WorldWideScience

Sample records for biofilm community established

  1. Establishment of new genetic traits in a microbial biofilm community

    DEFF Research Database (Denmark)

    Christensen, Bjarke Bak; Sternberg, Claus; Andersen, Jens Bo; Eberl, Leo; Møller, Søren; Givskov, Michael Christian; Molin, Søren

    1998-01-01

    Conjugational transfer of the TOL plasmid (pWWO) was analyzed in a flow chamber biofilm community engaged in benzyl alcohol degradation. The community consisted of three species, Pseudomonas putida RI, Acinetobacter sp. strain C6, and an unidentified isolate, D8. Only P. putida RI could act as a...

  2. Establishment of new genetic traits in a microbial biofilm community

    DEFF Research Database (Denmark)

    Christensen, Bjarke Bak; Sternberg, Claus; Andersen, Jens Bo;

    1998-01-01

    as a recipient for the TOL plasmid. Cells carrying a chromosomally integrated lacI(q) gene and a lacp-gfp-tagged version of the TOL plasmid were introduced as donor strains in the biofilm community after its formation. The occurrence of plasmid-carrying cells was analyzed by viable-count-based enumeration...... of donors and transconjugants, Upon transfer of the plasmids to the recipient cells, expression of green fluorescence was activated as a result of zygotic induction of the gfp gene. This allowed a direct in situ identification of cells receiving the gfp-tagged version of the TOL plasmid, Our data suggest......Conjugational transfer of the TOL plasmid (pWWO) was analyzed in a flow chamber biofilm community engaged in benzyl alcohol degradation. The community consisted of three species, Pseudomonas putida RI, Acinetobacter sp. strain C6, and an unidentified isolate, D8. Only P. putida RI could act...

  3. Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell

    Directory of Open Access Journals (Sweden)

    Hotta Yasuaki

    2008-01-01

    Full Text Available Abstract Background Microbial fuel cells (MFCs are devices that exploit microorganisms to generate electric power from organic matter. Despite the development of efficient MFC reactors, the microbiology of electricity generation remains to be sufficiently understood. Results A laboratory-scale two-chamber microbial fuel cell (MFC was inoculated with rice paddy field soil and fed cellulose as the carbon and energy source. Electricity-generating microorganisms were enriched by subculturing biofilms that attached onto anode electrodes. An electric current of 0.2 mA was generated from the first enrichment culture, and ratios of the major metabolites (e.g., electric current, methane and acetate became stable after the forth enrichment. In order to investigate the electrogenic microbial community in the anode biofilm, it was morphologically analyzed by electron microscopy, and community members were phylogenetically identified by 16S rRNA gene clone-library analyses. Electron microscopy revealed that filamentous cells and rod-shaped cells with prosthecae-like filamentous appendages were abundantly present in the biofilm. Filamentous cells and appendages were interconnected via thin filaments. The clone library analyses frequently detected phylotypes affiliated with Clostridiales, Chloroflexi, Rhizobiales and Methanobacterium. Fluorescence in-situ hybridization revealed that the Rhizobiales population represented rod-shaped cells with filamentous appendages and constituted over 30% of the total population. Conclusion Bacteria affiliated with the Rhizobiales constituted the major population in the cellulose-fed MFC and exhibited unique morphology with filamentous appendages. They are considered to play important roles in the cellulose-degrading electrogenic community.

  4. Establishment and Early Succession of Bacterial Communities in Monochloramine-Treated Drinking Water Biofilms

    Science.gov (United States)

    Monochloramine is increasingly used as a drinking water disinfectant because it forms lower levels of regulated disinfection by-products. While its use has been shown to increase nitrifying bacteria, little is known about the bacterial succession within biofilms in monochloramin...

