sludge.

    Science.gov (United States)

    Wei, Dong; Li, Mengting; Wang, Xiaodong; Han, Fei; Li, Lusheng; Guo, Jie; Ai, Lijie; Fang, Lulu; Liu, Ling; Du, Bin; Wei, Qin

    2016-01-15

    The aim of this study was to evaluate the interaction between extracellular polymeric substances (EPS) and Zn (II) during the sorption process of Zn (II) onto aerobic granular sludge. Batch results showed that the adsorption rate of Zn (II) onto aerobic granular sludge was better fitted with pseudo-second order kinetics model, and the adsorption isotherm data agreed well with Freundlich equation. Extracellular polymeric substances (EPS) for Zn (II) binding during sorption process was investigated by using a combination of three-dimensional excitation-emission matrix (3D-EEM), synchronous fluorescence spectra, two-dimensional correlation spectroscopy (2D-COS) and Fourier transform infrared spectroscopy (FTIR). Results implied that the main composes of EPS, including polysaccharide (PS) and protein (PN), decreased from 5.92±0.13 and 23.55±0.76 mg/g SS to 4.11±0.09 and 9.55±0.68 mg/g SS after the addition of different doses of Zn (II). 3D-EEM showed that the intensities of PN-like substances and humic-like substances were obviously decreased during the sorption process. According to synchronous fluorescence spectra, the quenching mechanism between PN-like substances and Zn (II) was mainly caused by a static quenching process. Additionally, 2D-COS indicated that PN-like substances were more susceptible to Zn (II) binding than humic-like substances. It was also found that the main functional groups for complexation of Zn (II) and EPS were OH groups, N-H groups and C=O stretching vibration. The findings of this study are significant to reveal the fate of heavy metal during its sorption process onto aerobic granular sludge through EPS binding, and provide useful information on the interaction between EPS and heavy metal.

  9. Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu²⁺.

    Science.gov (United States)

    Hou, Wenjie; Ma, Zhanqiang; Sun, Liangliang; Han, Mengsha; Lu, Jianjun; Li, Zhenxiu; Mohamad, Osama Abdalla; Wei, Gehong

    2013-10-15

    The copper tolerance gene of wild-type heavy metal-tolerance Sinorhizobium meliloti CCNWSX0020 was mutated by transposon Tn5-a. The mutant was sensitive up to 1.4mM Cu(2+). Production, components, surface morphology, and functional groups of extracellular polymeric substances (EPS) of the wild-type strains were compared with sensitive mutant in immobilization of Cu(2+). EPS produced by S. meliloti CCNWSX0020 restricts uptake of Cu(2+). The cell wall EPS were categorized based on the compactness and fastness: soluble EPS (S-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS). LB-EPS played a more important role than S-EPS and TB-EPS in Cu(2+) immobilization. Scanning electron microscopy (SEM) analysis LB-EPS had rough surface and many honeycomb pores, making them conducive to copper entry; therefore, they may play a role as a microbial protective barrier. Fourier transform-infrared (FT-IR) analysis further confirm that proteins and carbohydrates were the main extracellular compounds which had functional groups such as carboxyl (COOH), hydroxyl (OH), and amide (NH), primarily involved in metal ion binding.

  10. Extracellular Polymeric Substances Govern the Surface Charge of Biogenic Elemental Selenium Nanoparticles

    KAUST Repository

    Jain, Rohan

    2015-02-03

    © 2014 American Chemical Society. The origin of the organic layer covering colloidal biogenic elemental selenium nanoparticles (BioSeNPs) is not known, particularly in the case when they are synthesized by complex microbial communities. This study investigated the presence of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in capping the extracellularly available BioSeNPs was also examined. Fourier transform infrared (FT-IR) spectroscopy and colorimetric measurements confirmed the presence of functional groups characteristic of proteins and carbohydrates on the BioSeNPs, suggesting the presence of EPS. Chemical synthesis of elemental selenium nanoparticles in the presence of EPS, extracted from selenite fed anaerobic granular sludge, yielded stable colloidal spherical selenium nanoparticles. Furthermore, extracted EPS, BioSeNPs, and chemically synthesized EPS-capped selenium nanoparticles had similar surface properties, as shown by ζ-potential versus pH profiles and isoelectric point measurements. This study shows that the EPS of anaerobic granular sludge form the organic layer present on the BioSeNPs synthesized by these granules. The EPS also govern the surface charge of these BioSeNPs, thereby contributing to their colloidal properties, hence affecting their fate in the environment and the efficiency of bioremediation technologies.

  11. Effects of extraction procedures on metal binding properties of extracellular polymeric substances (EPS) from anaerobic granular sludges

    NARCIS (Netherlands)

    Abzac, D' P.; Bordas, F.; Hullebusch, E.; Lens, P.N.L.; Guibaud, G.

    2010-01-01

    The effects of the extraction procedure of extracellular polymeric substances (EPS) on their proton/metal binding properties were studied. Nine extraction procedures (one control, four physical and four chemical procedures) were applied to four types of anaerobic granular sludges. The binding capaci

  12. Evaluation of size exclusion chromatography (SEC) for the characterization of extracellular polymeric substances (EPS) in anaerobic granular sludges

    NARCIS (Netherlands)

    Simon, S.; Pairo, B.; Villain, M.; Abzac, D' P.; Hullebusch, E.; Lens, P.N.L.; Guibaud, G.

    2009-01-01

    The extracellular polymeric substances (EPS) extracted from three granular and one flocculant anaerobic sludges were characterised by size exclusion chromatography (SEC) using two serially linked chromatographic columns in order to obtain more detailed chromatograms. A Superdex peptide 10/300 GL (0.

  13. Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wenjie; Ma, Zhanqiang; Sun, Liangliang; Han, Mengsha; Lu, Jianjun; Li, Zhenxiu; Mohamad, Osama Abdalla; Wei, Gehong, E-mail: weigehong@nwsuaf.edu.cn

    2013-10-15

    Highlights: • EPS produced by Sinorhizobium meliloti CCNWSX0020 restricts uptake of Cu{sup 2+}. • We focused on the EPS, which is divided into three main parts. • LB-EPS played a more important role than S-EPS and TB-EPS in Cu{sup 2+} immobilization. • Proteins and carbohydrates were the main extracellular compounds which had functional groups such as carboxyl (-COOH), hydroxyl (-OH), and amide (N-H), primarily involved in metal ion binding. -- Abstract: The copper tolerance gene of wild-type heavy metal-tolerance Sinorhizobium meliloti CCNWSX0020 was mutated by transposon Tn5-a. The mutant was sensitive up to 1.4 mM Cu{sup 2+}. Production, components, surface morphology, and functional groups of extracellular polymeric substances (EPS) of the wild-type strains were compared with sensitive mutant in immobilization of Cu{sup 2+}. EPS produced by S. meliloti CCNWSX0020 restricts uptake of Cu{sup 2+}. The cell wall EPS were categorized based on the compactness and fastness: soluble EPS (S-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS). LB-EPS played a more important role than S-EPS and TB-EPS in Cu{sup 2+} immobilization. Scanning electron microscopy (SEM) analysis LB-EPS had rough surface and many honeycomb pores, making them conducive to copper entry; therefore, they may play a role as a microbial protective barrier. Fourier transform-infrared (FT-IR) analysis further confirm that proteins and carbohydrates were the main extracellular compounds which had functional groups such as carboxyl (-COOH), hydroxyl (-OH), and amide (N-H), primarily involved in metal ion binding.

  14. Chemical analysis of cellular and extracellular carbohydrates of a biofilm-forming strain Pseudomonas aeruginosa PA14.

    Directory of Open Access Journals (Sweden)

    Charlène Coulon

    Full Text Available BACKGROUND: Pseudomonas aeruginosa is a gram-negative bacterium and an opportunistic pathogen, which causes persisting life-threatening infections in cystic fibrosis (CF patients. Biofilm mode of growth facilitates its survival in a variety of environments. Most P. aeruginosa isolates, including the non-mucoid laboratory strain PA14, are able to form a thick pellicle, which results in a surface-associated biofilm at the air-liquid (A-L interface in standing liquid cultures. Exopolysaccharides (EPS are considered as key components in the formation of this biofilm pellicle. In the non-mucoid P. aeruginosa strain PA14, the "scaffolding" polysaccharides of the biofilm matrix, and the molecules responsible for the structural integrity of rigid A-L biofilm have not been identified. Moreover, the role of LPS in this process is unclear, and the chemical structure of the LPS O-antigen of PA14 has not yet been elucidated. PRINCIPAL FINDINGS: In the present work we carried out a systematic analysis of cellular and extracellular (EC carbohydrates of P. aeruginosa PA14. We also elucidated the chemical structure of the LPS O-antigen by chemical methods and 2-D NMR spectroscopy. Our results showed that it is composed of linear trisaccharide repeating units, identical to those described for P. aeruginosa Lanýi type O:2a,c (Lanýi-Bergman O-serogroup 10a, 10c; IATS serotype 19 and having the following structure: -4-α-L-GalNAcA-(1-3-α-D-QuiNAc-(1-3- α-L-Rha-(1-. Furthermore, an EC O-antigen polysaccharide (EC O-PS and the glycerol-phosphorylated cyclic β-(1,3-glucans were identified in the culture supernatant of PA14, grown statically in minimal medium. Finally, the extracellular matrix of the thick biofilm formed at the A-L interface contained, in addition to eDNA, important quantities (at least ∼20% of dry weight of LPS-like material. CONCLUSIONS: We characterized the chemical structure of the LPS O-antigen and showed that the O-antigen polysaccharide is

  15. Mycobacterium biofilms: factors involved in development, dispersal, and therapeutic strategies against biofilm-relevant pathogens.

    Science.gov (United States)

    Xiang, Xiaohong; Deng, Wanyan; Liu, Minqiang; Xie, Jianping

    2014-01-01

    Many bacteria can develop biofilm (BF), a multicellular structure largely combining bacteria and their extracellular polymeric substances (EPS). The formation of biofilm results in an alternative existence in which microbes ensure their survival in adverse environments. Biofilm-relevant infections are more persistent, resistant to most antibiotics, and more recalcitrant to host immunity. Mycobacterium tuberculosis, the causative agent of tuberculosis, can develop biofilm, though whether M. tuberculosis can form biofilm within tuberculosis patients has yet to be determined. Here, we summarize the factors involved in the development and dispersal of mycobacterial biofilms, as well as underlying regulatory factors and inhibitors against biofilm to deepen our understanding of their development and to elucidate potential novel modes of action for future antibiotics. Key factors in biofilm formation identified as drug targets represent a novel and promising avenue for developing better antibiotics.

  16. Raman imaging of biofilms using gold sputtered fiber optic probes

    Science.gov (United States)

    Christopher, Christina Grace Charlet; Manoharan, Hariharan; Subrahmanyam, Aryasomayajula; Sai, V. V. Raghavendra

    2016-12-01

    In this work we report characterization of bacterial biofilm using gold sputtered optical fiber probe as substrates for confocal Raman spectroscopy measurements. The chemical composition and the heterogeneity of biofilms in the extracellular polymeric substances (EPS) was evaluated. The spatial distribution of bacterial biofilm on the substrates during their growth phase was studied using Raman imaging. Further, the influence of substrate's surface on bacterial adhesion was investigated by studying growth of biofilms on surfaces with hydrophilic and hydrophobic coatings. This study validates the use of gold sputtered optical fiber probes as SERS substrates in confocal microscopic configuration to identify and characterize clinically relevant biofilms.

  17. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor.

    Science.gov (United States)

    Zhu, Yan; Zhang, Yan; Ren, Hong-Qiang; Geng, Jin-Ju; Xu, Ke; Huang, Hui; Ding, Li-Li

    2015-03-01

    This study aimed to investigate biofilm properties evolution coupled with different ages during the start-up period in a moving bed biofilm reactor system. Physicochemical characteristics including adhesion force, extracellular polymeric substances (EPS), morphology as well as volatile solid and microbial community were studied. Results showed that the formation and development of biofilms exhibited four stages, including (I) initial attachment and young biofilm formation, (II) biofilms accumulation, (III) biofilm sloughing and updating, and (IV) biofilm maturation. During the whole start-up period, adhesion force was positively and significantly correlated with the contents of EPS, especially the content of polysaccharide. In addition, increased adhesion force and EPS were beneficial for biofilm retention. Gram-negative bacteria mainly including Sphaerotilus, Zoogloea and Haliscomenobacter were predominant in the initial stage. Actinobacteria was beneficial to resist sloughing. Furthermore, filamentous bacteria were dominant in maturation biofilm.

  18. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces.

    Science.gov (United States)

    Olofsson, Ann-Cathrin; Hermansson, Malte; Elwing, Hans

    2003-08-01

    N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces.

  19. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly.

    Science.gov (United States)

    Stewart, Elizabeth J; Ganesan, Mahesh; Younger, John G; Solomon, Michael J

    2015-08-14

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, and DNA. Although the identity and abundance of EPS macromolecules are known, how these matrix materials interact with themselves and bacterial cells to generate biofilm morphology and mechanics is not understood. Here, we find that the colloidal self-assembly of Staphylococcus epidermidis RP62A cells and polysaccharides into viscoelastic biofilms is driven by thermodynamic phase instability of EPS. pH conditions that induce phase instability of chitosan produce artificial S. epidermidis biofilms whose mechanics match natural S. epidermidis biofilms. Furthermore, pH-induced solubilization of the matrix triggers disassembly in both artificial and natural S. epidermidis biofilms. This pH-induced disassembly occurs in biofilms formed by five additional staphylococcal strains, including three clinical isolates. Our findings suggest that colloidal self-assembly of cells and matrix polymers produces biofilm viscoelasticity and that biofilm control strategies can exploit this mechanism.

  20. Improved PVDF membrane performance by doping extracellular polymeric substances of activated sludge.

    Science.gov (United States)

    Guan, Yan-Fang; Huang, Bao-Cheng; Qian, Chen; Wang, Long-Fei; Yu, Han-Qing

    2017-04-15

    Polyvinylidene fluoride (PVDF) membrane has been widely applied in water and wastewater treatment because of its high mechanical strength, thermal stability and chemical resistance. However, the hydrophobic nature of PVDF membrane makes it readily fouled, substantially reducing water flux and overall membrane rejection ability. In this work, an in-situ blending modifier, i.e., extracellular polymeric substances (EPS) from activated sludge, was used to enhance the anti-fouling ability of PVDF membrane. Results indicate that the pure water flux of the membrane and its anti-fouling performance were substantially improved by blending 8% EPS into the membrane. By introducing EPS, the membrane hydrophilicity was increased and the cross section morphology was changed when it interacted with polyvinl pyrrolidone, resulting in the formation of large cavities below the finger-like pores. In addition, the fraction of pores with a size of 100-500 nm increased, which was also beneficial to improving membrane performance. Surface thermodynamic calculations indicate the EPS-functionalized membrane had a higher cohesion free energy, implying its good pollutant rejection and anti-fouling ability. This work provides a simple, efficient and cost-effective method to improve membrane performance and also extends the applications of EPS.

  1. Adsorption behavior of tetracycline by extracellular polymeric substrates extracted from Klebsiella sp. J1.

    Science.gov (United States)

    Li, Ang; Pi, Shanshan; Wei, Wei; Chen, Ting; Yang, Jixian; Ma, Fang

    2016-12-01

    The extracellular polymeric substrate (EPS) extracted from Klebsiella sp. J1 was used to adsorb low concentrations of tetracycline, and the efficiency and mechanism of tetracycline adsorption by EPS from strain J1 were studied. Adsorption efficiency was evaluated at different conditions. Results showed that optimal adsorption efficiency was 71.68 % with 60 mg L(-1) of EPS from strain J1 and 90 μL of 10 % (w/v) CaCl2 in 100 mL of tetracycline solution (80 μg L(-1)) with pH of 8.0. Experimental data was fitted well with Langmuir, Freundlich isotherm, and pseudo-second-order models. Analyses of E value, Ea value, thermodynamics, zeta potential variation, and Fourier transform infrared spectroscopy (FTIR) spectra proved that chemisorption was the main adsorption type and bridging was the main adsorption mechanism. Thermodynamic analysis indicated that adsorptive reaction was exothermic from 20 to 40 °C. In addition, humic acid (HA) showed little effect on the tetracycline adsorption by MFX.

  2. Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Nimisha, E-mail: joshi.nimisha@gmail.com [School of GeoSciences, Microbial Geochemistry Laboratory, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW (United Kingdom); Ngwenya, Bryne T. [School of GeoSciences, Microbial Geochemistry Laboratory, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW (United Kingdom); French, Christopher E. [School of Biological Sciences, Institute of Cell Biology, Darwin Building, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR (United Kingdom)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Demonstration that bacteria engineered for EPS overproduction have better survival against Ag nanotoxicity. Black-Right-Pointing-Pointer EPS destabilises Ag nanoparticles and promotes their aggregation. Black-Right-Pointing-Pointer TEM demonstration that EPS traps the Ag nanoparticles outside the cell. Black-Right-Pointing-Pointer EPS from overexpressing strains offers protection to non-EPS strains of bacteria. Black-Right-Pointing-Pointer EPS polymer analogues such as xanthan also produce a similar response. - Abstract: The increasing production and use of engineered nanoparticles, coupled with their demonstrated toxicity to different organisms, demands the development of a systematic understanding of how nanoparticle toxicity depends on important environmental parameters as well as surface properties of both cells and nanomaterials. We demonstrate that production of the extracellular polymeric substance (EPS), colanic acid by engineered Escherichia coli protects the bacteria against silver nanoparticle toxicity. Moreover, exogenous addition of EPS to a control strain results in an increase in cell viability, as does the addition of commercial EPS polymer analogue xanthan. Furthermore, we have found that an EPS producing strain of Sinorhizobium meliloti shows higher survival upon exposure to silver nanoparticles than the parent strain. Transmission electron microscopy (TEM) observations showed that EPS traps the nanoparticles outside the cells and reduces the exposed surface area of cells to incoming nanoparticles by inducing cell aggregation. Nanoparticle size characterization in the presence of EPS and xanthan indicated a marked tendency towards aggregation. Both are likely effective mechanisms for reducing nanoparticle toxicity in the natural environment.

  3. Effect of Extracellular Polymeric Substances on CuO Nanoparticle Dissolution and Colloidal Stability

    Science.gov (United States)

    Adeleye, A. S.; Keller, A. A.

    2013-12-01

    Extracellular polymeric substances (EPS) are high molecular weight polymers produced by microorganisms growing in natural as well as artificial environments. EPS may interact with engineered nanomaterials (ENMs) in aquatic systems via electrostatic and/or hydrophobic associations, therefore, influencing the fate and transport of ENMs. In this study the effect of soluble EPS isolated from Isochrysis galbana, a marine phytoplankton, on the dissolution kinetics and colloidal stability of CuO nanoparticles was investigated. EPS was characterized by measuring hydrodynamic diameter, total organic carbon, carbohydrate, and protein concentrations. CuO nanoparticles were more stable in the presence of EPS in aqueous media as indicated by hydrodynamic size and average count rate measurements. The effect of pH and ionic strength on dissolution was also studied. [Cu2+] and [Cu]total detected after a week were 5.70 mg L-1 and 7.08 mg L-1 respectively when 10 mg L-1 CuO nanoparticles was kept in 10 mM NaCl at pH 4. In the presence of 5 mg-C EPS L-1, [Cu2+] and [Cu]total were slightly lower at 5.0 mg L-1 and 5.53 mg L-1 respectively. Although observed [Cu2+] and [Cu]total were significantly lower at neutral and alkaline pH conditions, a similar pattern was observed.

  4. Random sequential adsorption of human adenovirus 2 onto polyvinylidene fluoride surface influenced by extracellular polymeric substances.

    Science.gov (United States)

    Lu, Ruiqing; Li, Qi; Nguyen, Thanh H

    2016-03-15

    Virus removal by membrane bioreactors depends on virus-membrane and virus-foulant interactions. The adsorption of human adenovirus 2 (HAdV-2) on polyvinylidene fluoride (PVDF) membrane and a major membrane foulant, extracellular polymeric substances (EPS), were measured in a quartz crystal microbalance. In 3-100mM CaCl2 solutions, irreversible adsorption of HAdV-2 was observed on both pristine and EPS-fouled PVDF surfaces. The HAdV-2 adsorption kinetics was successfully fitted with the random sequential adsorption (RSA) model. The applicability of the RSA model for HAdV-2 adsorption is confirmed by comparing the two fitting parameters, adsorption rate constant k(a) and area occupied by each adsorbed HAdV-2 particle a, with experimentally measured parameters. A linear correlation between the fitting parameter k(a) and the measured attachment efficiency was found, suggesting that the RSA model correctly describes the interaction forces dominating the HAdV-2 adsorption. By comparing the fitting parameter d(ads) with the hydrodynamic diameter of HAdV-2, we conclude that virus-virus and virus-surface interactions determine the area occupied by each adsorbed HAdV-2 particle, and thus influence the adsorption capacity. These results provide insights into virus retention and will benefit improving virus removal in membrane filtration.

  5. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria.

    Science.gov (United States)

    Yue, Zheng-Bo; Li, Qing; Li, Chuan-chuan; Chen, Tian-hu; Wang, Jin

    2015-10-01

    Extracellular polymeric substances (EPS) play an important role in the treatment of acid mine drainage (AMD) by sulfate-reducing bacteria (SRB). In this paper, Desulfovibrio desulfuricans was used as the test strain to explore the effect of heavy metals on the components and adsorption ability of EPS. Fourier-transform infrared (FTIR) spectroscopy analysis results showed that heavy metals did not influence the type of functional groups of EPS. Potentiometric titration results indicated that the acidic constants (pKa) of the EPS fell into three ranges of 3.5-4.0, 5.9-6.7, and 8.9-9.8. The adsorption site concentrations of the surface functional groups also increased. Adsorption results suggested that EPS had a specific binding affinity for the dosed heavy metal, and that EPS extracted from the Zn(2+)-dosed system had a higher binding affinity for all heavy metals. Additionally, Zn(2+) decreased the inhibitory effects of Cd(2+) and Cu(2+) on the SRB.

  6. Static adsorptive fouling of extracellular polymeric substances with different membrane materials.

    Science.gov (United States)

    Su, Xinying; Tian, Yu; Zuo, Wei; Zhang, Jun; Li, Hui; Pan, Xiaoyue

    2014-03-01

    Adsorptive fouling of microbial extracellular polymeric substances (EPS) greatly influences the fouling behavior and membrane characteristics in a membrane bioreactor (MBR). In this study, adsorptive fouling of the EPS on different membrane materials was compared and adsorptive mechanism between membranes and EPS was investigated by thermodynamic analysis. The results suggested that both the absolute and relative changes of hydraulic resistances should be considered to evaluate fouling of membranes with different materials, and Sips isotherm was the most suitable model to describe the EPS carbohydrate and protein adsorptions on membranes. Thermodynamic analysis showed that both EPS carbohydrate and protein adsorptions were spontaneous (ΔrG(θ)  0), and entropy driven (ΔrS(θ) > 0). Decreasing ΔrG(θ) values with temperature suggested that EPS adsorptive fouling can be limited by reducing temperature. In addition, physisorption processes and hydrogen bonding interactions between EPS and membranes might play a relatively major role in the adsorption mechanism of EPS on the membrane surface. Atomic force microscopy (AFM) and contact angle analysis confirmed that the adsorptive fouling modified the membrane surface, making the membrane surface more heterogeneous and more hydrophobic.

  7. Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus.

    Science.gov (United States)

    Pen, Yu; Zhang, Zhenyu J; Morales-García, Ana L; Mears, Matthew; Tarmey, Drew S; Edyvean, Robert G; Banwart, Steven A; Geoghegan, Mark

    2015-02-01

    The mechanical properties of Rhodococcus RC291 were measured using force spectroscopy equipped with a bacterial cell probe. Rhodococcal cells in the late growth stage of development were found to have greater adhesion to a silicon oxide surface than those in the early growth stage. This is because there are more extracellular polymeric substances (EPS) that contain nonspecific binding sites available on the cells of late growth stage. It is found that EPS in the late exponential phase are less densely bound but consist of chains able to extend further into their local environment, while the denser EPS at the late stationary phase act more to sheath the cell. Contraction and extension of the EPS could change the density of the binding sites, and therefore affect the magnitude of the adhesion force between the EPS and the silicon oxide surface. By treating rhodococcal EPS as a surface-grafted polyelectrolyte layer and using scaling theory, the interaction between EPS and a solid substrate was modelled for the cell approaching the surface which revealed that EPS possess a large capacity to store charge. Changing the pH of the surrounding medium acts to change the conformation of EPS chains.

  8. Calcium carbonate formation on mica supported extracellular polymeric substance produced by Rhodococcus opacus

    Science.gov (United States)

    Szcześ, Aleksandra; Czemierska, Magdalena; Jarosz-Wilkołazka, Anna

    2016-10-01

    Extracellular polymeric substance (EPS) extracted from Rhodococcus opacus bacterial strain was used as a matrix for calcium carbonate precipitation using the vapour diffusion method. The total exopolymer and water-soluble exopolymer fraction of different concentrations were spread on the mica surface by the spin-coating method. The obtained layers were characterized using the atomic force microscopy measurement and XPS analysis. The effects of polymer concentration, initial pH of calcium chloride solution and precipitation time on the obtained crystals properties were investigated. Raman spectroscopy and scanning electron microscopy were used to characterize the precipitated minerals. It was found that the type of precipitated CaCO3 polymorph and the crystal size depend on the kind of EPS fraction. The obtained results indicates that the water soluble fraction favours vaterite dissolution and calcite growth, whereas the total EPS stabilizes vaterite and this effect is stronger at basic pH. It seems to be due to different contents of the functional group of EPS fractions.

  9. Trichosporon inkin biofilms produce extracellular proteases and exhibit resistance to antifungals.

    Science.gov (United States)

    de Aguiar Cordeiro, Rossana; Serpa, Rosana; Flávia Uchoa Alexandre, Camila; de Farias Marques, Francisca Jakelyne; Vladia Silva de Melo, Charlline; da Silva Franco, Jônatas; José de Jesus Evangelista, Antonio; Pires de Camargo, Zoilo; Samia Nogueira Brilhante, Raimunda; Fabio Gadelha Rocha, Marcos; Luciano Bezerra Moreira, José; de Jesus Pinheiro Gomes Bandeira, Tereza; Júlio Costa Sidrim, José

    2015-11-01

    The aim of this study was to determine experimental conditions for in vitro biofilm formation of clinical isolates of Trichosporon inkin, an important opportunistic pathogen in immunocompromised patients. Biofilms were formed in microtitre plates in three different media (RPMI, Sabouraud and CLED), with inocula of 104, 105 or 106 cells ml- 1, at pH 5.5 and 7.0, and at 35 and 28 °C, under static and shaking conditions for 72 h. Growth kinetics of biofilms were evaluated at 6, 24, 48 and 72 h. Biofilm milieu analysis were assessed by counting viable cells and quantification of nucleic acids released into biofilm supernatants. Biofilms were also analysed for proteolytic activity and antifungal resistance against amphotericin B, caspofungin, fluconazole, itraconazole and voriconazole. Finally, ultrastructural characterization of biofilms formed in microtitre plates and catheter disks was performed by scanning electron microscopy. Greater biofilm formation was observed with a starter inoculum of 106 cells ml- 1, at pH 7.0 at 35 °C and 80 r.p.m., in both RPMI and Sabouraud media. Growth kinetics showed an increase in both viable cells and biomass with increasing incubation time, with maximum production at 48 h. Biofilms were able to disperse viable cells and nucleic acids into the supernatant throughout the developmental cycle. T. inkin biofilms produced more protease than planktonic cells and showed high tolerance to amphotericin B, caspofungin and azole derivatives. Mature biofilms were formed by different morphotypes, such as blastoconidia, arthroconidia and hyphae, in a strain-specific manner. The present article details the multicellular lifestyle of T. inkin and provides perspectives for further research.

  10. Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols

    OpenAIRE

    2010-01-01

    The characteristics of the extracellular polymeric substances (EPS) extracted with nine different extraction protocols from four different types of anaerobic granular sludge were studied. The efficiency of four physical (sonication, heating, cationic exchange resin (CER), and CER associated with sonication) and four chemical (ethylenediaminetetraacetic acid, ethanol, formaldehyde combined with heating, or NaOH) EPS extraction methods was compared to a control extraction protocols (i.e., centr...

  11. Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Lingzhan; Wang, Chao; Hou, Jun, E-mail: hhuhjyhj@126.com; Wang, Peifang; Ao, Yanhui; Li, Yi; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi [Hohai University, Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education (China)

    2015-10-15

    Stability of engineered nanoparticles in aquatic environment is an essential parameter to evaluate their fate, bioavailability, and potential toxic effects toward living organisms. As CuO NPs enter the wastewater systems, they will encounter extracellular polymeric substances (EPS) from microbial community before directly interacting with bacterial cells. EPS may play an important role in affecting the stability and the toxicity of CuO NPs in aquatic environment. In this study, the influences of flocculent sludge-derived EPS, as well as model protein (BSA) and natural polysaccharides (alginate) on the dissolution kinetics and colloidal stability of CuO NPs were investigated. Results showed that the presence of NOMs strongly suppressed CuO NPs aggregation, confirmed by DLS, zeta potentials, and TEM analysis. The enhanced stability of CuO NPs in the presence of EPS and alginate were attributed to the electrostatic combined with steric repulsion, while the steric-hindrance effect may be the predominant mechanism retarding nano-CuO aggregation for BSA. Higher degrees of copper release were achieved with the increasing concentrations of NOMs. EPS are more effective than alginate and BSA in releasing copper, probably due to the abundant functional groups and the excellent metal-binding capacity. The ratio of free-Cu{sup 2+}/total dissolved Cu significantly decreased in the presence of EPS, indicating that EPS may affect the speciation and Cu bioavailability in aqueous environment. These results may be important for assessing the fate and transport behaviors of CuO NPs in the environment as well as for setting up usage regulation and treatment strategy.

  12. Artificial Polymeric Scaffolds as Extracellular Matrix Substitutes for Autologous Conjunctival Goblet Cell Expansion

    Science.gov (United States)

    He, Min; Storr-Paulsen, Thomas; Wang, Annie L.; Ghezzi, Chiara E.; Wang, Siran; Fullana, Matthew; Karamichos, Dimitrios; Utheim, Tor P.; Islam, Rakibul; Griffith, May; Islam, M. Mirazul; Hodges, Robin R.; Wnek, Gary E.; Kaplan, David L.; Dartt, Darlene A.

    2016-01-01

    Purpose We fabricated and investigated polymeric scaffolds that can substitute for the conjunctival extracellular matrix to provide a substrate for autologous expansion of human conjunctival goblet cells in culture. Methods We fabricated two hydrogels and two silk films: (1) recombinant human collagen (RHC) hydrogel, (2) recombinant human collagen 2-methacryloylxyethyl phosphorylcholine (RHC-MPC) hydrogel, (3) arginine-glycine-aspartic acid (RGD) modified silk, and (4) poly-D-lysine (PDL) coated silk, and four electrospun scaffolds: (1) collagen, (2) poly(acrylic acid) (PAA), (3) poly(caprolactone) (PCL), and (4) poly(vinyl alcohol) (PVA). Coverslips and polyethylene terephthalate (PET) were used for comparison. Human conjunctival explants were cultured on scaffolds for 9 to 15 days. Cell viability, outgrowth area, and the percentage of cells expressing markers for stratified squamous epithelial cells (cytokeratin 4) and goblet cells (cytokeratin 7) were determined. Results Most of cells grown on all scaffolds were viable except for PCL in which only 3.6 ± 2.2% of the cells were viable. No cells attached to PVA scaffold. The outgrowth was greatest on PDL-silk and PET. Outgrowth was smallest on PCL. All cells were CK7-positive on RHC-MPC while 84.7 ± 6.9% of cells expressed CK7 on PDL-silk. For PCL, 87.10 ± 3.17% of cells were CK7-positive compared to PET where 67.10 ± 12.08% of cells were CK7-positive cells. Conclusions Biopolymer substrates in the form of hydrogels and silk films provided for better adherence, proliferation, and differentiation than the electrospun scaffolds and could be used for conjunctival goblet cell expansion for eventual transplantation once undifferentiated and stratified squamous cells are included. Useful polymer scaffold design characteristics have emerged from this study. PMID:27832279

  13. Influences of Extracellular Polymeric Substances on the Dewaterability of Sewage Sludge during Bioleaching

    Science.gov (United States)

    Zhang, Xueying; Zhou, Lixiang

    2014-01-01

    Extracellular polymeric substances (EPS) play important roles in regulating the dewaterability of sludge. This study sought to elucidate the influence of EPS on the dewaterability of sludge during bioleaching process. Results showed that, in bioleaching system with the co-inoculation of Acidithiobacillus thiooxidans TS6 and Acidithiobacillus ferrooxidans LX5 (A. t+A. f system), the capillary suction time (CST) of sludge reduced from 255.9 s to 25.45 s within 48 h, which was obviously better than the controls. The correlation analysis between sludge CST and sludge EPS revealed that the sludge EPS significantly impacted the dewaterability of sludge. Sludge CST had correlation with protein content in slime and both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers, and the decrease of protein content in slime and decreases of both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers improved sludge dewaterability during sludge bioleaching process. Moreover, the low sludge pH (2.92) and the increasing distribution of Fe in the solid phase were another two factors responsible for the improvement of sludge dewaterability during bioleaching. This study suggested that during sludge bioleaching the growth of Acidithiobacillus species resulted in the decrease of sludge pH, the increasing distribution of Fe in the solid phase, and the decrease of EPS content (mainly including protein and/or polysaccharide) in the slime, TB-EPS, and Slime+LB+TB layers, all of which are helpful for sludge dewaterability enhancement. PMID:25050971

  14. Influences of extracellular polymeric substances on the dewaterability of sewage sludge during bioleaching.

    Directory of Open Access Journals (Sweden)

    Jun Zhou

    Full Text Available Extracellular polymeric substances (EPS play important roles in regulating the dewaterability of sludge. This study sought to elucidate the influence of EPS on the dewaterability of sludge during bioleaching process. Results showed that, in bioleaching system with the co-inoculation of Acidithiobacillus thiooxidans TS6 and Acidithiobacillus ferrooxidans LX5 (A. t+A. f system, the capillary suction time (CST of sludge reduced from 255.9 s to 25.45 s within 48 h, which was obviously better than the controls. The correlation analysis between sludge CST and sludge EPS revealed that the sludge EPS significantly impacted the dewaterability of sludge. Sludge CST had correlation with protein content in slime and both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers, and the decrease of protein content in slime and decreases of both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers improved sludge dewaterability during sludge bioleaching process. Moreover, the low sludge pH (2.92 and the increasing distribution of Fe in the solid phase were another two factors responsible for the improvement of sludge dewaterability during bioleaching. This study suggested that during sludge bioleaching the growth of Acidithiobacillus species resulted in the decrease of sludge pH, the increasing distribution of Fe in the solid phase, and the decrease of EPS content (mainly including protein and/or polysaccharide in the slime, TB-EPS, and Slime+LB+TB layers, all of which are helpful for sludge dewaterability enhancement.

  15. Deposition kinetics of extracellular polymeric substances (EPS) on silica in monovalent and divalent salts.

    Science.gov (United States)

    Zhu, Pingting; Long, Guoyu; Ni, Jinren; Tong, Meiping

    2009-08-01

    The deposition kinetics of extracellular polymeric substances (EPS) on silica surfaces were examined in both monovalent and divalent solutions under a variety of environmentally relevant ionic strength and pH conditions by employing a quartz crystal microbalance with dissipation (DCM-D). Soluble EPS (SEPS) and bound EPS (BEPS) were extracted from four bacterial strains with different characteristics. Maximum favorable deposition rates (k(fa)) were observed for all EPS at low ionic strengths in both NaCl and CaCl2 solutions. With the increase of ionic strength, k(fa) decreased due to the simultaneous occurrence of EPS aggregation in solutions. Deposition efficiency (alpha; the ratio of deposition rates obtained under unfavorable versus corresponding favorable conditions) for all EPS increased with increasing ionic strength in both NaCl and CaCl2 solutions, which agreed with the trends of zeta potentials and was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Comparison of alpha for SEPS and BEPS extracted from the same strain showed that the trends of alpha did not totally agree with trends of zeta potentials, indicating the deposition kinetics of EPS on silica surfaces were not only controlled by DLVO interactions, but also non-DLVO forces. Close comparison of alpha for EPS extracted from different sources showed alpha increased with increasing proteins to polysaccharides ratio. Subsequent experiments for EPS extracted from the same strain but with different proteins to polysaccharides ratios and from activated sludge also showed that alpha were largest for EPS with greatest proteins to polysaccharides ratio. Additional experiments for pure protein and solutions with different pure proteins to pure saccharides ratios further corroborated that larger proteins to polysaccharides ratio resulted in greater EPS deposition.

  16. [Adsorption of a dye by sludges and the roles of extracellular polymeric substances].

    Science.gov (United States)

    Kong, Wang-sheng; Liu, Yan

    2007-12-01

    This paper investigated the adsorption of a dye, acid turquoise blue A, by four kinds of sludges including activated sludge, anaerobic sludge, dried activated sludge, and dried anaerobic sludge, respectively. The roles of extracellular polymeric substances (EPS) including the soluble EPS (SEPS) and bound EPS (BEPS) for the biosorption of activated sludge and anaerobic sludge were further studied. Results show that the relation between four kinds of sludge adsorption amount and remained concentration of the dye fitted well both Freundlich model (R2: 0.921-0.995) and Langmuir model (R2: 0.958-0.993), but not quite fitted BET model (R2: 0.07-0.863). The adsorption capability of dried anaerobic sludge ranked the highest, and dried activated sludge was the lowest. According to Langmuir isotherm, the maximum adsorption amount of dried anaerobic, anaerobic, activated, and dried activated sludge was 104 mg/g, 86 mg/g, 65 mg/g, 20 mg/g, respectively. The amount of the dye found in EPS for both activated sludge and anaerobic sludge were over 50%, illustrating that EPS adsorption was predominant in adsorption of the dye by sludge. The amount of adsorbed dye by BEPS was greater than that by SEPS for anaerobic sludge, but for activated sludge the result was quite opposite. The amount of adsorbed dye by unit mass SEPS was much higher than the corresponding values of BEPS for both sludges. The average amount of adsorbed dye by unit mass SEPS was 52 times of the corresponding value of BEPS for activated sludge, and 10 times for anaerobic sludge. The relation between adsorption amount of dye by BEPS from anaerobic sludge and remained concentration of the dye in mixed liquor was best fitted to Langmuir model (R2: 0.9986).

  17. Extraction and characterization of bound extracellular polymeric substances from cultured pure cyanobacterium (Microcystis wesenbergii).

    Science.gov (United States)

    Liu, Lizhen; Qin, Boqiang; Zhang, Yunlin; Zhu, Guangwei; Gao, Guang; Huang, Qi; Yao, Xin

    2014-08-01

    Preliminary characterization of bound extracellular polymeric substances (bEPS) of cyanobacteria is crucial to obtain a better understanding of the formation mechanism of cyanobacterial bloom. However, the characterization of bEPS can be affected by extraction methods. Five sets (including the control) of bEPS from Microcystis extracted by different methods were characterized using three-dimensional excitation and emission matrix (3DEEM) fluorescence spectroscopy combined chemical spectrophotometry; and the characterization results of bEPS samples were further compared. The agents used for extraction were NaOH, pure water and phosphate buffered saline (PBS) containing cationic exchange resins, and hot water. Extraction methods affected the fluorescence signals and intensities in the bEPS. Five fluorescence peaks were observed in the excitation and emission matrix fluorescence spectra of bEPS samples. Two peaks (peaks T₁ and T₂) present in all extractions were identified as protein-like fluorophores, two (peaks A and C) as humic-like fluorophores, and one (peak E) as a fulvic-like substance. Among these substances, the humic-like and fulvic-like fluorescences were only seen in the bEPS extracted with hot water. Also, NaOH solution extraction could result in strong fluorescence intensities compared to the other extraction methods. It was suggested that NaOH at pH10.0 was the most appropriate method to extract bEPS from Microcystis. In addition, dialysis could affect the yields and characteristics of extracted bEPS during the determination process. These results will help us to explore the issues of cyanobacterial blooms.

  18. Influences of influent carbon source on extracellular polymeric substances (EPS) and physicochemical properties of activated sludge.

    Science.gov (United States)

    Ye, Fenxia; Peng, Ge; Li, Ying

    2011-08-01

    It is necessary to understand the bioflocculation, settling and dewatering characteristics in the activated sludge process in order to establish more efficient operational strategies. The influences of carbon source on the extracellular polymeric substances (EPS) and flocculation, settling and dewatering properties of the activated sludge were investigated. Laboratory-scale completely mixed activated sludge processes were used to grow the activated sludge with different carbon sources of starch, glucose and sodium acetate. The sludge fed with acetate had highest loosely bound EPS (LB-EPS) and that fed with starch lowest. The amount of tightly bound EPS (TB-EPS), protein content in LB-EPS, polysaccharide content and protein contents in TB-EPS, were independent of the influent carbon source. The polysaccharide content in LB-EPS of the activated sludge fed with sodium acetate was lower slightly than those of starch and glucose. The sludge also had a nearly consistent flocs size and the sludge volume index (SVI) value. ESS content of the sludge fed with sodium acetate was higher initially, although it was similar to those fed with glucose and starch finally. However, the specific resistance to filtration and normalized capillary suction time fluctuated first, but finally were stable at around 5.0×10(8)mkg(-1) and 3.5 s Lg(-1) SS, respectively. Only the protein content in LB-EPS weakly correlated with the flocs size and SVI of the activated sludge. But there was no correlation between any other EPS contents or components and the physicochemical properties of the activated sludge.

  19. Extracellular polymeric substances of the marine fouling diatom Amphora rostrata Wm. Sm.

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Bhosle, N.B.

    the presence of a single peak. Capillary gas chromatographic analysis of both planktonic and biofilm EPS showed that fucose (36.7%) and galactose (27.6%) were the most abundant monosaccharides, with small quantities of rhamnose, xylose, arabinose, mannose...

  20. Effect of silver nanoparticles on Pseudomonas putida biofilms at different stages of maturity

    Energy Technology Data Exchange (ETDEWEB)

    Thuptimdang, Pumis, E-mail: pumis.th@gmail.com [International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330 (Thailand); Center of Excellence on Hazardous Substance Management, Bangkok 10330 (Thailand); Limpiyakorn, Tawan, E-mail: tawan.l@chula.ac.th [Center of Excellence on Hazardous Substance Management, Bangkok 10330 (Thailand); Department of Environmental Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Research Unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok 10330 (Thailand); McEvoy, John, E-mail: john.mcevoy@ndsu.edu [Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108 (United States); Prüß, Birgit M., E-mail: birgit.pruess@ndsu.edu [Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108 (United States); Khan, Eakalak, E-mail: eakalak.khan@ndsu.edu [Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108 (United States)

    2015-06-15

    Highlights: • Biofilm stages in static batch conditions were similar to dynamic conditions. • Expression of csgA gene increased earlier than alg8 gene in biofilm maturation. • AgNPs had higher effect on less mature biofilms. • Removal of extracellular polymeric substance made biofilms susceptible to AgNPs. - Abstract: This study determined the effect of silver nanoparticles (AgNPs) on Pseudomonas putida KT2440 biofilms at different stages of maturity. Three biofilm stages (1–3, representing early to late stages of development) were identified from bacterial adenosine triphosphate (ATP) activity under static (96-well plate) and dynamic conditions (Center for Disease Control and Prevention biofilm reactor). Extracellular polymeric substance (EPS) levels, measured using crystal violet and total carbohydrate assays, and expression of the EPS-associated genes, csgA and alg8, supported the conclusion that biofilms at later stages were older than those at earlier stages. More mature biofilms (stages 2 and 3) showed little to no reduction in ATP activity following exposure to AgNPs. In contrast, the same treatment reduced ATP activity by more than 90% in the less mature stage 1 biofilms. Regardless of maturity, biofilms with EPS stripped off were more susceptible to AgNPs than controls with intact EPS, demonstrating that EPS is critical for biofilm tolerance of AgNPs. The findings from this study show that stage of maturity is an important factor to consider when studying effect of AgNPs on biofilms.

  1. Extracellular polysaccharides do not inhibit the reaction between Streptococcus mutans and its specific immunoglobulin G (IgG) or penetration of the IgG through S. mutans biofilm.

    Science.gov (United States)

    Zhu, M; Takenaka, S; Sato, M; Hoshino, E

    2001-02-01

    The present study investigated whether extracellular polysaccharides inhibit reaction between Streptococcus mutans and its specific immunoglobulin G (IgG) and penetration of the IgG through S. mutans biofilm. The planktonic organisms with or without extracellular polysaccharides were prepared, incubated with rabbit IgG against whole cell of S. mutans and fluorescein isothiocyanate (FITC)-conjugated goat affinity purified antibody to rabbit IgG. Biofilms with or without extracellular polysaccharides were formed on cover glasses and incubated with rabbit IgG against S. mutans and FITC-conjugated goat antibody to rabbit IgG. Then, biofilms were stained with propidium iodide. The amount of specific IgG binding on S. mutans was determined by FITC intensity with a fluorescence microplate reader. The penetration of IgG through biofilms was determined by confocal laser scanning microscopy. The results showed that the fluorescence intensity of FITC in planktonic organisms with extracellular polysaccharides was similar to that in planktonic organisms without extracellular polysaccharides, indicating that extracellular polysaccharides did not inhibit the reaction between S. mutans and its specific IgG. Although biofilms of S. mutans with extracellular polysaccharides were much thicker and denser than those without extracellular polysaccharides, the speed with which IgG penetrated through both of the biofilms did not differ significantly, suggesting that penetration of IgG through S. mutans biofilm was not affected by extracellular polysaccharides.

  2. Toxicity assessment of 4-chlorophenol to aerobic granular sludge and its interaction with extracellular polymeric substances

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Dong; Wang, Yifan; Wang, Xiaodong; Li, Mengting; Han, Fei; Ju, Luyu; Zhang, Ge; Shi, Li; Li, Kai; Wang, Bingfeng [School of Resources and Environmental Sciences, University of Jinan, Jinan 250022 (China); Du, Bin, E-mail: dubin61@gmail.com [School of Resources and Environmental Sciences, University of Jinan, Jinan 250022 (China); Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Wei, Qin [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2015-05-30

    Highlights: • Toxicity of 4-CP to aerobic granular sludge process was evaluated. • 3D-EEM characterized the interaction between EPS and 4-CP. • Tryptophan was the main substance result in fluorescence quenching. • The mechanism of fluorescence quenching belongs to static quenching. - Abstract: The main objective of this study was to evaluate the toxicity of 4-chlorophenol (4-CP) to aerobic granular sludge in the process of treating ammonia rich wastewater. In the short-term exposure of 4-CP of 5 and 10 mg/L, ammonia nitrogen removal efficiencies in the batch reactors decreased to 87.18 ± 2.81 and 41.16 ± 3.55%, which were remarkably lower than that of control experiment (99.83 ± 0.54%). Correspondingly, the respirometric activities of heterotrophic and autotrophic bacteria of aerobic granular sludge were significantly inhibited in the presence of 4-CP. Moreover, the main components of extracellular polymeric substances (EPS) including polysaccharides and proteins increased from 18.74 ± 0.29 and 22.57 ± 0.34 mg/g SS to 27.79 ± 0.51 and 24.69 ± 0.38 mg/g SS, respectively, indicating that the presence of 4-CP played an important role on the EPS production. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy further showed that the intensities of EPS samples were obviously quenched with the increased of 4-CP concentrations. To be more detailed, synchronous fluorescence spectra indicated that the interaction between EPS and 4-CP was mainly caused by tryptophan residues. The mechanism of fluorescence quenching belongs to static quenching with a formation constant (K{sub A}) of 0.07 × 10{sup 4} L/mol, implying the strong formation of EPS and 4-CP complex. The results could provide reliable and accurate information to determine the potential toxicity of 4-CP on the performance of aerobic granular sludge system.

  3. A vibrating membrane bioreactor operated at supra- and sub-critical flux: Influence of extracellular polymeric substances from yeast cells

    DEFF Research Database (Denmark)

    Beier, Søren Prip; Jonsson, Gunnar Eigil

    2007-01-01

    A vibrating membrane bioreactor, in which the fouling problems are reduced by vibrating a hollow fiber membrane module, has been tested in constant flux microfiltration above (supra-critical) and below (sub-critical) an experimentally determined critical flux. Suspensions of bakers yeast cells were...... chosen as filtration medium (dry weight 4 g/l). The influence of extracellular polymeric substances (EPS) from the yeast cells is evaluated by UV absorbance measurements of the bulk supernatant during filtration. The critical flux seems to be an interval or a relative value rather than an absolute value...

  4. Aging biofilm from a full-scale moving bed biofilm reactor: characterization and enzymatic treatment study.

    Science.gov (United States)

    Huang, Hui; Ren, Hongqiang; Ding, Lili; Geng, Jinju; Xu, Ke; Zhang, Yan

    2014-02-01

    Effective removal of aging biofilm deserves to receive more attention. This study aimed to characterized aging biofilm from a full-scale moving bed biofilm reactor treating pharmaceutical wastewater and evaluate the hydrolysis effects of biofilm by different enzymatic treatments. Results from FTIR and biochemical composition analyses showed that it was a predominately organic-based biofilm with the ratio of total protein (PN) to polysaccharide (PS) of 20.17. A reticular structure of extracellular polymeric matrix (EPM) with filamentous bacteria as the skeleton was observed on the basal layer through SEM-EDS test. Among the four commercial proteases and amylases from Genencor®, proteases were shown to have better performances than amylases either on the removal of MLSS and PN/MLSS or on DOC (i.e., dissolved organic carbon)/MLSS raising of biofilm pellets. Difference of dynamic fluorescence characteristics of dissolved organic matters after treated by the two proteases indicated distinguishing mechanisms of the treating process.

  5. Composition of Extracellular Polymeric Substances (EPS) produced by Flavobacterium columnare isolated from tropical fish in Brazil.

    Science.gov (United States)

    de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco

    2013-01-01

    Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose.

  6. Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry.

    Science.gov (United States)

    Gutiérrez, Diana; Rodríguez-Rubio, Lorena; Martínez, Beatriz; Rodríguez, Ana; García, Pilar

    2016-01-01

    Microbiological contamination in the food industry is often attributed to the presence of biofilms in processing plants. Bacterial biofilms are complex communities of bacteria attached to a surface and surrounded by an extracellular polymeric material. Their extreme resistance to cleaning and disinfecting processes is related to a unique organization, which implies a differential bacterial growth and gene expression inside the biofilm. The impact of biofilms on health, and the economic consequences, has promoted the development of different approaches to control or remove biofilm formation. Recently, successful results in phage therapy have boosted new research in bacteriophages and phage lytic proteins for biofilm eradication. In this regard, this review examines the environmental factors that determine biofilm development in food-processing equipment. In addition, future perspectives for the use of bacteriophage-derived tools as disinfectants are discussed.

