WorldWideScience

Sample records for biofilm developmental cycle

  1. Biofilms

    OpenAIRE

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-01-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and ...

  2. Nitrogen cycling in Hot Spring Sediments and Biofilms (Invited)

    Science.gov (United States)

    Meyer-Dombard, D. R.; Burton, M. S.; Havig, J. R.; Shock, E.

    2010-12-01

    Over the past several decades, gene-targeted analyses have revealed that microbial communities in hydrothermal environments can be surprisingly diverse. However, we know shockingly little about basic ecological functions such as carbon and nitrogen cycling or community shifts over time, or environmental parameters such as growth criteria. Previous work has shown that carbon cycling in one hot spring in Yellowstone National Park [“Bison Pool”] and its associated runoff channel functions as a complex system. Analysis of carbon and nitrogen isotopes in biofilms across a temperature and chemical gradient at this location revealed that multiple autotrophic carbon fixation pathways are functioning in this system, and nitrogen fixation varies across the chemosynthetic/photosynthetic ecotone [1]. Further, sequencing of metagenomes from multiple locations at “Bison Pool” has indicated the presence of genes involved in carbon fixation [both phototrophic and autotrophic], and heterotrophy, as well as nitrogen fixation [2]. Studies from other Yellowstone locations have also found genetic evidence for carbon and nitrogen fixation [3-5]. The role of individual microbes in nitrogen cycling as environmental conditions vary over space and time is the focus of this study. Here, we explore the diversity of nifH [nitrogen fixation], nirK [nitrite reduction] and amoA [ammonia oxidation] genes across a variety of Yellowstone environments. Environmental nucleic acids were extracted, and the presence/absence of Bacteria and Archaea determined by PCR. In addition, PCR-directed screens reveal the presence or absence of the aforementioned functional genes, indicating genetic capacity for nitrogen cycling. We have examined the transition of genetic diversity and genetic capacity within sediments and biofilms at the chemosynthetic/photosynthetic ecotone in several hot springs spanning ranges of pH and geochemical conditions. By sampling across this ecotone, changes in the genetic

  3. Biofilm

    Czech Academy of Sciences Publication Activity Database

    Kvíderová, Jana

    Berlin: Springer, 2015 - (Amils, R.; Gargaud, M.; Cernicharo Quintanilla, J.; James Claves, H.; Irvine, W.; Pinti, D.; Viso, M.), s. 1-3 ISBN 978-3-642-27833-4 Institutional support: RVO:67985939 Keywords : biofilm * microbial mat * astrobiology Subject RIV: EF - Botanics

  4. How do changes in dissolved oxygen concentration influence microbially-controlled phosphorus cycling in stream biofilms?

    Science.gov (United States)

    Saia, S. M.; Locke, N. A.; Regan, J. M.; Carrick, H. J.; Buda, A. R.; Walter, M. T.

    2014-12-01

    Advances in molecular microbiology techniques (e.g. epi-fluorescent microscopy and PCR) are making it easier to study the influence of specific microorganisms on nutrient transport. Polyphosphate accumulating organisms (PAOs) are commonly used in wastewater treatment plants to remove excess phosphorus (P) from effluent water. PAOs have also been identified in natural settings but their ecological function is not well known. In this study, we tested the hypothesis that PAOs in natural environments would release and accumulate P during anaerobic and aerobic conditions, respectively. We placed stream biofilms in sealed, covered tubs and subjected them to alternating air (aerobic conditions) and N2 gas (anaerobic condition) bubbling for 12 hours each. Four treatments investigated the influence of changing dissolved oxygen on micribially-controlled P cycling: (1) biofilms bubbled continuously with air, (2) biofilms bubbled alternatively with air and N2, (3) biocide treated biofilms bubbled continuously with air, and (4) biocide treated biofilms bubbled alternatively with air and N2. Treatments 3 and 4 serve as abiotic controls to treatments 1 and 2. We analyzed samples every 12 hours for soluble reactive P (SRP), temperature, dissolved oxygen, and pH. We also used fluorescent microscopy (i.e. DAPI staining) and PCR to verify the presence of PAOs in the stream biofilms. SRP results over the course of the experiment support our hypothesis that anaerobic and aerobic stream conditions may impact PAO mediated P release and uptake, respectively in natural environments. The results of these experiments draw attention to the importance of microbiological controls on P mobility in freshwater ecosystems.

  5. Penicillin induced persistence in Chlamydia trachomatis: high quality time lapse video analysis of the developmental cycle.

    Directory of Open Access Journals (Sweden)

    Rachel J Skilton

    Full Text Available BACKGROUND: Chlamydia trachomatis is a major human pathogen with a unique obligate intracellular developmental cycle that takes place inside a modified cytoplasmic structure known as an inclusion. Following entry into a cell, the infectious elementary body (EB differentiates into a non-infectious replicative form known as a reticulate body (RB. RBs divide by binary fission and at the end of the cycle they redifferentiate into EBs. Treatment of C.trachomatis with penicillin prevents maturation of RBs which survive and enlarge to become aberrant RBs within the inclusion in a non-infective persistent state. Persistently infected individuals may be a reservoir for chlamydial infection. The C.trachomatis genome encodes the enzymes for peptidoglycan (PG biosynthesis but a PG sacculus has never been detected. This coupled to the action of penicillin is known as the chlamydial anomaly. We have applied video microscopy and quantitative DNA assays to the chlamydial developmental cycle to assess the effects of penicillin treatment and establish a framework for investigating penicillin induced chlamydial persistence. PRINCIPAL FINDINGS: Addition of penicillin at the time of cell infection does not prevent uptake and the establishment of an inclusion. EB to RB transition occurs but bacterial cytokinesis is arrested by the second binary fission. RBs continue to enlarge but not divide in the presence of penicillin. The normal developmental cycle can be recovered by the removal of penicillin although the large, aberrant RBs do not revert to the normal smaller size but remain present to the completion of the developmental cycle. Chromosomal and plasmid DNA replication is unaffected by the addition of penicillin but the arrest of bacterial cytokinesis under these conditions results in RBs accumulating multiple copies of the genome. CONCLUSIONS: We have applied video time lapse microscopy to the study of the chlamydial developmental cycle. Linked with accurate

  6. SAF-BRET-FMEF: a developmental LMR fuel cycle facility

    International Nuclear Information System (INIS)

    The SAF-BRET-FMEF complex represents a versatile fuel cycle facility for processing LMR fuel. While originally conceived for processing FFTF and CRBRP fuel, it represents a facility where LMR fuel from the first generation of innovative LMRs could be processed. The cost of transporting fuel from the LMR to the Hanford site would have to be assessed when the LMR site is identified. The throughput of BRET was set at 15 MTHM/yr during conceptual design of the facility, a rate which was adequate to process all of the fuel from FFTF and fuel and blanket material from CRBRP. The design is currently being reevaluated to see if BRET could be expanded to approx.35 MTHM/yr to process fuel and blanket material from approx.1300 MWe generating capacity of the innovative LMRs. This expanded throughput is possible by designing the equipment for an instantaneous throughput of 0.2 MTHM/d, and by selected additional modifications to the facility (e.g., expansion of shipping and receiving area, and addition of a second entry tunnel transporter), and by the fact that the LMR fuel assemblies contain more fuel than the FFTF assemblies (therefore, fewer assemblies must be handled for the same throughput). The estimated cost of such an expansion is also being assessed. As stated previously, the throughput of SAF and Fuel Assembly could be made to support typical LMRs at little additional cost. The throughput could be increased to support the fuel fabrication requirements for 1300 MWe generating capacity of the innovative LMRs. This added capacity may be achieved by increasing the number of operating shifts, and is affected by variables such as fuel design, fuel enrichment, and plutonium isotopic composition

  7. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.

  8. Moderate cycling exercise enhances neurocognitive processing in adolescents with intellectual and developmental disabilities.

    Science.gov (United States)

    Vogt, Tobias; Schneider, Stefan; Anneken, Volker; Strüder, Heiko K

    2013-09-01

    Research has shown that physical exercise enhances cognitive performance in individuals with intact cognition as well as in individuals diagnosed with intellectual and developmental disabilities. Although well identified in the field of health (for example, the transient hypofrontality theory), the underlying neurocognitive processes in intellectual and developmental disabilities remain widely unclear and thus characterize the primary aim of this research. Eleven adolescents with intellectual and developmental disabilities performed moderate cycling exercise and common relaxation. Cross-over designed, both 10-min meetings were randomly allocated at the same time of day with 24-h time lags in between. Conditions were embedded in ability-modified cognitive performance (decision-making processes). Participants' reaction times and their equivalent neurophysiological parameters were recorded using standard EEG and analyzed (spatial activity, N2). Exercise revealed a decrease in frontal electrocortical activity, most pronounced in the medial frontal gyrus (10%). To that effect, reaction time (pcognitive performance for adolescents with intellectual and developmental disabilities; further research is needed to explore possible future effects on enhancing neurocognitive development. PMID:23770890

  9. Impact of Seasonal Variations and Nutrient Inputs on Nitrogen Cycling and Degradation of Hexadecane by Replicated River Biofilms

    OpenAIRE

    Chénier, Martin R.; Beaumier, Danielle; Roy, Réal; Driscoll, Brian T.; Lawrence, John R.; Greer, Charles W.

    2003-01-01

    Biofilm communities cultivated in rotating annular bioreactors using water from the South Saskatchewan River were assessed for the effects of seasonal variations and nutrient (C, N, and P) additions. Confocal laser microscopy revealed that while control biofilms were consistently dominated by bacterial biomass, the addition of nutrients shifted biofilms of summer and fall water samples to phototrophic-dominated communities. In nutrient-amended biofilms, similar patterns of nitrification, deni...

  10. Developmental Cycle and Genome Analysis of "Rubidus massiliensis," a New Vermamoeba vermiformis Pathogen.

    Science.gov (United States)

    Bou Khalil, Jacques Y; Benamar, Samia; Baudoin, Jean-Pierre; Croce, Olivier; Blanc-Tailleur, Caroline; Pagnier, Isabelle; Raoult, Didier; La Scola, Bernard

    2016-01-01

    The study of amoeba-associated Chlamydiae is a dynamic field in which new species are increasingly reported. In the present work, we characterized the developmental cycle and analyzed the genome of a new member of this group associated with Vermamoeba vermiformis, we propose to name "Rubidus massiliensis." This bacterium is well-adapted to its amoeba host and do not reside inside of inclusion vacuoles after phagocytosis. It has a developmental cycle typical of this family of bacteria, with a transition from condensed elementary bodies to hypodense replicative reticulate bodies. Multiplication occurs through binary fission of the reticulate bodies. The genome of "R. massiliensis" consists of a 2.8 Mbp chromosome and two plasmids (pRm1, pRm2) consisting of 39,075 bp and 80,897 bp, respectively, a feature that is unique within this group. The Re-analysis of the Chlamydiales genomes including the one of "R. massiliensis" slightly modified the previous phylogeny of the tlc gene encoding the ADP/ATP translocase. Our analysis suggested that the tlc gene could have been transferred to plant and algal plastids before the transfer to Rickettsiales, and that this gene was probably duplicated several times. PMID:27014641

  11. Phenotypic Characterization of Streptococcus pneumoniae Biofilm Development

    OpenAIRE

    Allegrucci, Magee; Hu, F.Z.; Shen, K.; J. Hayes; Ehrlich, Garth D.; Post, J Christopher; Sauer, Karin

    2006-01-01

    Streptococcus pneumoniae is among the most common pathogens associated with chronic otitis media with effusion, which has been hypothesized to be a biofilm disease. S. pneumoniae has been shown to form biofilms, however, little is known about the developmental process, the architecture, and the changes that occur upon biofilm development. In the current study we made use of a continuous-culture biofilm system to characterize biofilm development of 14 different S. pneumoniae strains representi...

  12. The Oedipus Cycle: developmental mythology, Greek tragedy, and the sociology of knowledge.

    Science.gov (United States)

    Datan, N

    1988-01-01

    The Oedipus complex of Freud is based on the inevitability of the tragic fate of a man who fled his home to escape the prophecy of parricide. Thus, he fulfilled it by killing a stranger who proved to be his father. As Freud does, this consideration of the tragedy of Oedipus takes as its point of departure the inevitability of the confrontation between father and son. Where Freud looks to the son, however, I look to the father, who set the tragedy in motion by attempting to murder his infant son. Themes ignored in developmental theory but axiomatic in gerontology are considered in this study of the elder Oedipus. The study begins by noting that Oedipus ascended the throne of Thebes not by parricide but by answering the riddle of the Sphynx and affirming the continuity of the life cycle which his father denied. In the second tragedy of the Oedipus Cycle of Sophocles, Oedipus at Colonus, this affirmation is maintained. As Oedipus the elder accepts the infirmities of old age and the support of his daughter Antigone, Oedipus the king proves powerful up to the very end of his life when he gives his blessing not to the sons who had exiled him from Thebes, but to King Theseus who shelters him in his old age. Thus, the Oedipus cycle, in contrast to the "Oedipus complex," represents not the unconscious passions of the small boy, but rather the awareness of the life cycle in the larger context of the succession of the generations and their mutual interdependence. These themes are illuminated by a fuller consideration of the tragedy of Oedipus. PMID:3254354

  13. Epitheliocystis agents in sea bream Sparus aurata: morphological evidence for two distinct chlamydia-like developmental cycles.

    Science.gov (United States)

    Crespo, S; Zarza, C; Padrós, F; Marín de Mateo, M

    1999-06-23

    The morphology of membrane-bound intracellular inclusions, or 'cysts', of epitheliocystis from sea bream Sparus aurata is described. Inclusions under the light microscope appear either granular or amorphous. Granular inclusions do not elicit a proliferative host reaction and contain the 3 distinctive developmental stages of chlamydial organisms: the highly pleomorphic reproductive form or reticulate body, the condensing form or intermediate body and the infective non-dividing rather uniform elementary body. Amorphous inclusions may elicit a proliferative host reaction and contain prokaryotic organisms which differ morphologically from those reported within granular cysts. More or less elongated electron-lucent organisms divide by fission to give rise to electron-dense non-dividing small cells with a dense nucleoid. Vacuolated and non-vacuolated small cells are reported. The morphology and developmental cycle of sea bream epitheliocystis agents would support their chlamydial nature; however, the immunohistochemical study conducted on gill samples which carried both inclusions failed to demonstrate the expression of lipopolysaccharide (LPS) chlamydial antigen. The different stages of the 2 distinct developmental cycles described in the present study are compared with electron microscope observations of epitheliocystis organisms reported from different host species. The hypothesis that epitheliocystis infection in the sea bream might be caused by a unique highly pleomorphic chlamydia-like agent, the life history of which includes 2 entirely different developmental cycles, is discussed. PMID:10439904

  14. Combating biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong;

    2012-01-01

    Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life is...... believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review......, strategies to control biofilms are discussed, including those of inhibition of microbial attachment, interference of biofilm structure development and differentiation, killing of biofilm cells and induction of biofilm dispersion....

  15. The role of benthic biofilm production in the mediation of silicon cycling in the Severn Estuary, UK

    Science.gov (United States)

    Welsby, H. J.; Hendry, K. R.; Perkins, R. G.

    2016-07-01

    The biological mediation of benthic biogenic silica (BBSi) by the diatom-dominated biofilms on the intertidal mudflats of the Severn Estuary (UK) was assessed in situ under different environmental conditions using measurements of productive biomass (chlorophyll a), photosynthetic activity of undisturbed microalgal assemblages, benthic biogenic silica (BBSi) and benthic dissolved silica (BDSi). We show low BBSi standing stocks in the mudflats compared to other European estuaries, under both warmer summer conditions (0.6%) and colder winter conditions (0.5%). Dissolved forms of Si (BDSi) dominated the estuary, with significantly higher concentrations during the sampled winter (22.6 ± 1.0 mg L-1) compared to the sampled summer (2.9 ± 0.5 mg L-1). Benthic algal biomass was higher under cold conditions compared to warmer conditions (24.0 ± 2.3 and 13.2 ± 1.9 mg g-1sed. dw., respectively), following reduced migratory behaviour in the winter increasing surficial biomass. Relative maximum Electron Transport Rate (rETRmax), used as a proxy for relative primary productivity, was higher under warm conditions (254.1 ± 20.1 rel. units) compared to cold conditions (116.0 ± 27.1 rel. units). The biofilms sampled in the summer biologically mediated Si by the productive, high light acclimated diatoms that were highly motile during fluorescence measurements, and exhibited migratory behaviour, which despite nutrient limitation, evidenced by low Fv/Fm, increased the accumulation of BBSi. The biofilms sampled in the winter that were subject to relatively colder temperatures, consisted of low light acclimated diatoms of reduced migratory capabilities, and induced NPQ that suppressed productivity, and mediated BBSi to a lesser extent. Environmental stresses reduced the biofilm biological mediation of Si, which controlled Si to a lesser extent compared to the high hydrodynamic energy increasing biofilm re-suspension and terrestrial/coastal inputs.

  16. Hormone-dependent bacterial growth, persistence and biofilm formation--a pilot study investigating human follicular fluid collected during IVF cycles.

    Directory of Open Access Journals (Sweden)

    Elise S Pelzer

    Full Text Available Human follicular fluid, considered sterile, is aspirated as part of an in vitro fertilization (IVF cycle. However, it is easily contaminated by the trans-vaginal collection route and little information exists in its potential to support the growth of microorganisms. The objectives of this study were to determine whether human follicular fluid can support bacterial growth over time, whether the steroid hormones estradiol and progesterone (present at high levels within follicular fluid contribute to the in vitro growth of bacterial species, and whether species isolated from follicular fluid form biofilms. We found that bacteria in follicular fluid could persist for at least 28 weeks in vitro and that the steroid hormones stimulated the growth of some bacterial species, specifically Lactobacillus spp., Bifidobacterium spp. Streptococcus spp. and E. coli. Several species, Lactobacillus spp., Propionibacterium spp., and Streptococcus spp., formed biofilms when incubated in native follicular fluids in vitro (18/24, 75%. We conclude that bacteria aspirated along with follicular fluid during IVF cycles demonstrate a persistent pattern of growth. This discovery is important since it can offer a new avenue for investigation in infertile couples.

  17. Candida albicans Biofilm-Defective Mutants

    OpenAIRE

    Richard, Mathias L.; Nobile, Clarissa J.; Bruno, Vincent M; Mitchell, Aaron P.

    2005-01-01

    Biofilm formation plays a key role in the life cycles and subsistence of many microorganisms. For the human fungal pathogen Candida albicans, biofilm development is arguably a virulence trait, because medical implants that serve as biofilm substrates are significant risk factors for infection. The development of C. albicans biofilms in vitro proceeds through an early phase, in which yeast cells populate a substrate, an intermediate phase, in which pseudohyphal and hyphal cell types are produc...

  18. Quantitative monitoring of the Chlamydia trachomatis developmental cycle using GFP-expressing bacteria, microscopy and flow cytometry.

    Directory of Open Access Journals (Sweden)

    François Vromman

    Full Text Available Chlamydiae are obligate intracellular bacteria. These pathogens develop inside host cells through a biphasic cycle alternating between two morphologically distinct forms, the infectious elementary body and the replicative reticulate body. Recently, C. trachomatis strains stably expressing fluorescent proteins were obtained. The fluorochromes are expressed during the intracellular growth of the microbe, allowing bacterial visualization by fluorescence microscopy. Whether they are also present in the infectious form, the elementary body, to a detectable level has not been studied. Here, we show that a C. trachomatis strain transformed with a plasmid expressing the green fluorescent protein (GFP accumulates sufficient quantities of the probe in elementary bodies for detection by microscopy and flow cytometry. Adhesion of single bacteria was detected. The precise kinetics of bacterial entry were determined by microscopy using automated procedures. We show that during the intracellular replication phase, GFP is a convenient read-out for bacterial growth with several advantages over current methods. In particular, infection rates within a non-homogenous cell population are easily quantified. Finally, in spite of their small size, individual elementary bodies are detected by flow cytometers, allowing for direct enumeration of a bacterial preparation. In conclusion, GFP-expressing chlamydiae are suitable to monitor, in a quantitative manner, progression throughout the developmental cycle. This will facilitate the identification of the developmental steps targeted by anti-chlamydial drugs or host factors.

  19. Permeabilizing biofilms

    Science.gov (United States)

    Soukos, Nikolaos S.; Lee, Shun; Doukas, Apostolos G.

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  20. The Oedipus Cycle: Developmental Mythology, Greek Tragedy, and the Sociology of Knowledge.

    Science.gov (United States)

    Datan, Nancy

    1988-01-01

    Considers Greek myth of Oedipus and proposes an Oedipus cycle, in contrast to Freud's Oedipus complex, which represents not the unconscious passions of a small boy, but rather the awareness of the life cycle in the larger context of the succession of the generations and their mutual interdependence. (Author/NB)

  1. Cell death in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Webb, J.S.; Thompson, L.S.; James, S.;

    2003-01-01

    Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids....... However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death...... occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development...

  2. Silencing of genes involved in Anaplasma marginale-tick interactions affects the pathogen developmental cycle in Dermacentor variabilis

    Directory of Open Access Journals (Sweden)

    Almazán Consuelo

    2009-07-01

    Full Text Available Abstract Background The cattle pathogen, Anaplasma marginale, undergoes a developmental cycle in ticks that begins in gut cells. Transmission to cattle occurs from salivary glands during a second tick feeding. At each site of development two forms of A. marginale (reticulated and dense occur within a parasitophorous vacuole in the host cell cytoplasm. However, the role of tick genes in pathogen development is unknown. Four genes, found in previous studies to be differentially expressed in Dermacentor variabilis ticks in response to infection with A. marginale, were silenced by RNA interference (RNAi to determine the effect of silencing on the A. marginale developmental cycle. These four genes encoded for putative glutathione S-transferase (GST, salivary selenoprotein M (SelM, H+ transporting lysosomal vacuolar proton pump (vATPase and subolesin. Results The impact of gene knockdown on A. marginale tick infections, both after acquiring infection and after a second transmission feeding, was determined and studied by light microscopy. Silencing of these genes had a different impact on A. marginale development in different tick tissues by affecting infection levels, the densities of colonies containing reticulated or dense forms and tissue morphology. Salivary gland infections were not seen in any of the gene-silenced ticks, raising the question of whether these ticks were able to transmit the pathogen. Conclusion The results of this RNAi and light microscopic analyses of tick tissues infected with A. marginale after the silencing of genes functionally important for pathogen development suggest a role for these molecules during pathogen life cycle in ticks.

  3. Influence of phosphorus availability on the community structure and physiology of cultured biofilms.

    Science.gov (United States)

    Li, Shuangshuang; Wang, Chun; Qin, Hongjie; Li, Yinxia; Zheng, Jiaoli; Peng, Chengrong; Li, Dunhai

    2016-04-01

    Biofilms have important effects on nutrient cycling in aquatic ecosystems. However, publications about the community structure and functions under laboratory conditions are rare. This study focused on the developmental and physiological properties of cultured biofilms under various phosphorus concentrations performed in a closely controlled continuous flow incubator. The results showed that the biomass (Chl a) and photosynthesis of algae were inhibited under P-limitation conditions, while the phosphatase activity and P assimilation rate were promoted. The algal community structure of biofilms was more likely related to the colonization stage than with the phosphorus availability. Cyanobacteria were more competitive than other algae in biofilms, particularly when cultured under low P levels. A dominance shift occurred from non-filamentous algae in the early stage to filamentous algae in the mid and late stages under P concentrations of 0.01, 0.1 and 0.6mg/L. However, the total N content, dry weight biomass and bacterial community structure of biofilms were unaffected by phosphorus availability. This may be attributed to the low respiration rate, high accumulation of extracellular polymeric substances and high alkaline phosphatase activity in biofilms when phosphorus availability was low. The bacterial community structure differed over time, while there was little difference between the four treatments, which indicated that it was mainly affected by the colonization stage of the biofilms rather than the phosphorus availability. Altogether, these results suggested that the development of biofilms was influenced by the phosphorus availability and/or the colonization stage and hence determined the role that biofilms play in the overlying water. PMID:27090691

  4. Beneficial biofilms

    Directory of Open Access Journals (Sweden)

    Sara R Robertson

    2015-10-01

    Full Text Available Surface-adherent biofilm growth is a common trait of bacteria and other microorganisms in nature. Within biofilms, organisms are present in high density and are enmeshed in an organic matrix containing polysaccharides and other molecules. The close proximity of organisms within biofilms facilitates microbial interactions and signaling, including many metabolic processes in which consortia rather than individual organisms participate. Biofilm growth also enables microorganisms to withstand chemical and biological stresses. Here, we review some current literature and document representative beneficial aspects of biofilms using examples from wastewater treatment, microbial fuel cells, biological repair (biocementation of stonework, and biofilm protection against Candida albicans infections. Finally, we address a chemical ecology strategy whereby desired microbial succession and beneficial biofilm formation can be encouraged via manipulation of culture conditions and bacterial signaling.

  5. Biofilm Infections

    DEFF Research Database (Denmark)

    A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized as...... being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections such as...... diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well as...

  6. Biofilm Infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Jensen, Peter Østrup; Moser, Claus Ernst; Høiby, Niels

    being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections such as......A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized as...... diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well as...

  7. The Homeodomain Iroquois Proteins Control Cell Cycle Progression and Regulate the Size of Developmental Fields.

    Directory of Open Access Journals (Sweden)

    Natalia Barrios

    2015-08-01

    Full Text Available During development, proper differentiation and final organ size rely on the control of territorial specification and cell proliferation. Although many regulators of these processes have been identified, how both are coordinated remains largely unknown. The homeodomain Iroquois/Irx proteins play a key, evolutionarily conserved, role in territorial specification. Here we show that in the imaginal discs, reduced function of Iroquois genes promotes cell proliferation by accelerating the G1 to S transition. Conversely, their increased expression causes cell-cycle arrest, down-regulating the activity of the Cyclin E/Cdk2 complex. We demonstrate that physical interaction of the Iroquois protein Caupolican with Cyclin E-containing protein complexes, through its IRO box and Cyclin-binding domains, underlies its activity in cell-cycle control. Thus, Drosophila Iroquois proteins are able to regulate cell-autonomously the growth of the territories they specify. Moreover, our results provide a molecular mechanism for a role of Iroquois/Irx genes as tumour suppressors.

  8. Medical Biofilms

    OpenAIRE

    Bryers, James D.

    2008-01-01

    For more than two decades, Biotechnology and Bioengineering has documented research focused on natural and engineered microbial biofilms within aquatic and subterranean ecosystems, wastewater and waste-gas treatment systems, marine vessels and structures, and industrial bioprocesses. Compared to suspended culture systems, intentionally engineered biofilms are heterogeneous reaction systems that can increase reactor productivity, system stability, and provide inherent cell: product separation....

  9. Salmonella biofilms

    NARCIS (Netherlands)

    Castelijn, G.A.A.

    2013-01-01

    Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm formation. A collectio

  10. Biofilm Development

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2015-01-01

    , and not by specific genetic programs. It appears that biofilm formation can occur through multiple pathways and that the spatial structure of the biofilms is species dependent as well as dependent on environmental conditions. Bacterial subpopulations, e.g., motile and nonmotile subpopulations, can develop...

  11. Effect of kinetin on the course of cell cycle in successive developmental stages of the antheridial filaments of Chara vulgaris L.

    Directory of Open Access Journals (Sweden)

    Mirosław Godlewski

    2014-02-01

    Full Text Available Effects of kinetin on the course of cell cycle in successive developmental stages of the antheridial filaments of Chara vulgaris L. were investigated. A shortening of the duration of cell cycles has been observed, particularly in initial. and final developmental stages. S phase. shortened in all stages whereas G2 phase+mitosis shortened in early but become longer in late developmental stages of filaments. Incorporation of 14C-adenine into cell nuclei increased after kinetin treatment in 4- and 8-celled filaments whereas that of 3H-phenylalanine increased in 8- and particularly 16-celled ones. This plant growth regulator stimulated also the 3H-thymidine incorporation into cells in studied developmental stages of filaments. The stimulation of radioactive phenylalanine incorporation into nucleus and cytoplasm was stronger in late G2 phase. A participation of cytokinins in the control of cell cycle in relation to process of differentiation of antheridial cells is discussed. A possibility of changes in the cytokinin content in antheridia and antheridial filament cells during their; development has been postulated.

  12. Microbial pathogenesis and biofilm development

    DEFF Research Database (Denmark)

    Reisner, A.; Høiby, N.; Tolker-Nielsen, Tim;

    2004-01-01

    cycles of different microorganisms will eventually lead to improved treatments. Several bacteria have evolved specific strategies for virulent colonization of humans in addition to their otherwise harmless establishment as environmental inhabitants. In many such cases biofilm development seems to play a...... of polysaccharides. A recent striking finding is that DNA released from biofilm cells may be important as an initial matrix former [3]. At later times other EPS molecules may add to the shape and quality of the mature biofilm structure. Figure 1 summarizes the principle stepsinvolved in the...

  13. Politics in a New Key: Breaking the Cycle of U.S. Politics with a Generational/Developmental Approach

    Directory of Open Access Journals (Sweden)

    Ken White

    2010-03-01

    Full Text Available Some common, mental models shape how people in the US perceive political changes over time. The one-dimensional pendulum swing model and the two-dimensional cyclical model are prevalent. When generational differences are mapped onto such political change cycles, they orient to cohorts or age groups. This leads to viewing generational cohorts as experiencing one- or two-dimensional cycles without deeper scrutiny. Cohort differences that surface in the Generations Salons that I and others conducted in California suggest a different, three-dimensional model may be more representative of the potential for societal change in the US. Using a musical metaphor, that model is explained in terms of different political “keys” and the value of distinguishing among them as time passes. It also underlies a speculation about a “politics in a new key,” which might prove more useful.Summary-level reporting of the action research conducted with the Generations Salons supports the three-dimensional model. We expect new politics to emerge from the Millennial cohort coming of age now, yet it will not be without the support and wisdom of the cohorts that came of age before it. This must be the case if the burden of expectations we place on the Millennials will indeed pave the way for transformative change in US society. Intergenerational support of Millennials is essential. This initial research and application suggests the potential for the generational/ developmental approach as a wellspring for transformational—and practically successful—political work. It begs the question: What will you do to help?

  14. Evidence for the presence of a mammalian-like cholinesterase in Paramecium primaurelia (Protista, Ciliophora) developmental cycle.

    Science.gov (United States)

    Delmonte Corrado, M U; Politi, H; Trielli, F; Angelini, C; Falugi, C

    1999-01-01

    By histochemical and immunohistochemical methods, the presence of cholinergic-like molecules has previously been demonstrated in Paramecium primaurelia, and their functional role in mating-cell pairing was suggested. In this work, both true acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities were electrophoretically investigated, and the presence of molecules immunologically related to BuChE was checked by immunoblotting. The AChE activity, shown in the membrane protein fraction of mating-competent cells and in the cytoplasmic fraction of immature cells, is due to a 260-kDa molecular form, similar to the membrane-bound tetrameric form present in human erythrocytes. This AChE activity does not appear in either the cytoplasmic fraction of mating-competent cells or in the membrane protein fraction of immature cells. No evidence was found for the presence or the activity of BuChE-like molecules. The role of AChE in P. primaurelia developmental cycle is discussed. PMID:9990739

  15. Developmental stage on day-5 and fragmentation rate on day-3 can influence the implantation potential of top-quality blastocysts in IVF cycles with single embryo transfer

    Directory of Open Access Journals (Sweden)

    Devroey Paul

    2007-01-01

    Full Text Available Abstract Background In IVF-ICSI cycles with single embryo transfer (SET, embryo selection for transfer is of crucial importance. The present study aimed to define which embryo parameters might be related to the implantation potential of advanced blastocysts. Methods Overall, in 203 cycles with SET, developmental characteristics of 93 implanted (group A and 110 non-implanted (group B advanced blastocysts of good quality were compared. The following developmental parameters were assessed in the two groups: normal fertilization, developmental stage on day 5, number of blastomeres on day 2 and on day 3, fragmentation rate on day 3, compaction on day 4 and cleavage pattern on day 2 and day 3. Results Expanded blastocysts compared to full blastocysts have higher implantation potential (56.5% vs. 29.3%, p 10–50% fragments on day 3 showed a significant lower implantation (29.7% than those with ≤ 10%fragments (49.4%, P = 0.03. All the other parameters analysed were comparable for the two groups. Conclusion Developmental stage on day 5 and fragmentation rate on day 3 were related to the implantation potential of advanced blastocysts and should also be taken into account in the selection of the best advanced blastocyst for transfer.

  16. Wound biofilms: lessons learned from oral biofilms

    OpenAIRE

    Mancl, Kimberly A.; Kirsner, Robert S.; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque,are a primary cause of oral diseases including caries, gingivitis and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible, thus biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well-elucidated. In contrast, wound research has relati...

  17. Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis.

    Science.gov (United States)

    Somfai, Tamás; Inaba, Yasushi; Aikawa, Yoshio; Ohtake, Masaki; Kobayashi, Shuji; Konishi, Kazuyuki; Imai, Kei

    2010-04-01

    This study was conducted to study the kinetics of initial cell divisions in relation with the cleavage patterns in viable (with the ability to develop to the blastocyst stage) and non-viable bovine embryos and parthenotes. The kinetics of in vitro development and cleavage patterns were observed by time lapse cinematography. The length of the first and second but not third cell cycle differed significantly between the viable and non-viable embryos after IVF or parthenogenesis. Viable embryos had significantly shorter first and second cell cycles than non-viable ones. The presence of fragments, protrusions and unequally-sized blastomeres was associated with an extended one-cell stage and reduced ability to develop to the blastocyst stage; however, the lengths of the second and third cell cycles were not altered. Oocytes showing direct division from one cell to 3 or 4 blastomeres showed similar developmental ability and embryonic cell numbers to those showing normal division, although, with a high frequency of chromosomal abnormalities. Our results suggest that the differences in the first cell cycles between viable and non-viable embryos were not sperm-related, whereas direct cleavage of 1-cell embryos to 3 or more blastomeres and protrusion formation are related to sperm-driven factors. The length of the first and second cell cycles and the cleavage pattern should be examined simultaneously to predict developmental competence of embryos at early cleavage stages. PMID:20035110

  18. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    Directory of Open Access Journals (Sweden)

    E. S. Vorobey

    2012-03-01

    Full Text Available Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molecules of the Quorum sensing system. Coordination of bacterial cells activity in the biofilms gives them significant advantages: in the biofilms bacteria are protected from the influence of the host protective factors and the antibacterial drugs.

  19. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    OpenAIRE

    E. S. Vorobey; O. S. Voronkova; A. I. Vinnikov

    2012-01-01

    Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molec...

  20. Biofilm Matrix Proteins

    OpenAIRE

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enz...

  1. The Physics of Biofilms -- An Introduction

    CERN Document Server

    Mazza, Marco G

    2016-01-01

    Biofilms are complex, self-organized consortia of microorganisms that produce a functional, protective matrix of biomolecules. Physically, the structure of a biofilm can be described as an entangled polymer network which grows and changes under the effect of gradients of nutrients, cell differentiation, quorum sensing, bacterial motion, and interaction with the environment. Its development is complex, and constantly adapting to environmental stimuli. Here, we review the fundamental physical processes the govern the inception, growth and development of a biofilm. Two important mechanisms guide the initial phase in a biofilm life cycle: (\\emph{i}) the cell motility near or at a solid interface, and (\\emph{ii}) the cellular adhesion. Both processes are crucial for initiating the colony and for ensuring its stability. A mature biofilm behaves as a viscoelastic fluid with a complex, history-dependent dynamics. We discuss progress and challenges in the determination of its physical properties. Experimental and theo...

  2. Biofilm-based central line-associated bloodstream infections.

    Science.gov (United States)

    Yousif, Ammar; Jamal, Mohamed A; Raad, Issam

    2015-01-01

    Different types of central venous catheters (CVCs) have been used in clinical practice to improve the quality of life of chronically and critically ill patients. Unfortunately, indwelling devices are usually associated with microbial biofilms and eventually lead to catheter-related bloodstream infections (CLABSIs).An estimated 250,000-400,000 CLABSIs occur every year in the United States, at a rate of 1.5 per 1,000 CVC days and a mortality rate of 12-25 %. The annual cost of caring for patients with CLABSIs ranges from 296 million to 2.3 billion dollars.Biofilm formation occurs on biotic and abiotic surfaces in the clinical setting. Extensive studies have been conducted to understand biofilm formation, including different biofilm developmental stages, biofilm matrix compositions, quorum-sensing regulated biofilm formation, biofilm dispersal (and its clinical implications), and multi-species biofilms that are relevant to polymicrobial infections.When microbes form a matured biofilm within human hosts through medical devices such as CVCs, the infection becomes resistant to antibiotic treatment and can develop into a chronic condition. For that reason, many techniques have been used to prevent the formation of biofilm by targeting different stages of biofilm maturation. Other methods have been used to diagnose and treat established cases of CLABSI.Catheter removal is the conventional management of catheter associated bacteremia; however, the procedure itself carries a relatively high risk of mechanical complications. Salvaging the catheter can help to minimize these complications.In this article, we provide an overview of microbial biofilm formation; describe the involvement of various genetic determinants, adhesion proteins, organelles, mechanism(s) of biofilm formation, polymicrobial infections, and biofilm-associated infections on indwelling intravascular catheters; and describe the diagnosis, management, and prevention of catheter-related bloodstream infections

  3. Bacterial adhesion and biofilms on surfaces

    Institute of Scientific and Technical Information of China (English)

    Trevor Roger Garrett; Manmohan Bhakoo; Zhibing Zhang

    2008-01-01

    Bacterial adhesion has become a significant problem in industry and in the domicile,and much research has been done for deeper understanding of the processes involved.A generic biological model of bacterial adhesion and population growth called the bacterial biofilm growth cycle,has been described and modified many times.The biofilm growth cycle encompasses bacterial adhesion at all levels,starting with the initial physical attraction of bacteria to a substrate,and ending with the eventual liberation of cell dusters from the biofilm matrix.When describing bacterial adhesion one is simply describing one or more stages of biofilm development,neglecting the fact that the population may not reach maturity.This article provides an overview of bacterial adhesion.cites examples of how bac-terial adhesion affects industry and summarises methods and instrumentation used to improve our understanding of the adhesive prop-erties of bacteria.

  4. The Biofilm Challenge

    DEFF Research Database (Denmark)

    Alhede, Maria; Alhede, Morten

    2014-01-01

    The concept of biofilms has emerged in the clinical setting during the last decade. Infections involving biofilms have been documented in all parts of the human body, and it is currently believed that the presence of biofilm-forming bacteria is equivalent to chronic infection. A quick Pubmed search...... reveals the significance of biofilms, as evidenced by a dramatic increase in scientific publications on the topic, as well as in publications concerning wounds with biofilms, which reached 600 publications in 2013. Judged from the number of publications, it appears that biofilms play a significant role in...... wounds. However, the impact of biofilms is often debated, because infected wounds were also treated before the concept of biofilms was coined. In this short review, we will address the significance of biofilms and their role in wounds, and discuss the future tasks of the biofilm challenge....

  5. Politics in a New Key: Breaking the Cycle of U.S. Politics with a Generational/Developmental Approach

    OpenAIRE

    Ken White

    2010-01-01

    Some common, mental models shape how people in the US perceive political changes over time. The one-dimensional pendulum swing model and the two-dimensional cyclical model are prevalent. When generational differences are mapped onto such political change cycles, they orient to cohorts or age groups. This leads to viewing generational cohorts as experiencing one- or two-dimensional cycles without deeper scrutiny. Cohort differences that surface in the Generations Salons that I and others condu...

  6. Muscular and non-muscular contributions to maximum power cycling in children and adults: implications for developmental motor control

    OpenAIRE

    Korff, T; Hunter, EL; Martin, JC

    2009-01-01

    This article is available open access through the publisher’s website at the link below. During submaximal cycling, children demonstrate a different distribution between muscular and non-muscular (gravitational and motion-dependent) forces when compared with adults. This is partly due to anthropometric differences. In this study, we tested the hypothesis that during maximum power cycling, children would construct the task (in terms of the distribution between muscular and non-muscular peda...

  7. Biophysics of biofilm infection.

    Science.gov (United States)

    Stewart, Philip S

    2014-04-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could (1) allow prevailing hydrodynamic shear to remove biofilm, (2) increase the efficacy of designed interventions for removing biofilms, (3) enable phagocytic engulfment of softened biofilm aggregates, and (4) improve phagocyte mobility and access to biofilm. PMID:24376149

  8. The influence of hydrogen bubble formation on the removal of Pseudomonas fluorescens biofilms from platinum electrode surfaces

    OpenAIRE

    Gião, M. S.; Montenegro, M. I.; Vieira, M. J.

    2005-01-01

    Hydrogen bubble formation on the surface of platinum electrodes as a means of removing biofilms was studied. Biofilms of Pseudomonas fluorescens of different ages were grown on platinum electrodes and challenged with hydrogen bubbles formed at the surface of the electrodes, by cycling the potential at -2.0 V. The removal of the biofilms from the surfaces was assessed by direct epifluorescence microscopy. The removal of the biofilm from the surface was dependent on the biofilm age. As the b...

  9. Biofilm monitoring using complex permittivity.

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Susan Jeanne; McGrath, Lucas K.; Dolan, Patricia L.; Yelton, William Graham

    2008-10-01

    There is strong interest in the detection and monitoring of bio-fouling. Bio-fouling problems are common in numerous water treatments systems, medical and dental apparatus and food processing equipment. Current bio-fouling control protocols are time consuming and costly. New early detection techniques to monitor bio-forming contaminates are means to enhanced efficiency. Understanding the unique dielectric properties of biofilm development, colony forming bacteria and nutrient background will provide a basis to the effectiveness of controlling or preventing biofilm growth. Dielectric spectroscopy measurements provide values of complex permittivity, {var_epsilon}*, of biofilm formation by applying a weak alternating electric field at various frequencies. The dielectric characteristic of the biofilm, {var_epsilon}{prime}, is the real component of {var_epsilon}* and measures the biofilm's unique ability to store energy. Graphically observed dependencies of {var_epsilon}{prime} to frequency indicate dielectric relaxation or dielectric dispersion behaviors that mark the particular stage of progression during the development of biofilms. In contrast, any frequency dependency of the imaginary component, {var_epsilon}{double_prime} the loss factor, is expressed as dielectric losses from the biofilm due to dipole relaxation. The tangent angle of these two component vectors is the ratio of the imaginary component to the real component, {var_epsilon}{double_prime}/{var_epsilon}{prime} and is referred to as the loss angle tangent (tan {delta}) or dielectric loss. Changes in tan {delta} are characteristic of changes in dielectric losses during various developmental stages of the films. Permittivity scans in the above figure are of biofilm growth from P. Fluorescens (10e7 CFU's at the start). Three trends are apparent from these scans, the first being a small drop in the imaginary permittivity over a 7 hours period, best seen in the Cole-Cole plot (a). The second trend

  10. Biofilm Fixed Film Systems

    Directory of Open Access Journals (Sweden)

    Dipesh Das

    2011-09-01

    Full Text Available The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, rotating biological contactors, fluidized bed bioreactors, submerged bed biofilm reactors, biological granular activated carbon, membrane bioreactors, and immobilized cell reactors. Innovative reactors, not easily classified, are then presented, followed by a section on biofilms on sand, soil and sediment.

  11. 基于技术生命周期的机械产品开发策略%Developmental Strategy of Mechanical Product Based on the Technology Life Cycle

    Institute of Scientific and Technical Information of China (English)

    刘瑞芳; 范永海

    2009-01-01

    从技术生命周期理论出发,总结出机械产品生命周期演化特征.提出了基于技术生命周期机械产品开发策略.%Based on the thoery of technological life cycle,the paper sums up the evolution characteristics of mechanical product life cycle,and then puts forward developmental strategy of mechanical product.

  12. [Multi-Species Biofilms in Ecology, Medicine, and Biotechnology].

    Science.gov (United States)

    Nozhevnikova, A N; Botchkova, E A; Plakunov, V K

    2015-01-01

    The structure, composition, and developmental patterns of multi-species biofilms are analyzed, as well as the mechanisms of interaction of their microbial components. The main methodological approaches used for analysis of multi-species biofilms, including omics technologies, are characterized. Environmental communities (cyanobacterial mats and methanotrophic communities), as well as typical multi-species communities of medical importance (oral cavity, skin, and gut microbiomes) are described. A special section deals with the role of multi-species biofilms in such biotechnological processes as wastewater treatment, heavy metal removal, corrosion control, and environmental bioremediation. PMID:26964353

  13. Community Structure and Activity Dynamics of Nitrifying Bacteria in a Phosphate-Removing Biofilm

    OpenAIRE

    Gieseke, Armin; Purkhold, Ulrike; Wagner, Michael; Amann, Rudolf; Schramm, Andreas

    2001-01-01

    The microbial community structure and activity dynamics of a phosphate-removing biofilm from a sequencing batch biofilm reactor were investigated with special focus on the nitrifying community. O2, NO2−, and NO3− profiles in the biofilm were measured with microsensors at various times during the nonaerated-aerated reactor cycle. In the aeration period, nitrification was oxygen limited and restricted to the first 200 μm at the biofilm surface. Additionally, a delayed onset of nitrification aft...

  14. Contribution of Autolysin and Sortase A during Enterococcus faecalis DNA-Dependent Biofilm Development▿ †

    OpenAIRE

    Guiton, Pascale S.; Hung, Chia S.; Kline, Kimberly A.; Roth, Robyn; Kau, Andrew L.; Hayes, Ericka; Heuser, John; Dodson, Karen W.; Caparon, Michael G.; Hultgren, Scott J.

    2009-01-01

    Biofilm production is a major attribute of Enterococcus faecalis clinical isolates. Although some factors, such as sortases, autolysin, and extracellular DNA (eDNA), have been associated with E. faecalis biofilm production, the mechanisms underlying the contributions of these factors to this process have not been completely elucidated yet. In this study we define important roles for the major E. faecalis autolysin (Atn), eDNA, and sortase A (SrtA) during the developmental stages of biofilm fo...

  15. Assessment of biofilm formation in device-associated clinical bacterial isolates in a tertiary level hospital

    OpenAIRE

    Summaiya A Mulla; Sangita Revdiwala

    2011-01-01

    Background: Biofilm formation is a developmental process with intercellular signals that regulate growth. Biofilms contaminate catheters, ventilators, and medical implants; they act as a source of disease for humans, animals, and plants. Aim: In this study we have done quantitative assessment of biofilm formation in device-associated clinical bacterial isolates in response to various concentrations of glucose in tryptic soya broth and with different incubation time. Materials and Methods: The...

  16. Biofilm Formation by the Fungal Pathogen Candida albicans: Development, Architecture, and Drug Resistance

    OpenAIRE

    Chandra, Jyotsna; Kuhn, Duncan M.; Mukherjee, Pranab K.; Hoyer, Lois L.; McCormick, Thomas; Ghannoum, Mahmoud A.

    2001-01-01

    Biofilms are a protected niche for microorganisms, where they are safe from antibiotic treatment and can create a source of persistent infection. Using two clinically relevant Candida albicans biofilm models formed on bioprosthetic materials, we demonstrated that biofilm formation proceeds through three distinct developmental phases. These growth phases transform adherent blastospores to well-defined cellular communities encased in a polysaccharide matrix. Fluorescence and confocal scanning l...

  17. Biofilm Fixed Film Systems

    OpenAIRE

    Dipesh Das; Yung-Tse Hung; Charles Moretti; Hasibul Hasan; Harvey Gullicks

    2011-01-01

    The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, r...

  18. Rheology of biofilms

    OpenAIRE

    Winston, M.; Rupp, C.J.; Vinogradov, A.; Towler, B.W.; Adams, H; Stoodley, P

    2003-01-01

    The paper describes an experimental study concerning the mechanical properties of bacterial biofilms formed from the early dental plaque colonizer Streptoccocus mutans and pond water biofilms. Experiments reported in this paper demonstrate that both types of biofilms exhibit mechanical behavior similar to that of rheological fluids. The time-dependent properties of both biofilms have been modeled using the principles of viscoelasticity theory. The Burger model has been found to accurately re...

  19. Biophysics of Biofilm Infection

    OpenAIRE

    Stewart, Philip S.

    2014-01-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofi...

  20. On growth and flow: bacterial biofilms in porous media

    Science.gov (United States)

    Durham, William; Leombruni, Alberto; Tranzer, Olivier; Stocker, Roman

    2011-11-01

    Bacterial biofilms often occur in porous media, where they play pivotal roles in medicine, industry and the environment. Though flow is ubiquitous in porous media, its effects on biofilm growth have been largely ignored. Using patterned microfluidic devices that simulate unconsolidated soil, we find that the structure of Escherichia coli biofilms undergoes a self-organization mediated by the interaction of growth and flow. Intriguingly, we find that biofilm productivity peaks at intermediate flow rates, when the biofilm is irrigated by a minimum number of preferential flow channels. At larger and smaller flow rates, fluid flows more uniformly through the matrix, but productivity drops due to removal by shear and reduced nutrient transport, respectively. These dynamics are correctly predicted by a simple network model. The observed tradeoff between growth and flow may have important consequences on biofilm-mediated processes such as biochemical cycling, antibiotic resistance and water filtration.

  1. Morphological responses of Legionella pneumophila biofilm to nanoparticle exposure.

    Science.gov (United States)

    Stojak, Amber R; Raftery, Tara; Klaine, Stephen J; McNealy, Tamara L

    2011-12-01

    Legionella pneumophila is a pathogenic bacterium that forms biofilms in natural and anthropogenic habitats. This feature not only facilitates colonization but also limits the effectiveness of biocides. L. pneumophila was exposed to three sizes of citrate-capped gold nanospheres in both planktonic and biofilm stages. TEM micrographs indicated that gold nanoparticles (AuNPs) adsorbed to the bacterial cell surface, were absorbed into the cells, aggregated within the cells, and integrated into the extrapolymeric matrix of the biofilm. Both 4 and 18 nm, but not 50 nm AuNPs caused an alteration of biofilm morphology. Treatment with 20 nm polystyrene spheres did not induce these changes suggesting that the response was a result of the gold and not just the presence of the nanosphere. The morphological changes observed in the biofilm suggest that aquatic ecosystems may be affected by nanoparticle exposure. This may compromise ecosystem functions such as nutrient cycling facilitated by natural biofilms. PMID:21294606

  2. Biofilms: A microbial home

    OpenAIRE

    Chandki, Rita; Banthia, Priyank; Banthia, Ruchi

    2011-01-01

    Microbial biofilms are mainly implicated in etiopathogenesis of caries and periodontal disease. Owing to its properties, these pose great challenges. Continuous and regular disruption of these biofilms is imperative for prevention and management of oral diseases. This essay provides a detailed insight into properties, mechanisms of etiopathogenesis, detection and removal of these microbial biofilms.