  5. Biofilms: a developing microscopic community

    Directory of Open Access Journals (Sweden)

    Rivera Sandra Patricia

    2004-09-01

    Full Text Available Biofilms are microbial communities composed by different microbiota embebbed in a special adaptive environment. These communities show different characteristics such as heterogeneity, diversity in microenvironments, capacity to resist antimicrobial therapy and ability to allow bacterial communication. These characteristics convert them in complex organizations that are difficult to eradicate in their own environment. In the man, biofilms are associated to a great number of slow-development infectious processes which greatly difficulties their eradication. In the industry and environment, biofilms are centered in processes known as biofouling and bioremediation. The former is the contamination of a system due to the microbial activity of a biofilm. The latter uses biofilms to improve the conditions of a contaminated system. The study of biofilms is a new and exciting field which is constantly evolving and whose implications in medicine and industry would have important repercussions for the humankind.

  6. A soil-based microbial biofilm exposed to 2,4-D: bacterial community development and establishment of conjugative plasmid pJP4

    DEFF Research Database (Denmark)

    Aspray, T.J.; Hansen, Susse Kirkelund; Burns, R.G.

    2005-01-01

    of the genera Pseudomonas, Burkholderia, Collimonas and Rhodococcus. A 2,4-D degrading donor strain, Pseudomonas putida SM 1443 (pJP4::gfp), was inoculated into flow cell chambers containing 2-day old biofilm communities. Transfer of pJP4::gfp from the donor to the bacterial community was detectable as GFP...... fluorescing cells and images were captured using confocal scanning laser microscopy (GFP fluorescence was repressed in the donor due to the presence of a chromosomally located lacl(q) repressor gene). Approximately 5-10 transconjugant microcolonies, 20-40 mu m in diameter, could be seen to develop in each...

  7. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly

    OpenAIRE

    Stewart, Elizabeth J.; Mahesh Ganesan; Younger, John G.; Solomon, Michael J.

    2015-01-01

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) co...

  8. Characterization of mixed-culture biofilms established in microbial fuel cells

    International Nuclear Information System (INIS)

    For the successful operation of a microbial fuel cell, it is important to characterize the biofilm on the anode. The behavior of MFCs during initial biofilm growth and characterization of anodic biofilm were studied using two-chamber MFCs with activated sludge as inoculum. After three times' replacement of the anodic growth medium, the biofilms were well developed, and a maximum closed circuit potential of 0.41 V and 0.37 V (1000 Ω resistor) was achieved using acetate and glucose, respectively. Electron microscopy revealed that there were rod-shaped cells 0.2–0.3 μm wide by 1.5–2.5 μm long in the anode biofilm in the acetate-fed MFC, and these cells were mainly arranged by monolayer. The biofilm in the glucose-fed MFC was made of cocci-shaped cells in chains and a thick matrix. Both using acetate and glucose, the anodic bacterial communities were different than those of the activated sludge. Cyclic voltammograms suggested that extracellular electron transfer in these MFCs was accomplished mainly by the biofilms on the anode and not by bacteria-produced mediators. -- Highlights: ► The mixed-culture biofilms established in MFCs were characterized. ► The possible electron transfer mechanism was presented. ► In these MFCs the anodic area should be much larger.

  9. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm

    OpenAIRE

    Lee, Kai Wei Kelvin; Periasamy, Saravanan; Mukherjee, Manisha; Xie, Chao; Kjelleberg, Staffan; Rice, Scott A.

    2013-01-01

    Most studies of biofilm biology have taken a reductionist approach, where single-species biofilms have been extensively investigated. However, biofilms in nature mostly comprise multiple species, where interspecies interactions can shape the development, structure and function of these communities differently from biofilm populations. Hence, a reproducible mixed-species biofilm comprising Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae was adapted to study how interspe...

  10. Biofilms

    OpenAIRE

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-01-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and ...

  11. Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes.