  7. [Progress in study of oral biofilm dispersal-inducing agents].

    Science.gov (United States)

    Yan, Zhu; Jingmei, Yang; Dingyu, Duan; Yi, Xu

    2014-12-01

    Communities of bacteria wrapped in self-generated extracellular polymeric matrix and attached to a solid surface are known as biofilm. Biofilm formation and development can be divided into three stages: adhesion of cells to a surface, reproduction of the cells, and dispersion of cells. The procedure, which surface-attached biofilm disperses bacterial cells into the environment to colonize new sites, is defined as biofilm dispersal. Biofilm dispersal is an essential stage of biofilm life cycle. It plays an important role in the transmission of bacteria. For many pathogenic bacteria, biofilm dispersal can transform bacteria in biofilm into planktonic state and promote the spread of infection. The formation of biofilm may increase the resistance of bacteria to antimicrobial agent and host defence response compared with planktonic cells. In the oral cavity, oral microorganism can attach to the surface of oral tissue and prosthesis to form biofilm. Dental caries and periodontal disease are oral chronic infections diseases of the oral tissue. The occurrence of them has a close relationship with biofilm. The mechanism of dispersal is a hot topic in recent years. Some agents which promote dispersal might be a therapeutic potential against biofilm infections. The clinical implication of dispersal agents and potential application are promising. This article reviews the dispersal-inducing agents of oral biofilms.

  8. Antimicrobial susceptibility testing in biofilm-growing bacteria.

    Science.gov (United States)

    Macià, M D; Rojo-Molinero, E; Oliver, A

    2014-10-01

    Biofilms are organized bacterial communities embedded in an extracellular polymeric matrix attached to living or abiotic surfaces. The development of biofilms is currently recognized as one of the most relevant drivers of persistent infections. Among them, chronic respiratory infection by Pseudomonas aeruginosa in cystic fibrosis patients is probably the most intensively studied. The lack of correlation between conventional susceptibility test results and therapeutic success in chronic infections is probably a consequence of the use of planktonically growing instead of biofilm-growing bacteria. Therefore, several in vitro models to evaluate antimicrobial activity on biofilms have been implemented over the last decade. Microtitre plate-based assays, the Calgary device, substratum suspending reactors and the flow cell system are some of the most used in vitro biofilm models for susceptibility studies. Likewise, new pharmacodynamic parameters, including minimal biofilm inhibitory concentration, minimal biofilm-eradication concentration, biofilm bactericidal concentration, and biofilm-prevention concentration, have been defined in recent years to quantify antibiotic activity in biofilms. Using these parameters, several studies have shown very significant quantitative and qualitative differences for the effects of most antibiotics when acting on planktonic or biofilm bacteria. Nevertheless, standardization of the procedures, parameters and breakpoints, by official agencies, is needed before they are implemented in clinical microbiology laboratories for routine susceptibility testing. Research efforts should also be directed to obtaining a deeper understanding of biofilm resistance mechanisms, the evaluation of optimal pharmacokinetic/pharmacodynamic models for biofilm growth, and correlation with clinical outcome.

  9. Impact of individual extracellular proteases on Staphylococcus aureus biofilm formation in diverse clinical isolates and their isogenic sarA mutants.

    Science.gov (United States)

    Loughran, Allister J; Atwood, Danielle N; Anthony, Allison C; Harik, Nada S; Spencer, Horace J; Beenken, Karen E; Smeltzer, Mark S

    2014-12-01

    We demonstrate that the purified Staphylococcus aureus extracellular proteases aureolysin, ScpA, SspA, and SspB limit biofilm formation, with aureolysin having the greatest impact. Using protease-deficient derivatives of LAC, we confirmed that this is due to the individual proteases themselves. Purified aureolysin, and to a lesser extent ScpA and SspB, also promoted dispersal of an established biofilm. Mutation of the genes encoding these proteases also only partially restored biofilm formation in an FPR3757 sarA mutant and had little impact on restoring virulence in a murine bacteremia model. In contrast, eliminating the production of all of these proteases fully restored both biofilm formation and virulence in a sarA mutant generated in the closely related USA300 strain LAC. These results confirm an important role for multiple extracellular proteases in S. aureus pathogenesis and the importance of sarA in repressing their production. Moreover, purified aureolysin limited biofilm formation in 14 of 15 methicillin-resistant isolates and 11 of 15 methicillin-susceptible isolates, while dispersin B had little impact in UAMS-1, LAC, or 29 of 30 contemporary isolates of S. aureus. This suggests that the role of sarA and its impact on protease production is important in diverse strains of S. aureus irrespective of their methicillin resistance status.

  10. Enterococcus faecium biofilm formation: identification of major autolysin AtlAEfm, associated Acm surface localization, and AtlAEfm-independent extracellular DNA Release.

    Science.gov (United States)

    Paganelli, Fernanda L; Willems, Rob J L; Jansen, Pamela; Hendrickx, Antoni; Zhang, Xinglin; Bonten, Marc J M; Leavis, Helen L

    2013-04-16

    Enterococcus faecium is an important multidrug-resistant nosocomial pathogen causing biofilm-mediated infections in patients with medical devices. Insight into E. faecium biofilm pathogenesis is pivotal for the development of new strategies to prevent and treat these infections. In several bacteria, a major autolysin is essential for extracellular DNA (eDNA) release in the biofilm matrix, contributing to biofilm attachment and stability. In this study, we identified and functionally characterized the major autolysin of E. faecium E1162 by a bioinformatic genome screen followed by insertional gene disruption of six putative autolysin genes. Insertional inactivation of locus tag EfmE1162_2692 resulted in resistance to lysis, reduced eDNA release, deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and significant chaining compared to that of the wild type. Therefore, locus tag EfmE1162_2692 was considered the major autolysin in E. faecium and renamed atlAEfm. In addition, AtlAEfm was implicated in cell surface exposure of Acm, a virulence factor in E. faecium, and thereby facilitates binding to collagen types I and IV. This is a novel feature of enterococcal autolysins not described previously. Furthermore, we identified (and localized) autolysin-independent DNA release in E. faecium that contributes to cell-cell interactions in the atlAEfm mutant and is important for cell separation. In conclusion, AtlAEfm is the major autolysin in E. faecium and contributes to biofilm stability and Acm localization, making AtlAEfm a promising target for treatment of E. faecium biofilm-mediated infections. IMPORTANCE Nosocomial infections caused by Enterococcus faecium have rapidly increased, and treatment options have become more limited. This is due not only to increasing resistance to antibiotics but also to biofilm-associated infections. DNA is released in biofilm matrix via cell lysis, caused by autolysin, and acts as a matrix stabilizer. In this study

  11. Chemical Biology Strategies for Biofilm Control.

    Science.gov (United States)

    Yang, Liang; Givskov, Michael

    2015-08-01

    Microbes live as densely populated multicellular surface-attached biofilm communities embedded in self-generated, extracellular polymeric substances (EPSs). EPSs serve as a scaffold for cross-linking biofilm cells and support development of biofilm architecture and functions. Biofilms can have a clear negative impact on humans, where biofilms are a common denominator in many chronic diseases in which they prime development of destructive inflammatory conditions and the failure of our immune system to efficiently cope with them. Our current assortment of antimicrobial agents cannot efficiently eradicate biofilms. For industrial applications, the removal of biofilms within production machinery in the paper and hygienic food packaging industry, cooling water circuits, and drinking water manufacturing systems can be critical for the safety and efficacy of those processes. Biofilm formation is a dynamic process that involves microbial cell migration, cell-to-cell signaling and interactions, EPS synthesis, and cell-EPS interactions. Recent progress of fundamental biofilm research has shed light on novel chemical biology strategies for biofilm control. In this article, chemical biology strategies targeting the bacterial intercellular and intracellular signaling pathways will be discussed.

  12. Effects of Light Stress on Extracellular Cycling in a Cyanobacterial Biofilm Community

    Science.gov (United States)

    Stuart, R.; Mayali, X.; Pett-Ridge, J.; Weber, P. K.; Thelen, M.; Bebout, B.; Lipton, M. S.

    2015-12-01

    Cyanobacterial carbon excretion is crucial to carbon cycling in many microbial communities, but the nature and bioavailability of the carbon excreted is dependent on physiological function, which is often unknown. Cyanobacteria are the dominant primary producers in hypersaline mats and there is large reservoir of carbon in the extracellular matrix, but the nature and flux is understudied. In a previous study, we examined the macromolecular composition of the matrix of microbial mats from Elkhorn Slough in Monterey Bay, California and a unicyanobacterial culture, ESFC-1, isolated from the those mats, and found evidence for cyanobacterial degradation and re-uptake of extracellular organic matter. In this work, we further explore mechanisms of this degradation and re-uptake by examining effects of light using a combination of high-resolution imaging mass spectrometry (NanoSIMS) and metaproteomics of extracellular proteins. Based on these findings, we propose that mat Cyanobacteria store and recycle organic material from the mat extracellular matrix. Cyanobacteria can account for 70-90% of the biomass in the upper phototrophic layer of the mats, so their re-uptake of organic carbon and nitrogen has the potential to re-define organic matter availability in these systems. This work has implications for cyanobacterial adaptation to dynamic environments like microbial mats, where uptake of carbon and nitrogen in variable forms may be necessary to persist. This research was supported by the U.S. Department of Energy Office of Science, Office of Biological and Environmental Research Genomic Science program under FWP SCW1039. Work at LLNL was performed under the auspices of the U.S. Department of Energy under Contract DE-AC52-07NA27344.

  13. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  14. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.

    Directory of Open Access Journals (Sweden)

    Luyan Ma

    2009-03-01

    Full Text Available Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell-cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications.

  15. Holographic microrheology of biofilms

    Science.gov (United States)

    Chiong Cheong, Fook; Duarte, Simone; Grier, David

    2008-03-01

    We present microrheological measurements of polymeric matrices, including the extra-cellular polysaccharide gel synthesized by the dental pathogen S. mutans. As part of this study, we introduce the use of precision three-dimensional particle tracking based on video holographic microscopy. This technique offers nanometer-scale resolution at video rates, thereby providing detailed information on the gels' complex viscoelastic moduli, including insights into their heterogeneity. The particular application to dental biofilms complements previous studies based on macroscopic rheology, and demonstrates the utility of holographic microrheology for soft-matter physics and biomedical research.

  16. Comparative proteomic analysis of extracellular proteins expressed by various clonal types of Staphylococcus aureus and during planktonic growth and biofilm development

    Directory of Open Access Journals (Sweden)

    Salman Sahab Atshan

    2015-06-01

    Full Text Available Staphylococcus aureus is well known for its biofilm formation with rapid emergence of new clones circulating worldwide. The main objectives of the study were 1 to identify possible differences in protein expression among various and closely related clonal types of S. aureus, 2 to establish the differences in protein expression in terms of size of protein spots and its intensities between bacteria which are grown statically (biofilm formation with that of under aeration and agitation, and 3 to compare the differences in protein expression as a function of time (in hours. In this study, we selected six clinical isolates comprising two similar (MRSA-527 and MRSA-524 and four different (MRSA-139, MSSA-12E, MSSA-22d, and MSSA-10E types identified by spa typing, MLST and SCCmec typing. We performed 2D gel migration comparison. Also, two MRSA isolates (527 and 139 were selected to determine quantitative changes in the level of extracellular proteins at different biofilm growth time points of 12 h, 24 h, and 48 h. The study was done using a strategy that combines 2-DGE and LC-MS/MS analysis for absolute quantification and identification of the extracellular proteins. The 2DGE revealed that the proteomic profiles for the isolates belonging to the similar spa, MLST and SCCmec types were still quite different. Among the extracellular proteins secreted at different time points of biofilm formation, significant changes in protein expression were observed at 48 h incubation as compared to the exponential growth at 12 h incubation. The main conclusion of the work is that the authors do observe differences among isolates, and growth conditions do influence the protein content at different time points of biofilm formation.

  17. iDynoMiCS: next‐generation individual‐based modelling of biofilms

    DEFF Research Database (Denmark)

    Lardon, Laurent; Merkey, Brian; Martins, Sónia;

    2011-01-01

    in order to provide a common basis for further developments. Four improvements stand out: the biofilm pressure field allows for shrinking or consolidating biofilms; the continuous‐in‐time extracellular polymeric substances excretion leads to more realistic fluid behaviour of the extracellular matrix......, then there is a strategy with optimal response time for any frequency of environmental fluctuations, suggesting that different types of denitrifying strategies win in different environments. In a single environment, biodiversity of denitrifiers is higher in biofilms than chemostats, higher with than without costs...

  18. Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris.

    Directory of Open Access Journals (Sweden)

    Huabing Li

    Full Text Available Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC of carbon steels. MIC by sulfate reducing bacteria (SRB is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry.

  19. Neutrophil extracellular traps and bacterial biofilms in middle ear effusion of children with recurrent acute otitis media--a potential treatment target.

    Directory of Open Access Journals (Sweden)

    Ruth B Thornton

    Full Text Available BACKGROUND: Bacteria persist within biofilms on the middle ear mucosa of children with recurrent and chronic otitis media however the mechanisms by which these develop remain to be elucidated. Biopsies can be difficult to obtain from children and their small size limits analysis. METHODS: In this study we aimed to investigate biofilm presence in middle ear effusion (MEE from children with recurrent acute otitis media (rAOM and to determine if these may represent infectious reservoirs similarly to those on the mucosa. We examined this through culture, viability staining and fluorescent in situ hybridisation (FISH to determine bacterial species present. Most MEEs had live bacteria present using viability staining (32/36 and all effusions had bacteria present using the universal FISH probe (26/26. Of these, 70% contained 2 or more otopathogenic species. Extensive DNA stranding was also present. This DNA was largely host derived, representing neutrophil extracellular traps (NETs within which live bacteria in biofilm formations were present. When treated with the recombinant human deoxyribonuclease 1, Dornase alfa, these strands were observed to fragment. CONCLUSIONS: Bacterial biofilms, composed of multiple live otopathogenic species can be demonstrated in the MEEs of children with rAOM and that these contain extensive DNA stranding from NETs. The NETs contribute to the viscosity of the effusion, potentially contributing to its failure to clear as well as biofilm development. Our data indicates that Dornase alfa can fragment these strands and may play a role in future chronic OM treatment.

  20. Polysaccharides serve as scaffold of biofilms formed by mucoid Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Yang, Liang; Hengzhuang, Wang; Wu, Hong

    2012-01-01

    Chronic lung infection by mucoid Pseudomonas aeruginosa is one of the major pathologic features in patients with cystic fibrosis. Mucoid P. aeruginosa is notorious for its biofilm forming capability and resistance to immune attacks. In this study, the roles of extracellular polymeric substances...... from biofilms formed by mucoid P. aeruginosa were investigated. Alginate is not an essential structure component for mucoid P. aeruginosa biofilms. Genetic studies revealed that Pel and Psl polysaccharides serve as essential scaffold and mediate macrocolony formation in mucoid P. aeruginosa biofilms...

  1. Effect of proteases on biofilm formation of the plastic-degrading actinomycete Rhodococcus ruber C208.

    Science.gov (United States)

    Gilan, Irit; Sivan, Alex

    2013-05-01

    In most habitats, the vast majority of microbial populations form biofilms on solid surfaces, whether natural or artificial. These biofilms provide either increased physical support and/or a source of nutrients. Further modifications and development of biofilms are regulated by signal molecules secreted by the cells. Because synthetic polymers are not soluble in aqueous solutions, biofilm-producing bacteria may biodegrade such materials more efficiently than planktonic strains. Bacterial biofilms comprise bacterial cells embedded in self-secreted extracellular polymeric substances (EPS). Revealing the roles of each component of the EPS will enable further insight into biofilm development and the EPS structure-function relationship. A strain of Rhodococcus ruber (C208) displayed high hydrophobicity and formed a dense biofilm on the surface of polyethylene films while utilizing the polyolefin as carbon and energy sources. This study investigated the effects of several proteases on C208 biofilm formation and stability. The proteolysis of C208 biofilm gave conflicting results. Trypsin significantly reduced biofilm formation, and the resultant biofilm appeared monolayered. In contrast, proteinase K enhanced biofilm formation, which was robust and multilayered. Presumably, proteinase K degraded self-secreted proteases or quorum-sensing peptides, which may be involved in biofilm detachment processes, leading to a multilayered, nondispersed biofilm.

  2. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14.

    Science.gov (United States)

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39-56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3'-5')-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor.

  3. Effect of calcium on moving-bed biofilm reactor biofilms.

    Science.gov (United States)

    Goode, C; Allen, D G

    2011-03-01

    The effect of calcium concentration on the biofilm structure, microbiology, and treatment performance was evaluated in a moving-bed biofilm reactor. Three experiments were conducted in replicate laboratory-scale reactors to determine if wastewater calcium is an important variable for the design and optimization of these reactors. Biofilm structural properties, such as thickness, oxygen microprofiles, and the composition of extracellular polymeric substances (EPS) were affected by increasing calcium concentrations. Above a threshold concentration of calcium between 1 and 50 mg/L, biofilms became thicker and denser, with a shift toward increasingly proteinaceous EPS at higher calcium concentrations up to 200 mgCa2+/L. At 300 mgCa2+/L, biofilms were found to become primarily composed of inorganic calcium precipitates. Microbiology was assessed through microscopy, denaturing grade gel electrophoresis, and enumeration of higher organisms. Higher calcium concentrations were found to change the bacterial community and promote the abundant growth of filamentous organisms and various protazoa and metazoan populations. The chemical oxygen demand removal efficiency was improved for reactors at calcium concentrations of 50 mg/L and above. Reactor effluents for the lowest calcium concentration (1 mgCa2+/L) were found to be turbid (>50 NTU), as a result of the detachment of small and poorly settling planktonic biomass, whereas higher concentrations promoted settling of the suspended phase. In general, calcium was found to be an important variable causing significant changes in biofilm structure and reactor function.

  4. From a thin film model for passive suspensions towards the description of osmotic biofilm spreading

    CERN Document Server

    Trinschek, Sarah; Thiele, Uwe

    2016-01-01

    Biofilms are ubiquitous macro-colonies of bacteria that develop at various interfaces (solid-liquid, solid-gas or liquid-gas). The formation of biofilms starts with the attachment of individual bacteria to an interface, where they proliferate and produce a slimy polymeric matrix - two processes that result in colony growth and spreading. Recent experiments on the growth of biofilms on agar substrates under air have shown that for certain bacterial strains, the production of the extracellular matrix and the resulting osmotic influx of nutrient-rich water from the agar into the biofilm are more crucial for the spreading behaviour of a biofilm than the motility of individual bacteria. We present a model which describes the biofilm evolution and the advancing biofilm edge for this spreading mechanism. The model is based on a gradient dynamics formulation for thin films of biologically passive liquid mixtures and suspensions, supplemented by bioactive processes which play a decisive role in the osmotic spreading o...

  5. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.

    Science.gov (United States)

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R C; Yang, Liang; Rice, Scott A; Doyle, Patrick; Kjelleberg, Staffan

    2014-08-05

    Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. Importance: Most bacteria grow as biofilms in the environment or in association with eukaryotic hosts. Removal of biofilms that form on surfaces is a challenge in clinical

  6. Biofilm formation by Staphylococcus epidermidis on peritoneal dialysis catheters and the effects of extracellular products from Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Pihl, Maria; Arvidsson, Anna; Skepö, Marie;

    2013-01-01

    Biofilm formation by Staphylococcus epidermidis is a cause of infections related to peritoneal dialysis (PD). We have used a PD catheter flow-cell model in combination with confocal scanning laser microscopy and atomic force microscopy to study biofilm formation by S. epidermidis. Adherence...... to serum-coated catheters was four times greater than to uncoated ones, suggesting that S. epidermidis binds to serum proteins on the catheter surface. Pseudomonas aeruginosa biofilm supernatant interfered with the formation of a serum protein coat thereby reducing the capacity for biofilm formation in S...

  7. Label-free Raman monitoring of extracellular matrix formation in three-dimensional polymeric scaffolds.

    Science.gov (United States)

    Kunstar, Aliz; Leferink, Anne M; Okagbare, Paul I; Morris, Michael D; Roessler, Blake J; Otto, Cees; Karperien, Marcel; van Blitterswijk, Clemens A; Moroni, Lorenzo; van Apeldoorn, Aart A

    2013-09-06

    Monitoring extracellular matrix (ECM) components is one of the key methods used to determine tissue quality in three-dimensional scaffolds for regenerative medicine and clinical purposes. Raman spectroscopy can be used for non-invasive sensing of cellular and ECM biochemistry. We have investigated the use of conventional (confocal and semiconfocal) Raman microspectroscopy and fibre-optic Raman spectroscopy for in vitro monitoring of ECM formation in three-dimensional poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) scaffolds. Chondrocyte-seeded PEOT/PBT scaffolds were analysed for ECM formation by Raman microspectroscopy, biochemical analysis, histology and scanning electron microscopy. ECM deposition in these scaffolds was successfully detected by biochemical and histological analysis and by label-free non-destructive Raman microspectroscopy. In the spectra collected by the conventional Raman set-ups, the Raman bands at 937 and at 1062 cm(-1) which, respectively, correspond to collagen and sulfated glycosaminoglycans could be used as Raman markers for ECM formation in scaffolds. Collagen synthesis was found to be different in single chondrocyte-seeded scaffolds when compared with microaggregate-seeded samples. Normalized band-area ratios for collagen content of single cell-seeded samples gradually decreased during a 21-day culture period, whereas collagen content of the microaggregate-seeded samples significantly increased during this period. Moreover, a fibre-optic Raman set-up allowed for the collection of Raman spectra from multiple pores inside scaffolds in parallel. These fibre-optic measurements could give a representative average of the ECM Raman signal present in tissue-engineered constructs. Results in this study provide proof-of-principle that Raman microspectroscopy is a promising non-invasive tool to monitor ECM production and remodelling in three-dimensional porous cartilage tissue-engineered constructs.

  8. Role of the Emp Pilus Subunits of Enterococcus faecium in Biofilm Formation, Adherence to Host Extracellular Matrix Components, and Experimental Infection.

    Science.gov (United States)

    Montealegre, Maria Camila; Singh, Kavindra V; Somarajan, Sudha R; Yadav, Puja; Chang, Chungyu; Spencer, Robert; Sillanpää, Jouko; Ton-That, Hung; Murray, Barbara E

    2016-05-01

    Enterococcus faecium is an important cause of hospital-associated infections, including urinary tract infections (UTIs), bacteremia, and infective endocarditis. Pili have been shown to play a role in the pathogenesis of Gram-positive bacteria, including E. faecium We previously demonstrated that a nonpiliated ΔempABC::cat derivative of E. faecium TX82 was attenuated in biofilm formation and in a UTI model. Here, we studied the contributions of the individual pilus subunits EmpA, EmpB, and EmpC to pilus architecture, biofilm formation, adherence to extracellular matrix (ECM) proteins, and infection. We identified EmpA as the tip of the pili and found that deletion of empA reduced biofilm formation to the same level as deletion of the empABC operon, a phenotype that was restored by reconstituting in situ the empA gene. Deletion of empB also caused a reduction in biofilm, while EmpC was found to be dispensable. Significant reductions in adherence to fibrinogen and collagen type I were observed with deletion of empA and empB, while deletion of empC had no adherence defect. Furthermore, we showed that each deletion mutant was significantly attenuated in comparison to the isogenic parental strain, TX82, in a mixed-inoculum UTI model (P Emp pilins are important for E. faecium to cause infection in the urinary tract.

  9. Extracellular polymeric substances enhanced mass transfer of polycyclic aromatic hydrocarbons in the two-liquid-phase system for biodegradation.

    Science.gov (United States)

    Zhang, Yinping; Wang, Fang; Yang, Xinglun; Gu, Chenggang; Kengara, Fredrick Orori; Hong, Qing; Lv, Zhengyong; Jiang, Xin

    2011-05-01

    The objective was to elucidate the role of extracellular polymeric substances (EPS) in biodegradation of polycyclic aromatic hydrocarbons in two-liquid-phase system (TLPs). Therefore, biodegradation of phenanthrene (PHE) was conducted in a typical TLPs--silicone oil-water--with PHE-degrading bacteria capable of producing EPS, Sphingobium sp. PHE3 and Micrococcus sp. PHE9. The results showed that the presence of both strains enhanced mass transfer of PHE from silicone oil to water, and that biodegradation of PHE mainly occurred at the interfaces. The ratios of tightly bound (TB) proteins to TB polysaccharides kept almost constant, whereas the ratios of loosely bound (LB) proteins to LB polysaccharides increased during the biodegradation. Furthermore, polysaccharides led to increased PHE solubility in the bulk water, which resulted in an increased PHE mass transfer. Both LB-EPS and TB-EPS (proteins and polysaccharides) correlated with PHE mass transfer in silicone oil, indicating that both proteins and polysaccharides favored bacterial uptake of PHE at the interfaces. It could be concluded that EPS could facilitate microbial degradation of PHE in the TLPs.

  10. The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins.

    Science.gov (United States)

    Henriques, Inês D S; Love, Nancy G

    2007-10-01

    The objective of this study was to evaluate the respiration inhibition induced by octanol, cadmium, N-ethylmaleimide (NEM) and cyanide on activated sludge biomasses with different floc structures but similar physiological characteristics. Mechanical shearing was applied to fresh mixed liquor to produce biomasses with different floc structure properties. Specific oxygen uptake rate assays were conducted on the sheared and unsheared mixed liquors. The results showed that mechanical shearing resulted in release of biopolymers from the floc extracellular polymeric substances (EPS) matrix into the bulk liquid and a simultaneous reduction in floc size. Shearing did not impact biomass viability. The respiration inhibition by octanol and cadmium was more severe in sheared mixed liquor than in the unsheared biomass. Conversely, the respiration inhibition induced by NEM and cyanide was similar for the different mixed liquors tested. We conclude that the EPS matrix functions as a protective barrier for the bacteria inside activated sludge flocs to chemicals that it has the potential to interact with, such as hydrophobic (octanol) and positively charged (cadmium) compounds, but that the toxicity response for soluble, hydrophilic toxins (NEM and cyanide) is not influenced by the presence of the polymer matrix.

  11. Protozoan indicators and extracellular polymeric substances alterations in an intermittently aerated membrane bioreactor treating mature landfill leachate.

    Science.gov (United States)

    Remmas, Nikolaos; Melidis, Paraschos; Paschos, Georgios; Statiris, Evangelos; Ntougias, Spyridon

    2017-01-01

    A membrane bioreactor was operated under intermittent aeration and various organic loading rates (OLR: 0.070, 0.159 and 0.291 g COD L(-1) d(-1)) to remove carbon and nitrogen from mature landfill leachate, where external carbon source (glycerol) addition resulted in effective nitrate removal. A relative increase in soluble microbial product (SMP) over extracellular polymeric substances (EPS) was observed at the highest OLR and glycerol addition, whereas no membrane biofouling occurred. SMP (proteins and carbohydrates) and carbohydrate EPS correlated positively and negatively, respectively, with suspended solids and transmembrane pressure (TMP). Moreover, proteinous SMP significantly correlated with carbon and nitrogen load. Principal component analysis also revealed the influence of leachate organic and nitrogen content on biomass production, TMP and sessile ciliate densities. Although filamentous index (FI) was sustained at high levels (3-4), with Haliscomenobacter hydrossis being the main filamentous bacterium identified, no bulking phenomena occurred. High glycerol addition resulted in a rapid increase in sessile ciliate population. Increased Epistylis and Vorticella microstoma population was detected by microscopic examination during high glycerol addition, while a remarkable Rhogostoma population (supergroup Rhizaria) was identified by molecular techniques. The contribution of Rhizaria in nitrogen processes may lead to the dominance of Rhogostoma during landfill leachate treatment.

  12. Evaluating filterability of different types of sludge by statistical analysis: The role of key organic compounds in extracellular polymeric substances.

    Science.gov (United States)

    Xiao, Keke; Chen, Yun; Jiang, Xie; Zhou, Yan

    2017-03-01

    An investigation was conducted for 20 different types of sludge in order to identify the key organic compounds in extracellular polymeric substances (EPS) that are important in assessing variations of sludge filterability. The different types of sludge varied in initial total solids (TS) content, organic composition and pre-treatment methods. For instance, some of the sludges were pre-treated by acid, ultrasonic, thermal, alkaline, or advanced oxidation technique. The Pearson's correlation results showed significant correlations between sludge filterability and zeta potential, pH, dissolved organic carbon, protein and polysaccharide in soluble EPS (SB EPS), loosely bound EPS (LB EPS) and tightly bound EPS (TB EPS). The principal component analysis (PCA) method was used to further explore correlations between variables and similarities among EPS fractions of different types of sludge. Two principal components were extracted: principal component 1 accounted for 59.24% of total EPS variations, while principal component 2 accounted for 25.46% of total EPS variations. Dissolved organic carbon, protein and polysaccharide in LB EPS showed higher eigenvector projection values than the corresponding compounds in SB EPS and TB EPS in principal component 1. Further characterization of fractionized key organic compounds in LB EPS was conducted with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND). A numerical multiple linear regression model was established to describe relationship between organic compounds in LB EPS and sludge filterability.

  13. Role of extracellular polymeric substances (EPS from Pseudomonas putida strain MnB1 in dissolution of natural rhodochrosite

    Directory of Open Access Journals (Sweden)

    H. Wang

    2014-05-01

    Full Text Available Microbially mediated oxidation of Mn(II to Mn oxides have been demonstrated in previous studies, however, the mechanisms of bacteria how to dissolve and oxidize using a solid Mn(II origin are poorly understood. In this study, we examined the role of extracellular polymeric substances (EPS from P. putida strain MnB1 in enhancing dissolution of natural rhodochrosite. The results showed that P. putida strain MnB1 cell can effectively dissolve and oxidize natural rhodochrosite to generate Mn oxides, and EPS were found to play an important role in increasing dissolution of natural rhodochrosite. Compared with EPS-free treatment, dissolution rate of natural rhodochrosite in the presence of bacterial EPS was significantly increased with decreasing initial pH and increasing EPS concentration, ionic strength and rhodochrosite dosage (p < 0.05. The fourier-transform infrared spectroscopy (FTIR analysis implies that the functional groups like N-H, C=O and C-H in EPS contributed to the dissolution of natural rhodochrosite. This study is helpful for understanding the mechanisms of the formation of biogenic Mn oxides using a solid Mn(II origin.

  14. Direct Comparison of Physical Properties of Bacillus subtilis NCIB 3610 and B-1 Biofilms.

    Science.gov (United States)

    Kesel, Sara; Grumbein, Stefan; Gümperlein, Ina; Tallawi, Marwa; Marel, Anna-Kristina; Lieleg, Oliver; Opitz, Madeleine

    2016-04-01

    Many bacteria form surface-attached communities known as biofilms. Due to the extreme resistance of these bacterial biofilms to antibiotics and mechanical stresses, biofilms are of growing interest not only in microbiology but also in medicine and industry. Previous studies have determined the extracellular polymeric substances present in the matrix of biofilms formed by Bacillus subtilis NCIB 3610. However, studies on the physical properties of biofilms formed by this strain are just emerging. In particular, quantitative data on the contributions of biofilm matrix biopolymers to these physical properties are lacking. Here, we quantitatively investigated three physical properties of B. subtilis NCIB 3610 biofilms: the surface roughness and stiffness and the bulk viscoelasticity of these biofilms. We show how specific biomolecules constituting the biofilm matrix formed by this strain contribute to those biofilm properties. In particular, we demonstrate that the surface roughness and surface elasticity of 1-day-old NCIB 3610 biofilms are strongly affected by the surface layer protein BslA. For a second strain,B. subtilis B-1, which forms biofilms containing mainly γ-polyglutamate, we found significantly different physical biofilm properties that are also differently affected by the commonly used antibacterial agent ethanol. We show that B-1 biofilms are protected from ethanol-induced changes in the biofilm's stiffness and that this protective effect can be transferred to NCIB 3610 biofilms by the sole addition of γ-polyglutamate to growing NCIB 3610 biofilms. Together, our results demonstrate the importance of specific biofilm matrix components for the distinct physical properties of B. subtilis biofilms.

  15. Emerging frontiers in detection and control of bacterial biofilms.

    Science.gov (United States)

    Tan, Seth Yang-En; Chew, Su Chuen; Tan, Sean Yang-Yi; Givskov, Michael; Yang, Liang

    2014-04-01

    Bacteria form surface-attached biofilm communities in nature. In contrast to free-living cells, bacterial cells within biofilms resist sanitizers and antimicrobials. While building biofilms, cells physiologically adapt to sustain the otherwise lethal impacts of a variety of environmental stress conditions. In this development, the production and embedding of cells in extracellular polymeric substances plays a key role. Biofilm bacteria can cause a range of problems to food processing including reduced heat-cold transfer, clogging water pipelines, food spoilage and they may cause infections among consumers. Recent biofilm investigations with the aim of potential control approaches include a combination of bacterial genetics, systems biology, materials and mechanic engineering and chemical biology.

  16. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery.

    Science.gov (United States)

    Liao, Sumei; Klein, Marlise I; Heim, Kyle P; Fan, Yuwei; Bitoun, Jacob P; Ahn, San-Joon; Burne, Robert A; Koo, Hyun; Brady, L Jeannine; Wen, Zezhang T

    2014-07-01

    Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA.

  17. Characteristics of biofilm attaching to carriers in moving bed biofilm reactor used to treat vitamin C wastewater.

    Science.gov (United States)

    Hu, Xiao-bing; Xu, Ke; Wang, Zhao; Ding, Li-li; Ren, Hong-qiang

    2013-01-01

    In order to investigate characteristics of biofilm attaching firmly to carriers in the moving bed biofilm reactor (MBBR) used for vitamin C wastewater treatment, experiments were undertaken with instrumental analysis methods. Scanning electron microscopy (SEM) micrographs of MBBR biofilms revealed that there were rod-shaped microbes and cocci in the biofilm, and microbes were embedded within medium substances and the biofilm matrix adhered firmly to carriers, leading to the formation of a smooth compacted surface at the base of the biofilm. Transmission electron microscopy (TEM) analysis revealed that extracellular polymeric substances (EPS) layer surrounded cell, sequestered inorganics to form a mixed structure, which ensured firm attachment of the biofilm to the carrier. X-ray diffraction (XRD) experiments and thermogravimetry analysis revealed that (i) the biofilm contained many inorganic substances, about 70.5%, and the inorganic substances contained multiple classes of inorganic with a high boiling point; (ii) inorganic elements such as calcium and phosphorous were selectively absorbed and accumulated in the biofilm as insoluble compounds with amorphous phases, rendering the biofilm highly resistant to detachment. Fourier-transform infrared (FTIR) spectroscopy showed carbohydrates were the main EPS.

  18. Preparation of Polyester-Based Metal-Cross Linked Polymeric Composites as Novel Materials Resistant to Bacterial Adhesion and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Mutasem O. Taha

    2011-01-01

    Full Text Available Bacterial biofilms constitute an extremely resistant form of bacterial colonization with dire health and economical implications. Towards achieving polymeric composites capable of resisting bacterial adhesion and biofilm formation, we prepared five 2,6-pyridinedicarboxylate-based polyesters employing five different diol monomers. The resulting polyesters were complexed with copper (II or silver (I. The new polymers were characterized by proton and carbon nuclear magnetic resonance spectroscopy, inherent viscosity, infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. The corresponding metal complexes were characterized by differential scanning calorimery and infrared spectroscopy. The amounts of complexed copper and silver were determined by atomic absorption spectrophotometry. Finally, the resulting composites were tested for their antibacterial potential and were found to effectively resist bacterial attachment and growth.

  19. Characterization of Mannheimia haemolytica biofilm formation in vitro.

    Science.gov (United States)

    Boukahil, Ismail; Czuprynski, Charles J

    2015-01-30

    Mannheimia haemolytica is the primary bacterial agent in the bovine respiratory disease complex. It is thought that M. haemolytica colonizes the tonsillar crypts of cattle as a commensal and subsequently descends into the lungs to cause disease. Many bacterial species persist in the host as biofilms. There is limited information about the ability of M. haemolytica to form biofilms. The aim of this study was to develop an in vitro model for M. haemolytica biofilm formation. We found that M. haemolytica required at least 36 h to form robust biofilms on plastic in vitro when incubated in RPMI-1640 tissue culture medium at 37 °C, with maximal biofilm formation being evident at 48 h. Biofilm formation was inhibited by adding the monosaccharides d(+) galactose and d(+) mannose to the growth medium. Addition of antibodies to the M. haemolytica surface protein OmpA also reduced biofilm formation. Upon evaluating the macromolecules within the biofilm extracellular polymeric substance we found it contained 9.7 μg/cm(2) of protein, 0.81 μg/cm(2) of total carbohydrate, and 0.47 μg/cm(2) of extracellular DNA. Furthermore, proteinase K treatment significantly decreased biofilms (P<0.05) while α-amylase and micrococcal nuclease decreased biofilms to a lesser extent. M. haemolytica biofilm cells were more resistant than planktonic cells to the antibiotics florfenicol, gentamicin, and tulathromycin. These results provide evidence that M. haemolytica can form biofilms, which could contribute to its ability to persist as a commensal in the bovine upper respiratory tract.

  20. Impact of certain household micropollutants on bacterial behavior. Toxicity tests/study of extracellular polymeric substances in sludge.

    Science.gov (United States)

    Pasquini, Laure; Merlin, Christophe; Hassenboehler, Lucille; Munoz, Jean-François; Pons, Marie-Noëlle; Görner, Tatiana

    2013-10-01

    The impact of eight household micropollutants (erythromycin, ofloxacin, ibuprofen, 4-nonylphenol, triclosan, sucralose, PFOA and PFOS (PFAAs)) on the laboratory bacterial strain Escherichia coli MG1655 and on activated sludge from an urban wastewater treatment plant was studied. Growth-based toxicity tests on E. coli were performed for each micropollutants. The effect of micropollutants on activated sludge (at concentrations usually measured in wastewater up to concentrations disturbing the bacterial growth of E. coli) was examined in batch reactors and by comparison to a control reactor (without micropollutants). The bound extracellular polymeric substances (EPS) secreted by the sludge were measured by size exclusion chromatography and their overexpression was considered as an indicator of bacteria sensitivity to environmental changes. The chemical oxygen demand (COD) and the ammonium concentration were monitored to evaluate the biomass ability to remove the macropollution. Some micropollutants induced an increase of bound EPS in activated sludge flocs at concentrations depending on the micropollutant: erythromycin from 100 μg/L, ofloxacin from 10 μg/L, triclosan from 0.5 μg/L, 4-nonylphenol from 5000 μg/L and PFAAs from 0.1 μg/L. This suggests that the biomass had to cope with new conditions. Moreover, at high concentrations of erythromycin (10 mg/L) and ibuprofen (5 mg/L) bacterial populations were no longer able to carry out the removal of macropollution. Ibuprofen induced a decrease of bound EPS at all the studied concentrations, probably reflecting a decrease of general bacterial activity. The biomass was not sensitive to sucralose in terms of EPS production, however at very high concentration (1 g/L) it inhibited the COD decrease. Micropollution removal was also assessed. Ibuprofen, erythromycin, ofloxacin, 4-nonylphenol and triclosan were removed from wastewater, mainly by biodegradation. Sucralose and PFOA were not removed from wastewater at all, and

  1. The effects of three commonly used extraction methods on the redox properties of extracellular polymeric substances from activated sludge.

    Science.gov (United States)

    Lu, Qin; Chang, Ming; Yu, Zhen; Zhou, Shungui

    2015-01-01

    Recently, the redox properties of extracellular polymeric substances (EPS) have attracted the attention of scientists due to their associated environmental significance, such as organic pollutant (e.g. nitroaromatics and substituted nitrobenzenes) degradation and heavy metal (e.g. Cr(VI) and U(VI)) detoxification. Although the separation of EPS from bacterial cells is more often the first step in studies on EPS, and studies have demonstrated that extraction procedures can influence the sorption properties of EPS, few attempts have been made to investigate how separation methods affect the redox properties of the obtained EPS. In this study, three common extraction approaches, that is, centrifugation, formaldehyde+NaOH and ethylene diamine tetra-acetic acid (EDTA), were employed to extract EPS from activated sludge, and the obtained EPS were evaluated for their redox properties using electrochemical means, including cyclic voltammetry and chronoamperometry. In addition, spectroscopic techniques were utilized to explore the structural characteristics and composition of EPS. The results indicated that EPS extracted by EDTA clearly displayed reversible oxidation-reduction peaks in cyclic voltammograms and significantly higher electron-accepting capacity compared with EPS extracted using the other two approaches. Fourier transform infrared spectra and three-dimensional excitation-emission matrix spectra suggested that the EPS extracted with EDTA presented better redox properties because of the effective and efficient extraction of the humic substances, which are important components of the EPS of activated sludge. Therefore, extraction method has an impact on the composition and redox properties of EPS and should be chosen according to research purpose and EPS source.

  2. Evaluation of the Influence of Extracellular Polymeric Substances on the Mass Transport of Substrate within Multispecies Biofilms

    Institute of Scientific and Technical Information of China (English)

    曹宏斌; 李鑫钢; 姜斌; 孙津生; 张懿

    2004-01-01

    A model, for evaluating the effect of porosity and volume fraction of extracellular polymeric substances (EPS) within multispecies biofilms on the effective diffusivity, is developed and experimentally validated, based on the extraction of EPS from intact biofilms. The amount of EPS in biofilms significantly affects the effective diffusivity. For biofilms with porosity of 77%—95% in the top layers and 54%—58% in the bottom layers, the value of De/Dw decreases from 0.52—0.83 in the top layers to 0.23—0.31 in the bottom layers. Generally, the effective diffusivity in the heterotrophic/autotrophic biofilms is slightly lower than that in the heterotrophic biofilms, due to the lower porosity in the heterotrophic/autotrophic biofilms.

  3. Continuous Drip Flow System to Develop Biofilm of E. faecalis under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Ana Maria Gonzalez

    2014-01-01

    Full Text Available Purpose. To evaluate a structurally mature E. faecalis biofilm developed under anaerobic/dynamic conditions in an in vitro system. Methods. An experimental device was developed using a continuous drip flow system designed to develop biofilm under anaerobic conditions. The inoculum was replaced every 24 hours with a fresh growth medium for up to 10 days to feed the system. Gram staining was done every 24 hours to control the microorganism purity. Biofilms developed under the system were evaluated under the scanning electron microscope (SEM. Results. SEM micrographs demonstrated mushroom-shaped structures, corresponding to a mature E. faecalis biofilm. In the mature biofilm bacterial cells are totally encased in a polymeric extracellular matrix. Conclusions. The proposed in vitro system model provides an additional useful tool to study the biofilm concept in endodontic microbiology, allowing for a better understanding of persistent root canal infections.

  4. Tailoring hierarchically porous graphene architecture by carbon nanotube to accelerate extracellular electron transfer of anodic biofilm in microbial fuel cells

    Science.gov (United States)

    Zou, Long; Qiao, Yan; Wu, Xiao-Shuai; Li, Chang Ming

    2016-10-01

    To overcoming their respective shortcomings of graphene and carbon nanotube, a hierarchically porous multi-walled carbon nanotube@reduced graphene oxide (MWCNT@rGO) hybrid is fabricated through a versatile and scalable solvent method, in which the architecture is tailored by inserting MWCNTs as scaffolds into the rGO skeleton. An appropriate amount of inserted 1-D MWCNTs not only effectively prevent the aggregation of rGO sheets but also act as bridges to increase multidirectional connections between 2-D rGO sheets, resulting in a 3-D hierarchically porous structure with large surface area and excellent biocompatibility for rich bacterial biofilm and high electron transfer rate. The MWCNT@rGO1:2/biofilm anode delivers a maximum power density of 789 mW m-2 in Shewanella putrefaciens CN32 microbial fuel cells, which is much higher than that of individual MWCNT and rGO, in particular, 6-folder higher than that of conventional carbon cloth. The great enhancement is ascribed to a synergistic effect of the integrated biofilm and hierarchically porous structure of MWCNT@rGO1:2/biofilm anode, in which the biofilm provides a large amount of bacterial cells to raise the concentration of local electron shuttles for accelerating the direct electrochemistry on the 3-D hierarchically porous structured anodes.

  5. DNABII proteins play a central role in UPEC biofilm structure.

    Science.gov (United States)

    Devaraj, Aishwarya; Justice, Sheryl S; Bakaletz, Lauren O; Goodman, Steven D

    2015-06-01

    Most chronic and recurrent bacterial infections involve a biofilm component, the foundation of which is the extracellular polymeric substance (EPS). Extracellular DNA (eDNA) is a conserved and key component of the EPS of pathogenic biofilms. The DNABII protein family includes integration host factor (IHF) and histone-like protein (HU); both are present in the extracellular milieu. We have shown previously that the DNABII proteins are often found in association with eDNA and are critical for the structural integrity of bacterial communities that utilize eDNA as a matrix component. Here, we demonstrate that uropathogenic Escherichia coli (UPEC) strain UTI89 incorporates eDNA within its biofilm matrix and that the DNABII proteins are not only important for biofilm growth, but are limiting; exogenous addition of these proteins promotes biofilm formation that is dependent on eDNA. In addition, we show that both subunits of IHF, yet only one subunit of HU (HupB), are critical for UPEC biofilm development. We discuss the roles of these proteins in context of the UPEC EPS.

  6. Impact of certain household micropollutants on bacterial behavior. Toxicity tests/study of extracellular polymeric substances in sludge

    Energy Technology Data Exchange (ETDEWEB)

    Pasquini, Laure, E-mail: laure.pasquini@univ-lorraine.fr [Laboratoire Environnement et Minéralurgie-CNRS, Université de Lorraine, 15 Avenue du Charmois, 54501 Vandoeuvre-lès-Nancy Cedex (France); Merlin, Christophe [Laboratoire de Chimie, Physique et Microbiologie pour l' Environnement-CNRS, Université de Lorraine, 15 Avenue du Charmois, 54501 Vandoeuvre-lès-Nancy Cedex (France); Hassenboehler, Lucille [Laboratoire Environnement et Minéralurgie-CNRS, Université de Lorraine, 15 Avenue du Charmois, 54501 Vandoeuvre-lès-Nancy Cedex (France); Munoz, Jean-François [Laboratoire d' Hydrologie de Nancy, ANSES, 40 rue Lionnois, 54000 Nancy (France); Pons, Marie-Noëlle [Laboratoire Réactions et Génie des Procédés-CNRS, Université de Lorraine, 1 Rue Grandville, 54001 Nancy Cedex (France); Görner, Tatiana [Laboratoire Environnement et Minéralurgie-CNRS, Université de Lorraine, 15 Avenue du Charmois, 54501 Vandoeuvre-lès-Nancy Cedex (France)

    2013-10-01

    The impact of eight household micropollutants (erythromycin, ofloxacin, ibuprofen, 4-nonylphenol, triclosan, sucralose, PFOA and PFOS (PFAAs)) on the laboratory bacterial strain Escherichia coli MG1655 and on activated sludge from an urban wastewater treatment plant was studied. Growth-based toxicity tests on E. coli were performed for each micropollutants. The effect of micropollutants on activated sludge (at concentrations usually measured in wastewater up to concentrations disturbing the bacterial growth of E. coli) was examined in batch reactors and by comparison to a control reactor (without micropollutants). The bound extracellular polymeric substances (EPS) secreted by the sludge were measured by size exclusion chromatography and their overexpression was considered as an indicator of bacteria sensitivity to environmental changes. The chemical oxygen demand (COD) and the ammonium concentration were monitored to evaluate the biomass ability to remove the macropollution. Some micropollutants induced an increase of bound EPS in activated sludge flocs at concentrations depending on the micropollutant: erythromycin from 100 μg/L, ofloxacin from 10 μg/L, triclosan from 0.5 μg/L, 4-nonylphenol from 5000 μg/L and PFAAs from 0.1 μg/L. This suggests that the biomass had to cope with new conditions. Moreover, at high concentrations of erythromycin (10 mg/L) and ibuprofen (5 mg/L) bacterial populations were no longer able to carry out the removal of macropollution. Ibuprofen induced a decrease of bound EPS at all the studied concentrations, probably reflecting a decrease of general bacterial activity. The biomass was not sensitive to sucralose in terms of EPS production, however at very high concentration (1 g/L) it inhibited the COD decrease. Micropollution removal was also assessed. Ibuprofen, erythromycin, ofloxacin, 4-nonylphenol and triclosan were removed from wastewater, mainly by biodegradation. Sucralose and PFOA were not removed from wastewater at all, and

  7. Effects of solution conditions on the physicochemical properties of stratification components of extracellular polymeric substances in anaerobic digested sludge

    Institute of Scientific and Technical Information of China (English)

    Dongqin Yuan; Yili Wang

    2013-01-01

    The composition and effects of solution conditions on the physicochemical properties of the stratification components of extracellular polymeric substances (EPS) in anaerobic digested sludge were determined.The total EPS in anaerobic digested sludge were extracted by the cation exchange resin method.Another EPS extraction method,the centrifugation and sonication technique was employed to stratify the EPS into three fractions:slime,loosely bound (LB)-EPS,and tightly bound (TB)-EPS from the outside to the inside of the anaerobic digested sludge.Proteins and polysaccharides were dispersed uniformly across the different EPS fractions,and humic-like substances were mainly partitioned in the slime,with TB-EPS second.Protein was the major constituent of the LB-EPS and TB-EPS,and the corresponding ratios ranged from 54.0% to 65.6%.The hydrophobic part in the EPS chemical components was primarily comprised of protein and DNA,while the hydrophilic part was mainly composed of polysaccharide.In the slime,the hydrophobic values of several EPS chemical components (protein,polysaccharide,humic-like substances and DNA) were all below 50%.The protein/polysaccharide ratio had a significant influence on the Zeta potentials and isoelectric point values of the EPS:the greater the protein/polysaccharide ratio of the EPS was,the greater the Zeta potential and the higher the isoeleetric point value were.All Zeta potentials of the EPS showed a decreasing trend with increasing pH.The corresponding isoeleetric point values (pH) were 2.8 for total EPS,2.2 for slime,2.7 for LB-EPS,and 2.6 for TB-EPS.As the ionic strength increased,the Zeta potentials sharply increased and then gradually became constant without charge reversal.In addition,as the temperature increased (< 40℃),the apparent viscosity of the EPS decreased monotonically and then gradually became stable between 40 and 60℃.