  3. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  4. Bacillus mojavensis biofilm formation and biosurfactant production using a Laser Ablation Electrospray Ionization System

    Science.gov (United States)

    Biofilms are important extracellular polymeric compounds produced by bacteria that are useful for developmental phases including motility, swarming, signaling processes, and for hydrophobic nutrient utilization, all of which are important attributes for endophytic bacteria with biocontrol potential....

  5. Developmental Dyspraxia

    Science.gov (United States)

    ... Enhancing Diversity Find People About NINDS NINDS Developmental Dyspraxia Information Page Synonym(s): Dyspraxia Table of Contents (click ... being done? Clinical Trials Organizations What is Developmental Dyspraxia? Developmental dyspraxia is a disorder characterized by an ...

  6. The Transient Role for Calcium and Vitamin D during the Developmental Hair Follicle Cycle.

    Science.gov (United States)

    Mady, Leila J; Ajibade, Dare V; Hsaio, Connie; Teichert, Arnaud; Fong, Chak; Wang, Yongmei; Christakos, Sylvia; Bikle, Daniel D

    2016-07-01

    The role for 1,25-dihydroxyvitamin D3 and/or calcium in hair follicle cycling is not clear despite their impact on keratinocyte differentiation. We found that calbindin-D9k null (knockout) pups generated from calbindin-D9k knockout females fed a vitamin D-deficient, low-calcium (0.47%) diet develop transient alopecia. The pups appear phenotypically normal until 13 days of age, after which the hair progressively sheds in a caudocephalic direction, resulting in truncal alopecia totalis by 20-23 days, with spontaneous recovery by 28 days. Histological studies showed markedly dystrophic hair follicles, loss of hair shafts with increased apoptosis, and hyperplastic epidermis during this time. Ha1 expression is lost during catagen in all mice but recovers more slowly in the knockout pups on the vitamin D-deficient, low-calcium diet. Keratin 1 expression is reduced throughout days 19-28. The expressions of involucrin, loricrin, and cathepsin L is initially increased by day 19 but subsequently falls below those of controls by day 23, as does that of desmoglein 3. Feeding the mothers a high-vitamin D/high-calcium (2%)/lactose (20%) diet lessens the phenotype, and knockout pups fostered to mothers fed a normal diet do not develop alopecia. Our results show that in calbindin-D9k knockout pups, a maternal vitamin D-deficient/low-calcium diet leads to transient noncicatricial alopecia. PMID:26994969

  7. In vitro developmental competence of pig nuclear transferred embryos: effects of GFP transfection, refrigeration, cell cycle synchronization and shapes of donor cells.

    Science.gov (United States)

    Zhang, Yun-Hai; Pan, Deng-Ke; Sun, Xiu-Zhu; Sun, Guo-Jie; Liu, Xiao-Hui; Wang, Xiao-Bo; Tian, Xing-Hua; Li, Yan; Dai, Yun-Ping; Li, Ning

    2006-08-01

    The present study was designed to evaluate the feasibility of producing pig transgenic blastocysts expressing enhanced green fluorescent protein (GFP) and to examine the effects of shape and preparation methods of donor cells on in vitro developmental ability of pig nuclear transferred embryos (NTEs). In experiment 1, the effect of GFP transfection on development of pig NTEs was evaluated. The cleavage and blastocyst rates showed no significant difference between NTEs derived from transfected and non-transfected donors. In experiment 2, the effect of different nuclear donor preparation methods on in vitro development of NTEs was examined. The cleavage rate showed no statistically significant differences among three preparation methods. The blastocyst rates of donor cells treated once at -4 degrees C and those of freshly digested cells were similar to each other (26.3% vs 17.9%). The lowest blastocyst rates (5.88%) were observed when cells cryopreserved at -196 degrees C were used as donors. In experiment 3, the effect of different cell cycle synchronization methods on the in vitro development potential of pig NTEs was evaluated. The cleavage rate of NTEs derived from cycling cells was much better than that of NTEs derived from serum-starved cells (64.4% vs 50.5%, p refrigerated pig GFP-transfected cells could be used as donors in nuclear transfer and these NTEs could be effectively developed to blastocyst stage; (ii) serum starvation of GFP-transfected cells is not required for preimplantation development of pig NTEs; and (iii) a rough surface of GFP-transfected donor cells affects fusion rate negatively but has no influence on the cleavage rate or blastocyst rate of pig NTEs. PMID:16822335

  8. A trait-based approach to bacterial biofilms in soil.

    Science.gov (United States)

    Lennon, Jay T; Lehmkuhl, Brent K

    2016-09-01

    A trait-based approach focuses on attributes of taxa that influence the structure and function of communities. Biofilm production is a common trait among microorganisms in a wide range of environmental, engineered, and host-associated ecosystems. Here, we used Pseudomonas aeruginosa to link biofilm production to moisture availability, a common stressor for microorganisms in soil. First, we demonstrate that biofilm production is a response trait that influences the desiccation phenotype by increasing survivorship, shifting the niche space, and reducing the minimum water potential needed to sustain a net-positive growth rate (Ψ*). Although the allocation of resources to biofilms is thought to be costly, we found no evidence for a trade-off between fitness and biofilm production along a soil moisture gradient. Second, we demonstrated that biofilm production is an effect trait. Specifically, biofilm production increased water retention in soils that were exposed to a series of drying and rewetting cycles. Although this form of niche construction should affect species interactions, we found no evidence that the benefits of biofilm production were extended to another co-occurring soil bacterium. Together, our results support the view that biofilm production is an important trait that may contribute to the distribution, abundance, and functioning of microorganisms in soils. PMID:27104876

  9. Electrical spiking in bacterial biofilms

    OpenAIRE

    Masi, Elisa; Ciszak, Marzena; Santopolo, Luisa; Frascella, Arcangela; Giovannetti, Luciana; Marchi, Emmanuela; Viti, Carlo; Mancuso, Stefano

    2015-01-01

    In nature, biofilms are the most common form of bacterial growth. In biofilms, bacteria display coordinated behaviour to perform specific functions. Here, we investigated electrical signalling as a possible driver in biofilm sociobiology. Using a multi-electrode array system that enables high spatio-temporal resolution, we studied the electrical activity in two biofilm-forming strains and one non-biofilm-forming strain. The action potential rates monitored during biofilm-forming bacterial gro...

  10. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display a...... remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because the...... use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  11. d-Amino Acids Indirectly Inhibit Biofilm Formation in Bacillus subtilis by Interfering with Protein Synthesis

    OpenAIRE

    Leiman, Sara A.; May, Janine M.; Lebar, Matthew D.; Kahne, Daniel; Kolter, Roberto; Losick, Richard

    2013-01-01

    The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of d-leucine, d-methionine, d-tryptophan, and d-tyrosine and was reported to inhibit biofilm formation via the incorporation of these d-amino acids into the cell wall. Here, we show that l-amino acids were ...

  12. Bacteriophages and Biofilms

    OpenAIRE

    Harper, David R; Helena M. R. T. Parracho; James Walker; Richard Sharp; Gavin Hughes; Maria Werthén; Susan Lehman; Sandra Morales

    2014-01-01

    Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this commo...

  13. Efficacy of changing physics misconceptions held by ninth grade students at varying developmental levels through teacher addition of a prediction phase to the learning cycle

    Science.gov (United States)

    Oglesby, Michael L.

    This study examines the efficacy in correcting student misconceptions about science concepts by using the pedagogical method of asking students to make a prediction in science laboratory lessons for students within pre-formal, transitional, or formal stages of cognitive development. The subjects were students (n = 235) enrolled in ninth grade physical science classes (n=15) in one high school of an urban profile school district. The four freshmen physical science teachers who were part of the study routinely taught the concepts in the study as a part of the normal curriculum during the time of the school year in which the research was conducted. Classrooms representing approximately half of the students were presented with a prediction phase at the start of each of ten learning cycle lesson. The other classrooms were not presented with a prediction phase. Students were pre and post tested using a 40 question instrument based on the Force Concept Inventory augmented with questions on the concepts taught during the period of the study. Students were also tested using the Test of Scientific Reasoning to determine their cognitive developmental level. Results showed 182 of the students to be cognitively pre-formal, 50 to be transitional, and only 3 to be cognitively formal. There were significantly higher gains (p .05) for the total students having a prediction phase compared to those not having a prediction phase. Neither were there significant gains (p > .05) within the pre-formal group or within the transitional group. There were too few students within the formal group for meaningful results.

  14. Host Responses to Biofilm.

    Science.gov (United States)

    Watters, C; Fleming, D; Bishop, D; Rumbaugh, K P

    2016-01-01

    From birth to death the human host immune system interacts with bacterial cells. Biofilms are communities of microbes embedded in matrices composed of extracellular polymeric substance (EPS), and have been implicated in both the healthy microbiome and disease states. The immune system recognizes many different bacterial patterns, molecules, and antigens, but these components can be camouflaged in the biofilm mode of growth. Instead, immune cells come into contact with components of the EPS matrix, a diverse, hydrated mixture of extracellular DNA (bacterial and host), proteins, polysaccharides, and lipids. As bacterial cells transition from planktonic to biofilm-associated they produce small molecules, which can increase inflammation, induce cell death, and even cause necrosis. To survive, invading bacteria must overcome the epithelial barrier, host microbiome, complement, and a variety of leukocytes. If bacteria can evade these initial cell populations they have an increased chance at surviving and causing ongoing disease in the host. Planktonic cells are readily cleared, but biofilms reduce the effectiveness of both polymorphonuclear neutrophils and macrophages. In addition, in the presence of these cells, biofilm formation is actively enhanced, and components of host immune cells are assimilated into the EPS matrix. While pathogenic biofilms contribute to states of chronic inflammation, probiotic Lactobacillus biofilms cause a negligible immune response and, in states of inflammation, exhibit robust antiinflammatory properties. These probiotic biofilms colonize and protect the gut and vagina, and have been implicated in improved healing of damaged skin. Overall, biofilms stimulate a unique immune response that we are only beginning to understand. PMID:27571696

  15. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Klausen, Mikkel; Aaes-Jorgensen, A.; Molin, Søren; Tolker-Nielsen, Tim

    2003-01-01

    Detailed knowledge of the developmental process from single cells scattered on a surface to complex multicellular biofilm structures is essential in order to create strategies to control biofilm development. In order to study bacterial migration patterns during Pseudomonas aeruginosa biofilm...... development, we have performed an investigation with time-lapse confocal laser scanning microscopy of biofilms formed by various combinations of colour-coded P. aeruginosa wild type and motility mutants. We show that mushroom-shaped multicellular structures in P. aeruginosa biofilms can form in a sequential...... process involving a non-motile bacterial subpopulation and a migrating bacterial subpopulation. The non-motile bacteria form the mushroom stalks by growth in certain foci of the biofilm. The migrating bacteria form the mushroom caps by climbing the stalks and aggregating on the tops in a process which is...

  16. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  17. Meningococcal biofilm formation

    DEFF Research Database (Denmark)

    Lappann, M.; Haagensen, Janus Anders Juul; Claus, H.;

    2006-01-01

    We show that in a standardized in vitro flow system unencapsulated variants of genetically diverse lineages of Neisseria meningitidis formed biofilms, that could be maintained for more than 96 h. Biofilm cells were resistant to penicillin, but not to rifampin or ciprofloxacin. For some strains......, microcolony formation within biofilms was observed. Microcolony formation in strain MC58 depended on a functional copy of the pilE gene encoding the pilus subunit pilin, and was associated with twitching of cells. Nevertheless, unpiliated pilE mutants formed biofilms showing that attachment and accumulation...... PilX alleles was identified among genetically diverse meningococcal strains. PilX alleles differed in their propensity to support autoaggregation of cells in suspension, but not in their ability to support microcolony formation within biofilms in the continuous flow system....

  18. Initial Phases of Biofilm Formation in Shewanella oneidensis MR-1

    OpenAIRE

    Thormann, Kai M; Saville, Renée M.; Shukla, Soni; Pelletier, Dale A.; Spormann, Alfred M.

    2004-01-01

    Shewanella oneidensis MR-1 is a facultative Fe(III)- and Mn(IV)-reducing microorganism and serves as a model for studying microbially induced dissolution of Fe or Mn oxide minerals as well as biogeochemical cycles. In soil and sediment environments, S. oneidensis biofilms form on mineral surfaces and are critical for mediating the metabolic interaction between this microbe and insoluble metal oxide phases. In order to develop an understanding of the molecular basis of biofilm formation, we in...

  19. Insights into xanthomonas axonopodis pv. Citri biofilm through proteomics

    KAUST Repository

    Zimaro, Tamara

    2013-08-07

    Background: Xanthomonas axonopodis pv. Citri (X. a. pv. Citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. Citri this process is a requirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. Results: In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. Citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. Citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. Citri mature biofilm and planktonic cells were evaluated by

  20. Compaction and relaxation of biofilms

    KAUST Repository

    Valladares Linares, R.

    2015-06-18

    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  1. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the...... benefits and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial...

  2. Co-occurence of filamentation defects and impaired biofilms in Candida albicans protein kinase mutants.

    Science.gov (United States)

    Konstantinidou, Nina; Morrissey, John Patrick

    2015-12-01

    Pathogenicity of Candida albicans is linked with its developmental stages, notably the capacity switch from yeast-like to hyphal growth, and to form biofilms on surfaces. To better understand the cellular processes involved in C. albicans development, a collection of 63 C. albicans protein kinase mutants was screened for biofilm formation in a microtitre plate assay. Thirty-eight mutants displayed some degree of biofilm impairment, with 20 categorised as poor biofilm formers. All the poor biofilm formers were also defective in the switch from yeast to hyphae, establishing it as a primary defect. Five genes, VPS15, IME2, PKH3, PGA43 and CEX1, encode proteins not previously reported to influence hyphal development or biofilm formation. Network analysis established that individual components of some processes, most interestingly MAP kinase pathways, are not required for biofilm formation, most likely indicating functional redundancy. Mutants were also screened for their response to bacterial supernatants and it was found that Pseudomonas aeruginosa supernatants inhibited biofilm formation in all mutants, regardless of the presence of homoserine lactones (HSLs). In contrast, Candida morphology was only affected by supernatant containing HSLs. This confirms the distinct HSL-dependent inhibition of filamentation and the HSL-independent impairment of biofilm development by P. aeruginosa. PMID:26472756

  3. Interactions in multispecies biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Ren, Dawei; Bjarnsholt, Thomas;

    2014-01-01

    The recent focus on complex bacterial communities has led to the recognition of interactions across species boundaries. This is particularly pronounced in multispecies biofilms, where synergistic interactions impact the bacterial distribution and overall biomass produced. Importantly, in a number...... of settings, the interactions in a multispecies biofilm affect its overall function, physiology, or surroundings, by resulting in enhanced resistance, virulence, or degradation of pollutants, which is of significant importance to human health and activities. The underlying mechanisms causing these...

  4. Control of Candida albicans Metabolism and Biofilm Formation by Pseudomonas aeruginosa Phenazines

    OpenAIRE

    Morales, Diana K.; Grahl, Nora; Okegbe, Chinweike; Dietrich, Lars E. P.; Jacobs, Nicholas J.; Hogan, Deborah A.

    2013-01-01

    ABSTRACT Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentra...

  5. Biofilm dispersion in Pseudomonas aeruginosa.

    Science.gov (United States)

    Kim, Soo-Kyoung; Lee, Joon-Hee

    2016-02-01

    In recent decades, many researchers have written numerous articles about microbial biofilms. Biofilm is a complex community of microorganisms and an example of bacterial group behavior. Biofilm is usually considered a sessile mode of life derived from the attached growth of microbes to surfaces, and most biofilms are embedded in self-produced extracellular matrix composed of extracellular polymeric substances (EPSs), such as polysaccharides, extracellular DNAs (eDNA), and proteins. Dispersal, a mode of biofilm detachment indicates active mechanisms that cause individual cells to separate from the biofilm and return to planktonic life. Since biofilm cells are cemented and surrounded by EPSs, dispersal is not simple to do and many researchers are now paying more attention to this active detachment process. Unlike other modes of biofilm detachment such as erosion or sloughing, which are generally considered passive processes, dispersal occurs as a result of complex spatial differentiation and molecular events in biofilm cells in response to various environmental cues, and there are many biological reasons that force bacterial cells to disperse from the biofilms. In this review, we mainly focus on the spatial differentiation of biofilm that is a prerequisite for dispersal, as well as environmental cues and molecular events related to the biofilm dispersal. More specifically, we discuss the dispersal-related phenomena and mechanisms observed in Pseudomonas aeruginosa, an important opportunistic human pathogen and representative model organism for biofilm study. PMID:26832663

  6. Zinc sorption by a bacterial biofilm.

    Science.gov (United States)

    Toner, Brandy; Manceau, Alain; Marcus, Matthew A; Millet, Dylan B; Sposito, Garrison

    2005-11-01

    Microbial biofilms are present in soils, sediments, and natural waters. They contain bioorganic metal-complexing functional groups and are thought to play an important role in metal cycling in natural and contaminated environments. In this study, the metal-complexing functional groups present within a suspension of bacterial cell aggregates embedded in extracellular polymeric substances (EPS) were identified in Zn adsorption experiments conducted at pH 6.9 with the freshwater and soil bacterium Pseudomonas putida. The adsorption data were fit with the van Bemmelen-Freundlich model. The molecular speciation of Zn within the biofilm was examined with Zn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The Zn EXAFS data were analyzed by shell-by-shell fitting and linear least-squares fitting with reference spectra. Zinc sorption to the biofilm was attributed to predominantly Zn--phosphoryl (85 +/- 10 mol %) complexes, with a smaller contribution to sorption from carboxyl-type complexes (23 +/- 10 mol %). The results of this study spectroscopically confirm the importance of phosphoryl functional groups in Zn sorption by a bacterial biofilm at neutral pH. PMID:16294865

  7. Biofilms and the food industry

    Directory of Open Access Journals (Sweden)

    Nathanon Trachoo

    2003-11-01

    Full Text Available In the past, interest in biofilms was limited to research related to water distribution systems, waste water treatment and dental plaques. Biofilm has become a more popular research topic in many other areas in recent years including food safety. Biofilm formation can compromise the sanitation of food surfaces and environmental surfaces by spreading detached organisms to other areas of processing plants. Unfortunately, these detached organisms are not similar to normal microorganisms suspended in an aquatic environment but are more resistant to several stresses or microbial inactivation including some food preservation methods. Microstructures of biofilms as revealed by different types of microscopic techniques showed that biofilms are highly complex and consist of many symbiotic organisms, some of which are human pathogens. This article reviewed the process of biofilm formation, the significance of biofilms on food or food contact surfaces, their ability to protect foodborne pathogens from environmental stresses and recent methods for the study of biofilms on food contact surfaces.

  8. Biofilm development in membrane bioreactors

    OpenAIRE

    Savnik, Veronika

    2010-01-01

    Prevention of biofilm development and its removal has crucial meaning in membrane reactor. Biofilm causes pore blocking on membranes, which causes a drop in efficiency of mixed liquor filtration and consequently deteriorates the efficiency of whole membrane bioreactor. This thesis deals with factors that affect biofilm development in membrane bioreactors. Structure and growth of biofilm are presented from its initial attachment of individual particles, their parameters of adhesion, hydrodynam...

  9. Mucosal biofilms of Candida albicans

    OpenAIRE

    Ganguly, Shantanu; Mitchell, Aaron P.

    2011-01-01

    Biofilms are microbial communities that form on surfaces and are embedded in an extracellular matrix. C. albicans forms pathogenic mucosal biofilms that are evoked by changes in host immunity or mucosal ecology. Mucosal surfaces are inhabited by many microbial species; hence these biofilms are polymicrobial. Several recent studies have applied paradigms of biofilm analysis to study mucosal C. albicans infections. These studies reveal that the Bcr1 transcription factor is a master regulator of...

  10. Microalgal biofilms for wastewater treatment

    OpenAIRE

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scenario analysis. Then biofilms were grown on wastewater treatment plant effluent in horizontal flow cells under different nutrient loads to determine the maximum uptake capacity of the biofilms for N...

  11. Bioremediation of hydrocarbons contaminating sewage effluent using man-made biofilms: effects of some variables.

    Science.gov (United States)

    Al-Mailem, D M; Kansour, M K; Radwan, S S

    2014-11-01

    Biofilm samples were established on glass slides by submerging them in oil-free and oil-containing sewage effluent for a month. In batch cultures, such biofilms were effective in removing crude oil, pure n-hexadecane, and pure phenanthrene contaminating sewage effluent. The amounts of the removed hydrocarbons increased with increasing biofilm surface area exposed to the effluent. On the other hand, addition of the reducing agent thioglycollate dramatically inhibited the hydrocarbon bioremediation potential of the biofilms. The same biofilm samples removed contaminating hydrocarbons effectively in three successive batch bioremediation cycles but started to become less effective in the cycles thereafter, apparently due to mechanical biofilm loss during successive transfers. As major hydrocarbonoclastic bacteria, the biofilms harbored species belonging to the genera Pseudomonas, Microvirga, Zavarzinia, Mycobacterium, Microbacterium, Stenotrophomonas, Gordonia, Bosea, Sphingobium, Brachybacterium, and others. The nitrogen fixer Azospirillum brasilense and the microalga Ochromonas distigma were also present; they seemed to enrich the biofilms, with nitrogenous compounds and molecular oxygen, respectively, which are known to enhance microbiological hydrocarbon degradation. It was concluded that man-made biofilms based upon sewage microflora are promising tools for bioremediation of hydrocarbons contaminating sewage effluent. PMID:25146193

  12. D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis.

    Science.gov (United States)

    Leiman, Sara A; May, Janine M; Lebar, Matthew D; Kahne, Daniel; Kolter, Roberto; Losick, Richard

    2013-12-01

    The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of D-leucine, D-methionine, D-tryptophan, and D-tyrosine and was reported to inhibit biofilm formation via the incorporation of these D-amino acids into the cell wall. Here, we show that L-amino acids were able to specifically reverse the inhibitory effects of their cognate D-amino acids. We also show that D-amino acids inhibited growth and the expression of biofilm matrix genes at concentrations that inhibit biofilm formation. Finally, we report that the strain routinely used to study biofilm formation has a mutation in the gene (dtd) encoding D-tyrosyl-tRNA deacylase, an enzyme that prevents the misincorporation of D-amino acids into protein in B. subtilis. When we repaired the dtd gene, B. subtilis became resistant to the biofilm-inhibitory effects of D-amino acids without losing the ability to incorporate at least one noncanonical D-amino acid, D-tryptophan, into the peptidoglycan peptide side chain. We conclude that the susceptibility of B. subtilis to the biofilm-inhibitory effects of D-amino acids is largely, if not entirely, due to their toxic effects on protein synthesis. PMID:24097941

  13. Naturally Ocurring Polyphosphate-accumulating Bacteria in Benthic Biofilms

    Science.gov (United States)

    Locke, N. A.; Saia, S. M.; Walter, M. T.; Carrick, H. J.; Buda, A. R.; Regan, J. M.

    2014-12-01

    Polyphosphate accumulating organisms (PAOs), known to store excess phosphorus (P) as polyphosphate (poly-P), influence P transport in the environment. Enhanced biological phosphorus removal (EBPR) from wastewater has long served as a basis to study bacterial PAOs, yet little research has genetically identified similar organisms in natural settings. Aerobic/anaerobic cycles, used to select for PAOs in EBPR, can result from changing environmental conditions such as night/day cycles for benthic biofilms. Benthic biofilms from eight Pennsylvanian streams were studied for naturally-occurring bacterial PAOs similar to those typically found in EBPR systems. PAOs were confirmed in the benthic biofilms by a characteristic yellow fluorescent emission from DAPI staining. Cells containing yellow fluorescence were separated from the rest of the sample using a flow cytometer, resulting in a physically enriched culture of PAOs from the benthic biofilms. Amplicon-based metagenomic sequencing will reveal the phylogeny of bacteria responsible for poly-P accumulation in these benthic biofilms. Sequencing data will be used to develop fluorescent in-situ hybridization (FISH) probes, and hybridizations will be performed on DAPI-stained cells to confirm poly-P accumulation by targeted phylotypes. Identifying PAOs in natural settings is a critical step towards studying environments that support high concentrations of PAOs, serving as significant factors in the P cycle. PAOs can then be connected to P transport models to help understand and mitigate P pollution in agricultural watersheds.

  14. Biofilm Cohesive Strength as a Basis for Biofilm Recalcitrance: Are Bacterial Biofilms Overdesigned?

    OpenAIRE

    Srijan Aggarwal; Philip S. Stewart; Hozalski, Raymond M.

    2016-01-01

    Bacterial biofilms are highly resistant to common antibacterial treatments, and several physiological explanations have been offered to explain the recalcitrant nature of bacterial biofilms. Herein, a biophysical aspect of biofilm recalcitrance is being reported on. While engineering structures are often overdesigned with a factor of safety (FOS) usually under 10, experimental measurements of biofilm cohesive strength suggest that the FOS is on the order of thousands. In other words, bacteria...

  15. Developmental Disabilities

    Science.gov (United States)

    Developmental disabilities are severe, long-term problems. They may be physical, such as blindness. They may affect mental ability, such as learning disorders. Or the problem can be both physical and mental, such as Down ...

  16. Biofilms in wounds

    DEFF Research Database (Denmark)

    Cooper, R A; Bjarnsholt, Thomas; Alhede, M

    2014-01-01

    Following confirmation of the presence of biofilms in chronic wounds, the term biofilm became a buzzword within the wound healing community. For more than a century pathogens have been successfully isolated and identified from wound specimens using techniques that were devised in the nineteenth...... century by Louis Pasteur and Robert Koch. Although this approach still provides valuable information with which to help diagnose acute infections and to select appropriate antibiotic therapies, it is evident that those organisms isolated from clinical specimens with the conditions normally used in...... extracellular polymeric substances (EPS). Cells within such aggregations (or biofilms) display varying physiological and metabolic properties that are distinct from those of planktonic cells, and which contribute to their persistence. There are many factors that influence healing in wounds and the discovery of...

  17. Systems approaches to predict the functions of glycoside hydrolases during the life cycle of Aspergillus niger using developmental mutants ∆brlA and ∆flbA.

    Directory of Open Access Journals (Sweden)

    Jolanda M van Munster

    Full Text Available BACKGROUND: The filamentous fungus Aspergillus niger encounters carbon starvation in nature as well as during industrial fermentations. In response, regulatory networks initiate and control autolysis and sporulation. Carbohydrate-active enzymes play an important role in these processes, for example by modifying cell walls during spore cell wall biogenesis or in cell wall degradation connected to autolysis. RESULTS: In this study, we used developmental mutants (ΔflbA and ΔbrlA which are characterized by an aconidial phenotype when grown on a plate, but also in bioreactor-controlled submerged cultivations during carbon starvation. By comparing the transcriptomes, proteomes, enzyme activities and the fungal cell wall compositions of a wild type A. niger strain and these developmental mutants during carbon starvation, a global overview of the function of carbohydrate-active enzymes is provided. Seven genes encoding carbohydrate-active enzymes, including cfcA, were expressed during starvation in all strains; they may encode enzymes involved in cell wall recycling. Genes expressed in the wild-type during starvation, but not in the developmental mutants are likely involved in conidiogenesis. Eighteen of such genes were identified, including characterized sporulation-specific chitinases and An15g02350, member of the recently identified carbohydrate-active enzyme family AA11. Eight of the eighteen genes were also expressed, independent of FlbA or BrlA, in vegetative mycelium, indicating that they also have a role during vegetative growth. The ΔflbA strain had a reduced specific growth rate, an increased chitin content of the cell wall and specific expression of genes that are induced in response to cell wall stress, indicating that integrity of the cell wall of strain ΔflbA is reduced. CONCLUSION: The combination of the developmental mutants ΔflbA and ΔbrlA resulted in the identification of enzymes involved in cell wall recycling and sporulation

  18. Controlled biomass removal - the key parameter to achieve enhanced biological phosphorus removal in biofilm systems

    DEFF Research Database (Denmark)

    Morgenroth, E.

    1999-01-01

    In contrast to enhanced biological phosphorus removal (EBPR) in activated sludge systems mass transfer processes have a major influence on overall phosphorus removal in biofilm reactors. Based on results from a laboratory scale sequencing batch biofilm reactor (SBBR) and from a mathematical model......) had only a minor effect on overall phosphorus removal. Soluble components fully penetrate the biofilm at certain times during the SBBR cycle as a consequence of SBBR operation with large concentration variations over the cycle time. The limiting processes for EBPR is the efficient removal...... of phosphorus rich biomass from the reactor. Biomass at the base of the biofilm that is not removed during backwashing will release accumulated phosphorus due to lysis or endogenous respiration and will not contribute to net phosphorus removal. For efficient operation of EBPR in biofilm systems regular...

  19. Assessment of biofilm formation in device-associated clinical bacterial isolates in a tertiary level hospital

    Directory of Open Access Journals (Sweden)

    Summaiya A Mulla

    2011-01-01

    Full Text Available Background: Biofilm formation is a developmental process with intercellular signals that regulate growth. Biofilms contaminate catheters, ventilators, and medical implants; they act as a source of disease for humans, animals, and plants. Aim: In this study we have done quantitative assessment of biofilm formation in device-associated clinical bacterial isolates in response to various concentrations of glucose in tryptic soya broth and with different incubation time. Materials and Methods: The study was carried out on 100 positive bacteriological cultures of medical devices, which were inserted in hospitalized patients. The bacterial isolates were processed as per microtitre plate method with tryptic soya broth alone and with varying concentrations of glucose and were observed in response to time. Results: Majority of catheter cultures were positive. Out of the total 100 bacterial isolates tested, 88 of them were biofilm formers. Incubation period of 16-20 h was found to be optimum for biofilm development. Conclusions: Availability of nutrition in the form of glucose enhances the biofilm formation by bacteria. Biofilm formation depends on adherence of bacteria to various surfaces. Time and availability of glucose are important factors for assessment of biofilm progress.

  20. Antibacterial Effect of Dental Adhesive Containing Dimethylaminododecyl Methacrylate on the Development of Streptococcus mutans Biofilm

    Directory of Open Access Journals (Sweden)

    Suping Wang

    2014-07-01

    Full Text Available Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05. In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives.

  1. High-throughput dental biofilm growth analysis for multiparametric microenvironmental biochemical conditions using microfluidics.

    Science.gov (United States)

    Lam, Raymond H W; Cui, Xin; Guo, Weijin; Thorsen, Todd

    2016-04-26

    Dental biofilm formation is not only a precursor to tooth decay, but also induces more serious systematic health problems such as cardiovascular disease and diabetes. Understanding the conditions promoting colonization and subsequent biofilm development involving complex bacteria coaggregation is particularly important. In this paper, we report a high-throughput microfluidic 'artificial teeth' device offering controls of multiple microenvironmental factors (e.g. nutrients, growth factors, dissolved gases, and seeded cell populations) for quantitative characteristics of long-term dental bacteria growth and biofilm development. This 'artificial teeth' device contains multiple (up to 128) incubation chambers to perform parallel cultivation and analyses (e.g. biofilm thickness, viable-dead cell ratio, and spatial distribution of multiple bacterial species) of bacteria samples under a matrix of different combinations of microenvironmental factors, further revealing possible developmental mechanisms of dental biofilms. Specifically, we applied the 'artificial teeth' to investigate the growth of two key dental bacteria, Streptococci species and Fusobacterium nucleatum, in the biofilm under different dissolved gas conditions and sucrose concentrations. Together, this high-throughput microfluidic platform can provide extended applications for general biofilm research, including screening of the biofilm properties developing under combinations of specified growth parameters such as seeding bacteria populations, growth medium compositions, medium flow rates and dissolved gas levels. PMID:27045372

  2. Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Alhede, Maria; Bjarnsholt, Thomas; Givskov, Michael;

    2014-01-01

    biofilms, which protect the aggregated, biopolymer-embedded bacteria from the detrimental actions of antibiotic treatments and host immunity. A key component in the protection against innate immunity is rhamnolipid, which is a quorum sensing (QS)-regulated virulence factor. QS is a cell-to-cell signaling...... mechanism used to coordinate expression of virulence and protection of aggregated biofilm cells. Rhamnolipids are known for their ability to cause hemolysis and have been shown to cause lysis of several cellular components of the human immune system, for example, macrophages and polymorphonuclear leukocytes...

  3. Manipulation of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  4. Manipulatiaon of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Burkhalter, R.; Macnaughton, S.J.; Palmer, R.J.; Smith, C.A.; Whitaker, K.W.; White, D.C.; Zinn, M.; kirkegaard, R.

    1998-08-09

    The Biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms by generated. The most effective monitoring of biofilm formation, succession and desquamation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in the distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  5. Streptococcus oligofermentans Inhibits Streptococcus mutans in Biofilms at Both Neutral pH and Cariogenic Conditions.

    Directory of Open Access Journals (Sweden)

    Xudong Bao

    Full Text Available Homeostasis of oral microbiota can be maintained through microbial interactions. Previous studies showed that Streptococcus oligofermentans, a non-mutans streptococci frequently isolated from caries-free subjects, inhibited the cariogenic Streptococcus mutans by the production of hydrogen peroxide (HP. Since pH is a critical factor in caries formation, we aimed to study the influence of pH on the competition between S. oligofermentans and S. mutans in biofilms. To this end, S. mutans and S. oligofermentans were inoculated alone or mixed at 1:1 ratio in buffered biofilm medium in a 96-well active attachment model. The single- and dual-species biofilms were grown under either constantly neutral pH or pH-cycling conditions. The latter includes two cycles of 8 h neutral pH and 16 h pH 5.5, used to mimic cariogenic condition. The 48 h biofilms were analysed for the viable cell counts, lactate and HP production. The last two measurements were carried out after incubating the 48 h biofilms in buffers supplemented with 1% glucose (pH 7.0 for 4 h. The results showed that S. oligofermentans inhibited the growth of S. mutans in dual-species biofilms under both tested pH conditions. The lactic acid production of dual-species biofilms was significantly lower than that of single-species S. mutans biofilms. Moreover, dual-species and single-species S. oligofermentans biofilms grown under pH-cycling conditions (with a 16 h low pH period produced a significantly higher amount of HP than those grown under constantly neutral pH. In conclusion, S. oligofermentans inhibited S. mutans in biofilms not only under neutral pH, but also under pH-cycling conditions, likely through HP production. S. oligofermentans may be a compelling probiotic candidate against caries.

  6. Resistance of Listeria monocytogenes Biofilms to Sanitizing Agents in a Simulated Food Processing Environment▿ †

    OpenAIRE

    Pan, Y.; Breidt, F.; Kathariou, S.

    2006-01-01

    The objective of this study was to evaluate the resistance of biofilms of Listeria monocytogenes to sanitizing agents under laboratory conditions simulating a food processing environment. Biofilms were initially formed on stainless steel and Teflon coupons using a five-strain mixture of L. monocytogenes. The coupons were then subjected to repeated 24-h daily cycles. Each cycle consisted of three sequential steps: (i) a brief (60 s) exposure of the coupons to a sanitizing agent (a mixture of p...

  7. Biofilm in endodontics: A review

    Science.gov (United States)

    Jhajharia, Kapil; Parolia, Abhishek; Shetty, K Vikram; Mehta, Lata Kiran

    2015-01-01

    Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilms’ formation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to

  8. Mechanical destruction of pseudomonas aeruginosa biofilms by ultrasound exposure

    Science.gov (United States)

    Xu, Jin; Bigelow, Timothy A.; Halverson, Larry J.; Middendorf, Jill; Rusk, Ben

    2012-10-01

    Medical implants are prone to colonization by bacterial biofilms, which are highly resistant to antibiotics. Normally, surgery is required to replace the infected implant. One promising non-invasive treatment option is to destroy the biofilm with high-intensity focused ultrasound (HIFU) exposure. In our study, Pseudomonas aeruginosa bacterial biofilms were grown on graphite disks in a flow chamber for three days prior to exposing them to ultrasound pulses of varying duration or burst period. The pulses were 20 cycles in duration at a frequency of 1.1 MHz from a spherically focused transducer (f/1, 63 mm focal length), creating peak compressional and rarefactional pressures at the disk surface of 30 and 13 MPa, respectively. P. aeruginosa were tagged with GFP and cells killed by HIFU were visualized using propidium iodide, which permeates membranes of dead cells, to aid determining the extent of biofilm destruction and whether cells are alive or dead. Our results indicate that a 30-s exposure and 6-ms pulse period or those combinations with the same number of pulses, were sufficient to destroy the biofilm and to kill the remaining cells. Reducing the number of pulses decreased biofilm destruction, leaving more dead and live bacteria on the surface.

  9. The Root Canal Biofilm

    NARCIS (Netherlands)

    Sluis, van der L.W.M.; Boutsioukis, C.; Jiang, L.M.; Macedo, R.; Verhaagen, B.; Versluis, M.; Chávez de Paz, E.; Sedgley, C.M.; Kishen, A.

    2015-01-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products from the root canal wall, their removal out of the root cana

  10. Anti-biofilm activities from marine cold adapted bacteria against staphylococci and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Rosanna ePapa

    2015-12-01

    Full Text Available Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules.The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules.The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules

  11. Penetration of Candida Biofilms by Antifungal Agents

    OpenAIRE

    Al-Fattani, Mohammed A.; Douglas, L. Julia

    2004-01-01

    A filter disk assay was used to investigate the penetration of antifungal agents through biofilms containing single and mixed-species biofilms containing Candida. Fluconazole permeated all single-species Candida biofilms more rapidly than flucytosine. The rates of diffusion of either drug through biofilms of three strains of Candida albicans were similar. However, the rates of drug diffusion through biofilms of C. glabrata or C. krusei were faster than those through biofilms of C. parapsilosi...

  12. Silver against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Kirketerp-Møller, K.; Kristiansen, S.;

    2007-01-01

    bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa, but that the...... silver concentration is important. A concentration of 5-10 ig/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 ig/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate...... planktonic bacteria. These observations strongly indicate that the concentration of silver in currently available wound dressings is much too low for treatment of chronic biofilm wounds. It is suggested that clinicians and manufacturers of the said wound dressings consider whether they are treating wounds...

  13. Biofilms: a developing microscopic community

    Directory of Open Access Journals (Sweden)

    Rivera Sandra Patricia

    2004-09-01

    Full Text Available Biofilms are microbial communities composed by different microbiota embebbed in a special adaptive environment. These communities show different characteristics such as heterogeneity, diversity in microenvironments, capacity to resist antimicrobial therapy and ability to allow bacterial communication. These characteristics convert them in complex organizations that are difficult to eradicate in their own environment. In the man, biofilms are associated to a great number of slow-development infectious processes which greatly difficulties their eradication. In the industry and environment, biofilms are centered in processes known as biofouling and bioremediation. The former is the contamination of a system due to the microbial activity of a biofilm. The latter uses biofilms to improve the conditions of a contaminated system. The study of biofilms is a new and exciting field which is constantly evolving and whose implications in medicine and industry would have important repercussions for the humankind.

  14. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.;

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... to antibiotics. Biofilm growth is associated with an increased level of mutations as well as with quorum-sensing-regulated mechanisms. Conventional resistance mechanisms such as chromosomal beta-lactamase, upregulated efflux pumps and mutations in antibiotic target molecules in bacteria also contribute...... to the survival of biofilms. Biofilms can be prevented by early aggressive antibiotic prophylaxis or therapy and they can be treated by chronic suppressive therapy. A promising strategy may be the use of enzymes that can dissolve the biofilm matrix (e.g. DNase and alginate lyase) as well as quorum...

  15. Biofilm Formation by Cryptococcus neoformans.

    Science.gov (United States)

    Martinez, Luis R; Casadevall, Arturo

    2015-06-01

    The fungus Cryptococcus neoformans possesses a polysaccharide capsule and can form biofilms on medical devices. The increasing use of ventriculoperitoneal shunts to manage intracranial hypertension associated with cryptococcal meningoencephalitis highlights the importance of investigating the biofilm-forming properties of this organism. Like other microbe-forming biofilms, C. neoformans biofilms are resistant to antimicrobial agents and host defense mechanisms, causing significant morbidity and mortality. This chapter discusses the recent advances in the understanding of cryptococcal biofilms, including the role of its polysaccharide capsule in adherence, gene expression, and quorum sensing in biofilm formation. We describe novel strategies for the prevention or eradication of cryptococcal colonization of medical prosthetic devices. Finally, we provide fresh thoughts on the diverse but interesting directions of research in this field that may result in new insights into C. neoformans biology. PMID:26185073

  16. Developmental Work

    DEFF Research Database (Denmark)

    Møller, Niels; Hvid, Helge; Kristensen, Tage Søndergaard;

    2003-01-01

    Human Deveoplment and Working Life - Work for Welfare explores whether the development of human resources at company level can improve individuals' quality of life, companies' possibilities of development, and welfare and democracy in society. Chapter two discuss the concept "developmental work...

  17. Liquid Flow in Biofilm Systems

    OpenAIRE

    Stoodley, Paul; deBeer, Dirk; Lewandowski, Zbigniew

    1994-01-01

    A model biofilm consisting of Pseudomonas aeruginosa, Pseudomonas fluorescens, and Klebsiella pneumoniae was developed to study the relationships between structural heterogeneity and hydrodynamics. Local fluid velocity in the biofilm system was measured by a noninvasive method of particle image velocimetry, using confocal scanning laser microscopy. Velocity profiles were measured in conduit and porous medium reactors in the presence and absence of biofilm. Liquid flow was observed within biof...

  18. Biofilm formation and microbial corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.; Porcella, D.

    1992-07-01

    Biofilms-colonies of microorganisms growing on surfaces - can greatly accelerate the corrosion rates of metals and alloys in utility water systems. Fundamental EPRI research is showing how mechanisms of biofilm formation, interactions between bacterial species, and metabolic activities control such biofilm properties as corrosive potential This research is identifying methods to control biofilm development and prevent microbially influenced corrosion. The results should also apply to the control of other processes involving biological consortia, including the bioremediation of contaminated groundwater and soil and the biodesulfurization of coal.

  19. Understanding Biofilms in Chronic Sinusitis.

    Science.gov (United States)

    Tajudeen, Bobby A; Schwartz, Joseph S; Palmer, James N

    2016-02-01

    Chronic sinusitis is a burdensome disease that has substantial individual and societal impact. Although great advances in medical and surgical therapies have been made, some patients continue to have recalcitrant infections. Microbial biofilms have been implicated as a cause of recalcitrant chronic sinusitis, and recent studies have tried to better understand the pathogenesis of chronic sinusitis as it relates to microbial biofilms. Here, we provide an overview of biofilms in chronic sinusitis with emphasis on pathogenesis, treatment, and future directions. In addition, recent evidence is presented, elucidating the role of bitter taste receptors as a possible key factor leading to biofilm formation. PMID:26758863

  20. Different carbon isotope fractionation patterns during the development of phototrophic freshwater and marine biofilms

    Directory of Open Access Journals (Sweden)

    M. Staal

    2007-08-01

    Full Text Available Natural phototrophic biofilms are influenced by a broad array of abiotic and biotic factors and vary over temporal and spatial scales. Different developmental stages can be distinguished and growth rates will vary due to the thickening of the biofilm, which is expected to lead to a limitation of light or mass transport. This study shows that variation in CO2(aq availability leads to a fractionation shift and thereby affects δ13C signatures during biofilm development. For phototrophic freshwater biofilms it was found that the δ13C value became less negative with the thickening of the biofilm, while the opposite trend was found in marine biofilms. Modeling and pH profiling indicated that the trend in the freshwater system was caused by an increase in CO2(aq limitation resulting in an increase of HCO3 as C-source. The opposite trend in the marine system could be explained by a higher heterotrophic biomass and activity causing a higher carbon recycling and thereby lower δ13C values. We conclude that δ13C was more related to the net areal photosynthesis rate and carbon recycling, rather than to the growth rate of the biofilms.

  1. Biofilm and Dental Biomaterials

    OpenAIRE

    Marit Øilo; Vidar Bakken

    2015-01-01

    All treatment involving the use of biomaterials in the body can affect the host in positive or negative ways. The microbiological environment in the oral cavity is affected by the composition and shape of the biomaterials used for oral restorations. This may impair the patients’ oral health and sometimes their general health as well. Many factors determine the composition of the microbiota and the formation of biofilm in relation to biomaterials such as, surface roughness, surface energy and ...

  2. The Small Molecule DAM Inhibitor, Pyrimidinedione, Disrupts Streptococcus pneumoniae Biofilm Growth In Vitro.

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Yadav

    Full Text Available Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC. In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell

  3. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces

    International Nuclear Information System (INIS)

    Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1–100 mm s−1), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to ∼ 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and ∼ 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than ∼ 5 min between strain cycles and a topography length scale corresponding to the cell dimension of ∼ 1 μm. Divergent effects on the attachment of P. aeruginosa, Staphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments. (paper)

  4. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces

    Science.gov (United States)

    Epstein, Alexander K.; Hong, Donggyoon; Kim, Philseok; Aizenberg, Joanna

    2013-09-01

    Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1-100 mm s-1), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to ˜ 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and ˜ 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than ˜ 5 min between strain cycles and a topography length scale corresponding to the cell dimension of ˜ 1 μm. Divergent effects on the attachment of P. aeruginosa, Staphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments.

  5. Developmental kinetics of the first cell cycles of bovine in vitro PRODUCED EMBRYOS IN RELATION TO THEIR IN VITRO VIABILITY AND SEX

    DEFF Research Database (Denmark)

    Holm, P; Shukri, N.N; Vajta, Gabor;

    1998-01-01

    The development of bovine IVP-embryos was observed in a time-lapse culture system to determine cell cycle lengths of 1) embryos that developed into compact morulae (CM) or blastocysts (BL) within 174 h after insemination (viable), 2) embryos that arrested during earlier stages (nonviable) and 3......) male and female embryos. In 4 replicates, inseminated oocytes were cultured on a microscope stage in 3 to 4 groups on a granulosa cell monolayer in supplemented TCM 199. Images were sequentially recorded and stored at 30-min intervals. All embryos that could be identified throughout the culture period.......8 + 1.6, 10.8 + 4.7 and 47.7 + 11.8 h. The subsequent intervals between the 9- to 16-cell, early morula, CM and BL stages lasted 16.2 to 18.2 h. Blastomeres of 2-, 4- and 8-cell embryos cleaved asynchronously with...

  6. Developmental and Cell Cycle Quiescence Is Mediated by the Nuclear Hormone Receptor Coregulator DIN-1S in the Caenorhabditis elegans Dauer Larva.

    Science.gov (United States)

    Colella, Eileen; Li, Shaolin; Roy, Richard

    2016-08-01

    When faced with suboptimal growth conditions, Caenorhabditis elegans larvae can enter a diapause-like stage called "dauer" that is specialized for dispersal and survival. The decision to form a dauer larva is controlled by three parallel signaling pathways, whereby a compromise of TGFβ, cyclic guanosine monophosphate, or insulin/IGF-like signaling (ILS) results in dauer formation. Signals from these pathways converge on DAF-12, a nuclear hormone receptor that triggers the changes required to initiate dauer formation. DAF-12 is related to the vitamin D, liver-X, and androstane receptors, and like these human receptors, it responds to lipophilic hormone ligands. When bound to its ligand, DAF-12 acquires transcriptional activity that directs reproductive development, while unliganded DAF-12 forms a dauer-specifying complex with its interacting protein DIN-1S to regulate the transcription of genes required for dauer development. We report here that din-1S is required in parallel to par-4/LKB1 signaling within the gonad to establish cell cycle quiescence during the onset of the dauer stage. We show that din-1S is important for postdauer reproduction when ILS is impaired and is necessary for long-term dauer survival in response to reduced ILS. Our work uncovers several previously uncharacterized functions of DIN-1S in executing and maintaining many of the cellular and physiological processes required for appropriate dauer arrest, while also shedding light on the coordination of nuclear hormone signaling, the LKB1/AMPK signaling cascade, and ILS/TGFβ in the control of cell cycle quiescence and tissue growth: a key feature that is often misregulated in a number of hormone-dependent cancers. PMID:27260305

  7. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scen

  8. Experimental evolution in biofilm populations.

    Science.gov (United States)

    Steenackers, Hans P; Parijs, Ilse; Foster, Kevin R; Vanderleyden, Jozef

    2016-05-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  9. Bacterial interactions in dental biofilm.

    Science.gov (United States)

    Huang, Ruijie; Li, Mingyun; Gregory, Richard L

    2011-01-01

    Biofilms are masses of microorganisms that bind to and multiply on a solid surface, typically with a fluid bathing the microbes. The microorganisms that are not attached but are free floating in an aqueous environment are termed planktonic cells. Traditionally, microbiology research has addressed results from planktonic bacterial cells. However, many recent studies have indicated that biofilms are the preferred form of growth of most microbes and particularly those of a pathogenic nature. Biofilms on animal hosts have significantly increased resistance to various antimicrobials compared to planktonic cells. These microbial communities form microcolonies that interact with each other using very sophisticated communication methods (i.e., quorum-sensing). The development of unique microbiological tools to detect and assess the various biofilms around us is a tremendously important focus of research in many laboratories. In the present review, we discuss the major biofilm mechanisms and the interactions among oral bacteria. PMID:21778817

  10. Antibiotic tolerance and microbial biofilms

    DEFF Research Database (Denmark)

    Folkesson, Anders

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We study the dynamics of antibiotic action within hydrodynamic flow chamber biofilms of Escherichia coli and Pseudomonas aeruginosa using isogenic mutants and fluorescent gene...... expression reporters and we address the question of how biofilm organization affects antibiotic susceptibility. The dynamics of microbial killing is monitored by viable count determination, and confocal laser microscopy. Our work shows that the apparent increased antibiotic tolerance is due to the formation...... of antibiotic tolerant subpopulations within the biofilm. The formation of these subpopulations is highly variable and dependent on the antibiotic used, the biofilm structural organization and the induction of specific tolerance mechanisms....