    Science.gov (United States)

    Cho, Kyu Hong; Caparon, Michael G

    2005-09-01

    The ability of Streptococcus pyogenes to form biofilm-like bacterial communities during infection of soft tissue has suggested that the capacity to produce biofilm may be important for pathogenesis. To examine this relationship, a panel of mutants was evaluated for their ability to form biofilm on abiotic surfaces in several assays. Several established virulence factors were crucial for biofilm formation, including the M protein, required for initial cell-surface interactions, and the hyaluronic acid capsule, required for subsequent maturation into a three-dimensional structure. Mutants lacking the transcription regulators Mga and CovR (CsrR) also failed to form biofilm. Comparison of transcriptional profiles revealed differential regulation of approximately 25% of the genome upon adaptation to biofilm. During infection of zebrafish, several virulence factors (notably cysteine protease and streptokinase) were regulated in a biofilm-like manner. However, the overall profile of virulence factor expression indicated that tissue communities have a pattern of gene expression different from biofilm. Taken together, these data show that while biofilm and tissue communities have many characteristics in common, that biofilm reproduces only a subset of the myriad cues used by tissue communities for regulation of virulence. PMID:16135223

  12. Biofilm diatom community structure: Influence of temporal and substratum variability

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Anil, A.C.

    occasions, the influence of planktonic blooms was also seen on the biofilm community. A comparative study of biofilms formed on the two substrata revealed significant differences in density and diversity. However species composition was almost constant...

  13. Invasibility of resident biofilms by allochthonous communities in bioreactors.

    Science.gov (United States)

    Bellucci, Micol; Bernet, Nicolas; Harmand, Jérôme; Godon, Jean-Jacques; Milferstedt, Kim

    2015-09-15

    Invasion of non-native species can drastically affect the community composition and diversity of engineered and natural ecosystems, biofilms included. In this study, a molecular community fingerprinting method was used to monitor the putative establishment and colonization of allochthonous consortia in resident multi-species biofilms. To do this, biofilms inoculated with tap water or activated sludge were grown for 10 days in bubble column reactors W1 and W2, and S, respectively, before being exposed to non-native microbial consortia. These consortia consisted of fresh activated sludge suspensions for the biofilms inoculated with tap water (reactors W1 and W2) and of transplanted mature tap water biofilm for the activated sludge biofilm (reactor S). The introduction of virgin, unoccupied coupons into W1 and W2 enabled us to additionally investigate the competition for new resources (space) among the resident biofilm and the allochthonous consortia. CE-SSCP revealed that after the invasion event changes were mostly observed in the abundance of the dominant species in the native biofilms rather than their composition. This suggests that the resident communities within a bioreactor immediately outcompete the allochthonous microbes and shape the microbial community assemblage on both new coupons and already colonized surfaces for the short term. However, with time, latent members of the allochthonous community might grow up affecting the diversity and composition of the original biofilms. PMID:26072021

  14. Impact of nutrient composition on a degradative biofilm community

    DEFF Research Database (Denmark)

    Møller, Søren; Korber, Darren R.; Wolfaardt, Gideon M.;

    1997-01-01

    A microbial community was cultivated in flow cells with 2,4,6-trichlorobenzoic acid (2,4,6-TCB) as sole carbon and energy source and was examined with scanning confocal laser microscopy and fluorescent molecular probes. The biofilm community which developed under these conditions exhibited a...... physicochemistry of degradative biofilm communities....

  15. Establishment and early succession of a multispecies biofilm composed of soil bacteria

    DEFF Research Database (Denmark)

    Burmølle, Mette; Hansen, Lars H; Sørensen, Søren J

    2007-01-01

    development of a biofilm flow model and use this system to establish an early (days 1-7) flow biofilm of soil bacteria from agricultural soil. It was possible to follow the succession in the early flow biofilm by denaturing gradient gel electrophoresis (DGGE) analysis, and it was demonstrated that the...... majority of strains present in the biofilm were culturable. We isolated and identified nine strains, all associated with unique DGGE profiles, and related their intrinsic phenotypes regarding monospecies biofilm formation in microtiter plates and planktonic growth characteristics to the appearance of the...... strains in the flow biofilm. The ability of the strains to attach to and establish biofilm in microtiter plates was reflected in their flow biofilm appearance, whereas no such reflection of the planktonic growth characteristics in the flow biofilm appearance was observed. One strain-specific synergistic...