  8. Dynamics of biofilm formation during anaerobic digestion of organic waste.

    Science.gov (United States)

    Langer, Susanne; Schropp, Daniel; Bengelsdorf, Frank R; Othman, Maazuza; Kazda, Marian

    2014-10-01

    Biofilm-based reactors are effectively used for wastewater treatment but are not common in biogas production. This study investigated biofilm dynamics on biofilm carriers incubated in batch biogas reactors at high and low organic loading rates for sludge from meat industry dissolved air flotation units. Biofilm formation and dynamics were studied using various microscopic techniques. Resulting micrographs were analysed for total cell numbers, thickness of biofilms, biofilm-covered surface area, and the area covered by extracellular polymeric substances (EPS). Cell numbers within biofilms (10(11) cells ml(-1)) were up to one order of magnitude higher compared to the numbers of cells in the fluid reactor content. Further, biofilm formation and structure mainly correlated with the numbers of microorganisms present in the fluid reactor content and the organic loading. At high organic loading (45 kg VS m(-3)), the thickness of the continuous biofilm layer ranged from 5 to 160 μm with an average of 51 μm and a median of 26 μm. Conversely, at lower organic loading (15 kg VS m(-3)), only microcolonies were detectable. Those microcolonies increased in their frequency of occurrence during ongoing fermentation. Independently from the organic loading rate, biofilms were embedded completely in EPS within seven days. The maturation and maintenance of biofilms changed during the batch fermentation due to decreasing substrate availability. Concomitant, detachment of microorganisms within biofilms was observed simultaneously with the decrease of biogas formation. This study demonstrates that biofilms of high cell densities can enhance digestion of organic waste and have positive effects on biogas production.

  9. Numerical Investigation of Evolution of the Biofilm Streamers

    Science.gov (United States)

    Karimi, Alireza

    2015-11-01

    Filamentous bacterial structures, called streamers, start to form when there is a sustained hydrodynamic flow over a biofilm. Recent experimental studies have reported formation of biofilm streamers in microfluidic chambers. It is speculated that development of an invisible array of extracellular polymeric substances (EPS) gives rise to aggregation of swimming cells and formation of bacterial filaments. In order to investigate this phenomenon, we employ a multiphase biofilm model which treats the bacterial cells, EPS, and background solvent as distinct phases of a complex fluid. Numerical simulations conducted using this theoretical framework reveals the impact of the viscoelasticity of the polymeric substances on the characteristics of the streamers and the complex interplay of shear flow and the bacterial filaments.

  10. Application of biofilm bioreactors in white biotechnology.

    Science.gov (United States)

    Muffler, K; Lakatos, M; Schlegel, C; Strieth, D; Kuhne, S; Ulber, R

    2014-01-01

    The production of valuable compounds in industrial biotechnology is commonly done by cultivation of suspended cells or use of (immobilized) enzymes rather than using microorganisms in an immobilized state. Within the field of wastewater as well as odor treatment the application of immobilized cells is a proven technique. The cells are entrapped in a matrix of extracellular polymeric compounds produced by themselves. The surface-associated agglomerate of encapsulated cells is termed biofilm. In comparison to common immobilization techniques, toxic effects of compounds used for cell entrapment may be neglected. Although the economic impact of biofilm processes used for the production of valuable compounds is negligible, many prospective approaches were examined in the laboratory and on a pilot scale. This review gives an overview of biofilm reactors applied to the production of valuable compounds. Moreover, the characteristics of the utilized materials are discussed with respect to support of surface-attached microbial growth.

  11. Effects of extra-cellular polymeric substances on organic pollutants biodegradation kinetics for A-step of adsorption-biodegradation process

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The features of organic pollutants degradation mainly characterized by bio-flocculation for step-A of adsorption-biodegredation(AB) process were studied. By investigating the relationship of extracellular polymeric substances(EPS) with bioflocculation and introducing kinetic model of organic pollutant degradation into EPS, the kinetic model of organic pollutant degradation for step-A bioflocculation was deducted. And through the experiments,the kinetic constants were calculated as follows: k1 =0. 005 3; kc1 =1710.7 and vmax1=10 min-1.

  12. Stress relaxation analysis facilitates a quantitative approach towards antimicrobial penetration into biofilms.

    Science.gov (United States)

    He, Yan; Peterson, Brandon W; Jongsma, Marije A; Ren, Yijin; Sharma, Prashant K; Busscher, Henk J; van der Mei, Henny C

    2013-01-01

    Biofilm-related infections can develop everywhere in the human body and are rarely cleared by the host immune system. Moreover, biofilms are often tolerant to antimicrobials, due to a combination of inherent properties of bacteria in their adhering, biofilm mode of growth and poor physical penetration of antimicrobials through biofilms. Current understanding of biofilm recalcitrance toward antimicrobial penetration is based on qualitative descriptions of biofilms. Here we hypothesize that stress relaxation of biofilms will relate with antimicrobial penetration. Stress relaxation analysis of single-species oral biofilms grown in vitro identified a fast, intermediate and slow response to an induced deformation, corresponding with outflow of water and extracellular polymeric substances, and bacterial re-arrangement, respectively. Penetration of chlorhexidine into these biofilms increased with increasing relative importance of the slow and decreasing importance of the fast relaxation element. Involvement of slow relaxation elements suggests that biofilm structures allowing extensive bacterial re-arrangement after deformation are more open, allowing better antimicrobial penetration. Involvement of fast relaxation elements suggests that water dilutes the antimicrobial upon penetration to an ineffective concentration in deeper layers of the biofilm. Next, we collected biofilms formed in intra-oral collection devices bonded to the buccal surfaces of the maxillary first molars of human volunteers. Ex situ chlorhexidine penetration into two weeks old in vivo formed biofilms followed a similar dependence on the importance of the fast and slow relaxation elements as observed for in vitro formed biofilms. This study demonstrates that biofilm properties can be derived that quantitatively explain antimicrobial penetration into a biofilm.

  13. Anionic fluoroquinolones as antibacterials against biofilm-producing Pseudomonas aeruginosa.

    Science.gov (United States)

    Long, Timothy E; Keding, Lexie C; Lewis, Demetria D; Anstead, Michael I; Withers, T Ryan; Yu, Hongwei D

    2016-02-15

    Pseudomonas aeruginosa is a common biofilm-forming bacterial pathogen implicated in diseases of the lungs. The extracellular polymeric substances (EPS) of respiratory Pseudomonas biofilms are largely comprised of anionic molecules such as rhamnolipids and alginate that promote a mucoid phenotype. In this Letter, we examine the ability of negatively-charged fluoroquinolones to transverse the EPS and inhibit the growth of mucoid P. aeruginosa. Anionic fluoroquinolones were further compared with standard antibiotics via a novel microdiffusion assay to evaluate drug penetration through pseudomonal alginate and respiratory mucus from a patient with cystic fibrosis.

  14. Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms.

    Science.gov (United States)

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Geng, Nan; Yao, Yu; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2016-09-01

    The transport behaviors of copper oxide (CuO) NPs in wastewater matrix and their possible impacts on microbial activities of stable wastewater biofilms cultivated in a lab scale rotating biological contactor (RBC) were investigated. Significant aggregation of CuO NPs was observed in the wastewater samples, depending on their mass concentrations. Extracellular polymeric substance (EPS)-adsorbed copper accounted for a large proportion of the total copper accumulated in biofilms. The microelectrode profiles showed that a single pulse exposure to 50mg/L CuO resulted in a deeper penetration depth of oxygen in biofilms compared to the CuO NP free biofilms. The maximum oxygen consumption rate shifted to the deeper parts of biofilms, indicating that the respiration activities of bacteria in the top region of the biofilms was significantly inhibited by CuO NPs. Biofilms secreted more EPS in response to the nano-CuO stress, with higher production of proteins compared to polysaccharides.

  15. Bacteriophages as an alternative strategy for fighting biofilm development.

    Science.gov (United States)

    Parasion, Sylwia; Kwiatek, Magdalena; Gryko, Romuald; Mizak, Lidia; Malm, Anna

    2014-01-01

    The ability of microbes to form biofilms is an important element of their pathogenicity, and biofilm formation is a serious challenge for today's medicine. Fighting the clinical complications associated with biofilm formation is very difficult and linked to a high risk of failure, especially in a time of increasing bacterial resistance to antibiotics. Bacterial species most commonly isolated from biofilms include coagulase-negative staphylococci, Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. The frequent failure of antibiotic therapy led researchers to look for alternative methods and experiment with the use of antibacterial factors with a mechanism of action different from that of antibiotics. Experimental studies with bacteriophages and mixtures thereof, expressing lytic properties against numerous biofilm-forming bacterial species showed that bacteriophages may both prevent biofilm formation and contribute to eradication of biofilm bacteria. A specific role is played here by phage depolymerases, which facilitate the degradation of extracellular polymeric substances (EPS) and thus the permeation of bacteriophages into deeper biofilm layers and lysis of the susceptible bacterial cells. Much hope is placed in genetic modifications of bacteriophages that would allow the equipping bacteriophages with the function of depolymerase synthesis. The use of phage cocktails prevents the development of phage-resistant bacteria.

  16. Preliminary Study on Bio-trickling Filter Extracellular Polymeric Substances%关于生物滴滤塔内胞外聚合物的初步研究

    Institute of Scientific and Technical Information of China (English)

    张英; 杨榕; 张超; 党鹏刚

    2015-01-01

    为探究生物滴滤塔内EPS与生物量的关系,通过对氧化亚铁硫杆菌EPS提取方法进行对比,得出EDTA法EPS的提取效果最好;生物滴滤塔中活性炭表面生物量与T. f菌EPS有较大相关性,它的存在起到保护微生物、协助菌体吸附营养成分的作用;活性炭表面挂膜菌种后,其表面EPS主要为糖脂类、蛋白类物质,它们为微生物生长创造好的营养环境,能提高生物滴滤塔对SO2气体净化效果。%To explore the relationship between EPS of Bio-trickling Filter and biomass, by comparing extraction methods of extracellular polymeric substances of acidithiobacillus ferrooxidans, it was obtained that EDTA extraction method by EPS was best. The biomass of charcoal surface in the Biological trickling filter and the EPS of Acidithiobacillus ferrooxidans had greater relevance. It can protect microbes and help it to adsorb nutrients. EPS of charcoal surface was composed mainly by Glycolipids and Proteins. After biofilm bacteria in the surface of activated carbon, the EPS mainly was glycolipids and protein substances. It was a good environment for microbial growth nutrients. It can enhance the biological trickling filter purifying efficiency for SO2.

  17. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    KAUST Repository

    Zhang, Weipeng

    2013-11-11

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  18. Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis.

    Directory of Open Access Journals (Sweden)

    Devendra H Dusane

    Full Text Available BACKGROUND: Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. METHODOLOGY/PRINCIPAL FINDINGS: B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275 derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. CONCLUSION/SIGNIFICANCE: We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent.

  19. Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation.

    Science.gov (United States)

    Hou, Guangying; Hao, Xiaoyan; Zhang, Rui; Wang, Jing; Liu, Rutao; Liu, Chunguang

    2016-07-01

    Many research indicate antibiotics show adverse effect on methane fermentation, while few research focus on their effect on hydrogen fermentation. The present study aimed to gain insight of the effect of antibiotics on hydrogen fermentation with waste sludge and corn straw as substrate. For this purpose, tetracycline, as a model, was investigated with regard to tetracycline removal, hydrogen production, interaction with extracellular polymeric substances (EPSs) of substrate and volatile fatty acids (VFAs) on concentration and composition. Results show that tetracycline could be removed efficiently by hydrogen fermentation, and relative low-dose tetracycline (200mg/l) exposure affects little on hydrogen production. While tetracycline exposure could change hydrogen fermentation from butyric acid-type to propionic acid-type depending on tetracycline level. Based upon three-dimensional excitation-emission matrix fluorescence spectroscopy and UV-vis tetracycline changed the component and content of EPSs, and static quenching was the main mechanism between EPSs with tetracycline.

  20. Mechanisms of post-transcriptional gene regulation in bacterial biofilms

    Directory of Open Access Journals (Sweden)

    Viveka eVadyvaloo

    2014-03-01

    Full Text Available Abstract Biofilms are characterized by a dense multicellular community of microorganisms that can be formed by the attachment of bacteria to an inert surface and to each other. The development of biofilm involves the initial attachment of planktonic bacteria to a surface, followed by replication, cell-to-cell adhesion to form microcolonies, maturation and detachment. Mature biofilms are embedded in a self-produced extracellular polymeric matrix composed primarily of bacterial-derived exopolysaccharides, specialized proteins, adhesins and occasionally DNA. Because the synthesis and assembly of biofilm matrix components is an exceptionally complex process, the transition between its different phases requires the coordinate expression and simultaneous regulation of many genes by complex genetic networks involving all levels of gene regulation. The finely controlled intracellular level of the chemical second messenger molecule, cyclic-di-GMP is central to the post-transcriptional mechanisms governing the switch between the motile planktonic lifestyle and the sessile biofilm forming state in many bacteria. Several other post-transcriptional regulatory mechanisms are known to dictate biofilm development and assembly and these include RNA-binding proteins, small non-coding RNAs, toxin-antitoxin systems, riboswitches and RNases. Post-transcriptional regulation is therefore a powerful molecular mechanism employed by bacteria to rapidly adjust to the changing environment and to fine tune gene expression to the developmental needs of the cell. In this review, we discuss post-transcriptional mechanisms that influence the biofilm developmental cycle in a variety of pathogenic bacteria.

  1. Bacterial dynamics in a microphytobenthic biofilm: A tidal mesocosm approach

    Science.gov (United States)

    Agogué, Hélène; Mallet, Clarisse; Orvain, Francis; De Crignis, Margot; Mornet, Françoise; Dupuy, Christine

    2014-09-01

    In intertidal mudflats, during low tide exposure, microphytobenthos (MPB) migrate vertically through the surface sediment and form, with the heterotrophic bacteria, a transient biofilm. Inside this biofilm, multiple interactions exist between MPB and bacteria. These micro-organisms secrete a wide range of extracellular polymeric substances (EPS), which are major components of the biofilm matrix. In this study, we used a tidal mesocosm experiment in order to decipher the interactions of the MPB-EPS-bacteria complex within the biofilm. We tried to determine if the EPS could control bacterial activities and/or production and/or richness according to the age of the biofilm and to the immersion/emersion period. The dynamics of biomasses of MPB and prokaryotes, the bacterial production, the hydrolysis of predominating organic constituents in the dissolved organic carbon (DOC) pool (i.e., carbohydrates and polypeptides), and the bacterial structure were studied in relation to the different EPS fractions (carbohydrates and proteins: colloidal and bound) dynamics during 8 days. Our experiment had emphasized the influence of the environmental conditions (light, immersion/emersion) on the interactions within the biofilm and also on the effects on biofilm aging. Bacterial production was always inhibited by the bound EPS-carbohydrate, especially during low tide. Our results suggest that the concentration and composition of EPS had a major role in the bacterial/MPB interactions: these interactions can be either positive or negative in order to regulate the productive phases of MPB and bacteria.

  2. In vitro characterization of Trichophyton rubrum and T. mentagrophytes biofilms.

    Science.gov (United States)

    Costa-Orlandi, C B; Sardi, J C O; Santos, C T; Fusco-Almeida, A M; Mendes-Giannini, M J S

    2014-01-01

    Dermatophytes are fungi responsible for a disease known as dermatophytosis. Biofilms are sessile microbial communities surrounded by extracellular polymeric substances (EPS) with increased resistance to antimicrobial agents and host defenses. This paper describes, for the first time, the characteristics of Trichophyton rubrum and T. mentagrophytes biofilms. Biofilm formation was analyzed by light microscopy, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) as well as by staining with crystal violet and safranin. Metabolic activity was determined using the XTT reduction assay. Both species were able to form mature biofilms in 72 h. T. rubrum biofilm produced more biomass and EPS and was denser than T. mentagrophytes biofilm. The SEM results demonstrated a coordinated network of hyphae in all directions, embedded within EPS in some areas. Research and characterization of biofilms formed by dermatophytes may contribute to the search of new drugs for the treatment of these mycoses and might inform future revisions with respect to the dose and duration of treatment of currently available antifungals.

  3. Enzymes Enhance Biofilm Removal Efficiency of Cleaners.

    Science.gov (United States)

    Stiefel, Philipp; Mauerhofer, Stefan; Schneider, Jana; Maniura-Weber, Katharina; Rosenberg, Urs; Ren, Qun

    2016-06-01

    Efficient removal of biofilms from medical devices is a big challenge in health care to avoid hospital-acquired infections, especially from delicate devices like flexible endoscopes, which cannot be reprocessed using harsh chemicals or high temperatures. Therefore, milder solutions such as enzymatic cleaners have to be used, which need to be carefully developed to ensure efficacious performance. In vitro biofilm in a 96-well-plate system was used to select and optimize the formulation of novel enzymatic cleaners. Removal of the biofilm was quantified by crystal violet staining, while the disinfecting properties were evaluated by a BacTiter-Glo assay. The biofilm removal efficacy of the selected cleaner was further tested by using European standard (EN) for endoscope cleaning EN ISO 15883, and removal of artificial blood soil was investigated by treating TOSI (Test Object Surgical Instrument) cleaning indicators. Using the process described here, a novel enzymatic endoscope cleaner was developed, which removed 95% of Staphylococcus aureus and 90% of Pseudomonas aeruginosa biofilms in the 96-well plate system. With a >99% reduction of CFU and a >90% reduction of extracellular polymeric substances, this cleaner enabled subsequent complete disinfection and fulfilled acceptance criteria of EN ISO 15883. Furthermore, it efficiently removed blood soil and significantly outperformed comparable commercial products. The cleaning performance was stable even after storage of the cleaner for 6 months. It was demonstrated that incorporation of appropriate enzymes into the cleaner enhanced performance significantly.

  4. Proteins dominate in the surface layers formed on materials exposed to extracellular polymeric substances from bacterial cultures.

    Science.gov (United States)

    Yang, Yi; Wikieł, Agata J; Dall'Agnol, Leonardo T; Eloy, Pierre; Genet, Michel J; Moura, José J G; Sand, Wolfgang; Dupont-Gillain, Christine C; Rouxhet, Paul G

    2016-01-01

    The chemical compositions of the surface conditioning layers formed by different types of solutions (from isolated EPS to whole culture media), involving different bacterial strains relevant for biocorrosion were compared, as they may influence the initial step in biofilm formation. Different substrata (polystyrene, glass, steel) were conditioned and analyzed by X-ray photoelectron spectroscopy. Peak decomposition and assignment were validated by correlations between independent spectral data and the ubiquitous presence of organic contaminants on inorganic substrata was taken into account. Proteins or peptides were found to be a major constituent of all conditioning layers and polysaccharides were not present in appreciable concentrations; the proportion of nitrogen which may be due to DNA was lower than 15%. There was no significant difference between the compositions of the adlayers formed from different conditioning solutions, except for the adlayers produced with tightly bound EPS extracted from D. alaskensis.

  5. Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria

    Science.gov (United States)

    Pereira, Sara B.; Mota, Rita; Vieira, Cristina P.; Vieira, Jorge; Tamagnini, Paula

    2015-10-01

    Many cyanobacteria produce extracellular polymeric substances (EPS) with particular characteristics (e.g. anionic nature and presence of sulfate) that make them suitable for industrial processes such as bioremediation of heavy metals or thickening, suspending or emulsifying agents. Nevertheless, their biosynthetic pathway(s) are still largely unknown, limiting their utilization. In this work, a phylum-wide analysis of genes/proteins putatively involved in the assembly and export of EPS in cyanobacteria was performed. Our results demonstrated that most strains harbor genes encoding proteins related to the three main pathways: Wzy-, ABC transporter-, and Synthase-dependent, but often not the complete set defining one pathway. Multiple gene copies are mainly correlated to larger genomes, and the strains with reduced genomes (e.g. the clade of marine unicellular Synechococcus and Prochlorococcus), seem to have lost most of the EPS-related genes. Overall, the distribution of the different genes/proteins within the cyanobacteria phylum raises the hypothesis that cyanobacterial EPS production may not strictly follow one of the pathways previously characterized. Moreover, for the proteins involved in EPS polymerization, amino acid patterns were defined and validated constituting a novel and robust tool to identify proteins with similar functions and giving a first insight to which polymer biosynthesis they are related to.

  6. Effect of silver nanoparticles on Pseudomonas putida biofilms at different stages of maturity.

    Science.gov (United States)

    Thuptimdang, Pumis; Limpiyakorn, Tawan; McEvoy, John; Prüß, Birgit M; Khan, Eakalak

    2015-06-15

    This study determined the effect of silver nanoparticles (AgNPs) on Pseudomonas putida KT2440 biofilms at different stages of maturity. Three biofilm stages (1-3, representing early to late stages of development) were identified from bacterial adenosine triphosphate (ATP) activity under static (96-well plate) and dynamic conditions (Center for Disease Control and Prevention biofilm reactor). Extracellular polymeric substance (EPS) levels, measured using crystal violet and total carbohydrate assays, and expression of the EPS-associated genes, csgA and alg8, supported the conclusion that biofilms at later stages were older than those at earlier stages. More mature biofilms (stages 2 and 3) showed little to no reduction in ATP activity following exposure to AgNPs. In contrast, the same treatment reduced ATP activity by more than 90% in the less mature stage 1 biofilms. Regardless of maturity, biofilms with EPS stripped off were more susceptible to AgNPs than controls with intact EPS, demonstrating that EPS is critical for biofilm tolerance of AgNPs. The findings from this study show that stage of maturity is an important factor to consider when studying effect of AgNPs on biofilms.

  7. Comparison of SEM and VPSEM imaging techniques with respect to Streptococcus mutans biofilm topography.

    Science.gov (United States)

    Weber, Kathryn; Delben, Juliana; Bromage, Timothy G; Duarte, Simone

    2014-01-01

    The study compared images of mature Streptococcus mutans biofilms captured at increasing magnification to determine which microscopy method is most acceptable for imaging the biofilm topography and the extracellular polymeric substance (EPS). In vitro S. mutans biofilms were imaged using (1) scanning electron microscopy (SEM), which requires a dehydration process; (2) SEM and ruthenium red (SEM-RR), which has been shown to support the EPS of biofilms during the SEM dehydration; and (3) variable pressure scanning electron microscopy (VPSEM), which does not require the intensive dehydration process of SEM. The dehydration process and high chamber vacuum of both SEM techniques devastated the biofilm EPS, removed supporting structures, and caused cracking on the biofilm surface. The VPSEM offered the most comprehensive representation of the S. mutans biofilm morphology. VPSEM provides similar contrast and focus as the SEM, but the procedure is far less time-consuming, and the use of hazardous chemicals associated with SEM dehydration protocol is avoided with the VPSEM. The inaccurate representations of the biofilm EPS in SEM experimentation is a possible source of inaccurate data and impediments in the study of S. mutans biofilms.

  8. Biofilm Formation in Staphylococcus Aureus and its Relation to Phenotypic and Genotypic Criteria

    Directory of Open Access Journals (Sweden)

    Hasannejad Bibalan, M. (MSc

    2014-09-01

    Full Text Available Background and Objective: Biofilm is a complex microbial community embedded in a self-produced extracellular polymeric matrix. We aimed to study the extent of biofilm formation by S. Areas isolates and its relation to some phenotypic and genotypic criteria. Material and Methods: One hundred-fifty strains of Staphylococcus aureus isolated from Gorgan were studied. Microtiter plate assay method was used for investigation of biofilm formation.The biofilm formation of strains were recorded and its relation to accessory gene regulator (agr and antibiotic resistance were assessed by X2 test. Results: Eighty-four isolates (56% were able to form biofilm. The strength of biofilm formation in agr group I was more than that of other groups. The biofilm formation among S. Areas isolated from the wound and urine (both with 75 % had the highest capability. Methicillin-resistant isolates had a greater ability to biofilm formation. Conclusion: Methicillin resistant isolates had a greater ability to biofilm formation. Given the importance and treatment related problems of Methicillin-Resistant Staphylococcus Aureus (MRSA especially Community Acquired-Methicillin-Resistant Staphylococcus Aureus (CA-MRSA, it is a necessity to control or remove the biofilm formation alongside antibiotic treatment.

  9. Polymeric and compositional properties of novel extracellular microbial polyglucosamine biopolymer from new strain of citrobacter sp. BL-4.

    Science.gov (United States)

    Kim, Lin-Su; Hong, Soo-Jung; Son, Mi-Kyung; Lee, Yong-Hyun

    2006-02-01

    A novel polyglucosamine polymer, PGB-2, was produced extracellularly from a new strain Citrobacter sp. BL-4 using pH-stat fed batch cultivation. It was composed of 97.3% glucosamine and 2.7% rhamnose; its average molecular weight, solubility in 2% acetic acid and viscosity were 20 kDa, 5 g l(-1) and 2.9 cps, respectively. FT-IR and 1H NMR spectra of PGB-2 revealed a close identity with chitosan from crab shells.

  10. [Influence of poly-β-1-6-N-acetylglucosamine on biofilm formation and drug resistance of Acinetobacter baumannii].

    Science.gov (United States)

    Guo, Haina; Xiang, Jun

    2015-02-01

    Acinetobacter baumannii has emerged as one of the leading bacteria for nosocomial infections, especially in burn wards and ICUs. The bacteria can easily form biofilm and readily attach to abiotic and biotic surfaces, resulting in persistent biofilm-mediated infections. Being surrounded by self-produced extracellular polymeric substance (EPS), the microorganisms in biofilm can acquire protective property against detrimental environment and their tolerance toward antibiotics is increased. Poly-β-1-6-N-acetylglucosamine (PNAG), the common constituent of EPS in Acinetobacter baumannii, acts as the key virulence factor and plays a crucial role in biofilm formation process. This review describes the properties and functions of the PNAG and its influence on biofilm formation and drug resistance of Acinetobacter baumannii.

  11. Cryptococcus laurentii biofilms: structure, development and antifungal drug resistance.

    Science.gov (United States)

    Ajesh, K; Sreejith, K

    2012-12-01

    A great number of fungal infections are related to biofilm formation on inert or biological surfaces, which are recalcitrant to most treatments and cause human mortality. Cryptococcus laurentii has been diagnosed as the aetiological pathogen able to cause human infections mainly in immunosuppressed patients and the spectrum of clinical manifestations ranges from skin lesions to fungaemia. The effect of temperature, pH and surface preconditioning on C. laurentii biofilm formation was determined by 2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) reduction assay. Scanning electron microscopic (SEM) analysis of C. laurentii biofilms demonstrated surface topographies of profuse growth and dense colonization with extensive polymeric substances around the cells. In this study, we determined the activity of amphotericin B, itraconazole and fluconazole against C. laurentii free-living cells and biofilms. The activity of antifungals tested was greater against free-living cells, but sessile cells fell into the resistant range for these antifungal agents. Extracellular polymeric substances (EPS), comprising the matrix of C. laurentii biofilms, were isolated by ultrasonication. Fourier transform infrared spectroscopy (FT-IR) was performed with ethanol-precipitated and dried samples. Also, the multielement analysis of the EPS was performed by inductively coupled plasma optical emission spectroscopy (ICP-OES).

  12. Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria.

    Science.gov (United States)

    Simões, Lúcia Chaves; Simões, Manuel; Vieira, Maria João

    2010-10-01

    This study was performed in order to characterize the relationship between adhesion and biofilm formation abilities of drinking water-isolated bacteria (Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata and Staphylococcus sp.). Adhesion was assessed by two distinct methods: thermodynamic prediction of adhesion potential by quantifying hydrophobicity and the free energy of adhesion; and by microtiter plate assays. Biofilms were developed in microtiter plates for 24, 48 and 72 h. Polystyrene (PS) was used as adhesion substratum. The tested bacteria had negative surface charge and were hydrophilic. PS had negative surface charge and was hydrophobic. The free energy of adhesion between the bacteria and PS was > 0 mJ/m(2) (thermodynamic unfavorable adhesion). The thermodynamic approach was inappropriate for modelling adhesion of the tested drinking water bacteria, underestimating adhesion to PS. Only three (B. cepacia, Sph. capsulata and Staphylococcus sp.) of the six bacteria were non-adherent to PS. A. calcoaceticus, Methylobacterium sp. and M. mucogenicum were weakly adherent. This adhesion ability was correlated with the biofilm formation ability when comparing with the results of 24 h aged biofilms. Methylobacterium sp. and M. mucogenicum formed large biofilm amounts, regardless the biofilm age. Given time, all the bacteria formed biofilms; even those non-adherents produced large amounts of matured (72 h aged) biofilms. The overall results indicate that initial adhesion did not predict the ability of the tested drinking water-isolated bacteria to form a mature biofilm, suggesting that other events such as phenotypic and genetic switching during biofilm development and the production of extracellular polymeric substances (EPS), may play a significant role on biofilm formation and differentiation. This understanding of the relationship between adhesion and biofilm formation is important for

  13. Emergent pattern formation in an interstitial biofilm

    CERN Document Server

    Zachreson, Cameron; Whitchurch, Cynthia; Toth, Milos

    2016-01-01

    Collective behavior of bacterial colonies plays critical roles in adaptability, survivability, biofilm expansion and infection. We employ an individual-based model of an interstitial biofilm to study emergent pattern formation based on the assumptions that rod-shaped bacteria furrow through a viscous environment, and excrete extracellular polymeric substances which bias their rate of motion. Because the bacteria furrow through their environment, the substratum stiffness is a key control parameter behind the formation of distinct morphological patterns. By systematically varying this property (which we quantify with a stiffness coefficient {\\gamma}), we show that subtle changes in the substratum stiffness can give rise to a stable state characterized by a high degree of local order and long-range pattern formation. The ordered state exhibits characteristics typically associated with bacterial fitness advantages, even though it is induced by changes in environmental conditions rather than changes in biological ...

  14. Stereological assessment of extracellular polymeric substances, exo-enzymes, and specific bacterial strains in bioaggregates using fluorescence experiments.

    Science.gov (United States)

    Adav, Sunil S; Lin, Justin Chun-Te; Yang, Zhen; Whiteley, Chris G; Lee, Duu-Jong; Peng, Xiao-Feng; Zhang, Zhen-Peng

    2010-01-01

    This review addresses the introduction of fluorescent molecular tags into exo-enzymes and extra polymeric substances of bioaggregates and the use of confocal laser scanning microscopy (CLSM) to map their role, purpose and quantitative description of the biological processes they undertake. Multiple color staining coupled with CLSM and fluorescent in situ hybridisation (FISH) and flow cytometry have identified the individual polymeric substances, whether they are proteins, lipids, polysaccharides, nucleic acids or antibodies, as well as the microorganisms in the bioaggregate. Procedures are presented for simultaneous multicolor staining with seven different fluorochromes - SYTOX Blue for nucleic acids; Nile red for lipids; Calcofluor white [CW] for beta-polysaccharides; concanavalin A [Con A] for alpha-poly-saccharides; fluorescein-isothiocyanate [FITC] for proteins; SYTO 63 for live microbial cells and Calcium Green for monitoring calcium levels in the microbial cells. For the distribution of certain microbial strains, metabolic enzymes and extrapolymeric substances to be quantitatively described the generated colored images are converted into digital forms under specific predefined criteria. Procedures and computer software programs (Amira; MATLAB) are presented in order to quantitatively establish grid patterns from the CLSM images. The image is digitized using a threshholding algorithm followed by a reconstruction of the image as a volumetric grid for finite element simulation. The original color image is first converted to a grey followed by resizing, detection and modification of bilevel images and finally a total reversal of the image colors. The grid file is then used by specific computer software (Gambit, Fluent) for further numerical studies incorporating chemical reactions, transport processes and computational fluid dynamics including intra-bioaggregate fluid flow, and heat and mass transfer within the bioaggregate matrix.

  15. Characterization of biofilm formation by Borrelia burgdorferi in vitro.

    Directory of Open Access Journals (Sweden)

    Eva Sapi

    Full Text Available Borrelia burgdorferi, the causative agent of Lyme disease, has long been known to be capable of forming aggregates and colonies. It was recently demonstrated that Borrelia burgdorferi aggregate formation dramatically changes the in vitro response to hostile environments by this pathogen. In this study, we investigated the hypothesis that these aggregates are indeed biofilms, structures whose resistance to unfavorable conditions are well documented. We studied Borrelia burgdorferi for several known hallmark features of biofilm, including structural rearrangements in the aggregates, variations in development on various substrate matrices and secretion of a protective extracellular polymeric substance (EPS matrix using several modes of microscopic, cell and molecular biology techniques. The atomic force microscopic results provided evidence that multilevel rearrangements take place at different stages of aggregate development, producing a complex, continuously rearranging structure. Our results also demonstrated that Borrelia burgdorferi is capable of developing aggregates on different abiotic and biotic substrates, and is also capable of forming floating aggregates. Analyzing the extracellular substance of the aggregates for potential exopolysaccharides revealed the existence of both sulfated and non-sulfated/carboxylated substrates, predominately composed of an alginate with calcium and extracellular DNA present. In summary, we have found substantial evidence that Borrelia burgdorferi is capable of forming biofilm in vitro. Biofilm formation by Borrelia species might play an important role in their survival in diverse environmental conditions by providing refuge to individual cells.

  16. BioMig--A Method to Evaluate the Potential Release of Compounds from and the Formation of Biofilms on Polymeric Materials in Contact with Drinking Water.

    Science.gov (United States)

    Wen, Gang; Kötzsch, Stefan; Vital, Marius; Egli, Thomas; Ma, Jun

    2015-10-06

    In contact with water, polymeric materials (plastics) release compounds that can support suspended microbial growth and/or biofilm formation. The different methods presently used in the European Union to test plastics take 7-16 weeks to obtain a result. In industry, this delays material and product development as well as quality testing. Therefore, we developed a method package (BioMig) that allows testing of plastic materials with high reproducibility in 2 weeks for their potential biofilm (or biomass) formation and release of carbonaceous migration products when in contact with water. BioMig consists of (i) an extended migration potential test (seven times for 24 h at 60 °C), based on the European norm EN 12873-1 and the German UBA (Umweltbundesamt) guideline, and (ii) a biomass formation potential (BFP) test (14 days at 30 °C), which is a modified version of the Dutch biofilm production potential test. In the migration potential test, the amount of carbon released into water by the specimen is quantified by monitoring total and assimilable organic carbon over time; furthermore, the modular design of the test also allows one to assess additional parameters such as pathogen growth potential on the migration water or toxic effects on microbial growth. Flow cytometry (FCM)-based total cell counting (TCC) is used to quantify microbial growth in suspension and on surfaces after removal with mild sonication without affecting cell integrity. The BFP test allows one to determine both the planktonic (pBFP) and the sessile (sBFP) cell fractions. The sBFP consists of surface-attached cells after removal (>90% efficiency). Results for four standard test materials (PE-Xa, PE-Xc, EPDM 2%, and EPDM 20%), plus positive (PVC-P) and negative (glass) controls are presented. FCM-based TCC demonstrates that the release of growth-supporting carbon and proliferation of surface-attached cells stops increasing and stabilizes after 14 days of incubation; this allows for faster

  17. Bacteriophages and their enzymes in biofilm control.

    Science.gov (United States)

    Chan, Benjamin K; Abedon, Stephen T

    2015-01-01

    Although free-swimming planktonic bacteria historically have been the typical focus of microbiological studies, the natural state of many or most bacteria is one where they instead are associated with surfaces and/or each other. For many pathogenic as well as nuisance bacteria, including biofouling bacteria, it consequently is within the context of this biofilm state that antibacterial strategies must be implemented. For reasons that are not fully understood, however, biofilm-associated bacteria tend to be less susceptible to treatments with standard chemical antibacterial agents than are planktonic bacteria, and this appears to be especially an issue with the use of less-harsh agents such as antibiotics. Within a variety of contexts the development of less- or selectively toxic antibacterial agents capable of clearing biofilms therefore would be welcome. In this review we consider the use of three categories of such agents as anti-biofilm antibacterials. These are lytic viruses of bacteria, that is, bacteriophages, effecting phage-mediated biocontrol of bacteria (a.k.a., phage therapy); purified phage-encoded enzymes that digest bacterial cell-wall material (endolysins or simply lysins); and a second category of phage-encoded enzymes that digest the extracellular polymeric substance (EPS) that are particularly notable components of bacterial biofilms (EPS depolymerases). These agents have been shown to reduce the bacterial density of a diversity of biofilms and, in many cases, tend to be lacking in inherent toxicity against the tissues of animals. Here we consider these phage-based anti-biofilm strategies with emphasis on ecological aspects of their action and with particular consideration of EPS depolymerases.

  18. Chemical, physical and morphological properties of bacterial biofilms affect survival of encased Campylobacter jejuni F38011 under aerobic stress.

    Science.gov (United States)

    Feng, Jinsong; Lamour, Guillaume; Xue, Rui; Mirvakliki, Mehr Negar; Hatzikiriakos, Savvas G; Xu, Jie; Li, Hongbin; Wang, Shuo; Lu, Xiaonan

    2016-12-05

    Campylobacter jejuni is a microaerophilic pathogen and leading cause of human gastroenteritis. The presence of C. jejuni encased in biofilms found in meat and poultry processing facilities may be the major strategy for its survival and dissemination in aerobic environment. In this study, Staphylococcus aureus, Salmonella enterica, or Pseudomonas aeruginosa was mixed with C. jejuni F38011 as a culture to form dual-species biofilms. After 4days' exposure to aerobic stress, no viable C. jejuni cells could be detected from mono-species C. jejuni biofilm. In contrast, at least 4.7logCFU/cm(2) of viable C. jejuni cells existed in some dual-species biofilms. To elucidate the mechanism of protection mode, chemical, physical and morphological features of biofilms were characterized. Dual-species biofilms contained a higher level of extracellular polymeric substances with a more diversified chemical composition, especially for polysaccharides and proteins, than mono-species C. jejuni biofilm. Structure of dual-species biofilms was more compact and their surface was >8 times smoother than mono-species C. jejuni biofilm, as indicated by atomic force microscopy. Under desiccation stress, water content of dual-species biofilms decreased slowly and remained at higher levels for a longer time than mono-species C. jejuni biofilm. The surface of all biofilms was hydrophilic, but total surface energy of dual-species biofilms (ranging from 52.5 to 56.2mJ/m(2)) was lower than that of mono-species C. jejuni biofilm, leading to more resistance to wetting by polar liquids. This knowledge can aid in developing intervention strategies to decrease the survival and dispersal of C. jejuni into foods or environment.

  19. A new classification paradigm of extracellular polymeric substances (EPS) in activated sludge: separation and characterization of exopolymers between floc level and microcolony level.

    Science.gov (United States)

    Wang, Bin-Bin; Chang, Qing; Peng, Dang-Cong; Hou, Yin-Ping; Li, Hui-Juan; Pei, Li-Ying

    2014-11-01

    Extracellular polymeric substances (EPS) play a crucial role in the formation of activated sludge flocs. However, until now, the EPS are rather classified by the method used for extraction than by a theoretical consideration of their function and composition. In this paper, a new classification paradigm of EPS was proposed, which offered a novel approach to identify the role of EPS in the formation of activated sludge flocs. The current study gave an exploration to distinguish the EPS in the floc level (extra-microcolony polymers, EMPS) and in the microcolony level (extra-cellular polymers, ECPS). It was found that cation exchange resin treatment is efficient to disintegrate the flocs for EMPS extraction, however, inefficient to disaggregate the microcolonies for ECPS harvesting. A two-steps extraction strategy (cation exchange resin treatment followed by ultrasonication-high speed centrifugation treatment) was suggested to separate these two types of EPS in activated sludge flocs and the physicochemical characteristics of EMPS and ECPS were compared. The protein/polysaccharide ratio of ECPS was higher than that of EMPS and the molecular weight of proteins in EMPS and ECPS were found to be different. The ECPS contained higher molecular weight proteins and more hydrophobic substances than the EMPS contained. The result of excitation-emission matrix fluorescence spectroscopy analysis also showed that the EMPS and the ECPS have different fluorescent expressions and the components of EMPS were more diverse than that of ECPS. All results reported herein demonstrated that two different types of exopolymers exist in the activated sludge flocs and the inter-particle forces for aggregation of activated sludge flocs are not identical between the floc level and the microcolony level. It suggested that cation bridging interactions are more crucial in floc level flocculation, while the entanglement and hydrophobic interactions are more important in microcolony level cohesion.

  20. Efficient suppression of biofilm formation by a nucleic acid aptamer.

    Science.gov (United States)

    Ning, Yi; Cheng, Lijuan; Ling, Min; Feng, Xinru; Chen, Lingli; Wu, Minxi; Deng, Le

    2015-08-01

    Biofilms are microbial communities that are attached to a solid surface using extracellular polymeric substances. Motility and initial attachment mediated by flagella are required for biofilm formation. Therefore, blocking the motility of flagella is a potential strategy to inhibit biofilm formation. In this study, single-stranded DNA aptamers specific to the Salmonella choleraesuis were selected after 14 cycles of the systematic evolution of ligands by exponential enrichment. Among the selected aptamers, the aptamer 3 showed the highest affinity for S. choleraesuis with a dissociation constant (Kd) of 41 ± 2 nM. Aptamer 3, conjugated with magnetic beads, was then used to capture its binding target on the bacteria. After mass spectrometry and specific binding analysis, the flagellin was identified as the target captured by aptamer 3. Furthermore, inhibition experiments, inverted microscopy and atomic force microscopy demonstrated that aptamer 3 was able to control the biofilm formation and promote the inhibitory effect of an antibiotic on bacterial biofilms. Single-stranded DNA aptamers therefore have great potential as inhibitors of biofilm formation.

  1. In Situ Molecular Imaging of the Biofilm and Its Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yuanzhao; Zhou, Yufan; Yao, Juan; Szymanski, Craig; Fredrickson, James; Shi, Liang; Cao, Bin; Zhu, Zihua; Yu, Xiao-Ying

    2016-11-15

    Molecular mapping of live biofilms at submicron resolution presents a grand challenge. Here, we present the first chemical mapping results of biofilm extracellular polymeric sub-stance (EPS) components in biofilms using correlative imaging be-tween super resolution florescence microscopy and liquid time-of-flight secondary ion mass spectrometry (ToF-SIMS). Shewanella oneidensis is used as a model organism. Heavy metal anions chro-mate (Cr2O72-) consisting of chromium Cr (VI) was a model envi-ronmental stressor used to treat the biofilms. Of particular interest, biologically relevant water clusters have been first observed in the biofilms. Characteristic fragments of biofilm matrix components such as proteins, polysaccharides, and lipids can be spatially im-aged. Furthermore, characteristic fatty acids (e.g., palmitic acid), quinolone signal, and riboflavin fragments are found to respond af-ter the biofilm is treated with Cr (VI), leading to biofilm dispersion. Significant changes in water clusters and quorum sensing signals indicative of intercellular communication in the aqueous environ-ment are observed, suggesting that they might result in fatty acid synthesis and inhibit riboflavin production. The Cr (VI) reduction seems to follow the Mtr pathway leading to Cr (III) formation. Our approach potentially opens a new avenue for mechanistic insight of microbial community processes and communications using in situ imaging mass spectrometry and superresolution optical micros-copy.

  2. Transcriptomic analysis of the process of biofilm formation in Rhizobium etli CFN42.

    Science.gov (United States)

    Reyes-Pérez, Agustín; Vargas, María Del Carmen; Hernández, Magdalena; Aguirre-von-Wobeser, Eneas; Pérez-Rueda, Ernesto; Encarnacion, Sergio

    2016-11-01

    Organisms belonging to the genus Rhizobium colonize leguminous plant roots and establish a mutually beneficial symbiosis. Biofilms are structured ecosystems in which microbes are embedded in a matrix of extracellular polymeric substances, and their development is a multistep process. The biofilm formation processes of R. etli CFN42 were analyzed at an early (24-h incubation) and mature stage (72 h), comparing cells in the biofilm with cells remaining in the planktonic stage. A genome-wide microarray analysis identified 498 differentially regulated genes, implying that expression of ~8.3 % of the total R. etli gene content was altered during biofilm formation. In biofilms-attached cells, genes encoding proteins with diverse functions were overexpressed including genes involved in membrane synthesis, transport and chemotaxis, repression of flagellin synthesis, as well as surface components (particularly exopolysaccharides and lipopolysaccharides), in combination with the presence of activators or stimulators of N-acyl-homoserine lactone synthesis This suggests that R. etli is able to sense surrounding environmental conditions and accordingly regulate the transition from planktonic and biofilm growth. In contrast, planktonic cells differentially expressed genes associated with transport, motility (flagellar and twitching) and inhibition of exopolysaccharide synthesis. To our knowledge, this is the first report of nodulation and nitrogen assimilation-related genes being involved in biofilm formation in R. etli. These results contribute to the understanding of the physiological changes involved in biofilm formation by bacteria.

  3. When nanoparticles meet biofilms - Interactions guiding the environmental fate and accumulation of nanoparticles

    Directory of Open Access Journals (Sweden)

    Kaoru eIkuma

    2015-06-01

    Full Text Available Bacteria are essential components of all natural and many engineered systems. The most active fractions of bacteria are now recognized to occur as ‘biofilms’, where cells are attached and surrounded by a secreted matrix of sticky extracellular polymeric substances (EPS. Recent investigations have established that significant accumulation of nanoparticles (NPs occurs in aquatic biofilms. These studies point to the emerging roles of biofilms for influencing partitioning and possibly transformations of NPs in both natural and engineered systems. While attached biofilms are efficient sponges for NPs, efforts to elucidate the fundamental mechanisms guiding interactions between NPs and biofilms have just begun. In this mini review, special attention is focused on NP-biofilm interactions within the aquatic environment. We highlight key physical, chemical and biological processes that affect interactions and accumulation of NPs by bacterial biofilms. We posit that these biofilm processes present the likely possibility for unique biological and chemical transformations of NPs. Ultimately, the environmental fate of NPs is influenced by biofilms, and therefore requires a more-in depth understanding of their fundamental properties.

  4. Effects of iron on growth, antioxidant enzyme activity, bound extracellular polymeric substances and microcystin production of Microcystis aeruginosa FACHB-905.

    Science.gov (United States)

    Wang, Chao; Wang, Xun; Wang, Peifang; Chen, Bin; Hou, Jun; Qian, Jin; Yang, Yangyang

    2016-10-01

    Toxic cyanobacterial blooms have occurred in various water bodies during recent decades and made serious health hazards to plants, animals and humans. Iron is an important micronutrient for algal growth and recently, the concentration of which has increased remarkably in freshwaters. In this paper, the cyanobacterium Microcystis aeruginosa FACHB-905 was cultivated under non-iron (0μM), iron-limited (10μM) and iron-replete (100μM) conditions to investigate the effects of iron on growth, antioxidant enzyme activity, EPS and microcystin production. The results showed that algal cell density and chlorophyll-a content were maximal at the highest iron concentration. Antioxidant enzymes activity increased notably under all three conditions in the early stage of experiment, of which the SOD activity recovered soon from oxidative stress in 10μM group. The productions of some protein-like substances and humic acid-like substances of bound EPS were inhibited in iron-containing groups in the early stage of experiment while promoted after the adaptation period of Microcystis aeruginosa. Iron addition is a factor affecting the formation of cyanobacterial blooms through its impact on the content of LB-EPS and the composition of TB-EPS. The intracellular MC-LR concentration and the productivity potential of MC-LR were the lowest in 0μM group and highest in 10μM group. No obvious extracellular release of MC-LR was observed during the cultivation time. Therefore, iron addition can promote the physiological activities of M. aeruginosa, but a greater harm could be brought into environment under iron-limited (10μM) condition than under iron-replete (100μM) condition.

  5. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.

  6. Degradation of inhibitory substances in sludge by Galactomyces sp. Z3 and the role of its extracellular polymeric substances in improving bioleaching.

    Science.gov (United States)

    Zhou, Jun; Zheng, Guanyu; Wong, Jonathan W C; Zhou, Lixiang

    2013-03-01

    This study sought to elucidate the effect and mechanism of Galactomyces sp. Z3 in improving the bioleaching of heavy metals from sludge. Results showed that co-inoculation of Galactomyces sp. Z3 and two Acidithiobacillus strains (Acidithiobacillus ferrooxidans LX5 and Acidithiobacillus thiooxidans TS6) reduced the period required for sludge bioleaching by 4.5days compared to Acidithiobacillus alone. Further, removal efficiencies of Cu, Zn and oxidation rate of Fe(2+) and S(0) were higher in co-inoculation system than the Acidithiobacillus alone. Galactomyces sp. Z3 consumed the acetate, propionate, iso-butyrate, butyrate, and iso-valerate in sludge from the initial concentrations of 109.50, 28.80, 7.70, 34.30, and 18.40mg/L to 10.20, 0.61, 0.63, 19.40 and 1.30mg/L, respectively, after 12h in the co-inoculation system, significantly lower than the concentrations observed in the Acidithiobacillus alone. Meanwhile, the surfactant properties of the extracellular polymeric substances produced by the Galactomyces accelerated the rate of sulfur oxidization by A. thiooxidans.

  7. Rapid start-up of the anammox process: Effects of five different sludge extracellular polymeric substances on the activity of anammox bacteria.

    Science.gov (United States)

    Guo, Jianbo; Wang, Sihui; Lian, Jing; Ngo, Huu Hao; Guo, Wenshan; Liu, Yunman; Song, Yuanyuan

    2016-11-01

    This study investigated the rapid start-up of the anaerobic ammonium oxidation (anammox) strategy by inoculating different biomass ratios of denitrifying granular sludge and anammox bacteria. The results demonstrated that two reactors (R1 and R2) were rapidly and successfully started-up on days 25 and 28, respectively, with nitrogen removal rates (NRRs) of 0.70kg/(m(3)·d) and 0.72kg/(m(3)·d) at biomass ratios of 10:1 (R1) and 50:1 (R2). The explanation for rapid start-up was found by examining the effect of five different sludge extracellular polymeric substances (EPS) on the activity of anammox bacteria in the batch experiments. Batch experiments results first demonstrated that the denitrification sludge EPS (DS-EPS) enhanced the anammox bacteria activity the most, and NO2(-)-N, NH4(+)-N removal rates were 1.88- and 1.53-fold higher than the control with optimal DS-EPS volume of 10mL. The rapid start-up strategy makes possible the application of anammox to practical engineering.

  8. Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS).

    Science.gov (United States)

    Zhang, Weijun; Cao, Bingdi; Wang, Dongsheng; Ma, Teng; Xia, Hua; Yu, Dehong

    2016-01-01

    Extracellular polymeric substances (EPS) are highly hydrated biopolymers and play important roles in bioflocculation, floc stability, and solid-water separation processes. Destroying EPS structure will result in sludge reduction and release of trapped water. In this study, the effects of combined process of peracetic acid (PAA) pre-oxidation and chemical re-flocculation on morphological properties and distribution and composition of EPS of the resultant sludge flocs were investigated in detail to gain insights into the mechanism involved in sludge treatment. It was found that sludge particles were effectively solubilized and protein-like substances were degraded into small molecules after PAA oxidation. A higher degradation of protein-like substances was observed at acid environments under PAA oxidation. Microscopic analysis revealed that no integral sludge floc was observed after oxidation with PAA at high doses. The floc was reconstructed with addition of inorganic coagulants (polyaluminium chloride (PACl) and ferric chloride (FeCl3)) and PACl performed better in flocculation due to its higher charge neutralization and bridging ability. Combined oxidative lysis and chemical re-flocculation provide a novel solution for sludge treatment.