  11. Biofilm formation on abiotic surfaces

    DEFF Research Database (Denmark)

    Tang, Lone

    2011-01-01

    Bacteria can attach to any surface in contact with water and proliferate into complex communities enclosed in an adhesive matrix, these communities are called biofilms. The matrix makes the biofilm difficult to remove by physical means, and bacteria in biofilm can survive treatment with many...... antibiotics, disinfectants and cleaning agents. Biofilms are therefore very difficult to eradicate, and an attractive approach to limit biofilm formation is to reduce bacterial adhesion. In this thesis it was shown that lowering the surface roughness had a greater effect on bacterial retention compared to...... changing the surface hydrophobicity. The influence of surface topography in the <100 nanometer range was less clear and its effect on bacterial retention depended on the strain used in the experiment. Extracellular DNA (eDNA) is an the ubiquitous biomolecule of great importance for bacterial adhesion. The...

  12. Oral Biofilm Architecture on Natural Teeth

    NARCIS (Netherlands)

    Zijnge, Vincent; van Leeuwen, M. Barbara M.; Degener, John E.; Abbas, Frank; Thurnheer, Thomas; Gmuer, Rudolf; Harmsen, Hermie J. M.; Jonsson, Ing-Marie; Juuti, Jarmo T.; François, Patrice; AlMajidi, Rana; Pietiäinen, Milla; Girard, Myriam; Lindholm, Catharina; Saller, Manfred J.; Driessen, Arnold J.M.; Kuusela, Pentti; Bokarewa, Maria; Schrenzel, Jacques; Kontinen, Vesa P.; Neyrolles, Olivier

    2010-01-01

    Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and acces

  13. Impact of Hydrodynamics on Oral Biofilm Strength

    NARCIS (Netherlands)

    Paramonova, E.; Kalmykowa, O. J.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K.

    2009-01-01

    Mechanical removal of oral biofilms is ubiquitously accepted as the best way to prevent caries and periodontal diseases. Removal effectiveness strongly depends on biofilm strength. To investigate the influence of hydrodynamics on oral biofilm strength, we grew single- and multi-species biofilms of S

  14. Bacterial biofilms: prokaryotic adventures in multicellularity

    DEFF Research Database (Denmark)

    Webb, J.S.; Givskov, Michael Christian; Kjelleberg, S.

    2003-01-01

    The development of bacterial biofilms includes both the initial social behavior of undifferentiated cells, as well as cell death and differentiation in the mature biofilm, and displays several striking similarities with higher organisms. Recent advances in the field provide new insight into...... differentiation and cell death events in bacterial biofilm development and propose that biofilms have an unexpected level of multicellularity....

  15. Oral biofilm models for mechanical plaque removal

    NARCIS (Netherlands)

    Verkaik, Martinus J.; Busscher, Henk J.; Rustema-Abbing, Minie; Slomp, Anje M.; Abbas, Frank; van der Mei, Henny C.

    2010-01-01

    In vitro plaque removal studies require biofilm models that resemble in vivo dental plaque. Here, we compare contact and non-contact removal of single and dual-species biofilms as well as of biofilms grown from human whole saliva in vitro using different biofilm models. Bacteria were adhered to a sa

  16. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation.

    Science.gov (United States)

    Janissen, Richard; Murillo, Duber M; Niza, Barbara; Sahoo, Prasana K; Nobrega, Marcelo M; Cesar, Carlos L; Temperini, Marcia L A; Carvalho, Hernandes F; de Souza, Alessandra A; Cotta, Monica A

    2015-01-01

    Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation. PMID:25891045

  17. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics.

    Science.gov (United States)

    Klein, Marlise I; Xiao, Jin; Lu, Bingwen; Delahunty, Claire M; Yates, John R; Koo, Hyun

    2012-01-01

    Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the

  18. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics.

    Directory of Open Access Journals (Sweden)

    Marlise I Klein

    Full Text Available Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA and glucan-binding (gbpB during this transition (P<0.05. Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism, and molecular chaperones (GroEL. Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms demonstrating fundamental differences in the matrix assembly, survival and biofilm

  19. Modern Technologies of Bacterial Biofilm Study

    Directory of Open Access Journals (Sweden)

    Chebotar I.V.

    2013-03-01

    Full Text Available The aim of the investigation was to estimate the availability of new biomedical technologies to identify bacterial biofilms and evaluate them on a staphylococcal biofilm model. Materials and Methods. We studied staphylococcal biofilms by mass spectrometry, laser scanning (confocal microscopy, scanning electron microscopy, enzymatic and oxidative destruction of extracellular biofilm matrix. Results. We demonstrated the capabilities of new biomedical technologies in identification of generic specificity of biofilm-forming staphylococcus, and in detection of the necessary characteristics of staphylococcal biofilm. Mass spectrometry enabled to identify the type of biofilm-forming staphylococcus (Staphylococcus aureus. Microscopic study using laser scanning confocal microscopic technique revealed 3-demensional organization typical of S. aureus biofilms. Scanning electron microscopy enabled to visualize the structures of extracellular S. aureus biofilm matrix. The extracellular matrix of the test biofilm was found to be formed of DNA-protein complexes.

  20. Developmental Scaffolding

    DEFF Research Database (Denmark)

    Giorgi, Franco; Bruni, Luis Emilio

    2015-01-01

    The concept of scaffolding has wide resonance in several scientific fields. Here we attempt to adopt it for the study of development. In this perspective, the embryo is conceived as an integral whole, comprised of several hierarchical modules as in a recurrent circularity of emerging patterns...... molecular signalling to the complexity of sign recognition proper of a cellular community. In this semiotic perspective, the apparent goal directness of any developmental strategy should no longer be accounted for by a predetermined genetic program, but by the gradual definition of the relationships...

  1. Growing and analyzing biofilms in flow chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic......, and disassembly and cleaning of the system. In addition, embedding and fluorescent in situ hybridization of flow chamber-grown biofilms are addressed....

  2. Strategies for combating bacterial biofilm infections

    OpenAIRE

    Wu,Hong; Moser, Claus; Wang, Heng-Zhuang; Høiby, Niels; Zhi-jun SONG

    2014-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwe...

  3. Characterization of Mucosal Candida albicans Biofilms

    OpenAIRE

    Dongari-Bagtzoglou, Anna; Kashleva, Helena; Dwivedi, Prabhat; Diaz, Patricia; Vasilakos, John

    2009-01-01

    C. albicans triggers recurrent infections of the alimentary tract mucosa that result from biofilm growth. Although the ability of C. albicans to form a biofilm on abiotic surfaces has been well documented in recent years, no information exists on biofilms that form directly on mucosal surfaces. The objectives of this study were to characterize the structure and composition of Candida biofilms forming on the oral mucosa. We found that oral Candida biofilms consist of yeast, hyphae, and commens...

  4. The developmental cycle of domestic groups and Amazonian deforestation O ciclo de desenvolvimento de grupos domésticos e o desflorestamento da Amazônia

    Directory of Open Access Journals (Sweden)

    Emilio Moran

    2004-12-01

    Full Text Available It has been common to attribute tropical deforestation to population growth and/or migration. This paper finds that this is true only at large and aggregated spatial and temporal scales. When one examines regional-scaled processes, there are numberous mediating factors and more complex demographic processes that account for differences in rates of deforestation. Based upon three years of research in the Altamira region, Xingu Basin, Brazilian Amazon, we differenttiate between period and cohort effects in trajectories of deforestation. We find that every cohort of migrants follows the same overall trajectory of deforestation but that the magnitude of deforestation along a 20 year trajectory is dependent on period effects (such as hyperinflation, credit policy, land policy changes. Moreover, we find that the 20-year trajectory does indeed follow the constraints posed by the development cycle of the domestic group-refleting as it does the changing supply of labor.Tem sido comum atribuir o desflorestamento tropical ao crescimento populacional ou à migração. Esse texto aponta que isso ocorre apenas em amplas escalas temporais e espaciais agregadas. Quando se examina processos em escala regional, existem vários fatores de mediação e processos demográficos mais complexos que implicam em diferenças nas taxas de desflorestamento. Baseados em 3 anos de pesquisa na região de Altamira, na Bacia Amazônica brasileira, nós diferenciamos efeitos grupais e temporais nas trajetórias de desflorestamento. Descobrimos que todo grupo de migrantes segue a mesma trajetória de desflorestamento mas a magnitude do desflorestamento dentro de um período de 20 anos depende de certas contingências (como hiperinflação, políticas de crédito, mudanças na política fundiária. Além disso encontramos que a trajetória de 20 anos acompanha as condições colocadas pelo ciclo de desenvolvimento dos grupos domésticos - refletindo as alterações na oferta de

  5. Biofilm models for the practitioner

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; van Loosdrecht, M. C. M.; Wanner, O.

    Even though mathematical biofilm models are extensively used in biofilm research, there has been very little application of these models in the engineering practice so far. However, practitioners would be interested in models that can be used as tools to control plant operation under dynamic...... conditions or to help them handle complex interactions between particle removal, carbon oxidation, nitrification, denitrification and biological phosphorus removal. But even though there is a whole range of biofilm models available, it is difficult for the practitioner to select the appropriate modeling...

  6. Biofilm models for the practitioner

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; van Loosdrecht, M. C. M.; Wanner, O.

    2000-01-01

    Even though mathematical biofilm models are extensively used in biofilm research, there has been very little application of these models in the engineering practice so far. However, practitioners would be interested in models that can be used as tools to control plant operation under dynamic...... conditions or to help them handle complex interactions between particle removal, carbon oxidation, nitrification, denitrification and biological phosphorus removal. But even though there is a whole range of biofilm models available, it is difficult for the practitioner to select the appropriate modeling...

  7. Developmental dyslexia.

    Science.gov (United States)

    Démonet, Jean-François; Taylor, Margot J; Chaix, Yves

    2004-05-01

    Developmental dyslexia, or specific reading disability, is a disorder in which children with normal intelligence and sensory abilities show learning deficits for reading. Substantial evidence has established its biological origin and the preponderance of phonological disorders even though important phenotypic variability and comorbidity have been recorded. Diverse theories have been proposed to account for the cognitive and neurological aspects of dyslexia. Findings of genetic studies show that different loci affect specific reading disability although a direct relation has not been established between symptoms and a given genomic locus. In both children and adults with dyslexia, results of neuroimaging studies suggest defective activity and abnormal connectivity between regions crucial for language functions--eg, the left fusiform gyrus for reading--and changes in brain activity associated with performance improvement after various remedial interventions. PMID:15121410

  8. Developmental dyslexia.

    Science.gov (United States)

    Peterson, Robin L; Pennington, Bruce F

    2015-01-01

    This review uses a levels-of-analysis framework to summarize the current understanding of developmental dyslexia's etiology, brain bases, neuropsychology, and social context. Dyslexia is caused by multiple genetic and environmental risk factors as well as their interplay. Several candidate genes have been identified in the past decade. At the brain level, dyslexia is associated with aberrant structure and function, particularly in left hemisphere reading/language networks. The neurocognitive influences on dyslexia are also multifactorial and involve phonological processing deficits as well as weaknesses in other oral language skills and processing speed. We address contextual issues such as how dyslexia manifests across languages and social classes as well as what treatments are best supported. Throughout the review, we highlight exciting new research that cuts across levels of analysis. Such work promises eventually to provide a comprehensive explanation of the disorder as well as its prevention and remediation. PMID:25594880

  9. Impact of hydrodynamics on oral biofilm strength.

    Science.gov (United States)

    Paramonova, E; Kalmykowa, O J; van der Mei, H C; Busscher, H J; Sharma, P K

    2009-10-01

    Mechanical removal of oral biofilms is ubiquitously accepted as the best way to prevent caries and periodontal diseases. Removal effectiveness strongly depends on biofilm strength. To investigate the influence of hydrodynamics on oral biofilm strength, we grew single- and multi-species biofilms of Streptococcus oralis J22, Actinomyces naeslundii TV14-J1, and full dental plaque at shear rates ranging from 0.1 to 50 1/sec and measured their compressive strength. Subsequently, biofilm architecture was evaluated by confocal laser scanning microscopy. Multi-species biofilms were stronger than single-species biofilms, with strength values ranging from 6 to 51 Pa and from 5 to 17 Pa, respectively. In response to increased hydrodynamic shear, biofilm strength decreased, and architecture changed from uniform carpet-like to more "fluffy" with higher thickness. S. oralis biofilms grown under variable shear of 7 and 50 1/sec possessed properties intermediate of those measured at the respective single shears. PMID:19783800

  10. Stratified growth in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Werner, E.; Roe, F.; Bugnicourt, A.;

    2004-01-01

    In this study, stratified patterns of protein synthesis and growth were demonstrated in Pseudomonas aeruginosa biofilms. Spatial patterns of protein synthetic activity inside biofilms were characterized by the use of two green fluorescent protein (GFP) reporter gene constructs. One construct...... synthesis was restricted to a narrow band in the part of the biofilm adjacent to the source of oxygen. The zone of active GFP expression was approximately 60 Am wide in colony biofilms and 30 Am wide in flow cell biofilms. The region of the biofilm in which cells were capable of elongation was mapped by...... treating colony biofilms with carbenicillin, which blocks cell division, and then measuring individual cell lengths by transmission electron microscopy. Cell elongation was localized at the air interface of the biofilm. The heterogeneous anabolic patterns measured inside these biofilms were likely a result...

  11. The ``Swiss cheese'' instability of bacterial biofilms

    Science.gov (United States)

    Jang, Hongchul; Rusconi, Roberto; Stocker, Roman

    2012-11-01

    Bacteria often adhere to surfaces, where they develop polymer-encased communities (biofilms) that display dramatic resistance to antibiotic treatment. A better understanding of cell detachment from biofilms may lead to novel strategies for biofilm disruption. Here we describe a new detachment mode, whereby a biofilm develops a nearly regular array of ~50-100 μm holes. Using surface-treated microfluidic devices, we create biofilms of controlled shape and size. After the passage of an air plug, the break-up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a ``Swiss cheese'' pattern is left in the residual biofilm. Fluorescent staining of the polymeric matrix (EPS) reveals that resistance to cell dislodgement correlates with local biofilm age, early settlers having had more time to hunker down. Because few survivors suffice to regrow a biofilm, these results point at the importance of considering microscale heterogeneity in assessing the effectiveness of biofilm removal strategies.

  12. Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Ren, Dawei

    structured aggregation consisting of multiple species of bacteria whose function relies on a complex web of cooperative and/or competitive interactions between community members, indicating that research in “whole-entity” should not be based on the assembled results from “mono pieces”. As one of the best...... by transcriptomic analysis are also presented. Due to the poor reproducibility of most biofilm quantification assays, the first part of my work is to develop a rapid, reproducible and sensitive approach for quantitative screening of biofilm formation by bacteria when cultivated as mono- and multispecies biofilms......, followed by species specific qPCR based on SYBR Green I fluorescence to measure the relative proportion of individual species in mixed-species biofilms. The reported approach was described in Manuscript 1 which can be used as a standard procedure for evaluating interspecies interactions in defined...

  13. Nanotechnology: Role in dental biofilms

    Directory of Open Access Journals (Sweden)

    Bhardwaj Sonia

    2009-01-01

    Full Text Available Biofilms are surface- adherent populations of microorganisms consisting of cells, water and extracellular matrix material Nanotechnology is promising field of science which can guide our understanding of the role of interspecies interaction in the development of biofilm. Streptococcus mutans with other species of bacteria has been known to form dental biofilm. The correlation between genetically modified bacteria Streptococcus mutans and nanoscale morphology has been assessed using AFMi.e atomic force microscopy. Nanotechnology application includes 16 O/ 18 O reverse proteolytic labeling,use of quantum dots for labeling of bacterial cells, selective removal of cariogenic bacteria while preserving the normal oral flora and silver antimicrobial nanotechnology against pathogens associated with biofilms. The future comprises a mouthwash full of smart nanomachines which can allow the harmless flora of mouth to flourish in a healthy ecosystem

  14. Differential growth of wrinkled biofilms

    CERN Document Server

    Espeso, D R; Einarsson, B

    2015-01-01

    Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Foppl-Von Karman equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to repr...

  15. Hydrodynamics of catheter biofilm formation

    CERN Document Server

    Sotolongo-Costa, Oscar; Rodriguez-Perez, Daniel; Martinez-Escobar, Sergio; Fernandez-Barbero, Antonio

    2009-01-01

    A hydrodynamic model is proposed to describe one of the most critical problems in intensive medical care units: the formation of biofilms inside central venous catheters. The incorporation of approximate solutions for the flow-limited diffusion equation leads to the conclusion that biofilms grow on the internal catheter wall due to the counter-stream diffusion of blood through a very thin layer close to the wall. This biological deposition is the first necessary step for the subsequent bacteria colonization.

  16. Exploiting social evolution in biofilms

    OpenAIRE

    Boyle, Kerry E.; Heilmann, Silja; van Ditmarsch, Dave; Xavier, Joao B.

    2013-01-01

    Bacteria are highly social organisms that communicate via signaling molecules, move collectively over surfaces and make biofilm communities. Nonetheless, our main line of defense against pathogenic bacteria consists of antibiotics – drugs that target individual-level traits of bacterial cells and thus, regrettably, select for resistance against their own action. A possible solution lies in targeting the mechanisms by which bacteria interact with each other within biofilms. The emerging field ...

  17. The Novel Two-Component Regulatory System BfiSR Regulates Biofilm Development by Controlling the Small RNA rsmZ through CafA▿ †

    OpenAIRE

    Petrova, Olga E.; Sauer, Karin

    2010-01-01

    The formation of biofilms by the opportunistic pathogen Pseudomonas aeruginosa is a developmental process governed by a novel signal transduction system composed of three two-component regulatory systems (TCSs), BfiSR, BfmSR, and MifSR. Here, we show that BfiSR-dependent arrest of biofilm formation coincided with reduced expression of genes involved in virulence, posttranslational/transcriptional modification, and Rhl quorum sensing but increased expression of rhlAB and the small regulatory R...

  18. Developmental dyspraxia and developmental coordination disorder.

    Science.gov (United States)

    Miyahara, M; Möbs, I

    1995-12-01

    This article discusses the role developmental dyspraxia plays in developmental coordination disorder (DCD), based upon a review of literature on apraxia, developmental dyspraxia, and DCD. Apraxia and dyspraxia have often been equated with DCD. However, it is argued that apraxia and dyspraxia primarily refer to the problems of motor sequencing and selection, which not all children with DCD exhibit. The author proposes to distinguish developmental dyspraxia from DCD. Other issues discussed include the assessment, etiology, and treatment of developmental dyspraxia and DCD, and the relationship between DCD and learning disabilities. A research agenda is offered regarding future directions to overcome current limitation. PMID:8866511

  19. Strategies for combating bacterial biofilm infections

    Institute of Scientific and Technical Information of China (English)

    Hong Wu; Claus Moser; Heng-Zhuang Wang; Niels Hiby; Zhi-Jun Song

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwelling devices. Clinical observations and experimental studies indicated clearly that antibiotic treatment alone is in most cases insufficient to eradicate biofilm infections. Therefore, to effectively treat biofilm infections with currently available antibiotics and evaluate the outcomes become important and urgent for clinicians. The review summarizes the latest progress in treatment of clinical biofilm infections and scientific investigations, discusses the diagnosis and treatment of different biofilm infections and introduces the promising laboratory progress, which may contribute to prevention or cure of biofilm infections. We conclude that, an efficient treatment of biofilm infections needs a well-established multidisciplinary collaboration, which includes removal of the infected foreign bodies, selection of biofilm-active, sensitive and well-penetrating antibiotics, systemic or topical antibiotic administration in high dosage and combinations, and administration of anti-quorum sensing or biofilm dispersal agents.

  20. STUDY OF ULTRASOUND RADIATION INFLUENCE ON ABILITY TO FORM BIOFILMS AND FORMED BIOFILMS OF KLEBSIELLA PNEUMONIAE

    OpenAIRE

    Mozgova Yu.A.

    2013-01-01

    With aim to detect ability to form biofilms in K.pneumoniae and to study effects of low-intensity ultrasound radiation on formed biofilms and their aggregation microbiological research of material frompatients with pyoinflammatory diseases was performed. It was found that low-intensity ultrasound radiation could destroy formed biofilms of K. pneumoniae and decrease ability of this pathogen to form secondary biofilms.

  1. Moving bed biofilm reactor technology: process applications, design, and performance.

    Science.gov (United States)

    McQuarrie, James P; Boltz, Joshua P

    2011-06-01

    The moving bed biofilm reactor (MBBR) can operate as a 2- (anoxic) or 3-(aerobic) phase system with buoyant free-moving plastic biofilm carriers. These systems can be used for municipal and industrial wastewater treatment, aquaculture, potable water denitrification, and, in roughing, secondary, tertiary, and sidestream applications. The system includes a submerged biofilm reactor and liquid-solids separation unit. The MBBR process benefits include the following: (1) capacity to meet treatment objectives similar to activated sludge systems with respect to carbon-oxidation and nitrogen removal, but requires a smaller tank volume than a clarifier-coupled activated sludge system; (2) biomass retention is clarifier-independent and solids loading to the liquid-solids separation unit is reduced significantly when compared with activated sludge systems; (3) the MBBR is a continuous-flow process that does not require a special operational cycle for biofilm thickness, L(F), control (e.g., biologically active filter backwashing); and (4) liquid-solids separation can be achieved with a variety of processes, including conventional and compact high-rate processes. Information related to system design is fragmented and poorly documented. This paper seeks to address this issue by summarizing state-of-the art MBBR design procedures and providing the reader with an overview of some commercially available systems and their components. PMID:21751715

  2. Photodynamic inactivation of biofilm building microorganisms by photoactive facade paints.

    Science.gov (United States)

    Preuß, Annegret; Bornhütter, Tobias; Färber, Alexander; Schaller, Christian; Röder, Beate

    2016-07-01

    This study was performed as a proof of concept for singlet oxygen generating facade paint as an alternative to conventional biocide containing facade paint for the prevention of biofilm growth on outdoor walls. Biofilms on outdoor walls cause esthetic problems and economic damage. Therefore facade paints often contain biocides. However commercially available biocides may have a series of adverse effects on living organisms as well as harmful environmental effects. Furthermore, biocides are increasingly designed to be more effective and are environmentally persistent. Thus, an eco-friendly and non-harmful to human health alternative to conventional biocides in wall color is strongly recommended. The well-known photosensitizer 5,10,15,20-tetrakis(N-methyl-4-pyridyl)-21H,23H-porphine (TMPyP) was used as an additive in a commercially available facade paint. The generation of singlet molecular oxygen was shown using time resolved 2D measurements of the singlet oxygen luminescence. The photodynamic activity of the photosensitizer in the facade paint was demonstrated by phototoxicity tests with defined mold fungi and a mixture of microorganisms harvested from native outdoor biofilms as model organisms. It was proven in general that it is possible to inhibit the growth of biofilm forming microorganisms growing on solid wall paint surfaces by the cationic photosensitizer TMPyP added to the facade paint using daylight conditions for illumination in 12h light and dark cycles. PMID:27101275

  3. The Formation of Biofilms by Pseudomonas aeruginosa: A Review of the Natural and Synthetic Compounds Interfering with Control Mechanisms

    Directory of Open Access Journals (Sweden)

    Tsiry Rasamiravaka

    2015-01-01

    Full Text Available P. aeruginosa is an opportunistic pathogenic bacterium responsible for both acute and chronic infections. Beyond its natural resistance to many drugs, its ability to form biofilm, a complex biological system, renders ineffective the clearance by immune defense systems and antibiotherapy. The objective of this report is to provide an overview (i on P. aeruginosa biofilm lifestyle cycle, (ii on the main key actors relevant in the regulation of biofilm formation by P. aeruginosa including QS systems, GacS/GacA and RetS/LadS two-component systems and C-di-GMP-dependent polysaccharides biosynthesis, and (iii finally on reported natural and synthetic products that interfere with control mechanisms of biofilm formation by P. aeruginosa without affecting directly bacterial viability. Concluding remarks focus on perspectives to consider biofilm lifestyle as a target for eradication of resistant infections caused by P. aeruginosa.

  4. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines.

    Science.gov (United States)

    Morales, Diana K; Grahl, Nora; Okegbe, Chinweike; Dietrich, Lars E P; Jacobs, Nicholas J; Hogan, Deborah A

    2013-01-01

    Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development of C. albicans wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired C. albicans growth on nonfermentable carbon sources and led to increased production of fermentation products (ethanol, glycerol, and acetate) in glucose-containing medium, leading us to propose that phenazines specifically inhibited respiration. Methylene blue, another inhibitor of respiration, also prevented the formation of structured colony biofilms. The inhibition of filamentation and colony wrinkling was not solely due to lowered extracellular pH induced by fermentation. Compared to smooth, unstructured colonies, wrinkled colony biofilms had higher oxygen concentrations within the colony, and wrinkled regions of these colonies had higher levels of respiration. Together, our data suggest that the structure of the fungal biofilm promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by bacterial molecules such as phenazines or compounds with similar activities disrupts these pathways. These findings may suggest new ways to limit fungal biofilms in the context of disease. IMPORTANCE Many of the infections caused by Candida albicans, a major human opportunistic fungal pathogen, involve both morphological transitions and the formation of surface-associated biofilms. Through the

  5. Investigating Biofilm Recalcitrance In Pipe Flow Systems

    Science.gov (United States)

    Aggarwal, S.; Stewart, P. S.; Hozalski, R. M.

    2015-12-01

    It is challenging to remove biofilms from pipe walls owing to their recalcitrant nature. Several physiological explanations resulting from the community existence of microbes have been offered to explain the recalcitrant nature of biofilms. Herein a biophysical aspect of biofilm recalcitrance is being reported. While optimal efficiency argument suggests that bacterial biofilms would be just strong enough to withstand the surrounding shear forces, our experimental findings reveal the biofilms to be at least 330 to 55000 times stronger. Additionally, Monte-Carlo simulations for biofilm detachment in drinking water systems were performed, which show that the existing flow velocities are insufficient for significant biofilm removal and warrant alternative detachment strategies. This emphasizes the importance of considering strategies for biofilm weakening (and subsequent detachment) in conjunction with or as an alternative to bacterial inactivation.

  6. D-amino acids trigger biofilm disassembly.

    Science.gov (United States)

    Kolodkin-Gal, Ilana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-04-30

    Bacteria form communities known as biofilms, which disassemble over time. In our studies outlined here, we found that, before biofilm disassembly, Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine, and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofilms in the presence of D-amino acids contained alterations in a protein (YqxM) required for the formation and anchoring of the fibers to the cell. D-amino acids also prevented biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. D-amino acids are produced by many bacteria and, thus, may be a widespread signal for biofilm disassembly. PMID:20431016

  7. Mechanical properties and disruption of dental biofilms

    OpenAIRE

    Rmaile, Amir

    2013-01-01

    A literature review of dental plaque biofilms formation, progression and detachment mechanisms is presented in this thesis. Various strategies that have been employed to reduce or eliminate dental biofilms are discussed. The focus of the thesis was on the mechanical properties and disruption of dental biofilms, especially from hard-to-access areas of the oral cavity, such as the interproximal (IP) sites between the teeth. Various methods to measure mechanical properties of dental biofilms wer...

  8. Small molecule control of bacterial biofilms

    OpenAIRE

    Worthington, Roberta J.; Richards, Justin J.; Melander, Christian

    2012-01-01

    Bacterial biofilms are defined as a surface attached community of bacteria embedded in a matrix of extracellular polymeric substances that they have produced. When in the biofilm state, bacteria are more resistant to antibiotics and the host immune response than are their planktonic counterparts. Biofilms are increasingly recognized as being significant in human disease, accounting for 80% of bacterial infections in the body and diseases associated with bacterial biofilms include: lung infect...

  9. Microfluidic Approaches to Bacterial Biofilm Formation

    OpenAIRE

    Hee-Deung Park; Junghyun Kim; Seok Chung

    2012-01-01

    Bacterial biofilms—aggregations of bacterial cells and extracellular polymeric substrates (EPS)—are an important subject of research in the fields of biology and medical science. Under aquatic conditions, bacterial cells form biofilms as a mechanism for improving survival and dispersion. In this review, we discuss bacterial biofilm development as a structurally and dynamically complex biological system and propose microfluidic approaches for the study of bacterial biofilms. Biofilms develop t...

  10. Current understanding of multi-species biofilms

    OpenAIRE

    Yang, Liang; Liu, Yang; Wu,Hong; Høiby, Niels; Molin, Søren; Zhi-jun SONG

    2011-01-01

    Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually formed by multiple bacterial species. Conventional methods for bacterial cleaning, such as applications of antibiotics and/or disinfectants are often ineffective for biofilm populations due to their...

  11. Maggot Excretions Inhibit Biofilm Formation on Biomaterials

    OpenAIRE

    Cazander, G.; Veerdonk, van de, RJM Rene; Vandenbroucke-Grauls, C. M. J. E.; Schreurs, M.W.J.; Jukema, G.N.

    2010-01-01

    Background Biofilm-associated infections in trauma surgery are difficult to treat with conventional therapies. Therefore, it is important to develop new treatment modalities. Maggots in captured bags, which are permeable for larval excretions/secretions, aid in healing severe, infected wounds, suspect for biofilm formation. Therefore we presumed maggot excretions/secretions would reduce biofilm formation. Questions/purposes We studied biofilm formation of Staphylococcus aureus, Staphylococcus...

  12. Bioinspired, Dynamic, Structured Surfaces for Biofilm Prevention

    OpenAIRE

    Epstein, Alexander

    2012-01-01

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even l...

  13. Pseudomonas biofilm matrix composition and niche biology

    OpenAIRE

    Mann, Ethan E.; Wozniak, Daniel J.

    2012-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produ...

  14. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm

    OpenAIRE

    Lee, Kai Wei Kelvin; Periasamy, Saravanan; Mukherjee, Manisha; Xie, Chao; Kjelleberg, Staffan; Rice, Scott A.

    2013-01-01

    Most studies of biofilm biology have taken a reductionist approach, where single-species biofilms have been extensively investigated. However, biofilms in nature mostly comprise multiple species, where interspecies interactions can shape the development, structure and function of these communities differently from biofilm populations. Hence, a reproducible mixed-species biofilm comprising Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae was adapted to study how interspe...

  15. Functional Gene Composition, Diversity and Redundancy in Microbial Stream Biofilm Communities

    OpenAIRE

    Dopheide, Andrew; Lear, Gavin; He, Zhili; Zhou, Jizhong; Lewis, Gillian D.

    2015-01-01

    We surveyed the functional gene composition and diversity of microbial biofilm communities in 18 New Zealand streams affected by different types of catchment land use, using a comprehensive functional gene array, GeoChip 3.0. A total of 5,371 nutrient cycling and energy metabolism genes within 65 gene families were detected among all samples (342 to 2,666 genes per stream). Carbon cycling genes were most common, followed by nitrogen cycling genes, with smaller proportions of sulphur, phosphor...

  16. Microbiële biofilms in tandheelkunde

    NARCIS (Netherlands)

    B.P. Krom

    2015-01-01

    Aangehechte gemeenschappen van micro-organismen, ook wel biofilms genoemd, zijn altijd en overal aanwezig. Hoewel biofilms een slechte naam hebben, zijn ze meestal natuurlijk, gezond en zelfs gewenst. In de mondzorgpraktijk komen zowel gezonde (orale biofilms) als ongezonde (bijv. in de waterleiding

  17. Microbiële biofilms in tandheelkunde

    NARCIS (Netherlands)

    B.P. Krom

    2015-01-01

    Aangehechte gemeenschappen van micro-organismen, ook wel biofilms genoemd, zijn altijd en overal aanwezig. Hoewel biofilms een slechte naam hebben, zijn ze meestal natuurlijk, gezond en zelfs gewenst. In de tandartspraktijk komen zowel gezonde (orale biofilms) als ongezonde (bijv. in de waterleiding

  18. Strategies for combating bacterial biofilm infections

    DEFF Research Database (Denmark)

    Wu, Hong; Moser, Claus Ernst; Wang, Heng-Zhuang;

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the...

  19. Disruption of urogenital biofilms by lactobacilli.

    Science.gov (United States)

    McMillan, Amy; Dell, Melissa; Zellar, Michelle P; Cribby, Sarah; Martz, Sarah; Hong, Emilio; Fu, Jennifer; Abbas, Ahmed; Dang, Thien; Miller, Wayne; Reid, Gregor

    2011-08-01

    The process that changes a relatively sparse vaginal microbiota of healthy women into a dense biofilm of pathogenic and potentially pathogenic bacteria is poorly understood. Likewise, the reverse step whereby an aberrant biofilm is displaced and returns to a healthy lactobacilli dominated microbiota is unclear. In order to study these phenomena, in vitro experiments were performed to examine the structure of biofilms associated with aerobic vaginosis, urinary tract infections, and bacterial vaginosis (BV). Uropathogenic Escherichia coli were able to form relatively thin biofilms within five days (6 μm height), while Atopobium vaginae and Gardnerella vaginalis formed thicker biofilms 12 μm in height within two days. Challenge of E. coli biofilms with lactobacilli did not result in pathogen displacement. However, the resulting thicker lactobacilli infused biofilms, caused significant E. coli killing. E. coli biofilms challenged with secreted products of L. rhamnosus GR-1 caused a marked decrease in cell density, and increased cell death. Similarly challenge of BV biofilms with lactobacilli infiltrated BV biofilms and caused bacterial cell death. Metronidazole produced holes in the biofilm but did not eradicate the organisms. The findings provide some evidence of how lactobacilli probiotics might interfere with an aberrant vaginal microbiota, and strengthen the position that combining probiotics with antimicrobials could better eradicate pathogenic biofilms. PMID:21497071

  20. Natural biofilm formation with Legionella pneumophila.

    Science.gov (United States)

    Portier, Emilie; Héchard, Yann

    2013-01-01

    Biofilm formation could be studied in various conditions. Most of the studies with Legionella pneumophila used monospecies biofilm in culture media. In some cases, it is important to study bacteria in conditions more close to environmental conditions. In this paper, we describe protocols to produce natural biofilms from river water that were spiked with L. pneumophila. PMID:23150397

  1. Hydrodynamic dispersion within porous biofilms.

    Science.gov (United States)

    Davit, Y; Byrne, H; Osborne, J; Pitt-Francis, J; Gavaghan, D; Quintard, M

    2013-01-01

    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher's equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels' network; (2) the solute's diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. PMID:23410370

  2. Differential growth of wrinkled biofilms

    Science.gov (United States)

    Espeso, D. R.; Carpio, A.; Einarsson, B.

    2015-02-01

    Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste, and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Föppl-Von Kármán equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to reproduce wrinkled structures often formed by biofilms on air-agar interfaces, as well as spatial distributions of differentiated cells commonly observed with B. subtilis.

  3. Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms

    Directory of Open Access Journals (Sweden)

    Jékely Gáspár

    2007-01-01

    Full Text Available Abstract Background The origin of eukaryotic cells was one of the most dramatic evolutionary transitions in the history of life. It is generally assumed that eukaryotes evolved later then prokaryotes by the transformation or fusion of prokaryotic lineages. However, as yet there is no consensus regarding the nature of the prokaryotic group(s ancestral to eukaryotes. Regardless of this, a hardly debatable fundamental novel characteristic of the last eukaryotic common ancestor was the ability to exploit prokaryotic biomass by the ingestion of entire cells, i.e. phagocytosis. The recent advances in our understanding of the social life of prokaryotes may help to explain the origin of this form of total exploitation. Presentation of the hypothesis Here I propose that eukaryotic cells originated in a social environment, a differentiated microbial mat or biofilm that was maintained by the cooperative action of its members. Cooperation was costly (e.g. the production of developmental signals or an extracellular matrix but yielded benefits that increased the overall fitness of the social group. I propose that eukaryotes originated as selfish cheaters that enjoyed the benefits of social aggregation but did not contribute to it themselves. The cheaters later evolved into predators that lysed other cells and eventually became professional phagotrophs. During several cycles of social aggregation and dispersal the number of cheaters was contained by a chicken game situation, i.e. reproductive success of cheaters was high when they were in low abundance but was reduced when they were over-represented. Radical changes in cell structure, including the loss of the rigid prokaryotic cell wall and the development of endomembranes, allowed the protoeukaryotes to avoid cheater control and to exploit nutrients more efficiently. Cellular changes were buffered by both the social benefits and the protective physico-chemical milieu of the interior of biofilms. Symbiosis

  4. Quantification of biofilm accumulation by an optical approach

    OpenAIRE

    Bakke, Rune; Kalvenes, Sigmund; Kommedal, Roald

    2001-01-01

    Methods for non-invasive, in situ, measurements of biofilm optical density and biofilm optical thickness were evaluated based on Pseudomonas aeruginosa experiments. Biofilm optical density, measured as intensity reduction of a light beam transmitted through the biofilm, correlates with biofilm mass, measured as total carbon and as cell mass. The method is more sensitive and less labor intensive than other commonly used methods for determining extent of biofilm mass accumulation. Biofilm optic...

  5. Microbial pathogenesis and biofilm development

    DEFF Research Database (Denmark)

    Reisner, A.; Høiby, N.; Tolker-Nielsen, Tim; Molin, Søren

    2004-01-01

    Microbial infections constitute a major cause of premature death in large parts of the world, and for several years we have seen an alarming tendency towards increasing problems of controlling such infections by antibiotic treatments. It is hoped that an improved understanding of the infectious...... been termed 'maturation', which is thought to be mediated by a differentiation process. Maturation into late stages of biofilm development resulting in stable and robust structures may require the formation of a matrix of extracellular polymeric substances (EPS), which are most often assumed to consist...... of polysaccharides. A recent striking finding is that DNA released from biofilm cells may be important as an initial matrix former [3]. At later times other EPS molecules may add to the shape and quality of the mature biofilm structure. Figure 1 summarizes the principle stepsinvolved in the...

  6. Biofilmes e Lentes de Contacto

    OpenAIRE

    Silva, Ana Rita Baptista da

    2012-01-01

    O Biofilme pode ser designado como um grupo funcional de microrganismos aderidos a uma superfície estando envolvidos numa matriz exopolimérica. As bactérias organizam-se em Biofilmes, devido a, quando não estão organizadas em microcolónias terem reduzida taxa de sobrevivência. A estrutura e formação destes filmes são heterogéneas, integrando em si nichos de bactérias com graus de crescimento distintos. O estudo da relação dos Biofilmes com as lentes de contacto é pertinente, pois estas são...

  7. Biofilm growth on rugose surfaces

    Science.gov (United States)

    Rodriguez, D.; Einarsson, B.; Carpio, A.

    2012-12-01

    A stochastic model is used to assess the effect of external parameters on the development of submerged biofilms on smooth and rough surfaces. The model includes basic cellular mechanisms, such as division and spreading, together with an elementary description of the interaction with the surrounding flow and probabilistic rules for extracellular polymeric substance matrix generation, cell decay, and adhesion. Insight into the interplay of competing mechanisms such as the flow or the nutrient concentration change is gained. Erosion and growth processes combined produce biofilm structures moving downstream. A rich variety of patterns are generated: shrinking biofilms, patches, ripplelike structures traveling downstream, fingers, mounds, streamerlike patterns, flat layers, and porous and dendritic structures. The observed regimes depend on the carbon source and the type of bacteria.

  8. YfbA, a Yersinia pestis Regulator Required for Colonization and Biofilm Formation in the Gut of Cat Fleas

    OpenAIRE

    Tam, Christina; Demke, Owen; Hermanas, Timothy; Mitchell,Anthony; Hendrickx, Antoni P. A.; Schneewind, Olaf

    2014-01-01

    For transmission to new hosts, Yersinia pestis, the causative agent of plague, replicates as biofilm in the foregut of fleas that feed on plague-infected animals or humans. Y. pestis biofilm formation has been studied in the rat flea; however, little is known about the cat flea, a species that may bridge zoonotic and anthroponotic plague cycles. Here, we show that Y. pestis infects and replicates as a biofilm in the foregut of cat fleas in a manner requiring hmsFR, two determinants for extrac...

  9. Growing and Analyzing Biofilms in Flow Chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic......, and disassembly and cleaning of the system. In addition, embedding and fluorescent in situ hybridization of flow chamber–grown biofilms are addressed. Curr. Protoc. Microbiol. 21:1B.2.1-1B.2.17. © 2011 by John Wiley & Sons, Inc....

  10. Pattern formation in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Parsek, Matthew R.; Tolker-Nielsen, Tim

    2008-01-01

    Bacteria are capable of forming elaborate multicellular communities called biofilms. Pattern formation in biofilms depends on cell proliferation and cellular migration in response to the available nutrients and other external cues, as well as on self-generated intercellular signal molecules and the...... production of an extracellular matrix that serves as a structural 'scaffolding' for the biofilm cells. Pattern formation in biofilms allows cells to position themselves favorably within nutrient gradients and enables buildup and maintenance of physiologically distinct subpopulations, which facilitates...... survival of one or more subpopulations upon environmental insult, and therefore plays an important role in the innate tolerance displayed by biofilms toward adverse conditions....

  11. D-Amino Acids Trigger Biofilm Disassembly

    OpenAIRE

    Kolodkin-Gal, Illana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-01-01

    Bacteria form communities known as biofilms, which disassemble over time. Here we found that prior to biofilm disassembly Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofi...

  12. Biofilm induced tolerance towards antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Anders Folkesson

    Full Text Available Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms.

  13. Modelling the growth of a methanotrophic biofilm

    DEFF Research Database (Denmark)

    Arcangeli, J.-P.; Arvin, E.

    1999-01-01

    This article discusses the growth of methanotrophic biofilms. Several independent biofilm growths scenarios involving different inocula were examined. Biofilm growth, substrate removal and product formation were monitored throughout the experiments. Based on the oxygen consumption it was concluded...... that heterotrophs and nitrifiers co-existed with methanotrophs in the biofilm. Heterotrophic biomass grew on soluble polymers formed by the hydrolysis of dead biomass entrapped in the biofilm. Nitrifier populations developed because of the presence of ammonia in the mineral medium. Based on these...... analysis was performed on this model. It indicated that the most influential parameters were those related to the biofilm (i.e. density; solid-volume fraction; thickness). This suggests that in order to improve the model, further research regarding the biofilm structure and composition is needed....

  14. Biofilms: an emergent form of bacterial life.

    Science.gov (United States)

    Flemming, Hans-Curt; Wingender, Jost; Szewzyk, Ulrich; Steinberg, Peter; Rice, Scott A; Kjelleberg, Staffan

    2016-08-11

    Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle. PMID:27510863

  15. Vibrio cholerae Biofilms and Cholera Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Anisia J Silva

    2016-02-01

    Full Text Available Vibrio cholerae can switch between motile and biofilm lifestyles. The last decades have been marked by a remarkable increase in our knowledge of the structure, regulation, and function of biofilms formed under laboratory conditions. Evidence has grown suggesting that V. cholerae can form biofilm-like aggregates during infection that could play a critical role in pathogenesis and disease transmission. However, the structure and regulation of biofilms formed during infection, as well as their role in intestinal colonization and virulence, remains poorly understood. Here, we review (i the evidence for biofilm formation during infection, (ii the coordinate regulation of biofilm and virulence gene expression, and (iii the host signals that favor V. cholerae transitions between alternative lifestyles during intestinal colonization, and (iv we discuss a model for the role of V. cholerae biofilms in pathogenicity.

  16. Assisted Cycling Tours

    Science.gov (United States)

    Hollingsworth, Jan Carter

    2008-01-01

    This article discusses Assisted Cycling Tours (ACT), a Westminster, Colorado based 501(c)3, non-profit that is offering the joy of bicycle tours in breathtaking, scenic locations to children and adults with developmental and physical disabilities and their families. ACT was founded by Bob Matter and his son David with a goal of opening up the…

  17. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms

    DEFF Research Database (Denmark)

    Gjermansen, Morten; Ragas, Paula Cornelia; Sternberg, Claus;

    2005-01-01

    that they must be able to regulate their ability to form biofilm and to dissolve biofilm. We present an investigation of a biofilm dissolution process occurring in flow-chamber-grown Pseudomonas putida biofilms. Local starvation-induced biofilm dissolution appears to be an integrated part of P. putida...

  18. Developmental reading disorder

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001406.htm Developmental reading disorder To use the sharing features on this page, please enable JavaScript. Developmental reading disorder is a reading disability that occurs when ...

  19. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms

    DEFF Research Database (Denmark)

    Klausen, M.; Gjermansen, Morten; Kreft, J.-U.;

    2006-01-01

    Surface-associated microbial communities in many cases display dynamic developmental patterns. Model biofilms formed by Pseudomonas aeruginosa and Pseudomonas putida in laboratory flow-chamber setups represent examples of such behaviour. Dependent on the experimental conditions the bacteria in...... organisms do not possess comprehensive genetic programs for biofilm development. Instead the bacteria appear to have evolved a number of different mechanisms to optimize surface colonization, of which they express a subset in response to the prevailing environmental conditions. These mechanisms include the...... ability to regulate cellular adhesiveness and migration in response to micro-environmental signals including those secreted by the bacteria themselves....

  20. Atypical Enteropathogenic Escherichia coli Strains form Biofilm on Abiotic Surfaces Regardless of Their Adherence Pattern on Cultured Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Hebert F. Culler

    2014-01-01

    Full Text Available The aim of this study was to determine the capacity of biofilm formation of atypical enteropathogenic Escherichia coli (aEPEC strains on abiotic and biotic surfaces. Ninety-one aEPEC strains, isolated from feces of children with diarrhea, were analyzed by the crystal violet (CV assay on an abiotic surface after 24 h of incubation. aEPEC strains representing each HEp-2 cell type of adherence were analyzed after 24 h and 6, 12, and 18 days of incubation at 37°C on abiotic and cell surfaces by CFU/cm2 counting and confocal laser scanning microscopy (CLSM. Biofilm formation on abiotic surfaces occurred in 55 (60.4% of the aEPEC strains. There was no significant difference in biofilm biomass formation on an abiotic versus prefixed cell surface. The biofilms could be visualized by CLSM at various developmental stages. aEPEC strains are able to form biofilm on an abiotic surface with no association with their adherence pattern on HEp-2 cells with the exception of the strains expressing UND (undetermined adherence. This study revealed the capacity of adhesion and biofilm formation by aEPEC strains on abiotic and biotic surfaces, possibly playing a role in pathogenesis, mainly in cases of persistent diarrhea.

  1. The Domain of Developmental Psychopathology.

    Science.gov (United States)

    Sroufe, L. Alan; Rutter, Michael

    1984-01-01

    Describes how developmental psychopathology differs from related disciplines, including abnormal psychology, psychiatry, clinical child psychology, and developmental psychology. Points out propositions underlying a developmental perspective and discusses implications for research in developmental psychopathology. (Author/RH)

  2. Hydrodynamic dispersion within porous biofilms

    KAUST Repository

    Davit, Y.

    2013-01-23

    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher\\'s equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels\\' network; (2) the solute\\'s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. © 2013 American Physical Society.

  3. Effects of human activities on the ecological processes of river biofilms in a highly urbanized river

    Science.gov (United States)

    Hung, R.; Li, M.

    2013-12-01

    Many anthropogenic disturbances and their effects of aquatic ecosystem are difficult to quantify in urbanized rivers. In past, specific taxa analysis of community structure was a common approach in river health monitoring studies. However, it is still difficult to understand stream ecosystem integrity without considering ecosystem processes. The complex species composition and metabolism of a river biofilm have the capacity to interact and/or modulate their surrounding environment. Because of their short life cycles, species richness, and worldwide distribution, structure and function of river biofilm communities are sensitive to change in environmental conditions. Therefore, biofilms are widely used as early warning systems of water pollution for water quality monitoring studies. In this study, we used river biofilms as a bioindicator by examining their extracellular enzyme activities and photosynthesis efficiency to understand human activities on the ecological processes of river ecosystem in a highly urbanized river. We sampled four sites along the Keelung River, Taiwan, based on different intensities of anthropogenic disturbances including water pollution index, population densities, land use types and types of stream habitats. Two study sites are heavily influenced by human activities and the others are not. The activities of extracellular enzymes within the biofilm play an important function for organic matter decomposition and nutrient cycling. We measured seven extracellular enzyme activities (β-d-glucosidase, phosphatase, leucine-aminopeptidase, sulfatase, peroxidase, polyphenol oxidase, and esterase) to examine specific enzyme activity changes at four study sites monthly. In addition, relative proportion of each extracellular enzyme activity on total enzyme activities was calculated in order to examine the relationship between functional biofilm profiles and different urban intensities. Among four study sites, leucine-aminopeptidase and esterase

  4. Diffusion in biofilms respiring on electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Renslow, Ryan S. [Washington State Univ., Pullman, WA (United States); Babauta, Jerome T. [Washington State Univ., Pullman, WA (United States); Majors, Paul D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Beyenal, Haluk [Washington State Univ., Pullman, WA (United States)

    2012-11-15

    The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (De) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed for noninvasive, nondestructive, high spatial resolution in situ De measurements in living biofilms respiring on electrodes. The electrodes were polarized so that they would act as the sole terminal electron acceptor for microbial metabolism. We present our results as both two-dimensional De heat maps and surface-averaged relative effective diffusion coefficient (Drs) depth profiles. We found that (1) Drs decreases with depth in G. sulfurreducens biofilms, following a sigmoid shape; (2) Drs at a given location decreases with G. sulfurreducens biofilm age; (3) average De and Drs profiles in G. sulfurreducens biofilms are lower than those in S. oneidensis biofilms—the G. sulfurreducens biofilms studied here were on average 10 times denser than the S. oneidensis biofilms; and (4) halting the respiration of a G. sulfurreducens biofilm decreases the De values. Density, reflected by De, plays a major role in the extracellular electron transfer strategies of electrochemically active biofilms.

  5. Dynamic interactions of neutrophils and biofilms

    Directory of Open Access Journals (Sweden)

    Josefine Hirschfeld

    2014-12-01

    Full Text Available Background: The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. Objective/design: In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. Results/conclusion: Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.