  16. Metal concentrations in stream biofilm and sediments and their potential to explain biofilm microbial community structure

    International Nuclear Information System (INIS)

    Concentrations of metals associated with sediments have traditionally been analysed to assess the extent of heavy metal contamination in freshwater environments. Stream biofilms present an alternative medium for this assessment which may be more relevant to the risk incurred by stream ecosystems as they are intensively grazed by aquatic organisms at a higher trophic level. Therefore, we investigated zinc, copper and lead concentrations in biofilms and sediments of 23 stream sites variously impacted by urbanisation. Simultaneously, biofilm bacterial and ciliate protozoan community structure was analysed by Automated Ribosomal Intergenic Spacer Analysis and Terminal Restriction Fragment Length Polymorphism, respectively. Statistical analysis revealed that biofilm associated metals explained a greater proportion of the variations observed in bacterial and ciliate communities than did sediment associated-metals. This study suggests that the analysis of metal concentrations in biofilms provide a good assessment of detrimental effects of metal contaminants on aquatic biota. - Highlights: ► Zn, Cu and Pb concentrations in biofilm and sediments from 23 streams were assessed. ► Bacteria and ciliate protozoa were simultaneously used as biological indicators. ► Zn and Cu were generally enriched in biofilm compared to sediments. ► Metals in biofilm provide a useful assessment of freshwater ecosystem contamination. ► Results highlight the likely ecological importance of biofilm associated metals. - Metal concentrations in stream biofilms provide a good assessment of the effects of trace metal contaminants on freshwater ecosystems.

  17. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    Directory of Open Access Journals (Sweden)

    Joe A. Lemire

    2015-10-01

    Full Text Available Moving bed biofilm reactors (MBBRs are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR carriers (biofilm support materials, allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that mixed-species biofilms can be harvested from an industrial wastewater inoculum [oil sands process water (OSPW] using the Calgary Biofilm Device (CBD. Moreover, the resultant biofilm communities had the capacity to degrade organic toxins (naphthenic acids—NAs that are found in OSPW. Therefore, we hypothesized that harnessing microbial communities from industrial wastewater, as biofilms, on MBBR carriers may be an effective method to bioremediate industrial wastewater.Here, we detail our methodology adapting the workflow employed for using the CBD, to generate inoculant carriers to seed an MBBR.In this study, OSPW-derived biofilm communities were successfully grown, and their efficacy evaluated, on commercially available MBBR carriers affixed within a modified CBD system. The resultant biofilms demonstrated the capacity to transfer biomass to recipient carriers within a scaled MBBR. Moreover, MBBR systems inoculated in this manner were fully active 2 days post-inoculation, and readily degraded a select population of NAs. Together, these findings suggest that harnessing microbial communities on carriers affixed within a modified CBD system may represent a facile and rapid method for obtaining functional inoculants for use in wastewater MBBR treatment systems.

  18. Planktonic versus Biofilm Catabolic Communities: Importance of the Biofilm for Species Selection and Pesticide Degradation ▿

    OpenAIRE

    Verhagen, Pieter; De Gelder, Leen; Hoefman, Sven; De Vos, Paul; Boon, Nico

    2011-01-01

    Chloropropham-degrading cultures were obtained from sludge and soil samples by using two different enrichment techniques: (i) planktonic enrichments in shaken liquid medium and (ii) biofilm enrichments on two types of solid matrixes (plastic chips and gravel). Denaturing gradient gel electrophoresis fingerprinting showed that planktonic and biofilm cultures had a different community composition depending on the presence and type of added solid matrix during enrichment. This was reflected in t...

  19. Disturbance Frequency Determines Morphology and Community Development in Multi-Species Biofilm at the Landscape Scale

    OpenAIRE

    Milferstedt, Kim; Santa-Catalina, Gaelle; Godon, Jean-Jacques; Escudié, Renaud; Bernet, Nicolas

    2013-01-01

    Many natural and engineered biofilm systems periodically face disturbances. Here we present how the recovery time of a biofilm between disturbances (expressed as disturbance frequency) shapes the development of morphology and community structure in a multi-species biofilm at the landscape scale. It was hypothesized that a high disturbance frequency favors the development of a stable adapted biofilm system while a low disturbance frequency promotes a dynamic biofilm response. Biofilms were gro...