  9. Desorption of Hg(II) and Sb(V) on extracellular polymeric substances: effects of pH, EDTA, Ca(II) and temperature shocks.

    Science.gov (United States)

    Zhang, Daoyong; Lee, Duu-Jong; Pan, Xiangliang

    2013-01-01

    Extracellular polymeric substances (EPS) existed ubiquitously in biological systems affect the mobility and availability of heavy metals in the environments. The adsorption-desorption behaviors of Hg(II) and Sb(V) on EPS were investigated. The sorption rates follow Sb(V) > Hg(II), and the desorption rates follow reverse order. Applications of ethylene diamine tetraacetic acid (EDTA), Ca(II) and pH shocks affect desorption rates and desorbed quantities of Hg(II) from EPS-Hg complex. Temperature shock minimally affects the desorption rate of Hg(II). Conversely, the EPS-Sb complex is stable subjected to EDTA, Ca(II), temperature or pH shocks. The excitation-emission matrix (EEM) fluorescence spectroscopy and fast-Fourier (FT-IR) analysis showed that Hg(II) and Sb(V) principally interacted with polysaccharides and protein-like compounds in the EPS, respectively. The EPS-Hg complex presents a time bomb that may release high levels of Hg(II) in short time period under environmental shocks.

  10. Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation

    Science.gov (United States)

    Guo, Xuan; Wang, Xu; Liu, Junxin

    2016-06-01

    Extracellular polymeric substances (EPS) appear to play a critical role in the formation of bioaggregates, such as sludge flocs, in activated sludge processes. Here, we systematically investigated the composition and chemical structure of various EPS fractions excreted from an activated sludge culture using multi-analysis techniques to examine the ability of the sludge to aggregate. Chemical analysis was used with a three-dimensional excitation emission matrix and Fourier transform infrared spectroscopy, applying inter-particle forces theory. The combined findings revealed that hydrophobic groups, especially protein-related N-H, were present in a greater proportion in tightly bound EPS (TB-EPS). This result, which explained the specificity of TB-EPS in the chemical structure, was consistent with data indicating that TB-EPS contained a large amount of protein-like substances (86.7 mg/g of mixed liquor volatile suspended solids, 39.7% of the total EPS). Subsequently, a novel experimental procedure was developed to pinpoint key inter-particle forces in sludge aggregation. The result revealed that hydrogen bonds are the predominant triggers that promote sludge aggregation. This comprehensive analysis indicated that hydrophobic proteins in TB-EPS are responsible for the critical role played by hydrogen bonds in sludge formation. Our findings highlight the need to elucidate the mechanisms of TB-EPS-mediated flocculation in future efforts.

  11. Using extracellular polymeric substances (EPS)-producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell?

    Science.gov (United States)

    Pereira, Sara; Micheletti, Ernesto; Zille, Andrea; Santos, Arlete; Moradas-Ferreira, Pedro; Tamagnini, Paula; De Philippis, Roberto

    2011-02-01

    Many cyanobacteria produce extracellular polymeric substances (EPS) mainly of polysaccharidic nature. These EPS can remain associated to the cell surface as sheaths, capsules and/or slimes, or be liberated into the surrounding environment as released polysaccharides (RPS). The ability of EPS-producing cyanobacteria to remove heavy metals from aqueous solutions has been widely reported in the literature, focusing mainly on the biotechnological potential. However, the knowledge of the effects of the metals in the cell's survival/growth is still scarce, particularly when they are simultaneously exposed to more than one metal. This work evaluated the effects of different concentrations of Cu(2+) and/or Pb(2+) in the growth/survival of Gloeothece sp. PCC 6909 and its sheathless mutant Gloeothece sp. CCY 9612. The results obtained clearly showed that both phenotypes are more severely affected by Cu(2+) than Pb(2+), and that the mutant is more sensitive to the former metal than the wild-type. Evident ultrastructural changes were also observed in the wild-type and mutant cells exposed to high levels (10 mg l(-1)) of Cu(2+). Moreover, in bi-metal systems, Pb(2+) was preferentially removed compared with Cu(2+), being the RPS of the mutant that is the most efficient polysaccharide fraction in metal removal. In these systems, the simultaneous presence of Cu(2+) and Pb(2+) caused a mutual inhibition in the adsorption of each metal.

  12. Structural and functional properties of organic matters in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) after heat pretreatment with waste sludge.

    Science.gov (United States)

    Sun, Jian; Guo, Liang; Li, Qianqian; Zhao, Yangguo; Gao, Mengchun; She, Zonglian; Wang, Guangce

    2016-11-01

    The effects of heat pretreatment on waste sludge hydrolysis were investigated in this study. Heat pretreatment was conducted at 65°C, 80°C, 100°C and 121°C for 5min, 10min, 15min, 20min, 25min and 30min. Not only analyzed the changes of SCOD (Soluble chemical oxygen demand), carbohydrate and protein, but also evaluated the structural and functional properties of organics in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) by using three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy with fluorescence regional integration (FRI) analysis. The SCOD in DOM increased with pretreated temperatures. The optimal heat hydrolysis temperature and time were selected by further studying the biodegradable and non-biodegradable components. After treated at 80°C for 25min, the fluorescence intensity and percent fluorescence response (Pi,n) of easily biodegradable soluble microbial by-product substance were higher than others, and little non-biodegradable fulvic acid-like substance was accumulated.

  13. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching.

    Science.gov (United States)

    Mitsunobu, Satoshi; Zhu, Ming; Takeichi, Yasuo; Ohigashi, Takuji; Suga, Hiroki; Jinno, Muneaki; Makita, Hiroko; Sakata, Masahiro; Ono, Kanta; Mase, Kazuhiko; Takahashi, Yoshio

    2016-01-01

    We herein investigated the mechanisms underlying the contact leaching process in pyrite bioleaching by Acidithiobacillus ferrooxidans using scanning transmission X-ray microscopy (STXM)-based C and Fe near edge X-ray absorption fine structure (NEXAFS) analyses. The C NEXAFS analysis directly showed that attached A. ferrooxidans produces polysaccharide-abundant extracellular polymeric substances (EPS) at the cell-pyrite interface. Furthermore, by combining the C and Fe NEXAFS results, we detected significant amounts of Fe(II), in addition to Fe(III), in the interfacial EPS at the cell-pyrite interface. A probable explanation for the Fe(II) in detected EPS is the leaching of Fe(II) from the pyrite. The detection of Fe(II) also indicates that Fe(III) resulting from pyrite oxidation may effectively function as an oxidizing agent for pyrite at the cell-pyrite interface. Thus, our results imply that a key role of Fe(III) in EPS, in addition to its previously described role in the electrostatic attachment of the cell to pyrite, is enhancing pyrite dissolution.

  14. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching

    Science.gov (United States)

    Mitsunobu, Satoshi; Zhu, Ming; Takeichi, Yasuo; Ohigashi, Takuji; Suga, Hiroki; Jinno, Muneaki; Makita, Hiroko; Sakata, Masahiro; Ono, Kanta; Mase, Kazuhiko; Takahashi, Yoshio

    2016-01-01

    We herein investigated the mechanisms underlying the contact leaching process in pyrite bioleaching by Acidithiobacillus ferrooxidans using scanning transmission X-ray microscopy (STXM)-based C and Fe near edge X-ray absorption fine structure (NEXAFS) analyses. The C NEXAFS analysis directly showed that attached A. ferrooxidans produces polysaccharide-abundant extracellular polymeric substances (EPS) at the cell-pyrite interface. Furthermore, by combining the C and Fe NEXAFS results, we detected significant amounts of Fe(II), in addition to Fe(III), in the interfacial EPS at the cell-pyrite interface. A probable explanation for the Fe(II) in detected EPS is the leaching of Fe(II) from the pyrite. The detection of Fe(II) also indicates that Fe(III) resulting from pyrite oxidation may effectively function as an oxidizing agent for pyrite at the cell-pyrite interface. Thus, our results imply that a key role of Fe(III) in EPS, in addition to its previously described role in the electrostatic attachment of the cell to pyrite, is enhancing pyrite dissolution. PMID:26947441

  15. Characterization of extracellular polymeric substances and microbial diversity in anaerobic co-digestion reactor treated sewage sludge with fat, oil, grease.

    Science.gov (United States)

    Yang, Zhao-Hui; Xu, Rui; Zheng, Yue; Chen, Ting; Zhao, Li-Jun; Li, Min

    2016-07-01

    Performance of co-digesters, treated of sewage sludge (SS) with fat, oil and grease (FOG), were conducted semi-continuously in two mesophilic reactors over 180days. Compared with SS mono-digestion, biogas production and TS removal efficiency of co-digestion were significantly enhanced up to 35% and 26% by adding upper limit FOG (60% on VS). Enhancement in co-digestion performance was also stimulated by the release of extracellular polymeric substances (EPS), which was increased 40% in both loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) than that of mono-digester. Based on high-throughput sequencing (HTS), analysis of microbial 16S rRNA gene comprehensively revealed the dynamic change of microbial community. Results showed that both bacterial and archaeal undergone an apparent succession with FOG addition, and large amount of consortium like Methanosaeta and N09 were involved in the process. Redundancy analysis showed the acetoclastic genera Methanosaeta distinctly related with biogas production and EPS degradation.

  16. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display...... a remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because...... the use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  17. Aminoglycoside inhibition of Staphylococcus aureus biofilm formation is nutrient dependent.

    Science.gov (United States)

    Henry-Stanley, Michelle J; Hess, Donavon J; Wells, Carol L

    2014-06-01

    Biofilms represent microbial communities, encased in a self-produced matrix or extracellular polymeric substance. Microbial biofilms are likely responsible for a large proportion of clinically significant infections and the multicellular nature of biofilm existence has been repeatedly associated with antibiotic resistance. Classical in vitro antibiotic-susceptibility testing utilizes artificial growth media and planktonic microbes, but this method may not account for the variability inherent in environments subject to biofilm growth in vivo. Experiments were designed to test the hypothesis that nutrient concentration can modulate the antibiotic susceptibility of Staphylococcus aureus biofilms. Developing S. aureus biofilms initiated on surgical sutures, and in selected experiments planktonic cultures, were incubated for 16 h in 66 % tryptic soy broth, 0.2 % glucose (1× TSBg), supplemented with bactericidal concentrations of gentamicin, streptomycin, ampicillin or vancomycin. In parallel experiments, antibiotics were added to growth medium diluted one-third (1/3× TSBg) or concentrated threefold (3× TSBg). Following incubation, viable bacteria were enumerated from planktonic cultures or suture sonicates, and biofilm biomass was assayed using spectrophotometry. Interestingly, bactericidal concentrations of gentamicin (5 µg gentamicin ml(-1)) and streptomycin (32 µg streptomycin ml(-1)) inhibited biofilm formation in samples incubated in 1/3× or 1× TSBg, but not in samples incubated in 3× TSBg. The nutrient dependence of aminoglycoside susceptibility is not only associated with biofilm formation, as planktonic cultures incubated in 3× TSBg in the presence of gentamicin also showed antibiotic resistance. These findings appeared specific for aminoglycosides because biofilm formation was inhibited in all three growth media supplemented with bactericidal concentrations of the cell wall-active antibiotics, ampicillin and vancomycin. Additional experiments

  18. Seasonal dynamics of extracellular polymeric substances (EPS) in surface sediments of a diatom-dominated intertidal mudflat (Marennes-Oléron, France)

    Science.gov (United States)

    Pierre, Guillaume; Zhao, Jean-Michel; Orvain, Francis; Dupuy, Christine; Klein, Géraldine L.; Graber, Marianne; Maugard, Thierry

    2014-09-01

    Numerous field-based investigations have highlighted that the production of extracellular polymeric substances (EPS) is physico-chemically and ecologically important for intertidal mudflats. EPS are largely secreted by marine benthic diatoms and their quantity and quality are environmental-dependant. This paper focused on the dynamic pathways, concentration rates and monosaccharides composition of colloidal, bound and residual carbohydrates extracted by using a cationic exchange resin from a diatom-dominated intertidal mudflat (Marennes-Oléron, France) during two different sampling periods: winter (February 2008) and summer (July 2008). A wide range of biotic and abiotic parameters were also studied to better understand the effect of environmental parameters, e.g., chlorophyll a, salinity, pore water amount, emersion time, luminosity, C:N ratio and tidal coefficient. Multiple colorimetric assays coupled to gas chromatographic analyses were carried out to perform the biochemical characterizations. Firstly, the quantity of carbohydrates produced during winter (5.28 μg·μg chl a- 1) was more important than during summer (2.04 μg·μg chl a- 1). Yet, more proteins were found during summer for the colloidal and bound fractions (0.73 and 1.04 μg·μg chl a- 1). Further investigations showed that the dynamic pathways were equivalent between winter and summer: bound carbohydrates (BC) quantities increased during the sediment emersion periods on the contrary to colloidal carbohydrates (CC) which tended to drop throughout the emersion time. The quality in monosaccharides was fraction-dependant, whatever the season. CC were always glucose-rich confirming their role of carbon source. BC were mainly composed of rhamnose whose the ratio increased during the emersion period, thus conferring adhesive properties to the extracellular matrix bounding diatoms cells. Residual carbohydrates (RC) were composed of various monosaccharides and a major increase of glucose content was

  19. Comparison of RNA extraction methods from biofilm samples of Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    França Angela

    2011-12-01

    Full Text Available Abstract Background Microbial biofilms are communities of bacteria adhered to a surface and surrounded by an extracellular polymeric matrix. Biofilms have been associated with increased antibiotic resistance and tolerance to the immune system. Staphylococcus epidermidis is the major bacterial species found in biofilm-related infections on indwelling medical devices. Obtaining high quality mRNA from biofilms is crucial to validate the transcriptional measurements associated with the switching to the biofilm mode of growth. Therefore, we selected three commercially available RNA extraction kits with distinct characteristics, including those using silica membrane or organic extraction methods, and enzymatic or mechanical cell lysis, and evaluated the RNA quality obtained from two distinct S. epidermidis bacterial biofilms. Results RNA extracted using the different kits was evaluated for quantity, purity, integrity, and functionally. All kits were able to extract intact and functional total RNA from the biofilms generated from each S. epidermidis strain. The results demonstrated that the kit based on mechanical lysis and organic extraction (FastRNA® Pro Blue was the only one that was able to isolate pure and large quantities of RNA. Normalized expression of the icaA virulence gene showed that RNA extracted with PureLink™ had a significant lower concentration of icaA mRNA transcripts than the other kits tested. Conclusions When working with complex samples, such as biofilms, that contain a high content extracellular polysaccharide and proteins, special care should be taken when selecting the appropriate RNA extraction system, in order to obtain accurate, reproducible, and biologically significant results. Among the RNA extraction kits tested, FastRNA® Pro Blue was the best option for both S. epidermidis biofilms used.

  20. Effects of warming on stream biofilm organic matter use capabilities.

    Science.gov (United States)

    Ylla, Irene; Canhoto, Cristina; Romaní, Anna M

    2014-07-01

    The understanding of ecosystem responses to changing environmental conditions is becoming increasingly relevant in the context of global warming. Microbial biofilm communities in streams play a key role in organic matter cycling which might be modulated by shifts in flowing water temperature. In this study, we performed an experiment at the Candal stream (Portugal) longitudinally divided into two reaches: a control half and an experimental half where water temperature was 3 °C above that of the basal stream water. Biofilm colonization was monitored during 42 days in the two stream halves. Changes in biofilm function (extracellular enzyme activities and carbon substrate utilization profiles) as well as chlorophyll a and prokaryote densities were analyzed. The biofilm in the experimental half showed a higher capacity to decompose cellulose, hemicellulose, lignin, and peptidic compounds. Total leucine-aminopeptidase, cellobiohydrolase and β-xylosidase showed a respective 93, 66, and 61% increase in activity over the control; much higher than would be predicted by only the direct temperature physical effect. In contrast, phosphatase and lipase activity showed the lowest sensitivity to temperature. The biofilms from the experimental half also showed a distinct functional fingerprint and higher carbon usage diversity and richness, especially due to a wider use of polymers and carbohydrates. The changes in the biofilm functional capabilities might be indirectly affected by the higher prokaryote and chlorophyll density measured in the biofilm of the experimental half. The present study provides evidence that a realistic stream temperature increase by 3 °C changes the biofilm metabolism to a greater decomposition of polymeric complex compounds and peptides but lower decomposition of lipids. This might affect stream organic matter cycling and the transfer of carbon to higher trophic levels.

  1. The effects of silver nanoparticles on intact wastewater biofilms

    Directory of Open Access Journals (Sweden)

    Zhiya eSheng

    2015-07-01

    Full Text Available Silver nanoparticles (Ag-NPs have strong antibacterial properties, which may adversely affect biological wastewater treatment processes. To determine the overall effect, intact biofilm samples were collected from the rotating biological contactor (RBC at the local wastewater treatment plant and treated with 200 mg Ag/L Ag-NPs for 24 h. The biofilm uptake of Ag-NPs was monitored with transmission electron microscopy (TEM. Forty-five min after Ag-NP application, Ag-NPs were seen in the biofilm extracellular polymeric substances (EPS. After 24 h, Ag-NPs had entered certain microbial cells, while other cells contained no observable Ag-NPs. Some cells were dying after the uptake of Ag-NPs. However, there was no significant reduction in cultivable bacteria in the biofilms, based on heterotrophic plate counts (HPC. While this may indicate that wastewater biofilms are highly resistant to Ag-NPs, the HPC represents only a small portion of the total microbial population. To further investigate the effects of Ag-NPs, a GeoChip microarray was used to directly detect changes in the functional gene structure of the microbial community in the biofilm. A clear decrease (34.6% decrease in gene number in gene diversity was evident in the GeoChip analysis. However, the complete loss of any specific gene was rare. Some gene families present in both treated and untreated biofilms. However, this doesn’t necessarily mean that there was no change in these families. Signal intensity decreased in certain variants in each family while other variants increased to compensate the effects of Ag-NPs. The results indicate that Ag-NP treatment decreased microbial community diversity but did not significantly affect the microbial community function. This provides direct evidence for the functional redundancy of microbial community in engineered ecosystems such as wastewater biofilms.

  2. Production of extracellular polymeric substances (EPS) by Serratia sp.1 using wastewater sludge as raw material and flocculation activity of the EPS produced.

    Science.gov (United States)

    Bezawada, J; Hoang, N V; More, T T; Yan, S; Tyagi, N; Tyagi, R D; Surampalli, R Y

    2013-10-15

    Growth profile and extracellular polymeric substances (EPS) production of Serratia sp.1 was studied in shake flask fermentation for 72 h using wastewater sludge as raw material. Maximum cell concentration of 6.7 × 10(9) cfu/mL was obtained at 48 h fermentation time. EPS dry weight, flocculation activity and dewaterability of different EPS (tightly bound or TB-EPS, loosely bound or LB-EPS and broth-EPS or B-EPS) were also measured. The highest concentration of LB-EPS (2.45 g/L) and TB-EPS (0.99 g/L) were attained at 48 h of fermentation. Maximum flocculation activity and dewaterability (ΔCST) of TB-EPS (76.4%, 14.5s and 76.5%, 15.5s), LB-EPS (67.8%, 8.1s and 64.7%, 7.6s) and broth EPS (61%, 6.1s and 70.4%, 6.8s) were obtained at 36 and 48 h of growth. Higher flocculation activity and dewaterability were achieved with TB-EPS than with the two other EPS. Characterization of TB-EPS and LB-EPS was done in terms of their protein and carbohydrate content. Protein content was much higher in TB-EPS where as carbohydrate content was only slightly higher in TB-EPS than LB-EPS. Morphology of the Serratia strain after fermentation in sludge and TSB was observed under a scanning electron microscope and the cell size was found to be bigger in the sludge medium than the TSB medium.

  3. Effects of toxic metals and chemicals on biofilm and biocorrosion.

    Science.gov (United States)

    Fang, Herbert H P; Xu, Li-Chong; Chan, Kwong-Yu

    2002-11-01

    Microbes in marine biofilms aggregated into clusters and increased the production of extracellular polymeric substances (EPS), by over 100% in some cases, when the seawater media containing toxic metals and chemicals, such as Cd(II), Cu(II), Pb(II), Zn(II), AI(III), Cr(III), glutaraldehyde, and phenol. The formation of microbial cluster and the increased production of EPS, which contained 84-92% proteins and 8-16% polysaccharides, accelerated the corrosion of the mild steel. However, there was no quantitative relationship between the degree of increased corrosion and the toxicity of metals/chemicals towards sulfate-reducing bacteria, or the increased EPS production.

  4. Analysis of Dissolved Organic Nutrients in the Interstitial Water of Natural Biofilms.

    Science.gov (United States)

    Tsuchiya, Yuki; Eda, Shima; Kiriyama, Chiho; Asada, Tomoya; Morisaki, Hisao

    2016-07-01

    In biofilms, the matrix of extracellular polymeric substances (EPSs) retains water in the interstitial region of the EPS. This interstitial water is the ambient environment for microorganisms in the biofilms. The nutrient condition in the interstitial water may affect microbial activity in the biofilms. In the present study, we measured the concentrations of dissolved organic nutrients, i.e., saccharides and proteins, contained in the interstitial water of biofilms formed on the stones. We also analyzed the molecular weight distribution, chemical species, and availability to bacteria of some saccharides in the interstitial water. Colorimetric assays showed that the concentrations of saccharides and proteins in the biofilm interstitial water were significantly higher (ca. 750 times) than those in the surrounding lake waters (p interstitial waters were mainly of low molecular-weight saccharides such as glucose and maltose, while proteins in the interstitial water were high molecular-weight proteins (over 7000 Da). Bacterial growth and production of EPS occurred simultaneously with the decrease in the low molecular-weight saccharide concentrations when a small portion of biofilm suspension was inoculated to the collected interstitial water, suggesting that the dissolved saccharides in the interstitial water support bacterial growth and formation of biofilms.

  5. Detection of Intracellular Adhesion (ica Gene and Biofilm Formation Staphylococcus aureus Isolates from Clinical Blood Cultures

    Directory of Open Access Journals (Sweden)

    Mohsen Mirzaee

    2015-10-01

    Full Text Available Background: In fact the biofilms are composed of bacterial cells living inmulticellular structures such as tissues and organs embedded within a self-produced matrix of extracellular polymeric substance (EPS. Ability to attach and biofilm formation are the most important virulence factors Staphylococcus aureus isolates. The aims of this study were to detect intracellular adhesion (ica locus and its relation to the biofilm formation phenotype in clinical isolates of S. aureus isolated from bloodcultures.Methods: A total of 31 clinical S. aureus isolates were collected from Loghman Hospital of Tehran, Iran. In vitro biofilm formation ability was determined by microliter tissue culture plates. All clinical isolates were examined for determination the ica locus by using PCR method.Results: Twelve (38.7% of the isolates were strong biofilm producers. The results showed that 18(80.6% of the isolates carried icaD gene, whereas the prevalence of icaA, icaB and icaC were 51.6%, 45.1% and 77.4% respectively.Conclusions: S. aureus clinical isolates have different ability to form biofilm. This may be caused by the differences in the expression of biofilm related genes, genetic make-up and physiological conditions.

  6. In vitro anti-biofilm and anti-bacterial activity of Junceella juncea for its biomedical application

    Institute of Scientific and Technical Information of China (English)

    P Kumar; S Senthamil Selvi; M Govindaraju

    2012-01-01

    Objective: To investigate the anti-biofilm and anti-bacterial activity of Junceella juncea (J. juncea) against biofilm forming pathogenic strains. Methods: Gorgonians were extracted with methanol and analysed with fourier transform infrared spectroscopy. Biofilm forming pathogens were identified by Congo red agar supplemented with sucrose. A quantitative spectrophotometric method was used to monitor in vitro biofilm reduction by microtitre plate assay. Anti-bacterial activity of methanolic gorgonian extract (MGE) was carried out by disc diffusion method followed by calculating the percentage of increase with crude methanol (CM). Results: The presence of active functional group was exemplified by FT-IR spectroscopy. Dry, black, crystalline colonies confirm the production of extracellular polymeric substances responsible for biofilm formation in Congo red agar. MGE exhibited potential anti-biofilm activity against all tested bacterial strains. The anti-bacterial activity of methanolic extract was comparably higher in Salmonella typhii followed by Escherichia coli, Vibrio cholerae and Shigella flexneri. The overall percentage of increase was higher by 50.2%to CM. Conclusions:To conclude, anti-biofilm and anti-bacterial efficacy of J. juncea is impressive over biofilm producing pathogens and are good source for novel anti-bacterial compounds.

  7. A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms

    Directory of Open Access Journals (Sweden)

    Joaquín eCaro-Astorga

    2015-01-01

    Full Text Available Bacillus cereus is a bacterial pathogen that is responsible for many recurrent disease outbreaks due to food contamination. Spores and biofilms are considered the most important reservoirs of B. cereus in contaminated fresh vegetables and fruits. Biofilms are bacterial communities that are difficult to eradicate from biotic and abiotic surfaces because of their stable and extremely strong extracellular matrix. These extracellular matrixes contain exopolysaccharides, proteins, extracellular DNA, and other minor components. Although B. cereus can form biofilms, the bacterial features governing assembly of the protective extracellular matrix are not known. Using the well-studied bacterium B. subtilis as a model, we identified two genomic loci in B. cereus, which encodes two orthologs of the amyloid-like protein TasA of B. subtilis and a SipW signal peptidase. Deletion of this genomic region in B. cereus inhibited biofilm assembly; notably, mutation of the putative signal peptidase SipW caused the same phenotype. However, mutations in tasA or calY did not completely prevent biofilm formation; strains that were mutated for either of these genes formed phenotypically different surface attached biofilms. Electron microscopy studies revealed that TasA polymerizes to form long and abundant fibers on cell surfaces, whereas CalY does not aggregate similarly. Heterologous expression of this amyloid-like cassette in a B. subtilis strain lacking the factors required for the assembly of TasA amyloid-like fibers revealed i the involvement of this B. cereus genomic region in formation of the air-liquid interphase pellicles and ii the intrinsic ability of TasA to form fibers similar to the amyloid-like fibers produced by its B. subtilis ortholog.

  8. Sublethal concentrations of silver nanoparticles affect the mechanical stability of biofilms.

    Science.gov (United States)

    Grün, Alexandra Y; Meier, Jutta; Metreveli, George; Schaumann, Gabriele E; Manz, Werner

    2016-12-01

    Bacterial biofilms are most likely confronted with silver nanoparticles (Ag NPs) as a pollutant stressor in aquatic systems. In this study, biofilms of Aquabacterium citratiphilum were exposed for 20 h to 30 and 70 nm citrate stabilized Ag NPs in low-dose concentrations ranging from 600 to 2400 μg l(-1), and the Ag NP-mediated effects on descriptive, structural, and functional biofilm characteristics, including viability, protein content, architecture, and mechanical stability, were investigated. Viability, based on the bacterial cell membrane integrity of A. citratiphilum, as determined by epifluorescence microscopy, remained unaffected after Ag NP exposure. Moreover, in contrast to information in the current literature, protein contents of cells and extracellular polymeric substances (EPS) and biofilm architecture, including dry mass, thickness, and density, were not significantly impacted by exposure to Ag NPs. However, the biofilms themselves served as effective sinks for Ag NPs, exhibiting enrichment factors from 5 to 8. Biofilms showed a greater capacity to accumulate 30 nm sized Ag NPs than 70 nm Ag NPs. Furthermore, Ag NPs significantly threatened the mechanical stability of biofilms, as determined by a newly developed assay. For 30 nm Ag NPs, the mechanical stability of biofilms decreased as the Ag NP concentrations applied to them increased. In contrast, 70 nm Ag NPs produced a similar decrease in mechanical stability for each applied concentration. Overall, this finding demonstrates that exposure to Ag NPs triggers remarkable changes in biofilm adhesion and/or cohesiveness. Because of biofilm-mediated ecological services, this response raises environmental concerns regarding Ag NP release into freshwater systems, even in sublethal concentrations.

  9. Confocal Microscopy Imaging of the Biofilm Matrix

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke Louise

    2016-01-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens...

  10. The sinR ortholog PGN_0088 encodes a transcriptional regulator that inhibits polysaccharide synthesis in Porphyromonas gingivalis ATCC 33277 biofilms.

    Directory of Open Access Journals (Sweden)

    Reiko Yamamoto

    Full Text Available Biofilm-forming cells are distinct from well characterized planktonic cells and aggregate in the extracellular matrix, the so-called extracellular polymeric substances (EPS. The sinR gene of Bacillus subtilis encodes a transcriptional regulator that is known to be involved in the biosynthesis of EPS in biofilms. Porphyromonas gingivalis inhabits the subgingival and extraradicular biofilm of humans and is one of the primary pathogens that cause progressive marginal and refractory apical periodontitis. Furthermore, P. gingivalis possesses PGN_0088, which encodes a putative ortholog of B. subtilis sinR. Here, we investigated the role of PGN_0088 (sinR on biofilm formation. P. gingivalis strains formed biofilms on saliva-coated glass surfaces in phosphate buffered saline. Quantitative analysis indicated that the biofilm of the sinR null mutant consisted of dense exopolysaccharide. Microscopic observations showed that the increased levels of exopolysaccharide produced by the sinR mutant changed the morphology of the EPS to a mesh-liked structure. Furthermore, physical analyses suggested that the enrichment of exopolysaccharide in the EPS enhanced the resistance of the biofilm to hydrodynamic shear force. The results presented here demonstrate sinR plays important roles in the ability of P. gingivalis strain ATCC 33277 to act as a negative mediator of exopolysaccharide accumulation and is indirectly associated with the structure of the EPS and the force of its adhesion to surfaces.

  11. Emergent pattern formation in an interstitial biofilm

    Science.gov (United States)

    Zachreson, Cameron; Wolff, Christian; Whitchurch, Cynthia B.; Toth, Milos

    2017-01-01

    Collective behavior of bacterial colonies plays critical roles in adaptability, survivability, biofilm expansion and infection. We employ an individual-based model of an interstitial biofilm to study emergent pattern formation based on the assumptions that rod-shaped bacteria furrow through a viscous environment and excrete extracellular polymeric substances which bias their rate of motion. Because the bacteria furrow through their environment, the substratum stiffness is a key control parameter behind the formation of distinct morphological patterns. By systematically varying this property (which we quantify with a stiffness coefficient γ ), we show that subtle changes in the substratum stiffness can give rise to a stable state characterized by a high degree of local order and long-range pattern formation. The ordered state exhibits characteristics typically associated with bacterial fitness advantages, even though it is induced by changes in environmental conditions rather than changes in biological parameters. Our findings are applicable to a broad range of biofilms and provide insights into the relationship between bacterial movement and their environment, and basic mechanisms behind self-organization of biophysical systems.

  12. In situ characterization and analysis of Salmonella biofilm formation under meat processing environments using a combined microscopic and spectroscopic approach.

    Science.gov (United States)

    Wang, Huhu; Ding, Shijie; Wang, Guangyu; Xu, Xinglian; Zhou, Guanghong

    2013-11-01

    Salmonella biofilm on food-contact surfaces present on food processing facilities may serve as a source of cross-contamination. In our work, biofilm formation by multi-strains of meat-borne Salmonella incubated at 20 °C, as well as the composition and distribution of extracellular polymeric substances (EPS), were investigated in situ by combining confocal laser scanning microscopy (CLSM), scanning electron microscope (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and Raman spectroscopy. A standard laboratory culture medium (tryptic soy broth, TSB) was used and compared with an actual meat substrate (meat thawing-loss broth, MTLB). The results indicated that Salmonella grown in both media were able to form biofilms on stainless steel surfaces via building a three-dimensional structure with multilayers of cells. Although the number of biofilm cells grown in MTLB was less than that in TSB, the cell numbers in MTLB was adequate to form a steady and mature biofilm. Salmonella grown in MTLB showed "cloud-shaped" morphology in the mature biofilm, whereas when grown in TSB appeared "reticular-shaped". The ATR-FTIR and Raman analysis revealed a completely different chemical composition between biofilms and the corresponding planktonic cells, and some important differences in biofilms grown in MTLB and in TSB. Importantly, our findings suggested that the progress towards a mature Salmonella biofilm on stainless steel surfaces may be associated with the production of the EPS matrix, mainly consisting of polysaccharides and proteins, which may serve as useful markers of biofilm formation. Our work indicated that a combination of these non-destructive techniques provided new insights into the formation of Salmonella biofilm matrix.

  13. Development of an extraction method and LC-MS analysis for N-acylated-l-homoserine lactones (AHLs) in wastewater treatment biofilms.

    Science.gov (United States)

    Wang, Jinfeng; Ding, Lili; Li, Kan; Schmieder, Wilhelm; Geng, Jinju; Xu, Ke; Zhang, Yan; Ren, Hongqiang

    2017-01-15

    N-Acylated-l-homoserine lactones (AHLs) play a vital role in Gram-negative bacteria communication by promoting the formation of extracellular polymeric substances (EPS) and biofilms. However, the low concentration of these AHL signals makes the process difficult to understand. A robust and sensitive pretreatment method for AHL detection was developed in this work. Compared with eight different solid-phase extraction (SPE) columns and three various solid extraction method, we found that the UE (ultrasonic extraction) and an Oasis hydrophilic-lipophilic-balanced (HLB) sorbent in column format combined with ultra-performance liquid chromatography linked to tandem mass spectrometry (UPLC-MS/MS) can be successfully used for systematic pretreating moving bed biofilm reactor (MBBR) biological samples to extract AHLs and determine concentration of AHLs in wastewater treatment biofilms. This easy-to-follow protocol makes it ideal for quantitative analyses of AHLs in wastewater treatment biofilms.

  14. msaABCR operon positively regulates biofilm development by repressing proteases and autolysis in Staphylococcus aureus.

    Science.gov (United States)

    Sahukhal, Gyan S; Batte, Justin L; Elasri, Mohamed O

    2015-02-01

    Staphylococcus aureus is an important human pathogen that causes nosocomial and community-acquired infections. One of the most important aspects of staphylococcal infections is biofilm development within the host, which renders the bacterium resistant to the host's immune response and antimicrobial agents. Biofilm development is very complex and involves several regulators that ensure cell survival on surfaces within the extracellular polymeric matrix. Previously, we identified the msaABCR operon as an additional positive regulator of biofilm formation. In this study, we define the regulatory pathway by which msaABCR controls biofilm formation. We demonstrate that the msaABCR operon is a negative regulator of proteases. The control of protease production mediates the processing of the major autolysin, Atl, and thus regulates the rate of autolysis. In the absence of the msaABCR operon, Atl is processed by proteases at a high rate, leading to increased cell death and a defect in biofilm maturation. We conclude that the msaABCR operon plays a key role in maintaining the balance between autolysis and growth within the staphylococcal biofilm.

  15. The ``Swiss cheese'' instability of bacterial biofilms

    Science.gov (United States)

    Jang, Hongchul; Rusconi, Roberto; Stocker, Roman

    2012-11-01

    Bacteria often adhere to surfaces, where they develop polymer-encased communities (biofilms) that display dramatic resistance to antibiotic treatment. A better understanding of cell detachment from biofilms may lead to novel strategies for biofilm disruption. Here we describe a new detachment mode, whereby a biofilm develops a nearly regular array of ~50-100 μm holes. Using surface-treated microfluidic devices, we create biofilms of controlled shape and size. After the passage of an air plug, the break-up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a ``Swiss cheese'' pattern is left in the residual biofilm. Fluorescent staining of the polymeric matrix (EPS) reveals that resistance to cell dislodgement correlates with local biofilm age, early settlers having had more time to hunker down. Because few survivors suffice to regrow a biofilm, these results point at the importance of considering microscale heterogeneity in assessing the effectiveness of biofilm removal strategies.

  16. Biofilm structures (EPS and bacterial communities) in drinking water distribution systems are conditioned by hydraulics and influence discolouration.

    Science.gov (United States)

    Fish, K; Osborn, A M; Boxall, J B

    2017-03-27

    High-quality drinking water from treatment works is degraded during transport to customer taps through the Drinking Water Distribution System (DWDS). Interactions occurring at the pipe wall-water interface are central to this degradation and are often dominated by complex microbial biofilms that are not well understood. This study uses novel application of confocal microscopy techniques to quantify the composition of extracellular polymeric substances (EPS) and cells of DWDS biofilms together with concurrent evaluation of the bacterial community. An internationally unique, full-scale, experimental DWDS facility was used to investigate the impact of three different hydraulic patterns upon biofilms and subsequently assess their response to increases in shear stress, linking biofilms to water quality impacts such as discolouration. Greater flow variation during growth was associated with increased cell quantity but was inversely related to EPS-to-cell volume ratios and bacterial diversity. Discolouration was caused and EPS was mobilised during flushing of all conditions. Ultimately, biofilms developed under low-varied flow conditions had lowest amounts of biomass, the greatest EPS volumes per cell and the lowest discolouration response. This research shows that the interactions between hydraulics and biofilm physical and community structures are complex but critical to managing biofilms within ageing DWDS infrastructure to limit water quality degradation and protect public health.

  17. Dispersal of human and plant pathogens biofilms via nitric oxide donors at 4 °C.

    Science.gov (United States)

    Marvasi, Massimiliano; Durie, Ian A; Henríquez, Tania; Satkute, Aiste; Matuszewska, Marta; Prado, Raphael Carvalho

    2016-12-01

    Recent studies suggest that nitric oxide donors capable of manipulating nitric oxide-mediated signaling in bacteria could induce dispersal of biofilms. Encased in extracellular polymeric substances, human and plant pathogens within biofilms are significantly more resistant to sanitizers. This is particularly a problem in refrigerated environments where food is processed. In an exercise aimed to study the potential of nitric oxide donors as biofilm dispersal in refrigerated conditions, we compared the ability of different nitric oxide donors (SNAP, NO-aspirin and Noc-5) to dislodge biofilms formed by foodborne, human and plant pathogens treated at 4 °C. The donors SNAP and Noc-5 were efficient in dispersing biofilms formed by Salmonella enterica, pathogenic Escherichia coli and Listeria innocua. The biomasses were decreased up to 30 % when compared with the untreated controls. When the plant pathogens Pectobacterium sp. and Xanthomonas sp. were tested the dispersion was mainly limited to Pectobacterium carotovorum biofilms, decreasing up to 15 % after exposure to molsidomine. Finally, the association of selected nitric oxide donors with sanitizers (DiQuat, H2O2, peracetic acid and PhenoTek II) was effective in dispersing biofilms. The best dispersal was achieved by pre-treating P. carotovorum with molsidomine and then peracetic acid. The synergistic effect was estimated up to ~35 % in dispersal when compared with peracetic acid alone. The association of nitric oxide donors with sanitizers could provide a foundation for an improved sanitization procedure for cleaning refrigerate environments.

  18. Influence of phosphorus availability on the community structure and physiology of cultured biofilms.

    Science.gov (United States)

    Li, Shuangshuang; Wang, Chun; Qin, Hongjie; Li, Yinxia; Zheng, Jiaoli; Peng, Chengrong; Li, Dunhai

    2016-04-01

    Biofilms have important effects on nutrient cycling in aquatic ecosystems. However, publications about the community structure and functions under laboratory conditions are rare. This study focused on the developmental and physiological properties of cultured biofilms under various phosphorus concentrations performed in a closely controlled continuous flow incubator. The results showed that the biomass (Chl a) and photosynthesis of algae were inhibited under P-limitation conditions, while the phosphatase activity and P assimilation rate were promoted. The algal community structure of biofilms was more likely related to the colonization stage than with the phosphorus availability. Cyanobacteria were more competitive than other algae in biofilms, particularly when cultured under low P levels. A dominance shift occurred from non-filamentous algae in the early stage to filamentous algae in the mid and late stages under P concentrations of 0.01, 0.1 and 0.6 mg/L. However, the total N content, dry weight biomass and bacterial community structure of biofilms were unaffected by phosphorus availability. This may be attributed to the low respiration rate, high accumulation of extracellular polymeric substances and high alkaline phosphatase activity in biofilms when phosphorus availability was low. The bacterial community structure differed over time, while there was little difference between the four treatments, which indicated that it was mainly affected by the colonization stage of the biofilms rather than the phosphorus availability. Altogether, these results suggested that the development of biofilms was influenced by the phosphorus availability and/or the colonization stage and hence determined the role that biofilms play in the overlying water.

  19. Bacteriophages and Biofilms

    Directory of Open Access Journals (Sweden)

    David R. Harper

    2014-06-01

    Full Text Available Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.

  20. Antibacterial and biofilm inhibitory activities of bacteria associated with polychaetes

    Directory of Open Access Journals (Sweden)

    Chellamnadar Vaikundavasagom Sunjaiy Shankar

    2015-06-01

    Full Text Available Objective: To study the antibacterial and antibiofilm activities expressed by epibiotic bacteria associated with the polychaetes Platynereis dumerilii and Syllis sp. Methods: A total of 32 cultivable bacterial strains were isolated from the two polychaete species. The crude extracts were tested for antibacterial activity and biofilm inhibitory activity against pathogenic and biofilm-forming bacterial strains. Extracts of the strains which showed strong activity were analyzed by thin-layer chromatography (TLC and the bacterial strains were identified based on 16S rRNA gene sequencing. Results: Extracts of 13 bacterial strains showed inhibitory activity against pathogenic and biofilm-forming bacteria. The crude extracts also affected the synthesis of extracellular polymeric substances and cell surface hydrophobicity of the Alteromonas sp. isolated from marine biofilm. The adhesion of Alteromonas sp. on glass surface showed significant variation between surface-associated bacterial crude extract treatment and control groups. Among the 13 bacteria, two strains PA8 and PA19 were further analyzed for bioactive fractions. Thinlayer chromatography indicated the presence of a single active fraction in the crude extract of both the bacterial strains. The epibiotic bacterial strains P8 and P19 were identified as Exiguobacterium sp. and Actinobacterium sp. respectively based on 16S rRNA gene sequencing. Conclusions: The present study indicates that bacteria associated with marine invertebrates inhabiting the coastal waters could be used as a potential source for the isolation of bioactive metabolites.

  1. Biofilm Risks

    DEFF Research Database (Denmark)

    Wirtanen, Gun Linnea; Salo, Satu

    2016-01-01

    This chapter on biofilm risks deals with biofilm formation of pathogenic microbes, sampling and detection methods, biofilm removal, and prevention of biofilm formation. Several common pathogens produce sticky and/or slimy structures in which the cells are embedded, that is, biofilms, on various s...

  2. A Rhizobium leguminosarum CHDL- (Cadherin-Like-) Lectin Participates in Assembly and Remodeling of the Biofilm Matrix

    Science.gov (United States)

    Vozza, Nicolás F.; Abdian, Patricia L.; Russo, Daniela M.; Mongiardini, Elías J.; Lodeiro, Aníbal R.; Molin, Søren; Zorreguieta, Angeles

    2016-01-01

    In natural environments most bacteria live in multicellular structures called biofilms. These cell aggregates are enclosed in a self-produced polymeric extracellular matrix, which protects the cells, provides mechanical stability and mediates cellular cohesion and adhesion to surfaces. Although important advances were made in the identification of the genetic and extracellular factors required for biofilm formation, the mechanisms leading to biofilm matrix assembly, and the roles of extracellular proteins in these processes are still poorly understood. The symbiont Rhizobium leguminosarum requires the synthesis of the acidic exopolysaccharide and the PrsDE secretion system to develop a mature biofilm. PrsDE is responsible for the secretion of the Rap family of proteins that share one or two Ra/CHDL (cadherin-like-) domains. RapA2 is a calcium-dependent lectin with a cadherin-like β sheet structure that specifically recognizes the exopolysaccharide, either as a capsular polysaccharide (CPS) or in its released form [extracellular polysaccharide (EPS)]. In this study, using gain and loss of function approaches combined with phenotypic and microscopic studies we demonstrated that RapA lectins are involved in biofilm matrix development and cellular cohesion. While the absence of any RapA protein increased the compactness of bacterial aggregates, high levels of RapA1 expanded distances between cells and favored the production of a dense matrix network. Whereas endogenous RapA(s) are predominantly located at one bacterial pole, we found that under overproduction conditions, RapA1 surrounded the cell in a way that was reminiscent of the capsule. Accordingly, polysaccharide analyses showed that the RapA lectins promote CPS formation at the expense of lower EPS production. Besides, polysaccharide analysis suggests that RapA modulates the EPS size profile. Collectively, these results show that the interaction of RapA lectins with the polysaccharide is involved in rhizobial

  3. Investigating the Complex Conductivity Response of Different Biofilm Components

    Science.gov (United States)

    Atekwana, E. A.; Abdel Aal, G. Z.; Sarkisova, S. A.; Patrauchan, M.

    2013-12-01

    Microbial biofilms are structured communities of microorganisms commonly attached to a surface and embedded in a self-produced matrix. The matrix is composed of extracellular polymeric substances (EPS), which commonly include extracellular DNA, proteins, and polysaccharides. In addition, the biofilm structure may contain some other components such as metabolic byproducts and biogenic nanoparticle minerals. Biogeophysical studies have demonstrated the sensitivity of spectral induced polarization (SIP) measurements to the growth and development of biofilm in saturated porous media. However, the mechanisms are not very well understood. The overarching goal of this study is to determine the contribution of the different biofilm components to the spectral induced polarization (SIP) signatures in aqueous and/or porous media. We investigated the SIP response of different biofilm components including bacterial cells, alginate (exopolysaccharide), phenazine (redox-active metabolite) and magnetite (semi-conductive particulate matter). The porous media was glass beads with grain diameter of 1 mm. Each of the biofilm components was suspended in a low salt growth medium with electrolytic conductivity of 513 μS/cm. Using Pseudomonas aeruginosa PAO1 cells in suspension and in porous media, we observed the increase in SIP parameters with increasing cell density with a very well defined relaxation peak at a frequency of ~10 Hz, which was predicted by recently developed quantitative models. However, this characteristic relaxation peak was minimized in the presence of porous media. We also observed that cells suspended in alginate enhance the polarization and show a peak frequency at ~10 Hz. The study of alginate gelation in liquid phase and porous media in vitro revealed that solidified (gelated) alginate (from brown algae) increased the magnitude of imaginary conductivity while real conductivity increased very moderately. In contrast, the study of the SIP response within a porous

  4. 多聚β-1-6-N-乙酰氨基葡萄糖胺对鲍氏不动杆菌生物膜形成及耐药的影响%Influence of poly-β-1-6-N-acetylglucosamine on biofilm formation and drug resistance of Acinetobacter baumannii

    Institute of Scientific and Technical Information of China (English)

    郭海娜; 向军

    2015-01-01

    Acinetobacter baumannii has emerged as one of the leading bacteria for nosocomial infections,especially in burn wards and ICUs.The bacteria can easily form biofilm and readily attach to abiotic and biotic surfaces,resulting in persistent biofilm-mediated infections.Being surrounded by selfproduced extracellular polymeric substance (EPS),the microorganisms in biofilm can acquire protective property against detrimental environment and their tolerance toward antibiotics is increased.Poly-β-1-6-N-acetylglucosamine (PNAG),the common constituent of EPS in Acinetobacter baumannii,acts as the key virulence factor and plays a crucial role in biofilm formation process.This review describes the properties and functions of the PNAG and its influence on biofilm formation and drug resistance of Acinetobacter baumannii.

  5. Investigation on the difference between biofilm morphologies of the vermifilter and conventional biofilter with the flow cytometer.

    Science.gov (United States)

    Di, Wanyin; Xing, Meiyan; Yang, Jian

    2016-09-01

    With the demand of new sludge reduction processes, a vermifilter (VF) was studied based on a conventional biofilter (BF). The biofilm morphology was investigated using a new technique, the flow cytometer (FCM), to find a way to optimize VF structure. VF was inoculated with Eisenia fetida, packed with ceramsites, and operated stably at the organic load of 1.2kg-VSSm(-3)d(-1) with BF as the control. Compared with BF, VF had about 13% more removal efficiency of excess sludge and 45% shorter biofilm update period. FCM profile showed the morphology of microbial cells in VF biofilms was significantly different from that in BF in upper layers, with decreases of average refractive index (about 72%) and size (about 22%), and suggested it was better to keep earthworms there to remove rod-shaped microorganisms with other filter media in lower layers to remove spherical ones combining the findings in SEM images and extracellular polymeric substances.

  6. Application of fluorescently labelled lectins for the study of polysaccharides in biofilms with a focus on biofouling of nanofiltration membranes

    Directory of Open Access Journals (Sweden)

    Patrick Di Martino

    2016-07-01

    Full Text Available The biofilm state is the dominant microbial lifestyle in nature. A biofilm can be defined as cells organised as microcolonies embedded in an organic polymer matrix of microbial origin living at an interface between two different liquids, air and liquid, or solid and liquid. The biofilm matrix is made of extracellular polymeric substances, polysaccharides being considered as the major structural components of the matrix. Fluorescently labelled lectins have been widely used to stain microbial extracellular glycoconjugates in natural and artificial environments, and to study specific bacterial species or highly complex environments. Biofilm development at the membrane surface conducting to biofouling is one of the major problems encountered during drinking water production by filtration. Biofouling affects the durability and effectiveness of filtration membranes. Biofouling can be reduced by pretreatments in order to control two key parameters of water, the bioavailable organic matter concentration and the concentration of live bacteria. Nanofiltration (NF is a high technology process particularly suited to the treatment of surface waters to produce drinking water that is highly sensitive to biofouling. The development of strategies for fouling prevention and control requires characterizing the fouling material composition and organisation before and after NF membrane cleaning. The aim of this review is to present basics of biofilm analyses after staining with fluorescently labelled lectins and to focus on the use of fluorescent lectins and confocal laser scanning microscopy to analyse NF membrane biofouling.

  7. Optimal dosing regimen of nitric oxide donor compounds for the reduction of Pseudomonas aeruginosa biofilm and isolates from wastewater membranes.

    Science.gov (United States)

    Barnes, Robert J; Bandi, Ratnaharika R; Wong, Wee Seng; Barraud, Nicolas; McDougald, Diane; Fane, Anthony; Kjelleberg, Staffan; Rice, Scott A

    2013-01-01

    Membrane fouling by bacterial biofilms remains a key challenge for membrane-based water purification systems. Here, the optimal biofilm dispersal potential of three nitric oxide (NO) donor compounds, viz. sodium nitroprusside, 6-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine (MAHMA NONOate) and 1-(hydroxy-NNO-azoxy)-L-proline, disodium salt, was investigated using Pseudomonas aeruginosa PAO1 as a model organism. Dispersal was quantitatively assessed by confocal microscopy [bacterial cells and the components of the extracellular polymeric substances (EPS) (polysaccharides and extracellular DNA)] and colony-forming unit counts. The three NO donor compounds had different optimal exposure times and concentrations, with MAHMA NONOate being the optimal NO donor compound. Biofilm dispersal correlated with a reduction in both bacterial cells and EPS. MAHMA NONOate also reduced single species biofilms formed by bacteria isolated from industrial membrane bioreactor and reverse osmosis membranes, as well as in isolates combined to generate mixed species biofilms. The data present strong evidence for the application of these NO donor compounds for prevention of biofouling in an industrial setting.