  6. 膀胱冲洗频率与导尿管更换时间对导尿管内腔生物膜的影响%Influence of frequency of bladder irrigation and catheter replacement cycle on biofilm forming in inner side of catheter

    Institute of Scientific and Technical Information of China (English)

    袁展望; 李武平; 史皆然; 付菊芳; 刘冰; 孙惠英; 白艳玲; 杨凡

    2014-01-01

    OBJECTIVE To explore the impact of the bladder irrigation and catheter replacement cycle on the biofilm forming in the inner side of catheter so as to provide guidance for clinical treatment .METHODS The urine and catheter specimens were collected from 157 critically ill patients who were treated in ICU from Mar 2013 to Dec 2013 ,then the culture of pathogens and the bacterial colony counts counting were carried out and observed by using electroscope;the participants were divided into the irrigation group with 76 cases and the non-irrigation group with 81 cases according to the status of bladder irrigation and catheter replacement ;the data were statistically analyzed with the use of SPSS19 .0 software ,and the count data were analyzed by means of chi-square test .RESULTS The urine was cultured positive in 26 cases in the irrigation group with the positive rate of 34 .21%and was cultured positive in 27 cases in the non-irrigation group with the positive rate of 33 .33% .The urine was cultured positive in 23 cases in the participants who were with the catheter replacement cycle of one week with the positive rate of 31 .08% and was cultured positive in 30 cases in the participants who were with the catheter replacement cycle of two weeks with the positive rate of 36 .14% ,there was no statistically significant difference . A total of 82 strains of pathogens have been cultured from the inner sides of the catheters ;the Escherichia coli was the predominant species of gram-negative bacteria ,accounting for 26 .83% ;the Enterococcus f aecalis was dominant among the gram-positive cocci ,accounting for 24 .39% ;the mature biofilm formed inside the catheter lumen when the bacterial quantitative was no less than 10 000/μl .CONCLUSIONS The bladder irrigation can neither inhibit the bacterial colonization in the inner sides of catheter nor prevent the formation of biofilm ;the critically ill patients do not need to change the catheters within two weeks but need to change when

  7. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation

    DEFF Research Database (Denmark)

    Stapper, A.P.; Narasimhan, G.; Oman, D.E.;

    2004-01-01

    Extracellular polymers can facilitate the non-specific attachment of bacteria to surfaces and hold together developing biofilms. This study was undertaken to qualitatively and quantitatively compare the architecture of biofilms produced by Pseudomonas aeruginosa strain PAO1 and its alginate...... biofilm formation using confocal laser scanning microscopy. Biofilm Image Processing (BIP) and Community Statistics (COMSTAT) software programs were used to provide quantitative measurements of the two-dimensional biofilm images. All three strains formed distinguishable biofilm architectures, indicating...... that the production of alginate is not critical for biofilm formation. Observation over a period of 5 days indicated a three-stage development pattern consisting of initiation, establishment and maturation. Furthermore, this study showed that phenotypically distinguishable biofilms can be...

  8. Inhibition of Biofilm Formation Using Novel Nanostructured Surfaces Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Biofilms are ubiquitous in the environment. Few surfaces resist biofilm formation, most promote it. Biofilm formation poses problems in water systems as they can...

  9. Microbial Biofilms in Endodontic Infections: An Update Review

    Directory of Open Access Journals (Sweden)

    Zahed Mohammadi

    2013-04-01

    Full Text Available Biofilms and microbial aggregates are the common mechanisms for the survival of bacteria in nature. In other words, the ability to form biofilms has been regarded as a virulence factor. Microbial biofilms play an essential role in several infectious diseases such as pulp and periradicular pathosis. The aim of this article was to review the adaptation mechanisms of biofilms, their roles in pulpal and periapical pathosis, factors influencing biofilm formation, mechanisms of their antimicrobial resistance, models developed to create biofilms, observation techniques of endodontic biofilms, and the effects of root canal irrigants and medicaments as well as lasers on endodontic biofilms. The search was performed from 1982 to December 2010, and was limited to papers in English language. The keywords searched on Medline were "biofilms and endodontics," "biofilms and root canal irrigation," "biofilms and intra-canal medicament," and "biofilms and lasers." The reference section of each article was manually searched to find other suitable sources of information.

  10. What is developmental dyspraxia?

    Science.gov (United States)

    Dewey, D

    1995-12-01

    The idea of developmental dyspraxia has been discussed in the research literature for almost 100 years. However, there continues to be a lack of consensus regarding both the definition and description of this disorder. This paper presents a neuropsychologically based operational definition of developmental dyspraxia that emphasizes that developmental dyspraxia is a disorder of gesture. Research that has investigated the development of praxis is discussed. Further, different types of gestural disorders displayed by children and different mechanisms that underlie developmental dyspraxia are compared to and contrasted with adult acquired apraxia. The impact of perceptual-motor, language, and cognitive impairments on children's gestural development and the possible associations between these developmental disorders and developmental dyspraxia are also examined. Also, the relationship among limb, orofacial, and verbal dyspraxia is discussed. Finally, problems that exist in the neuropsychological assessment of developmental dyspraxia are discussed and recommendations concerning what should be included in such an assessment are presented. PMID:8838385

  11. The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance.

    Science.gov (United States)

    Derlon, Nicolas; Grütter, Alexander; Brandenberger, Fabienne; Sutter, Anja; Kuhlicke, Ute; Neu, Thomas R; Morgenroth, Eberhard

    2016-10-01

    This study aimed at identifying how to improve the level of permeate flux stabilisation during gravity-driven membrane filtration without control of biofilm formation. The focus was therefore on understanding (i) how the different fractions of the biofilms (inorganics particles, bacterial cells, EPS matrix) influence its hydraulic resistance and (ii) how the compression of biofilms impacts its hydraulic resistance, i.e., can water head be increased to increase the level of permeate flux stabilisation. Biofilms were developed on ultrafiltration membranes at 88 and 284 cm water heads with dead-end filtration for around 50 days. A larger water head resulted in a smaller biofilm permeability (150 and 50 L m(-2) h(-1) bar(-1) for biofilms grown at 88 cm and 284 cm water head, respectively). Biofilms were mainly composed of EPS (>90% in volume). The comparison of the hydraulic resistances of biofilms to model fouling layers indicated that most of the hydraulic resistance is due to the EPS matrix. The compressibility of the biofilm was also evaluated by subjecting the biofilms to short-term (few minutes) and long-term variations of transmembrane pressures (TMP). A sudden change of TMP resulted in an instantaneous and reversible change of biofilm hydraulic resistance. A long-term change of TMP induced a slow change in the biofilm hydraulic resistance. Our results demonstrate that the response of biofilms to a TMP change has two components: an immediate variation of resistance (due to compression/relaxation) and a long-term response (linked to biofilm adaptation/growth). Our results provide relevant information about the relationship between the operating conditions in terms of TMP, the biofilm structure and composition and the resulting biofilm hydraulic resistance. These findings have practical implications for a broad range of membrane systems. PMID:27318448

  12. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly

    OpenAIRE

    Stewart, Elizabeth J.; Mahesh Ganesan; Younger, John G.; Solomon, Michael J.

    2015-01-01

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) co...

  13. Streptococcus gordonii Biofilm Formation: Identification of Genes that Code for Biofilm Phenotypes

    OpenAIRE

    Loo, C. Y.; Corliss, D. A.; Ganeshkumar, N.

    2000-01-01

    Viridans streptococci, which include Streptococcus gordonii, are pioneer oral bacteria that initiate dental plaque formation. Sessile bacteria in a biofilm exhibit a mode of growth that is distinct from that of planktonic bacteria. Biofilm formation of S. gordonii Challis was characterized using an in vitro biofilm formation assay on polystyrene surfaces. The same assay was used as a nonbiased method to screen isogenic mutants generated by Tn916 transposon mutagenesis for defective biofilm fo...

  14. Influence of flow on the structure of bacterial biofilms.

    OpenAIRE

    Stoodley, Paul; Boyle, John D.; Lappin-Scott, Hilary M.

    2000-01-01

    Bacteria attached to surfaces in biofilms are responsible for the contamination of industrial processes and many types of microbial infections and disease. Once established, biofilms are notoriously difficult to eradicate. A more complete understanding of how biofilms form and behave is crucial if we are to predict, and ultimately control, biofilm processes. A major breakthrough in biofilm research came in the early 1990’s when confocal scanning laser microscopy (CSLM) showed that biofilms fo...

  15. How Staphylococcus aureus biofilms develop their characteristic structure

    OpenAIRE

    Periasamy, Saravanan; Joo, Hwang-Soo; Duong, Anthony C.; Bach, Thanh-Huy L.; Tan, Vee Y.; Chatterjee, Som S.; Cheung, Gordon Y. C.; Otto, Michael

    2012-01-01

    Biofilms cause significant problems in the environment and during the treatment of infections. However, the molecular mechanisms underlying biofilm formation are poorly understood. There is a particular lack of knowledge about biofilm maturation processes, such as biofilm structuring and detachment, which are deemed crucial for the maintenance of biofilm viability and the dissemination of cells from a biofilm. Here, we identify the phenol-soluble modulin (PSM) surfactant peptides as key biofi...

  16. The Challenging World of Biofilm Physiology.

    Science.gov (United States)

    Donné, Joke; Dewilde, Sylvia

    2015-01-01

    Worldwide, infectious diseases are one of the leading causes of death among children. At least 65% of all infections are caused by the biofilm mode of bacterial growth. Bacteria colonise surfaces and grow as multicellular biofilm communities surrounded by a polymeric matrix as a common survival strategy. These sessile communities endow bacteria with high tolerance to antimicrobial agents and hence cause persistent and chronic bacterial infections, such as dental caries, periodontitis, otitis media, cystic fibrosis and pneumonia. The highly complex nature and the rapid adaptability of the biofilm population impede our understanding of the process of biofilm formation, but an important role for oxygen-binding proteins herein is clear. Much research on this bacterial lifestyle is already performed, from genome/proteome analysis to in vivo antibiotic susceptibility testing, but without significant progress in biofilm treatment or eradication. This review will present the multiple challenges of biofilm research and discuss possibilities to cross these barriers in future experimental studies. PMID:26616519

  17. Enzymatic removal and disinfection of bacterial biofilms

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Falholt, Per; Gram, Lone

    1997-01-01

    Model biofilms of Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas fluorescens, and Pseudomonas aeruginosa were made on steel and polypropylene substrata. Plaque-resembling biofilms of Streptococcus mutans, Actinomyces, viscosus, and Fusobacterium nucleatum were made on saliva......-coated hydroxyapatite. The activity of enzymes against bacterial cells in biofilm was measured by fluorescence microscopy and an indirect conductance test in which evolution of carbon dioxide was measured. Glucose oxidase combined with lactoperoxidase was bactericidal against biofilm bacteria but did not remove the...... biofilm from the substrata. A complex mixture of polysaccharide-hydrolyzing enzymes was able to remove bacterial biofilm from steel and polypropylene substrata but did not have a significant bactericidal activity. Combining oxidoreductases with polysaccharide-hydrolyzing enzymes resulted in bactericidal...

  18. Current understanding of multi-species biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong;

    2011-01-01

    Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually...... formed by multiple bacterial species. Conventional methods for bacterial cleaning, such as applications of antibiotics and/or disinfectants are often ineffective for biofilm populations due to their special physiology and physical matrix barrier. It has been estimated that billions of dollars are spent...... every year worldwide to deal with damage to equipment, contaminations of products, energy losses, and infections in human beings resulted from microbial biofilms. Microorganisms compete, cooperate, and communicate with each other in multi-species biofilms. Understanding the mechanisms of multi...

  19. Mechanisms of biofilm resistance to antimicrobial agents.

    Science.gov (United States)

    Mah, T F; O'Toole, G A

    2001-01-01

    Biofilms are communities of microorganisms attached to a surface. It has become clear that biofilm-grown cells express properties distinct from planktonic cells, one of which is an increased resistance to antimicrobial agents. Recent work has indicated that slow growth and/or induction of an rpoS-mediated stress response could contribute to biocide resistance. The physical and/or chemical structure of exopolysaccharides or other aspects of biofilm architecture could also confer resistance by exclusion of biocides from the bacterial community. Finally, biofilm-grown bacteria might develop a biofilm-specific biocide-resistant phenotype. Owing to the heterogeneous nature of the biofilm, it is likely that there are multiple resistance mechanisms at work within a single community. Recent research has begun to shed light on how and why surface-attached microbial communities develop resistance to antimicrobial agents. PMID:11166241

  20. Development of a simplified biofilm model

    Science.gov (United States)

    Sarkar, Sushovan; Mazumder, Debabrata

    2015-11-01

    A simplified approach for analyzing the biofilm process in deriving an easy model has been presented. This simplified biofilm model formulated correlations between substrate concentration in the influent/effluent and at biofilm-liquid interface along with substrate flux and biofilm thickness. The model essentially considered the external mass transport according to Fick's Law, steady state substrate as well as biomass balance for attached growth microorganisms. In substrate utilization, Monod growth kinetics has been followed incorporating relevant boundary conditions at the liquid-biofilm interface and at the attachment surface. The numerical solution of equations was accomplished using Runge-Kutta method and accordingly an integrated computer program was developed. The model has been successfully applied in a distinct set of trials with varying range of representative input variables. The model performance was compared with available existing methods and it was found an easy, accurate method that can be used for process design of biofilm reactor.

  1. Synchronized dynamics of bacterial niche-specific functions during biofilm development in a cold seep brine pool

    KAUST Repository

    Zhang, Weipeng

    2015-07-14

    The biology of biofilm in deep-sea environments is barely being explored. Here, biofilms were developed at the brine pool (characterized by limited carbon sources) and the normal bottom water adjacent to Thuwal cold seeps. Comparative metagenomics based on 50 Gb datasets identified polysaccharide degradation, nitrate reduction, and proteolysis as enriched functional categories for brine biofilms. The genomes of two dominant species: a novel deltaproteobacterium and a novel epsilonproteobacterium in the brine biofilms were reconstructed. Despite rather small genome sizes, the deltaproteobacterium possessed enhanced polysaccharide fermentation pathways, whereas the epsilonproteobacterium was a versatile nitrogen reactor possessing nar, nap and nif gene clusters. These metabolic functions, together with specific regulatory and hypersaline-tolerant genes, made the two bacteria unique compared with their close relatives including those from hydrothermal vents. Moreover, these functions were regulated by biofilm development, as both the abundance and the expression level of key functional genes were higher in later-stage biofilms, and co-occurrences between the two dominant bacteria were demonstrated. Collectively, unique mechanisms were revealed: i) polysaccharides fermentation, proteolysis interacted with nitrogen cycling to form a complex chain for energy generation; ii) remarkably, exploiting and organizing niche-specific functions would be an important strategy for biofilm-dependent adaptation to the extreme conditions.

  2. L-Tryptophan prevents Escherichia coli biofilm formation and triggers biofilm degradation.

    Science.gov (United States)

    Shimazaki, Junji; Furukawa, Soichi; Ogihara, Hirokazu; Morinaga, Yasushi

    2012-03-23

    The effect of deletion of trp operon and tna operon on the Escherichia coli biofilm formation was investigated in order to elucidate the role of L-tryptophan metabolism in biofilm formation. trp operon deletion mutants ΔtrpC, ΔtrpD and ΔtrpE deficient in L-tryptophan biosynthesis showed higher biofilm formation. In addition, ΔtnaC with increased L-tryptophan degradation activity showed higher biofilm formation. On the contrary, ΔtnaA deletion mutant which lost L-tryptophan degradation activity showed low biofilm formation. From these results, it was suggested that decrease of intracellular L-tryptophan level induced biofilm formation and increase of L-tryptophan repressed biofilm formation. So the effect of the addition of L-tryptophan to the medium on the E. coli biofilm formation was investigated. L-Tryptophan addition at starting culture decreased biofilm formation and furthermore L-tryptophan addition after 16 h culture induced the degradation of preformed biofilm. From the above results, it was suggested that maintenance of high intracellular L-tryptophan concentration prevents E. coli biofilm formation and elevation of intracellular L-tryptophan concentration triggers degradation of matured biofilm. PMID:22386992

  3. Drug resistance mechanisms of fungal biofilms

    OpenAIRE

    Seneviratne, CJ; Samaranayake, LP

    2011-01-01

    Fungi are ubiquitous in nature and exist in soil, water, plants, and in animals and humans. Similar to bacteria, fungi also form confluent biofilms either singly (mono-species) or with other microbial species (mixed-species). Fungal biofilms are known to be highly resistant to the adverse environmental conditions including antimicrobials and biocide compared to its planktonic (free-floating) counterparts. Although bacterial biofilms have been studied in detail, relatively little is known of f...

  4. Biofilm growth and hydraulic conditions in sewers

    OpenAIRE

    Larrarte, Frédérique; Pons, Marie Noëlle

    2011-01-01

    The development of biofilm in sewers has been monitored using glass coupons placed on the walls. Two experimental sites, differing in terms of the particulate pollution transported by the wastewater and the wastewater velocity, were tested. The biofilm growth, measured by opacity and dry weight, is a function of the number of days the coupons have been really immersed in the wastewater. However the linear correlations which have been obtained between the amount of biofilm and the number of da...

  5. Membrane supported biofilm reactors, a litterature review

    OpenAIRE

    Hem, L.; Catsivilas, F.

    1996-01-01

    Membrane supported biofilm reactor is a new technology for biological degredation of pollutants. The utilisation of mebranes as a support for biofilm growth may occure in treatment of several types of wastewater, as removing of nitrogen from municipal wastewater or removing of spesific pollutants from industrial wastewaters. The advantages of such a technology are a better aeration control process than most other biofilm reactors, and the possibility of bubble-free aeration in the removal of ...

  6. Penetration of erythromycin through Staphylococcus epidermidis biofilm

    Institute of Scientific and Technical Information of China (English)

    LIN Mao-hu; HE Lei; GAO Jie; LIU Yun-xi; SUO Ji-jiang; XING Yu-bin; JIA Ning

    2013-01-01

    Background The catheter related infection caused by Staphylococcus epiderrnidis biofilm is increasing and difficult to treat by antimicrobial chemotherapy.The properties of biofilms that give rise to antibiotic resistance are only partially understood.This study aimed to elucidate the penetration of erythromycin through Staphylococcus epidermidis biofilm.Methods The penetration ratio of erythromycin through Staphylococcus epidermidis biofilms of 1457,1457-msrA,and wild isolate S68 was detected by biofilm penetration model at different time points according to the standard regression curve.The RNNDNA ratio and the cell density within the biofilms were observed by confocal laser microscope and transmission electromicroscope,respectively.Results The penetration ratios of erythromycin through the biofilms of 1457,1457-msrA,and S68 after cultivation for 36 hours were 0.93,0.55 and 0.4,respectively.The erythromycin penetration ratio through 1457 biofilm (0.58 after 8 hours)was higher than that through the other two (0.499 and 0.31 after 24 hours).Lower growth rate of the cells in biofilm was shown,with reduction of RNA/DNA proportion observed by confocal laser microscope through acridine orange stain.Compared with the control group observed by transmission electrmicroscope,the cell density of biofilm air face was lower than that of agar face,with more cell debris.Conclusions Erythromycin could penetrate to the Staphylococcus epidermidis biofilm,but could not kill the cells thoroughly.The lower growth rate of the cells within biofilm could help decreasing the erythromycin susceptibility.

  7. Enzymatic Detachment of Staphylococcus epidermidis Biofilms

    OpenAIRE

    Kaplan, Jeffrey B.; Ragunath, Chandran; Velliyagounder, Kabilan; Fine, Daniel H.; Ramasubbu, Narayanan

    2004-01-01

    The gram-positive bacterium Staphylococcus epidermidis is the most common cause of infections associated with catheters and other indwelling medical devices. S. epidermidis produces an extracellular slime that enables it to form adherent biofilms on plastic surfaces. We found that a biofilm-releasing enzyme produced by the gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans rapidly and efficiently removed S. epidermidis biofilms from plastic surfaces. The enzyme worked by ...

  8. Mechanisms of Candida biofilm drug resistance

    OpenAIRE

    Taff, Heather T.; Mitchell, Kaitlin F.; Edward, Jessica A; Andes, David R.

    2013-01-01

    Candida commonly adheres to implanted medical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. As currently available antifungals have minimal activity against biofilms, new drugs to treat these recalcitrant infections are urgently needed. Recent investigations have begun to shed light on the mechanisms behind the profound resistance associated with the biofilm mode of growth. This resistance appears to be multifactorial, involvin...

  9. Iron and Pseudomonas aeruginosa biofilm formation

    OpenAIRE

    Banin, Ehud; Vasil, Michael L.; Greenberg, E. Peter

    2005-01-01

    Iron serves as a signal in Pseudomonas aeruginosa biofilm development. We examined the influence of mutations in known and putative iron acquisition-signaling genes on biofilm morphology. In iron-sufficient medium, mutants that cannot obtain iron through the high-affinity pyoverdine iron acquisition system form thin biofilms similar to those formed by the parent under low iron conditions. If an iron source for a different iron acquisition system is provided to a pyoverdine mutant, normal biof...

  10. Spatial Patterns of Carbonate Biomineralization in Biofilms

    OpenAIRE

    Li, Xiaobao; Chopp, David L.; Russin, William A.; Brannon, Paul T.; Parsek, Matthew R.; Packman, Aaron I.

    2015-01-01

    Microbially catalyzed precipitation of carbonate minerals is an important process in diverse biological, geological, and engineered systems. However, the processes that regulate carbonate biomineralization and their impacts on biofilms are largely unexplored, mainly because of the inability of current methods to directly observe biomineralization within biofilms. Here, we present a method for in situ, real-time imaging of biomineralization in biofilms and use it to show that Pseudomonas aerug...

  11. Water quality and Health: Biofilms and Legionella

    OpenAIRE

    Gea-Izquierdo Enrique; Loza-Murguía Manuel

    2016-01-01

    This paper discusses the drinking water quality and its relation to Public Health. It introduces the concept of biofilm formation under stood from the perspective of biological contamination. In particular, attends to Legionella spp., ecological niches and related legionnaires’ disease. It also develops the evolution of biofilms, their influence on water quality, treatment and control. Finally, shows the relationship between certain microorganisms included in aquatic biofilms, the substrate w...

  12. Biofilm responses to marine fish farm wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sanz-Lazaro, Carlos, E-mail: carsanz@um.es [Departamento de Ecologia e Hidrologia, Facultad de Biologia, Universidad de Murcia, 30100 Murcia (Spain); Navarrete-Mier, Francisco; Marin, Arnaldo [Departamento de Ecologia e Hidrologia, Facultad de Biologia, Universidad de Murcia, 30100 Murcia (Spain)

    2011-03-15

    The changes in the biofilm community due to organic matter enrichment, eutrophication and metal contamination derived from fish farming were studied. The biofilm biomass, polysaccharide content, trophic niche and element accumulation were quantified along an environmental gradient of fish farm wastes in two seasons. Biofilm structure and trophic diversity was influenced by seasonality as well as by the fish farm waste load. Fish farming enhanced the accumulation of organic carbon, nutrients, selenium and metals by the biofilm community. The accumulation pattern of these elements was similar regardless of the structure and trophic niche of the community. This suggests that the biofilm communities can be considered a reliable tool for assessing dissolved aquaculture wastes. Due to the ubiquity of biofilms and its wide range of consumers, its role as a sink of dissolved wastes may have important implications for the transfer of aquaculture wastes to higher trophic levels in coastal systems. - Research highlights: > Biofilms can act as a trophic pathway of fish farm dissolved wastes. > Biofilms are reliable tools for monitoring fish farm dissolved wastes. > The influence of the fish farm dissolved wastes can be detected 120-350 m from farm. - Under the influence of fish farming biofilm accumulates organic carbon, nutrients, selenium and metals, regardless of the structure and trophic niche of the community.

  13. Targeting quorum sensing in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jakobsen, Tim Holm; Bjarnsholt, Thomas; Jensen, Peter Østrup;

    2013-01-01

    Bacterial resistance to conventional antibiotics combined with an increasing acknowledgement of the role of biofilms in chronic infections has led to a growing interest in new antimicrobial strategies that target the biofilm mode of growth. In the aggregated biofilm mode, cell-to-cell communication...... alternative antibacterial strategies. Here, we review state of the art research of quorum sensing inhibitors against the opportunistic human pathogen Pseudomonas aeruginosa, which is found in a number of biofilm-associated infections and identified as the predominant organism infecting the lungs of cystic...

  14. Spatial structure, cooperation and competition in biofilms.

    Science.gov (United States)

    Nadell, Carey D; Drescher, Knut; Foster, Kevin R

    2016-09-01

    Bacteria often live within matrix-embedded communities, termed biofilms, which are now understood to be a major mode of microbial life. The study of biofilms has revealed their vast complexity both in terms of resident species composition and phenotypic diversity. Despite this complexity, theoretical and experimental work in the past decade has identified common principles for understanding microbial biofilms. In this Review, we discuss how the spatial arrangement of genotypes within a community influences the cooperative and competitive cell-cell interactions that define biofilm form and function. Furthermore, we argue that a perspective rooted in ecology and evolution is fundamental to progress in microbiology. PMID:27452230

  15. Silver-Palladium Surfaces Inhibit Biofilm Formation

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Schroll, Casper; Hilbert, Lisbeth Rischel;

    2009-01-01

    Undesired biofilm formation is a major concern in many areas. In the present study, we investigated biofilm-inhibiting properties of a silver-palladium surface that kills bacteria by generating microelectric fields and electrochemical redox processes. For evaluation of the biofilm inhibition...... efficacy and study of the biofilm inhibition mechanism, the silver-sensitive Escherichia coli J53 and the silver-resistant E. coli J53[pMG101] strains were used as model organisms, and batch and flow chamber setups were used as model systems. In the case of the silver-sensitive strain, the silver...

  16. Studying Bacterial Multispecies Biofilms: Where to Start?

    Science.gov (United States)

    Røder, Henriette L; Sørensen, Søren J; Burmølle, Mette

    2016-06-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the benefits and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. PMID:27004827

  17. Enzymatic removal and disinfection of bacterial biofilms

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Falholt, Per; Gram, Lone

    1997-01-01

    -coated hydroxyapatite. The activity of enzymes against bacterial cells in biofilm was measured by fluorescence microscopy and an indirect conductance test in which evolution of carbon dioxide was measured. Glucose oxidase combined with lactoperoxidase was bactericidal against biofilm bacteria but did not remove the...... biofilm from the substrata. A complex mixture of polysaccharide-hydrolyzing enzymes was able to remove bacterial biofilm from steel and polypropylene substrata but did not have a significant bactericidal activity. Combining oxidoreductases with polysaccharide-hydrolyzing enzymes resulted in bactericidal...

  18. Electroactive biofilms of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Biofilms formed from a pure strain of Desulfovibrio desulfuricans 27774 on stainless steel and graphite polarised surfaces were studied. The polarisation conditions applied were -0.4 V vs. SCE for different times. A cathodic current related with the biofilms growth was observed with a maximum intensity of -270 mA m-2 that remained stable for several days using graphite electrodes. These sulphate reducing bacteria biofilms present electrocatalytic activity towards hydrogen and oxygen reduction reactions. Electrode polarisation has a selective effect on the catalytic activity. The biofilms were also observed by scanning electronic microscopy revealing the formation of homogeneous films on the surfaces

  19. Biofilm responses to marine fish farm wastes

    International Nuclear Information System (INIS)

    The changes in the biofilm community due to organic matter enrichment, eutrophication and metal contamination derived from fish farming were studied. The biofilm biomass, polysaccharide content, trophic niche and element accumulation were quantified along an environmental gradient of fish farm wastes in two seasons. Biofilm structure and trophic diversity was influenced by seasonality as well as by the fish farm waste load. Fish farming enhanced the accumulation of organic carbon, nutrients, selenium and metals by the biofilm community. The accumulation pattern of these elements was similar regardless of the structure and trophic niche of the community. This suggests that the biofilm communities can be considered a reliable tool for assessing dissolved aquaculture wastes. Due to the ubiquity of biofilms and its wide range of consumers, its role as a sink of dissolved wastes may have important implications for the transfer of aquaculture wastes to higher trophic levels in coastal systems. - Research highlights: → Biofilms can act as a trophic pathway of fish farm dissolved wastes. → Biofilms are reliable tools for monitoring fish farm dissolved wastes. → The influence of the fish farm dissolved wastes can be detected 120-350 m from farm. - Under the influence of fish farming biofilm accumulates organic carbon, nutrients, selenium and metals, regardless of the structure and trophic niche of the community.

  20. Aspartate inhibits Staphylococcus aureus biofilm formation.

    Science.gov (United States)

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp. PMID:25687923

  1. Focus on the physics of biofilms

    Science.gov (United States)

    Lecuyer, Sigolene; Stocker, Roman; Rusconi, Roberto

    2015-03-01

    Bacteria are the smallest and most abundant form of life. They have traditionally been considered as primarily planktonic organisms, swimming or floating in a liquid medium, and this view has shaped many of the approaches to microbial processes, including for example the design of most antibiotics. However, over the last few decades it has become clear that many bacteria often adopt a sessile, surface-associated lifestyle, forming complex multicellular communities called biofilms. Bacterial biofilms are found in a vast range of environments and have major consequences on human health and industrial processes, from biofouling of surfaces to the spread of diseases. Although the study of biofilms has been biologists’ territory for a long time, a multitude of phenomena in the formation and development of biofilms hinges on physical processes. We are pleased to present a collection of research papers that discuss some of the latest developments in many of the areas to which physicists can contribute a deeper understanding of biofilms, both experimentally and theoretically. The topics covered range from the influence of physical environmental parameters on cell attachment and subsequent biofilm growth, to the use of local probes and imaging techniques to investigate biofilm structure, to the development of biofilms in complex environments and the modeling of colony morphogenesis. The results presented contribute to addressing some of the major challenges in microbiology today, including the prevention of surface contamination, the optimization of biofilm disruption methods and the effectiveness of antibiotic treatments.

  2. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms

    OpenAIRE

    Martins, M.; Uppuluri, Priya; Thomas, Derek P.; Cleary, Ian A.; Henriques, Mariana; Lopez-Ribot, José L.; Oliveira, Rosário

    2009-01-01

    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm devel...

  3. Short and long term biosorption of silica-coated iron oxide nanoparticles in heterotrophic biofilms.

    Science.gov (United States)

    Herrling, Maria P; Lackner, Susanne; Tatti, Oleg; Guthausen, Gisela; Delay, Markus; Franzreb, Matthias; Horn, Harald

    2016-02-15

    The increased application of engineered nanoparticles (ENP) in industrial processes and consumer products has raised concerns about their impact on health and environmental safety. When ENP enter the global water cycle by e.g. wastewater streams, wastewater treatment plants (WWTP) represent potential sinks for ENP. During biological WWT, the attachment of ENP to biofilms is responsible for the desired removal of ENP from the water phase avoiding their release into the aquatic environment. However, the fundamental mechanisms guiding the interactions between ENP and biofilms are not yet fully understood. Therefore, this study investigates the behavior and biosorption of inorganic ENP, here magnetic iron oxide nanoparticles coated with silica (scFe3O4-NP), with heterotrophic biofilms at different time scales. Their magnetic properties enable to follow scFe3O4-NP in the biofilm system by a magnetic susceptibility balance and magnetic resonance imaging. Biofilms were exposed to scFe3O4-NP at short contact times (5 min) in flow cells and complementary, scFe3O4-NP were introduced into a moving bed biofilm reactor (MBBR) to be observed for 27 d. Mass balances revealed that scFe3O4-NP sorbed to the biofilm within a few minutes, but that the total biosorption was rather low (3.2 μg Fe/mg TSS). scFe3O4-NP mainly sorbed to the biofilm surface inducing the detachment of outer biofilm parts starting after an exposure time of 3h in the MBBR. The biosorption depended on the exposure concentration of scFe3O4-NP, but less on the contact time. Most scFe3O4-NP exited the flow cell (up to 65%) and the MBBR (57%) via the effluent. This effect was favored by the stabilization of scFe3O4-NP in the bulk liquid by organic matter leading to a low retention capacity of the MBBR system. The results contribute to improve our understanding about the fate of ENP in environmental and in technical biofilm systems and give indications for future investigations needed. PMID:26674701

  4. Oral biofilm models for mechanical plaque removal.

    Science.gov (United States)

    Verkaik, Martinus J; Busscher, Henk J; Rustema-Abbing, Minie; Slomp, Anje M; Abbas, Frank; van der Mei, Henny C

    2010-08-01

    In vitro plaque removal studies require biofilm models that resemble in vivo dental plaque. Here, we compare contact and non-contact removal of single and dual-species biofilms as well as of biofilms grown from human whole saliva in vitro using different biofilm models. Bacteria were adhered to a salivary pellicle for 2 h or grown after adhesion for 16 h, after which, their removal was evaluated. In a contact mode, no differences were observed between the manual, rotating, or sonic brushing; and removal was on average 39%, 84%, and 95% for Streptococcus mutans, Streptococcus oralis, and Actinomyces naeslundii, respectively, and 90% and 54% for the dual- and multi-species biofilms, respectively. However, in a non-contact mode, rotating and sonic brushes still removed considerable numbers of bacteria (24-40%), while the manual brush as a control (5-11%) did not. Single A. naeslundii and dual-species (A. naeslundii and S. oralis) biofilms were more difficult to remove after 16 h growth than after 2 h adhesion (on average, 62% and 93% for 16- and 2-h-old biofilms, respectively), while in contrast, biofilms grown from whole saliva were easier to remove (97% after 16 h and 54% after 2 h of growth). Considering the strong adhesion of dual-species biofilms and their easier more reproducible growth compared with biofilms grown from whole saliva, dual-species biofilms of A. naeslundii and S. oralis are suggested to be preferred for use in mechanical plaque removal studies in vitro. PMID:19565279

  5. Physics of biofilms: the initial stages of biofilm formation and dynamics

    International Nuclear Information System (INIS)

    One of the physiological responses of bacteria to external stress is to assemble into a biofilm. The formation of a biofilm greatly increases a bacterial population's resistance to a hostile environment by shielding cells, for example, from antibiotics. In this paper, we describe the conditions necessary for the emergence of biofilms in natural environments and relate them to the emergence of biofilm formation inside microfluidic devices. We show that competing species of Escherichia coli bacteria form biofilms to spatially segregate themselves in response to starvation stress, and use in situ methods to characterize the physical properties of the biofilms. Finally, we develop a microfluidic platform to study the inter-species interactions and show how biofilm-mediated genetic interactions can improve a species’ resistance to external stress. (paper)

  6. Development of mixed microbial granular biofilms for denitrification of concentrated wastes

    International Nuclear Information System (INIS)

    Nitrate containing wastes are generated at various stages of the nuclear fuel cycle; fuel fabrication and reprocessing. A treatment process for removing nitrate from such concentrated nitrate bearing effluents is needed. Among other available options, biological denitrification is an economical and technically feasible method for nitrate removal. Granular biofilm based sequencing batch reactors (SBRs) may allow designing a compact and high rate processes suitable for the treatment of concentrated effluents. Hence, experiments were carried out in laboratory scale sequencing batch reactors (SBRs) to develop granular biofilms (composed of mixed microbes) for removing nitrate from the concentrated nitrate containing-media. Microbial granular biofilms, capable of consuming nitrate up to 2710 mg/l nitrate-N, were developed under anaerobic conditions in a 6-litre volume sequencing batch reactor (SBR). The SBR was inoculated with activated sludge flocs and operated with 24-h cycle and 50% volumetric exchange ratio. Synthetic media containing acetate as the energy source and electron donor, at carbon to nitrogen molar ratio of 2:1 and 3:1 was fed into the SBRs. Nitrate-N concentration in the SBR was increased in a step-wise manner starting from 677 to 2710 mg/l (1355 to 5420 mg/l in the feed). Complete removal of influent nitrate occurred within the first few hours of SBR cycle period. Effluent nitrate and nitrite levels (∼3 mg/l nitrate-N or nitrite-N) at the end of SBR cycle period (24 h) were found to be below the discharge limits. Under these conditions biomass predominantly consisted of granular biofilms. Results show the potential of granular biofilm based SBR for converting nitrate to nitrogen gas from concentrated nitrate bearing industrial effluents. (author)

  7. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR)

    International Nuclear Information System (INIS)

    Biofilm configured system with sequencing/periodic discontinuous batch mode operation was evaluated for the treatment of low-biodegradable composite chemical wastewater (low BOD/COD ratio ∼0.3, high sulfate content: 1.75 g/l) in aerobic metabolic function. Reactor was operated under anoxic-aerobic-anoxic microenvironment conditions with a total cycle period of 24 h [fill: 15 min; reaction: 23 h (aeration along with recirculation); settle: 30 min; decant: 15 min] and the performance of the system was studied at organic loading rates (OLR) of 0.92, 1.50, 3.07 and 4.76 kg COD/cum-day. Substrate utilization showed a steady increase with increase in OLR and system performance sustained at higher loading rates. Maximum non-cumulative substrate utilization was observed after 4 h of the cycle operation. Sulfate removal efficiency of 20% was observed due to the induced anoxic conditions prevailing during the sequence phase operation of the reactor and the existing internal anoxic zones in the biofilm matrix. Biofilm configured sequencing batch reactor (SBR) showed comparatively higher efficiency to the corresponding suspended growth and granular activated carbon (GAC) configured systems studied with same wastewater. Periodic discontinuous batch mode operation of the biofilm reactors results in a more even distribution of the biomass throughout the reactor and was able to treat large shock loads than the continuous flow process. Biofilm configured system coupled with periodic discontinuous batch mode operation imposes regular variations in the substrate concentration on biofilm organisms. As a result, organisms throughout the film achieve maximum growth rates resulting in improved reaction potential leading to stable and robust system which is well suited for treating highly variable wastes

  8. Reduction of Aeromonas hidrophyla biofilm on stainless stell surface by essential oils.

    Science.gov (United States)

    Millezi, Alessandra Farias; Cardoso, Maria das Graças; Alves, Eduardo; Piccoli, Roberta Hilsdorf

    2013-01-01

    This study demonstrates the possibility of using sanitizing detergents based on natural products for the elimination and/or reduction of Aeromonas hydrophila biofilm formed on stainless steel surfaces. The goal of this work was to determine the reduction effect of sanitizing detergents containing essential oils of Thymus vulgaris (thyme) and Cymbopogon citratus (lemongrass) on biofilm formed by A. hydrophila on AISI 304 stainless steel coupons, using UHT skimmed milk as substratum. There was adhesion and biofilm formation by A. hydrophila at 28 °C, presenting 7.60 log cfu.cm(-2) after the fourth day of cultivation. There was no significant difference between the lemongrass treatment and that of the thyme oil (p 0.05). The treatment with lemongrass solution reduced the biofilm by 4.51 log cfu cm(-2) at 25 °C. The thyme detergent also reduced the number of cfu cm(-2) by 3.84 log cycles at 25 °C. The use of the lemongrass and thyme solutions efficiently reduced the A. hydrophila biofilm. PMID:24159286

  9. Reduction of Aeromonas hidrophyla biofilm on stainless stell surface by essential oils

    Directory of Open Access Journals (Sweden)

    Alessandra Farias Millezi

    2013-01-01

    Full Text Available This study demonstrates the possibility of using sanitizing detergents based on natural products for the elimination and/or reduction of Aeromonas hydrophila biofilm formed on stainless steel surfaces. The goal of this work was to determine the reduction effect of sanitizing detergents containing essential oils of Thymus vulgaris (thyme and Cymbopogon citratus (lemongrass on biofilm formed by A. hydrophila on AISI 304 stainless steel coupons, using UHT skimmed milk as substratum. There was adhesion and biofilm formation by A. hydrophila at 28 ºC, presenting 7.60 log cfu.cm-2 after the fourth day of cultivation. There was no significant difference between the lemongrass treatment and that of the thyme oil (p 0.05. The treatment with lemongrass solution reduced the biofilm by 4.51 log cfu cm-2 at 25 ºC. The thyme detergent also reduced the number of cfu cm-2 by 3.84 log cycles at 25 ºC. The use of the lemongrass and thyme solutions efficiently reduced the A. hydrophila biofilm.

  10. Cadmium Modulates Biofilm Formation by Staphylococcus epidermidis

    NARCIS (Netherlands)

    Wu, Xueqing; Santos, Regiane R.; Fink-Gremmels, Johanna

    2015-01-01

    The aim of the study was to evaluate the effect of cadmium exposure on Staphylococcus epidermidis (ATCC 35984) biofilm formation. Bacteria were cultured in the absence or presence of different concentrations (0-50 mu M) of cadmium. Biofilm formation and bacterial viability were assessed. Quantitativ

  11. Pseudomonas aeruginosa biofilms in cystic fibrosis

    DEFF Research Database (Denmark)

    Høiby, Niels; Ciofu, Oana; Bjarnsholt, Thomas

    2010-01-01

    The persistence of chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients is due to biofilm-growing mucoid (alginate-producing) strains. A biofilm is a structured consortium of bacteria, embedded in a self-produced polymer matrix consisting of polysaccharide, protein and...

  12. Biofilm ved kronisk rhinosinuitis og cystisk fibrose

    DEFF Research Database (Denmark)

    Fisker, Jacob; Buchwald, Christian von; Johansen, Helle Krogh

    2011-01-01

    Microbial biofilms are known to cause persistent foreign-body infections and have recently been acknowledged as involved in more than 65% of all human infections. Microbial biofilms have been detected in chronic rhinosinusitis, and chronic rhinosinusitis is mandatory in patients with cystic...

  13. Penetration of Rifampin through Staphylococcus epidermidis Biofilms

    OpenAIRE

    Zheng, Zhilan; Philip S. Stewart

    2002-01-01

    Rifampin penetrated biofilms formed by Staphylococcus epidermidis but failed to effectively kill the bacteria. Penetration was demonstrated by a simple diffusion cell bioassay and by transmission electron microscopic observation of antibiotic-affected cells at the distal edge of the biofilm.

  14. The 'Swiss cheese' instability of bacterial biofilms

    CERN Document Server

    Jang, Hongchul; Stocker, Roman

    2012-01-01

    We demonstrate a novel pattern that results in bacterial biofilms as a result of the competition between hydrodynamic forces and adhesion forces. After the passage of an air plug, the break up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a Swiss cheese pattern of holes is left in the residual biofilm.

  15. The clinical impact of bacterial biofilms

    DEFF Research Database (Denmark)

    Høiby, Niels; Ciofu, Oana; Johansen, Helle Krogh;

    2011-01-01

    . Bacterial biofilms are resistant to antibiotics, disinfectant chemicals and to phagocytosis and other components of the innate and adaptive inflammatory defense system of the body. It is known, for example, that persistence of staphylococcal infections related to foreign bodies is due to biofilm formation...

  16. Biofilm Induced Tolerance Towards Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Folkesson, Anders; Haagensen, Janus Anders Juul; Zampaloni, Claudia;

    2008-01-01

    presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of...

  17. Antibiotic tolerance and resistance in biofilms

    DEFF Research Database (Denmark)

    Ciofu, Oana; Tolker-Nielsen, Tim

    One of the most important features of microbial biofilms is their tolerance to antimicrobial agents and components of the host immune system. The difficulty of treating biofilm infections with antibiotics is a major clinical problem. Although antibiotics may decrease the number of bacteria in...

  18. Biofilms and their modifications by laser irradiation

    International Nuclear Information System (INIS)

    Biofilms are grown on different materials with various surface morphology and are investigated by light and scanning force microscopy. The growth patterns, coverage and adherence of the biofilm are shown to depend on the type of the substrate and its roughness as well as on the type of micro-organisms. Here we present investigations of Eschericia coli bacterial biofilms grown on the polymer material polyetheretherketone and also on titanium films on glass substrates. A Monte Carlo simulation of the growth process is developed which takes into account the aspect ratio of the micro-organisms and the diffusion of nutrient over the surface to feed them. A pulsed nitrogen laser has been applied to the samples and the interaction of the laser beam with the biofilm and the underlying substrate has been studied. Because of the inhomogeneity of the biofilms the ablated areas are different. With increasing number of laser pulses more biofilm material is removed but there appears also damage of the substrate. The threshold energy fluence for the biofilm ablation is estimated and depends on the sticking power of the bacteria. Ablation rates for the removal of the biofilms are also obtained

  19. Mucosal biofilm detection in chronic otitis media

    DEFF Research Database (Denmark)

    Wessman, Marcus; Bjarnsholt, Thomas; Eickhardt-Sørensen, Steffen Robert; Johansen, Helle Krogh; Homøe, Preben

    2014-01-01

    The objectives of this study were to examine middle ear biopsies from Greenlandic patients with chronic otitis media (COM) for the presence of mucosal biofilms and the bacteria within the biofilms. Thirty-five middle ear biopsies were obtained from 32 Greenlandic COM patients admitted to ear surg...

  20. Introduction to Biofilms Thematic Minireview Series.

    Science.gov (United States)

    Allewell, Norma M

    2016-06-10

    The biofilms that many bacteria and fungi produce enable them to form communities, adhere tightly to surfaces, evade host immunity, and resist antibiotics. Pathogenic microorganisms that form biofilms are very difficult to eradicate and thus are a frequent source of life-threatening, hospital-acquired infections. This series of five minireviews from the Journal of Biological Chemistry provides a broad overview of our current understanding of biofilms and the challenges that remain. The structure, biosynthesis, and biological function of the biofilms produced by pathogenic fungi are the subject of the first article, by Sheppard and Howell. Gunn, Bakaletz, and Wozniak focus on the biochemistry and structure of bacterial biofilms, how these structures enable bacteria to evade host immunity, and current and developing strategies for overcoming this resistance. The third and fourth articles present two of the best understood cell signaling pathways involved in biofilm formation. Valentini and Filloux focus on cyclic di-GMP, while Kavanaugh and Horswill discuss the quorum-sensing (agr) system and the relationship between quorum sensing and biofilm formation. Mechanisms of antibiotic resistance, particularly the role of efflux pumps and the development of persister cells, are the topics of the final article by Van Acker and Coenye. The advances described in this series guarantee that ongoing interdisciplinary and international efforts will lead to new insights into the basic biology of biofilm formation, as well as new strategies for therapeutic interventions. PMID:27129220

  1. Screening of Compounds against Gardnerella vaginalis Biofilms.

    Directory of Open Access Journals (Sweden)

    Cornelia Gottschick

    Full Text Available Bacterial vaginosis (BV is a common infection in reproductive age woman and is characterized by dysbiosis of the healthy vaginal flora which is dominated by Lactobacilli, followed by growth of bacteria like Gardnerella vaginalis. The ability of G. vaginalis to form biofilms contributes to the high rates of recurrence that are typical for BV and which unfortunately make repeated antibiotic therapy inevitable. Here we developed a biofilm model for G. vaginalis and screened a large spectrum of compounds for their ability to prevent biofilm formation and to resolve an existing G. vaginalis biofilm. The antibiotics metronidazole and tobramycin were highly effective in preventing biofilm formation, but had no effect on an established biofilm. The application of the amphoteric tenside sodium cocoamphoacetate (SCAA led to disintegration of existing biofilms, reducing biomass by 51% and viability by 61% and it was able to increase the effect of metronidazole by 40% (biomass and 61% (viability. Our data show that attacking the biofilm and the bacterial cells by the combination of an amphoteric tenside with the antibiotic metronidazole might be a useful strategy against BV.

  2. Screening of Compounds against Gardnerella vaginalis Biofilms.

    Science.gov (United States)

    Gottschick, Cornelia; Szafranski, Szymon P; Kunze, Brigitte; Sztajer, Helena; Masur, Clarissa; Abels, Christoph; Wagner-Döbler, Irene

    2016-01-01

    Bacterial vaginosis (BV) is a common infection in reproductive age woman and is characterized by dysbiosis of the healthy vaginal flora which is dominated by Lactobacilli, followed by growth of bacteria like Gardnerella vaginalis. The ability of G. vaginalis to form biofilms contributes to the high rates of recurrence that are typical for BV and which unfortunately make repeated antibiotic therapy inevitable. Here we developed a biofilm model for G. vaginalis and screened a large spectrum of compounds for their ability to prevent biofilm formation and to resolve an existing G. vaginalis biofilm. The antibiotics metronidazole and tobramycin were highly effective in preventing biofilm formation, but had no effect on an established biofilm. The application of the amphoteric tenside sodium cocoamphoacetate (SCAA) led to disintegration of existing biofilms, reducing biomass by 51% and viability by 61% and it was able to increase the effect of metronidazole by 40% (biomass) and 61% (viability). Our data show that attacking the biofilm and the bacterial cells by the combination of an amphoteric tenside with the antibiotic metronidazole might be a useful strategy against BV. PMID:27111438

  3. Screening of Compounds against Gardnerella vaginalis Biofilms

    Science.gov (United States)

    Gottschick, Cornelia; Szafranski, Szymon P.; Kunze, Brigitte; Sztajer, Helena; Masur, Clarissa; Abels, Christoph; Wagner-Döbler, Irene

    2016-01-01

    Bacterial vaginosis (BV) is a common infection in reproductive age woman and is characterized by dysbiosis of the healthy vaginal flora which is dominated by Lactobacilli, followed by growth of bacteria like Gardnerella vaginalis. The ability of G. vaginalis to form biofilms contributes to the high rates of recurrence that are typical for BV and which unfortunately make repeated antibiotic therapy inevitable. Here we developed a biofilm model for G. vaginalis and screened a large spectrum of compounds for their ability to prevent biofilm formation and to resolve an existing G. vaginalis biofilm. The antibiotics metronidazole and tobramycin were highly effective in preventing biofilm formation, but had no effect on an established biofilm. The application of the amphoteric tenside sodium cocoamphoacetate (SCAA) led to disintegration of existing biofilms, reducing biomass by 51% and viability by 61% and it was able to increase the effect of metronidazole by 40% (biomass) and 61% (viability). Our data show that attacking the biofilm and the bacterial cells by the combination of an amphoteric tenside with the antibiotic metronidazole might be a useful strategy against BV. PMID:27111438

  4. Biofilms: The Stronghold of Legionella pneumophila

    Directory of Open Access Journals (Sweden)

    Mena Abdel-Nour

    2013-10-01

    Full Text Available Legionellosis is mostly caused by Legionella pneumophila and is defined as a severe respiratory illness with a case fatality rate ranging from 5% to 80%. L. pneumophila is ubiquitous in natural and anthropogenic water systems. L. pneumophila is transmitted by inhalation of contaminated aerosols produced by a variety of devices. While L. pneumophila replicates within environmental protozoa, colonization and persistence in its natural environment are also mediated by biofilm formation and colonization within multispecies microbial communities. There is now evidence that some legionellosis outbreaks are correlated with the presence of biofilms. Thus, preventing biofilm formation appears as one of the strategies to reduce water system contamination. However, we lack information about the chemical and biophysical conditions, as well as the molecular mechanisms that allow the production of biofilms by L. pneumophila. Here, we discuss the molecular basis of biofilm formation by L. pneumophila and the roles of other microbial species in L. pneumophila biofilm colonization. In addition, we discuss the protective roles of biofilms against current L. pneumophila sanitation strategies along with the initial data available on the regulation of L. pneumophila biofilm formation.