  20. Impact of nutrient composition on a degradative biofilm community

    DEFF Research Database (Denmark)

    Møller, Søren; Korber, Darren R.; Wolfaardt, Gideon M.; Molin, Søren; Caldwell, Douglas E.

    1997-01-01

    A microbial community was cultivated in flow cells with 2,4,6-trichlorobenzoic acid (2,4,6-TCB) as sole carbon and energy source and was examined with scanning confocal laser microscopy and fluorescent molecular probes. The biofilm community which developed under these conditions exhibited a char...

  1. Essential factors of an integrated moving bed biofilm reactor-membrane bioreactor: Adhesion characteristics and microbial community of the biofilm.

    Science.gov (United States)

    Tang, Bing; Yu, Chunfei; Bin, Liying; Zhao, Yiliang; Feng, Xianfeng; Huang, Shaosong; Fu, Fenglian; Ding, Jiewei; Chen, Cuiqun; Li, Ping; Chen, Qianyu

    2016-07-01

    This work aims at revealing the adhesion characteristics and microbial community of the biofilm in an integrated moving bed biofilm reactor-membrane bioreactor, and further evaluating their variations over time. With multiple methods, the adhesion characteristics and microbial community of the biofilm on the carriers were comprehensively illuminated, which showed their dynamic variation along with the operational time. Results indicated that: (1) the roughness of biofilm on the carriers increased very quickly to a maximum value at the start-up stage, then, decreased to become a flat curve, which indicated a layer of smooth biofilm formed on the surface; (2) the tightly-bound protein and polysaccharide was the most important factor influencing the stability of biofilm; (3) the development of biofilm could be divided into three stages, and Gammaproteobacteria were the most dominant microbial species in class level at the last stage, which occupied the largest ratio (51.48%) among all microbes. PMID:27038266

  2. Changes in Microbial Biofilm Communities during Colonization of Sewer Systems.

    Science.gov (United States)

    Auguet, O; Pijuan, M; Batista, J; Borrego, C M; Gutierrez, O

    2015-10-01

    The coexistence of sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) in anaerobic biofilms developed in sewer inner pipe surfaces favors the accumulation of sulfide (H2S) and methane (CH4) as metabolic end products, causing severe impacts on sewerage systems. In this study, we investigated the time course of H2S and CH4 production and emission rates during different stages of biofilm development in relation to changes in the composition of microbial biofilm communities. The study was carried out in a laboratory sewer pilot plant that mimics a full-scale anaerobic rising sewer using a combination of process data and molecular techniques (e.g., quantitative PCR [qPCR], denaturing gradient gel electrophoresis [DGGE], and 16S rRNA gene pyrotag sequencing). After 2 weeks of biofilm growth, H2S emission was notably high (290.7±72.3 mg S-H2S liter(-1) day(-1)), whereas emissions of CH4 remained low (17.9±15.9 mg COD-CH4 liter(-1) day(-1)). This contrasting trend coincided with a stable SRB community and an archaeal community composed solely of methanogens derived from the human gut (i.e., Methanobrevibacter and Methanosphaera). In turn, CH4 emissions increased after 1 year of biofilm growth (327.6±16.6 mg COD-CH4 liter(-1) day(-1)), coinciding with the replacement of methanogenic colonizers by species more adapted to sewer conditions (i.e., Methanosaeta spp.). Our study provides data that confirm the capacity of our laboratory experimental system to mimic the functioning of full-scale sewers both microbiologically and operationally in terms of sulfide and methane production, gaining insight into the complex dynamics of key microbial groups during biofilm development. PMID:26253681

  3. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing

    OpenAIRE

    Chao, Yuanqing; Mao, Yanping; Wang, Zhiping,; Tong ZHANG

    2015-01-01

    The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilm...