  8. Combating biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong;

    2012-01-01

    Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life...... is believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review......, strategies to control biofilms are discussed, including those of inhibition of microbial attachment, interference of biofilm structure development and differentiation, killing of biofilm cells and induction of biofilm dispersion....

  9. Characterisation of the physical composition and microbial community structure of biofilms within a model full-scale drinking water distribution system.

    Directory of Open Access Journals (Sweden)

    Katherine E Fish

    Full Text Available Within drinking water distribution systems (DWDS, microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM in combination with digital image analysis (DIA, to concurrently characterize cells and EPS (carbohydrates and proteins within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is

  10. Characterisation of the physical composition and microbial community structure of biofilms within a model full-scale drinking water distribution system.

    Science.gov (United States)

    Fish, Katherine E; Collins, Richard; Green, Nicola H; Sharpe, Rebecca L; Douterelo, Isabel; Osborn, A Mark; Boxall, Joby B

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important

  11. Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect.

    Science.gov (United States)

    Kim, Soo-Kyoung; Park, Ha-Young; Lee, Joon-Hee

    2015-04-01

    Anthranilate and indole are alternative degradation products of tryptophan, depending on the bacterial species. While indole enhances the biofilm formation of Pseudomonas aeruginosa, we found that anthranilate, the tryptophan degradation product of P. aeruginosa, had an opposite effect on P. aeruginosa biofilm formation, in which anthranilate deteriorated the mushroom structure of biofilm. The anthranilate effect on biofilm formation was differentially exerted depending on the developmental stage and the presence of shear force. Anthranilate slightly accelerated the initial attachment of P. aeruginosa at the early stage of biofilm development and appeared to build more biofilm without shear force. But anthranilate weakened the biofilm structure in the late stage, deteriorating the mushroom structure of biofilms with shear force to make a flat biofilm. To investigate the interplay of anthranilate with indole in biofilm formation, biofilms were cotreated with anthranilate and indole, and the results showed that anthranilate antagonized the biofilm-enhancing effect of indole. Anthranilate was able to deteriorate the preformed biofilm. The effect of anthranilate and indole on biofilm formation was quorum sensing independent. AntR, a regulator of anthranilate-degrading metabolism was synergistically activated by cotreatment with anthranilate and indole, suggesting that indole might enhance biofilm formation by facilitating the degradation of anthranilate. Anthranilate slightly but significantly affected the cyclic diguaniylate (c-di-GMP) level and transcription of major extracellular polysaccharide (Psl, Pel, and alginate) operons. These results suggest that anthranilate may be a promising antibiofilm agent and antagonize the effect of indole on P. aeruginosa biofilm formation.

  12. Dominance of sphingomonads in a copper-exposed biofilm community for groundwater treatment.

    Science.gov (United States)

    Vílchez, R; Pozo, C; Gómez, M A; Rodelas, B; González-López, J

    2007-02-01

    The structure, biological activity and microbial biodiversity of a biofilm used for the removal of copper from groundwater were studied and compared with those of a biofilm grown under copper-free conditions. A laboratory-scale submerged fixed biofilter was fed with groundwater (2.3 l h(-1)) artificially polluted with Cu(II) (15 mg l(-1)) and amended with sucrose (150 mg l(-1)) as carbon source. Between 73 and 90 % of the Cu(II) was removed from water during long-term operation (over 200 days). The biofilm was a complex ecosystem, consisting of eukaryotic and prokaryotic micro-organisms. Scanning electron microscopy revealed marked structural changes in the biofilm induced by Cu(II), compared to the biofilm grown in absence of the heavy metal. Analysis of cell-bound extracellular polymeric substances (EPS) demonstrated a significant modification of the composition of cell envelopes in response to Cu(II). Transmission electron microscopy and energy-dispersive X-ray microanalysis (EDX) showed that copper bioaccumulated in the EPS matrix by becoming bound to phosphates and/or silicates, whereas copper accumulated only intracytoplasmically in cells of eukaryotic microbes. Cu(II) also decreased sucrose consumption, ATP content and alkaline phosphatase activity of the biofilm. A detailed study of the bacterial community composition was conducted by 16S rRNA-based temperature gradient gel electrophoresis (TGGE) profiling, which showed spatial and temporal stability of the species diversity of copper-exposed biofilms during biofilter operation. PCR reamplification and sequencing of 14 TGGE bands showed the prevalence of alphaproteobacteria, with most sequences (78 %) affiliated to the Sphingomonadaceae. The major cultivable colony type in plate counts of the copper-exposed biofilm was also identified as that of Sphingomonas sp. These data confirm a major role of these organisms in the composition of the Cu(II)-removing community.

  13. The role of biofilms in the sedimentology of actively forming gypsum deposits at Guerrero Negro, Mexico.

    Science.gov (United States)

    Vogel, Marilyn B; Des Marais, David J; Turk, Kendra A; Parenteau, Mary N; Jahnke, Linda L; Kubo, Michael D Y

    2009-11-01

    Actively forming gypsum deposits at the Guerrero Negro sabkha and saltern system provided habitats for stratified, pigmented microbial communities that exhibited significant morphological and phylogenetic diversity. These deposits ranged from meter-thick gypsum crusts forming in saltern seawater concentration ponds to columnar microbial mats with internally crystallized gypsum granules developing in natural anchialine pools. Gypsum-depositing environments were categorized as forming precipitation surfaces, biofilm-supported surfaces, and clastic surfaces. Each surface type was described in terms of depositional environment, microbial diversity, mineralogy, and sedimentary fabrics. Precipitation surfaces developed in high-salinity subaqueous environments where rates of precipitation outpaced the accumulation of clastic, organic, and/or biofilm layers. These surfaces hosted endolithic biofilms comprised predominantly of oxygenic and anoxygenic phototrophs, sulfate-reducing bacteria, and bacteria from the phylum Bacteroidetes. Biofilm-supported deposits developed in lower-salinity subaqueous environments where light and low water-column turbulence supported dense benthic microbial communities comprised mainly of oxygenic phototrophs. In these settings, gypsum granules precipitated in the extracellular polymeric substance (EPS) matrix as individual granules exhibiting distinctive morphologies. Clastic surfaces developed in sabkha mudflats that included gypsum, carbonate, and siliclastic particles with thin gypsum/biofilm components. Clastic surfaces were influenced by subsurface brine sheets and capillary evaporation and precipitated subsedimentary gypsum discs in deeper regions. Biofilms appeared to influence both chemical and physical sedimentary processes in the various subaqueous and subaerially exposed environments studied. Biofilm interaction with chemical sedimentary processes included dissolution and granularization of precipitation surfaces, formation of

  14. Pattern formation in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Parsek, Matthew R.; Tolker-Nielsen, Tim

    2008-01-01

    Bacteria are capable of forming elaborate multicellular communities called biofilms. Pattern formation in biofilms depends on cell proliferation and cellular migration in response to the available nutrients and other external cues, as well as on self-generated intercellular signal molecules...... and the production of an extracellular matrix that serves as a structural 'scaffolding' for the biofilm cells. Pattern formation in biofilms allows cells to position themselves favorably within nutrient gradients and enables buildup and maintenance of physiologically distinct subpopulations, which facilitates...... survival of one or more subpopulations upon environmental insult, and therefore plays an important role in the innate tolerance displayed by biofilms toward adverse conditions....

  15. Candida Biofilms: Development, Architecture, and Resistance.

    Science.gov (United States)

    Chandra, Jyotsna; Mukherjee, Pranab K

    2015-08-01

    Intravascular device-related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis-associated infections and also are commonly isolated from contact lens-related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms.

  16. Poly-γ-Glutamic Acids Contribute to Biofilm Formation and Plant Root Colonization in Selected Environmental Isolates of Bacillus subtilis.

    Science.gov (United States)

    Yu, Yiyang; Yan, Fang; Chen, Yun; Jin, Christopher; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacillus subtilis is long known to produce poly-γ-glutamic acids (γ-PGA) as one of the major secreted polymeric substances. In B. subtilis, the regulation of γ-PGA production and its physiological role are still unclear. B. subtilis is also capable of forming structurally complex multicellular communities, or biofilms, in which an extracellular matrix consisting of secreted proteins and polysaccharides holds individual cells together. Biofilms were shown to facilitate B. subtilis-plant interactions. In this study, we show that different environmental isolates of B. subtilis, all capable of forming biofilms, vary significantly in γ-PGA production. This is possibly due to differential regulation of γ-PGA biosynthesis genes. In many of those environmental isolates, γ-PGA seems to contribute to robustness and complex morphology of the colony biofilms, suggesting a role of γ-PGA in biofilm formation. Our evidence further shows that in selected B. subtilis strains, γ-PGA also plays a role in root colonization by the bacteria, pinpointing a possible function of γ-PGA in B. subtilis-plant interactions. Finally, we found that several pathways co-regulate both γ-PGA biosynthesis genes and genes for the biofilm matrix in B. subtilis, but in an opposing fashion. We discussed potential biological significance of that.

  17. Influence and mechanism of N-(3-oxooxtanoyl)-L-homoserine lactone (C8-oxo-HSL) on biofilm behaviors at early stage.

    Science.gov (United States)

    Xia, Siqing; Zhou, Lijie; Zhang, Zhiqiang; Li, Jixiang

    2012-01-01

    N-acyl-homoserines quenching, enzymatic quenching of bacterial quorum sensing, has recently applied to mitigate biofilm in membrane bioreactor. However, the effect of AHLs on the behavior of biofilm formation is still sparse. In this study, Pseudomonas aeruginosa biofilm was formed on ultra-filtration membrane under a series of N-(3-oxooxtanoyl)-L-homoserine lactone (Cs-oxo-HSL) concentrations. Diffusing C8-oxo-HSL increased the growth rate of cells on biofilm where the concentration of C8-oxo-HSL was over 10(-7) g/L. The C8-oxo-HSL gradient had no observable influence on cell density and extracellular polymeric substances of biofilm with over 10(-7) g/L C8-oxo-HSL. Surprisingly, 10(-11)-10(-8) g/L of C8-oxo-HSL had no effect on cell growth in liquid culture. The cell analysis demonstrated that the quorum sensing system might enhance the growth of neighboring cells in contact with surfaces into biofilm and may influence the structure and organization of biofilm.

  18. Influence and mechanism of N-(3-oxooxtanoyl)-L-homoserine lactone (C8-oxo-HSL) on biofilm behaviors at early stage

    Institute of Scientific and Technical Information of China (English)

    Siqing Xia; Lijie Zhou; Zhiqiang Zhang; Jixiang Li

    2012-01-01

    N-acyl-homoserines quenching,enzymatic quenching of bacterial quorum sensing,has recently applied to mitigate biofilm in membrane bioreactor.However,the effect of AHLs on the behavior of biofilm formation is still sparse.In this study,Pseudomonas aeruginosa biofilm was formed on ultra-filtration membrane under a series of N-(3-oxooxtanoyl)-L-homoserine lactone (Cs-oxo-HSL)concentrations.Diffusing Cs-oxo-HSL increased the growth rate of cells on biofilm where the concentration of Cs-oxo-HSL was over 10-7 g/L.The C8-oxo-HSL gradient had no observable influence on cell density and extracellular polymeric substances of biofilm with over 10-7 g/L Cs-oxo-HSL.Surprisingly,10-11-10-8 g/L of Cs-oxo-HSL had no effect on cell growth in liquid culture.The cell analysis demonstrated that the quorum sensing system might enhance the growth of neighboring cells in contact with surfaces into biofilm and may influence the structure and organization of biofilm.

  19. In situ biosensing of the nanomechanical property and electrochemical spectroscopy of Streptococcus mutans-containing biofilms

    Science.gov (United States)

    Haochih Liu, Bernard; Li, Kun-Lin; Kang, Kai-Li; Huang, Wen-Ke; Liao, Jiunn-Der

    2013-07-01

    This work presents in situ biosensing approaches to study the nanomechanical and electrochemical behaviour of Streptococcus mutans biofilms under different cultivation conditions and microenvironments. The surface characteristics and sub-surface electrochemistry of the cell wall of S. mutans were measured by atomic force microscopy (AFM) based techniques to monitor the in situ biophysical status of biofilms under common anti-pathogenic procedures such as ultraviolet (UV) radiation and alcohol treatment. The AFM nanoindentation suggested a positive correlation between nanomechanical strength and the level of UV radiation of S. mutans; scanning impedance spectroscopy of dehydrated biofilms revealed reduced electrical resistance that is distinctive from that of living biofilms, which can be explained by the discharge of cytoplasm after alcohol treatment. Furthermore, the localized elastic moduli of four regions of the biofilm were studied: septum (Z-ring), cell wall, the interconnecting area between two cells and extracellular polymeric substance (EPS) area. The results indicated that cell walls exhibit the highest elastic modulus, followed by Z-ring, interconnect and EPS. Our approach provides an effective alternative for the characterization of the viability of living cells without the use of biochemical labelling tools such as fluorescence dyeing, and does not rely on surface binding or immobilization for detection. These AFM-based techniques can be very promising approaches when the conventional methods fall short.

  20. Comparison of the cytotoxic effect of polystyrene latex nanoparticles on planktonic cells and bacterial biofilms

    Science.gov (United States)

    Nomura, Toshiyuki; Fujisawa, Eri; Itoh, Shikibu; Konishi, Yasuhiro

    2016-06-01

    The cytotoxic effect of positively charged polystyrene latex nanoparticles (PSL NPs) was compared between planktonic bacterial cells and bacterial biofilms using confocal laser scanning microscopy, atomic force microscopy, and a colony counting method. Pseudomonas fluorescens, which is commonly used in biofilm studies, was employed as the model bacteria. We found that the negatively charged bacterial surface of the planktonic cells was almost completely covered with positively charged PSL NPs, leading to cell death, as indicated by the NP concentration being greater than that required to achieve single layer coverage. In addition, the relationship between surface coverage and cell viability of P. fluorescens cells correlated well with the findings in other bacterial cells ( Escherichia coli and Lactococcus lactis). However, most of the bacterial cells that formed the biofilm were viable despite the positively charged PSL NPs being highly toxic to planktonic bacterial cells. This indicated that bacterial cells embedded in the biofilm were protected by self-produced extracellular polymeric substances (EPS) that provide resistance to antibacterial agents. In conclusion, mature biofilms covered with EPS exhibit resistance to NP toxicity as well as antibacterial agents.

  1. Evaluation of anti-Listeria meat borne Lactobacillus for biofilm formation on selected abiotic surfaces.

    Science.gov (United States)

    Pérez Ibarreche, Mariana; Castellano, Patricia; Vignolo, Graciela

    2014-01-01

    The ability of meat borne anti-Listeria Lactobacillus to form biofilms under different in vitro conditions and on abiotic surfaces was investigated. Biofilm formation by the adhesion to polystyrene microtiter plates was determined, this being higher for Lactobacillus curvatus CRL1532 and CRL705 and Lactobacillus sakei CRL1862. The physicochemical properties of the cell surface were relatively hydrophilic and acidic in character; L. sakei CRL1862 exhibiting the strongest autoaggregation. The adhesion of lactobacilli to stainless steel (SS) and polytetrafluoroethylene (PTFE) supports at 10°C was found to be maximal for L. sakei CRL1862 on SS after 6 days. When biofilm architecture was characterized by epifluorescence and SEM, L. sakei CRL1862 homogeneously covered the SS surface while cell clusters were observed on PTFE; the extracellular polymeric substance matrix adapted to the topography and hydrophilic/hydrophobic characteristics of each material. The feasibility of L. sakei CRL1862 to form biofilm on materials used in meat processing highlights its potential as a control strategy for Listeria monocytogenes biofilms.

  2. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin

    Science.gov (United States)

    Das, Manash C.; Sandhu, Padmani; Gupta, Priya; Rudrapaul, Prasenjit; de, Utpal C.; Tribedi, Prosun; Akhter, Yusuf; Bhattacharjee, Surajit

    2016-03-01

    Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pathogenic bacterium. Vitexin, a polyphenolic group of phytochemical with antimicrobial property, has been studied for its antibiofilm potential against Pseudomonas aeruginosa in combination with azithromycin and gentamicin. Vitexin shows minimum inhibitory concentration (MIC) at 260 μg/ml. It’s antibiofilm activity was evaluated by safranin staining, protein extraction, microscopy methods, quantification of EPS and in vivo models using several sub-MIC doses. Various quorum sensing (QS) mediated phenomenon such as swarming motility, azocasein degrading protease activity, pyoverdin and pyocyanin production, LasA and LasB activity of the bacteria were also evaluated. Results showed marked attenuation in biofilm formation and QS mediated phenotype of Pseudomonas aeruginosa in presence of 110 μg/ml vitexin in combination with azithromycin and gentamicin separately. Molecular docking of vitexin with QS associated LuxR, LasA, LasI and motility related proteins showed high and reasonable binding affinity respectively. The study explores the antibiofilm potential of vitexin against P. aeruginosa which can be used as a new antibiofilm agent against microbial biofilm associated pathogenesis.

  3. Impairment of the bacterial biofilm stability by triclosan.

    Directory of Open Access Journals (Sweden)

    Helen V Lubarsky

    Full Text Available The accumulation of the widely-used antibacterial and antifungal compound triclosan (TCS in freshwaters raises concerns about the impact of this harmful chemical on the biofilms that are the dominant life style of microorganisms in aquatic systems. However, investigations to-date rarely go beyond effects at the cellular, physiological or morphological level. The present paper focuses on bacterial biofilms addressing the possible chemical impairment of their functionality, while also examining their substratum stabilization potential as one example of an important ecosystem service. The development of a bacterial assemblage of natural composition--isolated from sediments of the Eden Estuary (Scotland, UK--on non-cohesive glass beads (<63 µm and exposed to a range of triclosan concentrations (control, 2-100 µg L(-1 was monitored over time by Magnetic Particle Induction (MagPI. In parallel, bacterial cell numbers, division rate, community composition (DGGE and EPS (extracellular polymeric substances: carbohydrates and proteins secretion were determined. While the triclosan exposure did not prevent bacterial settlement, biofilm development was increasingly inhibited by increasing TCS levels. The surface binding capacity (MagPI of the assemblages was positively correlated to the microbial secreted EPS matrix. The EPS concentrations and composition (quantity and quality were closely linked to bacterial growth, which was affected by enhanced TCS exposure. Furthermore, TCS induced significant changes in bacterial community composition as well as a significant decrease in bacterial diversity. The impairment of the stabilization potential of bacterial biofilm under even low, environmentally relevant TCS levels is of concern since the resistance of sediments to erosive forces has large implications for the dynamics of sediments and associated pollutant dispersal. In addition, the surface adhesive capacity of the biofilm acts as a sensitive measure of

  4. A cathelicidin-2-derived peptide effectively impairs Staphylococcus epidermidis biofilms

    NARCIS (Netherlands)

    Molhoek, E.M.; Dijk, A. van; Veldhuizen, E.J.A.; Haagsman, H.P.; Bikker, F.J.

    2011-01-01

    Staphylococcus epidermidis is a major cause of nosocomial infections owing to its ability to form biofilms on the surface of medical devices. Biofilms are surface-adhered bacterial communities. In mature biofilms these communities are encased in an extracellular matrix composed of bacterial polysacc

  5. Novel entries in a fungal biofilm matrix encyclopedia

    Science.gov (United States)

    Virulence of Candida albicans is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we conduc...

  6. In vitro colonization of the muscle extracellular matrix components by Escherichia coli O157:H7: the influence of growth medium, temperature and pH on initial adhesion and induction of biofilm formation by collagens I and III.

    Directory of Open Access Journals (Sweden)

    Caroline Chagnot

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC O157:H7 are responsible for repeated food-poisoning cases often caused by contaminated burgers. EHEC infection is predominantly a pediatric illness, which can lead to life-threatening diseases. Ruminants are the main natural reservoir for EHEC and food contamination almost always originates from faecal contamination. In beef meat products, primary bacterial contamination occurs at the dehiding stage of slaughtering. The extracellular matrix (ECM is the most exposed part of the skeletal muscles in beef carcasses. Investigating the adhesion to the main muscle fibrous ECM proteins, insoluble fibronectin, collagen I, III and IV, laminin-α2 and elastin, results demonstrated that the preceding growth conditions had a great influence on subsequent bacterial attachment. In the tested experimental conditions, maximal adhesion to fibril-forming collagens I or III occurred at 25°C and pH 7. Once initially adhered, exposure to lower temperatures, as applied to meat during cutting and storage, or acidification, as in the course of post-mortem physiological modifications of muscle, had no effect on detachment, except at pHu. In addition, dense biofilm formation occurred on immobilized collagen I or III and was induced in growth medium supplemented with collagen I in solution. From this first comprehensive investigation of EHEC adhesion to ECM proteins with respect to muscle biology and meat processing, new research directions for the development of innovative practices to minimize the risk of meat contamination are further discussed.

  7. Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related Pathogens Using an Impedance-Based Technology

    Science.gov (United States)

    Gutiérrez, Diana; Hidalgo-Cantabrana, Claudio; Rodríguez, Ana; García, Pilar

    2016-01-01

    Bacteria found in diverse ecosystems grow in a community of aggregated cells that favors their survival and colonization. Different extracellular polymeric substances are used to entrap this multispecies community forming a biofilm, which can be associated to biotic and abiotic surfaces. This widespread and successful way of bacterial life, however, can lead to negative effects for human activity since many pathogen and spoiling bacteria form biofilms which are not easy to eradicate. Therefore, the search for novel anti-biofilm bio-active molecules is a very active research area for which simple, reliable, and fast screening methods are demanded. In this work we have successfully validated an impedance-based method, initially developed for the study of adherent eukaryotic cells, to monitor the formation of single-species biofilms of three model bacteria in real time. The xCelligence real time cell analyzer (RTCA) equipment uses specific microtiter E-plates coated with gold-microelectrodes that detect the attachment of adherent cells, thus modifying the impedance signal. In the current study, this technology allowed the distinction between biofilm-producers and non-producers of Staphylococcus aureus and Staphylococcus epidermidis, as well as the formation of Streptococcus mutans biofilms only when sucrose was present in the culture medium. Besides, different impedance values permitted discrimination among the biofilm-producing strains tested regardless of the nature of the polymeric biofilm matrix. Finally, we have continuously monitored the inhibition of staphylococcal biofilm formation by the bacteriophage phi-IPLA7 and the bacteriophage-encoded endolysin LysH5, as well as the removal of a preformed biofilm by this last antimicrobial treatment. Results observed with the impedance-based method showed high correlation with those obtained with standard approaches, such as crystal violet staining and bacteria enumeration, as well as with those obtained upon other

  8. Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp.

    Science.gov (United States)

    Kato, Souichiro; Hashimoto, Kazuhito; Watanabe, Kazuya

    2013-01-01

    Some bacteria utilize (semi)conductive iron-oxide minerals as conduits for extracellular electron transfer (EET) to distant, insoluble electron acceptors. A previous study demonstrated that microbe/mineral conductive networks are constructed in soil ecosystems, in which Geobacter spp. share dominant populations. In order to examine how (semi)conductive iron-oxide minerals affect EET paths of Geobacter spp., the present study grew five representative Geobacter strains on electrodes as the sole electron acceptors in the absence or presence of (semi)conductive iron oxides. It was found that iron-oxide minerals enhanced current generation by three Geobacter strains, while no effect was observed in another strain. Geobacter sulfurreducens was the only strain that generated substantial amounts of currents both in the presence and absence of the iron oxides. Microscopic, electrochemical and transcriptomic analyses of G. sulfurreducens disclosed that this strain constructed two distinct types of EET path; in the absence of iron-oxide minerals, bacterial biofilms rich in extracellular polymeric substances were constructed, while composite networks made of mineral particles and microbial cells (without polymeric substances) were developed in the presence of iron oxides. It was also found that uncharacterized c-type cytochromes were up-regulated in the presence of iron oxides that were different from those found in conductive biofilms. These results suggest the possibility that natural (semi)conductive minerals confer energetic and ecological advantages on Geobacter, facilitating their growth and survival in the natural environment.

  9. Combining Biofilm-Controlling Compounds and Antibiotics as a Promising New Way to Control Biofilm Infections

    Directory of Open Access Journals (Sweden)

    Andréia Bergamo Estrela

    2010-05-01

    Full Text Available Many bacteria grow on surfaces forming biofilms. In this structure, they are well protected and often high dosages of antibiotics cannot clear infectious biofilms. The formation and stabilization of biofilms are mediated by diffusible autoinducers (e.g. N-acyl homoserine lactones, small peptides, furanosyl borate diester. Metabolites interfering with this process have been identified in plants, animals and microbes, and synthetic analogues are known. Additionally, this seems to be not the only way to control biofilms. Enzymes capable of cleaving essential components of the biofilm matrix, e.g. polysaccharides or extracellular DNA, and thus weakening the biofilm architecture have been identified. Bacteria also have mechanisms to dissolve their biofilms and return to planktonic lifestyle. Only a few compounds responsible for the signalling of these processes are known, but they may open a completely novel line of biofilm control. All these approaches lead to the destruction of the biofilm but not the killing of the pathogens. Therefore, a combination of biofilm-destroying compounds and antibiotics to handle biofilm infections is proposed. In this article, different approaches to combine biofilm-controlling compounds and antibiotics to fight biofilm infections are discussed, as well as the balance between biofilm formation and virulence.

  10. Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma.

    Directory of Open Access Journals (Sweden)

    Mahmoud Y Alkawareek

    Full Text Available Bacteria exist, in most environments, as complex, organised communities of sessile cells embedded within a matrix of self-produced, hydrated extracellular polymeric substances known as biofilms. Bacterial biofilms represent a ubiquitous and predominant cause of both chronic infections and infections associated with the use of indwelling medical devices such as catheters and prostheses. Such infections typically exhibit significantly enhanced tolerance to antimicrobial, biocidal and immunological challenge. This renders them difficult, sometimes impossible, to treat using conventional chemotherapeutic agents. Effective alternative approaches for prevention and eradication of biofilm associated chronic and device-associated infections are therefore urgently required. Atmospheric pressure non-thermal plasmas are gaining increasing attention as a potential approach for the eradication and control of bacterial infection and contamination. To date, however, the majority of studies have been conducted with reference to planktonic bacteria and rather less attention has been directed towards bacteria in the biofilm mode of growth. In this study, the activity of a kilohertz-driven atmospheric pressure non-thermal plasma jet, operated in a helium oxygen mixture, against Pseudomonas aeruginosa in vitro biofilms was evaluated. Pseudomonas aeruginosa biofilms exhibit marked susceptibility to exposure of the plasma jet effluent, following even relatively short (≈ 10's s exposure times. Manipulation of plasma operating conditions, for example, plasma operating frequency, had a significant effect on the bacterial inactivation rate. Survival curves exhibit a rapid decline in the number of surviving cells in the first 60 seconds followed by slower rate of cell number reduction. Excellent anti-biofilm activity of the plasma jet was also demonstrated by both confocal scanning laser microscopy and metabolism of the tetrazolium salt, XTT, a measure of bactericidal

  11. Mesoscale Elucidation of Biofilm Shear Behavior

    CERN Document Server

    Barai, Pallab; Mukherjee, Partha P

    2015-01-01

    Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regions: a) initial increase in stiffness due to strain stiffe...

  12. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens.

    Science.gov (United States)

    Bakkiyaraj, Dhamodharan; Nandhini, Janarthanam Rathna; Malathy, Balakumar; Pandian, Shunmugiah Karutha

    2013-09-01

    Infectious diseases caused by bacteria and fungi are the major cause of morbidity and mortality across the globe. Multi-drug resistance in these pathogens augments the complexity and severity of the diseases. Various studies have shown the role of biofilms in multi-drug resistance, where the pathogen resides inside a protective coat made of extracellular polymeric substances. Since biofilms directly influence the virulence and pathogenicity of a pathogen, it is optimal to employ a strategy that effectively inhibits the formation of biofilm. Pomegranate is a common food and is also used traditionally to treat various ailments. This study assessed the anti-biofilm activity of a methanolic extract of pomegranate against bacterial and fungal pathogens. Methanolic extract of pomegranate was shown to inhibit the formation of biofilms by Staphylococcus aureus, methicillin resistant S. aureus, Escherichia coli, and Candida albicans. Apart from inhibiting the formation of biofilm, pomegranate extract disrupted pre-formed biofilms and inhibited germ tube formation, a virulence trait, in C. albicans. Characterization of the methanolic extract of pomegranate revealed the presence of ellagic acid (2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione) as the major component. Ellagic acid is a bioactive tannin known for its antioxidant, anticancer, and anti-inflammatory properties. Further studies revealed the ability of ellagic acid to inhibit the growth of all species in suspension at higher concentrations (>75 μg ml(-1)) and biofilm formation at lower concentrations (pomegranate for the treatment of human ailments.

  13. Effect of bond extracellular polymeric substances on membrane fouling control property of a HMBR%附着性胞外多聚物对HMBR膜污染控制性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘强; 王晓昌

    2012-01-01

    An experiment was conducted to study the effect of bond extracellular polymeric substances (B-EPS) on the membrane fouling control property of a hybrid membrane bioreactor (HMBR). Results showed that the B-EPS, the loosely bond extracellular polymeric substances (LB-EPS) and the tightly bond extracellular polymeric substances (TB-EPS) in the HMBR decreased by 10.0% , 43.6% and 2.1%, respectively, compa- ring with the conventional membrane bioreactor (CMBR). The B-EPS had a significant correlation with the spe- cific resistance to filtration of the cake layer, the lower the former was, the smaller the latter became. Otherwise, the LB-EPS affected the specific resistance to filtration of the cake layer more strongly than the TB-EPS. As a re- sult, with the B-EPS especially the LB-EPS decreasing, the HMBR showed a good property of membrane fouling control and the cake laver resistance in which decreased by 56.9% comoaring with tha CMBR.%采用复合式膜生物反应器(HMBR)处理城市生活污水,对附着性胞外多聚物影响HMBR膜污染控制性能的作用机理进行了研究。实验结果表明,HMBR中附着性胞外多聚物、松散附着性胞外多聚物和紧密附着性胞外多聚物的浓度比常规膜生物反应器分别降低了10.0%、43.6%和2.1%。附着性胞外多聚物与膜表面滤饼层污泥比阻的关系较为密切,随着其浓度逐渐降低,滤饼层污泥比阻相应减小。与紧密附着性胞外多聚物相比,松散附着性胞外多聚物对滤饼层污泥比阻的影响程度更深。因此,随着反应器中附着性胞外多聚物特别是松散附着性胞外多聚物浓度的降低,HMBR的膜污染控制性能增强,反应器中膜表面的滤饼层阻力比常规膜生物反应器降低了56.9%。

  14. Protein-based biofilm matrices in Staphylococci

    Directory of Open Access Journals (Sweden)

    Pietro eSpeziale

    2014-12-01

    Full Text Available Staphylococcus aureus and Staphylococcus epidermidis are the most important etiological agents of biofilm associated-infections on indwelling medical devices. Biofilm infections may also develop independently of indwelling devices, e.g. in native valve endocarditis, bone tissue and open wounds. After attachment to tissue or indwelling medical devices that have been conditioned with host plasma proteins, staphylococcal biofilms grow and produce a specific environment which provides the conditions for cell-cell interaction and formation of multicellular communities. Bacteria living in biofilms express a variety of macromolecules, including exopolysaccharides, proteins, extracellular eDNA and other polymers. The S. aureus surface protein C and G (SasC and SasG, clumping factor B (ClfB, serine aspartate repeat protein (SdrC, the biofilm-associated protein (Bap and the fibronectin/fibrinogen-binding proteins (FnBPA and FnBPB are individually implicated in biofilm matrix formation. In S. epidermidis, a protein named accumulation-associated protein (Aap contributes to both the primary attachment phase and the establishment of intercellular connections by forming fibrils on the cell surface. In S. epidermidis proteinaceous biofilm formation can also be mediated by the extracellular matrix binding protein (Embp and S. epidermidis surface protein C (SesC. Additionally, multifunctional proteins such as extracellular adherence protein (Eap and extracellular matrix protein binding protein (Emp of S. aureus and the iron-regulated surface determinant protein C (IsdC of S. lugdunensis can promote biofilm formation in iron-depleted conditions. This multitude of proteins intervene at different stages of biofilm formation with certain proteins contributing to biofilm accumulation and others mediating primary attachment to surfaces. This review examines the contribution of proteins to biofilm formation in staphylococci. The potential to develop vaccines to prevent

  15. Permeabilizing biofilms

    Science.gov (United States)

    Soukos, Nikolaos S.; Lee, Shun; Doukas,; Apostolos G.

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  16. Formation of Biofilms by Foodborne Pathogens and Development of Laboratory In Vitro Model for the Study of Campylobacter Genus Bacteria Based on These Biofilms.

    Science.gov (United States)

    Efimochkina, N R; Bykova, I B; Markova, Yu M; Korotkevich, Yu V; Stetsenko, V V; Minaeva, L P; Sheveleva, S A

    2017-02-01

    We analyzed the formation of biofilms by 7 strains of Campylobacter genus bacteria and 18 strains of Enterobacteriaceae genus bacteria that were isolated from plant and animal raw materials, from finished products, and swabs from the equipment of the food industry. Biofilm formation on glass plates, slides and coverslips, microtubes made of polymeric materials and Petri dishes, and polystyrene plates of different profiles were analyzed. When studying the process of films formation, different effects on bacterial populations were simulated, including variation of growth factor composition of culture media, technique of creating of anaerobiosis, and biocide treatment (active chlorine solutions in a concentration of 100 mg/dm(3)). The formation of biofilms by the studied cultures was assessed by the formation of extracellular matrix stained with aniline dyes on glass and polystyrene surfaces after incubation; 0.1% crystal violet solution was used as the dye. The presence and density of biomatrix were assessed by staining intensity of the surfaces of contact with broth cultures or by optical density of the stained inoculum on a spectrophotometer. Biofilms were formed by 57% Campylobacter strains and 44% Enterobacteriaceae strains. The intensity of the film formation depended on culturing conditions and protocols, species and genus of studied isolates, and largely on adhesion properties of abiotic surfaces. In 30% of Enterobacteriaceae strains, the biofilm formation capacity tended to increase under the influence of chlorine-containing biocide solutions. Thus, we developed and tested under laboratory conditions a plate version of in vitro chromogenic model for evaluation of biofilm formation capacity of C. jejuni strains and studied stress responses to negative environmental factors.

  17. Palladium Recovery in a H2-Based Membrane Biofilm Reactor: Formation of Pd(0) Nanoparticles through Enzymatic and Autocatalytic Reductions.

    Science.gov (United States)

    Zhou, Chen; Ontiveros-Valencia, Aura; Wang, Zhaocheng; Maldonado, Juan; Zhao, He-Ping; Krajmalnik-Brown, Rosa; Rittmann, Bruce E

    2016-03-01

    Recovering palladium (Pd) from waste streams opens up the possibility of augmenting the supply of this important catalyst. We evaluated Pd reduction and recovery as a novel application of a H2-based membrane biofilm reactor (MBfR). At steady states, over 99% of the input soluble Pd(II) was reduced through concomitant enzymatic and autocatalytic processes at acidic or near neutral pHs. Nanoparticulate Pd(0), at an average crystallite size of 10 nm, was recovered with minimal leaching and heterogeneously associated with microbial cells and extracellular polymeric substances in the biofilm. The dominant phylotypes potentially responsible for Pd(II) reduction at circumneutral pH were denitrifying β-proteobacteria mainly consisting of the family Rhodocyclaceae. Though greatly shifted by acidic pH, the biofilm microbial community largely bounced back when the pH was returned to 7 within 2 weeks. These discoveries infer that the biofilm was capable of rapid adaptive evolution to stressed environmental change, and facilitated Pd recovery in versatile ways. This study demonstrates the promise of effective microbially driven Pd recovery in a single MBfR system that could be applied for the treatment of the waste streams, and it documents the role of biofilms in this reduction and recovery process.

  18. Effect of Cinnamon Oil on Quorum Sensing-Controlled Virulence Factors and Biofilm Formation in Pseudomonas aeruginosa.

    Science.gov (United States)

    Kalia, Manmohit; Yadav, Vivek Kumar; Singh, Pradeep Kumar; Sharma, Deepmala; Pandey, Himanshu; Narvi, Shahid Suhail; Agarwal, Vishnu

    2015-01-01

    Quorum sensing (QS) is a system of stimuli and responses in bacterial cells governed by their population density, through which they regulate genes that control virulence factors and biofilm formation. Despite considerable research on QS and the discovery of new antibiotics, QS-controlled biofilm formation by microorganisms in clinical settings has remained a problem because of nascent drug resistance, which requires screening of diverse compounds for anti-QS activities. Cinnamon is a dietary phytochemical that is traditionally used to remedy digestive problems and assorted contagions, which suggests that cinnamon might contain chemicals that can hinder the QS process. To test this hypothesis, the anti-QS activity of cinnamon oil against P. aeruginosa was tested, measured by the inhibition of biofilm formation and other QS-associated phenomena, including virulence factors such as pyocyanin, rhamnolipid, protease, alginate production, and swarming activity. To this end, multiple microscopy analyses, including light, scanning electron and confocal microscopy, revealed the ability of cinnamon oil to inhibit P. aeruginosa PAO1 biofilms and their accompanying extracellular polymeric substances. This work is the first to demonstrate that cinnamon oil can influence various QS-based phenomena in P. aeruginosa PAO1, including biofilm formation.

  19. Studies of the Effects of Intracellular Proteins and Extracellular Proteins in Streptococcus Sanguis on Biofilms of Prevotella Intermedia and Porphyromonas Gingivalis%血链球菌胞内蛋白与胞外蛋白对中间普氏菌与牙龈卟啉单胞菌生物膜作用的研究

    Institute of Scientific and Technical Information of China (English)

    马晟利; 王丹; 闫闯

    2012-01-01

    Objective: To investigate the effects of Prevotella intermedia(P. i) and Porphyromonas gingivalis(P. g) in biofilms by extract extracellular and intracellular proteins of Streptococcus sanguis(S. s). Methods: Extract extracellular proteins of S. s by high speed centrifugation using organic solvents by ultrasonic, ammonium sulfate salting out, Sephadex G-25 column desalting through dialysis to extract intracellular proteins. Observe the effects of the intracellular proteins and extracellular proteins of S. s on biofilms of P. i and P. g. Results: The growth of P. i and P. g is significantly inhibited by intracellular proteins of S. s. The MIC of intracellular proteins on mixed P. i and P. g is 0. 125g/L; there are no significant effect of extracellular proteins of S. s on P. i and P. g. Intracellular proteins of S. s role in the biofilms of P. i and P. g mixed, the biofilms activity was decreased,compared with the control group have significant differences(P<0. 05); however, which roled of the extracellular proteins of S. s,the difference was not statistically significant which on the activity of biofilm compared with the control group. Conclusion: P. i, P. g and the mixed bacteria in biofilms which roled of intracellular proteins of S. s have significantly inhibition effect; there are no significantly inhibition effect when the extracellular proteins role of the P. i, P. g and the mixed bacteria in biofilms.%目的:提取血链球菌胞内蛋白与胞外蛋白,研究两者对中间普氏菌(P.i)与牙龈卟啉单胞菌(P.g)生物膜的作用.方法:通过低温超速离心,有机溶剂萃取法提取血链球菌胞外蛋白;通过超声破碎,硫酸铵盐析,Sephadex G-25除盐及透析的方法提取血链球菌胞内蛋白.观察血链球菌胞内蛋白与胞外蛋白对P.i及P.g的作用.观察血链球菌胞内蛋白与胞外蛋白对P.i及P.g混合培养形成的生物膜作用.结果:血链球菌胞内蛋白对混合培养的P.i与P.g的生长有明显抑

  20. In Situ Confocal Raman Microscopy of Hydrated Early Stages of Bacterial Biofilm Formation on Various Surfaces in a Flow Cell.

    Science.gov (United States)

    Smith-Palmer, Truis; Lin, Sicheng; Oguejiofor, Ikenna; Leng, Tianyang; Pustam, Amanda; Yang, Jin; Graham, Lori L; Wyeth, Russell C; Bishop, Cory D; DeMont, M Edwin; Pink, David

    2016-02-01

    Bacterial biofilms are precursors to biofouling by other microorganisms. Understanding their initiation may allow us to design better ways to inhibit them, and thus to inhibit subsequent biofouling. In this study, the ability of confocal Raman microscopy to follow the initiation of biofouling by a marine bacterium, Pseudoalteromonas sp. NCIMB 2021 (NCIMB 2021), in a flow cell, using optical and confocal Raman microscopy, was investigated. The base of the flow cell comprised a cover glass. The cell was inoculated and the bacteria attached to, and grew on, the cover glass. Bright field images and Raman spectra were collected directly from the hydrated biofilms over several days. Although macroscopically the laser had no effect on the biofilm, within the first 24 h cells migrated away from the position of the laser beam. In the absence of flow, a buildup of extracellular substances occurred at the base of the biofilm. When different coatings were applied to cover glasses before they were assembled into the flow cells, the growth rate, structure, and composition of the resulting biofilm was affected. In particular, the ratio of Resonance Raman peaks from cytochrome c (CC) in the extracellular polymeric substances, to the Raman phenylalanine (Phe) peak from protein in the bacteria, depended on both the nature of the surface and the age of the biofilm. The ratios were highest for 24 h colonies on a hydrophobic surface. Absorption of a surfactant with an ethyleneoxy chain into the hydrophobic coating created a surface similar to that given with a simple PEG coating, where bacteria grew in colonies away from the surface rather than along the surface, and CC:Phe ratios were initially low but increased at least fivefold in the first 48 h.

  1. Beneficial biofilms

    Directory of Open Access Journals (Sweden)

    Sara R Robertson

    2015-10-01

    Full Text Available Surface-adherent biofilm growth is a common trait of bacteria and other microorganisms in nature. Within biofilms, organisms are present in high density and are enmeshed in an organic matrix containing polysaccharides and other molecules. The close proximity of organisms within biofilms facilitates microbial interactions and signaling, including many metabolic processes in which consortia rather than individual organisms participate. Biofilm growth also enables microorganisms to withstand chemical and biological stresses. Here, we review some current literature and document representative beneficial aspects of biofilms using examples from wastewater treatment, microbial fuel cells, biological repair (biocementation of stonework, and biofilm protection against Candida albicans infections. Finally, we address a chemical ecology strategy whereby desired microbial succession and beneficial biofilm formation can be encouraged via manipulation of culture conditions and bacterial signaling.

  2. Biofilms at work: Bio-, phyto- and rhizoremediation approaches for soils contaminated with polychlorinated biphenyls

    Directory of Open Access Journals (Sweden)

    Merily Horwat

    2015-09-01

    Full Text Available Organohalide contaminants such as polychlorinated biphenyls (PCBs have been released into the environment for decades due to anthropogenic activities, but are also naturally produced in small amounts through volcanic eruptions and geochemical processes. Although toxic to humans and other organisms, the natural production of these compounds has resulted in the evolution of naturally occurring organohalide-respiring bacteria that possess the enzymes necessary to degrade PCB compounds to non-toxic products. The efficiency of PCB degradation can be improved by facilitating the formation of organohalide-respiring biofilms. During biofilm colonization on a surface or interface, bacteria are encased in an extracellular polymeric substance (EPS or “slime,” which allows them to share nutrients and remain protected from environmental stresses. Effective bioremediation of PCBs involves facilitation of biofilm growth to promote cooperation between bacteria, which can be further enhanced by the presence of certain plant species. This review aims to give an overview of biofilm processes involved in the detoxification of PCBs including anaerobic and aerobic PCB degradation by bacteria as well as the ability of plants to stimulate microbial activity and degradation (rhizoremediation and phytoremediation.

  3. Biofilms and planktonic cells of Deinococcus geothermalis in extreme environments

    Science.gov (United States)

    Panitz, Corinna; Reitz, Guenther; Rabbow, Elke; Rettberg, Petra; Flemming, Hans-Curt; Wingender, Jost; Froesler, Jan

    In addition to the several extreme environments on Earth, Space can be considered as just another exceptional environment with a unique mixture of stress factors comprising UV radiation, vacuum, desiccation, temperature, ionizing radiation and microgravity. Life that processes in these environments can depend on the life forms and their state of living. The question is whether there are different strategies for individual microorganisms compared to communities of the same organisms to cope with the different factors of their surroundings. Comparative studies of the survi-val of these communities called biofilms and planktonic cell samples of Deinococcus geothermalis stand at the focal point of the presented investigations. A biofilm is a structured community of microorganisms that live encapsulated in a matrix of extracellular polymeric substances on a surface. Microorganisms living in a biofilm usually have significantly different properties to cooperate than individually living microorganisms of the same species. An advantage of the biofilm is increased resistance to various chemical and physical effects, while the dense extracellular matrix and the outer layer of the cells protect the interior of the microbial consortium. The space experiment BOSS (Biofilm organisms surfing Space) as part the ESA experimental unit EXPOSE R-2 with a planned launch date in July 2014 will be subsequently mounted on the Russian Svesda module outside the ISS. An international team of scientists coordinated by Dr. P. Rettberg will investigate the hypothesis whether microorganisms organized as biofilm outmatch the same microorganisms exposed individually in the long-term survival of the harsh environmental conditions as they occur in space and on Mars. Another protective function in the samples could be dust par-ticles for instance Mars regolith simulant contained inside the biofilms or mixed with the planktonic cells, as additional shelter especially against the extraterrestrial UV

  4. Dynamic interactions of neutrophils and biofilms

    Directory of Open Access Journals (Sweden)

    Josefine Hirschfeld

    2014-12-01

    Full Text Available Background: The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. Objective/design: In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. Results/conclusion: Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.

  5. 盐度和pH对底栖硅藻胞外多聚物的影响%Production of extracellular polymeric substances (EPS) by benthic diatom: effect of salinity and pH

    Institute of Scientific and Technical Information of China (English)

    陈长平; 高亚辉; 林鹏

    2006-01-01

    研究了盐度和pH值对底栖硅藻新月简柱藻(Cylindrotheca closterium(Her.)Reimann et Lewin)增殖、蛋白质含量和胞外多聚物(Extracellular Polymeric Substances,EPS)的影响.结果表明新月筒柱藻最适生长的盐度和pH值分别是15和8,属半咸水性生活.高盐度(>15)和低pH值(<pH8)的胁迫促进了胞外多聚物(EPS)的积累,说明EPS的存在可能有利于缓解外界的不利条件.胶体EPS和附着EPS对盐度和pH值的响应不同,反应了两种EPS功能上的差异.盐度和pH值对新月筒柱藻胞内碳水化合物的影响不显著.

  6. Nanotechnology: Role in dental biofilms

    Directory of Open Access Journals (Sweden)

    Bhardwaj Sonia

    2009-01-01

    Full Text Available Biofilms are surface- adherent populations of microorganisms consisting of cells, water and extracellular matrix material Nanotechnology is promising field of science which can guide our understanding of the role of interspecies interaction in the development of biofilm. Streptococcus mutans with other species of bacteria has been known to form dental biofilm. The correlation between genetically modified bacteria Streptococcus mutans and nanoscale morphology has been assessed using AFMi.e atomic force microscopy. Nanotechnology application includes 16 O/ 18 O reverse proteolytic labeling,use of quantum dots for labeling of bacterial cells, selective removal of cariogenic bacteria while preserving the normal oral flora and silver antimicrobial nanotechnology against pathogens associated with biofilms. The future comprises a mouthwash full of smart nanomachines which can allow the harmless flora of mouth to flourish in a healthy ecosystem

  7. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation

    DEFF Research Database (Denmark)

    Stapper, A.P.; Narasimhan, G.; Oman, D.E.

    2004-01-01

    Extracellular polymers can facilitate the non-specific attachment of bacteria to surfaces and hold together developing biofilms. This study was undertaken to qualitatively and quantitatively compare the architecture of biofilms produced by Pseudomonas aeruginosa strain PAO1 and its alginate......-overproducing (mucA22) and alginate-defective (algD) variants in order to discern the role of alginate in biofilm formation. These strains, PAO1, Alg(+) PAOmucA22 and Alg(-) PAOalgD, tagged with green fluorescent protein, were grown in a continuous flow cell system to characterize the developmental cycles...... of their biofilm formation using confocal laser scanning microscopy. Biofilm Image Processing (BIP) and Community Statistics (COMSTAT) software programs were used to provide quantitative measurements of the two-dimensional biofilm images. All three strains formed distinguishable biofilm architectures, indicating...

  8. Changes in biofilm structure during the colonization of chalcopyrite by Acidithiobacillus thiooxidans.

    Science.gov (United States)

    García-Meza, J V; Fernández, J J; Lara, R H; González, I

    2013-07-01

    Biofilms of Acidithiobacillus thiooxidans were grown on the surface of massive chalcopyrite electrodes (MCE) where different secondary sulfur phases were previously formed by potentiostatic oxidation of MCE at 0.780≤Ean≤0.965 V (electrooxidized MCE, eMCE). The formation of mainly S⁰ and minor amounts of CuS and Sn²⁻ were detected on eMCEs. The eMCEs were incubated with A. thiooxidans cells for 1, 12, 24, 48, and 120 h in order to temporally monitor changes in eMCE's secondary phases, biofilm structure, and extracellular polymeric substance (EPS) composition (lipids, proteins, and polysaccharides) using microscopic, spectroscopic, electrochemical, and biochemical techniques. The results show significant cell attachments with stratified biofilm structure since the first hour of incubation and EPS composition changes, the most important being production after 48-120 h when the highest amount of lipids and proteins were registered. During 120 h, periodic oxidation/formation of S⁰/Sn²⁻ was recorded on biooxidized eMCEs, until a stable CuS composition was formed. In contrast, no evidence of CuS formation was observed on the eMCEs of the abiotic control, confirming that CuS formation results from microbial activity. The surface transformation of eMCE induces a structural transformation of the biofilm, evolving directly to a multilayered biofilm with more hydrophobic EPS and proteins after 120 h. Our results suggest that A. thiooxidans responded to the spatial and temporal distribution and chemical reactivity of the Sn²⁻/S⁰/CuS phases throughout 120 h. These results suggested a strong correlation between surface speciation, hydrophobic domains in EPS, and biofilm organization during chalcopyrite biooxidation by A. thiooxidans.