  5. Biofilm-flow interactions in aquatic environments

    Science.gov (United States)

    Christensen, K. T.; Kazemifar, F.; Blois, G.; Aybar, M.; Perez Calleja, P.; Nerenberg, R.; Sinha, S.; Hardy, R. J.; Best, J.; Sambrook Smith, G.

    2015-12-01

    Biofilms are pervasive in aquatic environments, growing in pipes and channels in water supply systems, on permeable riverbeds, etc. The permeable, heterogeneous, and deformable structure of the biofilms make their interaction with surrounding fluid flow important from a range of perspectives, such as mass and momentum transport, and biofilm deformation and detachment due to shear stresses. Our understanding of these processes is limited, in part due to technical obstacles for performing such measurements. We have attempted to address these challenges using particle image velocimetry (PIV) and fluorescence imaging techniques in a water channel flow facility to obtain time-resolved velocity vector fields of flow around cylinders covered with biofilms at different growth stages. Analysis is focused on the coupled dynamics of turbulence and the biofilm development under different flow and nutrient conditions.

  6. Mesoscale Elucidation of Biofilm Shear Behavior

    CERN Document Server

    Barai, Pallab; Mukherjee, Partha P

    2015-01-01

    Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regions: a) initial increase in stiffness due to strain stiffe...

  7. Biofilms On Orbit and On Earth: Current Methods, Future Needs

    Science.gov (United States)

    Vega, Leticia

    2013-01-01

    Biofilms have played a significant role on the effectiveness of life support hardware on the Space Shuttle and International Space Station (ISS). This presentation will discuss how biofilms impact flight hardware, how on orbit biofilms are analyzed from an engineering and research perspective, and future needs to analyze and utilize biofilms for long duration, deep space missions.

  8. Discovering Biofilms: Inquiry-Based Activities for the Classroom

    Science.gov (United States)

    Redelman, Carly V.; Marrs, Kathleen; Anderson, Gregory G.

    2012-01-01

    In nature, bacteria exist in and adapt to different environments by forming microbial communities called "biofilms." We propose simple, inquiry-based laboratory exercises utilizing a biofilm formation assay, which allows controlled biofilm growth. Students will be able to qualitatively assess biofilm growth via staining. Recently, we developed a…

  9. In vitro phenotypic differentiation towards commensal and pathogenic oral biofilms

    NARCIS (Netherlands)

    Janus, M.M.; Keijser, B.J.F.; Bikker, F.J.; Exterkate, R.A.M.; Crielaard, W.; Krom, B.P.

    2015-01-01

    Commensal oral biofilms, defined by the absence of pathology-related phenotypes, are ubiquitously present. In contrast to pathological biofilms commensal biofilms are rarely studied. Here, the effect of the initial inoculum and subsequent growth conditions on in vitro oral biofilms was studied. Biof

  10. A Subinhibitory Concentration of Clarithromycin Inhibits Mycobacterium avium Biofilm Formation

    OpenAIRE

    Carter, George; Young, Lowell S.; Bermudez, Luiz E.

    2004-01-01

    Mycobacterium avium causes disseminated infection in immunosuppressed individuals and lung infection in patients with chronic lung diseases. M. avium forms biofilm in the environment and possibly in human airways. Antibiotics with activity against the bacterium could inhibit biofilm formation. Clarithromycin inhibits biofilm formation but has no activity against established biofilm.

  11. Genetics and Developmental Psychology

    Science.gov (United States)

    Plomin, Robert

    2004-01-01

    One of the major changes in developmental psychology during the past 50 years has been the acceptance of the important role of nature (genetics) as well as nurture (environment). Past research consisting of twin and adoption studies has shown that genetic influence is substantial for most domains of developmental psychology. Present research…

  12. Combined Reactor and Microelectrode Measurements in Laboratory Grown Biofilms

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    A combined biofilm reactor-/microelectrode experimental set-up has been constructed, allowing for simultaneous reactor mass balances and measurements of concentration profiles within the biofilm. The system consists of an annular biofilm reactor equipped with an oxygen microelectrode. Experiments...... were carried out with aerobic glucose and starch degrading biofilms. The well described aerobic glucose degradation biofilm system was used to test the combined reactor set-up. Results predicted from known biofilm kinetics were obtained. In the starch degrading biofilm, basic assumptions were tested...

  13. Metal concentrations in stream biofilm and sediments and their potential to explain biofilm microbial community structure

    International Nuclear Information System (INIS)

    Concentrations of metals associated with sediments have traditionally been analysed to assess the extent of heavy metal contamination in freshwater environments. Stream biofilms present an alternative medium for this assessment which may be more relevant to the risk incurred by stream ecosystems as they are intensively grazed by aquatic organisms at a higher trophic level. Therefore, we investigated zinc, copper and lead concentrations in biofilms and sediments of 23 stream sites variously impacted by urbanisation. Simultaneously, biofilm bacterial and ciliate protozoan community structure was analysed by Automated Ribosomal Intergenic Spacer Analysis and Terminal Restriction Fragment Length Polymorphism, respectively. Statistical analysis revealed that biofilm associated metals explained a greater proportion of the variations observed in bacterial and ciliate communities than did sediment associated-metals. This study suggests that the analysis of metal concentrations in biofilms provide a good assessment of detrimental effects of metal contaminants on aquatic biota. - Highlights: ► Zn, Cu and Pb concentrations in biofilm and sediments from 23 streams were assessed. ► Bacteria and ciliate protozoa were simultaneously used as biological indicators. ► Zn and Cu were generally enriched in biofilm compared to sediments. ► Metals in biofilm provide a useful assessment of freshwater ecosystem contamination. ► Results highlight the likely ecological importance of biofilm associated metals. - Metal concentrations in stream biofilms provide a good assessment of the effects of trace metal contaminants on freshwater ecosystems.

  14. Inactivation of Efflux Pumps Abolishes Bacterial Biofilm Formation

    DEFF Research Database (Denmark)

    Kvist, Malin; Hancock, Viktoria; Klemm, Per

    2008-01-01

    Bacterial biofilms cause numerous problems in health care and industry; notably, biofilms are associated with a large number of infections. Biofilm-dwelling bacteria are particularly resistant to antibiotics, making it hard to eradicate biofilm-associated infections. Bacteria rely on efflux pumps...... to get rid of toxic substances. We discovered that efflux pumps are highly active in bacterial biofilms, thus making efflux pumps attractive targets for antibiofilm measures. A number of efflux pump inhibitors (EPIs) are known. EPIs were shown to reduce biofilm formation, and in combination they...... could abolish biofilm formation completely. Also, EPIs were able to block the antibiotic tolerance of biofilms. The results of this feasibility study might pave the way for new treatments for biofilm-related infections and may be exploited for prevention of biofilms in general....

  15. Intrigues of biofilm: A perspective in veterinary medicine

    Science.gov (United States)

    Abdullahi, Umar Faruk; Igwenagu, Ephraim; Mu’azu, Anas; Aliyu, Sani; Umar, Maryam Ibrahim

    2016-01-01

    Biofilm has a tremendous impact in the field of veterinary medicine, especially the livestock industry, leading to a serious economic loss. Over the years, little attention has been given to biofilm in animals with most of the research geared toward human biofilm diseases. The greatest challenge posed by biofilm is in its incredible ability to resist most of the currently existing antibiotics. This mystery can best be demystified through understanding the mechanism of the quorum sensing which regulate the pathophysiology of biofilm. Ability of biofilm formation in a variety of inanimate surfaces such as animal food contact surfaces is responsible for a host of biofilm diseases affecting animals and humans. In this review, we highlighted some of the challenges of biofilm in livestock and food industries. Also highlighted are; mechanisms of biofilm development, best diagnostic approach and possible novel therapeutic measures needed to combat the menace of biofilm in veterinary medicine. PMID:27051178

  16. Intrigues of biofilm: A perspective in veterinary medicine

    Directory of Open Access Journals (Sweden)

    Umar Faruk Abdullahi

    2016-01-01

    Full Text Available Biofilm has a tremendous impact in the field of veterinary medicine, especially the livestock industry, leading to a serious economic loss. Over the years, little attention has been given to biofilm in animals with most of the research geared toward human biofilm diseases. The greatest challenge posed by biofilm is in its incredible ability to resist most of the currently existing antibiotics. This mystery can best be demystified through understanding the mechanism of the quorum sensing which regulate the pathophysiology of biofilm. Ability of biofilm formation in a variety of inanimate surfaces such as animal food contact surfaces is responsible for a host of biofilm diseases affecting animals and umans. In this review, we highlighted some of the challenges of biofilm in livestock and food industries. Also highlighted are; mechanisms of biofilm development, best diagnostic approach and possible novel therapeutic measures needed to combat the menace of biofilm in veterinary medicine.

  17. Osteopontin reduces biofilm formation in a multi-species model of dental biofilm.

    Directory of Open Access Journals (Sweden)

    Sebastian Schlafer

    Full Text Available BACKGROUND: Combating dental biofilm formation is the most effective means for the prevention of caries, one of the most widespread human diseases. Among the chemical supplements to mechanical tooth cleaning procedures, non-bactericidal adjuncts that target the mechanisms of bacterial biofilm formation have gained increasing interest in recent years. Milk proteins, such as lactoferrin, have been shown to interfere with bacterial colonization of saliva-coated surfaces. We here study the effect of bovine milk osteopontin (OPN, a highly phosphorylated whey glycoprotein, on a multispecies in vitro model of dental biofilm. While considerable research effort focuses on the interaction of OPN with mammalian cells, there are no data investigating the influence of OPN on bacterial biofilms. METHODOLOGY/PRINCIPAL FINDINGS: Biofilms consisting of Streptococcus oralis, Actinomyces naeslundii, Streptococcus mitis, Streptococcus downei and Streptococcus sanguinis were grown in a flow cell system that permitted in situ microscopic analysis. Crystal violet staining showed significantly less biofilm formation in the presence of OPN, as compared to biofilms grown without OPN or biofilms grown in the presence of caseinoglycomacropeptide, another phosphorylated milk protein. Confocal microscopy revealed that OPN bound to the surface of bacterial cells and reduced mechanical stability of the biofilms without affecting cell viability. The bacterial composition of the biofilms, determined by fluorescence in situ hybridization, changed considerably in the presence of OPN. In particular, colonization of S. mitis, the best biofilm former in the model, was reduced dramatically. CONCLUSIONS/SIGNIFICANCE: OPN strongly reduces the amount of biofilm formed in a well-defined laboratory model of acidogenic dental biofilm. If a similar effect can be observed in vivo, OPN might serve as a valuable adjunct to mechanical tooth cleaning procedures.

  18. Removal of Burkholderia cepacia biofilms with oxidants

    Science.gov (United States)

    Koenig, D. W.; Mishra, S. K.; Pierson, D. L.

    1995-01-01

    Iodine is used to disinfect the water system aboard US space shuttles and is the anticipated biocide for the international space station. Water quality on spacecraft must be maintained at the highest possible levels for the safety of the crew. Furthermore, the treatment process used to maintain the quality of water on research must be robust and operate for long periods with minimal crew intervention. Biofilms are recalcitrant and pose a major threat with regard to chronic contamination of spacecraft water systems. We measured the effectiveness of oxidizing biocides on the removal and regrowth of Burkholderia (Pseudomonas) cepacia biofilms. B. cepacia, isolated from the water distribution system of the space shuttle Discovery, was grown in continuous culture to produce a bacterial contamination source for biofilm formation and removal studies. A 10(7) CFU ml-1 B. cepacia suspension, in distilled water, was used to form biofilms on 3000 micrometers2 glass surfaces. Rates of attachment were measured directly with image analysis and were found to be 7.8, 15.2, and 22.8 attachment events h-1 for flow rates of 20.7, 15.2, and 9.8 ml min-1, respectively. After 18 h of formation, the B. cepacia biofilms were challenged with oxidants (ozone, chlorine, and iodine) and the rates of biofilm removal determined by image analysis. Fifty percent of the biofilm material was removed in the first hour of continous treatment with 24 mg l-1 chlorine or 2 mg l-1 ozone. Iodine (48 mg l-1) did not remove any measurable cellular material after 6 h continuous contact. After this first removal of biofilms by the oxidants, the surface was allowed to refoul and was again treated with the biocide. Iodine was the only compound that was unable to remove cellular debris from either primary or secondary biofilms. Moreover, treating primary biofilms with iodine increased the rate of formation of secondary biofilms, from 4.4 to 5.8 attachment events h-1. All the oxidants tested inactivated the B

  19. Microbial Biofilms in Endodontic Infections: An Update Review

    OpenAIRE

    Zahed Mohammadi; Flavio Palazzi; Luciano Giardino; Sousan Shalavi

    2013-01-01

    Biofilms and microbial aggregates are the common mechanisms for the survival of bacteria in nature. In other words, the ability to form biofilms has been regarded as a virulence factor. Microbial biofilms play an essential role in several infectious diseases such as pulp and periradicular pathosis. The aim of this article was to review the adaptation mechanisms of biofilms, their roles in pulpal and periapical pathosis, factors influencing biofilm formation, mechanisms of their antimicrobial ...

  20. Inactivation of Efflux Pumps Abolishes Bacterial Biofilm Formation▿

    OpenAIRE

    Kvist, Malin; Hancock, Viktoria; Klemm, Per

    2008-01-01

    Bacterial biofilms cause numerous problems in health care and industry; notably, biofilms are associated with a large number of infections. Biofilm-dwelling bacteria are particularly resistant to antibiotics, making it hard to eradicate biofilm-associated infections. Bacteria rely on efflux pumps to get rid of toxic substances. We discovered that efflux pumps are highly active in bacterial biofilms, thus making efflux pumps attractive targets for antibiofilm measures. A number of efflux pump ...

  1. Host Defence against Bacterial Biofilms: “Mission Impossible”?

    OpenAIRE

    Gertrud Maria Hänsch

    2012-01-01

    Bacteria living as biofilms have been recognised as the ultimate cause of persistent and destructive inflammatory processes. Biofilm formation is a well-organised, genetically-driven process, which is well characterised for numerous bacteria species. In contrast, the host response to bacterial biofilms is less well analysed, and there is the general believe that bacteria in biofilms escape recognition or eradication by the immune defence. In this review the host response to bacterial biofilms...

  2. Tracer measurements reveal experimental evidence of biofilm consolidation

    OpenAIRE

    Casey, Eoin

    2007-01-01

    The ability to simultaneously measure both biofilm thickness and the mass transfer coefficient of an inert tracer through it provides a powerful method to study biofilm development. In this communication previously published data has been collated to interpret global trends in biofilm structure during the transition towards steady-state. It appears that sudden changes in biofilm structure (directly related to the rate of change of biofilm mass transfer resistance) may occur following transiti...

  3. Bacterial species dominance within a binary culture biofilm.

    OpenAIRE

    Banks, M.K.; Bryers, J.D.

    1991-01-01

    Studies with two species of bacteria, Pseudomonas putida and Hyphomicrobium sp. strain ZV620, were carried out to evaluate the overall net rate of accumulation of biofilm, the biofilm species composition, and individual species shear-related removal rates. Bacterial cells of either or both species were deposited onto glass or biofilm surfaces to initiate multispecies biofilms. Subsequent biofilm development was carried out under known conditions of nutrient concentration and laminar flow. Est...

  4. Effect of Escherichia coli Morphogene bolA on Biofilms

    OpenAIRE

    Vieira, Helena L. A.; Freire, Patrick; Arraiano, Cecília M.

    2004-01-01

    Biofilm physiology is established under a low growth rate. The morphogene bolA is mostly expressed under stress conditions or in stationary phase, suggesting that bolA could be implicated in biofilm development. In order to verify this hypothesis, we tested the effect of bolA on biofilm formation. Overexpression of bolA induces biofilm development, while bolA deletion decreases biofilms.

  5. Characterisitics of Streptomyces griseus biofilms in continuous flow tubular reactors

    OpenAIRE

    Winn, Michael; Habimana, Olivier; Casey, Eoin; Murphy, Cormac D.

    2014-01-01

    The purpose of this study was to investigate the feasibility of cultivating the biotechnologically important bacterium Streptomyces griseus in single-species and mixed- species biofilms using a Tubular Biofilm Reactor (TBR). Streptomyces griseus biofilm development was found to be cyclical, starting with the initial adhesion and subsequent development of a visible biofilm after 24 hours growth, followed by the complete detachment of the biofilm as a single mass, and ending with the re-coloni...

  6. Life Span Developmental Approach

    Directory of Open Access Journals (Sweden)

    Ali Eryilmaz

    2011-03-01

    Full Text Available The Life Span Developmental Approach examines development of individuals which occurs from birth to death. Life span developmental approach is a multi-disciplinary approach related with disciplines like psychology, psychiatry, sociology, anthropology and geriatrics that indicates the fact that development is not completed in adulthood, it continues during the life course. Development is a complex process that consists of dying and death. This approach carefully investigates the development of individuals with respect to developmental stages. This developmental approach suggests that scientific disciplines should not explain developmental facts only with age changes. Along with aging, cognitive, biological, and socioemotional development throughout life should also be considered to provide a reasonable and acceptable context, guideposts, and reasonable expectations for the person. There are three important subjects whom life span developmental approach deals with. These are nature vs nurture, continuity vs discontinuity, and change vs stability. Researchers using life span developmental approach gather and produce knowledge on these three most important domains of individual development with their unique scientific methodology.

  7. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Directory of Open Access Journals (Sweden)

    Zhejun Wang

    Full Text Available Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM, peptide 1018 was able to significantly (p50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  8. Stenotrophomonas maltophilia biofilm reduction by Bdellovibrio exovorus.

    Science.gov (United States)

    Chanyi, Ryan M; Koval, Susan F; Brooke, Joanna S

    2016-06-01

    Stenotrophomonas maltophilia, a bacterium ubiquitous in the environment, is also an opportunistic, multidrug-resistant human pathogen that colonizes tissues and medical devices via biofilm formation. We investigated the ability of an isolate from sewage of the bacterial predator Bdellovibrio exovorus to disrupt preformed biofilms of 18 strains of S. maltophilia isolated from patients, hospital sink drains and water fountain drains. B. exovorus FFRS-5 preyed on all S. maltophilia strains in liquid co-cultures and was able to significantly disrupt the biofilms of 15 of the S. maltophilia strains tested, decreasing as much as 76.7% of the biofilm mass. The addition of ciprofloxacin and kanamycin in general reduced S. maltophilia biofilms but less than that of B. exovorus alone. Furthermore, when antibiotics and B. exovorus were used together, B. exovorus was still effective in the presence of ciprofloxacin whereas the addition of kanamycin reduced the effectiveness of B. exovorus. Overall, B. exovorus was able to decrease the mass of preformed biofilms of S. maltophilia in the presence of clinically relevant antibiotics demonstrating that the predator may prove to be a beneficial tool to reduce S. maltophilia environmental or clinically associated biofilms. PMID:26929093

  9. Alternating Current Influences Anaerobic Electroactive Biofilm Activity.

    Science.gov (United States)

    Wang, Xin; Zhou, Lean; Lu, Lu; Lobo, Fernanda Leite; Li, Nan; Wang, Heming; Park, Jaedo; Ren, Zhiyong Jason

    2016-09-01

    Alternating current (AC) is known to inactivate microbial growth in suspension, but how AC influences anaerobic biofilm activities has not been systematically investigated. Using a Geobacter dominated anaerobic biofilm growing on the electrodes of microbial electrochemical reactors, we found that high frequency AC ranging from 1 MHz to 1 kHz (amplitude of 5 V, 30 min) showed only temporary inhibition to the biofilm activity. However, lower frequency (100 Hz, 1.2 or 5 V) treatment led to 47 ± 19% permanent decrease in limiting current on the same biofilm, which is attributed to the action of electrohydrodynamic force that caused biofilm damage and loss of intercellular electron transfer network. Confocal microscopy images show such inactivation mainly occurred at the interface between the biofilm and the electrode. Reducing the frequency further to 1 Hz led to water electrolysis, which generated gas bubbles that flushed all attached cells out of the electrode. These findings provide new references on understanding and regulating biofilm growth, which has broader implications in biofouling control, anaerobic waste treatment, energy and product recovery, and general understanding of microbial ecology and physiology. PMID:27485403

  10. Biofilms in Infections of the Eye

    Directory of Open Access Journals (Sweden)

    Paulo J. M. Bispo

    2015-03-01

    Full Text Available The ability to form biofilms in a variety of environments is a common trait of bacteria, and may represent one of the earliest defenses against predation. Biofilms are multicellular communities usually held together by a polymeric matrix, ranging from capsular material to cell lysate. In a structure that imposes diffusion limits, environmental microgradients arise to which individual bacteria adapt their physiologies, resulting in the gamut of physiological diversity. Additionally, the proximity of cells within the biofilm creates the opportunity for coordinated behaviors through cell–cell communication using diffusible signals, the most well documented being quorum sensing. Biofilms form on abiotic or biotic surfaces, and because of that are associated with a large proportion of human infections. Biofilm formation imposes a limitation on the uses and design of ocular devices, such as intraocular lenses, posterior contact lenses, scleral buckles, conjunctival plugs, lacrimal intubation devices and orbital implants. In the absence of abiotic materials, biofilms have been observed on the capsule, and in the corneal stroma. As the evidence for the involvement of microbial biofilms in many ocular infections has become compelling, developing new strategies to prevent their formation or to eradicate them at the site of infection, has become a priority.

  11. Iron and Acinetobacter baumannii Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Valentina Gentile

    2014-08-01

    Full Text Available Acinetobacter baumannii is an emerging nosocomial pathogen, responsible for infection outbreaks worldwide. The pathogenicity of this bacterium is mainly due to its multidrug-resistance and ability to form biofilm on abiotic surfaces, which facilitate long-term persistence in the hospital setting. Given the crucial role of iron in A. baumannii nutrition and pathogenicity, iron metabolism has been considered as a possible target for chelation-based antibacterial chemotherapy. In this study, we investigated the effect of iron restriction on A. baumannii growth and biofilm formation using different iron chelators and culture conditions. We report substantial inter-strain variability and growth medium-dependence for biofilm formation by A. baumannii isolates from veterinary and clinical sources. Neither planktonic nor biofilm growth of A. baumannii was affected by exogenous chelators. Biofilm formation was either stimulated by iron or not responsive to iron in the majority of isolates tested, indicating that iron starvation is not sensed as an overall biofilm-inducing stimulus by A. baumannii. The impressive iron withholding capacity of this bacterium should be taken into account for future development of chelation-based antimicrobial and anti-biofilm therapies.

  12. Fractal analysis of Xylella fastidiosa biofilm formation

    Science.gov (United States)

    Moreau, A. L. D.; Lorite, G. S.; Rodrigues, C. M.; Souza, A. A.; Cotta, M. A.

    2009-07-01

    We have investigated the growth process of Xylella fastidiosa biofilms inoculated on a glass. The size and the distance between biofilms were analyzed by optical images; a fractal analysis was carried out using scaling concepts and atomic force microscopy images. We observed that different biofilms show similar fractal characteristics, although morphological variations can be identified for different biofilm stages. Two types of structural patterns are suggested from the observed fractal dimensions Df. In the initial and final stages of biofilm formation, Df is 2.73±0.06 and 2.68±0.06, respectively, while in the maturation stage, Df=2.57±0.08. These values suggest that the biofilm growth can be understood as an Eden model in the former case, while diffusion-limited aggregation (DLA) seems to dominate the maturation stage. Changes in the correlation length parallel to the surface were also observed; these results were correlated with the biofilm matrix formation, which can hinder nutrient diffusion and thus create conditions to drive DLA growth.

  13. Implications of Biofilm Formation on Urological Devices

    Science.gov (United States)

    Cadieux, Peter A.; Wignall, Geoffrey R.; Carriveau, Rupp; Denstedt, John D.

    2008-09-01

    Despite millions of dollars and several decades of research targeted at their prevention and eradication, biofilm-associated infections remain the major cause of urological device failure. Numerous strategies have been aimed at improving device design, biomaterial composition, surface properties and drug delivery, but have been largely circumvented by microbes and their plethora of attachment, host evasion, antimicrobial resistance, and dissemination strategies. This is not entirely surprising since natural biofilm formation has been going on for millions of years and remains a major part of microorganism survival and evolution. Thus, the fact that biofilms develop on and in the biomaterials and tissues of humans is really an extension of this natural tendency and greatly explains why they are so difficult for us to combat. Firstly, biofilm structure and composition inherently provide a protective environment for microorganisms, shielding them from the shear stress of urine flow, immune cell attack and some antimicrobials. Secondly, many biofilm organisms enter a metabolically dormant state that renders them tolerant to those antibiotics and host factors able to penetrate the biofilm matrix. Lastly, the majority of organisms that cause biofilm-associated urinary tract infections originate from our own oral cavity, skin, gastrointestinal and urogenital tracts and therefore have already adapted to many of our host defenses. Ultimately, while biofilms continue to hold an advantage with respect to recurrent infections and biomaterial usage within the urinary tract, significant progress has been made in understanding these dynamic microbial communities and novel approaches offer promise for their prevention and eradication. These include novel device designs, antimicrobials, anti-adhesive coatings, biodegradable polymers and biofilm-disrupting compounds and therapies.

  14. Laser Microbial Killing and Biofilm Disruption

    Science.gov (United States)

    Krespi, Yosef P.; Kizhner, Victor

    2009-06-01

    Objectives: To analyze the ability of NIR lasers to reduce bacterial load and demonstrate the capability of fiber-based Q-switched Nd:YAG laser disrupting biofilm. Study Design: NIR diode laser was tested in vitro and in vivo using pathogenic microorganisms (S. aureus, S. pneumoniae, P. aeruginosa). In addition biofilms were grown from clinical Pseudomonas isolates and placed in culture plates, screws, tympanostomy tubes and PET sutures. Methods: In the animal experiments acute rhinosinusitis model was created by packing the rabbit nose with bacteria soaked solution. The nasal pack was removed in two days and nose was exposed to laser irradiation. A 940 nm diode laser with fiber diffuser was used. Nasal cultures were obtained before and after the laser treatments. Animals were sacrificed fifteen days following laser treatment and bacteriologic/histologic results analyzed. Q-switched Nd:YAG laser generated shockwave pulses were delivered on biofilm using special probes over culture plates, screws, tubes, and PET sutures for the biofilm experiments. Results: Average of two log bacteria reduction was achieved with NIR laser compared to controls. Histologic studies demonstrated preservation of tissue integrity without significant damage to mucosa. Biofilms were imaged before, during and after treatment using a confocal microscope. During laser-generated shockwave application, biofilm was initially seen to oscillate and eventually break off. Large and small pieces of biofilm were totally and instantly removed from the surface to which they were attached in seconds. Conclusions: Significant bacterial reduction was achieved with NIR laser therapy in this experimental in vitro and animal study. In addition we disrupted Pseudomonas aeruginosa biofilms using Q-switched Nd:YAG laser and special probes generating plasma and shockwave. This new and innovative method of bacteria killing and biofilm disruption without injuring host tissue may have clinical application in the

  15. The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging.

    Directory of Open Access Journals (Sweden)

    Arnaud Bridier

    Full Text Available The formation of multicellular communities known as biofilms is the part of bacterial life cycle in which bacteria display cooperative behaviour and differentiated phenotypes leading to specific functions. Bacillus subtilis is a Gram-positive bacterium that has served for a decade as a model to study the molecular pathways that control biofilm formation. Most of the data on B. subtilis biofilms have come from studies on the formation of pellicles at the air-liquid interface, or on the complex macrocolonies that develop on semi-solid nutritive agar. Here, using confocal laser scanning microcopy, we show that B. subtilis strains of different origins are capable of forming biofilms on immersed surfaces with dramatically protruding "beanstalk-like" structures with certain strains. Indeed, these structures can reach a height of more than 300 µm with one undomesticated strain from a medical environment. Using 14 GFP-labeled mutants previously described as affecting pellicle or complex colony formation, we have identified four genes whose inactivation significantly impeded immersed biofilm development, and one mutation triggering hyperbiofilm formation. We also identified mutations causing the three-dimensional architecture of the biofilm to be altered. Taken together, our results reveal that B. subtilis is able to form specific biofilm features on immersed surfaces, and that the development of these multicellular surface-associated communities involves regulation pathways that are common to those governing the formation of pellicle and/or complex colonies, and also some specific mechanisms. Finally, we propose the submerged surface-associated biofilm as another relevant model for the study of B. subtilis multicellular communities.

  16. Gene Transfer Efficiency in Gonococcal Biofilms: Role of Biofilm Age, Architecture, and Pilin Antigenic Variation

    OpenAIRE

    Kouzel, Nadzeya; Oldewurtel, Enno R.; Maier, Berenike

    2015-01-01

    Extracellular DNA is an important structural component of many bacterial biofilms. It is unknown, however, to which extent external DNA is used to transfer genes by means of transformation. Here, we quantified the acquisition of multidrug resistance and visualized its spread under selective and nonselective conditions in biofilms formed by Neisseria gonorrhoeae. The density and architecture of the biofilms were controlled by microstructuring the substratum for bacterial adhesion. Horizontal t...

  17. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions

    OpenAIRE

    Zhang, Wei; Sileika, Tadas S.; Chen, Cheng; Liu, Yang; Lee, Jisun; Packman, Aaron I.

    2011-01-01

    Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimension...

  18. Ecology of Anti-Biofilm Agents II: Bacteriophage Exploitation and Biocontrol of Biofilm Bacteria

    OpenAIRE

    Stephen T. Abedon

    2015-01-01

    Bacteriophages are the viruses of bacteria. In the guise of phage therapy they have been used for decades to successfully treat what are probable biofilm-containing chronic bacterial infections. More recently, phage treatment or biocontrol of biofilm bacteria has been brought back to the laboratory for more rigorous assessment as well as towards the use of phages to combat environmental biofilms, ones other than those directly associated with bacterial infections. Considered in a companion ar...

  19. Relationship between Antibiotic Resistance, Biofilm Formation, and Biofilm-Specific Resistance in Acinetobacter baumannii.

    Science.gov (United States)

    Qi, Lihua; Li, Hao; Zhang, Chuanfu; Liang, Beibei; Li, Jie; Wang, Ligui; Du, Xinying; Liu, Xuelin; Qiu, Shaofu; Song, Hongbin

    2016-01-01

    In this study, we aimed to examine the relationships between antibiotic resistance, biofilm formation, and biofilm-specific resistance in clinical isolates of Acinetobacter baumannii. The tested 272 isolates were collected from several hospitals in China during 2010-2013. Biofilm-forming capacities were evaluated using the crystal violet staining method. Antibiotic resistance/susceptibility profiles to 21 antibiotics were assessed using VITEK 2 system, broth microdilution method or the Kirby-Bauer disc diffusion method. The minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) to cefotaxime, imipenem, and ciprofloxacin were evaluated using micro dilution assays. Genetic relatedness of the isolates was also analyzed by pulsed-field gel electrophoresis (PFGE) and plasmid profile. Among all the 272 isolates, 31 were multidrug-resistant (MDR), and 166 were extensively drug-resistant (XDR). PFGE typing revealed 167 pattern types and 103 clusters with a similarity of 80%. MDR and XDR isolates built up the main prevalent genotypes. Most of the non-MDR isolates were distributed in a scattered pattern. Additionally, 249 isolates exhibited biofilm formation, among which 63 were stronger biofilm formers than type strain ATCC19606. Population that exhibited more robust biofilm formation likely contained larger proportion of non-MDR isolates. Isolates with higher level of resistance tended to form weaker biofilms. The MBECs for cefotaxime, imipenem, and ciprofloxacin showed a positive correlation with corresponding MICs, while the enhancement in resistance occurred independent of the quantity of biofilm biomass produced. Results from this study imply that biofilm acts as a mechanism for bacteria to get a better survival, especially in isolates with resistance level not high enough. Moreover, even though biofilms formed by isolates with high level of resistance are always weak, they could still provide similar level of protection for the

  20. Combining Biofilm-Controlling Compounds and Antibiotics as a Promising New Way to Control Biofilm Infections

    OpenAIRE

    Andréia Bergamo Estrela; Wolf-Rainer Abraham

    2010-01-01

    Many bacteria grow on surfaces forming biofilms. In this structure, they are well protected and often high dosages of antibiotics cannot clear infectious biofilms. The formation and stabilization of biofilms are mediated by diffusible autoinducers (e.g. N-acyl homoserine lactones, small peptides, furanosyl borate diester). Metabolites interfering with this process have been identified in plants, animals and microbes, and synthetic analogues are known. Additionally, this seems to be not the on...

  1. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    OpenAIRE

    Lemire, Joe A.; Marc A Demeter; Iain George; Howard Ceri; Turner, Raymond J.

    2015-01-01

    Moving bed biofilm reactors (MBBRs) are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR) carriers (biofilm support materials), allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that ...

  2. Biofilm accumulation model that predicts antibiotic resistance of Pseudomonas aeruginosa biofilms.

    OpenAIRE

    Stewart, P.S.

    1994-01-01

    A computer model of biofilm dynamics was adapted to incorporate the activity of an antimicrobial agent on bacterial biofilm. The model was used to evaluate the plausibility of two mechanisms of biofilm antibiotic resistance by qualitative comparison with data from a well-characterized experimental system (H. Anwar, J. L. Strap, and J. W. Costerton, Antimicrob. Agents Chemother. 36:1208-1214, 1992). The two mechanisms involved either depletion of the antibiotic by reaction with biomass or phys...

  3. The role of biofilms in onychomycosis.

    Science.gov (United States)

    Gupta, Aditya K; Daigle, Deanne; Carviel, Jessie L

    2016-06-01

    Onychomycosis is a fungal infection of nails primarily caused by dermatophyte fungi. Fungi are traditionally understood as existing in the environment as planktonic organisms; however, recent advancements in microbiology suggest that fungi form biofilms-complex sessile microbial communities irreversibly attached to epithelial surfaces by means of an extracellular matrix. The extracellular matrix also acts as a protective barrier to the organisms within the biofilm. The biofilm is surprisingly resistant to injury and may act as a persistent source of infection possibly accounting for antifungal resistance in onychomycosis. PMID:27012826

  4. Spatiotemporal evolution of bacterial biofilm colonies

    Science.gov (United States)

    Wilking, James; Koehler, Stephan; Sinha, Naveen; Seminara, Agnese; Brenner, Michael; Weitz, David

    2014-03-01

    Many bacteria on earth live in surface-attached communities known as biofilms. Gene expression in a biofilm is typically varied, resulting in a variety of phenotypes within a single film. These phenotypes play a critical role in biofilm physiology and development. We use time-resolved, wide-field fluorescence microscopy to image triple-labeled fluorescent Bacillus Subtilis colonies grown on agar to determine in a non-invasive fashion the evolving phenotypes. We infer their transition rates from the resulting spatiotemporal maps of gene expression. Moreover, we correlate these transition rates with local measurements of nutrient concentration to determine the influence of extracellular signals on gene expression.

  5. Cellular chain formation in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2009-01-01

    In this study we report on a novel structural phenotype in Escherichia coli biofilms: cellular chain formation. Biofilm chaining in E. coli K-12 was found to occur primarily by clonal expansion, but was not due to filamentous growth. Rather, chain formation was the result of intercellular......; type I fimbriae expression significantly reduced cellular chain formation, presumably by steric hindrance. Cellular chain formation did not appear to be specific to E coli K-12. Although many urinary tract infection (UTI) isolates were found to form rather homogeneous, flat biofilms, three isolates...

  6. Pervasive Developmental Disorders

    Science.gov (United States)

    ... ultimately cure this and similar disorders. NIH Patient Recruitment for Pervasive Developmental Disorders Clinical Trials At NIH ... 1055 (TTY) National Institute of Child Health and Human Information Resource Center P.O. Box 3006 Rockville, MD 20847 ...

  7. Facts about Developmental Disabilities

    Science.gov (United States)

    ... do if you’re concerned » Developmental Monitoring and Screening A child’s growth and development are followed through ... to prevent illness. Some health conditions, such as asthma, gastrointestinal symptoms, eczema and skin allergies, and migraine ...

  8. Developmental Effects of Ghrelin

    OpenAIRE

    Steculorum, Sophie M.; Bouret, Sebastien G.

    2011-01-01

    Ghrelin is a pleiotropic hormone that was originally described as promoting feeding and stimulating growth hormone release in adults. A growing body of evidence suggests that ghrelin may also exert developmental and organizational effects during perinatal life. The perinatal actions of ghrelin include the regulation of early developmental events such as blastocyst development and perinatal growth. Moreover, alterations in perinatal ghrelin levels result in structural differences in various pe...

  9. Life Span Developmental Approach

    OpenAIRE

    Eryılmaz, Ali

    2011-01-01

    The Life Span Developmental Approach examines development of individuals which occurs from birth to death. Life span developmental approach is a multi-disciplinary approach related with disciplines like psychology, psychiatry, sociology, anthropology and geriatrics that indicates the fact that development is not completed in adulthood, it continues during the life course. Development is a complex process that consists of dying and death. This approach carefully investigates the development of...

  10. Towards Deep Developmental Learning

    OpenAIRE

    Sigaud, Olivier; Droniou, Alain

    2016-01-01

    International audience Deep learning techniques are having an undeniable impact on general pattern recognition issues. In this paper, from a developmental robotics perspective, we scrutinize deep learning techniques under the light of their capability to construct a hierarchy of meaningful multimodal representations from the raw sensors of robots. These investigations reveal the differences between the methodological constraints of pattern recognition and those of developmental robotics. I...

  11. Modeling the effect of tides and waves on benthic biofilms

    Science.gov (United States)

    Mariotti, G.; Fagherazzi, S.

    2012-12-01

    We propose a simple model for growth of benthic biofilm subject to variable hydrodynamic disturbances and with a biofilm-dependent erodibility (biostabilization). Model results show that, for disturbances with equal intensity, the biofilm is eroded or not depending on its current biomass, which is a function of the past evolution trajectory. Because of the finite time needed for a biofilm to develop, both the intensity and frequency of periodical disturbances, such as tidal currents, determine whether the biofilm can approach its equilibrium biomass. Spring-neap tidal modulation favors biofilm development, since the reduction of the current shear stress associated with neap tides allows biofilm growth, thus increasing biostabilization and the biofilm's likelihood to withstand the subsequent energetic spring tides. On the other hand, diurnal tidal modulations are negative for biofilm development, because the diel biofilm growth is almost negligible. Under stochastic disturbances associated with wind waves, there are two most-likely states for the biofilm biomass: either close to zero or close to the equilibrium value, depending on wave intensity. If biostabilization is reduced or eliminated, the probability of intermediate values for biofilm biomass becomes also significant. The role of biostabilization is hence to exacerbate the probability of the end-member states. Finally, because of the nonmonotonic relationship between water depth and wave induced bed stresses, only extremely shallow and deep areas favor biofilm persistence. If light attenuation with depth is considered, deep water becomes unsuitable for biofilm growth when water turbidity is high.

  12. Nutrient Cycling Study

    Energy Technology Data Exchange (ETDEWEB)

    Peter A. Pryfogle

    2005-09-01

    The particular goal of this study is to develop measurement techniques for understanding how consortia of organisms from geothermal facilities utilize sulfur and iron for metabolic activity; and in turn, what role that activity plays in initiating or promoting the development of a biofilm on plant substrates. Sulfur cycling is of interest because sulfur is produced in the resource. Iron is found in some of the steel formulations used in plant components and is also added as chemical treatment for reducing sulfide emissions from the plants. This report describes the set-up and operation of a bioreactor for evaluating the response of colonies of geothermal organisms to changes in nutrient and environmental conditions. Data from initial experiments are presented and plans for future testing is discussed.

  13. Susceptibility of Porphyromonas gingivalis in biofilms to amoxicillin, doxycycline and metronidazole

    DEFF Research Database (Denmark)

    Larsen, T.

    2002-01-01

    Biofilm, Porphyromonas gingivalis, susceptibility testing, amoxicillin, doxycycline, metronidazole......Biofilm, Porphyromonas gingivalis, susceptibility testing, amoxicillin, doxycycline, metronidazole...

  14. Understanding, preventing and eradicating Klebsiella pneumoniae biofilms.

    Science.gov (United States)

    Ribeiro, Suzana Meira; Cardoso, Marlon Henrique; Cândido, Elizabete de Souza; Franco, Octávio Luiz

    2016-04-01

    The ability of pathogenic bacteria to aggregate and form biofilm represents a great problem for public health, since they present extracellular components that encase these micro-organisms, making them more resistant to antibiotics and host immune attack. This may become worse when antibiotic-resistant bacterial strains form biofilms. However, antibiofilm screens with different compounds may reveal potential therapies to prevent/treat biofilm infections. Here, we focused on Klebsiella pneumoniae, an opportunistic bacterium that causes different types of infections, including in the bloodstream, meninges, lungs, urinary system and at surgical sites. We also highlight aspects involved in the formation and maintenance of K. pneumoniae biofilms, as well as resistance and the emergence of new trends to combat this health challenge. PMID:27064296

  15. Bursting the bubble on bacterial biofilms

    DEFF Research Database (Denmark)

    Crusz, Shanika A; Popat, Roman; Rybtke, Morten Theil;

    2012-01-01

    The flow cell biofilm system is an important and widely used tool for the in vitro cultivation and evaluation of bacterial biofilms under hydrodynamic conditions of flow. This paper provides an introduction to the background and use of such systems, accompanied by a detailed guide to the assembly...... of the apparatus including the description of new modifications which enhance its performance. As such, this is an essential guide for the novice biofilm researcher as well as providing valuable trouble-shooting techniques for even the most experienced laboratories. The adoption of a common and...... reliable methodology amongst researchers would enable findings to be shared and replicated amongst the biofilm research community, with the overall aim of advancing understanding and management of these complex and widespread bacterial communities....

  16. Influence of substrate micropatterning on biofilm growth

    Science.gov (United States)

    Koehler, Stephan; Li, Yiwei; Liu, Bi-Feng Liu; Weitz, David

    2015-11-01

    We culture triple reporter Bacillus Subtilis biofilm on micropatterned agar substrates. We track the biofilm development in terms of size, thickness, shape, and phenotype expression. For a tiling composed of elevated rectangles, we observe the biofilm develops an oval shape or triangular shape depending on the rectangle's aspect ratio and orientation. The motile cells are primarily located in the valleys between the rectangles and the matrix producing cells are mostly located on the rectangles. Wrinkles form at the edges of the elevated surfaces, and upon merging form channels centered on the elevated surface. After a few days, the spore-forming cells appear at the periphery. Since biofilms in nature grow on irregular surfaces, our work may provide insight into the complex patterns observed.

  17. MICROBIAL BIOFILMS AS INDICATORS OF ESTUARINE CONDITION

    Science.gov (United States)

    Microbial biofilms are complex communities of bacteria, protozoa, microalgae, and micrometazoa which exist in a polymer matrix on submerged surfaces. Their development is integrative of environmental conditions and is affected by local biodiversity, the availability of organic ma...

  18. Synergistic effects in mixed Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Holler, B.M.; Molin, Søren;

    2006-01-01

    pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from...... the cocultivation of 403 undomesticated E. coli strains with a characterized E. coli K-12 strain was detected at a significant frequency. The survey suggests that different mechanisms underlie the observed stimulation, yet synergistic development of biofilm within the subset of E. coli isolates (n...... = 56) exhibiting the strongest effects was most often linked to conjugative transmission of natural plasmids carried by the E. coli isolates (70%). Thus, the capacity of an isolate to promote the biofilm through cocultivation was (i) transferable to the K-12 strain, (ii) was linked with the acquisition...

  19. Multiple Roles of Biosurfactants in Biofilms.

    Science.gov (United States)

    Satputea, Surekha K; Banpurkar, Arun G; Banat, Ibrahim M; Sangshetti, Jaiprakash N; Patil, Rajendra H; Gade, Wasudev N

    2016-01-01

    Microbial growth and biofilms formation are a continuous source of contamination on most surfaces with biological, inanimate, natural or man-made. The use of chemical surfactants in daily practice to control growth, presence or adhesion of microorganisms and ultimately the formation of biofilms and biofouling is therefore becoming essential. Synthetic surfactants are, however, not preferred or ideal and biologically derived surface active biosurfactants (BSs) molecules produced mainly by microorganisms are therefore becoming attractive and sought by many industries. The search for innovative and interesting BS molecules that have effective antimicrobial activities and to use as innovative alternatives to chemical surfactants with added antimicrobial value among many other advantages has been ongoing for some time. This review discusses the various roles of BS molecules in association with biofilm formation. Recent updates on several mechanisms involved in biofilm development and control are presented vide this article. PMID:26786675

  20. Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Webb, J.S.; Rao, D.;

    2006-01-01

    Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated...... specific interactions. In summary, our data strongly indicate that synergistic effects promote biofilm biomass and resistance of the biofilm to antimicrobial agents and bacterial invasion in multispecies biofilms.......Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated......-species biofilms resisted invasion to a greater extent than did the biofilms formed by the single species. Replacement of each strain by its cell-free culture supernatant suggested that synergy was dependent both on species-specific physical interactions between cells and on extracellular secreted factors or less...

  1. Prospects for Anti-Biofilm Pharmaceuticals

    OpenAIRE

    Stewart, Philip S.

    2015-01-01

    This commentary highlights several avenues currently being pursued in research labs to the development of new anti-biofilm pharmaceuticals. There is a real need for alternative therapeutic modalities for treating the persistent infections that sometimes form on implanted medical devices or compromised niches within the body. Strategies being researched include discovering new antimicrobial agents that kill microorganisms in biofilms more effectively than do existing antibiotics, designing dru...

  2. DIFFUSION IN BIOFILMS RESPIRING ON ELECTRODES

    OpenAIRE

    Renslow, RS; Babauta, JT; Majors, PD; Beyenal, H

    2012-01-01

    The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (De) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed noninvasive, nondestr...

  3. Desiccation stress in two intertidal beachrock biofilms

    OpenAIRE

    Petrou, Katherina; Trimborn, Scarlett; Kühl, Michael; Ralph, Peter J.

    2014-01-01

    Chlorophyll a fluorescence was used to look at the effect of desiccation on the photophysiology in two beachrock microbial biofilms from the intertidal rock platform of Heron Island, Australia. The photophysiological response to desiccation differed between the beachrock microbial communities. The black biofilm from the upper shoreline, dominated by Calothrix sp., showed a response typical of desiccation-tolerant cyanobacteria, where photosynthesis closed down during air exposure with a rapid...

  4. STUDY OF ASPARTAME ON BIOFILM PRODUCTION

    OpenAIRE

    Sourabh; Piyali; Swagnik; Rajat

    2015-01-01

    Aspartame is an odourless white crystalline powder 160 - 200 times sweeter than sucrose used in beverages. The present study has been planned to observe the biofilm production of Streptococcus mutans over a biosurface and to assess the influence of aspartame on biofilm production ov er that surface. The lyophilic standard Streptococcus mutans ATCC 25175 (Hi media lab) was reactivated in Trypiticase Soy Broth incubated at37 0 C with 10% CO 2 ...

  5. The immune system vs. Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jensen, Peter Østrup; Givskov, Michael; Bjarnsholt, Thomas;

    2010-01-01

    Ilya Metchnikoff and Paul Ehrlich were awarded the Nobel price in 1908. Since then, numerous studies have unraveled a multitude of mechanistically different immune responses to intruding microorganisms. However, in the vast majority of these studies, the underlying infectious agents have appeared....... Although the present review on the immune system vs. biofilm bacteria is focused on Pseudomonas aeruginosa (mainly because this is the most thoroughly studied), many of the same mechanisms are also seen with biofilm infections generated by other microorganisms....

  6. Uranium Immobilization by Sulfate-reducing Biofilms

    International Nuclear Information System (INIS)

    Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI) was continuously fed into the reactor for 32 weeks at a concentration of 126 ?M. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite

  7. Tribological behaviour of oral mixed biofilms

    OpenAIRE

    Cruz, Helena Margarida Vaz; Henriques, Mariana; L. A. Rocha; Celis, J.P.

    2010-01-01

    The use of dental implants has been increasing even though failures do occur. The presence of wear debris and oral microorganisms can contribute to infections and jeopardize implant integration. The aim of this work was to study the influence of mixed biofilms in the tribological behaviour of commercially pure titanium for dental implants under different concentrations of fluoride. Samples of titanium with two different surface topographies were used. Mixed biofilms of Candida alb...

  8. Screening of Compounds against Gardnerella vaginalis Biofilms.

    OpenAIRE

    Gottschick, Cornelia; Szymon P Szafranski; Kunze, Brigitte; Sztajer, Helena; Masur, Clarissa; Abels, Christoph; Wagner-Döbler, Irene

    2016-01-01

    Bacterial vaginosis (BV) is a common infection in reproductive age woman and is characterized by dysbiosis of the healthy vaginal flora which is dominated by Lactobacilli, followed by growth of bacteria like Gardnerella vaginalis. The ability of G. vaginalis to form biofilms contributes to the high rates of recurrence that are typical for BV and which unfortunately make repeated antibiotic therapy inevitable. Here we developed a biofilm model for G. vaginalis and screened a large spectrum of ...

  9. Screening of Compounds against Gardnerella vaginalis Biofilms

    OpenAIRE

    Gottschick, Cornelia; Szymon P Szafranski; Kunze, Brigitte; Sztajer, Helena; Masur, Clarissa; Abels, Christoph; Wagner-Döbler, Irene

    2016-01-01

    Bacterial vaginosis (BV) is a common infection in reproductive age woman and is characterized by dysbiosis of the healthy vaginal flora which is dominated by Lactobacilli, followed by growth of bacteria like Gardnerella vaginalis. The ability of G. vaginalis to form biofilms contributes to the high rates of recurrence that are typical for BV and which unfortunately make repeated antibiotic therapy inevitable. Here we developed a biofilm model for G. vaginalis and screened a large spectrum of ...