  4. Community Structure and Activity Dynamics of Nitrifying Bacteria in a Phosphate-Removing Biofilm

    OpenAIRE

    Gieseke, Armin; Purkhold, Ulrike; Wagner, Michael; Amann, Rudolf; Schramm, Andreas

    2001-01-01

    The microbial community structure and activity dynamics of a phosphate-removing biofilm from a sequencing batch biofilm reactor were investigated with special focus on the nitrifying community. O2, NO2−, and NO3− profiles in the biofilm were measured with microsensors at various times during the nonaerated-aerated reactor cycle. In the aeration period, nitrification was oxygen limited and restricted to the first 200 μm at the biofilm surface. Additionally, a delayed onset of nitrification aft...

  5. Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms.

    Science.gov (United States)

    Koo, H; Xiao, J; Klein, M I; Jeon, J G

    2010-06-01

    Streptococcus mutans is a key contributor to the formation of the extracellular polysaccharide (EPS) matrix in dental biofilms. The exopolysaccharides, which are mostly glucans synthesized by streptococcal glucosyltransferases (Gtfs), provide binding sites that promote accumulation of microorganisms on the tooth surface and further establishment of pathogenic biofilms. This study explored (i) the role of S. mutans Gtfs in the development of the EPS matrix and microcolonies in biofilms, (ii) the influence of exopolysaccharides on formation of microcolonies, and (iii) establishment of S. mutans in a multispecies biofilm in vitro using a novel fluorescence labeling technique. Our data show that the ability of S. mutans strains defective in the gtfB gene or the gtfB and gtfC genes to form microcolonies on saliva-coated hydroxyapatite surfaces was markedly disrupted. However, deletion of both gtfB (associated with insoluble glucan synthesis) and gtfC (associated with insoluble and soluble glucan synthesis) is required for the maximum reduction in EPS matrix and biofilm formation. S. mutans grown with sucrose in the presence of Streptococcus oralis and Actinomyces naeslundii steadily formed exopolysaccharides, which allowed the initial clustering of bacterial cells and further development into highly structured microcolonies. Concomitantly, S. mutans became the major species in the mature biofilm. Neither the EPS matrix nor microcolonies were formed in the presence of glucose in the multispecies biofilm. Our data show that GtfB and GtfC are essential for establishment of the EPS matrix, but GtfB appears to be responsible for formation of microcolonies by S. mutans; these Gtf-mediated processes may enhance the competitiveness of S. mutans in the multispecies environment in biofilms on tooth surfaces. PMID:20233920

  6. Water-limiting conditions alter the structure and biofilm-forming ability of bacterial multispecies communities in the alfalfa rhizosphere.

    Directory of Open Access Journals (Sweden)

    Pablo Bogino

    Full Text Available Biofilms are microbial communities that adhere to biotic or abiotic surfaces and are enclosed in a protective matrix of extracellular compounds. An important advantage of the biofilm lifestyle for soil bacteria (rhizobacteria is protection against water deprivation (desiccation or osmotic effect. The rhizosphere is a crucial microhabitat for ecological, interactive, and agricultural production processes. The composition and functions of bacterial biofilms in soil microniches are poorly understood. We studied multibacterial communities established as biofilm-like structures in the rhizosphere of Medicago sativa (alfalfa exposed to 3 experimental conditions of water limitation. The whole biofilm-forming ability (WBFA for rhizospheric communities exposed to desiccation was higher than that of communities exposed to saline or nonstressful conditions. A culture-dependent ribotyping analysis indicated that communities exposed to desiccation or saline conditions were more diverse than those under the nonstressful condition. 16S rRNA gene sequencing of selected strains showed that the rhizospheric communities consisted primarily of members of the Actinobacteria and α- and γ-Proteobacteria, regardless of the water-limiting condition. Our findings contribute to improved understanding of the effects of environmental stress factors on plant-bacteria interaction processes and have potential application to agricultural management practices.