  9. Evolution of biofilms during the colonization process of pyrite by Acidithiobacillus thiooxidans.

    Science.gov (United States)

    González, Dulce M; Lara, René H; Alvarado, Keila N; Valdez-Pérez, Donato; Navarro-Contreras, Hugo R; Cruz, Roel; García-Meza, Jessica Viridiana

    2012-01-01

    We have applied epifluorescence principles, atomic force microscopy, and Raman studies to the analysis of the colonization process of pyrite (FeS(2)) by sulfuroxidizing bacteria Acidithiobacillus thiooxidans after 1, 15, 24, and 72 h. For the stages examined, we present results comprising the evolution of biofilms, speciation of S (n) (2-) /S(0) species, adhesion forces of attached cells, production and secretion of extracellular polymeric substances (EPS), and its biochemical composition. After 1 h, highly dispersed attached cells in the surface of the mineral were observed. The results suggest initial non-covalent, weak interactions (e.g., van der Waal's, hydrophobic interactions), mediating an irreversible binding mechanism to electrooxidized massive pyrite electrode (eMPE), wherein the initial production of EPS by individual cells is determinant. The mineral surface reached its maximum cell cover between 15 to 24 h. Longer biooxidation times resulted in the progressive biofilm reduction on the mineral surface. Quantification of attached cell adhesion forces indicated a strong initial mechanism (8.4 nN), whereas subsequent stages of mineral colonization indicated stability of biofilms and of the adhesion force to an average of 4.2 nN. A variable EPS (polysaccharides, lipids, and proteins) secretion at all stages was found; thus, different architectural conformation of the biofilms was observed during 120 h. The main EPS produced were lipopolysaccharides which may increase the hydrophobicity of A. thiooxidans biofilms. The highest amount of lipopolysaccharides occurred between 15-72 h. In contrast with abiotic surfaces, the progressive depletion of S (n) (2-) /S(0) was observed on biotic eMPE surfaces, indicating consumption of surface sulfur species. All observations indicated a dynamic biooxidation mechanism of pyrite by A. thiooxidans, where the biofilms stability and composition seems to occur independently from surface sulfur species depletion.

  10. Tertiary nitrification using moving-bed biofilm reactor: a case study in Tunisia.

    Science.gov (United States)

    Houda, Nasr; Abdelwaheb, Chatti; Asma, Ben Rajeb; Ines, Mehri; Ahmed, Landoulsi; Abdennaceur, Hassen

    2015-04-01

    In this study, the effect of operational conditions on biofilm development and nitrification in moving-bed biofilm reactor (MBBR) was investigated. The reactor was operated in a continuously fed regime during 170 days and with theoretical hydraulic retention time of 7 h, respectively. The presence of chemical oxygen demand (COD) increased the time required to form stable nitrifying. Subsequent stepwise increase of influent COD caused an increment in total polysaccharide (PS) and protein (PN) content, which was accompanied by an attachment of the biofilm, as shown by atomic force microscope (AFM). PS and PN concentrations proved to be good indicators of biomass development and attachment in MBBR system. Reactor was operated and water quality was characterized before and after treatment. Parameters including pH, 5-day biochemical oxygen demand (BOD5), total suspended solids (TSS) (COD), PN, PS, and fecal bacteria in both raw and treated wastewater were monitored during the treatment. The removal rates of ammonium-nitrogen (NH4 (+)-N), BOD5, COD, and TSS are 95, 67.5, 69.2, and 73.33 %, respectively. The average bacterial reduction between the inlet and the outlet was of the order of 5 ± 1 logarithmic units for fecal coliforms. AFM showed that distinct biofilm and extracellular polymeric substances were formed in biofilm was thicker in the 70 days than in the 30 days. These results showed that the consumption rate for each substrate increased parabolically with biofilm thickness due to the increased amount of biomass Thus, MBBR can serve as a promising technology for wastewater treatment and can be scaled up for small communities in the developing countries.

  11. Is there a role for quorum sensing signals in bacterial biofilms?

    DEFF Research Database (Denmark)

    Kjelleberg, S.; Molin, Søren

    2002-01-01

    Bacteria form multicellular biofilm communities on most surfaces. Genetic analysis of biofilm formation has led to the proposal that extracellular signals and quorum-sensing regulatory systems are essential for differentiated biofilms. Although such a model fits the concept of density-driven cell...... adaptation during the different stages of biofilm formation. Hence, differentiated biofilms may also be the net result of many independent interactions, rather than being determined by a particular global quorum sensing system....

  12. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems.

    Science.gov (United States)

    Liu, Sanly; Gunawan, Cindy; Barraud, Nicolas; Rice, Scott A; Harry, Elizabeth J; Amal, Rose

    2016-09-06

    In drinking water distribution systems (DWDS), biofilms are the predominant mode of microbial growth, with the presence of extracellular polymeric substance (EPS) protecting the biomass from environmental and shear stresses. Biofilm formation poses a significant problem to the drinking water industry as a potential source of bacterial contamination, including pathogens, and, in many cases, also affecting the taste and odor of drinking water and promoting the corrosion of pipes. This article critically reviews important research findings on biofilm growth in DWDS, examining the factors affecting their formation and characteristics as well as the various technologies to characterize and monitor and, ultimately, to control their growth. Research indicates that temperature fluctuations potentially affect not only the initial bacteria-to-surface attachment but also the growth rates of biofilms. For the latter, the effect is unique for each type of biofilm-forming bacteria; ammonia-oxidizing bacteria, for example, grow more-developed biofilms at a typical summer temperature of 22 °C compared to 12 °C in fall, and the opposite occurs for the pathogenic Vibrio cholerae. Recent investigations have found the formation of thinner yet denser biofilms under high and turbulent flow regimes of drinking water, in comparison to the more porous and loosely attached biofilms at low flow rates. Furthermore, in addition to the rather well-known tendency of significant biofilm growth on corrosion-prone metal pipes, research efforts also found leaching of growth-promoting organic compounds from the increasingly popular use of polymer-based pipes. Knowledge of the unique microbial members of drinking water biofilms and, importantly, the influence of water characteristics and operational conditions on their growth can be applied to optimize various operational parameters to minimize biofilm accumulation. More-detailed characterizations of the biofilm population size and structure are now

  13. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans.

    Science.gov (United States)

    Sztajer, Helena; Szafranski, Szymon P; Tomasch, Jürgen; Reck, Michael; Nimtz, Manfred; Rohde, Manfred; Wagner-Döbler, Irene

    2014-11-01

    Polymicrobial biofilms are of large medical importance, but relatively little is known about the role of interspecies interactions for their physiology and virulence. Here, we studied two human pathogens co-occuring in the oral cavity, the opportunistic fungus Candida albicans and the caries-promoting bacterium Streptococcus mutans. Dual-species biofilms reached higher biomass and cell numbers than mono-species biofilms, and the production of extracellular polymeric substances (EPSs) by S. mutans was strongly suppressed, which was confirmed by scanning electron microscopy, gas chromatography-mass spectrometry and transcriptome analysis. To detect interkingdom communication, C. albicans was co-cultivated with a strain of S. mutans carrying a transcriptional fusion between a green fluorescent protein-encoding gene and the promoter for sigX, the alternative sigma factor of S. mutans, which is induced by quorum sensing signals. Strong induction of sigX was observed in dual-species biofilms, but not in single-species biofilms. Conditioned media from mixed biofilms but not from C. albicans or S. mutans cultivated alone activated sigX in the reporter strain. Deletion of comS encoding the synthesis of the sigX-inducing peptide precursor abolished this activity, whereas deletion of comC encoding the competence-stimulating peptide precursor had no effect. Transcriptome analysis of S. mutans confirmed induction of comS, sigX, bacteriocins and the downstream late competence genes, including fratricins, in dual-species biofilms. We show here for the first time the stimulation of the complete quorum sensing system of S. mutans by a species from another kingdom, namely the fungus C. albicans, resulting in fundamentally changed virulence properties of the caries pathogen.

  14. Biofilm Infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Jensen, Peter Østrup; Moser, Claus Ernst

    A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized...... as being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections...... such as diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well...

  15. Adsorption properties and gaseous mercury transformation rate of natural biofilm.

    Science.gov (United States)

    Cheng, Jinping; Zhao, Wenchang; Liu, Yuanyuan; Wu, Cheng; Liu, Caie; Wang, Wenhua

    2008-11-01

    Biofilms were developed on glass microscope slides in a natural aquatic environment and their mercury adsorption properties were evaluated. Results demonstrated that the biofilms contained a large number of bacterial cells and associated extracellular polymers. Mercury forms detected in the biofilms were mainly bound to residual matter and organic acids. The adsorption processes could be described by a Langmuir isotherm. The optimum conditions for adsorption of mercury to natural biofilm were an ionic strength of 0.1 mol/L, pH 6 and an optimum adsorption time of 40 min. The transformation rate was 0.79 microg gaseous mercury per gram of biofilm.

  16. Salmonella biofilms

    NARCIS (Netherlands)

    Castelijn, G.A.A.

    2013-01-01

    Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm formation. A collectio

  17. Pilot-scale tertiary MBBR nitrification at 1°C: characterization of ammonia removal rate, solids settleability and biofilm characteristics.

    Science.gov (United States)

    Young, Bradley; Delatolla, Robert; Ren, Baisha; Kennedy, Kevin; Laflamme, Edith; Stintzi, Alain

    2016-08-01

    Pilot-scale moving bed biofilm reactor (MBBR) is used to investigate the kinetics and biofilm response of municipal, tertiary nitrification at 1°C. The research demonstrates that significant rates of tertiary MBBR nitrification are attainable and stable for extended periods of operation at 1°C, with a maximum removal rate of 230 gN/m(3) d at 1°C. At conventional nitrogen loading rates, low ammonia effluent concentrations below 5 mg-N/L were achieved at 1°C. The biofilm thickness and dry weight biofilm mass (massdw) were shown to be stable, with thickness values showing a correlation to the protein/polysaccharide ratio of the biofilm extracellular polymeric substances. Lastly, tertiary MBBR nitrification is shown to increase the effluent suspended solids concentrations by approximately 3 mg total suspended solids /L, with 19-60% of effluent solids being removed after 30 min of settling. The settleability of the effluent solids was shown to be correlated to the nitrogen loading of the MBBR system.

  18. Sludge granulation in an UASB-moving bed biofilm hybrid reactor for efficient organic matter removal and nitrogen removal in biofilm reactor.

    Science.gov (United States)

    Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli

    2017-03-15

    A hybrid upflow anaerobic sludge blanket (UASB)-moving bed biofilm (MBB) and rope bed biofilm (RBB) reactor was designed for treatment of sewage. Possibility of enhancing granulation in an UASB reactor using moving media to improve sludge retention was explored while treating low-strength wastewater. The presence of moving media in the top portion of the UASB reactor allowed a high solid retention time even at very short hydraulic retention times and helped in maintaining selection pressure in the sludge bed to promote formation of different sized sludge granules with an average settling velocity of 67 m/h. These granules were also found to contain plenty of extracellular polymeric substance (EPS) such as 58 mg of polysaccharides (PS) per gram of volatile suspended solids (VSS) and protein (PN) content of 37 mg/g VSS. Enriched sludge of nitrogen-removing bacteria forming a porous biofilm on the media in RBB was also observed in a concentration of around 894 g/m(2). The nitrogen removing sludge also had a high EPS content of around 22 mg PS/g VSS and 28 mg PN/g VSS. This hybrid UASB-MBB-RBB reactor with enhanced anaerobic granular sludge treating both carbonaceous and nitrogenous matter may be a sustainable solution for decentralized sewage treatment.

  19. In vitro antimicrobial effects and mechanism of atmospheric-pressure He/O2 plasma jet on Staphylococcus aureus biofilm

    Science.gov (United States)

    Xu, Zimu; Shen, Jie; Cheng, Cheng; Hu, Shuheng; Lan, Yan; Chu, Paul K.

    2017-03-01

    The antimicrobial effects and associated mechanism of inactivation of Staphylococcus aureus (S. aureus) NCTC-8325 biofilms induced by a He/O2 atmospheric-pressure plasma jet (APPJ) are investigated in vitro. According to CFU (colony forming units) counting and the resazurin-based assay, the 10 min He/O2 (0.5%) APPJ treatment produces the optimal inactivation efficacy (>5 log10 ml‑1) against the S. aureus biofilm and 5% of the bacteria enter a viable but non-culturable (VBNC) state. Meanwhile, 94% of the bacteria suffer from membrane damage according to SYTO 9/PI counterstaining. Scanning electron microscopy (SEM) reveals that plasma exposure erodes the extracellular polymeric substances (EPS) and then the cellular structure. The H2DCFDA-stained biofilms show larger concentrations of intracellular reactive oxygen species (ROS) in membrane-intact bacteria with increasing plasma dose. The admixture of oxygen in the working gas highly contributes to the deactivation efficacy of the APPJ against S. aureus and the plasma-induced endogenous ROS may work together with the discharge-generated ROS to continuously damage the bacterial membrane structure leading to deactivation of the biofilm microbes.

  20. Controlled assembly of silver nano-fluid in Heliotropium crispum extract: A potent anti-biofilm and bactericidal formulation

    Science.gov (United States)

    Khan, Faria; Hashmi, Muhammad Uzair; Khalid, Nauman; Hayat, Muhammad Qasim; Ikram, Aamer; Janjua, Hussnain A.

    2016-11-01

    The study describes the optimized method for silver nanoparticle (AgNPs) synthesis using Heliotropium crispum (HC) plant extract. Optimization of physicochemical parameters resulted in stable and rapidly assembled AgNPs. FTIR results suggest presence of plant phytochemicals that helped in the reduction, stabilization and capping of AgNPs. The assembled Ag nano-composites displayed the peak surface plasmon resonance (SPR) around 428 nm. The presence of uniquely assembled Ag-biomolecule composites, cap and stabilize nanoparticles in aqueous plant suspension. Spherical, uniform-shaped AgNPs with low poly-dispersion and average particle size of 42 nm and was determined through dynamic light scattering (DLS) and scanning election microscopy (SEM) which present robust interaction with microbes. The study also evaluates the antimicrobial and anti-biofilm properties of biologically synthesized AgNPs on clinical isolates of MRSA, Pseudomonas aeruginosa and Acinetobacter baumannii. Minimum inhibitory concentration (0.5 mg mL-1) of nanoparticles that presented bactericidal effect was made through inhibition assays on bacterial strains. The concentration which presented potent bactericidal response was then evaluated through growth inhibition in liquid medium for anti-biofilm studies at 2.0 mg mL-1. HC-Ag nanoparticles mediated anti-biofilm effects on Pseudomonas aeruginosa was revealed through SEM. Complete breakdown of biofilm's extracellular polymeric substances resulted after incubation with AgNPs. Peptidoglycan cell wall destruction was also revealed on planktonic bacterial images after 24 h of incubation.

  1. Biofilm development

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2015-01-01

    During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction or terminat......During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction...... or termination of biofilm matrix production via the second messenger molecule c-di-GMP. In between initiation and termination of biofilm formation we have defined specific biofilm stages, but the currently available evidence suggests that these transitions are mainly governed by adaptive responses......, and not by specific genetic programs. It appears that biofilm formation can occur through multiple pathways and that the spatial structure of the biofilms is species dependent as well as dependent on environmental conditions. Bacterial subpopulations, e.g., motile and nonmotile subpopulations, can develop...

  2. Polymeric microspheres

    Science.gov (United States)

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  3. Enzymatic biofilm digestion in soil aggregates facilitates the release of particulate organic matter by sonication

    Science.gov (United States)

    Büks, Frederick; Kaupenjohann, Martin

    2016-10-01

    The stability of soil aggregates against shearing and compressive forces as well as water-caused dispersion is an integral marker of soil quality. High stability results in less compaction and erosion and has been linked to enhanced water retention, dynamic water transport and aeration regimes, increased rooting depth, and protection of soil organic matter (SOM) against microbial degradation. In turn, particulate organic matter is supposed to support soil aggregate stabilization. For decades the importance of biofilm extracellular polymeric substances (EPSs) regarding particulate organic matter (POM) occlusion and aggregate stability has been canonical because of its distribution, geometric structure and ability to link primary particles. However, experimental proof is still missing. This lack is mainly due to methodological reasons. Thus, the objective of this work is to develop a method of enzymatic biofilm detachment for studying the effects of EPSs on POM occlusion. The method combines an enzymatic pre-treatment with different activities of α-glucosidase, β-galactosidase, DNAse and lipase with a subsequent sequential ultrasonic treatment for disaggregation and density fractionation of soils. POM releases of treated samples were compared to an enzyme-free control. To test the efficacy of biofilm detachment the ratio of bacterial DNA from suspended cells and the remaining biofilm after enzymatic treatment were measured by quantitative real-time PCR. Although the enzyme treatment was not sufficient for total biofilm removal, our results indicate that EPSs may attach POM within soil aggregates. The tendency to additional POM release with increased application of enzymes was attributed to a slight loss in aggregate stability. This suggests that an effect of agricultural practices on soil microbial populations could influence POM occlusion/aggregate stability and thereby carbon cycle/soil quality.

  4. Biocorrosion: towards understanding interactions between biofilms and metals.

    Science.gov (United States)

    Beech, Iwona B; Sunner, Jan

    2004-06-01

    The term microbially influenced corrosion, or biocorrosion, refers to the accelerated deterioration of metals owing to the presence of biofilms on their surfaces. The detailed mechanisms of biocorrosion are still poorly understood. Recent investigations into biocorrosion have focused on the influence of biomineralization processes taking place on metallic surfaces and the impact of extracellular enzymes, active within the biofilm matrix, on electrochemical reactions at the biofilm-metal interface.

  5. A Phytoanticipin Derivative, Sodium Houttuyfonate, Induces in Vitro Synergistic Effects with Levofloxacin against Biofilm Formation by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Jing Shao

    2012-09-01

    Full Text Available Antibiotic resistance has become the main deadly factor in infections, as bacteria can protect themselves by hiding in a self-constructed biofilm. Consequently, more attention is being paid to the search for “non-antibiotic drugs” to solve this problem. Phytoanticipins, the natural antibiotics from plants, could be a suitable alternative, but few works on this aspect have been reported. In this study, a preliminary study on the synergy between sodium houttuyfonate (SH and levofloxacin (LFX against the biofilm formation of Pseudomonas aeruginosa was performed. The minimal inhibitory concentrations (MIC of LFX and SH, anti-biofilm formation and synergistic effect on Pseudomonas aeruginosa, and quantification of alginate were determined by the microdilution method, crystal violet (CV assay, checkerboard method, and hydroxybiphenyl colorimetry. The biofilm morphology of Pseudomonas aeruginosa was observed by fluorescence microscope and scanning electric microscope (SEM. The results showed that: (i LFX and SH had an obvious synergistic effect against Pseudomonas aeruginosa with MIC values of 0.25 μg/mL and 128 μg/mL, respectively; (ii ½ × MIC SH combined with 2 × MIC LFX could suppress the biofilm formation of Pseudomonas aeruginosa effectively, with up to 73% inhibition; (iii the concentration of alginate decreased dramatically by a maximum of 92% after treatment with the combination of antibiotics; and (iv more dead cells by fluorescence microscope and more removal of extracellular polymeric structure (EPS by SEM were observed after the combined treatment of LFX and SH. Our experiments demonstrate the promising future of this potent antimicrobial agent against biofilm-associated infections.

  6. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies.

    Science.gov (United States)

    Taylor, Patrick K; Yeung, Amy T Y; Hancock, Robert E W

    2014-12-10

    The growth of bacteria as structured aggregates termed biofilms leads to their protection from harsh environmental conditions such as physical and chemical stresses, shearing forces, and limited nutrient availability. Because of this highly adapted ability to survive adverse environmental conditions, bacterial biofilms are recalcitrant to antibiotic therapies and immune clearance. This is particularly problematic in hospital settings where biofilms are a frequent cause of chronic and device-related infections and constitute a significant burden on the health-care system. The major therapeutic strategy against infections is the use of antibiotics, which, due to adaptive resistance, are often insufficient to clear biofilm infections. Thus, novel biofilm-specific therapies are required. Specific features of biofilm development, such as surface adherence, extracellular matrix formation, quorum sensing, and highly regulated biofilm maturation and dispersal are currently being studied as targets to be exploited in the development of novel biofilm-specific treatments. Using Pseudomonas aeruginosa for illustrative purposes, this review highlights the antibiotic resistance mechanisms of biofilms, and discusses current research into novel biofilm-specific therapies.

  7. Biofilm recruitment of Vibrio cholerae by matrix proteolysis.

    Science.gov (United States)

    Duperthuy, Marylise; Uhlin, Bernt Eric; Wai, Sun Nyunt

    2015-11-01

    The appearance of bacterial biofilms involves secretion of polysaccharides and proteins that form an extracellular matrix embedding the bacteria. Proteases have also been observed, but their role has remained unclear. Smith and co-workers have now found that proteolysis can contribute to further recruitment of bacteria to Vibrio cholerae biofilms.

  8. Putative Role of β-1,3 Glucans in Candida albicans Biofilm Resistance▿

    OpenAIRE

    Nett, Jeniel; Lincoln, Leslie; Marchillo, Karen; Massey, Randall; Holoyda, Kathleen; Hoff, Brian; VanHandel, Michelle; Andes, David

    2006-01-01

    Biofilms are microbial communities, embedded in a polymeric matrix, growing attached to a surface. Nearly all device-associated infections involve growth in the biofilm life style. Biofilm communities have characteristic architecture and distinct phenotypic properties. The most clinically important phenotype involves extraordinary resistance to antimicrobial therapy, making biofilm infections very difficulty to cure without device removal. The current studies examine drug resistance in Candid...

  9. An Advance in the Research on Bioremediation of Heavy Metal Pollution by Microbial Extracellular Polymeric Substances%微生物胞外聚合物修复重金属污染研究进展

    Institute of Scientific and Technical Information of China (English)

    张广柱; 董鹏; 王繁业

    2009-01-01

    Extracellular polymeric substances (EPS) of mlcroblal origin are a complex mixture of biopoly-mers comprising polysaccharides, proteins, nucleic acids, uronic acids, humics, lipids, and etc. Functionally, EPS aid in cell-to-cell aggregation, adhesion to substratum, formation of floes, protection from desiccation and resistance to harmful exogenous materials. In addition, the exopolymers serve as bio-sorbing agents by accumulating nutrients from the surrounding environment and also play a crucial role in bio-sorption of heavy metals. Being poly-anionic in nature, EPS form complexes with metal cations resulting in metal immobilization. Moreover, enzymatic activities in EPS also assist detoxification of heavy metals by transformation and subsequent precipitation. Structures and functions of EPS were summarised focusing on their formation, separation and composition. Cationic bonding behaviour of EPS from various origins as well as the mechanism of remedying heavy metal pollution were presented.%微生物胞外聚合物(EPS)是由多糖、蛋白质、核酸、糖羧酸,腐殖质和脂类等生物聚合体组成的复杂混合物.EPS具有聚合细胞、固定基质、形成絮凝、保持水分及阻止有害外源物质等功能.此外,EPS还可作为生物吸附剂来吸附周围环境中营养物质,并且在重金属生物吸附中发挥关键作用.EPS为天然的聚阴离子物质.可固定金属离子形成复合物.EPS中的酶可通过转换和沉淀作用来加速重金属的去毒.文章综述了EPS的结构和功能,重点是其生成、分离、组成,介绍各种来源EPS的阳离子键合性能,及其重金属修复机理.

  10. Experimental investigation of flow-structure interaction between a model biofilm streamer and water flow

    Science.gov (United States)

    Kazemifar, Farzan; Blois, Gianluca; Sinha, Sumit; Hardy, Richard; Best, James; Sambrook Smith, Gregory; Christensen, Kenneth

    2016-11-01

    Biofilms are permeable and deformable material whose bulk structure is composed of extracellular polymeric substance (EPS) that houses bacterial colonies. The EPS is responsible for the mechanical properties of the biofilm. In this study we investigate the fluid-structure interaction between a model biofilm streamer and water flow in a closed-loop water channel in the laminar and transitional flow regimes, using the particle image velocimetry (PIV) technique. The model streamer is fabricated from acrylamide polymer hydrogel. The purpose for using this material is twofold: 1) its mechanical properties (i.e. elastic modulus) can be tuned by controlling its chemical composition, 2) the hydrogel is transparent with a refractive index (RI) very close to that of water, thus minimizing the optical distortions for flow visualization. The velocity vector fields obtained from PIV measurements are used to investigate the temporal evolution of the flow structure in the vicinity of the streamer, focusing on the vortex shedding mechanism and the resulting oscillations of the streamer.

  11. Combined Effects of Curcumin and (-)-Epigallocatechin Gallate on Inhibition of N-Acylhomoserine Lactone-Mediated Biofilm Formation in Wastewater Bacteria from Membrane Bioreactor.

    Science.gov (United States)

    Lade, Harshad; Paul, Diby; Kweon, Ji Hyang

    2015-11-01

    This work investigated the potential of curcumin (CCM) and (-)-epigallocatechin gallate (EGCG) to inhibit N-acyl homoserine lactone (AHL)-mediated biofilm formation in gramnegative bacteria from membrane bioreactor (MBR) activated sludge. The minimum inhibitory concentrations (MICs) of CCM alone against all the tested bacteria were 200-350 μg/ml, whereas those for EGCG were 300-600 μg/ml. Biofilm formation at one-half MICs indicated that CCM and EGCG alone respectively inhibited 52-68% and 59-78% of biofilm formation among all the tested bacteria. However, their combination resulted in 95-99% of biofilm reduction. Quorum sensing inhibition (QSI) assay with known biosensor strains demonstrated that CCM inhibited the expression of C4 and C6 homoserine lactones (HSLs)-mediated phenotypes, whereas EGCG inhibited C4, C6, and C10 HSLs-based phenotypes. The Center for Disease Control biofilm reactor containing a multispecies culture of nine bacteria with onehalf MIC of CCM (150 μg/ml) and EGCG (275 μg/ml) showed 17 and 14 μg/cm(2) of extracellular polymeric substances (EPS) on polyvinylidene fluoride membrane surface, whereas their combination (100 μg/ml of each) exhibited much lower EPS content (3 μg/cm(2)). Confocal laser scanning microscopy observations also illustrated that the combination of compounds tremendously reduced the biofilm thickness. The combined effect of CCM with EGCG clearly reveals for the first time the enhanced inhibition of AHL-mediated biofilm formation in bacteria from activated sludge. Thus, such combined natural QSI approach could be used for the inhibition of membrane biofouling in MBRs treating wastewaters.

  12. In vitro characterization of biofilms formed by Kingella kingae.

    Science.gov (United States)

    Kaplan, J B; Sampathkumar, V; Bendaoud, M; Giannakakis, A K; Lally, E T; Balashova, N V

    2016-10-07

    The Gram-negative bacterium Kingella kingae is part of the normal oropharyngeal mucosal flora of children kingae can enter the submucosa and cause infections of the skeletal system in children, including septic arthritis and osteomyelitis. The organism is also associated with infective endocarditis in children and adults. Although biofilm formation has been coupled with pharyngeal colonization, osteoarticular infections, and infective endocarditis, no studies have investigated biofilm formation in K. kingae. In this study we measured biofilm formation by 79 K. kingae clinical isolates using a 96-well microtiter plate crystal violet binding assay. We found that 37 of 79 strains (47%) formed biofilms. All strains that formed biofilms produced corroding colonies on agar. Biofilm formation was inhibited by proteinase K and DNase I. DNase I also caused the detachment of pre-formed K. kingae biofilm colonies. A mutant strain carrying a deletion of the pilus gene cluster pilA1pilA2fimB did not produce corroding colonies on agar, autoaggregate in broth, or form biofilms. Biofilm forming strains have higher levels of pilA1 expression. The extracellular components of biofilms contained 490 μg cm(-2) of protein, 0.68 μg cm(-2) of DNA, and 0.4 μg cm(-2) of total carbohydrates. We concluded that biofilm formation is common among K. kingae clinical isolates, and that biofilm formation is dependent on the production of proteinaceous pili and extracellular DNA. Biofilm development may have relevance to the colonization, transmission, and pathogenesis of this bacterium. Extracellular DNA production by K. kingae may facilitate horizontal gene transfer within the oral microbial community.

  13. Capillary isoelectric focusing--useful tool for detection of the biofilm formation in Staphylococcus epidermidis.

    Science.gov (United States)

    Ruzicka, Filip; Horka, Marie; Hola, Veronika; Votava, Miroslav

    2007-03-01

    The biofilm formation is an important factor of S. epidermidis virulence. Biofilm-positive strains might be clinically more important than biofilm-negative ones. Unlike biofilm-negative staphylococci, biofilm-positive staphylococci are surrounded with an extracellular polysaccharide substance. The presence of this substance on the surface can affect physico-chemical properties of the bacterial cell, including surface charge. 73 S. epidermidis strains were examined for the presence of ica operon, for the ability to form biofilm by Christensen test tube method and for the production of slime by Congo red agar method. Isoelectric points (pI) of these strains were determined by means of Capillary Isoelectric Focusing. The biofilm negative strains focused near pI value 2.3, while the pI values of the biofilm positive strains were near 2.6. Isoelectric point is a useful criterion for the differentiation between biofilm-positive and biofilm-negative S. epidermidis strains.

  14. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal

    DEFF Research Database (Denmark)

    Harmsen, Morten; Yang, Liang; Pamp, Sünje Johanna

    2010-01-01

    . aeruginosa biofilms. The second messenger, c-di-GMP, is established as an important regulator of the synthesis of polysaccharide and protein components of the biofilm matrix. Extracellular DNA is shown to be an essential component of the biofilm matrix. It has become apparent that biofilm formation involves......We review the recent advances in the understanding of the Pseudomonas aeruginosa biofilm lifestyle from studies using in vitro laboratory setups such as flow chambers and microtiter trays. Recent work sheds light on the role of nutrients, motility, and quorum sensing in structure formation in P...... interactions between different subpopulations. The molecular mechanisms underlying the tolerance of biofilm bacteria to antimicrobial agents are beginning to be unraveled, and new knowledge has been obtained regarding the environmental cues and regulatory mechanisms involved in biofilm dispersal....

  15. Biofilm Formation Characteristics of Pseudomonas lundensis Isolated from Meat.

    Science.gov (United States)

    Liu, Yong-Ji; Xie, Jing; Zhao, Li-Jun; Qian, Yun-Fang; Zhao, Yong; Liu, Xiao

    2015-12-01

    Biofilms formations of spoilage and pathogenic bacteria on food or food contact surfaces have attracted increasing attention. These events may lead to a higher risk of food spoilage and foodborne disease transmission. While Pseudomonas lundensis is one of the most important bacteria that cause spoilage in chilled meat, its capability for biofilm formation has been seldom reported. Here, we investigated biofilm formation characteristics of P. lundensis mainly by using crystal violet staining, and confocal laser scanning microscopy (CLSM). The swarming and swimming motility, biofilm formation in different temperatures (30, 10, and 4 °C) and the protease activity of the target strain were also assessed. The results showed that P. lundensis showed a typical surface-associated motility and was quite capable of forming biofilms in different temperatures (30, 10, and 4 °C). The strain began to adhere to the contact surfaces and form biofilms early in the 4 to 6 h. The biofilms began to be formed in massive amounts after 12 h at 30 °C, and the extracellular polysaccharides increased as the biofilm structure developed. Compared with at 30 °C, more biofilms were formed at 4 and 10 °C even by a low bacterial density. The protease activity in the biofilm was significantly correlated with the biofilm formation. Moreover, the protease activity in biofilm was significantly higher than that of the corresponding planktonic cultures after cultured 12 h at 30 °C.

  16. Wound biofilms: lessons learned from oral biofilms.

    Science.gov (United States)

    Mancl, Kimberly A; Kirsner, Robert S; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque, are a primary cause of oral diseases including caries, gingivitis, and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible; thus, biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well elucidated. In contrast, wound research has relatively recently directed attention to the role biofilms have in chronic wounds. This review discusses the biofilms in periodontal disease and chronic wounds with comparisons focusing on biofilm detection, biofilm formation, the immune response to biofilms, bacterial interaction, and quorum sensing. Current treatment modalities used by both fields and future therapies are also discussed.

  17. Assessment of Changes in Biodiversity when a Community of Ultramicrobacteria Isolated from Groundwater Is Stimulated to Form a Biofilm.

    Science.gov (United States)

    Ross, N.; Villemur, R.; Marcandella, E.; Deschênes, L.

    2001-07-01

    The stimulation of groundwater bacteria to form biofilms, for the remediation of polluted aquifers, is subjected to environmental regulations that include measurement of effects on microbial biodiversity. Groundwater microorganisms contain a proportion of unidentified and uncharacterized ultramicrobacteria (UMB) that might play a major role in the bioclogging of geological materials. This study aimed to assess the changes in genetic and metabolic biodiversity when a community of UMB, isolated from groundwater, is stimulated to form biofilms on a ceramic surface. UMB were stimulated with aerobic conditions and injection of molasses, in reactors reproducing groundwater composition and temperature. Concentration of planktonic viable UMB, secretion of extracellular polymeric substances (EPS), and biofilm thickness were monitored. The assessment of changes in biodiversity was achieved by comparing the initial UMB community to the biofilm community, using the single strand conformational polymorphism (SSCP) method, the cloning and sequencing of 16S rRNA gene (16S rDNA) sequences, and the Biolog microplate system. The hypothesis stating that indigenous UMB would play a significant role of in the biofilm development was corroborated. Within 13 days of stimulation, the UMB produced 700 mg L?1 of planktonic EPS and formed a biofilm up to a thickness of 1100 mm. This stimulation led to a decrease in genetic diversity and an increase in metabolic diversity. The decrease in genetic diversity was shown by a reduced number of single strand DNA fragments in the SSCP profiles. As such, 16S rDNA sequences from the biofilm revealed the predominance of four bacterial groups: Zoogloea, Bacillus/Paenibacillus, Enterobacteriaceae, and Pseudomonads. A significant increase in metabolic diversity was shown by a highest substrate richness profile and a lower substrate evenness profile of the biofilm bacterial population (p = 0.0 and p = 0.09, respectively). This higher metabolic diversity

  18. Physicochemical changes of microbe and solid surface properties during biofilm formation

    Science.gov (United States)

    Sfaelou, Stavroula; Vakros, John; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.

    2013-04-01

    .9 for PVA gel and MBBR, respectively. These values differ both from the pzc values found for PVA biocarriers (pzc = 9.4; no pzc value was obtained for MBBR as expected based on its hydrophobic nature and the absence of surface groups with acid-base behavior) and the pzc value of activated sludge (activated sludge mixed liquor: pzc = 8.0 to 8.2, solid activated sludge: pzc = 7.2 to 7.3). These results lead us to the conclusion that the formed biofilms have different acid-base behavior and properties in relation to the activated sludge and the biocarriers. This fact is in accordance to previous studies, where biofilm-associated cells can be differentiated from their suspended counterparts due to the generation of an extracellular polymeric substance (EPS) matrix. One other possible explanation is that the complicated processes of the biofilm formation can alter the distribution of different cells in the sludge compared with the cell distribution in the suspended unsupported sludge.

  19. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Vad, Brian Stougaard; Dueholm, Morten Simonsen

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered...... that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm...

  20. 光谱法研究胞外聚合物与四溴双酚A的相互作用%Spectroscopic methods study of the interaction of extracellular polymeric substance and tetrabromobisphenol A

    Institute of Scientific and Technical Information of China (English)

    包宜俊; 杨存满; 李颖; 陆光华

    2016-01-01

    Three-dimensional fluorescence spectroscopy and infrared spectroscopy were used to investigatethe interaction between tetrabromobisphenol A (TBBA) and extracellular polymeric substance (EPS) from sludge. There were three particular fluorescence peaks in spectra of EPS,Ex/Em=230/300nm (peak A),Ex/Em=240/350nm (peak B) and Ex/Em=270/370nm (peak C), respectively. The results of fluorescence titration revealed that the three fluorescence peaks of EPS could be quenched by TBBA. The binging constants (lgK) were calculated by the modified Stern-Volmer model and the Ryan-Weber model, ranged from 4.23 to 6.27. Infrared spectroscopy and synchronous fluorescence spectroscopy indicated the combination of EPS with TBBA has led to a change in EPS structure. The effect of environmental condition (i.e. pH, ions, and conductivity) on TBBA binding with EPS were evaluated. The results show that pH and ions affected binding affinity, but the effect ofconductivitywas minor.%利用三维荧光光谱和红外光谱研究污水处理厂活性污泥中萃取的胞外聚合物与四溴双酚 A 之间的相互作用.结果显示,活性污泥胞外聚合物中存在3个明显的荧光峰,分别为,Ex/Em=230/300nm(峰A)、Ex/Em=240/350nm(峰B)和Ex/Em=270/370nm(峰C).荧光滴定结果表明,3个荧光峰随着四溴双酚A 的加入均发生不同程度的猝灭.修正的Stern-Volmer模型和Ryan-Weber非线性模型计算胞外聚合物与四溴双酚A之间的结合常数,二者间的结合常数值(lg K)在4.23~6.27之间.红外光谱和同步荧光结果显示,胞外聚合物与四溴双酚A 结合导致胞外聚合物原有的蛋白质结构发生变化.同时,考察了不同环境条件(pH 值、电导率以及离子)对两者作用的影响.结果表明:pH 值和离子变化对胞外聚合物与四溴双酚A结合强度有影响,但电导率的变化影响并不显著.

  1. Decontamination of Micro-pollution Water by Enhanced Coagulation with Multiplex Flocculants of Extracellular Polymeric Substances%微污染地表水的胞外聚合物复合絮凝剂强化混凝处理

    Institute of Scientific and Technical Information of China (English)

    唐然; 龙向宇; 姚强; 方涛

    2013-01-01

      采用胞外聚合物作为生物絮凝剂,开展胞外聚合物复合絮凝剂强化混凝处理微污染原水的研究。研究结果表明,蛋白质是胞外聚合物最主要的成分,多糖次之,腐殖酸和脱氧核糖核酸的含量最低;胞外聚合物含有大量带负电荷的官能团,单独投加胞外聚合物不能有效絮凝和吸附去除原水中的污染物。聚合氯化铝混凝处理微污染水的效果优于氯化铝和聚合硫酸铁,药品较优投加质量浓度为70~80 mg/L。胞外聚合物和聚合氯化铝复合使用能提高对细小颗粒物的去除效果,增强去除有机污染物和氯化消毒副产物前驱体的能力,降低聚合氯化铝的质量浓度。胞外聚合物复合絮凝剂的较优配方:胞外聚合物质量浓度为5 mg/L,聚合氯化铝质量浓度为60 mg/L。%Taking extracellular polymeric substances(EPS)as biological flocculants,the decontamination of micro⁃pollution water by enhanced coagulation with multiplex flocculants of EPS has been studied. Results show that proteins are the main component of EPS, followed by carbohydrate,and humic acids and DNA are the least. In the course of coagulation,only adding EPS could not effectively flocculate and absorb pollutants in water,which containing a great deal of negative function groups. The effect of coagulation treating micro⁃pollution water with poly⁃aluminum chloride(PAC)is better than that with aluminum chloride,or poly⁃ferric sulfate(PFS),and the optimum mass concentration of agents added into the water is 70-80 mg/L. The coagulation treatment with both EPS and PAC could enhance removal effect of micro⁃particle,organic pollutants and chlorine disinfection byproducts,and decrease the addition dose of PAC.The optimum of multiplex flocculants containing EPS is that the mass concentration of EPS is 5 mg/L,and that of PAC is 60 mg/L.

  2. Influences of Fe3+ on intracellular storage and extracellular polymeric substance of activated sludge%Fe3+对活性污泥胞内贮存物和胞外聚合物的影响

    Institute of Scientific and Technical Information of China (English)

    操家顺; 江心; 方芳; 谢玉洁

    2014-01-01

    为了研究投加化学除磷药剂对活性污泥系统的影响,利用间歇实验考察FeCl3·6H2 O投加对系统出水水质、活性污泥胞内贮存物以及胞外聚合物(EPS )含量和组分的影响.结果表明:随着投加Fe3+质量浓度的增加出水COD质量浓度逐渐降低,而系统对氨氮的去除效果影响不大;当Fe3+投加量小于8 mg/L时,出水磷酸盐质量浓度由2.32降至0.24mg/L ;当投加量超过8mg/L时,出水磷酸盐质量浓度则增加到1.83 mg/L ,PHA及糖原的合成和降解受到抑制,每g混合液体挥发性悬浮固体(VSS)中PHA水解量和糖原的合成量分别从53.11和83.53 mg/g下降到11.12和25.29 mg/g ;铁盐的投加会影响不同类型EPS(总EPS、溶解性EPS、松散结合型EPS和紧密结合型EPS )的含量,但不会改变不同类型EPS的组分.%To investigate the influences of chemical phosphorous removal substance on activated sludge system ,batch experiments were conducted to investigate the influences of ferric chloride on ef-fluent quality ,intracellular storage and extracellular polymeric substance (EPS) .The results indicate that the effluent COD (chemical oxygen demand) concentration decreases with the increase of Fe3+concentration ,w hile nitrogen removal efficiency changes little .When Fe3+ concentration is below 8 mg/L ,the effluent phosphorus concentration reduces from 2 .32 to 0 .24 mg/L .However ,when it is above 8 mg/L ,the effluent phosphorus concentration rises to 1 .83 mg/L and the synthesis and degra-dation of PHA (polyhydroxyal kanoate) and glycogen are both inhibited .In aerobic phase ,PHA deg-radation and glycogen synthesis decrease from 53 .11 and 83 .53 to 11 .12 and 25 .29 mg/g VSS (vola-tile suspended solid ) ,respectively .Furthermore ,ferric salts affect the content of EPS (total EPS , soluble EPS ,loose bound-EPS and tight bound-EPS) ,but have no effect on EPS compositions .

  3. 污泥生物沥滤中硫细菌变化和胞外多聚物作用的研究%Variation in sulfur bacteria and extracellular polymeric substances during sewage sludge bioleaching

    Institute of Scientific and Technical Information of China (English)

    华玉妹; 陈英旭; 张少辉

    2011-01-01

    通过序批试验,分析污泥生物沥滤过程中pH值、异养菌数量变化以及硫细菌的形态,探讨了污泥中重金属在胞外多聚物(EPS)中的分布变化.结果表明,污泥经生物沥滤后异养菌大量死亡.扫描电镜和透射电镜对污泥微生物形态的观测发现,随着生物沥滤时间的延长,生物沥滤污泥明显比对照污泥中的微生物分布紧密,而且杆状和短杆状菌呈现逐渐增多趋势.生物沥滤后期出现受损的细菌胞体以及释放了细胞物质的细菌空壳.污泥沥滤液中EPS含量有所增加,沥滤过程中EPS的松散结合态与紧密结合态的比值呈现先上升后下降趋势,可反映沥滤前期细菌处于加速生长期的居多,而后期处于减速生长期的细菌逐渐增多.污泥 EPS 中重金属含量在生物沥滤几天后表现持续增长,Cu、Pb和Zn分布于EPS中的最高含量分别占污泥中总量的14.7%、20.3%和24.2%.延长酸化时间,EPS可被水解,而导致其中重金属含量呈现一定下降趋势.%Lots of heterotrophic bacteria died after sewage sludge bioleaching. The exploration of microbial communities using scanning electron microscopy and transmission electron microscopy illustrated that the bacteria distribution in bioleaching sludge was more intensive than that in the control sludge, and the rod-shaped and short rod-shaped bacteria appeared to increase with the extension of time. The damaged bacteria cell and residual cell without intracellular matter emerged at the anaphase of bioleaching. The weight percentage of extracellular polymeric substances (EPS) in the sludge leachate increased after bioleaching. The EPS ratio of loosely bound fraction to tightly bound fraction exhibited an upward trend followed with a downward trend, which indicated that large quantities of bacteria were at accelerated growth phase during the prophase of bioleaching while at deceleration growth phase during the anaphase of bioleaching. The content of

  4. 集胞藻胞外聚合物(EPS)与氯霉素的相互作用%Interaction between Chloramphenicol and the Extracellular Polymeric Substances from Cyanobacterium Synechocystis sp.

    Institute of Scientific and Technical Information of China (English)

    付庆龙; 张道勇; 牟书勇; 潘响亮

    2012-01-01

    Three-dimensional excitation emission matrix (EEM ) fluorescence spectroscopy was used to examine the interaction between chloramphenicol ( CAP) and the extracellular polymeric substances (EPS) from Synechocystis sp. The results showed that there were six particular fluorescence peaks in the spectra of EPS. Peak A (EX/EM =205/304) , peak B (EX/EM =230/302) , peak C (EJEm = 235/354) and peak D (EX/EM =260/372) represented the protein-like fluorescence substances, and the other two peaks at ExIEm = 275/446 (peak E) and EX/EM =350/452 (peak F) reflected the humic-like fluorophores. With the exception of peak F, all the fluorescence peaks could be significantly quenched by CAP. This indicated that the fluorophores material can play a role with CAP, but not between CAP and those reflected by peak F. The reaction between CAP and the fluorophores in EPS was a static process, and formed stable EPS-CAP complexes. The effective quenching and binding constants for fluorophores of EPS were 3. 28-4. 49 and 4. 54-8. 13, respectively. The strong combination of EPS to CAP implied that EPS may play an important role in the transfer and transformation of CAP in aquatic environments.%通过利用激发-发射矩阵(EEM)荧光光谱,研究蓝藻集胞藻EPS(胞外聚合物)与CAP(氯霉素)的相互作用.结果表明:EPS含有6个峰,其中峰A(Ex/Em=205/304)、峰B(Ex/Em=230/302)、峰C(Ex/Em=235/354)和峰D(Ex/Em=260/372)为类蛋白峰,峰E(Ex/Em=275/446)和峰F(Ex/Em=350/452)为类腐殖质峰.除峰F外,其他各峰都能被CAP猝灭,说明它们所代表的物质能够与CAP发生作用;而峰F则几乎不被CAP猝灭,即荧光峰F不与CAP发生作用.CAP与EPS中荧光基团的反应属于静态猝灭,生成稳定的不发荧光的EPS-CAP络合物,其有效猝灭常数为3.28~4.49,结合常数为4.54~8.13.EPS与CAP强的络合作用意味着环境中普遍存在的EPS可能深刻地影响CAP在水环境中的迁移与转化.

  5. Mechanism of biofilm formation and analysis of influencing factors%生物膜形成机理及影响因素探究

    Institute of Scientific and Technical Information of China (English)

    戚韩英; 汪文斌; 郑昱; 朱亮; 徐向阳

    2013-01-01

    Biofilm is a kind of special microbial aggregates, and exists widely in various natural environments. The paper introduced the basic principle of biofilm formation, and reviewed the effects of carrier property, key components of extracellular polymeric substances (EPS) on the formation and stability of biofilms. Finally, the cross-disciplinary research prospect on the biofilm was provided.%生物膜是一种依附于载体材料的特殊微生物聚集体,其大量存在于自然环境中,并在水质净化、废水处理等领域广泛应用.本文介绍了生物膜形成基本原理,综述了有关载体界面性质、胞外多聚物(EPS)关键组分对生物膜形成及其稳定性的影响,并对各学科交叉研究生物膜提供技术思路.

  6. Application of pyrolysis-gas chromatography-mass spectrometry and multivariate analysis to study bacteria and fungi in biofilms used for bioremediation.

    Science.gov (United States)

    Melucci, Dora; Fedi, Stefano; Locatelli, Marcello; Locatelli, Clinio; Montalbani, Simona; Cappelletti, Martina

    2013-08-01

    Biofilms are communities of microorganisms adhering to a surface and embedded in an extracellular polymeric matrix, frequently associated with disease and contamination, and also used for engineering applications such as bioremediation. A mixed biofilm formed by bacteria and fungi may provide an optimal habitat for addressing contaminated areas. To exploit the potential of natural microbial communities consisting of bacteria and fungi, it is essential to understand and control their formation. In this work, a method to discriminate among bacteria of genera Bacillus, Pseudomonas, Rhodococcus with respect to the fungus Pleorotus in a biofilm by means of pyrolysis-gaschromatography-mass spectrometry and multivariate analysis is reported. Methylated fatty acids were chosen as biomarkers of microorganisms in the pyrolysates. In situ thermal hydrolysis and methylation was applied. Pyrograms were used as fingerprints, thus allowing for the characterization of whole cells analyzed without any sample pretreatment. Normalized pyrographic peak areas were chosen as variables for chemometric data processing. Principal components analysis was applied as a data exploration tool. Satisfactory results were obtained in analyzing a real biofilm. The influence of growth medium on whole bacteria fatty acid cell composition was also explored.

  7. Biofilms in Infections of the Eye

    Directory of Open Access Journals (Sweden)

    Paulo J. M. Bispo

    2015-03-01

    Full Text Available The ability to form biofilms in a variety of environments is a common trait of bacteria, and may represent one of the earliest defenses against predation. Biofilms are multicellular communities usually held together by a polymeric matrix, ranging from capsular material to cell lysate. In a structure that imposes diffusion limits, environmental microgradients arise to which individual bacteria adapt their physiologies, resulting in the gamut of physiological diversity. Additionally, the proximity of cells within the biofilm creates the opportunity for coordinated behaviors through cell–cell communication using diffusible signals, the most well documented being quorum sensing. Biofilms form on abiotic or biotic surfaces, and because of that are associated with a large proportion of human infections. Biofilm formation imposes a limitation on the uses and design of ocular devices, such as intraocular lenses, posterior contact lenses, scleral buckles, conjunctival plugs, lacrimal intubation devices and orbital implants. In the absence of abiotic materials, biofilms have been observed on the capsule, and in the corneal stroma. As the evidence for the involvement of microbial biofilms in many ocular infections has become compelling, developing new strategies to prevent their formation or to eradicate them at the site of infection, has become a priority.

  8. Disturbance of the bacterial cell wall specifically interferes with biofilm formation.

    Science.gov (United States)

    Bucher, Tabitha; Oppenheimer-Shaanan, Yaara; Savidor, Alon; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2015-12-01

    In nature, bacteria communicate via chemical cues and establish complex communities referred to as biofilms, wherein cells are held together by an extracellular matrix. Much research is focusing on small molecules that manipulate and prevent biofilm assembly by modifying cellular signalling pathways. However, the bacterial cell envelope, presenting the interface between bacterial cells and their surroundings, is largely overlooked. In our study, we identified specific targets within the biosynthesis pathways of the different cell wall components (peptidoglycan, wall teichoic acids and teichuronic acids) hampering biofilm formation and the anchoring of the extracellular matrix with a minimal effect on planktonic growth. In addition, we provide convincing evidence that biofilm hampering by transglycosylation inhibitors and D-Leucine triggers a highly specific response without changing the overall protein levels within the biofilm cells or the overall levels of the extracellular matrix components. The presented results emphasize the central role of the Gram-positive cell wall in biofilm development, resistance and sustainment.

  9. 'Should I stay or should I go?' Bacterial attachment vs biofilm formation on surface-modified membranes.