  10. Actinomyces naeslundii in intial dental biofilm formation

    DEFF Research Database (Denmark)

    Dige, Irene; Raarup, Merete Krog; Nyengaard, Jens Randel;

    2009-01-01

    Combined use of Confocal Laser Scanning Microscopy (CLSM) and Fluorescent in situ Hybridization (FISH) offers new opportunities for analysing the spatial relationships and temporal changes of specific members of microbial populations in intact dental biofilms. AIMS: The purpose of this study was ...... colonization in the inner part of the biofilm may have important ecological consequences. This study was supported by Aarhus University Research Foundation, The Swedish Patent Revenue Fund for Research in Preventive Odontology, and The Danish Dental Association....

  11. Biofilm growth and hydraulic conditions in sewers

    OpenAIRE

    Larrarte, Frédérique; France, X.; Pons, Marie Noëlle

    2011-01-01

    Coupons have been set in three sewers (Nantes, Nancy) in order to monitor the biofilm development on the walls depending upon flow conditions. The biofilm development is assessed via opacity and dry weight measurements. The data are discussed in function of the duration of immersion into the wastewater. The number of days of immersion is calculated from the position of the coupon and the water height which is continuously monitored near the coupons.

  12. Role of Biofilm Roughness and Hydrodynamic Conditions in Legionella pneumophila Adhesion to and Detachment from Simulated Drinking Water Biofilms

    Science.gov (United States)

    Shen, Yun; Monroy, Guillermo L.; Derlon, Nicolas; Janjaroen, Dao; Huang, Conghui; Morgenroth, Eberhard; Boppart, Stephen A.; Ashbolt, Nicholas J.; Liu, Wen-Tso; Nguyen, Thanh H.

    2015-01-01

    Biofilms in drinking water distribution systems (DWDS) could exacerbate the persistence and associated risks of pathogenic Legionella pneumophila (L. pneumophila), thus raising human health concerns. However, mechanisms controlling adhesion and subsequent detachment of L. pneumophila associated with biofilms remain unclear. We determined the connection between L. pneumophila adhesion and subsequent detachment with biofilm physical structure characterization using optical coherence tomography (OCT) imaging technique. Analysis of the OCT images of multispecies biofilms grown under low nutrient condition up to 34 weeks revealed the lack of biofilm deformation even when these biofilms were exposed to flow velocity of 0.7 m/s, typical flow for DWDS. L. pneumophila adhesion on these biofilm under low flow velocity (0.007 m/s) positively correlated with biofilm roughness due to enlarged biofilm surface area and local flow conditions created by roughness asperities. The preadhered L. pneumophila on selected rough and smooth biofilms were found to detach when these biofilms were subjected to higher flow velocity. At the flow velocity of 0.1 and 0.3 m/s, the ratio of detached cell from the smooth biofilm surface was from 1.3 to 1.4 times higher than that from the rough biofilm surface, presumably because of the low shear stress zones near roughness asperities. This study determined that physical structure and local hydrodynamics control adhesion and detachment from simulated drinking water biofilm, thus it is the first step toward reducing the risk of L. pneumophila exposure and subsequent infections. PMID:25699403

  13. Influence of humic substances on biofilm structure and its microbial diversity in natural waters

    OpenAIRE

    A.L. Rodrigues

    2010-01-01

    Doctoral dissertation for PhD degree in Chemical and Biological Engineering Natural organic matter (NOM) is ubiquitous in terrestrial and aquatic ecosystems; it comprises an important source of carbon for river biofilms which are major sites of carbon cycling in streams. NOM may be classified in two main categories: non-humic and humic substances (HSs). About 75 % of the dissolved organic carbon (DOC) in rivers results from HSs. The presence of HSs in water treatment plants is ...

  14. Nanoindentation of Pseudomonas aeruginosa bacterial biofilm using atomic force microscopy

    Science.gov (United States)

    Baniasadi, Mahmoud; Xu, Zhe; Gandee, Leah; Du, Yingjie; Lu, Hongbing; Zimmern, Philippe; Minary-Jolandan, Majid

    2014-12-01

    Bacterial biofilms are a source of many chronic infections. Biofilms and their inherent resistance to antibiotics are attributable to a range of health issues including affecting prosthetic implants, hospital-acquired infections, and wound infection. Mechanical properties of biofilm, in particular, at micro- and nano-scales, are governed by microstructures and porosity of the biofilm, which in turn may contribute to their inherent antibiotic resistance. We utilize atomic force microscopy (AFM)-based nanoindentation and finite element simulation to investigate the nanoscale mechanical properties of Pseudomonas aeruginosa bacterial biofilm. This biofilm was derived from human samples and represents a medically relevant model.

  15. Dissipative-particle-dynamics model of biofilm growth

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhijie; Meakin, Paul; Tartakovsky, Alexandre M.; Scheibe, Timothy D.

    2011-06-13

    A dissipative particle dynamics (DPD) model for the quantitative simulation of biofilm growth controlled by substrate (nutrient) consumption, advective and diffusive substrate transport, and hydrodynamic interactions with fluid flow (including fragmentation and reattachment) is described. The model was used to simulate biomass growth, decay, and spreading. It predicts how the biofilm morphology depends on flow conditions, biofilm growth kinetics, the rheomechanical properties of the biofilm and adhesion to solid surfaces. The morphology of the model biofilm depends strongly on its rigidity and the magnitude of the body force that drives the fluid over the biofilm.

  16. The Host’s Reply to Candida Biofilm

    Directory of Open Access Journals (Sweden)

    Jeniel E. Nett

    2016-03-01

    Full Text Available Candida spp. are among the most common nosocomial fungal pathogens and are notorious for their propensity toward biofilm formation. When growing on a medical device or mucosal surface, these organisms reside as communities embedded in a protective matrix, resisting host defenses. The host responds to Candida biofilm by depositing a variety of proteins that become incorporated into the biofilm matrix. Compared to free-floating Candida, leukocytes are less effective against Candida within a biofilm. This review highlights recent advances describing the host’s response to Candida biofilms using ex vivo and in vivo models of mucosal and device-associated biofilm infections.

  17. Nanoindentation of Pseudomonas aeruginosa bacterial biofilm using atomic force microscopy

    International Nuclear Information System (INIS)

    Bacterial biofilms are a source of many chronic infections. Biofilms and their inherent resistance to antibiotics are attributable to a range of health issues including affecting prosthetic implants, hospital-acquired infections, and wound infection. Mechanical properties of biofilm, in particular, at micro- and nano-scales, are governed by microstructures and porosity of the biofilm, which in turn may contribute to their inherent antibiotic resistance. We utilize atomic force microscopy (AFM)-based nanoindentation and finite element simulation to investigate the nanoscale mechanical properties of Pseudomonas aeruginosa bacterial biofilm. This biofilm was derived from human samples and represents a medically relevant model. (paper)

  18. Actinomyces naeslundii in initial dental biofilm formation.

    Science.gov (United States)

    Dige, I; Raarup, M K; Nyengaard, J R; Kilian, M; Nyvad, B

    2009-07-01

    The combined use of confocal laser scanning microscopy (CLSM) and fluorescent in situ hybridization (FISH) offers new opportunities for analysis of the spatial relationships and temporal changes of specific members of the microbiota of intact dental biofilms. The purpose of this study was to analyse the patterns of colonization and population dynamics of Actinomyces naeslundii compared to streptococci and other bacteria during the initial 48 h of biofilm formation in the oral cavity. Biofilms developed on standardized glass slabs mounted in intra-oral appliances worn by ten individuals for 6, 12, 24 and 48 h. The biofilms were subsequently labelled with probes against A. naeslundii (ACT476), streptococci (STR405) or all bacteria (EUB338), and were analysed by CLSM. Labelled bacteria were quantified by stereological tools. The results showed a notable increase in the number of streptococci and A. naeslundii over time, with a tendency towards a slower growth rate for A. naeslundii compared with streptococci. A. naeslundii was located mainly in the inner part of the multilayered biofilm, indicating that it is one of the species that attaches directly to the acquired pellicle. The participation of A. naeslundii in the initial stages of dental biofilm formation may have important ecological consequences. PMID:19406899

  19. Biofilm formation of Francisella noatunensis subsp. orientalis.

    Science.gov (United States)

    Soto, Esteban; Halliday-Simmonds, Iona; Francis, Stewart; Kearney, Michael T; Hansen, John D

    2015-12-31

    Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen in both marine and fresh water environments. The bacterium is suspected to persist in the environment even without the presence of a suitable fish host. In the present study, the influence of different abiotic factors such as salinity and temperature were used to study the biofilm formation of different isolates of Fno including intracellular growth loci C (iglC) and pathogenicity determinant protein A (pdpA) knockout strains. Finally, we compared the susceptibility of planktonic and biofilm to three disinfectants used in the aquaculture and ornamental fish industry, namely Virkon(®), bleach and hydrogen peroxide. The data indicates that Fno is capable of producing biofilms within 24 h where both salinity as well as temperature plays a role in the growth and biofilm formation of Fno. Mutations in the iglC or pdpA, both known virulence factors, do not appear to affect the capacity of Fno to produce biofilms, and the minimum inhibitory concentration, and minimum biocidal concentration for the three disinfectants were lower than the minimum biofilm eradication concentration values. This information needs to be taken into account if trying to eradicate the pathogen from aquaculture facilities or aquariums. PMID:26507830

  20. Biofilm formation of Francisella noatunensis subsp. orientalis

    Science.gov (United States)

    Soto, Esteban; Halliday-Wimmonds, Iona; Kearney, Michael T; Hansen, John D.

    2015-01-01

    Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen in both marine and fresh water environments. The bacterium is suspected to persist in the environment even without the presence of a suitable fish host. In the present study, the influence of different abiotic factors such as salinity and temperature were used to study the biofilm formation of different isolates of Fno including intracellular growth loci C (iglC)and pathogenicity determinant protein A (pdpA) knockout strains. Finally, we compared the susceptibility of planktonic and biofilm to three disinfectants used in the aquaculture and ornamental fish industry, namely Virkon®, bleach and hydrogen peroxide. The data indicates that Fno is capable of producing biofilms within 24 h where both salinity as well as temperature plays a role in the growth and biofilm formation of Fno. Mutations in theiglC or pdpA, both known virulence factors, do not appear to affect the capacity of Fno to produce biofilms, and the minimum inhibitory concentration, and minimum biocidal concentration for the three disinfectants were lower than the minimum biofilm eradication concentration values. This information needs to be taken into account if trying to eradicate the pathogen from aquaculture facilities or aquariums.

  1. Development and optimization of biofilm based algal cultivation

    Science.gov (United States)

    Gross, Martin Anthony

    This dissertation describes research done on biofilm based algal cultivation systems. The system that was developed in this work is the revolving algal biofilm cultivation system (RAB). A raceway-retrofit, and a trough-based pilot-scale RAB system were developed and investigated. Each of the systems significantly outperformed a control raceway pond in side-by-side tests. Furthermore the RAB system was found to require significantly less water than the raceway pond based cultivation system. Lastly a TEA/LCA analysis was conducted to evaluate the economic and life cycle of the RAB cultivation system in comparison to raceway pond. It was found that the RAB system was able to grow algae at a lower cost and was shown to be profitable at a smaller scale than the raceway pond style of algal cultivation. Additionally the RAB system was projected to have lower GHG emissions, and better energy and water use efficiencies in comparison to a raceway pond system. Furthermore, fundamental research was conducted to identify the optimal material for algae to attach on. A total of 28 materials with a smooth surface were tested for initial cell colonization and it was found that the tetradecane contact angle of the materials had a good correlation with cell attachment. The effects of surface texture were evaluated using mesh materials (nylon, polypropylene, high density polyethylene, polyester, aluminum, and stainless steel) with openings ranging from 0.05--6.40 mm. It was found that both surface texture and material composition influence algal attachment.

  2. Microelectrodes as novel research tools for environmental biofilm studies

    International Nuclear Information System (INIS)

    Biofilm processes are widely utilized in environmental engineering for biodegradation of contaminated waters, gases and soils. It is important to understand the structure and functions of biofilms. Microelectrodes are novel experimental tools for environmental biofilm studies. The authors reviewed the techniques of oxygen, sulfide, redox potential and pH microelectrode. These microelectrodes have tip diameters of 3 to 20 μm, resulting a high spatial resolution. They enable us directly measure the chemical conditions as results of microbial activities in biofilms. The authors also reported the laboratory and field studies of wastewater biofilms using microelectrode techniques. The results of these studies provided experimental evidence on the stratification of microbial processes and the associated redox potential change in wastewater biofilms: (1) The oxygen penetration depth was only a fraction of the biofilm thickness. This observation, first made under laboratory conditions, has been confirmed under field conditions. (2) The biofilms with both aerobic oxidation and sulfate reduction had a clearly stratified structure. This was evidenced by a sharp decrease of redox potential near the interface between the aerobic zone and the sulfate reduction zone within the biofilm. In this type of biofilms, aerobic oxidation took place only in a shallow layer near the biofilm surface and sulfate reduction occurred in the deeper anoxic zone. (3) The redox potential changed with the shift of primary microbial process in biofilms, indicating that it is possible to use redox potential to help illustrate the structure and functions of biofilms. (author)

  3. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.

    Science.gov (United States)

    Brandl, Maria T; Carter, Michelle Q; Parker, Craig T; Chapman, Matthew R; Huynh, Steven; Zhou, Yaguang

    2011-01-01

    Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose-chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens. PMID:22003399

  4. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.

    Directory of Open Access Journals (Sweden)

    Maria T Brandl

    Full Text Available Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose-chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens.

  5. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions

    Science.gov (United States)

    Zhang, Wei; Sileika, Tadas S.; Chen, Cheng; Liu, Yang; Lee, Jisun; Packman, Aaron I.

    2012-01-01

    Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimensional fluid flow conditions. This device provides precise control of flow conditions and can be used to create well-defined physical and chemical gradients that significantly affect biofilm heterogeneity. Moreover, the top and bottom of the flow chamber are transparent, so biofilm growth and flow conditions are fully observable using non-invasive confocal microscopy and high-resolution video imaging. To demonstrate the capability of the device, we observed the growth of Pseudomonas aeruginosa biofilms under imposed flow gradients. We found a positive relationship between patterns of fluid velocity and biofilm biomass because of faster microbial growth under conditions of greater local nutrient influx, but this relationship eventually reversed because high hydrodynamic shear leads to the detachment of cells from the surface. These results reveal that flow gradients play a critical role in the development of biofilm communities. By providing new capability for observing biofilm growth, solute and particle transport, and net chemical transformations under user-specified environmental gradients, this new planar flow cell system has broad utility for studies of environmental biotechnology and basic biofilm microbiology, as well as applications in bioreactor design, environmental engineering, biogeochemistry, geomicrobiology, and biomedical research. PMID:21656713

  6. Automatic quantification of early transition points in biofilm formation

    Science.gov (United States)

    Thatcher, Travis; Bienvenu, Samuel; Strain, Shinji; Gordon, Vernita

    2010-10-01

    Biofilms are multicellular, dynamic communities of interacting single-cell organisms, like bacteria. Biofilms are responsible for many infectious diseases as well as for significant damage in industrial settings, yet many aspects of biofilm formation are not well understood. Identifying and quantifying the interactions leading to biofilm formation will not only be important for understanding the basic science of these and other multicellular systems, but it will also be essential for designing targeted strategies to prevent or disrupt biofilms. In particular, it is not clear what physical interactions, and corresponding biological mechanisms, are responsible for the early steps in biofilm formation. Because of this, we are developing high-throughput software techniques to analyze micrograph movies of biofilm formation, from attachment to surfaces through the development of microcolonies. This work will focus on developing software tools to identify and quantify key steps in biofilm formation, first in non-chemotacting systems and later in chemotacting (and autotacting) systems.

  7. Extracellular DNA formation during biofilm development by freshwater bacteria

    DEFF Research Database (Denmark)

    Tang, Lone; Schramm, Andreas; Revsbech, Niels Peter;

    2011-01-01

    a transient peak at 6 hours, and in Rheinheimera the concentration peaked at 12 hours and remained high. Interestingly, the Rheinheimera biofilm dispersed immediately after the eDNA concentration peaked. The antimicrobial effect of eDNA was tested in growth experiments, and Rheinheimera was strongly......Extracellular DNA (eDNA) has been shown to be important for biofilm formation, both in the initial step of biofilm formation (attachment), and for securing the structural stability of the mature biofilm. It is unclear whether a general consensus exists for when in biofilm formation the presence of...... eDNA is most important. In this study, we investigated the significance of eDNA during biofilm formation in four freshwater isolates. The aim was to relate the quantity and timing of eDNA production to the isolates’ ability to form biofilms. eDNA and biofilm biomass was quantified over time during...

  8. Metagenomic Analysis of Showerhead Biofilms from a Hospital in Ohio

    Science.gov (United States)

    Background: The National Institute of Health estimated that 80% of human microbial infections are associated with biofilms. Although water supplies and hospital equipments are constantly treated with disinfectants, the presence of biofilms in these areas has been frequently obser...

  9. Biofilm diatom community structure: Influence of temporal and substratum variability

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Anil, A.C.

    occasions, the influence of planktonic blooms was also seen on the biofilm community. A comparative study of biofilms formed on the two substrata revealed significant differences in density and diversity. However species composition was almost constant...

  10. Oh What a Tangled Biofilm Web Bacteria Weave

    Science.gov (United States)

    ... Inside Life Science > Oh What a Tangled Biofilm Web Bacteria Weave Inside Life Science View All Articles | Inside Life Science Home Page Oh What a Tangled Biofilm Web Bacteria Weave By Elia Ben-Ari Posted May ...

  11. Strategies for antimicrobial drug delivery to biofilm.

    Science.gov (United States)

    Martin, Claire; Low, Wan Li; Gupta, Abhishek; Amin, Mohd Cairul Iqbal Mohd; Radecka, Iza; Britland, Stephen T; Raj, Prem; Kenward, Ken M A

    2015-01-01

    Biofilms are formed by the attachment of single or mixed microbial communities to a variety of biological and/or synthetic surfaces. Biofilm micro-organisms benefit from many advantages of the polymicrobial environment including increased resistance against antimicrobials and protection against the host organism's defence mechanisms. These benefits stem from a number of structural and physiological differences between planktonic and biofilm-resident microbes, but two main factors are the presence of extracellular polymeric substances (EPS) and quorum sensing communication. Once formed, biofilms begin to synthesise EPS, a complex viscous matrix composed of a variety of macromolecules including proteins, lipids and polysaccharides. In terms of drug delivery strategies, it is the EPS that presents the greatest barrier to diffusion for drug delivery systems and free antimicrobial agents alike. In addition to EPS synthesis, biofilm-based micro-organisms can also produce small, diffusible signalling molecules involved in cell density-dependent intercellular communication, or quorum sensing. Not only does quorum sensing allow microbes to detect critical cell density numbers, but it also permits co-ordinated behaviour within the biofilm, such as iron chelation and defensive antibiotic activities. Against this backdrop of microbial defence and cell density-specific communication, a variety of drug delivery systems have been developed to deliver antimicrobial agents and antibiotics to extracellular and/or intracellular targets, or more recently, to interfere with the specific mechanisms of quorum sensing. Successful delivery strategies have employed lipidic and polymeric-based formulations such as liposomes and cyclodextrins respectively, in addition to inorganic carriers e.g. metal nanoparticles. This review will examine a range of drug delivery systems and their application to biofilm delivery, as well as pharmaceutical formulations with innate antimicrobial properties

  12. Development of corn silk as a biocarrier for Zymomonas mobilis biofilms in ethanol production from rice straw.

    Science.gov (United States)

    Todhanakasem, Tatsaporn; Tiwari, Rashmi; Thanonkeo, Pornthap

    2016-01-01

    Z. mobilis cell immobilization has been proposed as an effective means of improving ethanol production. In this work, polystyrene and corn silk were used as biofilm developmental matrices for Z. mobilis ethanol production with rice straw hydrolysate as a substrate. Rice straw was hydrolyzed by dilute sulfuric acid (H2SO4) and enzymatic hydrolysis. The final hydrolysate contained furfural (271.95 ± 76.30 ppm), 5-hydroxymethyl furfural (0.07 ± 0.00 ppm), vanillin (1.81 ± 0.00 ppm), syringaldehyde (5.07 ± 0.83 ppm), 4-hydroxybenzaldehyde (4-HB) (2.39 ± 1.20 ppm) and acetic acid (0.26 ± 0.08%). Bacterial attachment or biofilm formation of Z. mobilis strain TISTR 551 on polystyrene and delignified corn silk carrier provided significant ethanol yields. Results showed up to 0.40 ± 0.15 g ethanol produced/g glucose consumed when Z. mobilis was immobilized on a polystyrene carrier and 0.51 ± 0.13 g ethanol produced/g glucose consumed when immobilized on delignified corn silk carrier under batch fermentation by Z. mobilis TISTR 551 biofilm. The higher ethanol yield from immobilized, rather than free living, Z. mobilis could possibly be explained by a higher cell density, better control of anaerobic conditions and higher toxic tolerance of Z. mobilis biofilms over free cells. PMID:27118074

  13. Exploration of fluid dynamic indicators/causative factors in the formation of tower structures in staphylococci bacteria bio-films

    Science.gov (United States)

    Sherman, Erica; Derek, Moormeier; Bayles, Kenneth; Wei, Timothy

    2015-11-01

    Staphylococcus aureus bacteria form biofilms with distinct structures that facilitate their ability to tolerate treatment and to spread within the body. As such, staph infections represent one of the greatest threats to post-surgery patients. It has been found that flow conditions play a significant role in the developmental and dispersal activity of a biofilm. The coupling between the growing biofilm and surrounding flow, however, is not well understood. Indeed, little is know why bacteria form tower structures under certain conditions but not in a predictable way. μ-PTV measurements were made in a microchannel to try to identify fluid dynamic indicators for the formation of towers in biofilm growth. Preliminary experiments indicated changes in the near wall flow up to five hours before a tower formed. The reason for that is the target of this investigation. Staphylococcus aureus bacteria were cultured in the Bioflux Fluxion channel and subjected to a steady shear rate of 0.5 dynes. In addition to μ-PTV measurement, nuclease production and cell number density counts were observed prior to and during tower development. These were compared against measurements made under the same nominal flow conditions where a tower did not form.

  14. Streptococcus gordonii glucosyltransferase promotes biofilm interactions with Candida albicans

    Directory of Open Access Journals (Sweden)

    Austin Ricker

    2014-01-01

    Full Text Available Background: Candida albicans co-aggregates with Streptococcus gordonii to form biofilms and their interactions in mucosal biofilms may lead to pathogenic synergy. Although the functions of glucosyltransferases (Gtf of Mutans streptococci have been well characterized, the biological roles of these enzymes in commensal oral streptococci, such as S. gordonii, in oral biofilm communities are less clear. Objective: The objective of this work was to explore the role of GtfG, the single Gtf enzyme of S. gordonii, in biofilm interactions with C. albicans. Design: Biofilms were grown under salivary flow in flow cells in vitro, or under static conditions in 96 well plates. A panel of isogenic S. gordonii CH1 gtfG mutants and complemented strains were co-inoculated with C. albicans strain SC5314 to form mixed biofilms. Biofilm accretion and binding interactions between the two organisms were tested. Biofilms were quantified using confocal microscopy or the crystal violet assay. Results: The presence of GtfG enhanced dual biofilm accretion, and sucrose supplementation further augmented dual biofilm formation, pointing to a role of newly synthesized glucans. GtfG also promoted binding to C. albicans preformed biofilms. Soluble α-1,6-glucans played a role in these interactions since: 1 a strain producing only soluble glucans (CH107 formed robust dual biofilms under conditions of salivary flow; and 2 the dual biofilm was susceptible to enzymatic breakdown by dextranase which specifically degrades soluble α-1,6-glucans. Conclusion: Our work identified a novel molecular mechanism for C. albicans and S. gordonii biofilm interactions, mediated by GtfG. This protein promotes early biofilm binding of S. gordonii to C. albicans which leads to increased accretion of streptococcal cells in mixed biofilms. We also showed that soluble glucans, with α-1,6-linkages, promoted inter-generic adhesive interactions.

  15. Biofilm delays wound healing: A review of the evidence

    OpenAIRE

    Metcalf, Daniel G.; Philip G Bowler

    2014-01-01

    Biofilm is the predominant mode of life for bacteria and today it is implicated in numerous human diseases. A growing body of scientific and clinical evidence now exists regarding the presence of biofilm in wounds. This review summarizes the clinical experiences and in vivo evidence that implicate biofilm in delayed wound healing. The various mechanisms by which biofilm may impede healing are highlighted, including impaired epithelialization and granulation tissue formation, and reduced susce...

  16. The Composition and Metabolic Phenotype of Neisseria gonorrhoeae Biofilms

    Directory of Open Access Journals (Sweden)

    Michael A Apicella

    2011-04-01

    Full Text Available N. gonorrhoeae has been shown to form biofilms during cervical infection. Thus, biofilm formation may play an important role in the infection of women. The ability of N. gonorrhoeae to form membrane blebs is crucial to biofilm formation. Blebs contain DNA and outer membrane structures, which have been shown to be major constituents of the biofilm matrix. The organism expresses a DNA thermonuclease that is involved in remodeling of the biofilm matrix. Comparison of the transcriptional profiles of gonococcal biofilms and planktonic runoff indicate that genes involved in anaerobic metabolism and oxidative stress tolerance are more highly expressed in biofilm. The expression of aniA, ccp, and norB, which encode nitrite reductase, cytochrome c peroxidase, and nitric oxide reductase respectively, is required for mature biofilm formation over glass and human cervical cells. In addition, anaerobic respiration occurs in the substratum of gonococcal biofilms and disruption of the norB gene required for anaerobic respiration, results in a severe biofilm attenuation phenotype. It has been demonstrated that accumulation of nitric oxide (NO contributes to the phenotype of a norB mutant and can retard biofilm formation. However, NO can also enhance biofilm formation, and this is largely dependent on the concentration and donation rate or steady state kinetics of NO. The majority of the genes involved in gonococcal oxidative stress tolerance are also required for normal biofilm formation, as mutations in the following genes result in attenuated biofilm formation over cervical cells and/or glass: oxyR, gor, prx, mntABC, trxB, and estD. Overall, biofilm formation appears to be an adaptation for coping with the environmental stresses present in the female genitourinary tract. Therefore, this review will discuss the studies, which describe the composition and metabolic phenotype of gonococcal biofilms.

  17. Role of extracellular DNA in Candida albicans biofilms

    OpenAIRE

    Martins, Margarida; Henriques, Mariana; Lopez-Ribot, José L.; Oliveira, Rosário

    2009-01-01

    DNA has been described as a structural component of the extracellular matrix in bacterial biofilms. However, in Candida albicans there is a scarce knowledge concerning the contribution of extracellular DNA (ecDNA) to biofilm matrix and overall structure. The main objective of this work was to examine the effect of Deoxyribonuclease I (DNase) treatment and the addition of exogenous DNA on C. albicans biofilm as indicators of the role of ecDNA in biofilm structure and developm...

  18. Interaction between biofilms formed by Pseudomonas aeruginosa and clarithromycin.

    OpenAIRE

    Yasuda, H; Ajiki, Y; Koga, T.; Kawada, H; Yokota, T.

    1993-01-01

    Interactions between bacterial biofilms formed by Pseudomonas aeruginosa and clarithromycin, a macrolide having no anti-P. aeruginosa activity, were investigated. P. aeruginosa incubated for 10 days on membrane filters formed biofilms on the surfaces of the filters. The biofilms were characterized by dense colonizations of bacteria and thick membranous structures that covered the colonies. Treatment of the biofilms with a relatively low concentration of clarithromycin for 5 days resulted in a...

  19. Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases

    OpenAIRE

    Traba, Christian; Liang, Jun F.

    2011-01-01

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by d...

  20. Intrigues of biofilm: A perspective in veterinary medicine

    OpenAIRE

    Umar Faruk Abdullahi; Ephraim Igwenagu; Anas Mu’azu; Sani Aliyu; Maryam Ibrahim Umar

    2016-01-01

    Biofilm has a tremendous impact in the field of veterinary medicine, especially the livestock industry, leading to a serious economic loss. Over the years, little attention has been given to biofilm in animals with most of the research geared toward human biofilm diseases. The greatest challenge posed by biofilm is in its incredible ability to resist most of the currently existing antibiotics. This mystery can best be demystified through understanding the mechanism of the quorum sensing which...

  1. Orthopedics and biofilm – what do we know? A review

    OpenAIRE

    Zoubos, Aristides B.; Galanakos, Spyridon P.; Soucacos, Panayotis N.

    2012-01-01

    Summary Bacteria have been found to grow predominantly in biofilms. The initial stage includes the attachment of bacteria to the substratum. Bacterial growth and division then leads to the colonization of the surrounding area and the formation of the biofilm. The environment in a biofilm is not homogeneous; the bacteria in a multispecies biofilm are not randomly distributed, but rather are organized to best meet their needs. Although there is an initial understanding on the mechanisms of biof...

  2. Role of biofilm in catheter-associated urinary tract infection

    OpenAIRE

    Trautner, Barbara W.; Darouiche, Rabih O.

    2004-01-01

    The predominant form of life for the majority of microorganisms in any hydrated biologic system is a cooperative community termed a “biofilm.” A biofilm on an indwelling urinary catheter consists of adherent microorganisms, their extracellular products, and host components deposited on the catheter. The biofilm mode of life conveys a survival advantage to the microorganisms associated with it and, thus, biofilm on urinary catheters results in persistent infections that are resistant to antimi...

  3. Microspatial variation in marine biofilm abundance on intertidal rock surfaces

    OpenAIRE

    Aitchison, JC; Williams, GA; Hutchinson, N; Nagarkar, S

    2006-01-01

    The effect of substrate surface roughness on small-scale patchiness and the ability of molluscan grazers to feed on intertidal biofilms was examined in a factorial experiment. Granite slabs were treated to create 4 different levels of surface roughness, and biofilm and macroalgae were allowed to recruit. Biofilm cover varied greatly with slab roughness, and was spatially patchy at a scale of millimetres. Diatoms dominated the biofilm, but were less abundant on surfaces with the smallest pits....

  4. Biofilms and Wounds: An Overview of the Evidence

    OpenAIRE

    Percival, Steven L.; McCarty, Sara M.; Lipsky, Benjamin

    2015-01-01

    Significance: Microorganisms can exist both in the planktonic and biofilm state. Each phenotypic state has a role to play in delaying healing and causing infections of both acute and chronic wounds. However, the virulent biofilm state is the fundamental reason that chronic wounds do not heal in a timely manner. We hypothesize that because microorganisms attach to any surface, biofilms can be found in all chronic wounds. However, it is not the biofilm per se that represents the greatest obstac...

  5. Bacterial Biofilm: Its Composition, Formation and Role in Human Infections

    OpenAIRE

    Muhsin Jama; Ufaq Tasneem; Tahir Hussain; Saadia Andleeb

    2015-01-01

    Biofilm is an association of micro-organisms in which microbial cells adhere to each other on a living or non-living surfaces within a self-produced matrix of extracellular polymeric substance. Bacterial biofilm is infectious in nature and can results in nosocomial infections. According to National Institutes of Health (NIH) about about 65% of all microbial infections, and 80% of all chronic infections are associated with biofilms. Biofilm formation is a multi-step process starting with attac...

  6. The Pseudomonas Quinolone Signal Inhibits Biofilm Development of Streptococcus mutans

    OpenAIRE

    Inaba, Tomohiro; Oura, Hiromu; Morinaga, Kana; Toyofuku, Masanori; Nomura, Nobuhiko

    2015-01-01

    Bacteria often thrive in natural environments through a sessile mode of growth, known as the biofilm. Biofilms are well-structured communities and their formation is tightly regulated. However, the mechanisms by which interspecies interactions alter the formation of biofilms have not yet been elucidated in detail. We herein demonstrated that a quorum-sensing signal in Pseudomonas aeruginosa (the Pseudomonas quinolone signal; PQS) inhibited biofilm formation by Streptococcus mutans. Although t...

  7. Biofilm Formation by Hyperpiliated Mutants of Pseudomonas aeruginosa

    OpenAIRE

    Chiang, Poney; Burrows, Lori L.

    2003-01-01

    Under static growth conditions, hyperpiliated, nontwitching pilT and pilU mutants of Pseudomonas aeruginosa formed dense biofilms, showing that adhesion, not twitching motility, is necessary for biofilm initiation. Under flow conditions, the pilT mutant formed mushroom-like structures larger than those of the wild type but the pilU mutant was defective in biofilm formation. Therefore, twitching motility affects the development of biofilm structure, possibly through modulation of detachment.

  8. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.

    Science.gov (United States)

    Nguyen, Uyen T; Burrows, Lori L

    2014-09-18

    Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25μg/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms. PMID:25043896

  9. Influence of biofilm thickness on micropollutants removal in nitrifying MBBRs

    OpenAIRE

    Torresi, Elena; Andersen, Henrik Rasmus; Smets, Barth F.; Plósz, Benedek G.; Christensson, M.

    2015-01-01

    The removal of pharmaceuticals was investigated in nitrifying Moving Bed Biofilm Reactors (MBBRs) containing carriers with different biofilm thicknesses. The biofilm with the thinnest thickness was found to have the highest nitrification and biotransformation rate for some key pharmaceuticals. Microbial analysis revealed a different relative abundance of nitrifying guilds in the different carriers, suggesting the importance of nitrite oxidizing bacteria in removal of micropollutants.

  10. Biofilm Formation on Dental Restorative and Implant Materials

    NARCIS (Netherlands)

    Busscher, H. J.; Rinastiti, M.; Siswomihardjo, W.; van der Mei, H. C.

    2010-01-01

    Biomaterials for the restoration of oral function are prone to biofilm formation, affecting oral health. Oral bacteria adhere to hydrophobic and hydrophilic surfaces, but due to fluctuating shear, little biofilm accumulates on hydrophobic surfaces in vivo. More biofilm accumulates on rough than on s

  11. Resistance of Candida albicans biofilms to antifungal agents in vitro.

    OpenAIRE

    Hawser, S. P.; Douglas, L J

    1995-01-01

    Biofilms formed by Candida albicans on small discs of catheter material were resistant to the action of five clinically important antifungal agents as determined by [3H]leucine incorporation and tetrazolium reduction assays. Fluconazole showed the greatest activity, and amphotericin B showed the least activity against biofilm cells. These findings were confirmed by scanning electron microscopy of the biofilms.

  12. Current Trends in Development of Liposomes for Targeting Bacterial Biofilms

    OpenAIRE

    Zora Rukavina; Željka Vanić

    2016-01-01

    Biofilm targeting represents a great challenge for effective antimicrobial therapy. Increased biofilm resistance, even with the elevated concentrations of very potent antimicrobial agents, often leads to failed therapeutic outcome. Application of biocompatible nanomicrobials, particularly liposomally-associated nanomicrobials, presents a promising approach for improved drug delivery to bacterial cells and biofilms. Versatile manipulations of liposomal physicochemical properties, such as the b...

  13. Epithelial Interleukin-8 Responses to Oral Bacterial Biofilms

    OpenAIRE

    Peyyala, R.; Kirakodu, S.; Novak, K.F.; Ebersole, J L

    2011-01-01

    An in vitro model of bacterial biofilms on rigid gas-permeable contact lenses (RGPLs) was developed to challenge oral epithelial cells. This novel model provided seminal data on oral biofilm-host cell interactions, and with selected bacteria, the biofilms were more effective than their planktonic counterparts at stimulating host cell responses.

  14. Induction of beta-lactamase production in Pseudomonas aeruginosa biofilm

    DEFF Research Database (Denmark)

    Giwercman, B; Jensen, E T; Høiby, N;

    1991-01-01

    Imipenem induced high levels of beta-lactamase production in Pseudomonas aeruginosa biofilms. Piperacillin also induced beta-lactamase production in these biofilms but to a lesser degree. The combination of beta-lactamase production with other protective properties of the biofilm mode of growth...

  15. Effects of different osmolarities on bacterial biofilm formation

    OpenAIRE

    Vanessa Nessner Kavamura; Itamar Soares de Melo

    2014-01-01

    Biofilm formation depends on several factors. The influence of different osmolarities on bacterial biofilm formation was studied. Two strains (Enterobacter sp. and Stenotrophomonas sp.) exhibited the most remarkable alterations. Biofilm formation is an important trait and its use has been associated to the protection of organisms against environmental stresses.

  16. Influence of a Calcium-Specific Chelant on Biofilm Removal

    OpenAIRE

    Turakhia, M. H.; Cooksey, K. E.; Characklis, W. G.

    1983-01-01

    This paper describes the influence of ethylene glycol-bisβ-aminoethyl ether)- N, N-tetraacetic acid (EGTA) on biofilm removal. The addition of EGTA resulted in the immediate detachment of biofilm which suggests that the chelant removed essential calcium from the biofilm, causing it to detach.

  17. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Vad, Brian Stougaard; Dueholm, Morten Simonsen;

    2015-01-01

    and increases biofilm stiffness 20-fold. Deletion of any one of the individual members of in the fap operon (except the putative chaperone FapA) abolishes this ability to increase biofilm stiffness and correlates with the loss of amyloid. We conclude that amyloid makes major contributions to biofilm...

  18. The in vivo biofilm

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Maria; Alhede, Morten; Eickhardt-Sørensen, Steffen R; Moser, Claus; Kühl, Michael; Jensen, Peter Østrup; Høiby, Niels

    2013-01-01

    experimental time span and presence of host defenses differ from chronic infections and the chemical microenvironment of both in vivo and in vitro biofilms is seldom taken into account. In this review, we discuss why the current in vitro models of biofilms might be limited for describing infectious biofilms......, and we suggest new strategies for improving this discrepancy....

  19. Influence of Streptococcus mutans on Enterococcus faecalis Biofilm Formation

    NARCIS (Netherlands)

    Deng, Dong Mei; Hoogenkamp, Michel A.; Exterkate, Rob A. M.; Jiang, Lei Meng; van der Sluis, Lucas W. M.; ten Cate, Jacob M.; Crielaard, Wim

    2009-01-01

    Introduction: An important virulence factor of Enterococcus faecalis is its ability to form biofilms. Most studies on biofilm formation have been carried out by using E. faecalis monocultures. Given the polymicrobial nature of root canal infections, it is important to understand biofilm formation of

  20. Ureolytic Biomineralization Reduces Proteus mirabilis Biofilm Susceptibility to Ciprofloxacin.

    Science.gov (United States)

    Li, Xiaobao; Lu, Nanxi; Brady, Hannah R; Packman, Aaron I

    2016-05-01

    Ureolytic biomineralization induced by urease-producing bacteria, particularly Proteus mirabilis, is responsible for the formation of urinary tract calculi and the encrustation of indwelling urinary catheters. Such microbial biofilms are challenging to eradicate and contribute to the persistence of catheter-associated urinary tract infections, but the mechanisms responsible for this recalcitrance remain obscure. In this study, we characterized the susceptibility of wild-type (ure+) and urease-negative (ure-) P. mirabilis biofilms to killing by ciprofloxacin. Ure+ biofilms produced fine biomineral precipitates that were homogeneously distributed within the biofilm biomass in artificial urine, while ure- biofilms did not produce biomineral deposits under identical growth conditions. Following exposure to ciprofloxacin, ure+ biofilms showed greater survival (less killing) than ure- biofilms, indicating that biomineralization protected biofilm-resident cells against the antimicrobial. To evaluate the mechanism responsible for this recalcitrance, we observed and quantified the transport of Cy5-conjugated ciprofloxacin into the biofilm by video confocal microscopy. These observations revealed that the reduced susceptibility of ure+ biofilms resulted from hindered delivery of ciprofloxacin into biomineralized regions of the biofilm. Further, biomineralization enhanced retention of viable cells on the surface following antimicrobial exposure. These findings together show that ureolytic biomineralization induced by P. mirabilis metabolism strongly regulates antimicrobial susceptibility by reducing internal solute transport and increasing biofilm stability. PMID:26953206

  1. Bioinspired, dynamic, structured surfaces for biofilm prevention

    Science.gov (United States)

    Epstein, Alexander K.

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even low surface tension commercial antimicrobials. Our study shows multiple contributing factors, including biochemical components and multiscale reentrant topography. Reliant on surface chemistry, conventional strategies for preventing biofilm only transiently affect attachment and/or are environmentally toxic. In this work, we look to Nature's antifouling solutions, such as the dynamic spiny skin of the echinoderm, and we develop a versatile surface nanofabrication platform. Our benchtop approach unites soft lithography, electrodeposition, mold deformation, and material selection to enable many degrees of freedom—material, geometric, mechanical, dynamic—that can be programmed starting from a single master structure. The mechanical properties of the bio-inspired nanostructures, verified by AFM, are precisely and rationally tunable. We examine how synthetic dynamic nanostructured surfaces control the attachment of pathogenic biofilms. The parameters governing long-range patterning of bacteria on high-aspect-ratio (HAR) nanoarrays are combinatorially elucidated, and we discover that sufficiently low effective stiffness of these HAR arrays mechanoselectively inhibits ˜40% of Pseudomonas aeruginosa biofilm attachment. Inspired by the active echinoderm skin, we design and fabricate externally actuated dynamic elastomer surfaces with active surface microtopography. We extract from a large parameter space the critical topographic length scales and actuation time scales for achieving

  2. Antibacterial activity of graphene-modified anode on Shewanella oneidensis MR-1 biofilm in microbial fuel cell

    Science.gov (United States)

    Chen, Jie; Deng, Feng; Hu, Yongyou; Sun, Jian; Yang, Yonggang

    2015-09-01

    To clearly illustrate the antibacterial activity of graphene on anodic exoelectrogen, the growth of a Shewanella oneidensis MR-1 biofilm on graphene-modified anodes (GMAs) and bare graphite anodes (BGs) were compared. The GMAs with different amounts of graphene were obtained by the cyclic voltammetric electrodeposition of 5, 20 and 40 potential cycles (5-G, 20-G and 40-G). Confocal scanning laser microscopy and cyclic voltammetry results demonstrated that graphene exhibited an obvious antibacterial effect for initial Shewanella MR biofilm growth. After 5 h of inoculation, 40-G, 20-G and 5-G had 6.3, 8.8 and 13.9% lower levels of biofilm viability, respectively, compared to BG, and all three exhibited approximately 70% lower electrochemical activity compared to BG. However, 18 h later, the biofilm on the GMAs exhibited much higher viability than that of the BG, and the electrochemical activity increased to a similar level. This study revealed the dual effect of graphene, including the antibacterial activity on biofilms and the enhancement of bacterial attachment and electron transfer.

  3. En rejse ind i dental biofilm

    DEFF Research Database (Denmark)

    Schlafer, Sebastian

    Som klinkassistent og tandplejer arbejder man hver dag med bakteriel biofilm på tandoverfladerne – plak. Alle ved udmærket, at denne biofilm er ansvarlig for mundhulens hyppigste sygdomme, caries og parodontitis. Vi renser patienternes tænder for biofilm og opfordrer dem til at fjerne biofilmen...... mindst to gange om dagen, så grundigt de kan. Desuden bruges der en lang række antibakterielle tilsætningsstoffer i både tandpasta og mundskyllevæsker, hvis hovedformål er at dræbe bakterierne i dental biofilm. Men er biofilmen virkelig kun farlig? Nyere forskning har vist, at mennesket faktisk i høj...... grad er afhængig af de bakterier, der koloniserer kroppen. Hvorfor gælder dette tilsyneladende ikke for mundhulen? I løbet af præsentationen vil jeg tage tilhørerne med på en rejse ind i dental biofilm. Jeg vil belyse den komplekse bakterielle arkitektur, som kendetegner biofilmen, og vil analysere de...

  4. Dinosaurian soft tissues interpreted as bacterial biofilms.

    Directory of Open Access Journals (Sweden)

    Thomas G Kaye

    Full Text Available A scanning electron microscope survey was initiated to determine if the previously reported findings of "dinosaurian soft tissues" could be identified in situ within the bones. The results obtained allowed a reinterpretation of the formation and preservation of several types of these "tissues" and their content. Mineralized and non-mineralized coatings were found extensively in the porous trabecular bone of a variety of dinosaur and mammal species across time. They represent bacterial biofilms common throughout nature. Biofilms form endocasts and once dissolved out of the bone, mimic real blood vessels and osteocytes. Bridged trails observed in biofilms indicate that a previously viscous film was populated with swimming bacteria. Carbon dating of the film points to its relatively modern origin. A comparison of infrared spectra of modern biofilms with modern collagen and fossil bone coatings suggests that modern biofilms share a closer molecular make-up than modern collagen to the coatings from fossil bones. Blood cell size iron-oxygen spheres found in the vessels were identified as an oxidized form of formerly pyritic framboids. Our observations appeal to a more conservative explanation for the structures found preserved in fossil bone.

  5. Enzymes Enhance Biofilm Removal Efficiency of Cleaners.

    Science.gov (United States)

    Stiefel, Philipp; Mauerhofer, Stefan; Schneider, Jana; Maniura-Weber, Katharina; Rosenberg, Urs; Ren, Qun

    2016-06-01

    Efficient removal of biofilms from medical devices is a big challenge in health care to avoid hospital-acquired infections, especially from delicate devices like flexible endoscopes, which cannot be reprocessed using harsh chemicals or high temperatures. Therefore, milder solutions such as enzymatic cleaners have to be used, which need to be carefully developed to ensure efficacious performance. In vitro biofilm in a 96-well-plate system was used to select and optimize the formulation of novel enzymatic cleaners. Removal of the biofilm was quantified by crystal violet staining, while the disinfecting properties were evaluated by a BacTiter-Glo assay. The biofilm removal efficacy of the selected cleaner was further tested by using European standard (EN) for endoscope cleaning EN ISO 15883, and removal of artificial blood soil was investigated by treating TOSI (Test Object Surgical Instrument) cleaning indicators. Using the process described here, a novel enzymatic endoscope cleaner was developed, which removed 95% of Staphylococcus aureus and 90% of Pseudomonas aeruginosa biofilms in the 96-well plate system. With a >99% reduction of CFU and a >90% reduction of extracellular polymeric substances, this cleaner enabled subsequent complete disinfection and fulfilled acceptance criteria of EN ISO 15883. Furthermore, it efficiently removed blood soil and significantly outperformed comparable commercial products. The cleaning performance was stable even after storage of the cleaner for 6 months. It was demonstrated that incorporation of appropriate enzymes into the cleaner enhanced performance significantly. PMID:27044552

  6. Effect of glucose on Listeria monocytogenes biofilm formation, and assessment of the biofilm's sanitation tolerance.

    Science.gov (United States)

    Kyoui, Daisuke; Hirokawa, Eri; Takahashi, Hajime; Kuda, Takashi; Kimura, Bon

    2016-08-01

    Listeria monocytogenes is an important cause of human foodborne infections and its ability to form biofilms is a serious concern to the food industry. To reveal the effect of glucose conditions on biofilm formation of L. monocytogenes, 20 strains were investigated under three glucose conditions (0.1, 1.0, and 2.0% w v(-1)) by quantifying the number of cells in the biofilm and observing the biofilm structure after incubation for 24, 72, and 168 h. In addition, the biofilms were examined for their sensitivity to sodium hypochlorite. It was found that high concentrations of glucose reduced the number of viable cells in the biofilms and increased extracellular polymeric substance production. Moreover, biofilms formed at a glucose concentration of 1.0 or 2.0% were more resistant to sodium hypochlorite than those formed at a glucose concentration of 0.1%. This knowledge can be used to help design the most appropriate sanitation strategy. PMID:27353113

  7. Bacterial Lysine Decarboxylase Influences Human Dental Biofilm Lysine Content, Biofilm Accumulation and Sub-Clinical Gingival Inflammation

    Science.gov (United States)

    Lohinai, Z.; Keremi, B.; Szoko, E.; Tabi, T.; Szabo, C.; Tulassay, Z.; Levine, M.

    2012-01-01

    Background Dental biofilms contain a protein that inhibits mammalian cell growth, possibly lysine decarboxylase from Eikenella corrodens. This enzyme decarboxylates lysine, an essential amino acid for dentally attached cell turnover in gingival sulci. Lysine depletion may stop this turnover, impairing the barrier to bacterial compounds. The aims of this study were to determine biofilm lysine and cadaverine contents before oral hygiene restriction (OHR), and their association with plaque index (PI) and gingival crevicular fluid (GCF) after OHR for a week. Methods Laser-induced fluorescence after capillary electrophoresis was used to determine lysine and cadaverine contents in dental biofilm, tongue biofilm and saliva before OHR and in dental biofilm after OHR. Results Before OHR, lysine and cadaverine contents of dental biofilm were similar and 10-fold greater than in saliva or tongue biofilm. After a week of OHR, the biofilm content of cadaverine increased and that of lysine decreased, consistent with greater biofilm lysine decarboxylase activity. Regression indicated that PI and GCF exudation were positively related to biofilm lysine post-OHR, unless biofilm lysine exceeded the minimal blood plasma content in which case PI was further increased but GCF exudation was reduced. Conclusions After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Clinical Relevance Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis. PMID:22141361

  8. Surface-enhanced Raman scattering (SERS) revealing chemical variation during biofilm formation: from initial attachment to mature biofilm

    OpenAIRE

    Chao, Yuanqing; Tong ZHANG

    2012-01-01

    Surface-enhanced Raman scattering (SERS) has recently been proved to be a promising technique for characterizing the chemical composition of the biofilm matrix. In the present study, to fully understand the chemical variations during biofilm formation, SERS based on silver colloidal nanoparticles was applied to evaluate the chemical components in the matrix of biofilm at different growth phases, including initial attached bacteria, colonies, and mature biofilm. Meanwhile, atomic force microsc...

  9. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci.