    Science.gov (United States)

    Bernstein, Roy; Freger, Viatcheslav; Lee, Jin-Hyung; Kim, Yong-Guy; Lee, Jintae; Herzberg, Moshe

    2014-01-01

    A number of techniques are used for testing the anti-biofouling activity of surfaces, yet the correlation between different results is often questionable. In this report, the correlation between initial bacterial deposition (fast tests, reported previously) and biofilm growth (much slower tests) was analyzed on a pristine and a surface-modified reverse osmosis membrane ESPA-1. The membrane was modified with grafted hydrophilic polymers bearing negatively charged, positively charged and zwitter-ionic moieties. Using three different bacterial strains it was found that there was no general correlation between the initial bacterial deposition rates and biofilm growth on surfaces, the reasons being different for each modified surface. For the negatively charged surface the slowest deposition due to the charge repulsion was eventually succeeded by the largest biofilm growth, probably due to secretion of extracellular polymeric substances (EPS) that mediated a strong attachment. For the positively charged surface, short-term charge attraction by quaternary amine groups led to the fastest deposition, but could be eventually overridden by their antimicrobial activity, resulting in non-consistent results where in some cases a lower biofilm formation rate was observed. The results indicate that initial deposition rates have to be used and interpreted with great care, when used for assessing the anti-biofouling activity of surfaces. However, for a weakly interacting 'low-fouling' zwitter-ionic surface, the positive correlation between initial cell deposition and biofilm growth, especially under flow, suggests that for this type of coating initial deposition tests may be fairly indicative of anti-biofouling potential.

  10. Individual growth detection of bacterial species in an in vitro oral polymicrobial biofilm model.

    Science.gov (United States)

    Tabenski, L; Maisch, T; Santarelli, F; Hiller, K-A; Schmalz, G

    2014-11-01

    Most in vitro studies on the antibacterial effects of antiseptics have used planktonic bacteria in monocultures. However, this study design does not reflect the in vivo situation in oral cavities harboring different bacterial species that live in symbiotic relationships in biofilms. The aim of this study was to establish a simple in vitro polymicrobial model consisting of only three bacterial strains of different phases of oral biofilm formation to simulate in vivo oral conditions. Therefore, we studied the biofilm formation of Actinomyces naeslundii (An), Fusobacterium nucleatum (Fn), and Enterococcus faecalis (Ef) on 96-well tissue culture plates under static anaerobic conditions using artificial saliva according to the method established by Pratten et al. that was supplemented with 1 g l(-1) sucrose. Growth was separately determined for each bacterial strain after incubation periods of up to 72 h by means of quantitative real-time polymerase chain reaction and live/dead staining. Presence of an extracellular polymeric substance (EPS) was visualized by Concanavalin A staining. Increasing incubation times of up to 72 h showed adhesion and propagation of the bacterial strains with artificial saliva formulation. An and Ef had significantly higher growth rates than Fn. Live/dead staining showed a median of 49.9 % (range 46.0-53.0 %) of living bacteria after 72 h of incubation, and 3D fluorescence microscopy showed a three-dimensional structure containing EPS. An in vitro oral polymicrobial biofilm model was established to better simulate oral conditions and had the advantage of providing the well-controlled experimental conditions of in vitro testing.

  11. Metagenomic Sequencing of Marine Periphyton: Taxonomic and Functional Insights into Biofilm Communities

    Directory of Open Access Journals (Sweden)

    Kemal eSanli

    2015-10-01

    Full Text Available Periphyton communities are complex phototrophic, multispecies biofilms that develop on surfaces in aquatic environments. These communities harbor a large diversity of organisms comprising viruses, bacteria, algae, fungi, protozoans and metazoans. However, thus far the total biodiversity of periphyton has not been described. In this study, we use metagenomics to characterize periphyton communities from the marine environment of the Swedish west coast. Although we found approximately ten times more eukaryotic rRNA marker gene sequences compared to prokaryotic, the whole metagenome-based similarity searches showed that bacteria constitute the most abundant phyla in these biofilms. We show that marine periphyton encompass a range of heterotrophic and phototrophic organisms. Heterotrophic bacteria, including the majority of proteobacterial clades and Bacteroidetes, and eukaryotic macro-invertebrates were found to dominate periphyton. The phototrophic groups comprise Cyanobacteria and the alpha-proteobacterial genus Roseobacter, followed by different micro- and macro-algae. We also assess the metabolic pathways that predispose these communities to an attached lifestyle. Functional indicators of the biofilm form of life in periphyton involve genes coding for enzymes that catalyze the production and degradation of extracellular polymeric substances, mainly in the form of complex sugars such as starch and glycogen-like meshes together with chitin. Genes for 278 different transporter proteins were detected in the metagenome, constituting the most abundant protein complexes. Finally, genes encoding enzymes that participate in anaerobic pathways, such as denitrification and methanogenesis, were detected suggesting the presence of anaerobic or low-oxygen micro-zones within the biofilms.

  12. Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Li; Yang, Ke [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Ren, Guogang, E-mail: g.g.ren@herts.ac.uk [University of Hertfordshire, Hatfield AL10 9AB (United Kingdom)

    2015-06-01

    Staphylococcus aureus (S. aureus) is a bacterium frequently found proliferating on metal surfaces such as stainless steels used in healthcare and food processing facilities. Past research has shown that a novel Cu-bearing 304 type stainless steel (304CuSS) exhibits excellent antibacterial ability (i.e. against S. aureus) in a short time period (24 h.). This work was dedicated to investigate the 304CuSS's inhibition ability towards the S. aureus biofilm formation for an extended period of 7 days after incubation. It was found that the antibacterial rate of the 304CuSS against sessile bacterial cells reached over 99.9% in comparison with the 304SS. The thickness and sizes of the biofilms on the 304SS surfaces increased markedly with period of contact, and thus expected higher risk of bio-contamination, indicated by the changes of surface free energy between biofilm and the steel surfaces. The results demonstrated that the 304CuSS exhibited strong inhibition on the growth and adherence of the biofilms. The surface free energy of the 304CuSS after contact with sessile bacterial cells was much lower than that of the 304SS towards the same culture times. The continuously dissolved Cu{sup 2+} ions well demonstrated the dissolution ability of Cu-rich precipitates after exposure to S. aureus solution, from 3.1 ppm (2 days) to 4.5 ppm (7 days). For this to occur, a hypothesis mechanism might be established for 304CuSS in which the Cu{sup 2+} ions were released from Cu-rich phases that bond with extracellular polymeric substances (EPS) of the microorganisms. And these inhibited the activities of cell protein/enzymes and effectively prevented planktonic bacterial cells attaching to the 304CuSS metal surface.

  13. A Rhizobium leguminosarum CHDL- (Cadherin-Like-) Lectin Participates in Assembly and Remodeling of the Biofilm Matrix

    DEFF Research Database (Denmark)

    Vozza, Nicolás F.; Abdian, Patricia L; Russo, Daniela M

    2016-01-01

    important advances were made in the identification of the genetic and extracellular factors required for biofilm formation, the mechanisms leading to biofilm matrix assembly, and the roles of extracellular proteins in these processes are still poorly understood. The symbiont Rhizobium leguminosarum requires...

  14. Crenarchaeal biofilm formation under extreme conditions.

    Directory of Open Access Journals (Sweden)

    Andrea Koerdt

    Full Text Available BACKGROUND: Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments. METHODOLOGY: We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells. CONCLUSION: The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.

  15. Dynamics of biofilm formation under different nutrient levels and the effect on biofouling of a reverse osmosis membrane system.

    Science.gov (United States)

    Chen, Xi; Suwarno, Stanislaus Raditya; Chong, Tzyy Haur; McDougald, Diane; Kjelleberg, Staffan; Cohen, Yehuda; Fane, Anthony G; Rice, Scott A

    2013-01-01

    Pseudomonas aeruginosa PAO1 wild type and a mucoid derivative (FRD1) which over produces alginate were used to foul reverse osmosis (RO) membranes. When operated at a constant flux, biofilm formation on the RO membrane resulted in a slow rise in transmembrane pressure (TMP) of 22% for the initial four days of operation, followed by a sharp increase of 159% over the following two days. The initial slow increase in TMP was probably due to the formation of a biofilm on the membrane surface, which then accelerated the rate of biofouling through the effect of concentration polarization. At later stages of operation, most of the bacterial biomass consisted of dead cells. The amount of extracellular polymeric substances appeared to correlate positively with the number of dead cells. The results indicate that prolonging the initial stage of slow TMP increase and avoiding the latter stage of accelerated TMP increase would provide a sustainable operation of the RO system. These results suggest that nutrient limitation could reduce biofilm accumulation and delay the increase in TMP.

  16. Biofilm Formation of Pasteurella Multocida on Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Ramachandranpillai Rajagopal

    2013-06-01

    Full Text Available Background and objectives: Biofilms are structural communities of bacterial cells enshrined in a self produced polymeric matrix. The studies on biofilm formation of Pasteurella multocida have become imperative since it is a respiratory pathogen and its biofilm mode could possibly be one of its virulence factors for survival inside a host. The present study describes a biofilm assay for P. multocida on inert hydrophilic material called bentonite clay.Materials and methods: The potential of the organism to form in vitro biofilm was assessed by growing the organism under nutrient restriction along with the inert substrate bentonite clay, which will provide a surface for attachment. For quantification of biofilm, plate count by the spread plate method was employed. Capsule production of the attached bacteria was demonstrated by light microscopic examination following Maneval staining and capsular polysaccharide estimation was done using standard procedures.Results and Conclusion: The biofilm formation peaked on the third day of incubation (1.54 ×106 cfu/g of bentonite clay while the planktonic cells were found to be at a maximum on day one post inoculation (8.10 ×108 cfu/ml of the broth. Maneval staining of late logarithmic phase biofilm cultures revealed large aggregates of bacterial cells, bacteria appearing as chains or as a meshwork. The capsular polysaccharide estimation of biofilm cells revealed a 3.25 times increase over the planktonic bacteria. The biofilm cells cultured on solid media also produced some exclusive colony morphotypes

  17. [Research progress in biofilm formation and regulatory mechanism of Campylobacter jejuni].

    Science.gov (United States)

    Wu, Qingping; Zhong, Xian; Zhang, Jumei

    2016-02-04

    Biofilm of Campylobacter jejuni was formed by cross-linking its extracellular secretion, polysaccharides, various extracellular proteins, nucleic acids etc to enhance its survival in hostile environments, especially for detergents, antibiotics and disinfectants. This paper elaborated C. jejuni biofilm formation and regulation mechanisms in the surface properties of the media, temperatures, gas environment, the regulation of gene etc, also analysed and discussed a variety of biofilm removal practical applications. We hope it can provide a reference for studies on biofilm control of C. jejuni.

  18. The roles of bacterial biofilm and oxidizing enzymes in the biodegradation of plastic by the bacterium Rhodococcus ruber (C208)

    Science.gov (United States)

    Sivan, A.; Gilan, I.; Santo, M.

    2011-12-01

    Synthetic polymers such as polyethylene are amongst the most durable plastic materials and, therefore are resistant to natural biodegradation resulting in their accumulation in the environment posing a global hazard. We have carried out a two-step enrichment procedure aimed at the isolation of polyethylene-degrading bacteria from soil. The initial enrichment was carried out in soil and the second, in a liquid mineral medium supplemented with linear low-density polyethylene (LDPE; MW 191,000) as the sole carbon source. UV-photooxidation may enhance biodegradation by the formation of carbonyl residues that can be utilized by microorganisms. This screening gave rise to several bacterial strains that were capable of degrading polyethylene. One of these strains (C208), identified as the actinomycete Rhodococcus ruber, colonized the polyethylene producing a biofilm which eventually lead to the degradation of the polyethylene. Adherence and colonization of planktonic C208 cells to the polyethylene surface occurred within minutes from exposure to the polyolefin. This resulted in formation of an initial biofilm that differentiated into cell-aggregation-forming microcolonies. Further organization yielded three-dimensional sessile structures as the mature biofilm. The ratio between the population densities, of the biofilm and planktonic, was about 60:1, indicating a high preference for the biofilm mode of growth. Analysis of the extra-cellular polymeric substances (EPS) in the biofilm of C208 revealed that the polysaccharides level was up to 2.5 folds higher than that of the protein. Surprisingly, the EPS also contained DNA that is actively excreted from live bacterial cells. This is supported by the reduction in biofilm content (but not in viability) following addition, of DNase 1 and RNAse A. The biofilm showed a high viability even after 60 days of incubation in a carbon free medium. This durability of the biofilm, can be attributed to biodegradation of polyethylene. A

  19. Anti-Biofilm Compounds Derived from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Christian Melander

    2011-10-01

    Full Text Available Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues—including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds.

  20. 生物膜胞外聚合物的提取及其对重金属的吸附机制%Extraction of Extracellular Polymeric Substances from Biofilm and Adsorption Mechanism of Heavy Metals

    Institute of Scientific and Technical Information of China (English)

    曹勇; 王冰菱; 张漪蒙; 荚荣; 吴涓

    2014-01-01

    对5种提取自然水体生物膜胞外聚合物(EPS)方法的效果进行了比较,选择了提取多糖(58.35 mg/L)和蛋白质(42.93 mg/L)量最多的NaOH法,并对实验条件进行优化;利用提取得到的EPS吸附Pb2+、Cd2+、Ni2+、Cu2+4种重金属离子,通过红外光谱分析,确定EPS吸附重金属的机制.结果表明,NaOH法的最适萃取分离条件为:萃取剂浓度2.5 mol/L,萃取时间2.5h,分离转速8 000r/rnin:红外光谱数据显示,EPS中的羟基和酰胺基是吸附重金属离子的主要官能团.

  1. 生物膜胞外聚合物的提取及其对重金属的吸附机理%Extraction of Extracellular Polymeric Substances from Biofilm and Adsorption Mechanism of Heavy Metals

    Institute of Scientific and Technical Information of China (English)

    曹勇; 王冰菱; 张漪蒙; 荚荣; 吴涓

    2013-01-01

    对5种提取自然水体生物膜胞外聚合物(EPS)方法的效果进行了比较,选择了提取多糖(58.35 mg/L)和蛋白质(42.93 mg/L)量最多的NaOH法,并对实验条件进行了优化;利用提取得到的EPS吸附pb2+、Cd2+、Ni2+、Cu2+4种重金属离子,通过红外光谱分析,确定EPS吸附重金属的机理.结果表明,NaOH法的最适萃取分离条件为:萃取剂浓度2.5 mol/L,萃取时间2.5h,分离转速8000r/min;红外光谱数据显示,EPS中的羟基和酰胺基是吸附重金属离子的主要作用官能团.

  2. New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system.

    Science.gov (United States)

    Deng, Lijuan; Guo, Wenshan; Ngo, Huu Hao; Zhang, Xinbo; Wang, Xiaochang C; Zhang, Qionghua; Chen, Rong

    2016-05-01

    In this study, new sponge modified plastic carriers for moving bed biofilm reactor (MBBR) was developed. The performance and membrane fouling behavior of a hybrid MBBR-membrane bioreactor (MBBR-MBR) system were also evaluated. Comparing to the MBBR with plastic carriers (MBBR), the MBBR with sponge modified biocarriers (S-MBBR) showed better effluent quality and enhanced nutrient removal at HRTs of 12h and 6h. Regarding fouling issue of the hybrid systems, soluble microbial products (SMP) of the MBR unit greatly influenced membrane fouling. The sponge modified biocarriers could lower the levels of SMP in mixed liquor and extracellular polymeric substances in activated sludge, thereby mitigating cake layer and pore blocking resistances of the membrane. The reduced SMP and biopolymer clusters in membrane cake layer were also observed. The results demonstrated that the sponge modified biocarriers were capable of improving overall MBBR performance and substantially alleviated membrane fouling of the subsequent MBR unit.

  3. Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: Carbon and energy flow contribute to the distinct biofilm growth state

    Directory of Open Access Journals (Sweden)

    Clark Melinda E

    2012-04-01

    Full Text Available Abstract Background Desulfovibrio vulgaris Hildenborough is a sulfate-reducing bacterium (SRB that is intensively studied in the context of metal corrosion and heavy-metal bioremediation, and SRB populations are commonly observed in pipe and subsurface environments as surface-associated populations. In order to elucidate physiological changes associated with biofilm growth at both the transcript and protein level, transcriptomic and proteomic analyses were done on mature biofilm cells and compared to both batch and reactor planktonic populations. The biofilms were cultivated with lactate and sulfate in a continuously fed biofilm reactor, and compared to both batch and reactor planktonic populations. Results The functional genomic analysis demonstrated that biofilm cells were different compared to planktonic cells, and the majority of altered abundances for genes and proteins were annotated as hypothetical (unknown function, energy conservation, amino acid metabolism, and signal transduction. Genes and proteins that showed similar trends in detected levels were particularly involved in energy conservation such as increases in an annotated ech hydrogenase, formate dehydrogenase, pyruvate:ferredoxin oxidoreductase, and rnf oxidoreductase, and the biofilm cells had elevated formate dehydrogenase activity. Several other hydrogenases and formate dehydrogenases also showed an increased protein level, while decreased transcript and protein levels were observed for putative coo hydrogenase as well as a lactate permease and hyp hydrogenases for biofilm cells. Genes annotated for amino acid synthesis and nitrogen utilization were also predominant changers within the biofilm state. Ribosomal transcripts and proteins were notably decreased within the biofilm cells compared to exponential-phase cells but were not as low as levels observed in planktonic, stationary-phase cells. Several putative, extracellular proteins (DVU1012, 1545 were also detected in the

  4. Assessment of bacterial community structure in nitrifying biofilm under inorganic carbon-sufficient and -limited conditions.

    Science.gov (United States)

    Bae, Hyokwan; Chung, Yun-Chul; Yang, Heejeong; Lee, Changsoo; Aryapratama, Rio; Yoo, Young J; Lee, Seockheon

    2015-01-01

    In this work, nitrification and changes in the composition of the total bacterial community under inorganic carbon (IC)-limited conditions, in a nitrifying moving bed biofilm reactor, was investigated. A culture-independent analysis of cloning and sequencing based on the 16S rRNA gene was applied to quantify the bacterial diversity and to determine bacterial taxonomic assignment. IC concentrations had significant effects on the stability of ammonia-oxidation as indicated by the reduction of the nitrogen conversion rate with high NH4(+)-N loadings. The predominance of Nitrosomonas europaea was maintained in spite of changes in the IC concentration. In contrast, heterotrophic bacterial species contributed to a high bacterial diversity, and to a dynamic shift in the bacterial community structure, under IC-limited conditions. In this study, individual functions of heterotrophic bacteria were estimated based on taxonomic information. Possible key roles of coexisting heterotrophic bacteria are the assimilation of organic compounds of extracellular polymeric substances produced by nitrifiers, and biofilm formation by providing a filamentous structure and aggregation properties.

  5. Biofilm, ice recrystallization inhibition and freeze-thaw protection in an epiphyte community.

    Science.gov (United States)

    Wu, Z; Kan, F W K; She, Y-M; Walker, V K

    2012-01-01

    Microbial communities found on the surface of overwintering plants may be exposed to low temperatures as well as multiple freeze-thaw events. To explore the adaptive mechanisms of these epiphytes, with the objective of identifying products for freeze-protection, enrichment libraries were made from frost-exposed leaves. Of 15 identified bacteria from 60 individual clones, approximately half had ice-association activities, with the great majority showing high freeze-thaw resistance. Isolates with ice nucleation activity and ice recrystallization inhibition activity were recovered. Of the latter, two (Erwinia billingiae J10, and Sphingobacterium kitahiroshimense Y2) showed culture and electron microscopic evidence of motility and/or biofilm production. Mass spectrometric characterization of the E. billingiae extracellular polymeric substance (EPS) identified the major proteins as 35 kDa outer membrane protein A and F, supporting its biofilm character. The addition of the EPS preparation increased the freeze-thaw survival of the more susceptible bacteria 1000-10000 times, and protection was at least partially dependent on the protein component.

  6. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development.

    Science.gov (United States)

    Alem, Mohammed A S; Oteef, Mohammed D Y; Flowers, T Hugh; Douglas, L Julia

    2006-10-01

    Tyrosol and farnesol are quorum-sensing molecules produced by Candida albicans which accelerate and block, respectively, the morphological transition from yeasts to hyphae. In this study, we have investigated the secretion of tyrosol by C. albicans and explored its likely role in biofilm development. Both planktonic (suspended) cells and biofilms of four C. albicans strains, including three mutants with defined defects in the Efg 1 and Cph 1 morphogenetic signaling pathways, synthesized extracellular tyrosol during growth at 37 degrees C. There was a correlation between tyrosol production and biomass for both cell types. However, biofilm cells secreted at least 50% more tyrosol than did planktonic cells when tyrosol production was related to cell dry weight. The addition of exogenous farnesol to a wild-type strain inhibited biofilm formation by up to 33% after 48 h. Exogenous tyrosol appeared to have no effect, but scanning electron microscopy revealed that tyrosol stimulated hypha production during the early stages (1 to 6 h) of biofilm development. Experiments involving the simultaneous addition of tyrosol and farnesol at different concentrations suggested that the action of farnesol was dominant, and 48-h biofilms formed in the presence of both compounds consisted almost entirely of yeast cells. When biofilm supernatants were tested for their abilities to inhibit or enhance germ tube formation by planktonic cells, the results indicated that tyrosol activity exceeds that of farnesol after 14 h, but not after 24 h, and that farnesol activity increases significantly during the later stages (48 to 72 h) of biofilm development. Overall, our results support the conclusion that tyrosol acts as a quorum-sensing molecule for biofilms as well as for planktonic cells and that its action is most significant during the early and intermediate stages of biofilm formation.

  7. The in vivo biofilm

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Maria; Alhede, Morten

    2013-01-01

    Bacteria can grow and proliferate either as single, independent cells or organized in aggregates commonly referred to as biofilms. When bacteria succeed in forming a biofilm within the human host, the infection often becomes very resistant to treatment and can develop into a chronic state. Biofilms...... have been studied for decades using various in vitro models, but it remains debatable whether such in vitro biofilms actually resemble in vivo biofilms in chronic infections. In vivo biofilms share several structural characteristics that differ from most in vitro biofilms. Additionally, the in vivo...... experimental time span and presence of host defenses differ from chronic infections and the chemical microenvironment of both in vivo and in vitro biofilms is seldom taken into account. In this review, we discuss why the current in vitro models of biofilms might be limited for describing infectious biofilms...

  8. Spore formation and toxin production in Clostridium difficile biofilms.

    Science.gov (United States)

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  9. Spore formation and toxin production in Clostridium difficile biofilms.

    Directory of Open Access Journals (Sweden)

    Ekaterina G Semenyuk

    Full Text Available The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA, polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  10. In vitro interaction between alginate lyase and amphotericin B against Aspergillus fumigatus biofilm determined by different methods.

    Science.gov (United States)

    Bugli, Francesca; Posteraro, Brunella; Papi, Massimiliano; Torelli, Riccardo; Maiorana, Alessandro; Paroni Sterbini, Francesco; Posteraro, Patrizia; Sanguinetti, Maurizio; De Spirito, Marco

    2013-03-01

    Aspergillus fumigatus biofilms represent a problematic clinical entity, especially because of their recalcitrance to antifungal drugs, which poses a number of therapeutic implications for invasive aspergillosis, the most difficult-to-treat Aspergillus-related disease. While the antibiofilm activities of amphotericin B (AMB) deoxycholate and its lipid formulations (e.g., liposomal AMB [LAMB]) are well documented, the effectiveness of these drugs in combination with nonantifungal agents is poorly understood. In the present study, in vitro interactions between polyene antifungals (AMB and LAMB) and alginate lyase (AlgL), an enzyme degrading the polysaccharides produced as extracellular polymeric substances (EPSs) within the biofilm matrix, against A. fumigatus biofilms were evaluated by using the checkerboard microdilution and the time-kill assays. Furthermore, atomic force microscopy (AFM) was used to image and quantify the effects of AlgL-antifungal combinations on biofilm-growing hyphal cells. On the basis of fractional inhibitory concentration index values, synergy was found between both AMB formulations and AlgL, and this finding was also confirmed by the time-kill test. Finally, AFM analysis showed that when A. fumigatus biofilms were treated with AlgL or polyene alone, as well as with their combination, both a reduction of hyphal thicknesses and an increase of adhesive forces were observed compared to the findings for untreated controls, probably owing to the different action by the enzyme or the antifungal compounds. Interestingly, marked physical changes were noticed in A. fumigatus biofilms exposed to the AlgL-antifungal combinations compared with the physical characteristics detected after exposure to the antifungals alone, indicating that AlgL may enhance the antibiofilm activity of both AMB and LAMB, perhaps by disrupting the hypha-embedding EPSs and thus facilitating the drugs to reach biofilm cells. Taken together, our results suggest that a combination

  11. In vitro Determination of Extracellular Proteins from Xylella fastidiosa

    Science.gov (United States)

    Mendes, Juliano S.; Santiago, André S.; Toledo, Marcelo A. S.; Horta, Maria A. C.; de Souza, Alessandra A.; Tasic, Ljubica; de Souza, Anete P.

    2016-01-01

    The phytopathogen Xylella fastidiosa causes economic losses in important agricultural crops. Xylem vessel occlusion caused by biofilm formation is the major mechanism underlying the pathogenicity of distinct strains of X. fastidiosa. Here, we provide a detailed in vitro characterization of the extracellular proteins of X. fastidiosa. Based on the results, we performed a comparison with a strain J1a12, which cannot induce citrus variegated chlorosis symptoms when inoculated into citrus plants. We then extend this approach to analyze the extracellular proteins of X. fastidiosa in media supplemented with calcium. We verified increases in extracellular proteins concomitant with the days of growth and, consequently, biofilm development (3–30 days). Outer membrane vesicles carrying toxins were identified beginning at 10 days of growth in the 9a5c strain. In addition, a decrease in extracellular proteins in media supplemented with calcium was observed in both strains. Using mass spectrometry, 71 different proteins were identified during 30 days of X. fastidiosa biofilm development, including proteases, quorum-sensing proteins, biofilm formation proteins, hypothetical proteins, phage-related proteins, chaperones, toxins, antitoxins, and extracellular vesicle membrane components. PMID:28082960

  12. Characterization of Pleurotus ostreatus biofilms by using the calgary biofilm device.

    Science.gov (United States)

    Pesciaroli, Lorena; Petruccioli, Maurizio; Fedi, Stefano; Firrincieli, Andrea; Federici, Federico; D'Annibale, Alessandro

    2013-10-01

    The adequacy of the Calgary biofilm device, often referred to as the MBEC system, as a high-throughput approach to the production and subsequent characterization of Pleurotus ostreatus biofilms was assessed. The hydroxyapatite-coating of pegs was necessary to enable biofilm attachment, and the standardization of vegetative inocula ensured a uniform distribution of P. ostreatus biofilms, which is necessary for high-throughput evaluations of several antimicrobials and exposure conditions. Scanning electron microscopy showed surface-associated growth, the occurrence of a complex aggregated growth organized in multilayers or hyphal bundles, and the encasement of hyphae within an extracellular matrix (ECM), the extent of which increased with time. Chemical analyses showed that biofilms differed from free-floating cultures for their higher contents of total sugars (TS) and ECM, with the latter being mainly composed of TS and, to a lesser extent, protein. Confocal laser scanning microscopy analysis of 4-day-old biofilms showed the presence of interspersed interstitial voids and water channels in the mycelial network, the density and compactness of which increased after a 7-day incubation, with the novel occurrence of ECM aggregates with an α-glucan moiety. In 4- and 7-day-old biofilms, tolerance to cadmium was increased by factors of 3.2 and 11.1, respectively, compared to coeval free-floating counterparts.

  13. Characterization, Microbial Community Structure, and Pathogen Occurrence in Urban Faucet Biofilms in South China

    Directory of Open Access Journals (Sweden)

    Huirong Lin

    2015-01-01

    Full Text Available The composition and microbial community structure of the drinking water system biofilms were investigated using microstructure analysis and 454 pyrosequencing technique in Xiamen city, southeast of China. SEM (scanning electron microscope results showed different features of biofilm morphology in different fields of PVC pipe. Extracellular matrix material and sparse populations of bacteria (mainly rod-shaped and coccoid were observed. CLSM (confocal laser scanning microscope revealed different distributions of attached cells, extracellular proteins, α-polysaccharides, and β-polysaccharides. The biofilms had complex bacterial compositions. Differences in bacteria diversity and composition from different tap materials and ages were observed. Proteobacteria was the common and predominant group in all biofilms samples. Some potential pathogens (Legionellales, Enterobacteriales, Chromatiales, and Pseudomonadales and corrosive microorganisms were also found in the biofilms. This study provides the information of characterization and visualization of the drinking water biofilms matrix, as well as the microbial community structure and opportunistic pathogens occurrence.

  14. SarA is a negative regulator of Staphylococcus epidermidis biofilm formation

    DEFF Research Database (Denmark)

    Martin, Christer; Heinze, C.; Busch, M.

    2012-01-01

    Biofilm formation is essential for Staphylococcus epidermidis pathogenicity in implant-associated infections. Nonetheless, large proportions of invasive S. epidermidis isolates fail to show accumulative biofilm growth in vitro. We here tested the hypothesis that this apparent paradox is related...... to the existence of superimposed regulatory systems suppressing a multi-cellular biofilm life style in vitro. Transposon mutagenesis of clinical significant but biofilm-negative S. epidermidis 1585 was used to isolate a biofilm positive mutant carrying a Tn917 insertion in sarA,chief regulator of staphylococcal...... virulence. Genetic analysis revealed that inactivation of sarA induced biofilm formation via over-expression of the giant 1 MDa extracellular matrix binding protein (Embp), serving as an intercellular adhesin. In addition to Embp, increased extracellular DNA (eDNA) release significantly contributed...

  15. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    Energy Technology Data Exchange (ETDEWEB)

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.; Mehta, Hardeep S.; Ewing, R James; Ewing, Thomas; Mueller, Karl T.; Beyenal, Haluk

    2014-03-01

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.

  16. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance.

    Directory of Open Access Journals (Sweden)

    Heather T Taff

    Full Text Available Extracellular polysaccharides are key constituents of the biofilm matrix of many microorganisms. One critical carbohydrate component of Candida albicans biofilms, β-1,3 glucan, has been linked to biofilm protection from antifungal agents. In this study, we identify three glucan modification enzymes that function to deliver glucan from the cell to the extracellular matrix. These enzymes include two predicted glucan transferases and an exo-glucanase, encoded by BGL2, PHR1, and XOG1, respectively. We show that the enzymes are crucial for both delivery of β-1,3 glucan to the biofilm matrix and for accumulation of mature matrix biomass. The enzymes do not appear to impact cell wall glucan content of biofilm cells, nor are they necessary for filamentation or biofilm formation. We demonstrate that mutants lacking these genes exhibit enhanced susceptibility to the commonly used antifungal, fluconazole, during biofilm growth only. Transcriptional analysis and biofilm phenotypes of strains with multiple mutations suggest that these enzymes act in a complementary fashion to distribute matrix downstream of the primary β-1,3 glucan synthase encoded by FKS1. Furthermore, our observations suggest that this matrix delivery pathway works independently from the C. albicans ZAP1 matrix formation regulatory pathway. These glucan modification enzymes appear to play a biofilm-specific role in mediating the delivery and organization of mature biofilm matrix. We propose that the discovery of inhibitors for these enzymes would provide promising anti-biofilm therapeutics.

  17. Redox Conductivity of Current-Producing Mixed Species Biofilms

    Science.gov (United States)

    Fan, Yanzhen; Liu, Hong

    2016-01-01

    While most biological materials are insulating in nature, efficient extracellular electron transfer is a critical property of biofilms associated with microbial electrochemical systems and several microorganisms are capable of establishing conductive aggregates and biofilms. Though construction of these conductive microbial networks is an intriguing and important phenomenon in both natural and engineered systems, few studies have been published related to conductive biofilms/aggregates and their conduction mechanisms, especially in mixed-species environments. In the present study, current-producing mixed species biofilms exhibited high conductivity across non-conductive gaps. Biofilm growth observed on the inactive electrode contributed to overall power outputs, suggesting that an electrical connection was established throughout the biofilm assembly. Electrochemical gating analysis of the biofilms over a range of potentials (-600–200 mV, vs. Ag/AgCl) resulted in a peak-manner response with maximum conductance of 3437 ± 271 μS at a gate potential of -360 mV. Following removal of the electron donor (acetate), a 96.6% decrease in peak conductivity was observed. Differential responses observed in the absence of an electron donor and over varying potentials suggest a redox driven conductivity mechanism in mixed-species biofilms. These results demonstrated significant differences in biofilm development and conductivity compared to previous studies using pure cultures. PMID:27159497

  18. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Margarida Carrolo

    Full Text Available Streptococcus pneumoniae (pneumococcus is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.

  19. Regulation of Acinetobacter baumannii biofilm formation.

    Science.gov (United States)

    Gaddy, Jennifer A; Actis, Luis A

    2009-04-01

    Acinetobacter baumannii is a Gram-negative opportunistic nosocomial pathogen. This microorganism survives in hospital environments despite unfavorable conditions such as desiccation, nutrient starvation and antimicrobial treatments. It is hypothesized that its ability to persist in these environments, as well as its virulence, is a result of its capacity to form biofilms. A. baumannii forms biofilms on abiotic surfaces such as polystyrene and glass as well as biotic surfaces such as epithelial cells and fungal filaments. Pili assembly and production of the Bap surface-adhesion protein play a role in biofilm initiation and maturation after initial attachment to abiotic surfaces. Furthermore, the adhesion and biofilm phenotypes of some clinical isolates seem to be related to the presence of broad-spectrum antibiotic resistance. The regulation of the formation and development of these biofilms is as diverse as the surfaces on which this bacterium persists and as the cellular components that participate in this programmed multistep process. The regulatory processes associated with biofilm formation include sensing of bacterial cell density, the presence of different nutrients and the concentration of free cations available to bacterial cells. Some of these extracellular signals may be sensed by two-component regulatory systems such as BfmRS. This transcriptional regulatory system activates the expression of the usher-chaperone assembly system responsible for the production of pili, needed for cell attachment and biofilm formation on polystyrene surfaces. However, such a system is not required for biofilm formation on abiotic surfaces when cells are cultured in chemically defined media. Interestingly, the BfmRS system also controls cell morphology under particular culture conditions.

  20. Extracellular DNA metabolism in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Scott eChimileski

    2014-02-01

    Full Text Available Extracellular DNA is found in all environments and is a dynamic component of the micro-bial ecosystem. Microbial cells produce and interact with extracellular DNA through many endogenous mechanisms. Extracellular DNA is processed and internalized for use as genetic information and as a major source of macronutrients, and plays several key roles within prokaryotic biofilms. Hypersaline sites contain some of the highest extracellular DNA con-centrations measured in nature–a potential rich source of carbon, nitrogen and phosphorus for halophilic microorganisms. We conducted DNA growth studies for the halophilic archaeon Haloferax volcanii DS2 and show that this model Halobacteriales strain is capable of using exogenous double-stranded DNA as a nutrient. Further experiments with varying medium composition, DNA concentration and DNA types revealed that DNA is utilized primarily as a phosphorus source, that growth on DNA is concentration-dependent and that DNA isolated from different sources is metabolized selectively, with a bias against highly divergent methylated DNA sources. Additionally, fluorescence microscopy experiments showed that labeled DNA colocalized with Haloferax volcanii cells. The gene Hvo_1477 was also identified using a comparative genomic approach as a factor likely to be involved in extracellular DNA processing at the cell surface, and deletion of Hvo_1477 created an H. volcanii strain deficient in its ability to grow on extracellular DNA. Widespread distribution of Hvo_1477 homologs in archaea suggests metabolism of extracellular DNA may be of broad ecological and physiological relevance in this domain of life.

  1. In situ detection and characterization of potable water biofilms on materials by microscopic, spectroscopic and electrochemistry methods

    Energy Technology Data Exchange (ETDEWEB)

    Gamby, Jean [Universite Pierre et Marie Curie - Paris 6, CNRS-UPR 15, Laboratoire Interfaces et Systemes Electrochimiques, 4 Place Jussieu, Case Courrier 133, 75252 Paris Cedex 05 (France)], E-mail: jean.gamby@upmc.fr; Pailleret, Alain [Universite Pierre et Marie Curie - Paris 6, CNRS-UPR 15, Laboratoire Interfaces et Systemes Electrochimiques, 4 Place Jussieu, Case Courrier 133, 75252 Paris Cedex 05 (France); Clodic, Carol Boucher; Pradier, Claire-Marie [Universite Pierre et Marie Curie - Paris 6, CNRS-UMR 7609, Laboratoire de Reactivite de Surface, 4 Place Jussieu, Case Courrier 178, 75252 Paris Cedex 05 (France); Tribollet, Bernard [Universite Pierre et Marie Curie - Paris 6, CNRS-UPR 15, Laboratoire Interfaces et Systemes Electrochimiques, 4 Place Jussieu, Case Courrier 133, 75252 Paris Cedex 05 (France)

    2008-12-01

    We studied biofilm formation on stainless steel occurring in a drinking water distribution system which operated in parallel at 20 and 37 deg. C, in order to focus on the effect of temperature rather than on other operational and water quality parameters. A surface conditioning step was followed as a function of time on this material until adhesion of bacterial colonies by using microscopic methods: scanning electron microscopy (SEM) and atomic force microscopy (AFM); a spectroscopic method: polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and an electrochemical method: rotating disk electrode (RDE). Correlations between surface analysis, the duration of immersion of the sample and the influence of temperature have been identified clearly before bacterial adhesion. In cold water, these results showed an initial conditioning step of surface occurring during the first 8 days, with detection of superficial acidic functions grafted on surface, until adsorption of proteins. After 12 days, formation of independent bacteria microcolonies, reaching 2-3 {mu}m in length was observed. In tepid water, the first step was reduced to 2 days during which carbonates, acidic functions, and proteins were detected. After 90 days, the biofilm entered in a stable population state, which appeared as a bacteria rich film, including possibly Legionella. The spatial variation of the biofilm was limited as deduced from the thickness determination (about 4 {mu}m for 3-month period), using a RDE. The combination of these different techniques confirms successive steps for biofilm formation on stainless steel in a tap water. Then, we scrutinized the external near environment of bacteria including extracellular polymeric substances (EPS) and then further characterize the morphology of dominant bacteria (shape, size, flagellum) on gold substrate by AFM in air.

  2. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    Full Text Available Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.

  3. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating.

    Science.gov (United States)

    Han, Yosep; Hwang, Gukhwa; Kim, Donghyun; Bradford, Scott A; Lee, Byoungcheun; Eom, Igchun; Kim, Pil Je; Choi, Siyoung Q; Kim, Hyunjung

    2016-03-01

    The transport, retention, and long-term release of zinc oxide nanoparticle aggregates (denoted below as ZnO-NPs) were investigated in saturated, bare and biofilm (Pseudomonas putida) coated sand packed columns. Almost complete retention of ZnO-NPs occurred in bare and biofilm coated sand when the influent solution pH was 9 and the ionic strength (IS) was 0.1 or 10 mM NaCl, and the retention profiles were always hyper-exponential. Increasing the solution IS and biofilm coating produced enhanced retention of ZnO-NPs near the column inlet. The enhanced NPs retention at high IS was attributed to more favorable NP-silica and NP-NP interactions; this was consistent with the interaction energy calculations. Meanwhile, the greater NPs retention in the presence of biofilm was attributed to larger roughness heights which alter the mass transfer rate, the interaction energy profile, and lever arms associated with the torque balance; e.g., scanning electron and atomic force microscopy was used to determine roughness heights of 33.4 nm and 97.8 nm for bare sand and biofilm-coated sand, respectively. Interactions between NPs and extracellular polymeric substances may have also contributed to enhanced NP retention in biofilm-coated sand at low IS. The long-term release of retained ZnO-NPs was subsequently investigated by continuously injecting NP-free solution at pH 6, 9, or 10 and keeping the IS constant at 10 mM. The amount and rate of retained ZnO-NP removal was strongly dependent on the solution pH. Specifically, almost complete removal of retained ZnO-NPs was observed after 627 pore volumes when the solution pH was 6, whereas much less Zn was recovered when the eluting solution pH was buffered to pH = 9 and especially 10. This long-term removal was attributed to pH-dependent dissolution of retained ZnO-NPs because: (i) the solubility of ZnO-NPs increases with decreasing pH; and (ii) ZnO-NPs were not detected in the effluent. The presence of biofilm also decreased the

  4. Streptokinase Treatment Reverses Biofilm-Associated Antibiotic Resistance in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Jørgensen, Nis Pedersen; Zobek, Natalia; Dreier, Cindy;

    2016-01-01

    Biofilms formed by Staphylococcus aureus is a serious complication to the use of medical implants. A central part of the pathogenesis relies on S. aureus’ ability to adhere to host extracellular matrix proteins, which adsorb to medical implants and stimulate biofilm formation. Being coagulase...

  5. A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina.

    Science.gov (United States)

    Sorroche, Fernando G; Spesia, Mariana B; Zorreguieta, Angeles; Giordano, Walter

    2012-06-01

    Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodule formation on roots of alfalfa plants. S. meliloti produces two exopolysaccharides (EPSs), termed EPS I and EPS II, that are both able to promote symbiosis. EPS I and EPS II are secreted in two major fractions that reflect differing degrees of subunit polymerization, designated high- and low-molecular-weight fractions. We reported previously that EPSs are crucial for autoaggregation and biofilm formation in S. meliloti reference strains and isogenic mutants. However, the previous observations were obtained by use of "domesticated" laboratory strains, with mutations resulting from successive passages under unnatural conditions, as has been documented for reference strain Rm1021. In the present study, we analyzed the autoaggregation and biofilm formation abilities of native S. meliloti strains isolated from root nodules of alfalfa plants grown in four regions of Argentina. 16S rRNA gene analysis of all the native isolates revealed a high degree of identity with reference S. meliloti strains. PCR analysis of the expR gene of all the isolates showed that, as in the case of reference strain Rm8530, this gene is not interrupted by an insertion sequence (IS) element. A positive correlation was found between autoaggregation and biofilm formation abilities in these rhizobia, indicating that both processes depend on the same physical adhesive forces. Extracellular complementation experiments using mutants of the native strains showed that autoaggregation was dependent on EPS II production. Our results indicate that a functional EPS II synthetic pathway and its proper regulation are essential for cell-cell interactions and surface attachment of S. meliloti.

  6. Grappling archaea: ultrastructural analyses of an uncultivated, cold-loving archaeon and its biofilm

    Directory of Open Access Journals (Sweden)

    Alexandra ePerras

    2014-08-01

    Full Text Available Similarly to Bacteria, Archaea are microorganisms that interact with their surrounding environment in a versatile manner. To date, interactions based on cellular structure and surface appendages have mainly been documented using model systems of cultivable archaea under laboratory conditions. Here, we report on the microbial interactions and ultrastructural features of the uncultivated SM1 Euryarchaeon, which is highly dominant in its biotope. Therefore, biofilm samples taken from the Sippenauer Moor, Germany, were investigated via transmission electron microscopy (TEM; negative staining, thin-sectioning and scanning electron microscopy (SEM in order to elucidate the fine structures of the microbial cells and the biofilm itself. The biofilm consisted of small archaeal cocci (0.6 µm diameter, arranged in a regular pattern (1.2-2.0 µm distance from cell to cell, whereas each archaeon was connected to 6 other archaea on average. Extracellular polymeric substances (EPS were limited to the close vicinity of the archaeal cells, and specific cell surface appendages (hami, Moissl et al., 2005 protruded beyond the EPS matrix enabling microbial interaction by cell-cell contacts among the archaea and between archaea and bacteria. All analyzed hami revealed their previously described architecture of nano-grappling hooks and barb-wire basal structures. Considering the archaeal cell walls, the SM1 Euryarchaea exhibited a double-membrane, which has rarely been reported for members of this phylogenetic domain. Based on these findings, the current generalized picture on archaeal cell walls needs to be revisited, as archaeal cell structures are more complex and sophisticated than previously assumed, particularly when looking into the uncultivated majority.

  7. Functional Relationship between Sucrose and a Cariogenic Biofilm Formation.

    Directory of Open Access Journals (Sweden)

    Jian-Na Cai

    Full Text Available Sucrose is an important dietary factor in cariogenic biofilm formation and subsequent initiation of dental caries. This study investigated the functional relationships between sucrose concentration and Streptococcus mutans adherence and biofilm formation. Changes in morphological characteristics of the biofilms with increasing sucrose concentration were also evaluated. S. mutans biofilms were formed on saliva-coated hydroxyapatite discs in culture medium containing 0, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, or 40% (w/v sucrose. The adherence (in 4-hour biofilms and biofilm composition (in 46-hour biofilms of the biofilms were analyzed using microbiological, biochemical, laser scanning confocal fluorescence microscopic, and scanning electron microscopic methods. To determine the relationships, 2nd order polynomial curve fitting was performed. In this study, the influence of sucrose on bacterial adhesion, biofilm composition (dry weight, bacterial counts, and water-insoluble extracellular polysaccharide (EPS content, and acidogenicity followed a 2nd order polynomial curve with concentration dependence, and the maximum effective concentrations (MECs of sucrose ranged from 0.45 to 2.4%. The bacterial and EPS bio-volume and thickness in the biofilms also gradually increased and then decreased as sucrose concentration increased. Furthermore, the size and shape of the micro-colonies of the biofilms depended on the sucrose concentration. Around the MECs, the micro-colonies were bigger and more homogeneous than those at 0 and 40%, and were surrounded by enough EPSs to support their structure. These results suggest that the relationship between sucrose concentration and cariogenic biofilm formation in the oral cavity could be described by a functional relationship.

  8. Biofilm Fixed Film Systems

    Directory of Open Access Journals (Sweden)

    Dipesh Das

    2011-09-01

    Full Text Available The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, rotating biological contactors, fluidized bed bioreactors, submerged bed biofilm reactors, biological granular activated carbon, membrane bioreactors, and immobilized cell reactors. Innovative reactors, not easily classified, are then presented, followed by a section on biofilms on sand, soil and sediment.

  9. A semi-quantitative approach to assess biofilm formation using wrinkled colony development.

    Science.gov (United States)

    Ray, Valerie A; Morris, Andrew R; Visick, Karen L

    2012-06-07

    Biofilms, or surface-attached communities of cells encapsulated in an extracellular matrix, represent a common lifestyle for many bacteria. Within a biofilm, bacterial cells often exhibit altered physiology, including enhanced resistance to antibiotics and other environmental stresses. Additionally, biofilms can play important roles in host-microbe interactions. Biofilms develop when bacteria transition from individual, planktonic cells to form complex, multi-cellular communities. In the laboratory, biofilms are studied by assessing the development of specific biofilm phenotypes. A common biofilm phenotype involves the formation of wrinkled or rugose bacterial colonies on solid agar media. Wrinkled colony formation provides a particularly simple and useful means to identify and characterize bacterial strains exhibiting altered biofilm phenotypes, and to investigate environmental conditions that impact biofilm formation. Wrinkled colony formation serves as an indicator of biofilm formation in a variety of bacteria, including both Gram-positive bacteria, such as Bacillus subtilis, and Gram-negative bacteria, such as Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Vibrio fischeri. The marine bacterium V. fischeri has become a model for biofilm formation due to the critical role of biofilms during host colonization: biofilms produced by V. fischeri promote its colonization of the Hawaiian bobtail squid Euprymna scolopes. Importantly, biofilm phenotypes observed in vitro correlate with the ability of V. fischeri cells to effectively colonize host animals: strains impaired for biofilm formation in vitro possess a colonization defect, while strains exhibiting increased biofilm phenotypes are enhanced for colonization. V. fischeri therefore provides a simple model system to assess the mechanisms by which bacteria regulate biofilm formation and how biofilms impact host colonization. In this report, we describe a semi-quantitative method to assess

  10. 口腔微生物生物膜分散物质的研究进展%Progress in study of oral biofilm dispersal-inducing agents

    Institute of Scientific and Technical Information of China (English)

    朱彦; 杨靖梅; 段丁瑜; 徐屹

    2014-01-01

    Communities of bacteria wrapped in self-generated extracellular polymeric matrix and attached to a solid surface are known as biofilm. Biofilm formation and development can be divided into three stages: adhesion of cells to a surface, reproduction of the cells, and dispersion of cells. The procedure, which surface-attached biofilm disperses bacterial cells into the environment to colonize new sites, is defined as biofilm dispersal. Biofilm dispersal is an essential stage of biofilm life cycle. It plays an important role in the transmission of bacteria. For many pathogenic bacteria, biofilm dispersal can transform bacteria in biofilm into planktonic state and promote the spread of infection. The formation of biofilm may increase the resistance of bacteria to antimicrobial agent and host defence response compared with planktonic cells. In the oral cavity, oral microorganism can attach to the surface of oral tissue and prosthesis to form biofilm. Dental caries and periodontal disease are oral chronic infections diseases of the oral tissue. The occurrence of them has a close relationship with biofilm. The mechanism of dispersal is a hot topic in recent years. Some agents which promote dispersal might be a therapeutic potential against biofilm infections. The clinical implication of dispersal agents and potential application are promising. This article reviews the dispersal-inducing agents of oral biofilms.%生物膜是黏附在固体表面,包裹在自身产生的胞外多聚基质中的细菌群体。生物膜的形成和发展包括细菌的黏附、繁殖和分散。附着于某表面的生物膜将其中的细菌释放、分散到周围环境以传播到新的位置形成新的群落即生物膜的分散。生物膜分散是生物膜生长发展周期中一个重要的阶段,起到重要的传播作用。对许多致病菌而言,生物膜的分散能使生物膜的细菌转化为浮游状态,促进感染的扩散。生物膜的形成能提高细菌对抗

  11. Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis.

    Directory of Open Access Journals (Sweden)

    Robert C Shields

    Full Text Available BACKGROUND: The persistent colonization of paranasal sinus mucosa by microbial biofilms is a major factor in the pathogenesis of chronic rhinosinusitis (CRS. Control of microorganisms within biofilms is hampered by the presence of viscous extracellular polymers of host or microbial origin, including nucleic acids. The aim of this study was to investigate the role of extracellular DNA in biofilm formation by bacteria associated with CRS. METHODS/PRINCIPAL FINDINGS: Obstructive mucin was collected from patients during functional endoscopic sinus surgery. Examination of the mucous by transmission electron microscopy revealed an acellular matrix punctuated occasionally with host cells in varying states of degradation. Bacteria were observed in biofilms on mucosal biopsies, and between two and six different species were isolated from each of 20 different patient samples. In total, 16 different bacterial genera were isolated, of which the most commonly identified organisms were coagulase-negative staphylococci, Staphylococcus aureus and α-haemolytic streptococci. Twenty-four fresh clinical isolates were selected for investigation of biofilm formation in vitro using a microplate model system. Biofilms formed by 14 strains, including all 9 extracellular nuclease-producing bacteria, were significantly disrupted by treatment with a novel bacterial deoxyribonuclease, NucB, isolated from a marine strain of Bacillus licheniformis. Extracellular biofilm matrix was observed in untreated samples but not in those treated with NucB and extracellular DNA was purified from in vitro biofilms. CONCLUSION/SIGNIFICANCE: Our data demonstrate that bacteria associated with CRS form robust biofilms which can be reduced by treatment with matrix-degrading enzymes such as NucB. The dispersal of bacterial biofilms with NucB may offer an additional therapeutic target for CRS sufferers.