    Science.gov (United States)

    Stepanović, Srdjan; Vuković, Dragana; Hola, Veronika; Di Bonaventura, Giovanni; Djukić, Slobodanka; Cirković, Ivana; Ruzicka, Filip

    2007-08-01

    The details of all steps involved in the quantification of biofilm formation in microtiter plates are described. The presented protocol incorporates information on assessment of biofilm production by staphylococci, gained both by direct experience as well as by analysis of methods for assaying biofilm production. The obtained results should simplify quantification of biofilm formation in microtiter plates, and make it more reliable and comparable among different laboratories. PMID:17696944

  10. Arguments from Developmental Order.

    Science.gov (United States)

    Stöckle-Schobel, Richard

    2016-01-01

    In this article, I investigate a special type of argument regarding the role of development in theorizing about psychological processes and cognitive capacities. Among the issues that developmental psychologists study, discovering the ontogenetic trajectory of mechanisms or capacities underpinning our cognitive functions ranks highly. The order in which functions are developed or capacities are acquired is a matter of debate between competing psychological theories, and also philosophical conceptions of the mind - getting the role and the significance of the different steps in this order right could be seen as an important virtue of such theories. Thus, a special kind of strategy in arguments between competing philosophical or psychological theories is using developmental order in arguing for or against a given psychological claim. In this article, I will introduce an analysis of arguments from developmental order, which come in two general types: arguments emphasizing the importance of the early cognitive processes and arguments emphasizing the late cognitive processes. I will discuss their role in one of the central tools for evaluating scientific theories, namely in making inferences to the best explanation. I will argue that appeal to developmental order is, by itself, an insufficient criterion for theory choice and has to be part of an argument based on other core explanatory or empirical virtues. I will end by proposing a more concerted study of philosophical issues concerning (cognitive) development, and I will present some topics that also pertain to a full-fledged 'philosophy of development.' PMID:27242648

  11. Arguments from Developmental Order

    Science.gov (United States)

    Stöckle-Schobel, Richard

    2016-01-01

    In this article1, I investigate a special type of argument regarding the role of development in theorizing about psychological processes and cognitive capacities. Among the issues that developmental psychologists study, discovering the ontogenetic trajectory of mechanisms or capacities underpinning our cognitive functions ranks highly. The order in which functions are developed or capacities are acquired is a matter of debate between competing psychological theories, and also philosophical conceptions of the mind – getting the role and the significance of the different steps in this order right could be seen as an important virtue of such theories. Thus, a special kind of strategy in arguments between competing philosophical or psychological theories is using developmental order in arguing for or against a given psychological claim. In this article, I will introduce an analysis of arguments from developmental order, which come in two general types: arguments emphasizing the importance of the early cognitive processes and arguments emphasizing the late cognitive processes. I will discuss their role in one of the central tools for evaluating scientific theories, namely in making inferences to the best explanation. I will argue that appeal to developmental order is, by itself, an insufficient criterion for theory choice and has to be part of an argument based on other core explanatory or empirical virtues. I will end by proposing a more concerted study of philosophical issues concerning (cognitive) development, and I will present some topics that also pertain to a full-fledged ‘philosophy of development.’ PMID:27242648

  12. The Developmental Work

    DEFF Research Database (Denmark)

    Møller, Niels; Hvid, Helge

    2001-01-01

    AbstractIn the nineties, the concept of the developmental work (DW) has become a significant point of orientation for the actors on Danish labour market. The DW has moved the focus of the labour market from wages and working time towards work and production. For employees, the DW promises...

  13. Developmental paediatric anaesthetic pharmacology

    DEFF Research Database (Denmark)

    Hansen, Tom Giedsing

    2015-01-01

    Safe and effective drug therapy in neonates, infants and children require detailed knowledge about the ontogeny of drug disposition and action as well how these interact with genetics and co-morbidity of children. Recent advances in developmental pharmacology in children follow the increased...

  14. Mammary Glands: Developmental Changes

    Science.gov (United States)

    The mammary gland progresses from the accumulation of a few cells in the embryonic ectoderm to a highly arborescent tubulo-alveolar gland capable of secreting a highly nutritious product for consumption. Throughout this progression, various changes occur during each developmental stage: prenatal, pr...

  15. Qualitative methodology in developmental psychology

    DEFF Research Database (Denmark)

    Demuth, Carolin; Mey, Günter

    2015-01-01

    Qualitative methodology presently is gaining increasing recognition in developmental psychology. Although the founders of developmental psychology to a large extent already used qualitative procedures, the field was long dominated by a (post) positivistic quantitative paradigm. The increasing...

  16. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    Directory of Open Access Journals (Sweden)

    Joe A. Lemire

    2015-10-01

    Full Text Available Moving bed biofilm reactors (MBBRs are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR carriers (biofilm support materials, allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that mixed-species biofilms can be harvested from an industrial wastewater inoculum [oil sands process water (OSPW] using the Calgary Biofilm Device (CBD. Moreover, the resultant biofilm communities had the capacity to degrade organic toxins (naphthenic acids—NAs that are found in OSPW. Therefore, we hypothesized that harnessing microbial communities from industrial wastewater, as biofilms, on MBBR carriers may be an effective method to bioremediate industrial wastewater.Here, we detail our methodology adapting the workflow employed for using the CBD, to generate inoculant carriers to seed an MBBR.In this study, OSPW-derived biofilm communities were successfully grown, and their efficacy evaluated, on commercially available MBBR carriers affixed within a modified CBD system. The resultant biofilms demonstrated the capacity to transfer biomass to recipient carriers within a scaled MBBR. Moreover, MBBR systems inoculated in this manner were fully active 2 days post-inoculation, and readily degraded a select population of NAs. Together, these findings suggest that harnessing microbial communities on carriers affixed within a modified CBD system may represent a facile and rapid method for obtaining functional inoculants for use in wastewater MBBR treatment systems.

  17. Using optical coherence tomography to quantify biofilm structure and mass transfer in combination with mathematical modeling

    OpenAIRE

    Li, Chunyan

    2015-01-01

    The evolution of biofilm structure on the carriers used in moving bed biofilm reactor was investigated by means of optical coherence tomography and biofilm image analysis. A method was developed by combining biofilm imaging and mathematical modeling to study the mass transfer characteristics in the vicinity of biofilm surface. The method was further used to examine the effect of the deposition of organic particle at biofilm surface on the mass transfer from bulk liquid into biofilms.

  18. Comparison of biomass detachment from two different Pseudomonas spp. biofilms under constant shear conditions

    OpenAIRE

    Gazzola, Giulio; Habimana, Olivier; Murphy, Cormac D.; Casey, Eoin

    2015-01-01

    In the context of biofilm development, detachment is of practical importance when placed in a biofilm management perspective. The objective of the present study was to examine biofilm structure and biofilm detachment under controlled conditions for two distinct microorganisms grown under constant shear conditions. Detached biofilm biomass was regularly collected and analysed over the course of 72 h biofilm growth by Pseudomonas putida and Pseudomonas fluorescens cells, and biofilm structural ...

  19. Biofilm Formation and Sloughing in Serratia marcescens Are Controlled by Quorum Sensing and Nutrient Cues

    OpenAIRE

    Rice, S A; Koh, K. S.; Queck, S. Y.; Labbate, M.; Lam, K W; Kjelleberg, S

    2005-01-01

    We describe here a role for quorum sensing in the detachment, or sloughing, of Serratia marcescens filamentous biofilms, and we show that nutrient conditions affect the biofilm morphotype. Under reduced carbon or nitrogen conditions, S. marcescens formed a classical biofilm consisting of microcolonies. The filamentous biofilm could be converted to a microcolony-type biofilm by switching the medium after establishment of the biofilm. Similarly, when initially grown as a microcolony biofilm, S....

  20. Anti-Biofilm and Immunomodulatory Activities of Peptides That Inhibit Biofilms Formed by Pathogens Isolated from Cystic Fibrosis Patients

    Directory of Open Access Journals (Sweden)

    César de la Fuente-Núñez

    2014-10-01

    Full Text Available Cystic fibrosis (CF patients often acquire chronic respiratory tract infections due to Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc species. In the CF lung, these bacteria grow as multicellular aggregates termed biofilms. Biofilms demonstrate increased (adaptive resistance to conventional antibiotics, and there are currently no available biofilm-specific therapies. Using plastic adherent, hydroxyapatite and flow cell biofilm models coupled with confocal and scanning electron microscopy, it was demonstrated that an anti-biofilm peptide 1018 prevented biofilm formation, eradicated mature biofilms and killed biofilms formed by a wide range of P. aeruginosa and B. cenocepacia clinical isolates. New peptide derivatives were designed that, compared to their parent peptide 1018, showed similar or decreased anti-biofilm activity against P. aeruginosa biofilms, but increased activity against biofilms formed by the Gram-positive bacterium methicillin resistant Staphylococcus aureus. In addition, some of these new peptide derivatives retained the immunomodulatory activity of 1018 since they induced the production of the chemokine monocyte chemotactic protein-1 (MCP-1 and suppressed lipopolysaccharide-mediated tumor necrosis factor-α (TNF-α production by human peripheral blood mononuclear cells (PBMC and were non-toxic towards these cells. Peptide 1018 and its derivatives provide promising leads for the treatment of chronic biofilm infections and hyperinflammatory lung disease in CF patients.

  1. Role of Biofilm Roughness and Hydrodynamic Conditions in Legionella pneumophila Adhesion to and Detachment from Simulated Drinking Water Biofilms

    OpenAIRE

    Shen, Yun; Monroy, Guillermo L.; Derlon, Nicolas; Janjaroen, Dao; Huang, Conghui; Morgenroth, Eberhard; Boppart, Stephen A.; Ashbolt, Nicholas J.; Liu, Wen-Tso; Nguyen, Thanh H.

    2015-01-01

    Biofilms in drinking water distribution systems (DWDS) could exacerbate the persistence and associated risks of pathogenic Legionella pneumophila (L. pneumophila), thus raising human health concerns. However, mechanisms controlling adhesion and subsequent detachment of L. pneumophila associated with biofilms remain unclear. We determined the connection between L. pneumophila adhesion and subsequent detachment with biofilm physical structure characterization using optical coherence tomography ...

  2. A personal history of research on microbial biofilms and biofilm infections

    DEFF Research Database (Denmark)

    Høiby, Niels

    2014-01-01

    The observation of aggregated microorganisms surrounded by a self-produced matrix adhering to surfaces or located in tissues or secretions is as old as microbiology, with both Leeuwenhoek and Pasteur describing the phenomenon. In environmental and technical microbiology, biofilms were already shown...... aeruginosa cells in sputum and lung tissue from chronically infected cystic fibrosis patients. The term biofilm was introduced into medicine in 1985 by Costerton. In the following decades, it became obvious that biofilm infections are widespread in medicine, and their importance is now generally accepted....

  3. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik; Ovesen, K.

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached a...... higher level in the hot water distribution system (2.1 d–1 to 2.3 d–1) than in the hot water tank (1.4 d–1 to 2.2 d–1) indicating an important area for surface associated growth. The net growth rate of the suspended bacteria measured in hot water from the top, middle and bottom of the hot water tank, in...... the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water...

  4. Complement activation by Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jensen, E T; Kharazmi, A; Garred, P;

    1993-01-01

    In chronic infections, such as the bronchopulmonary Pseudomonas aeruginosa infection in cystic fibrosis (CF) patients, bacteria persist despite an intact host immune defense and frequent antibiotic treatment. An important reason for the persistence of the bacteria is their capacity for the biofilm...... mode of growth. In this study we investigated the role of biofilms in activation of complement, a major contributor to the inflammatory process. Complement activation by P. aeruginosa was examined in a complement consumption assay, production of C3 and factor B conversion products assessed by crossed...... immuno-electrophoresis, C5a generation tested by a PMN chemotactic assay, and terminal complement complex formation measured by ELISA. Two of the four assays showed that P. aeruginosa grown in biofilm activated complement less than planktonic bacteria, and all assays showed that activation by intact...

  5. Strategy of control for bacterial biofilm processes

    Directory of Open Access Journals (Sweden)

    A. N. Mayansky

    2014-09-01

    Full Text Available Main directions of the modern search of the antibiofilm preparations aimed at adhesive bacterial reactions, control of QS-systems, influence over bis-(3’-5’-cyclic dimeric guanosine monophosphate (cdi-GMP, and secretory bacterial processes are analysed. Approaches for biofilm dispersal and increasing the sensitivity of biofilm bacteria to antimicrobial drugs are discussed. It is underlined that the majority of inhibitor molecules were studied in vitro or in infected mice experiments. It is prognosed that in future there will appear medical preparations which will help for fighting bacterial biofilms preventing their development and spreading in the host organism.

  6. Biofilms and their effect on local chemistry

    International Nuclear Information System (INIS)

    Fouling and corrosion are frequently mediated by microorganisms attached to the metal surface and/or embedded in a gelatinous organic matrix termed a biofilm. Biofilms substantially change the local chemistry of the adjacent metal and, thereby, influence corrosion processes. The extent of changes in local chemistry is influenced by the microenvironmental conditions at the metal surface including the number and types of microorganisms present, the dissolved oxygen concentration, the flow velocity, the buffering capacity of the bulk water, and many other factors. Since microbial-influenced corrosion is generally localized, the spatial distribution or patchiness of the microbial activity also affects the corrosion processes. A unified approach to understanding and controlling biofilms and the related corrosion is presented in the context of a case study recently conducted by CCE, Inc. at a nuclear power plant site

  7. The biofilm matrix destabilizers, EDTA and DNaseI, enhance the susceptibility of nontypeable Hemophilus influenzae biofilms to treatment with ampicillin and ciprofloxacin

    OpenAIRE

    Cavaliere, Rosalia; Ball, Jessica L; Turnbull, Lynne; Whitchurch, Cynthia B.

    2014-01-01

    Nontypeable Hemophilus influenzae (NTHi) is a Gram-negative bacterial pathogen that causes chronic biofilm infections of the ears and airways. The biofilm matrix provides structural integrity to the biofilm and protects biofilm cells from antibiotic exposure by reducing penetration of antimicrobial compounds into the biofilm. Extracellular DNA (eDNA) has been found to be a major matrix component of biofilms formed by many species of Gram-positive and Gram-negative bacteria, including NTHi. In...

  8. Filifactor alocis - involvement in periodontal biofilms

    Directory of Open Access Journals (Sweden)

    Göbel Ulf B

    2010-03-01

    Full Text Available Abstract Background Bacteria in periodontal pockets develop complex sessile communities that attach to the tooth surface. These highly dynamic microfloral environments challenge both clinicians and researchers alike. The exploration of structural organisation and bacterial interactions within these biofilms is critically important for a thorough understanding of periodontal disease. In recent years, Filifactor alocis, a fastidious, Gram-positive, obligately anaerobic rod was repeatedly identified in periodontal lesions using DNA-based methods. It has been suggested to be a marker for periodontal deterioration. The present study investigated the epidemiology of F. alocis in periodontal pockets and analysed the spatial arrangement and architectural role of the organism in in vivo grown subgingival biofilms. Results A species-specific oligonucleotide probe, FIAL, was designed and evaluated. A total of 490 subgingival plaque samples were submitted to PCR and subsequent dot blot hybridization to compare the prevalence of F. alocis in patients suffering from generalized aggressive periodontitis (GAP, chronic periodontitis (CP, and control subjects resistant to periodontitis. Moreover, a specially designed carrier system was used to collect in vivo grown subgingival biofilms from GAP patients. Subsequent topographic analysis was performed using fluorescence in situ hybridization. While the majority of patients suffering from GAP or CP harboured F. alocis, it was rarely detected in the control group. In the examined carrier-borne biofilms the organism predominantly colonized apical parts of the pocket in close proximity to the soft tissues and was involved in numerous structures that constitute characteristic architectural features of subgingival periodontal biofilms. Conclusions F. alocis is likely to make a relevant contribution to the pathogenetic structure of biofilms accounting for periodontal inflammation and can be considered an excellent marker

  9. Clay-Bacteria Systems and Biofilm Production

    Science.gov (United States)

    Steiner, J.; Alimova, A.; Katz, A.; Steiner, N.; Rudolph, E.; Gottlieb, P.

    2007-12-01

    Soil clots and the aerosol transport of bacteria and spores are promoted by the formation of biofilms (bacteria cells in an extracellular polymeric matrix). Biofilms protect microorganisms by promoting adhesion to both organic and inorganic surfaces. Time series experiments on bacteria-clay suspensions demonstrate that biofilm growth is catalyzed by the presence of hectorite in minimal growth media for the studied species: Gram negatives (Pseudomonas syringae and Escherichia coli,) and Gram positives (Staphylococcus aureus and Bacillus subtilis). Soil organisms (P. syringae, B. subtilis) and organisms found in the human population (E. coli, S. aureus) are both used to demonstrate the general applicability of clay involvement. Fluorescent images of the biofilms are acquired by staining with propidium iodide, a component of the BacLightTM Live/Dead bacterial viability staining kit (Molecular Probes, Eugene, OR). The evolving polysaccharide-rich biofilm reacts with the clay interlayer site causing a complex substitution of the two-water hectorite interlayer with polysaccharide. The result is often a three-peak composite of the (001) x-ray diffraction maxima resulting from polysaccharide-expanded clays and an organic-driven contraction of a subset of the clays in the reaction medium. X-ray diffractograms reveal that the expanded set creates a broad maximum with clay subsets at 1.84 nm and 1.41 nm interlayer spacings as approximated by a least squares double Lorentzian fit, and a smaller shoulder at larger 2q, deriving from a contraction of the interlayer spacing. Washing with chlorox removes organic material from the contracted clay and creates a 1-water hectorite single peak in place of the double peak. The clay response can be used as an indirect indicator of biofilm in an environmental system.

  10. Investigate Nasal Colonize Staphylococcus Species Biofilm Produced

    Directory of Open Access Journals (Sweden)

    Cemil Demir

    2014-03-01

    Full Text Available Aim: 127 S.aureus and 65 CoNS strains were isolated from patients noses%u2019. To produce a biofilm ability was investigated using three different methods. Slime-positive and negative staphylococcies%u2019 resistance were evaluated against different antibiotics. Material and Method: Swap samples puted 7% blood agar. Staphylococcus aureus and coagulase-negative staphylococci (CoNS isolates biofilm produced ability were investigated using Congo Red Agar (CRA, microplates (MP and Standard Tube (ST methods. In addition to that, presence of antibiotic resistance of the staphylococcal isolates are determined agar disc diffusion method. Results: The rate of biofilm producing Staphylococcus spp strains was found to be 72.4%, 67.7%, and 62.9%, respectively with CRA, MP, and ST tests. There was no significant relationship among the tests (p>0.05. In addition, antibiotic resistance of Staphylococcus spp. against various antibiotics was also determined by the agar disk diffusion method. Resistance rates of biofilm positive (BP Staphylococcus spp for penicilin G, ampicilin, amocycilin/clavulanic acid, tetracyclin, eritromycin, gentamycin, and enrofloxacin 71.7%, 69.7%, 6.2%, 20.7%, 21.4%, 1.4%, and 0.7%, respectively. Resistance rates of biofilm negative (BN spp for 42.6%, 23.4%, 4.3%, 14.9%, 19.1%, 0.0%, 0.0% respectively. All Staphylococcus isolates were found to be susceptible to vancomycin and teicaplonin. Although BP strains antibiotic resistance rates were observed higher than BN strains. But resistance rates were not found statistically significant (p>0.05. Discussion: CRA is the reliablity and specifity method to determine Staphylococcus spp. biofilm produce ability.

  11. Chemoinformatics-assisted development of new anti-biofilm compounds

    DEFF Research Database (Denmark)

    Dürig, Anna; Kouskoumvekaki, Irene; Vejborg, Rebecca Munk;

    2010-01-01

    Bacterial biofilms are associated with a large number of infections. Biofilm-dwelling bacteria are particularly resistant to antibiotics, making it hard to eradicate biofilm-associated infections. Here, we use a novel cross-disciplinary approach combining microbiology and chemoinformatics to...... identify new and efficient anti-biofilm drugs. We found that ellagic acid (present in green tea) significantly inhibited biofilm formation of Streptococcus dysgalactiae. Based on ellagic acid, we performed in silico screening of the Chinese Natural Product Database to predict a 2nd-generation list of...

  12. Biofilm Exopolysaccharides of Pathogenic Fungi: Lessons from Bacteria.

    Science.gov (United States)

    Sheppard, Donald C; Howell, P Lynne

    2016-06-10

    Exopolysaccharides play an important structural and functional role in the development and maintenance of microbial biofilms. Although the majority of research to date has focused on the exopolysaccharide systems of biofilm-forming bacteria, recent studies have demonstrated that medically relevant fungi such as Candida albicans and Aspergillus fumigatus also form biofilms during infection. These fungal biofilms share many similarities with those of bacteria, including the presence of secreted exopolysaccharides as core components of the extracellular matrix. This review will highlight our current understanding of fungal biofilm exopolysaccharides, as well as the parallels that can be drawn with those of their bacterial counterparts. PMID:27129222

  13. STAPHYLOCOCCUS AUREUS BIOFILM FORMATION ON POLYPYRROLE: AN ELECTRICAL OVERVIEW

    Directory of Open Access Journals (Sweden)

    Erlon R. Cordeiro

    2015-09-01

    Full Text Available The development of organic devices based on conducting polymers for biofilm detection requires the combination of superior electrical response and high surface area for biofilm incorporation. Polypyrrole is a potential candidate for application in biofilm detection and control due to its characteristic superior electrical response and strong interaction with bacteria, which enables the use of the bioelectric effect in resulting devices. In this study, chemically synthesized polypyrrole was applied as a support for biofilm growth of S. aureus. Modifications in the electrical response of the polymeric template were explored to identify general mechanisms established during the deposition of the biofilm.

  14. Confocal Raman microscopy for identification of bacterial species in biofilms

    Science.gov (United States)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2011-03-01

    Implemented through a confocal microscope, Raman spectroscopy has been used to distinguish between biofilm samples of two common oral bacteria species, Streptococcus sanguinis and mutans, which are associated with healthy and cariogenic plaque, respectively. Biofilms of these species are studied as a model of dental plaque. A prediction model has been calibrated and validated using pure biofilms. This model has been used to identify the species of transferred and dehydrated samples (much like a plaque scraping) as well as hydrated biofilms in situ. Preliminary results of confocal Raman mapping of species in an intact two-species biofilm will be shown.

  15. Geomicrobiology and hopanoid content of sulfidic subsurface vent biofilms, Little Salt Spring, Florida

    Science.gov (United States)

    Yang, E.; Schaperdoth, I.; Albrecht, H.; Freeman, K. H.; Macalady, J. L.

    2008-12-01

    Sulfide-rich, oxygen-poor environments are widespread in the subsurface and were prevalent at the earth's surface during critical intervals in the geologic past. Modern microbial communities in sulfidic niches have the potential to shed light on the biogeochemistry and biosignatures of anoxia and euxinia in earth history. Caves and sinkholes provide rare windows into microbially-dominated, sulfidic subsurface environments that are otherwise difficult and expensive to access. Little Salt Spring (Sarasota County, Florida) is a cover-collapse sinkhole lake with oxic surface water and anoxic, sulfidic bottom water (Alvarez Zarikian 2005). The site is famous for excellent preservation of human and animal archaeological remains (Clausen 1979), and its microbiology has never been investigated. Abundant white biofilms develop seasonally at a warm vent that feeds into the anoxic bottom water at 73 m depth below the water surface. The biofilms are of interest both as potential sources of biomarker compounds and because of their likely role in sulfuric acid production and limestone dissolution (speleogenesis). Biofilm samples were collected by expert science divers and investigated using microscopy, nucleic acid, and lipid analytical methods. Microscopy of the live biofilm revealed clusters of microbial filaments with holdfasts and dendritic, sulfur-rich colonial structures similar to those described in the 1960s for Thiobacterium, a sulfur-oxidizing genus with undetermined phylogeny. A 16S rDNA library constructed from the biofilm was split into three main phylotypes, with multiple clones representing (1) a Betaproteobacterial clade with no cultivated representatives, (2) filamentous Epsilonproteobacteria, and (3) a major bacterial lineage without named isolates (OP11/OD2). A full cycle rRNA approach is currently underway to link 16S rDNA phylotypes with specific populations in the biofilm. We confirmed using fluorescence in situ hybridization (FISH) that abundant

  16. Microbial Biofilm as a Smart Material

    DEFF Research Database (Denmark)

    Garde, Christian; Welch, Martin; Ferkinghoff-Borg, Jesper;

    2015-01-01

    Microbial biofilm colonies will in many cases form a smart material capable of responding to external threats dependent on their size and internal state. The microbial community accordingly switches between passive, protective, or attack modes of action. In order to decide which strategy to employ......, it is essential for the biofilm community to be able to sense its own size. The sensor designed to perform this task is termed a quorum sensor, since it only permits collective behaviour once a sufficiently large assembly of microbes have been established. The generic quorum sensor construct involves...

  17. Effects of probiotics and antibiotics on biofilms

    OpenAIRE

    Pradeep, B.; Pandey, P K; S. Ayyappan

    2003-01-01

    Experiments were conducted to study the effects of probiotics and antibiotics on 3-months old biofilms formed on three different substrates, namely glass, granite and fiberglass reinforced plastic. The variations in heterotrophic bacterial populations associated with biofilms were monitored for a period of one month after one-time application of the probiotic Biogreen (Gee Key Marine Pvt. Ltd, Chennai) at 0.2 mg lˉ¹ and the antibiotic tetracycline at 1.0 mg lˉ¹. The variations in heterotrophi...

  18. Transcript length mediates developmental timing of gene expression across Drosophila

    OpenAIRE

    Artieri, Carlo G.; Fraser, Hunter B.

    2013-01-01

    The time required to transcribe genes with long primary transcripts may limit their ability to be expressed in cells with short mitotic cycles, a phenomenon termed intron delay. As such short cycles are a hallmark of the earliest stages of insect development, we used Drosophila developmental timecourse expression data to test whether intron delay affects gene expression genome-wide, and to determine its consequences for the evolution of gene structure. We find that long zygotically expressed,...

  19. Erikson and Early Childhood Educators: Looking at Ourselves and Our Profession Developmentally.

    Science.gov (United States)

    Gratz, Rene R.; Boulton, Pamla J.

    1996-01-01

    Describes Erikson's theory of developmentally appropriate curriculum and the eight stages of the life cycle. Provides brief descriptions of these stages and some possible professional applications that early childhood educators can use in pursuing professional development. (MOK)

  20. Anti-Staphylococcal Biofilm Effects of Human Cathelicidin Peptides.

    Science.gov (United States)

    Mishra, Biswajit; Golla, Radha M; Lau, Kyle; Lushnikova, Tamara; Wang, Guangshun

    2016-01-14

    Staphylococcus aureus can live together in the form of biofilms to avoid elimination by the host. Thus, a useful strategy to counteract bacterial biofilms is to re-engineer human antimicrobial peptide LL-37 so that it can be used as a remedy for preventing and removing biofilms. This study reports antibiofilm effects of four human cathelicidin LL-37 peptides against community-associated and hospital isolated methicillin-resistant Staphylococcus aureus (MRSA) strains. Although the intact molecule LL-37 inhibited biofilm formation at low concentrations, it did not inhibit bacterial attachment nor disrupt preformed biofilms. However, two 17-residue peptides, GF-17 and 17BIPHE2, inhibited bacterial attachment, biofilm growth, and disrupted established biofilms. An inactive peptide RI-10 was used as a negative control. Our results obtained using the S. aureus mutants in a static biofilm model are consistent with the literature obtained in a flow cell biofilm model. Because 17BIPHE2 is the most effective biofilm disruptor with desired stability to proteases, it is a promising lead for developing new anti-MRSA biofilm agents. PMID:26819677

  1. A limited legacy effect of copper in marine biofilms.

    Science.gov (United States)

    McElroy, David J; Doblin, Martina A; Murphy, Richard J; Hochuli, Dieter F; Coleman, Ross A

    2016-08-15

    The effects of confounding by temporal factors remains understudied in pollution ecology. For example, there is little understanding of how disturbance history affects the development of assemblages. To begin addressing this gap in knowledge, marine biofilms were subjected to temporally-variable regimes of copper exposure and depuration. It was expected that the physical and biological structure of the biofilms would vary in response to copper regime. Biofilms were examined by inductively coupled plasma optical emission spectrometry, chlorophyll-a fluorescence and field spectrometry and it was found that (1) concentrations of copper were higher in those biofilms exposed to copper, (2) concentrations of copper remain high in biofilms after the source of copper is removed, and (3) exposure to and depuration from copper might have comparable effects on the photosynthetic microbial assemblages in biofilms. The persistence of copper in biofilms after depuration reinforces the need for consideration of temporal factors in ecology. PMID:27297593

  2. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    to various persistent infections in humans and animals, and to a variety of complications in industry, where solid–water interfaces occur. Knowledge about the molecular mechanisms involved in biofilm formation is necessary for creating strategies to control biofilms. Recent studies have shown that......Bacteria in nature primarily live in surface-associated communities commonly known as biofilms. Because bacteria in biofilms, in many cases, display tolerance to host immune systems, antibiotics, and biocides, they are often difficult or impossible to eradicate. Biofilm formation, therefore, leads...... extracellular DNA is an important component of the extracellular matrix of microbial biofilms. The present chapter is focussed on extracellular DNA as matrix component in biofilms formed by Pseudomonas aeruginosa as an example from the Gram-negative bacteria, and Streptococcus and Staphylococcus as examples...

  3. Ratiometric Imaging of Extracellular pH in Dental Biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Dige, Irene

    2016-01-01

    The pH in bacterial biofilms on teeth is of central importance for dental caries, a disease with a high worldwide prevalence. Nutrients and metabolites are not distributed evenly in dental biofilms. A complex interplay of sorption to and reaction with organic matter in the biofilm reduces the...... diffusion paths of solutes and creates steep gradients of reactive molecules, including organic acids, across the biofilm. Quantitative fluorescent microscopic methods, such as fluorescence life time imaging or pH ratiometry, can be employed to visualize pH in different microenvironments of dental biofilms......) carboxylic acid (C-SNARF-4) is employed to monitor extracellular pH in in vivo grown dental biofilms of unknown species composition. Upon exposure to glucose the dye is up-concentrated inside all bacterial cells in the biofilms; it is thus used both as a universal bacterial stain and as a marker of...

  4. Microscale Confinement features in microfluidic devices can affect biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Aloke [ORNL; Karig, David K [ORNL; Neethirajan, Suresh [University of Guelph; Acharya, Rajesh K [ORNL; Mukherjee, Partha P [ORNL; Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL

    2013-01-01

    Biofilms are aggregations of microbes that are encased by extra-cellular polymeric substances (EPS) and adhere to surfaces and interfaces. Biofilm development on abiotic surfaces is a dynamic process, which typically proceeds through an initial phase of adhesion of plankntonic microbes to the substrate, followed by events such as growth, maturation and EPS secretion. However, the coupling of hydrodynamics, microbial adhesion and biofilm growth remain poorly understood. Here, we investigate the effect of semiconfined features on biofilm formation. Using a microfluidic device and fluorescent time-lapse microscopy, we establish that confinement features can significantly affect biofilm formation. Biofilm dynamics change not only as a function of confinement features, but also of the total fluid flow rate, and our combination of experimental results and numerical simulations reveal insights into the link between hydrodynamics and biofilm formation.

  5. Genetic Basis for Saccharomyces cerevisiae Biofilm in Liquid Medium

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz; Bojsen, Rasmus Kenneth; Gro Rejkjær Sørensen, Laura; Weiss Nielsen, Martin; Lisby, Michael; Folkesson, Sven Anders; Regenberg, Birgitte

    2014-01-01

    Biofilm-forming microorganisms switch between two forms: free-living planktonic and sessile multicellular. Sessile communities of yeast biofilms in liquid medium provide a primitive example of multicellularity and are clinically important because biofilms tend to have other growth characteristics...... than free-living cells. We investigated the genetic basis for yeast, Saccharomyces cerevisiae, biofilm on solid surfaces in liquid medium by screening a comprehensive deletion mutant collection in the S1278b background and found 71 genes that were essential for biofilm development. Quantitative...... functioned specifically in biofilm and mat formation. In a tpk3 mutant, transcription of FLO11 was induced three-fold compared with wild-type, but biofilm development and cell–cell adhesion was absent, suggesting that Tpk3p regulates FLO11 positive posttranscriptionally and negative transcriptionally. The...

  6. The membrane biofilm reactor: the natural partnership of membranes and biofilm.

    Science.gov (United States)

    Rittmann, B E

    2006-01-01

    Many exciting new technologies for water-quality control combine microbiological processes with adsorption, advanced oxidation, a membrane or an electrode to improve performance, address emerging contaminants or capture renewable energy. An excellent example is the H2-based membrane biofilm reactor (MBfR), which delivers H2 gas to a biofilm that naturally accumulates on the outer surface of a bubbleless membrane. Autotrophic bacteria in the biofilm oxidise the H2 and use the electrons to reduce NO3-, CIO4- and other oxidised contaminants. This natural partnership of membranes and biofilm makes it possible to gain many cost, performance and simplicity advantages from using H2 as the electron donor for microbially catalysed reductions. The MBfR has been demonstrated for denitrification in drinking water; reduction of perchlorate in groundwater; reduction of selenate, chromate, trichloroethene and other emerging contaminants; advanced N removal in wastewater treatment and autotrophic total-N removal. PMID:16605035

  7. Effect of Biosynthesized Silver Nanoparticles on Staphylococcus aureus Biofilm Quenching and Prevention of Biofilm Formation

    Institute of Scientific and Technical Information of China (English)

    Pratik R. Chaudhari∗; Shalaka A. Masurkar; Vrishali B. Shidore; Suresh P. Kamble

    2012-01-01

    The development of green experimental processes for the synthesis of nanoparticles is a need in the field of nanotechnology. The synthesis of silver nanoparticles was achieved using Bacillus cereus supernatant and 1 mM silver nitrate. 100 mM glucose was found to quicken the rate of reaction of silver nanoparticles synthesis. UV-visible spectrophotometric analysis was carried out to assess the synthesis of silver nanoparticles. The synthesized silver nanoparticles were further characterized by using Nanoparticle Tracking Analyzer (NTA), Transmission Electron Microscope and Energy Dispersive X-ray spectra. These silver nanoparticles showed enhanced quorum quenching activity against Staphylococcus aureus biofilm and prevention of biofilm formation which can be seen under inverted microscope (40 X). The synergistic effect of silver nanoparticles along with antibiotics in biofilm quenching was found to be effective. In the near future, silver nanoparticles could be used in the treatment of infections caused by highly antibiotic resistant biofilm.

  8. Developmental Tasks of the Long-Lived Marriage.

    Science.gov (United States)

    Finkel, Judith

    1992-01-01

    Examined long-term relationship of 31 older couples and looked at second half of life cycle of marriage. Findings suggest that developmental relationship tasks are important to the changes and adjustment which couples must work through during successive stages of old age. (NB)

  9. Exosomes in developmental signalling.

    Science.gov (United States)

    McGough, Ian John; Vincent, Jean-Paul

    2016-07-15

    In order to achieve coordinated growth and patterning during development, cells must communicate with one another, sending and receiving signals that regulate their activities. Such developmental signals can be soluble, bound to the extracellular matrix, or tethered to the surface of adjacent cells. Cells can also signal by releasing exosomes - extracellular vesicles containing bioactive molecules such as RNA, DNA and enzymes. Recent work has suggested that exosomes can also carry signalling proteins, including ligands of the Notch receptor and secreted proteins of the Hedgehog and WNT families. Here, we describe the various types of exosomes and their biogenesis. We then survey the experimental strategies used so far to interfere with exosome formation and critically assess the role of exosomes in developmental signalling. PMID:27436038

  10. A Novel Computerized Cell Count Algorithm for Biofilm Analysis.

    Science.gov (United States)

    Klinger-Strobel, Mareike; Suesse, Herbert; Fischer, Dagmar; Pletz, Mathias W; Makarewicz, Oliwia

    2016-01-01

    Biofilms are the preferred sessile and matrix-embedded life form of most microorganisms on surfaces. In the medical field, biofilms are a frequent cause of treatment failure because they protect the bacteria from antibiotics and immune cells. Antibiotics are selected according to the minimal inhibitory concentration (MIC) based on the planktonic form of bacteria. Determination of the minimal biofilm eradicating concentration (MBEC), which can be up to 1,000-fold greater than the MIC, is not currently conducted as routine diagnostic testing, primarily because of the methodical hurdles of available biofilm assessing protocols that are time- and cost-consuming. Comparative analysis of biofilms is also limited as most quantitative methods such as crystal violet staining are indirect and highly imprecise. In this paper, we present a novel algorithm for assessing biofilm resistance to antibiotics that overcomes several of the limitations of alternative methods. This algorithm aims for a computer-based analysis of confocal microscope 3D images of biofilms after live/dead stains providing various biofilm parameters such as numbers of viable and dead cells and their vertical distributions within the biofilm, or biofilm thickness. The performance of this algorithm was evaluated using computer-simulated 2D and 3D images of coccal and rodent cells varying different parameters such as cell density, shading or cell size. Finally, genuine biofilms that were untreated or treated with nitroxoline or colistin were analyzed and the results were compared with quantitative microbiological standard methods. This novel algorithm allows a direct, fast and reproducible analysis of biofilms after live/dead staining. It performed well in biofilms of moderate cell densities in a 2D set-up however the 3D analysis remains still imperfect and difficult to evaluate. Nevertheless, this is a first try to develop an easy but conclusive tool that eventually might be implemented into routine

  11. Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy.

    Science.gov (United States)

    Volle, C B; Ferguson, M A; Aidala, K E; Spain, E M; Núñez, M E

    2008-11-15

    Bacterial biofilms were imaged by atomic force microscopy (AFM), and their elasticity and adhesion to the AFM tip were determined from a series of tip extension and retraction cycles. Though the five bacterial strains studied included both Gram-negative and -positive bacteria and both environmental and laboratory strains, all formed simple biofilms on glass surfaces. Cellular spring constants, determined from the extension portion of the force cycle, varied between 0.16+/-0.01 and 0.41+/-0.01 N/m, where larger spring constants were measured for Gram-positive cells than for Gram-negative cells. The nonlinear regime in the extension curve depended upon the biomolecules on the cell surface: the extension curves for the smooth Gram-negative bacterial strains with the longest lipopolysaccharides on their surface had a larger nonlinear region than the rough bacterial strain with shorter lipopolysaccharides on the surface. Adhesive forces between the retracting silicon nitride tip and the cells varied between cell types in terms of the force components, the distance components, and the number of adhesion events. The Gram-negative cells' adhesion to the tip showed the longest distance components, sometimes more than 1 microm, whereas the shortest distance adhesion events were measured between the two Gram-positive cell types and the tip. Fixation of free-swimming planktonic cells by NHS and EDC perturbed both the elasticity and the adhesive properties of the cells. Here we consider the biochemical meaning of the measured physical properties of simple biofilms and implications to the colonization of surfaces in the first stages of biofilm formation. PMID:18815013

  12. Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand.

    Science.gov (United States)

    Mitzel, Michael R; Sand, Stefanie; Whalen, Joann K; Tufenkji, Nathalie

    2016-04-01

    Engineered nanoparticles (ENPs) are used in the manufacture of over 2000 industrial and consumer products to enhance their material properties and functions or to enable new nanoparticle-dependent functions. The widespread use of ENPs will result in their release to the subsurface and aquatic environments, where they will interact with indigenous biota. Laboratory column experiments were designed to understand the influence of two different Pseudomonas aeruginosa biofilms on the mobility of polystyrene latex nanoparticles in granular porous media representative of groundwater aquifers or riverbank filtration settings. The transport behavior of 20 nm carboxylate-modified (CLPs) and sulfate (SLPs) polystyrene latex ENPs suspended in NaCl or CaCl2 (1 and 10 mM ionic strength, pH 7) was studied in columns packed with quartz sand coated with biofilms formed by two P. aeruginosa strains that differed in cell surface hydrophobicity (P. aeruginosa 9027™, relatively hydrophilic and P. aeruginosa PAO1, relatively hydrophobic). Biofilm-coated quartz sand retained more of the electrostatically-stabilized latex ENPs than clean, uncoated sand, regardless of the serotype. As IS increased, clear differences in the shape of the ENP breakthrough curves were observed for each type of biofilm coating. ENP breakthrough in the P. aeruginosa PAO1 biofilm-coated sand was generally constant with time whereby breakthrough in the P. aeruginosa 9027 biofilm-coated sand showed dynamic behavior. This indicates a fundamental difference in the mechanisms of ENP deposition onto hydrophilic or hydrophobic biofilm coatings due to the hydration properties of these biofilms. The results of this study demonstrate the importance of considering the surface properties of aquifer grain coatings when evaluating ENP fate in natural subsurface environments. PMID:26845456

  13. Use of In-Biofilm Expression Technology To Identify Genes Involved in Pseudomonas aeruginosa Biofilm Development†

    OpenAIRE

    Finelli, Antonio; Gallant, Claude V.; Jarvi, Keith; Burrows, Lori L.

    2003-01-01

    Mature Pseudomonas aeruginosa biofilms form complex three-dimensional architecture and are tolerant of antibiotics and other antimicrobial compounds. In this work, an in vivo expression technology system, originally designed to study virulence-associated genes in complex mammalian environments, was used to identify genes up-regulated in P. aeruginosa grown to a mature (5-day) biofilm. Five unique cloned promoters unable to promote in vitro growth in the absence of purines after recovery from ...

  14. Planktonic versus Biofilm Catabolic Communities: Importance of the Biofilm for Species Selection and Pesticide Degradation ▿

    OpenAIRE

    Verhagen, Pieter; De Gelder, Leen; Hoefman, Sven; De Vos, Paul; Boon, Nico

    2011-01-01

    Chloropropham-degrading cultures were obtained from sludge and soil samples by using two different enrichment techniques: (i) planktonic enrichments in shaken liquid medium and (ii) biofilm enrichments on two types of solid matrixes (plastic chips and gravel). Denaturing gradient gel electrophoresis fingerprinting showed that planktonic and biofilm cultures had a different community composition depending on the presence and type of added solid matrix during enrichment. This was reflected in t...

  15. Anomalies and developmental defects

    International Nuclear Information System (INIS)

    Amonalies and developmental defects in trachea and bronchi (tracheal bronch us, diverticulum of trachea or bronchus, defects due to atresia of bronchial tre e, tracheobronchomegaly), lung vessels (aneurisms of pulmonary artery, agenesia, aplasia and hypoplasia of pulmonary artery,anomalies of pulmonary veins, varico sis of pulmonary veins), pulmonary tissue (lung sequestration, congenital lobar pulmonary emphysema, essential hemosiderosis), have beendescribed. The problems of the diagnosis of the above-mentioned diseases using roentgenograms are consid ered

  16. Multiparameter Assessments To Determine the Effects of Sugars and Antimicrobials on a Polymicrobial Oral Biofilm

    OpenAIRE

    Yang, Ying; Sreenivasan, Prem K; Subramanyam, Ravi; Cummins, Diane

    2006-01-01

    Clinical studies indicate relationships between dental plaque, a naturally formed biofilm, and oral diseases. The crucial role of nonmicrobial biofilm constituents in maintaining biofilm structure and biofilm-specific attributes, such as resistance to shear and viscoelasticity, is increasingly recognized. Concurrent analyses of the diverse nonmicrobial biofilm components for multiparameter assessments formed the focus of this investigation. Comparable numbers of Actinomyces viscosus, Streptoc...

  17. Essential factors of an integrated moving bed biofilm reactor-membrane bioreactor: Adhesion characteristics and microbial community of the biofilm.

    Science.gov (United States)

    Tang, Bing; Yu, Chunfei; Bin, Liying; Zhao, Yiliang; Feng, Xianfeng; Huang, Shaosong; Fu, Fenglian; Ding, Jiewei; Chen, Cuiqun; Li, Ping; Chen, Qianyu

    2016-07-01

    This work aims at revealing the adhesion characteristics and microbial community of the biofilm in an integrated moving bed biofilm reactor-membrane bioreactor, and further evaluating their variations over time. With multiple methods, the adhesion characteristics and microbial community of the biofilm on the carriers were comprehensively illuminated, which showed their dynamic variation along with the operational time. Results indicated that: (1) the roughness of biofilm on the carriers increased very quickly to a maximum value at the start-up stage, then, decreased to become a flat curve, which indicated a layer of smooth biofilm formed on the surface; (2) the tightly-bound protein and polysaccharide was the most important factor influencing the stability of biofilm; (3) the development of biofilm could be divided into three stages, and Gammaproteobacteria were the most dominant microbial species in class level at the last stage, which occupied the largest ratio (51.48%) among all microbes. PMID:27038266

  18. Biogeochemical Cycling

    Science.gov (United States)

    Bebout, Brad; Fonda, Mark (Technical Monitor)

    2002-01-01

    This lecture will introduce the concept of biogeochemical cycling. The roles of microbes in the cycling of nutrients, production and consumption of trace gases, and mineralization will be briefly introduced.

  19. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...

  20. Role of biofilm roughness and hydrodynamic conditions in Legionella pneumophila adhesion to and detachment from simulated drinking water biofilms.

    Science.gov (United States)

    Shen, Yun; Monroy, Guillermo L; Derlon, Nicolas; Janjaroen, Dao; Huang, Conghui; Morgenroth, Eberhard; Boppart, Stephen A; Ashbolt, Nicholas J; Liu, Wen-Tso; Nguyen, Thanh H

    2015-04-01

    Biofilms in drinking water distribution systems (DWDS) could exacerbate the persistence and associated risks of pathogenic Legionella pneumophila (L. pneumophila), thus raising human health concerns. However, mechanisms controlling adhesion and subsequent detachment of L. pneumophila associated with biofilms remain unclear. We determined the connection between L. pneumophila adhesion and subsequent detachment with biofilm physical structure characterization using optical coherence tomography (OCT) imaging technique. Analysis of the OCT images of multispecies biofilms grown under low nutrient condition up to 34 weeks revealed the lack of biofilm deformation even when these biofilms were exposed to flow velocity of 0.7 m/s, typical flow for DWDS. L. pneumophila adhesion on these biofilm under low flow velocity (0.007 m/s) positively correlated with biofilm roughness due to enlarged biofilm surface area and local flow conditions created by roughness asperities. The preadhered L. pneumophila on selected rough and smooth biofilms were found to detach when these biofilms were subjected to higher flow velocity. At the flow velocity of 0.1 and 0.3 m/s, the ratio of detached cell from the smooth biofilm surface was from 1.3 to 1.4 times higher than that from the rough biofilm surface, presumably because of the low shear stress zones near roughness asperities. This study determined that physical structure and local hydrodynamics control L. pneumophila adhesion to and detachment from simulated drinking water biofilm, thus it is the first step toward reducing the risk of L. pneumophila exposure and subsequent infections. PMID:25699403

  1. A biofilm model for engineering design.

    Science.gov (United States)

    Takács, I; Bye, C M; Chapman, K; Dold, P L; Fairlamb, P M; Jones, R M

    2007-01-01

    A biofilm model is presented for process engineering purposes--wastewater treatment plant design, upgrade and optimisation. The model belongs in the 1D dynamic layered biofilm model category, with modifications that allow it to be used with one parameter set for a large range of process situations. The biofilm model is integrated with a general activated sludge/anaerobic digestion model combined with a chemical equilibrium, precipitation and pH module. This allows the model to simulate the complex interactions that occur in the aerobic, anoxic and anaerobic layers of the biofilm. The model has been tested and is shown to match a variety of design guidelines, as well as experimental results from batch testing and full-scale plant operation. Both moving bed bioreactors (MBBR) and integrated fixed film activated sludge (IFAS) systems were simulated using the same model and parameter set. A new steady-state solver generates fast solutions and allows interactive design work with the complex model. PMID:17547002

  2. Biofilm growth: a lattice Monte Carlo model

    Science.gov (United States)

    Tao, Yuguo; Slater, Gary

    2011-03-01

    Biofilms are complex colonies of bacteria that grow in contact with a wall, often in the presence of a flow. In the current work, biofilm growth is investigated using a new two-dimensional lattice Monte Carlo algorithm based on the Bond-Fluctuation Algorithm (BFA). One of the distinguishing characteristics of biofilms, the synthesis and physical properties of the extracellular polymeric substance (EPS) in which the cells are embedded, is explicitly taken into account. Cells are modelled as autonomous closed loops with well-defined mechanical and thermodynamic properties, while the EPS is modelled as flexible polymeric chains. This BFA model allows us to add biologically relevant features such as: the uptake of nutrients; cell growth, division and death; the production of EPS; cell maintenance and hibernation; the generation of waste and the impact of toxic molecules; cell mutation and evolution; cell motility. By tuning the structural, interactional and morphologic parameters of the model, the cell shapes as well as the growth and maturation of various types of biofilm colonies can be controlled.

  3. Bacterial biofilms on gold grains-implications for geomicrobial transformations of gold.

    Science.gov (United States)

    Rea, Maria Angelica; Zammit, Carla M; Reith, Frank

    2016-06-01

    The biogeochemical cycling of gold (Au), i.e. its solubilization, transport and re-precipitation, leading to the (trans)formation of Au grains and nuggets has been demonstrated under a range of environmental conditions. Biogenic (trans)formations of Au grains are driven by (geo)biochemical processes mediated by distinct biofilm consortia living on these grains. This review summarizes the current knowledge concerning the composition and functional capabilities of Au-grain communities, and identifies contributions of key-species involved in Au-cycling. To date, community data are available from grains collected at 10 sites in Australia, New Zealand and South America. The majority of detected operational taxonomic units detected belong to the α-, β- and γ-Proteobacteria and the Actinobacteria. A range of organisms appears to contribute predominantly to biofilm establishment and nutrient cycling, some affect the mobilization of Au via excretion of Au-complexing ligands, e.g. organic acids, thiosulfate and cyanide, while a range of resident Proteobacteria, especially Cupriavidus metallidurans and Delftia acidovorans, have developed Au-specific biochemical responses to deal with Au-toxicity and reductively precipitate mobile Au-complexes. This leads to the biomineralization of secondary Au and drives the environmental cycle of Au. PMID:27098381

  4. Electrochemical biofilm control: mechanism of action.

    Science.gov (United States)

    Istanbullu, Ozlem; Babauta, Jerome; Duc Nguyen, Hung; Beyenal, Haluk

    2012-01-01

    Although it has been previously demonstrated that an electrical current can be used to control biofilm growth on metal surfaces, the literature results are conflicting and there is no accepted mechanism of action. One of the suggested mechanisms is the production of hydrogen peroxide (H(2)O(2)) on metal surfaces. However, there are literature studies in which H(2)O(2) could not be detected in the bulk solution. This is most likely because H(2)O(2) was produced at a low concentration near the surface and could not be detected in the bulk solution. The goals of this research were (1) to develop a well-controlled system to explain the mechanism of action of the bioelectrochemical effect on 316L stainless steel (SS) surfaces and (2) to test whether the produced H(2)O(2) can reduce cell growth on metal surfaces. It was found that H(2)O(2) was produced near 316L SS surfaces when a negative potential was applied. The H(2)O(2) concentration increased towards the surface, while the dissolved oxygen decreased when the SS surface was polarized to -600 mV(Ag/AgCl). When polarized and non-polarized surfaces with identical Pseudomonas aeruginosa PAO1 biofilms were continuously fed with air-saturated growth medium, the polarized surfaces showed minimal biofilm growth while there was significant biofilm growth on the non-polarized surfaces. Although there was no detectable H(2)O(2) in the bulk solution, it was found that the surface concentration of H(2)O(2) was able to prevent biofilm growth. PMID:22827804

  5. Anti-Biofilm Compounds Derived from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Christian Melander

    2011-10-01

    Full Text Available Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues—including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds.

  6. Frequency of biofilm formation in toothbrushes and wash basin junks

    Directory of Open Access Journals (Sweden)

    Abdulazeez A Abubakar

    2013-01-01

    Full Text Available Background: Biofilms are known to be resistant to several antibiotics once they are allowed to form on any surface. Aim: To investigate the biofilm forming ability of some bacterial isolates in toothbrushes and wash basin junks. Materials and Methods: A total of 606 students of Federal University of Technology, Yola were provided with new toothbrushes, which were collected after 1 month of usage and screened for biofilm formation. Another 620 swabs were collected from the wash basins of Federal Medical Centre, Specialist Hospital, Federal University of Technology, and students′ hostels in Yola and from some residence in Jimeta, Yola Metropolis; they were all screened for biofilm formation. Results: A total of 38.3% biofilm formation rate was recorded. Three types of bacterial isolates were identified in the biofilms of toothbrushes and wash basin junks, namely Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa at the prevalence rate of 48.0%, 29.1%, and 22.6%, respectively. Overall, 83.3% of the toothbrush biofilm were identified from female students, while 16.7% were from their male counterparts. Statistically, the frequency of biofilm formation showed a significant difference by gender (X 2 = 10.242, P 0.05. Conclusion: This study identified three microorganisms namely S. aureus, E. coli, and P. aeruginosa that were involved in wash basin junk biofilm formation. The findings also showed that occurrence of biofilm in females′ toothbrushes were significantly higher than in males′ (X 2 = 10.242, P < 0.05.

  7. Multi-depth valved microfluidics for biofilm segmentation

    Science.gov (United States)

    Meyer, M. T.; Subramanian, S.; Kim, Y. W.; Ben-Yoav, H.; Gnerlich, M.; Gerasopoulos, K.; Bentley, W. E.; Ghodssi, R.

    2015-09-01

    Bacterial biofilms present a societal challenge, as they occur in the majority of infections but are highly resistant to both immune mechanisms and traditional antibiotics. In the pursuit of better understanding biofilm biology for developing new treatments, there is a need for streamlined, controlled platforms for biofilm growth and evaluation. We leverage advantages of microfluidics to develop a system in which biofilms are formed and sectioned, allowing parallel assays on multiple sections of one biofilm. A microfluidic testbed with multiple depth profiles was developed to accommodate biofilm growth and sectioning by hydraulically actuated valves. In realization of the platform, a novel fabrication technique was developed for creating multi-depth microfluidic molds using sequentially patterned photoresist separated and passivated by conformal coatings using atomic layer deposition. Biofilm thickness variation within three separately tested devices was less than 13% of the average thickness in each device, while variation between devices was 23% of the average thickness. In a demonstration of parallel experiments performed on one biofilm within one device, integrated valves were used to trisect the uniform biofilms with one section maintained as a control, and two sections exposed to different concentrations of sodium dodecyl sulfate. The technology presented here for multi-depth microchannel fabrication can be used to create a host of microfluidic devices with diverse architectures. While this work focuses on one application of such a device in biofilm sectioning for parallel experimentation, the tailored architectures enabled by the fabrication technology can be used to create devices that provide new biological information.

  8. Removal of Dental Biofilms with an Ultrasonically Activated Water Stream.

    Science.gov (United States)

    Howlin, R P; Fabbri, S; Offin, D G; Symonds, N; Kiang, K S; Knee, R J; Yoganantham, D C; Webb, J S; Birkin, P R; Leighton, T G; Stoodley, P

    2015-09-01

    Acidogenic bacteria within dental plaque biofilms are the causative agents of caries. Consequently, maintenance of a healthy oral environment with efficient biofilm removal strategies is important to limit caries, as well as halt progression to gingivitis and periodontitis. Recently, a novel cleaning device has been described using an ultrasonically activated stream (UAS) to generate a cavitation cloud of bubbles in a freely flowing water stream that has demonstrated the capacity to be effective at biofilm removal. In this study, UAS was evaluated for its ability to remove biofilms of the cariogenic pathogen Streptococcus mutans UA159, as well as Actinomyces naeslundii ATCC 12104 and Streptococcus oralis ATCC 9811, grown on machine-etched glass slides to generate a reproducible complex surface and artificial teeth from a typodont training model. Biofilm removal was assessed both visually and microscopically using high-speed videography, confocal scanning laser microscopy (CSLM), and scanning electron microscopy (SEM). Analysis by CSLM demonstrated a statistically significant 99.9% removal of S. mutans biofilms exposed to the UAS for 10 s, relative to both untreated control biofilms and biofilms exposed to the water stream alone without ultrasonic activation (P naeslundii, and S. oralis biofilm removal from machine-etched glass and S. mutans from typodont surfaces with complex topography. Consequently, UAS technology represents a potentially effective method for biofilm removal and improved oral hygiene. PMID:26056055

  9. The action of Pseudomonas aeruginosa biofilms in intrinsic drug resistance

    Institute of Scientific and Technical Information of China (English)

    XIE Yi; JIA Wen-xiang; ZENG Wei; YANG Wei-qing; CHENG Xi; LI Xue-ru; WANG Lan-lan; KANG Mei; ZHANG Zai-rong

    2005-01-01

    Background There is a growing interest in studying the relationship between intrinsic resistance and biofilms resistance to drugs. However, the relationship still remains unclear in the macroscopic bacterial growth. Our study is to illuminate the change of bacterial drug resistance of gyrA mutant and active efflux pump during the development of Pseudomonas aeruginosa (P. aeruginosa) biofilms. Methods The strains of type Ⅱ topoisomerase gene mutant (gyrA mutant) and multidrug resistance (MDR) efflux pump were clinical isolates and detected by polymerase chain reaction (PCR). The process of bacterial biofilms development was observed by scanning electron microscope. Triparental mating experiments were performed to transfer report gene of green fluorescent protein (GFP) into P. aeruginosa biofilms strains and followed by analysis of bacterial survival rate between intrinsic resistance and biofilms resistance.Results The fluorescent strains with pGFPuv could develop mature biofilms on Teflon surface. Before a period of 72 hours, the survival rate of biofilms bacteria and intrinsic resistance strains in ciprofloxacin solution was significantly different (P0.05). The carbonyl cyanide m-chlorophenylhydrazone and azithromycin could significantly reduce the drug resistance of biofilm strains and efflux pump strains.Conclusions In the development of P. aeruginosa biofilms, the strains of gyrA mutation and MDR efflux could be conferred with new level of drug resistance. When co-cultured mutated strains with biofilm strains, biofilms may play a major role in bacterial resistance. But after 72 hours incubation (a mature biofilms had been developed), there was no clearly difference between the number of mutant strains and biofilm strains.

  10. Oral microbial biofilm stimulation of epithelial cell responses.

    Science.gov (United States)

    Peyyala, Rebecca; Kirakodu, Sreenatha S; Novak, Karen F; Ebersole, Jeffrey L

    2012-04-01

    Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfection biofilms were developed with Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis on rigid gas-permeable contact lenses. Biofilms, as well as planktonic cultures of these same bacterial species, were incubated under anaerobic conditions with a human oral epithelial cell line, OKF4, for up to 24h. Gro-1α, IL1α, IL-6, IL-8, TGFα, Fractalkine, MIP-1α, and IP-10 were shown to be produced in response to a range of the planktonic or biofilm forms of these species. P. gingivalis biofilms significantly inhibited the production of all of these cytokines and chemokines, except MIP-1α. Generally, the biofilms of all species inhibited Gro-1α, TGFα, and Fractalkine production, while F. nucleatum biofilms stimulated significant increases in IL-1α, IL-6, IL-8, and IP-10. A. naeslundii biofilms induced elevated levels of IL-6, IL-8 and IP-10. The oral streptococcal species in biofilms or planktonic forms were poor stimulants for any of these mediators from the epithelial cells. The results of these studies demonstrate that oral bacteria in biofilms elicit a substantially different profile of responses compared to planktonic bacteria of the same species. Moreover, certain oral species are highly stimulatory when in biofilms and interact with host cell receptors to trigger pathways of responses that appear quite divergent from individual bacteria. PMID:22266273

  11. Antibiotic penetration and bacterial killing in a Pseudomonas aeruginosa biofilm model

    DEFF Research Database (Denmark)

    Cao, Bao; Christophersen, Lars; Thomsen, Kim;

    2015-01-01

    OBJECTIVES: Treating biofilm infections successfully is a challenge. We hypothesized that biofilms may be considered as independent compartments with particular pharmacokinetics. We therefore studied the pharmacokinetics and pharmacodynamics of tobramycin in a seaweed alginate-embedded biofilm mo...

  12. Significance of biofilm proteins in modulating cyprid metamorphosis of Balanus amphitrite (Cirripedia: Thoracica)

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; KrishnaKumar, S.

    The role of biofilm proteins in modulating cyprid metamorphosis is not well understood. In the present investigation this possibility was explored by disrupting biofilm proteins using commercially available protease. The influence of natural biofilm...

  13. Schizotypy From a Developmental Perspective

    OpenAIRE

    Debbané, Martin; Barrantes-Vidal, Neus

    2014-01-01

    The schizotypy construct focuses attention on the liability to develop schizophrenia-spectrum disorders, yet traditionally, the schizotypy models have put more emphasis on stress-vulnerability interactions rather than developmental dynamics of emerging risk for psychopathology. Indeed, developmental accounts of this emerging personality trait have rarely been explicitly formulated. In this position article, we wish to convey some of the basic developmental tenets of schizotypy, and how they c...

  14. Individual or Combined Effects of Meropenem, Imipenem, Sulbactam, Colistin, and Tigecycline on Biofilm-Embedded Acinetobacter baumannii and Biofilm Architecture.

    Science.gov (United States)

    Wang, Yung-Chih; Kuo, Shu-Chen; Yang, Ya-Sung; Lee, Yi-Tzu; Chiu, Chun-Hsiang; Chuang, Ming-Fen; Lin, Jung-Chung; Chang, Feng-Yee; Chen, Te-Li

    2016-08-01

    Acinetobacter baumannii biofilms are difficult to eradicate. We investigated the effects of meropenem (2 mg/liter), imipenem (2 mg/liter), sulbactam (4 mg/liter), colistin (2 mg/liter), and tigecycline (2 mg/liter), alone or in combination, on biofilm-embedded carbapenem-resistant and carbapenem-susceptible A. baumannii (CRAb and CSAb, respectively) cells, as well as on the architecture of the biofilms. A. baumannii ATCC 15151 (Ab15151) and its OXA-82-overproducing transformant, along with two clinical CSAb and two clinical CRAb isolates of differing clonalities, were used. The minimal bactericidal concentrations for biofilm-embedded cells of the six tested isolates were >50-fold those of their planktonic cells. When used individually, meropenem exhibited a higher killing effect than the other four antimicrobials on biofilm-embedded CSAb cells in the colony biofilm assay. For two clinical CRAb isolates, meropenem plus sulbactam or sulbactam plus tigecycline showed >100-fold the bactericidal effect exhibited by these agents used alone after 48 h of treatment. The effect of antimicrobials on the architecture of Ab15151 biofilm emitting green fluorescence was determined by confocal laser scanning microscopy using COMSTAT software. Significant decreases in the maximum biofilm thickness were observed after exposure to meropenem and imipenem. Meropenem plus sulbactam significantly decreased the biomass and mean thickness and increased the roughness coefficient of biofilms, but sulbactam plus tigecycline only decreased the maximum and mean biofilm thickness compared to any of these agents used alone. Meropenem was active against biofilm-embedded CSAb, whereas meropenem plus sulbactam exhibited synergism against biofilm-embedded CRAb and caused significantly more damage to the biofilm architecture than did any of the agents used alone. PMID:27216052

  15. Chemically Specific Cellular Imaging of Biofilm Formation

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J L; Schaldach, C; Horn, J; Gjersing, E; Maxwell, R

    2006-02-09

    This document and the accompanying manuscripts summarize the technical accomplishments for our one-year LDRD-ER effort. Biofilm forming microbes have existed on this planet for billions of years and make up 60% of the biological mass on earth. Such microbes exhibit unique biochemical pathways during biofilm formation and play important roles in human health and the environment. Microbial biofilms have been directly implicated in, for example, product contamination, energy losses, and medical infection that cost the loss of human lives and billions of dollars. In no small part due to the lack of detailed understanding, biofilms unfortunately are resistant to control, inhibition, and destruction, either through treatment with antimicrobials or immunological defense mechanisms of the body. Current biofilm research has concentrated on the study of biofilms in the bulk. This is primarily due to the lack of analytical and physical tools to study biofilms non-destructively, in three dimensions, and on the micron or sub-micron scale. This has hindered the development of a clear understanding of either the early stage mechanisms of biofilm growth or the interactions of biofilms with their environment. Enzymatic studies have deduced a biochemical reaction that results in the oxidation of reduced sulfur species with the concomitant reduction of nitrate, a common groundwater pollutant, to dinitrogen gas by the bacterium, Thiobacillus denitrificans (TD). Because of its unique involvement in biologically relevant environmental pathways, TD is scheduled for genome sequencing in the near future by the DOE's Joint Genome Institute and is of interest to DOE's Genomes to Life Program. As our ecosystem is exposed to more and more nitrate contamination large scale livestock and agricultural practices, a further understanding of biofilm formation by organisms that could alleviate these problems is necessary in order to protect out biosphere. However, in order to study this

  16. Molecular basis of in-vivo biofilm formation by bacterial pathogens

    OpenAIRE

    Joo, Hwang-Soo; Otto, Michael

    2012-01-01

    Bacterial biofilms are involved in a multitude of serious chronic infections. In recent years, modeling biofilm infection in vitro led to the identification of microbial determinants governing biofilm development. However, we lack information as to whether biofilm formation mechanisms identified in vitro have relevance for biofilm-associated infection. Here, we discuss the molecular basis of biofilm formation using staphylococci and Pseudomonas aeruginosa to illustrate key points, as their bi...

  17. Disturbance Frequency Determines Morphology and Community Development in Multi-Species Biofilm at the Landscape Scale

    OpenAIRE

    Milferstedt, Kim; Santa-Catalina, Gaelle; Godon, Jean-Jacques; Escudié, Renaud; Bernet, Nicolas

    2013-01-01

    Many natural and engineered biofilm systems periodically face disturbances. Here we present how the recovery time of a biofilm between disturbances (expressed as disturbance frequency) shapes the development of morphology and community structure in a multi-species biofilm at the landscape scale. It was hypothesized that a high disturbance frequency favors the development of a stable adapted biofilm system while a low disturbance frequency promotes a dynamic biofilm response. Biofilms were gro...

  18. Polysaccharide Capsule and Sialic Acid-Mediated Regulation Promote Biofilm-Like Intracellular Bacterial Communities during Cystitis ▿

    OpenAIRE

    Anderson, Gregory G.; Goller, Carlos C.; Justice, Sheryl; Hultgren, Scott J.; Seed, Patrick C.

    2010-01-01

    Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). A murine UTI model has revealed an infection cascade whereby UPEC undergoes cycles of invasion of the bladder epithelium, intracellular proliferation in polysaccharide-containing biofilm-like masses called intracellular bacterial communities (IBC), and then dispersal into the bladder lumen to initiate further rounds of epithelial colonization and invasion. We predicted that the UPEC K1 polysaccharid...

  19. Epithelial cell detachment by Porphyromonas gingivalis biofilm and planktonic cultures.

    Science.gov (United States)

    Huang, Lijia; van Loveren, Cor; Ling, Junqi; Wei, Xi; Crielaard, Wim; Deng, Dong Mei

    2016-04-01

    Porphyromonas gingivalis is present as a biofilm at the sites of periodontal infections. The detachment of gingival epithelial cells induced by P. gingivalis biofilms was examined using planktonic cultures as a comparison. Exponentially grown planktonic cultures or 40-h biofilms were co-incubated with epithelial cells in a 24-well plate for 4 h. Epithelial cell detachment was assessed using imaging. The activity of arginine-gingipain (Rgp) and gene expression profiles of P. gingivalis cultures were examined using a gingipain assay and quantitative PCR, respectively. P. gingivalis biofilms induced significantly higher cell detachment and displayed higher Rgp activity compared to the planktonic cultures. The genes involved in gingipain post-translational modification, but not rgp genes, were significantly up-regulated in P. gingivalis biofilms. The results underline the importance of including biofilms in the study of bacterial and host cell interactions. PMID:26963862

  20. Mechanism and risk factors of oral biofilm formation

    Directory of Open Access Journals (Sweden)

    Ewa Pasich

    2013-08-01

    Full Text Available Recent microbiological investigations completely changed our understanding of the role of biofilm in the formation of the mucosal immune barrier and in pathogenesis of chronic inflammation of bacterial etiology. It is now clear that formation of bacterial biofilm on dental surfaces is characteristic for existence of oral microbial communities. It has also been proved that uncontrolled biofilms on dental tissues, as well as on different biomaterials (e.g. orthodontic appliances, are the main cause of dental diseases such as dental caries and periodontitis.The aim of this paper is to explain mechanisms and consequences of orthodontic biofilm formation. We will discuss current opinions on the influence of different biomaterials employed for orthodontic treatment in biofilm formation and new strategies employed in prevention and elimination of oral biofilm (“dental plaque”.

  1. Shaping the Growth Behaviour of Bacterial Aggregates in Biofilms

    CERN Document Server

    Melaugh, Gavin; Kragh, Kasper Nørskov; Irie, Yasuhiko; Roberts, Aled; Bjarnsholt, Thomas; Diggle, Steve P; Gordon, Vernita; Allen, Rosalind J

    2015-01-01

    Bacterial biofilms are usually assumed to originate from individual cells deposited on a surface. However, many biofilm-forming bacteria tend to aggregate in the planktonic phase meaning it is possible that many natural and infectious biofilms originate wholly or partially from pre-formed cell aggregates. Here, we use agent-based computer simulations to investigate the role of pre-formed aggregates in biofilm development. Focusing on the role of aggregate shape, we find that the degree of spreading of an aggregate on a surface can play a key role in determining its eventual fate during biofilm development. Specifically, initially spread aggregates perform better when competition with surrounding bacterial cells is low, while initially rounded aggregates perform better when competition is high. These contrasting outcomes are governed by a trade-off between aggregate surface area and height. Our results provide new insight into biofilm formation and development, and reveal new factors that may be at play in the...

  2. Reconstruction of biofilm images: combining local and global structural parameters

    Energy Technology Data Exchange (ETDEWEB)

    Resat, Haluk; Renslow, Ryan S.; Beyenal, Haluk

    2014-11-07

    Digitized images can be used for quantitative comparison of biofilms grown under different conditions. Using biofilm image reconstruction, it was previously found that biofilms with a completely different look can have nearly identical structural parameters and that the most commonly utilized global structural parameters were not sufficient to uniquely define these biofilms. Here, additional local and global parameters are introduced to show that these parameters considerably increase the reliability of the image reconstruction process. Assessment using human evaluators indicated that the correct identification rate of the reconstructed images increased from 50% to 72% with the introduction of the new parameters into the reconstruction procedure. An expanded set of parameters especially improved the identification of biofilm structures with internal orientational features and of structures in which colony sizes and spatial locations varied. Hence, the newly introduced structural parameter sets helped to better classify the biofilms by incorporating finer local structural details into the reconstruction process.

  3. NEW METHODOLOGIES FOR BIOFILMS CONTROL IN FOOD INDUSTRY

    Directory of Open Access Journals (Sweden)

    Pavol Bajzík

    2010-07-01

    Full Text Available The complete removal of biofilms on food  equipment surfaces  is essential to ensure food safety and quality. However, cells in biofilms exhibit greater resistance against the action of sanitizers and other antimicrobial agents compared to their free living counterparts, making them much more difficult to remove. They can be a significant source of post - processing contamination and could potentially harbor pathogens in food processing platns. The biotechnology sector is just beginning to tackle the problem of biofilms by developing antimicrobial agents with novel mechanisms of action. Some studies seek to prevent biofilm formation, others aim to develop antimicrobial agents to treat existing biofilms, and still others are trying to disrupt the polymeric ties that bind the biofilms together. doi:10.5219/17

  4. Current Trends in Development of Liposomes for Targeting Bacterial Biofilms.

    Science.gov (United States)

    Rukavina, Zora; Vanić, Željka

    2016-01-01

    Biofilm targeting represents a great challenge for effective antimicrobial therapy. Increased biofilm resistance, even with the elevated concentrations of very potent antimicrobial agents, often leads to failed therapeutic outcome. Application of biocompatible nanomicrobials, particularly liposomally-associated nanomicrobials, presents a promising approach for improved drug delivery to bacterial cells and biofilms. Versatile manipulations of liposomal physicochemical properties, such as the bilayer composition, membrane fluidity, size, surface charge and coating, enable development of liposomes with desired pharmacokinetic and pharmacodynamic profiles. This review attempts to provide an unbiased overview of investigations of liposomes destined to treat bacterial biofilms. Different strategies including the recent advancements in liposomal design aiming at eradication of existing biofilms and prevention of biofilm formation, as well as respective limitations, are discussed in more details. PMID:27231933

  5. Biofilm mediated decontamination of pollutants from the environment

    Directory of Open Access Journals (Sweden)

    Arindam Mitra

    2016-01-01

    Full Text Available In this review, we highlight beneficial use of microbial biofilms in remediation of environmental pollutants by bioremediation. Bioremediation is an environment friendly, cost effective, sustainable technology that utilizes microbes to decontaminate and degrade a wide variety of pollutants into less harmful products. Relative to free-floating planktonic cells, microbes existing in biofilm mode are advantageous for bioremediation because of greater tolerance to pollutants, environmental stress and ability to degrade varied harsh pollutants via diverse catabolic pathways. In biofilm mode, microbes are immobilized in a self-synthesized matrix which offers protection from stress, contaminants and predatory protozoa. Contaminants ranging from heavy metals, petroleum, explosives, pesticides have been remediated using microbial consortia of biofilms. In the industry, biofilm based bioremediation is used to decontaminate polluted soil and groundwater. Here we discuss conventional and newer strategies utilizing biofilms in environmental remediation.

  6. An electrochemical impedance model for integrated bacterial biofilms

    International Nuclear Information System (INIS)

    Bacterial cells attachment onto solid surfaces and the following growth into mature microbial biofilms may result in highly antibiotic resistant biofilms. Such biofilms may be incidentally formed on tissues or implanted devices, or intentionally formed by directed deposition of microbial sensors on whole-cell bio-chip surface. A new method for electrical characterization of the later on-chip microbial biofilm buildup is presented in this paper. Measurement of impedance vs. frequency in the range of 100 mHz to 400 kHz of Escherichia coli cells attachment to indium-tin-oxide-coated electrodes was carried out while using optical microscopy estimating the electrode area coverage. We show that impedance spectroscopy measurements can be interpreted by a simple electrical equivalent model characterizing both attachment and growth of the biofilm. The correlation of extracted equivalent electrical lumped components with the visual biofilm parameters and their dependence on the attachment and growth phases is confirmed.

  7. Novel strategies against Candida biofilms: interest of synthetic compounds.

    Science.gov (United States)

    Girardot, Marion; Imbert, Christine

    2016-01-01

    A biofilm is a consortium of microbial cells that are attached to a substratum or an interface. It should be considered a reservoir that may induce serious infections. Indeed, Candidaspp. biofilms may be involved in the persistence or worsening of some chronic inflammatory diseases as well as in systemic infections, which may lead to high morbidity and mortality rates. New strategies are currently being explored, utilizing several synthetic compounds to prevent or fight these Candida biofilms. This article focuses on active synthetic compounds classified with regards to their modes of action: inhibition of early adherence phase, inhibition or control of biofilm maturation and finally elimination of already formed biofilms. Some of them show promise in fighting biofilm. PMID:26673571

  8. Characterization of Acinetobacter baumannii biofilm associated components

    Science.gov (United States)

    Brossard, Kari A.

    Acinetobacter baumannii is a Gram-negative aerobic coccobaccillus that is a major cause of nosocomial infections worldwide. Infected individuals may develop pneumonia, urinary tract, wound, and other infections that are associated with the use of indwelling medical devices such as catheters and mechanical ventilation. Treatment is difficult because many A. baumannii isolates have developed multi-drug resistance and the bacterium can persist on abiotic surfaces. Persistence and resistance may be due to formation of biofilms, which leads to long-term colonization, evasion of the host immune system and resistance to treatment with antibiotics and disinfectants. While biofilms are complex multifaceted structures, two bacterial components that have been shown to be important in formation and stability are exopolysaccharides (EPS) and the biofilm-associated protein (Bap). An EPS, poly-beta-1,6-N-acetylglucosamine, PNAG, has been described for E. coli and S. epidermidis. PNAG acts as an intercellular adhesin. Production of this adhesin is dependent on the pga/icaABCD locus. We have identified a homologous locus in A. baumannii 307-0294 that is involved in production of an exopolysaccharide, recognized by an anti-PNAG antibody. We hypothesized that the A. baumannii pgaABCD locus plays a role in biofilm formation, and protection against host innate defenses and disinfectants suggesting that PNAG is a possible virulence factor for the organism. The first aim of this thesis will define the pgaABCD locus. We have previously identified Bap, a protein with similarity to those described for S. aureus and we have demonstrated that this protein is involved in maintaining the stability of biofilms on glass. We hypothesized that A. baumannii Bap plays a role in persistence and pathogenesis and is regulated by quorum sensing. In our second aim we will examine the role of Bap in attachment and biofilm formation on medically relevant surfaces and also determine if Bap is involved in

  9. Effects of patterned topography on biofilm formation

    Science.gov (United States)

    Vasudevan, Ravikumar

    2011-12-01

    Bacterial biofilms are a population of bacteria attached to each other and irreversibly to a surface, enclosed in a matrix of self-secreted polymers, among others polysaccharides, proteins, DNA. Biofilms cause persisting infections associated with implanted medical devices and hospital acquired (nosocomial) infections. Catheter-associated urinary tract infections (CAUTIs) are the most common type of nosocomial infections accounting for up to 40% of all hospital acquired infections. Several different strategies, including use of antibacterial agents and genetic cues, quorum sensing, have been adopted for inhibiting biofilm formation relevant to CAUTI surfaces. Each of these methods pertains to certain types of bacteria, processes and has shortcomings. Based on eukaryotic cell topography interaction studies and Ulva linza spore studies, topographical surfaces were suggested as a benign control method for biofilm formation. However, topographies tested so far have not included a systematic variation of size across basic topography shapes. In this study patterned topography was systematically varied in size and shape according to two approaches 1) confinement and 2) wetting. For the confinement approach, using scanning electron microscopy and confocal microscopy, orienting effects of tested topography based on staphylococcus aureus (s. aureus) (SH1000) and enterobacter cloacae (e. cloacae) (ATCC 700258) bacterial models were identified on features of up to 10 times the size of the bacterium. Psuedomonas aeruginosa (p. aeruginosa) (PAO1) did not show any orientational effects, under the test conditions. Another important factor in medical biofilms is the identification and quantification of phenotypic state which has not been discussed in the literature concerning bacteria topography characterizations. This was done based on antibiotic susceptibility evaluation and also based on gene expression analysis. Although orientational effects occur, phenotypically no difference

  10. Xanthomonas citri subsp. citri type IV Pilus is required for twitching motility, biofilm development, and adherence.

    Science.gov (United States)

    Dunger, German; Guzzo, Cristiane R; Andrade, Maxuel O; Jones, Jeffrey B; Farah, Chuck S

    2014-10-01

    Bacterial type IV pili (T4P) are long, flexible surface filaments that consist of helical polymers of mostly pilin subunits. Cycles of polymerization, attachment, and depolymerization mediate several pilus-dependent bacterial behaviors, including twitching motility, surface adhesion, pathogenicity, natural transformation, escape from immune system defense mechanisms, and biofilm formation. The Xanthomonas citri subsp. citri strain 306 genome codes for a large set of genes involved in T4P biogenesis and regulation and includes several pilin homologs. We show that X. citri subsp. citri can exhibit twitching motility in a manner similar to that observed in other bacteria such as Pseudomonas aeruginosa and Xylella fastidiosa and that this motility is abolished in Xanthomonas citri subsp. citri knockout strains in the genes coding for the major pilin subunit PilAXAC3241, the ATPases PilBXAC3239 and PilTXAC2924, and the T4P biogenesis regulators PilZXAC1133 and FimXXAC2398. Microscopy analyses were performed to compare patterns of bacterial migration in the wild-type and knockout strains and we observed that the formation of mushroom-like structures in X. citri subsp. citri biofilm requires a functional T4P. Finally, infection of X. citri subsp. citri cells by the bacteriophage (ΦXacm4-11 is T4P dependent. The results of this study improve our understanding of how T4P influence Xanthomonas motility, biofilm formation, and susceptibility to phage infection. PMID:25180689

  11. Application of a high throughput Alamar blue biofilm susceptibility assay to Staphylococcus aureus biofilms

    Directory of Open Access Journals (Sweden)

    Pettit George R

    2009-10-01

    Full Text Available Abstract Background Staphylococcus aureus and S. epidermidis biofilms differ in structure, growth and regulation, and thus the high-throughput method of evaluating biofilm susceptibility that has been published for S. epidermidis cannot be applied to S. aureus without first evaluating the assay's reproducibility and reliability with S. aureus biofilms. Methods Staphylococcus aureus biofilms were treated with eleven approved antibiotics, lysostaphin, or Conflikt®, exposed to the oxidation reduction indicator Alamar blue, and reduction relative to untreated controls was determined visually and spectrophotometrically. The minimum biofilm inhibitory concentration (MBIC was defined as ≤ 50% Alamar blue reduction and a purple/blue well 60 min after the addition of Alamar blue. Because all of the approved antibiotics had MBICs >128 μg/ml (most >2048 μg/ml, lysostaphin and Conflikt®, with relatively low MBICs, were used to correlate Alamar blue reduction with 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide (XTT reduction and viable counts (CFU/ml for S. aureus ATCC 29213 and three clinical isolates. Alamar blue's stability and lack of toxicity allowed CFU/ml to be determined from the same wells as Alamar blue absorbances. Results Overall, Alamar blue reduction had excellent correlation with XTT reduction and with CFU/ml. For ATCC 29213 and two clinical isolates treated with lysostaphin or Conflikt®, Alamar blue reduction had excellent correlation with XTT reduction (r = 0.93-0.99 and with CFU/ml (r = 0.92-0.98. For one of the clinical isolates, the results were moderately correlated for Conflikt® (r = 0.76, Alamar blue vs. XTT; r = 0.81, Alamar blue vs. CFU/ml and had excellent correlation for lysostaphin (r = 0.95, Alamar blue vs. XTT; r = 0.97, Alamar blue vs. CFU/ml. Conclusion A reliable, reproducible method for evaluating biofilm susceptibility was successfully applied to S. aureus biofilms. The described method

  12. Developmental immunotoxicology of lead

    International Nuclear Information System (INIS)

    The heavy metal, lead, is a known developmental immunotoxicant that has been shown to produce immune alterations in humans as well as other species. Unlike many compounds that exert adverse immune effects, lead exposure at low to moderate levels does not produce widespread loss of immune cells. In contrast, changes resulting from lead exposure are subtle at the immune cell population level but, nevertheless, can be functionally dramatic. A hallmark of lead-induced immunotoxicity is a pronounced shift in the balance in T helper cell function toward T helper 2 responses at the expense of T helper 1 functions. This bias alters the nature and range of immune responses that can be produced thereby influencing host susceptibility to various diseases. Immunotoxic responses to lead appear to differ across life stages not only quantitatively with regard to dose response, but also qualitatively in terms of the spectrum of immune alterations. Experimental studies in several lab animal species suggest the latter stages of gestation are a period of considerable sensitivity for lead-induced immunotoxicity. This review describes the basic characteristics of lead-induced immunotoxicity emphasizing experimental animal results. It also provides a framework for the consideration of toxicant exposure effects across life stages. The existence of and probable basis for developmental windows of immune hyper-susceptibility are presented. Finally, the potential for lead to serve as a perinatal risk factor for childhood asthma as well as other diseases is considered

  13. Investigating biofilm structure developing on carriers from lab-scale moving bed biofilm reactors based on light microscopy and optical coherence tomography.

    Science.gov (United States)

    Li, Chunyan; Felz, Simon; Wagner, Michael; Lackner, Susanne; Horn, Harald

    2016-01-01

    This study focused on characterizing the structure of biofilms developed on carriers used in lab-scale moving bed biofilm reactors. Both light microscopy (2D) and optical coherence tomography (OCT) were employed to track the biofilm development on carriers of different geometry and under different aeration rates. Biofilm structure was further characterized with respect to average biofilm thickness, biofilm growth velocity, biomass volume, compartment filling degree, surface area, etc. The results showed that carriers with a smaller compartment size stimulated a quick establishment of biofilms. Low aeration rates favored fast development of biofilms. Comparison between the results derived from 2D and 3D images revealed comparable results with respect to average biofilm thickness and compartment filling degree before the carrier compartments were fully willed with biomass. However, 3D imaging with OCT was capable of visualizing and quantifying the heterogeneous structure of biofilms, which cannot be achieved using 2D imaging. PMID:26476614

  14. Effects of photodynamic therapy on Enterococcus faecalis biofilms

    OpenAIRE

    López-Jiménez, L.; Fusté, E.; Martínez-Garriga, B.; Arnabat-Domínguez, J.; Vinuesa, T.; Viñas, M

    2015-01-01

    Microbial biofilms are involved in almost all infectious pathologies of the oral cavity. This has led to the search for novel therapies specifically aimed at biofilm elimination. In this study, we used atomic force microscopy (AFM) to visualize injuries and to determine surface roughness, as well as confocal laser scanning microscopy (CLSM) to enumerate live and dead bacterial cells, to determine the effects of photodynamic therapy (PDT) on Enterococcus faecalis biofilms. The AFM images showe...

  15. Red fluorescent biofilm: the thick, the old, and the cariogenic

    OpenAIRE

    Volgenant, Catherine M.C.; Hoogenkamp, Michel A.; Mark J. Buijs; Zaura, Egija; ten Cate, Jacob (Bob) M.; Monique H. van der Veen

    2016-01-01

    Background: Some dental plaque fluoresces red. The factors involved in this fluorescence are yet unknown.Objective: The aim of this study was to assess systematically the effect of age, thickness, and cariogenicity on the extent of red fluorescence produced by in vitro microcosm biofilms.Design: The effects of biofilm age and thickness on red fluorescence were tested in a constant depth film fermentor (CDFF) by growing biofilms of variable thicknesses that received a constant supply of define...

  16. Red fluorescent biofilm: the thick, the old, and the cariogenic

    OpenAIRE

    Volgenant, Catherine M.C.; Hoogenkamp, Michel A.; Mark J. Buijs; Egija Zaura; ten Cate, Jacob (Bob) M.; Monique H. van der Veen

    2016-01-01

    Background: Some dental plaque fluoresces red. The factors involved in this fluorescence are yet unknown. Objective: The aim of this study was to assess systematically the effect of age, thickness, and cariogenicity on the extent of red fluorescence produced by in vitro microcosm biofilms. Design: The effects of biofilm age and thickness on red fluorescence were tested in a constant depth film fermentor (CDFF) by growing biofilms of variable thicknesses that received a constant supply of defi...

  17. Denitrifying activity of activated sludge in suspension and in biofilm

    OpenAIRE

    Cortez, Susana; Teixeira, P.; Oliveira, Rosário; Mota, M.

    2008-01-01

    A method based on measuring substrate depletion rate was developed to evaluate the denitrifying activity of activated sludge in suspension and in biofilm form in anoxic serum flasks. The adapted activated sludge inoculum was grown as biofilm in an anoxic rotating biological contactor (RBC). Acetate was used as external carbon source to obtain a carbon to nitrogen ratio (C/N) of 2. The results showed that the specific activity of cells in biofilm form was higher than in planktonic for...

  18. Functional Relationship between Sucrose and a Cariogenic Biofilm Formation

    Science.gov (United States)

    Cai, Jian-Na; Jung, Ji-Eun; Dang, Minh-Huy; Kim, Mi-Ah; Yi, Ho-Keun; Jeon, Jae-Gyu

    2016-01-01

    Sucrose is an important dietary factor in cariogenic biofilm formation and subsequent initiation of dental caries. This study investigated the functional relationships between sucrose concentration and Streptococcus mutans adherence and biofilm formation. Changes in morphological characteristics of the biofilms with increasing sucrose concentration were also evaluated. S. mutans biofilms were formed on saliva-coated hydroxyapatite discs in culture medium containing 0, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, or 40% (w/v) sucrose. The adherence (in 4-hour biofilms) and biofilm composition (in 46-hour biofilms) of the biofilms were analyzed using microbiological, biochemical, laser scanning confocal fluorescence microscopic, and scanning electron microscopic methods. To determine the relationships, 2nd order polynomial curve fitting was performed. In this study, the influence of sucrose on bacterial adhesion, biofilm composition (dry weight, bacterial counts, and water-insoluble extracellular polysaccharide (EPS) content), and acidogenicity followed a 2nd order polynomial curve with concentration dependence, and the maximum effective concentrations (MECs) of sucrose ranged from 0.45 to 2.4%. The bacterial and EPS bio-volume and thickness in the biofilms also gradually increased and then decreased as sucrose concentration increased. Furthermore, the size and shape of the micro-colonies of the biofilms depended on the sucrose concentration. Around the MECs, the micro-colonies were bigger and more homogeneous than those at 0 and 40%, and were surrounded by enough EPSs to support their structure. These results suggest that the relationship between sucrose concentration and cariogenic biofilm formation in the oral cavity could be described by a functional relationship. PMID:27275603

  19. Improved Denitrification of Municipal Sludge in Biofilm-electrode Reactor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Le-hua; JIA Jin-ping; WANG Ya-lin; YANG Ji

    2004-01-01

    The denitrification of municipal sludge was improved by combining biofilm process with the electrochemical effect in a single novel reactor. Experiments in this reactor[electric current 60 mA, hydraulic retention time (HRTs) 6.0 h] showed that the removal of CODCr, ammonia nitrogen and total nitrogen in the biofilm-electrode reactor were 2.5%, 1.2%, 14.9%, respectively, higher than those in a traditional biofilm reactor.

  20. Enhanced Uranium Immobilization and Reduction by Geobacter sulfurreducens Biofilms

    OpenAIRE

    Cologgi, Dena L.; Speers, Allison M.; Bullard, Blair A; Kelly, Shelly D.; Reguera, Gemma

    2014-01-01

    Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentra...

  1. Control of biofilms using surfactants : persistence and regrowth

    OpenAIRE

    Simões, M; Pereira, Maria Olívia; Vieira, Maria João

    2005-01-01

    The action of the cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), respectively, a cationic and an anionic surfactant were investigated to control mature biofilms formed under turbulent and laminar flow, by P.fluorescens. The sanitizer action of the surfactants on biofilms was assessed by means of respiratory activity and variation of biofilm mass, immediately, 3, 7 and 12 h after the treatment of the chemicals. The latter experimental times were tested in order to a...

  2. The influence of biofilms in the biology of plasmids

    OpenAIRE

    Cook, Laura C.C.; Dunny, Gary M.

    2014-01-01

    The field of plasmid biology has historically focused on bacteria growing in liquid culture. Surface attached communities of bacterial biofilms have recently been understood to be the normal environment of bacteria in the natural world. Thus, studies examining plasmid replication, maintenance, and transfer in biofilms are essential for a true understanding of bacterial plasmid biology. This chapter reviews the current knowledge of the interplay between bacterial biofilms and plasmids, focusin...

  3. Raman microspectroscopy for species identification and mapping within bacterial biofilms

    OpenAIRE

    Beier, Brooke D; Quivey, Robert G.; Berger, Andrew J.

    2012-01-01

    A new method of mapping multiple species of oral bacteria in intact biofilms has been developed, using the optical technique of confocal Raman microscopy. A species classification algorithm, developed on dried biofilms, was used to analyze spectra of hydrated biofilms containing two microbial species central to dental health: Streptococcus sanguinis and Streptococcus mutans. The algorithm transferred successfully to the hydrated environment, correctly identifying the species of origin of sing...

  4. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.

    OpenAIRE

    Luyan Ma; Matthew Conover; Haiping Lu; Parsek, Matthew R.; Kenneth Bayles; Wozniak, Daniel J.

    2009-01-01

    Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organis...

  5. Effect of mechanical stress on biofilms challenged by different chemicals

    OpenAIRE

    Simões, M; Pereira, Maria Olívia; Vieira, M. J.

    2005-01-01

    In this study a methodology was applied in order to ascertain the mechanical stability of biofilms, by using a stainlesssteel (SS) rotating device immersed in a biological reactor where biofilms formed by Pseudomonas fluorescens were allowed to grow for 7 days at a Reynolds number of agitation of 2400. The biofilms developed with this system were characterised in terms of amount of total, extracellular and intracellular proteins and polysaccharides, amount of mass, metabolic activ...

  6. Development of a high-throughput Candida albicans biofilm chip.

    Directory of Open Access Journals (Sweden)

    Anand Srinivasan

    Full Text Available We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B. Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  7. Influence of biofilm thickness on micropollutants removal in nitrifying MBBRs

    DEFF Research Database (Denmark)

    Torresi, Elena; Andersen, Henrik Rasmus; Smets, Barth F.;

    The removal of pharmaceuticals was investigated in nitrifying Moving Bed Biofilm Reactors (MBBRs) containing carriers with different biofilm thicknesses. The biofilm with the thinnest thickness was found to have the highest nitrification and biotransformation rate for some key pharmaceuticals. Mi....... Microbial analysis revealed a different relative abundance of nitrifying guilds in the different carriers, suggesting the importance of nitrite oxidizing bacteria in removal of micropollutants....

  8. Microtiter Plate Assay for Assessment of Listeria monocytogenes Biofilm Formation

    OpenAIRE

    Djordjevic, D.; Wiedmann, M.; McLandsborough, L. A.

    2002-01-01

    Listeria monocytogenes has the ability to form biofilms on food-processing surfaces, potentially leading to food product contamination. The objective of this research was to standardize a polyvinyl chloride (PVC) microtiter plate assay to compare the ability of L. monocytogenes strains to form biofilms. A total of 31 coded L. monocytogenes strains were grown in defined medium (modified Welshimer's broth) at 32°C for 20 and 40 h in PVC microtiter plate wells. Biofilm formation was indirectly a...

  9. Method for Studying Microbial Biofilms in Flowing-Water Systems

    OpenAIRE

    Pedersen, Karsten

    1982-01-01

    A method for the study of microbial biofilms in flowing-water systems was developed with special reference to the flow conditions in electrochemical concentration cells. Seawater was circulated in a semiclosed flow system through biofilm reactors (3 cm s−1) with microscope cover slips arranged in lamellar piles parallel with the flow. At fixed time intervals cover slips with their biofilm were removed from the pile, stained with crystal violet, and mounted on microscope slides. The absorbance...

  10. Mycological examination and biofilm formation in drinking water

    OpenAIRE

    Paterson, R. R. M.; A. B. Gonçalves; Lima, Nelson

    2006-01-01

    This study reports the presence of filamentous fungi (ff) in drinking water including biofilms. Ff are not studied ufficiently in drinking water. Ff were highest in winter and had an indirect relation with other microorganisms. Pathogenic fungi were not observed at the mesophilic temperatures used. Penicillium expansum and P. brevicompactum were observed which may affect biofilms by mycotoxin production. FISH and calcofluor methods indicated presumptive ff in biofilms in water distri...

  11. Oral microbial biofilm stimulation of epithelial cell responses

    OpenAIRE

    Peyyala, Rebecca; Kirakodu, Sreenatha S.; Novak, Karen F.; Ebersole, Jeffrey L.

    2012-01-01

    Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfect...

  12. Seasonal dynamics of bacterial biofilms on the kelp Laminaria hyperborea

    OpenAIRE

    Bengtsson, Mia M.; Sjøtun, Kjersti; Øvreås, Lise

    2010-01-01

    Seasonal variations of the cell density and bacterial community composition in biofilms growing on the surface of the kelp Laminaria hyperborea from 2 sites on the southwestern coast of Norway were investigated using total cell enumeration and denaturing gradient gel electrophoresis (DGGE) fingerprinting. The major taxonomical groups of bacteria inhabiting the biofilms were identified by DGGE band sequence classification. The microbial cell density of the biofilm appeared to be ...

  13. Dispersal of Biofilms by Secreted, Matrix Degrading, Bacterial DNase

    OpenAIRE

    Nijland, Reindert; Hall, Michael J; Burgess, J. Grant

    2010-01-01

    Microbial biofilms are composed of a hydrated matrix of biopolymers including polypeptides, polysaccharides and nucleic acids and act as a protective barrier and microenvironment for the inhabiting microbes. While studying marine biofilms, we observed that supernatant produced by a marine isolate of Bacillus licheniformis was capable of dispersing bacterial biofilms. We investigated the source of this activity and identified the active compound as an extracellular DNase (NucB). We have shown ...

  14. Protocols to Study the Physiology of Oral Biofilms

    OpenAIRE

    Lemos, José A.; Abranches, Jacqueline; Koo, Hyun; Marquis, Robert E.; Burne, Robert A.

    2010-01-01

    The oral cavity harbors several hundred different bacterial species that colonize both hard (teeth) and soft tissues, forming complex populations known as microbial biofilms. It is widely accepted that the phenotypic characteristics of bacteria grown in biofilms are substantially different from those grown in suspensions. Because biofilms are the natural habitat for the great majority of oral bacteria, including those contributing to oral diseases, a better understanding of the physiology of ...

  15. Bursting the bubble on bacterial biofilms: a flow cell methodology

    OpenAIRE

    Shanika A. Crusz; Popat, Roman; Rybtke, Morten Theil; Cámara, Miguel; Givskov, Michael; Tolker-Nielsen, Tim; Diggle, Stephen P.; Williams, Paul

    2012-01-01

    The flow cell biofilm system is an important and widely used tool for the in vitro cultivation and evaluation of bacterial biofilms under hydrodynamic conditions of flow. This paper provides an introduction to the background and use of such systems, accompanied by a detailed guide to the assembly of the apparatus including the description of new modifications which enhance its performance. As such, this is an essential guide for the novice biofilm researcher as well as providing valuable trou...

  16. A periodontitis-associated multispecies model of an oral biofilm

    OpenAIRE

    Park, Jong Hwa; Lee, Jae-Kwan; Um, Heung-Sik; Chang, Beom-Seok; Lee, Si-Young

    2014-01-01

    Purpose While single-species biofilms have been studied extensively, we know notably little regarding multispecies biofilms and their interactions. The purpose of this study was to develop and evaluate an in vitro multispecies dental biofilm model that aimed to mimic the environment of chronic periodontitis. Methods Streptococcus gordonii KN1, Fusobacterium nucleatum ATCC23726, Aggregatibacter actinomycetemcomitans ATCC33384, and Porphyromonas gingivalis ATCC33277 were used for this experimen...

  17. Ultrastructure of Biofilms Formed by Bacteria from Industrial Processes

    OpenAIRE

    Raulio, Mari

    2010-01-01

    Microorganisms exist predominantly as sessile multispecies communities in natural habitats. Most bacterial species can form these matrix-enclosed microbial communities called biofilms. Biofilms occur in a wide range of environments, on every surface with sufficient moisture and nutrients, also on surfaces in industrial settings and engineered water systems. This unwanted biofilm formation on equipment surfaces is called biofouling. Biofouling can significantly decrease equipment performance a...

  18. 2-Aminopyrimidine as a novel scaffold for biofilm modulation.

    Science.gov (United States)

    Lindsey, Erick A; Worthington, Roberta J; Alcaraz, Cristina; Melander, Christian

    2012-04-01

    An efficient synthetic route to a series of substituted 2-aminopyrimidine (2-AP) derivatives has been developed. Subsequent biofilm screening has allowed comparison between the biological activity of these new derivatives and that of the 2-aminoimidazole class of anti-biofilm compounds. Several derivatives displayed the ability to modulate bacterial biofilm formation, exhibiting greater activity against Gram-positive strains than Gram-negative strains. Additionally some 2-aminopyrmidines were able to suppress MRSA resistance to conventional antibiotics. PMID:22301774

  19. 2-Aminopyrimidine as a Novel Scaffold for Biofilm Modulation

    OpenAIRE

    Lindsey, Erick A; Worthington, Roberta J.; Alcaraz, Cristina; Melander, Christian

    2012-01-01

    An efficient synthetic route to a series of substituted 2-aminopyrimidine (2-AP) derivatives has been developed. Subsequent biofilm screening has allowed comparison between the biological activity of these new derivatives and that of the 2-aminoimidazole class of anti-biofilm compounds. Several derivatives displayed the ability to modulate bacterial biofilm formation, exhibiting greater activity against Gram-positive strains than Gram-negative strains. Additionally some 2-aminopyrmidines were...

  20. The Host’s Reply to Candida Biofilm

    OpenAIRE

    Nett, Jeniel E.

    2016-01-01

    Candida spp. are among the most common nosocomial fungal pathogens and are notorious for their propensity toward biofilm formation. When growing on a medical device or mucosal surface, these organisms reside as communities embedded in a protective matrix, resisting host defenses. The host responds to Candida biofilm by depositing a variety of proteins that become incorporated into the biofilm matrix. Compared to free-floating Candida, leukocytes are less effective against Candida within a bio...