  12. Characterisation of biofilms formed by Lactobacillus plantarum WCFS1 and food spoilage isolates.

    Science.gov (United States)

    Fernández Ramírez, Mónica D; Smid, Eddy J; Abee, Tjakko; Nierop Groot, Masja N

    2015-08-17

    Lactobacillus plantarum has been associated with food spoilage in a wide range of products and the biofilm growth mode has been implicated as a possible source of contamination. In this study we analysed the biofilm forming capacity of L. plantarum WCFS1 and six food spoilage isolates. Biofilm formation as quantified by crystal violet staining and colony forming units was largely affected by the medium composition, growth temperature and maturation time and by strain specific features. All strains showed highest biofilm formation in Brain Heart Infusion medium supplemented with manganese and glucose. For L. plantarum biofilms the crystal violet (CV) assay, that is routinely used to quantify total biofilm formation, correlates poorly with the number of culturable cells in the biofilm. This can in part be explained by cell death and lysis resulting in CV stainable material, conceivably extracellular DNA (eDNA), contributing to the extracellular matrix. The strain to strain variation may in part be explained by differences in levels of eDNA, likely as result of differences in lysis behaviour. In line with this, biofilms of all strains tested, except for one spoilage isolate, were sensitive to DNase treatment. In addition, biofilms were highly sensitive to treatment with Proteinase K suggesting a role for proteins and/or proteinaceous material in surface colonisation. This study shows the impact of a range of environmental factors and enzyme treatments on biofilm formation capacity for selected L. plantarum isolates associated with food spoilage, and may provide clues for disinfection strategies in food industry.

  13. Role of the nuclease of nontypeable Haemophilus influenzae in dispersal of organisms from biofilms.

    Science.gov (United States)

    Cho, Christine; Chande, Aroon; Gakhar, Lokesh; Bakaletz, Lauren O; Jurcisek, Joseph A; Ketterer, Margaret; Shao, Jian; Gotoh, Kenji; Foster, Eric; Hunt, Jason; O'Brien, Erin; Apicella, Michael A

    2015-03-01

    Nontypeable Haemophilus influenzae (NTHI) forms biofilms in the middle ear during human infection. The biofilm matrix of NTHI contains extracellular DNA. We show that NTHI possesses a potent nuclease, which is a homolog of the thermonuclease of Staphylococcus aureus. Using a biofilm dispersal assay, studies showed a biofilm dispersal pattern in the parent strain, no evidence of dispersal in the nuclease mutant, and a partial return of dispersion in the complemented mutant. Quantitative PCR of mRNA from biofilms from a 24-h continuous flow system demonstrated a significantly increased expression of the nuclease from planktonic organisms compared to those in the biofilm phase of growth (P < 0.042). Microscopic analysis of biofilms grown in vitro showed that in the nuclease mutant the nucleic acid matrix was increased compared to the wild-type and complemented strains. Organisms were typically found in large aggregates, unlike the wild-type and complement biofilms in which the organisms were evenly dispersed throughout the biofilm. At 48 h, the majority of the organisms in the mutant biofilm were dead. The nuclease mutant formed a biofilm in the chinchilla model of otitis media and demonstrated a propensity to also form similar large aggregates of organisms. These studies indicate that NTHI nuclease is involved in biofilm remodeling and organism dispersal.

  14. Activity of ciprofloxacin and azithromycin on biofilms produced in vitro by Haemophilus influenzae

    Institute of Scientific and Technical Information of China (English)

    WANG Dong; WANG Ying; LIU You-ning

    2009-01-01

    Background It is recognized that Haemophilus influenzae isolated from patients with otitis media forms biofilms both in vitro and in vivo, suggesting that biofilm formation in vivo might play an important role in the pathogenesis and chronicity of otitis media, but the effect of antibiotics on biofilm has not been well studied. We investigated the impact of ciprofloxacin and azithromycin on bacterial biofilms formed by Haemophilus influenzae in vitro in this study.Methods Eleven strains of Haemophilus influenzae were isolated from sputum specimens collected from patients with acute exacerbation of chronic obstructive pulmonary diseases. Formation of bacterial biofilm was examined by crystal violet assay and a scanning electron microscope. Alterations of biofilms were measured under varying concentrations of azithromycin and ciprofloxacin.Results Striking differences were observed among strains with regard to the ability to form biofilm. Typical membrane-like structure formed by bacterial cells and extracellular matrix was detected. Initial biofilm synthesis was inhibited by azithromycin and ciprofloxacin at concentrations higher than two-fold minimal inhibitory concentration.Disruption of mature biofilms could be achieved at relatively higher concentration, and ciprofloxacin displayed more powerful activity.Conclusions Haemophilus influenzae is capable of forming biofilm in vitro. Sufficient dosage might control early formation of biofilms. Ciprofloxacin exerts better effects on breakdown of biofilm than azithromycin at conventional concentration in clinics.

  15. Pseudomonas aeruginosa Biofilm Infections

    DEFF Research Database (Denmark)

    Rybtke, Morten; Hultqvist, Louise Dahl; Givskov, Michael

    2015-01-01

    Studies of biopsies from infectious sites, explanted tissue and medical devises have provided evidence that biofilms are the underlying cause of a variety of tissue-associated and implant-associated recalcitrant human infections. With a need for novel anti-biofilm treatment strategies, research...... in biofilm infection microbiology, biofilm formation mechanisms and biofilm-associated antimicrobial tolerance has become an important area in microbiology. Substantial knowledge about biofilm formation mechanisms, biofilm-associated antimicrobial tolerance and immune evasion mechanisms has been obtained...... through work with biofilms grown in in vitro experimental setups, and the relevance of this information in the context of chronic infections is being investigated by the use of animal models of infection. Because our current in vitro experimental setups and animal models have limitations, new advanced...

  16. Streptokinase Treatment Reverses Biofilm-Associated Antibiotic Resistance in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Nis Pedersen Jørgensen

    2016-09-01

    Full Text Available Biofilms formed by Staphylococcus aureus is a serious complication to the use of medical implants. A central part of the pathogenesis relies on S. aureus’ ability to adhere to host extracellular matrix proteins, which adsorb to medical implants and stimulate biofilm formation. Being coagulase positive, S. aureus furthermore induces formation of fibrin fibers from fibrinogen in the blood. Consequently, we hypothesized that fibrin is a key component of the extracellular matrix of S. aureus biofilms under in vivo conditions, and that the recalcitrance of biofilm infections can be overcome by combining antibiotic treatment with a fibrinolytic drug. We quantified S. aureus USA300 biofilms grown on peg-lids in brain heart infusion (BHI broth with 0%–50% human plasma. Young (2 h and mature (24 h biofilms were then treated with streptokinase to determine if this lead to dispersal. Then, the minimal biofilm eradication concentration (MBEC of 24 h old biofilms was measured for vancomycin and daptomycin alone or in combination with 10 µg/mL rifampicin in the presence or absence of streptokinase in the antibiotic treatment step. Finally, biofilms were visualized by confocal laser scanning microscopy. Addition of human plasma stimulated biofilm formation in BHI in a dose-dependent manner, and biofilms could be partially dispersed by streptokinase. The biofilms could be eradicated with physiologically relevant concentrations of streptokinase in combination with rifampicin and vancomycin or daptomycin, which are commonly used antibiotics for treatment of S. aureus infections. Fibronolytic drugs have been used to treat thromboembolic events for decades, and our findings suggest that their use against biofilm infections has the potential to improve the efficacy of antibiotics in treatment of S. aureus biofilm infections.

  17. Streptokinase Treatment Reverses Biofilm-Associated Antibiotic Resistance in Staphylococcus aureus

    Science.gov (United States)

    Jørgensen, Nis Pedersen; Zobek, Natalia; Dreier, Cindy; Haaber, Jakob; Ingmer, Hanne; Larsen, Ole Halfdan; Meyer, Rikke L.

    2016-01-01

    Biofilms formed by Staphylococcus aureus is a serious complication to the use of medical implants. A central part of the pathogenesis relies on S. aureus’ ability to adhere to host extracellular matrix proteins, which adsorb to medical implants and stimulate biofilm formation. Being coagulase positive, S. aureus furthermore induces formation of fibrin fibers from fibrinogen in the blood. Consequently, we hypothesized that fibrin is a key component of the extracellular matrix of S. aureus biofilms under in vivo conditions, and that the recalcitrance of biofilm infections can be overcome by combining antibiotic treatment with a fibrinolytic drug. We quantified S. aureus USA300 biofilms grown on peg-lids in brain heart infusion (BHI) broth with 0%–50% human plasma. Young (2 h) and mature (24 h) biofilms were then treated with streptokinase to determine if this lead to dispersal. Then, the minimal biofilm eradication concentration (MBEC) of 24 h old biofilms was measured for vancomycin and daptomycin alone or in combination with 10 µg/mL rifampicin in the presence or absence of streptokinase in the antibiotic treatment step. Finally, biofilms were visualized by confocal laser scanning microscopy. Addition of human plasma stimulated biofilm formation in BHI in a dose-dependent manner, and biofilms could be partially dispersed by streptokinase. The biofilms could be eradicated with physiologically relevant concentrations of streptokinase in combination with rifampicin and vancomycin or daptomycin, which are commonly used antibiotics for treatment of S. aureus infections. Fibronolytic drugs have been used to treat thromboembolic events for decades, and our findings suggest that their use against biofilm infections has the potential to improve the efficacy of antibiotics in treatment of S. aureus biofilm infections. PMID:27681928

  18. The biofilm matrix destabilizers, EDTA and DNaseI, enhance the susceptibility of nontypeable Hemophilus influenzae biofilms to treatment with ampicillin and ciprofloxacin.

    Science.gov (United States)

    Cavaliere, Rosalia; Ball, Jessica L; Turnbull, Lynne; Whitchurch, Cynthia B

    2014-08-01

    Nontypeable Hemophilus influenzae (NTHi) is a Gram-negative bacterial pathogen that causes chronic biofilm infections of the ears and airways. The biofilm matrix provides structural integrity to the biofilm and protects biofilm cells from antibiotic exposure by reducing penetration of antimicrobial compounds into the biofilm. Extracellular DNA (eDNA) has been found to be a major matrix component of biofilms formed by many species of Gram-positive and Gram-negative bacteria, including NTHi. Interestingly, the cation chelator ethylenediaminetetra-acetic acid (EDTA) has been shown to reduce the matrix strength of biofilms of several bacterial species as well as to have bactericidal activity against various pathogens. EDTA exerts its antimicrobial activity by chelating divalent cations necessary for growth and membrane stability and by destabilizing the matrix thus enhancing the detachment of bacterial cells from the biofilm. In this study, we have explored the role of divalent cations in NTHi biofilm development and stability. We have utilized in vitro static and continuous flow models of biofilm development by NTHi to demonstrate that magnesium cations enhance biofilm formation by NTHi. We found that the divalent cation chelator EDTA is effective at both preventing NTHi biofilm formation and at treating established NTHi biofilms. Furthermore, we found that the matrix destablilizers EDTA and DNaseI increase the susceptibility of NTHi biofilms to ampicillin and ciprofloxacin. Our observations indicate that DNaseI and EDTA enhance the efficacy of antibiotic treatment of NTHi biofilms. These observations may lead to new strategies that will improve the treatment options available to patients with chronic NTHi infections.

  19. Polymicrobial biofilm formation by Candida albicans, Actinomyces naeslundii, and Streptococcus mutans is Candida albicans strain and medium dependent.

    Science.gov (United States)

    Arzmi, Mohd Hafiz; Alnuaimi, Ali D; Dashper, Stuart; Cirillo, Nicola; Reynolds, Eric C; McCullough, Michael

    2016-11-01

    Oral biofilms comprise of extracellular polysaccharides and polymicrobial microorganisms. The objective of this study was to determine the effect of polymicrobial interactions of Candida albicans, Actinomyces naeslundii, and Streptococcus mutans on biofilm formation with the hypotheses that biofilm biomass and metabolic activity are both C. albicans strain and growth medium dependent. To study monospecific biofilms, C. albicans, A. naeslundii, and S. mutans were inoculated into artificial saliva medium (ASM) and RPMI-1640 in separate vials, whereas to study polymicrobial biofilm formation, the inoculum containing microorganisms was prepared in the same vial prior inoculation into a 96-well plate followed by 72 hours incubation. Finally, biofilm biomass and metabolic activity were measured using crystal violet and XTT assays, respectively. Our results showed variability of monospecies and polymicrobial biofilm biomass between C. albicans strains and growth medium. Based on cut-offs, out of 32, seven RPMI-grown biofilms had high biofilm biomass (HBB), whereas, in ASM-grown biofilms, 14 out of 32 were HBB. Of the 32 biofilms grown in RPMI-1640, 21 were high metabolic activity (HMA), whereas in ASM, there was no biofilm had HMA. Significant differences were observed between ASM and RPMI-grown biofilms with respect to metabolic activity (P biofilm biomass and metabolic activity were both C. albicans strain and growth medium dependent.

  20. Rat indwelling urinary catheter model of Candida albicans biofilm infection.

    Science.gov (United States)

    Nett, Jeniel E; Brooks, Erin G; Cabezas-Olcoz, Jonathan; Sanchez, Hiram; Zarnowski, Robert; Marchillo, Karen; Andes, David R

    2014-12-01

    Indwelling urinary catheters are commonly used in the management of hospitalized patients. Candida can adhere to the device surface and propagate as a biofilm. These Candida biofilm communities differ from free-floating Candida, exhibiting high tolerance to antifungal therapy. The significance of catheter-associated candiduria is often unclear, and treatment may be problematic considering the biofilm drug-resistant phenotype. Here we describe a rodent model for the study of urinary catheter-associated Candida albicans biofilm infection that mimics this common process in patients. In the setting of a functioning, indwelling urinary catheter in a rat, Candida proliferated as a biofilm on the device surface. Characteristic biofilm architecture was observed, including adherent, filamentous cells embedded in an extracellular matrix. Similar to what occurs in human patients, animals with this infection developed candiduria and pyuria. Infection progressed to cystitis, and a biofilmlike covering was observed over the bladder surface. Furthermore, large numbers of C. albicans cells were dispersed into the urine from either the catheter or bladder wall biofilm over the infection period. We successfully utilized the model to test the efficacy of antifungals, analyze transcriptional patterns, and examine the phenotype of a genetic mutant. The model should be useful for future investigations involving the pathogenesis, diagnosis, therapy, prevention, and drug resistance of Candida biofilms in the urinary tract.

  1. Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages

    Directory of Open Access Journals (Sweden)

    Stephen T. Abedon

    2015-09-01

    Full Text Available Bacteriophages, the viruses that infect bacteria, have for decades been successfully used to combat antibiotic-resistant, chronic bacterial infections, many of which are likely biofilm associated. Antibiotics as anti-biofilm agents can, by contrast, be inefficacious against even genetically sensitive targets. Such deficiencies in usefulness may result from antibiotics, as naturally occurring compounds, not serving their producers, in nature, as stand-alone disruptors of mature biofilms. Anti-biofilm effectiveness by phages, by contrast, may result from a combination of inherent abilities to concentrate lytic antibacterial activity intracellularly via bacterial infection and extracellularly via localized population growth. Considered here is the anti-biofilm activity of microorganisms, with a case presented for why, ecologically, bacteriophages can be more efficacious than traditional antibiotics as medically or environmentally applied biofilm-disrupting agents. Four criteria, it can be argued, generally must be met, in combination, for microorganisms to eradicate biofilms: (1 Furnishing of sufficiently effective antibacterial factors, (2 intimate interaction with biofilm bacteria over extended periods, (3 associated ability to concentrate antibacterial factors in or around targets, and, ultimately, (4 a means of physically disrupting or displacing target bacteria. In nature, lytic predators of bacteria likely can meet these criteria whereas antibiotic production, in and of itself, largely may not.

  2. Biofilms, a new approach to the microbiology of dental plaque.

    Science.gov (United States)

    ten Cate, Jacob M

    2006-09-01

    Dental plaque has the properties of a biofilm, similar to other biofilms found in the body and the environment. Modern molecular biological techniques have identified about 1000 different bacterial species in the dental biofilm, twice as many as can be cultured. Oral biofilms are very heterogeneous in structure. Dense mushroom-like structures originate from the enamel surface, interspersed with bacteria-free channels used as diffusion pathways. The channels are probably filled with an extracellular polysaccharide (EPS) matrix produced by the bacteria. Bacteria in biofilms communicate through signaling molecules, and use this "quorum-sensing" system to optimize their virulence factors and survival. Bacteria in a biofilm have a physiology different from that of planktonic cells. They generally live under nutrient limitation and often in a dormant state. Such "sleepy" bacteria respond differently to antibiotics and antimicrobials, because these agents were generally selected in experiments with metabolically active bacteria. This is one of the explanations as to why antibiotics and antimicrobials are not as successful in the clinic as could be expected from laboratory studies. In addition, it has been found that many therapeutic agents bind to the biofilm EPS matrix before they even reach the bacteria, and are thereby inactivated. Taken together, these fundings highlight why the study of bacteria in the oral cavity is now taken on by studying the biofilms rather than individual species.

  3. Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages

    Science.gov (United States)

    Abedon, Stephen T.

    2015-01-01

    Bacteriophages, the viruses that infect bacteria, have for decades been successfully used to combat antibiotic-resistant, chronic bacterial infections, many of which are likely biofilm associated. Antibiotics as anti-biofilm agents can, by contrast, be inefficacious against even genetically sensitive targets. Such deficiencies in usefulness may result from antibiotics, as naturally occurring compounds, not serving their producers, in nature, as stand-alone disruptors of mature biofilms. Anti-biofilm effectiveness by phages, by contrast, may result from a combination of inherent abilities to concentrate lytic antibacterial activity intracellularly via bacterial infection and extracellularly via localized population growth. Considered here is the anti-biofilm activity of microorganisms, with a case presented for why, ecologically, bacteriophages can be more efficacious than traditional antibiotics as medically or environmentally applied biofilm-disrupting agents. Four criteria, it can be argued, generally must be met, in combination, for microorganisms to eradicate biofilms: (1) Furnishing of sufficiently effective antibacterial factors, (2) intimate interaction with biofilm bacteria over extended periods, (3) associated ability to concentrate antibacterial factors in or around targets, and, ultimately, (4) a means of physically disrupting or displacing target bacteria. In nature, lytic predators of bacteria likely can meet these criteria whereas antibiotic production, in and of itself, largely may not. PMID:26371010

  4. Inhibitory effects of antibiofilm compound 1 against Staphylococcus aureus biofilms.

    Science.gov (United States)

    Shrestha, Looniva; Kayama, Shizuo; Sasaki, Michiko; Kato, Fuminori; Hisatsune, Junzo; Tsuruda, Keiko; Koizumi, Kazuhisa; Tatsukawa, Nobuyuki; Yu, Liansheng; Takeda, Kei; Sugai, Motoyuki

    2016-03-01

    A novel benzimidazole molecule that was identified in a small-molecule screen and is known as antibiofilm compound 1 (ABC-1) has been found to prevent bacterial biofilm formation by multiple bacterial pathogens, including Staphylococcus aureus, without affecting bacterial growth. Here, the biofilm inhibiting ability of 156 μM ABC-1 was tested in various biofilm-forming strains of S. aureus. It was demonstrated that ABC-1 inhibits biofilm formation by these strains at micromolar concentrations regardless of the strains' dependence on Polysaccharide Intercellular Adhesin (PIA), cell wall-associated protein dependent or cell wall- associated extracellular DNA (eDNA). Of note, ABC-1 treatment primarily inhibited Protein A (SpA) expression in all strains tested. spa gene disruption showed decreased biofilm formation; however, the mutants still produced more biofilm than ABC-1 treated strains, implying that ABC-1 affects not only SpA but also other factors. Indeed, ABC-1 also attenuated the accumulation of PIA and eDNA on cell surface. Our results suggest that ABC-1 has pleotropic effects on several biofilm components and thus inhibits biofilm formation by S. aureus.

  5. Biofilms: A microbial home

    Science.gov (United States)

    Chandki, Rita; Banthia, Priyank; Banthia, Ruchi

    2011-01-01

    Microbial biofilms are mainly implicated in etiopathogenesis of caries and periodontal disease. Owing to its properties, these pose great challenges. Continuous and regular disruption of these biofilms is imperative for prevention and management of oral diseases. This essay provides a detailed insight into properties, mechanisms of etiopathogenesis, detection and removal of these microbial biofilms. PMID:21976832

  6. Biofilms: A microbial home

    OpenAIRE

    Chandki, Rita; Banthia, Priyank; Banthia, Ruchi

    2011-01-01

    Microbial biofilms are mainly implicated in etiopathogenesis of caries and periodontal disease. Owing to its properties, these pose great challenges. Continuous and regular disruption of these biofilms is imperative for prevention and management of oral diseases. This essay provides a detailed insight into properties, mechanisms of etiopathogenesis, detection and removal of these microbial biofilms.

  7. The Biofilm Challenge

    DEFF Research Database (Denmark)

    Alhede, Maria; Alhede, Morten

    2014-01-01

    The concept of biofilms has emerged in the clinical setting during the last decade. Infections involving biofilms have been documented in all parts of the human body, and it is currently believed that the presence of biofilm-forming bacteria is equivalent to chronic infection. A quick Pubmed search...

  8. Beneficial biofilms in marine aquaculture? Linking points of biofilm formation mechanisms in Pseudomonas aeruginosa and Pseudoalteromonas species

    Directory of Open Access Journals (Sweden)

    Wiebke Wesseling

    2015-07-01

    Full Text Available For marine aquaculture it is suggested that a specific substrate coated with a beneficial biofilm could prevent fish egg clutches from pathogenic infestations and improve the water quality and health of adult fish while, at the same time, minimising the need for the application of antibiotics. In marine biotopes, the habitat of Pseudoalteromonas species (a strain with suggested beneficial properties, biofilms are mostly discussed in the context of fouling processes. Hence research focuses on unravelling the mechanisms of biofilm formation aiming to prevent formation or to destroy existing biofilms. Initially in this review, particular components of biofilm formation in Pseudomonas aeruginosa, a gram-negative model organism that is responsible for nosocomial infections and considered as a food spoiling agent, are described (extracellular appendages, role of matrix components, cell-cell signalling to get an advanced understanding of biofilm formation. The aim of this treatise is to seek linking points for biofilm formation of P. aeruginosa and Pseudoalteromonas sp., respectively. Furthermore, approaches are discussed for how biofilm formation can be realized to improve fish (larvae rearing by species of the genus Pseudoalteromonas.

  9. Characterization of Biofilm Formation in [Pasteurella] pneumotropica and [Actinobacillus] muris Isolates of Mouse Origin.

    Science.gov (United States)

    Sager, Martin; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Benga, Laurentiu

    2015-01-01

    [Pasteurella] pneumotropica biotypes Jawetz and Heyl and [Actinobacillus] muris are the most prevalent Pasteurellaceae species isolated from laboratory mouse. However, mechanisms contributing to their high prevalence such as the ability to form biofilms have not been studied yet. In the present investigation we analyze if these bacterial species can produce biofilms in vitro and investigate whether proteins, extracellular DNA and polysaccharides are involved in the biofilm formation and structure by inhibition and dispersal assays using proteinase K, DNase I and sodium periodate. Finally, the capacity of the biofilms to confer resistance to antibiotics is examined. We demonstrate that both [P.] pneumotropica biotypes but not [A.] muris are able to form robust biofilms in vitro, a phenotype which is widely spread among the field isolates. The biofilm inhibition and dispersal assays by proteinase and DNase lead to a strong inhibition in biofilm formation when added at the initiation of the biofilm formation and dispersed pre-formed [P.] pneumotropica biofilms, revealing thus that proteins and extracellular DNA are essential in biofilm formation and structure. Sodium periodate inhibited the bacterial growth when added at the beginning of the biofilm formation assay, making difficult the assessment of the role of β-1,6-linked polysaccharides in the biofilm formation, and had a biofilm stimulating effect when added on pre-established mature biofilms of [P.] pneumotropica biotype Heyl and a majority of [P.] pneumotropica biotype Jawetz strains, suggesting that the presence of β-1,6-linked polysaccharides on the bacterial surface might attenuate the biofilm production. Conversely, no effect or a decrease in the biofilm quantity was observed by biofilm dispersal using sodium periodate on further biotype Jawetz isolates, suggesting that polysaccharides might be incorporated in the biofilm structure. We additionally show that [P.] pneumotropica cells enclosed in biofilms

  10. Biokompatible Polymere

    Science.gov (United States)

    Ha, Suk-Woo; Wintermantel, Erich; Maier, Gerhard

    Der klinische Einsatz von synthetischen Polymeren begann in den 60-er Jahren in Form von Einwegartikeln, wie beispielsweise Spritzen und Kathetern, vor allem aufgrund der Tatsache, dass Infektionen infolge nicht ausreichender Sterilität der wiederverwendbaren Artikel aus Glas und metallischen Werkstoffen durch den Einsatz von sterilen Einwegartikeln signifikant reduziert werden konnten [1]. Die Einführung der medizinischen Einwegartikel aus Polymeren erfolgte somit nicht nur aus ökonomischen, sondern auch aus hygienischen Gründen. Wegen der steigenden Anzahl synthetischer Polymere und dem zunehmenden Bedarf an ärztlicher Versorgung reicht die Anwendung von Polymeren in der Medizin von preisgünstigen Einwegartikeln, die nur kurzzeitig intrakorporal eingesetzt werden, bis hin zu Implantaten, welche über eine längere Zeit grossen Beanspruchungen im menschlichen Körper ausgesetzt sind. Die steigende Verbreitung von klinisch eingesetzten Polymeren ist auf ihre einfache und preisgünstige Verarbeitbarkeit in eine Vielzahl von Formen und Geometrien sowie auf ihr breites Eigenschaftsspektrum zurückzuführen. Polymere werden daher in fast allen medizinischen Bereichen eingesetzt.

  11. Effects of cerium oxide nanoparticles on the species and distribution of phosphorus in enhanced phosphorus removal sequencing batch biofilm reactor.

    Science.gov (United States)

    Xu, Yi; Wang, Chao; Hou, Jun; Wang, Peifang; You, Guoxiang; Miao, Lingzhan; Lv, Bowen; Yang, Yangyang

    2017-03-01

    The short term (8h) influences of cerium oxide nanoparticles (CeO2NPs) on the process of phosphorus removal in biofilm were investigated. At concentration of 0.1mg/L, CeO2 NPs posed no impacts on total phosphorus (TP) removal. While at 20mg/L, TP removal efficiency reduced from 85.16% to 59.62%. Results of P distribution analysis and (31)P nuclear magnetic resonance spectroscopy implied that the anaerobic degradation of polyphosphate (polyP) and the release of orthophosphate in extracellular polymeric substances (EPS) were inhibited. After aerobic exposure, the average chain length of polyP in microbial cells and EPS was shorter than control, and monoester and diester phosphates in cells were observed to release into EPS. Moreover, the EPS production and its contribution to P removal increased, while the capacity of EPS in P storage declined. X-ray diffraction analysis and saturation index calculation revealed that the formation of inorganic P precipitation in biofilm was inhibited.

  12. Degradation of Non-Diffusible Organic Matter in Biofilm Reactors

    DEFF Research Database (Denmark)

    Rohold, Lars Erik; Harremoës, Poul

    1993-01-01

    A simple laboratory test has been developed in order to demonstrate qualitatively, that the removal of non-diffusible organics in a biofilm reactor requires hydrolysis by extracellular enzymes in the bulk water of the reactor. The results demonstrate the effect of changing volume of bulk water...

  13. Synthesis of Bioinspired Carbohydrate Amphiphiles that Promote and Inhibit Biofilms.

    Science.gov (United States)

    Dane, Eric L; Ballok, Alicia E; O'Toole, George A; Grinstaff, Mark W

    2014-02-01

    The synthesis and characterization of a new class of bioinspired carbohydrate amphiphiles that modulate Pseudomonas aeruginosa biofilm formation are reported. The carbohydrate head is an enantiopure poly-amido-saccharide (PAS) prepared by a controlled anionic polymerization of β-lactam monomers derived from either glucose or galactose. The supramolecular assemblies formed by PAS amphiphiles are investigated in solution using fluorescence assays and dynamic light scattering. Dried samples are investigated using X-ray, infrared spectroscopy, and transmission electron microscopy. Additionally, the amphiphiles are evaluated for their ability to modulate biofilm formation by the Gram-negative bacterium Pseudomonas aeruginosa. Remarkably, from a library of eight amphiphiles, we identify a structure that promotes biofilm formation and two structures that inhibit biofilm formation. Using biological assays and electron microscopy, we relate the chemical structure of the amphiphiles to the observed activity. Materials that modulate the formation of biofilms by bacteria are important both as research tools for microbiologists to study the process of biofilm formation and for their potential to provide new drug candidates for treating biofilm-associated infections.

  14. Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil

    Directory of Open Access Journals (Sweden)

    Wu Siva

    2009-05-01

    Full Text Available Abstract Background Microbial biofilms represent an incompletely understood, but fundamental mode of bacterial growth. These sessile communities typically consist of stratified, morphologically-distinct layers of extracellular material, where numerous metabolic processes occur simultaneously in close proximity. Limited reports on environmental isolates have revealed highly ordered, three-dimensional organization of the extracellular matrix, which may hold important implications for biofilm physiology in vivo. Results A Pseudomonas spp. isolated from a natural soil environment produced flocculent, nonmucoidal biofilms in vitro with unique structural features. These mature biofilms were made up of numerous viable bacteria, even after extended culture, and contained up to 50% of proteins and accumulated 3% (by dry weight calcium, suggesting an important role for the divalent metal in biofilm formation. Ultrastructurally, the mature biofilms contained structural motifs consisting of dense, fibrillary clusters, nanofibers, and ordered, honeycomb-like chambers enveloped in thin sheets. Conclusion Mature biofilms contained living bacteria and were structurally, chemically, and physiologically heterogeneous. The principal architectural elements observed by electron microscopy may represent useful morphological clues for identifying bacterial biofilms in vivo. The complexity and reproducibility of the structural motifs observed in bacterial biofilms appear to be the result of organized assembly, suggesting that this environmental isolate may possess ecological advantages in its natural habitat.

  15. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms

    DEFF Research Database (Denmark)

    Allesen-Holm, Marie; Barken, Kim Bundvig; Yang, Liang;

    2006-01-01

    to whole-genome DNA. Evidence that the extracellular DNA in P. aeruginosa biofilms and cultures is generated via lysis of a subpopulation of the bacteria was obtained through experiments where extracellular beta-galactosidase released from lacZ-containing P. aeruginosa strains was assessed. Experiments......Pseudomonas aeruginosa produces extracellular DNA which functions as a cell-to-cell interconnecting matrix component in biofilms. Comparison of extracellular DNA and chromosomal DNA by the use of polymerase chain reaction and Southern analysis suggested that the extracellular DNA is similar...... with the wild type and lasIrhlI, pqsA, pqsL and fliMpilA mutants indicated that the extracellular DNA is generated via a mechanism which is dependent on acyl homoserine lactone and Pseudomonas quinolone signalling, as well as on flagella and type IV pili. Microscopic investigation of flow chamber-grown wild...

  16. Distinct SagA from hospital-associated clade A1 Enterococcus faecium strains contributes to biofilm formation

    NARCIS (Netherlands)

    F.L. Paganelli; M. de Been; J.C. Braat (Johanna); T.A. Hoogenboezem (Thomas); C. Vink (Cornelis); J. Bayjanov; M.R.C. Rogers; J. Huebner; M.J.M. Bonten (Marc); R.J.L. Willems (Rob J.); H.L. Leavis

    2015-01-01

    textabstractEnterococcus faecium is an important nosocomial pathogen causing biofilm-mediated infections. Elucidation of E. faecium biofilm pathogenesis is pivotal for the development of new strategies to treat these infections. In several bacteria, extracellular DNA (eDNA) and proteins act as matri

  17. Distinct SagA from Hospital-Associated Clade A1 Enterococcus faecium Strains Contributes to Biofilm Formation

    NARCIS (Netherlands)

    Paganelli, F. L.; de Been, M.; Braat, J. C.; Hoogenboezem, T.; Vink, C.; Bayjanov, J.; Rogers, M. R. C.; Huebner, J.; Bonten, M. J. M.; Willems, R. J. L.; Leavis, H. L.

    2015-01-01

    Enterococcus faecium is an important nosocomial pathogen causing biofilm-mediated infections. Elucidation of E. faecium biofilm pathogenesis is pivotal for the development of new strategies to treat these infections. In several bacteria, extracellular DNA (eDNA) and proteins act as matrix components

  18. Secreted single‐stranded DNA is involved in the initial phase of biofilm formation by Neisseria gonorrhoeae

    DEFF Research Database (Denmark)

    Zweig, Maria; Schork, Sabine; Koerdt, Andrea

    2014-01-01

    Neisseria gonorrhoeae is an obligate human pathogen that colonizes the genital tract and causes gonorrhoea. Neisseria gonorrhoeae can form biofilms during natural cervical infections, on glass and in continuous flow‐chamber systems. These biofilms contain large amounts of extracellular DNA, which...

  19. Molecule Targeting Glucosyltransferase Inhibits Streptococcus mutans Biofilm Formation and Virulence.

    Science.gov (United States)

    Ren, Zhi; Cui, Tao; Zeng, Jumei; Chen, Lulu; Zhang, Wenling; Xu, Xin; Cheng, Lei; Li, Mingyun; Li, Jiyao; Zhou, Xuedong; Li, Yuqing

    2015-10-19

    Dental plaque biofilms are responsible for numerous chronic oral infections and cause a severe health burden. Many of these infections cannot be eliminated, as the bacteria in the biofilms are resistant to the host's immune defenses and antibiotics. There is a critical need to develop new strategies to control biofilm-based infections. Biofilm formation in Streptococcus mutans is promoted by major virulence factors known as glucosyltransferases (Gtfs), which synthesize adhesive extracellular polysaccharides (EPS). The current study was designed to identify novel molecules that target Gtfs, thereby inhibiting S. mutans biofilm formation and having the potential to prevent dental caries. Structure-based virtual screening of approximately 150,000 commercially available compounds against the crystal structure of the glucosyltransferase domain of the GtfC protein from S. mutans resulted in the identification of a quinoxaline derivative, 2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-1,4-dihydro-2-quinoxalinylidene)ethanamine, as a potential Gtf inhibitor. In vitro assays showed that the compound was capable of inhibiting EPS synthesis and biofilm formation in S. mutans by selectively antagonizing Gtfs instead of by killing the bacteria directly. Moreover, the in vivo anti-caries efficacy of the compound was evaluated in a rat model. We found that the compound significantly reduced the incidence and severity of smooth and sulcal-surface caries in vivo with a concomitant reduction in the percentage of S. mutans in the animals' dental plaque (P biofilm formation and the cariogenicity of S. mutans.

  20. Molecular Determinants of Staphylococcal Biofilm Dispersal and Structuring

    Directory of Open Access Journals (Sweden)

    Katherine Y Le

    2014-11-01

    Full Text Available Staphylococci are frequently implicated in human infections, and continue to pose a therapeutic dilemma due to their ability to form deeply seated microbial communities, known as biofilms, on the surfaces of implanted medical devices and host tissues. Biofilm development has been proposed to occur in three stages: 1 attachment, 2 proliferation/structuring, and 3 detachment/dispersal. Although research within the last several decades has implicated multiple molecules in the roles as effectors of staphylococcal biofilm proliferation/structuring and detachment/dispersal, to date, only phenol soluble modulins (PSMs have been consistently demonstrated to serve in this role under both in-vitro and in-vivo settings. PSMs are regulated directly through a density-dependent manner by the accessory gene regulator (Agr system. They disrupt the non-covalent forces holding the biofilm extracellular matrix together, which is necessary for the formation of channels, a process essential for the delivery of nutrients to deeper biofilm layers, and for dispersal/dissemination of clusters of biofilm to distal organs in acute infection. Given their relevance in both acute and chronic biofilm-associated infections, the Agr system and the psm genes hold promise as potential therapeutic targets.

  1. Gene expression of lactobacilli in murine forestomach biofilms.

    Science.gov (United States)

    Schwab, Clarissa; Tveit, Alexander Tøsdal; Schleper, Christa; Urich, Tim

    2014-07-01

    Lactobacilli populate the gastro-intestinal tract of vertebrates, and are used in food fermentations and as probiotics. Lactobacilli are also major constituents of stable biofilms in the forestomach of rodents. In order to investigate the lifestyle of these biofilm lactobacilli in C57BL/6 mice, we applied metatranscriptomics to analyse gene expression (assessed by mRNA) and community composition (assessed by rRNA). Lactobacillales were the major biofilm inhabitants (62-82% of rRNA reads), followed by Clostridiales (8-31% of rRNA reads). To identify mRNA transcripts specific for the forestomach, we compared forestomach and hindgut metatranscriptomes. Gene expression of the biofilm microbiota was characterized by high abundance of transcripts related to glucose and maltose utilization, peptide degradation, and amino acid transport, indicating their major catabolic and anabolic pathways. The microbiota transcribed genes encoding pathways enhancing oxidative stress (glutathione synthesis) and acid tolerance. Various pathways, including metabolite formation (urea degradation, arginine pathway, γ-aminobutyrate) and cell wall modification (DltA, cyclopropane-fatty-acyl-phospholipid synthase), contributed to acid tolerance, as judged from the transcript profile. In addition, the biofilm microbiota expressed numerous genes encoding extracellular proteins involved in adhesion and/or biofilm formation (e.g. MucBP, glycosyl hydrolase families 68 and 70). This study shed light on the lifestyle and specific adaptations of lactobacilli in the murine forestomach that might also be relevant for lactobacilli biofilms in other vertebrates, including humans.

  2. Comparative proteomic analysis of Streptococcus suis biofilms and planktonic cells that identified biofilm infection-related immunogenic proteins.

    Science.gov (United States)

    Wang, Yang; Yi, Li; Wu, Zongfu; Shao, Jing; Liu, Guangjin; Fan, Hongjie; Zhang, Wei; Lu, Chengping

    2012-01-01

    Streptococcus suis (SS) is a zoonotic pathogen that causes severe disease symptoms in pigs and humans. Biofilms of SS bind to extracellular matrix proteins in both endothelial and epithelial cells and cause persistent infections. In this study, the differences in the protein expression profiles of SS grown either as planktonic cells or biofilms were identified using comparative proteomic analysis. The results revealed the existence of 13 proteins of varying amounts, among which six were upregulated and seven were downregulated in the Streptococcus biofilm compared with the planktonic controls. The convalescent serum from mini-pig, challenged with SS, was applied in a Western blot assay to visualize all proteins from the biofilm that were grown in vitro and separated by two-dimensional gel electrophoresis. A total of 10 immunoreactive protein spots corresponding to nine unique proteins were identified by MALDI-TOF/TOF-MS. Of these nine proteins, five (Manganese-dependent superoxide dismutase, UDP-N-acetylglucosamine 1-carboxyvinyltransferase, ornithine carbamoyltransferase, phosphoglycerate kinase, Hypothetical protein SSU05_0403) had no previously reported immunogenic properties in SS to our knowledge. The remaining four immunogenic proteins (glyceraldehyde-3-phosphate dehydrogenase, hemolysin, pyruvate dehydrogenase and DnaK) were identified under both planktonic and biofilm growth conditions. In conclusion, the protein expression pattern of SS, grown as biofilm, was different from the SS grown as planktonic cells. These five immunogenic proteins that were specific to SS biofilm cells may potentially be targeted as vaccine candidates to protect against SS biofilm infections. The four proteins common to both biofilm and planktonic cells can be targeted as vaccine candidates to protect against both biofilm and acute infections.

  3. Glutathione-Disrupted Biofilms of Clinical Pseudomonas aeruginosa Strains Exhibit an Enhanced Antibiotic Effect and a Novel Biofilm Transcriptome.

    Science.gov (United States)

    Klare, William; Das, Theerthankar; Ibugo, Amaye; Buckle, Edwina; Manefield, Mike; Manos, Jim

    2016-08-01

    Pseudomonas aeruginosa infections result in high morbidity and mortality rates for individuals with cystic fibrosis (CF), with premature death often occurring. These infections are complicated by the formation of biofilms in the sputum. Antibiotic therapy is stymied by antibiotic resistance of the biofilm matrix, making novel antibiofilm strategies highly desirable. Within P. aeruginosa biofilms, the redox factor pyocyanin enhances biofilm integrity by intercalating with extracellular DNA. The antioxidant glutathione (GSH) reacts with pyocyanin, disrupting intercalation. This study investigated GSH disruption by assaying the physiological effects of GSH and DNase I on biofilms of clinical CF isolates grown in CF artificial sputum medium (ASMDM+). Confocal scanning laser microscopy showed that 2 mM GSH, alone or combined with DNase I, significantly disrupted immature (24-h) biofilms of Australian epidemic strain (AES) isogens AES-1R and AES-1M. GSH alone greatly disrupted mature (72-h) AES-1R biofilms, resulting in significant differential expression of 587 genes, as indicated by RNA-sequencing (RNA-seq) analysis. Upregulated systems included cyclic diguanylate and pyoverdine biosynthesis, the type VI secretion system, nitrate metabolism, and translational machinery. Biofilm disruption with GSH revealed a cellular physiology distinct from those of mature and dispersed biofilms. RNA-seq results were validated by biochemical and quantitative PCR assays. Biofilms of a range of CF isolates disrupted with GSH and DNase I were significantly more susceptible to ciprofloxacin, and increased antibiotic effectiveness was achieved by increasing the GSH concentration. This study demonstrated that GSH, alone or with DNase I, represents an effective antibiofilm treatment when combined with appropriate antibiotics, pending in vivo studies.

  4. Effects of Iron on DNA Release and Biofilm Development by Pseudomonas Aeruginosa

    DEFF Research Database (Denmark)

    Yang, Liang; Barken, Kim Bundvig; Skindersø, Mette Elena;

    2007-01-01

    Extracellular DNA is one of the major matrix components in Pseudomonas aeruginosa biofilms. It functions as an intercellular connector and plays a role in stabilization of the biofilms. Evidence that DNA release in P. aeruginosa PAO1 biofilms is controlled by the las-rhl and pqs quorum......-sensing systems has been previously presented. This paper provides evidence that DNA release in P. aeruginosa PAO1 biofilms is also under iron regulation. Experiments involving cultivation of P. aeruginosa in microtitre trays suggested that pqs expression, DNA release and biofilm formation were favoured in media...... with low iron concentrations (5 mu M FeCIA and decreased with increasing iron concentrations. Experiments involving cultivation of P. aeruginosa in a flow-chamber system suggested that a high level of iron (1100 mu M FeCl3) in the medium suppressed DNA release, structural biofilm development...

  5. Molecular Characterisation and Co-cultivation of Bacterial Biofilm Communities Associated with the Mat-Forming Diatom Didymosphenia geminata.

    Science.gov (United States)

    Brandes, Josephin; Kuhajek, Jeanne M; Goodwin, Eric; Wood, Susanna A

    2016-10-01

    Didymosphenia geminata (Lyngbye) M. Schmidt is a stalked freshwater diatom that is expanding its range globally. In some rivers, D. geminata forms thick and expansive polysaccharide-dominated mats. Like other stalked diatoms, D. geminata cells attach to the substratum with a pad of adhesive extracellular polymeric substance. Research on D. geminata and other diatoms suggests that bacterial biofilm composition may contribute to successful attachment. The aim of this study was to investigate the composition and role of bacterial biofilm communities in D. geminata attachment and survival. Bacterial biofilms were collected at four sites in the main stem of a river (containing D. geminata) and in four tributaries (free of D. geminata). Samples were characterised using automated rRNA intergenic spacer analysis and high-throughput sequencing (HTS). Mat-associated bacteria were isolated and their effect on the early establishment of D. geminata cells assessed using co-culturing experiments. ARISA and HTS data showed differences in bacterial communities between samples with and without D. geminata at two of the four sites. Samples with D. geminata had a higher relative abundance of Sphingobacteria (p < 0.01) and variability in community composition was reduced. Analysis of the 76 bacteria isolated from the mat revealed 12 different strains representing 8 genera. Co-culturing of a Carnobacterium sp. with D. geminata reduced survival (p < 0.001) and attachment (p < 0.001) of D. geminata. Attachment was enhanced by Micrococcus sp. and Pseudomonas sp. (p < 0.001 and p < 0.01, respectively). These data provide evidence that bacteria play a role in the initial attachment and on-going survival of D. geminata, and may partly explain observed distribution patterns.

  6. A lethal combination of toxins and biofilms aids soft tissue fossilization

    Science.gov (United States)

    MacKenzie, L. A.; Hinman, N. W.; Kohn, M. J.; Olin, P. H.

    2012-12-01

    Biofilms, thin microbial communities encased in extracellular polymeric substances, are thought to aid in fossilization, particularly in cases of extraordinary preservation of soft tissues in Konservat-Lagerstätten deposits. The mechanisms by which this occurs, however, are poorly understood. Modern marine biofilms take up trace elements (e.g., Cu, P, Fe, Zn, Cd), some of which are toxic. In this study we investigated trace element patterns across worm fossils from the Early Cambrian Chengjiang biota (Yunnan, China) to explore whether toxic metals preferentially accumulated in soft tissues, retarding biodegradation and promoting extraordinary preservation. This biota is the oldest of the Burgess Shale Type (BST) Lagerstätten, which preserve soft-bodied fossils that range in age from early Cambrian to Ordovician. Concentrations of 24 light elements, transition metals, heavy metals, actinides and lanthanides were measured using laser-ablation ICP-MS in 2-4 mm long transects across rock matrix and 1-2 mm wide fossils to create matrix-worm-matrix geochemical profiles. Spatial and compositional resolutions were ~50 μm and ~1ppm. Six worm fossils were analyzed, and all show higher concentrations of P, Sc, V, Cr, Fe, Ni, Cu, Mo, Sb, Th, and U than the matrix. Increases in Na, Mg, Al, K, Ca, Mn, Co, Sr, Ba, Ce, and Pb were found in some, but not all samples. None of the samples showed significant increases in Ti. Abiotic processes cannot explain increased concentrations of all of these elements, which include both redox-sensitive and immobile elements. Instead we propose that biofilms formed on the surface of the organisms shortly after death (hours to days). Bioaccumulation of toxic trace elements sealed the worms under a thin, deadly trace-element-rich film that prevented further degradation. This process allowed diagenetic cements to form a rigid rock matrix and preserve these delicate fossils. If so, trace element accumulation by biofilms may provide the key for

  7. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial communities...... at the microscale of complex communities, including biofilms.Studies of multispecies biofilms and the interactions shaping these are conducted in traditional approaches used for single-species biofilms with some adjustments; but a crucial point for consideration is which strains to combine and where these should...

  8. Morphological changes in Proteus mirabilis O18 biofilm under the influence of a urease inhibitor and a homoserine lactone derivative.

    Science.gov (United States)

    Czerwonka, Grzegorz; Arabski, Michał; Wąsik, Sławomir; Jabłońska-Wawrzycka, Agnieszka; Rogala, Patrycja; Kaca, Wiesław

    2014-03-01

    Proteus mirabilis is a pathogenic gram-negative bacterium that frequently causes kidney infections, typically established by ascending colonization of the urinary tract. The present study is focused on ureolytic activity and urease inhibition in biofilms generated by P. mirabilis O18 cells. Confocal microscopy revealed morphological alterations in biofilms treated with urea and a urease inhibitor (acetohydroxamic acid, AHA), as some swarmer cells were found to protrude from the biofilm. The presence of a quorum-sensing molecule (N-butanoyl homoserine lactone, BHL) increased biofilm thickness and its ureolytic activity. Laser interferometric determination of diffusion showed that urea easily diffuses through P. mirabilis biofilm, while AHA is blocked. This may suggest that the use of urease inhibitors in CAUTIs may by less effective than in other urease-associated infections. Spectroscopic studies revealed differences between biofilm and planktonic cells indicating that polysaccharides and nucleic acids are involved in extracellular matrix and biofilm formation.

  9. Characterization of Biofilm in 200W Fluidized Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Michelle H.; Saurey, Sabrina D.; Lee, Brady D.; Parker, Kent E.; Eisenhauer, Emalee ER; Cordova, Elsa A.; Golovich, Elizabeth C.

    2014-09-29

    Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations were undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry evaluations, a more

  10. Characterization of biofilm in 200W fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Michelle H. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Saurey, Sabrina D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Parker, Kent E. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Eisenhauer, Emalee E. R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Cordova, Elsa A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Golovich, Elizabeth C. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-09-29

    Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations were undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry

  11. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Jiyoti Verma-Gaur

    2015-10-01

    Full Text Available The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease.

  12. Biofilm structure and its influence on clogging in drip irrigation emitters distributing reclaimed wastewater

    Institute of Scientific and Technical Information of China (English)

    YAN Dazhuang; BAI Zhihui; Mike Rowan; GU Likun; Ren Shumei; YANG Peiling

    2009-01-01

    Using reclaimed wastewater for crop irrigation is a practical alternative to discharge wastewater treatment plant effluents into surface waters.However,biofouling has been identified as a major contributor to emitter clogging in drip irrigation systems distributing reclaimed wastewater.Little is known about the biofilm structure and its influence on clogging in the drip emitter flow path.This study was first to investigate the microbial characteristics of mature biofilms present in the emitters and the effect of flow path structures on the biofilm microbial communities.The analysis of biofilm matrix structure using a scanning electron microscopy (SEM) revealed that particles in the matrix of the biofilm coupled extracellular polysaccharides (EPS) and formed sediment in the emitter flow path.Analysis of biofilm mass including protein,polysaccharide and phospholipid fatty acids (PLFAs) showed that emitter flow path style influenced biofilm community structure and diversity.The correlations of biofilm biomass and discharge reduction after 360 h irrigation were computed and suggest that PFLAs provide the best correlation coefficient.Comparatively,the emitter with the unsymmetrical dentate structure and shorter flow path (Emitter C) had the best anti-clogging capability.By optimizing the dentate structure,the internal flow pattern within the flow path could be enhanced as an important method to control the biofilm within emitter flow path.This study established electron microscope techniques and biochemical microbial analysis methods that may provide a framework for future emitter biofilm studies.

  13. α-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal.

    Science.gov (United States)