  7. Molecular Analysis of Microbial Communities in Endotracheal Tube Biofilms

    OpenAIRE

    Cairns, Scott; Thomas, John Gilbert; Hooper, Samuel James; Wise, Matthew Peter; Frost, Paul John; Wilson, Melanie Julia; Lewis, Michael Alexander Oxenham; Williams, David Wynne

    2011-01-01

    Background Ventilator-associated pneumonia is the most prevalent acquired infection of patients on intensive care units and is associated with considerable morbidity and mortality. Evidence suggests that an improved understanding of the composition of the biofilm communities that form on endotracheal tubes may result in the development of improved preventative strategies for ventilator-associated pneumonia. Methodology/Principal Findings The aim of this study was to characterise microbial bio...

  8. Community interactions promote Legionella pneumophila survival in drinking water biofilms

    OpenAIRE

    Gião, M. S.; Vieira, M. J.; Azevedo, N. F.; Wilks, S. A.; Keevil, C W

    2010-01-01

    Legionella pneumophila is a waterborne pathogen that can cause Pontiac Fever or Legionnaires’ disease, a type of pneumonia that can be fatal. Although L. pneumophila is not able to replicate in low nutrient environments, such as drinking water, it is known that heterotrophic biofilms have a crucial role in the survival of this pathogen in drinking water distribution systems. The aim of this work is to study the community interactions that influence the survival of L. pneumophila i...

  9. Conservation of acquired morphology and community structure in aged biofilms after facing environmental stress.

    Science.gov (United States)

    Saur, T; Escudié, R; Santa-Catalina, G; Bernet, N; Milferstedt, K

    2016-01-01

    The influence of growth history on biofilm morphology and microbial community structure is poorly studied despite its important role for biofilm development. Here, biofilms were exposed to a change in hydrodynamic conditions at different growth stages and we observed how biofilm age affected the change in morphology and bacterial community structure. Biofilms were developed in two bubble column reactors, one operated under constant shear stress and one under variable shear stress. Biofilms were transferred from one reactor to the other at different stages in their development by withdrawing and inserting the support medium from one reactor to the other. The developments of morphology and microbial community structure were followed by image analysis and molecular tools. When transferred early in biofilm development, biofilms adapted to the new hydrodynamic conditions and adopted features of the biofilm already developed in the receiving reactor. Biofilms transferred at a late state of biofilm development continued their initial trajectories of morphology and community development even in a new environment. These biofilms did not immediately adapt to their new environment and kept features acquired during their early growth phase, a property we called memory effect. PMID:26492343

  10. Functional recovery of biofilm bacterial communities after copper exposure

    International Nuclear Information System (INIS)

    Potential of bacterial communities in biofilms to recover after copper exposure was investigated. Biofilms grown outdoor in shallow water on glass dishes were exposed in the laboratory to 0.6, 2.1, 6.8 μmol/l copper amended surface water and a reference and subsequently to un-amended surface water. Transitions of bacterial communities were characterised with denaturing gradient gel electrophoresis (DGGE) and community-level physiological profiles (CLPP). Exposure to 6.8 μmol/l copper provoked distinct changes in DGGE profiles of bacterial consortia, which did not reverse upon copper depuration. Exposure to 2.1 and 6.8 μmol/l copper was found to induce marked changes in CLPP of bacterial communities that proved to be reversible during copper depuration. Furthermore, copper exposure induced the development of copper-tolerance, which was partially lost during depuration. It is concluded that bacterial communities exposed to copper contaminated water for a period of 26 days are capable to restore their metabolic attributes after introduction of unpolluted water in aquaria for 28 days. - Genetically different bacterial communities can have similar functions and tolerance to copper

  11. Combined eukaryotic and bacterial community fingerprinting of natural freshwater biofilms using automated ribosomal intergenic spacer analysis

    OpenAIRE

    2010-01-01

    Biofilms are complex communities playing an important role in aquatic ecosystems. Automated ribosomal intergenic spacer analysis (ARISA) has been used successfully to explore biofilm bacterial diversity. However, a gap remains to be filled as regards its application to biofilm eukaryotic populations. The aim of this study is to use ARISA to detect eukaryotic population shifts in biofilm. We designed a new set of primers to focus specifically on the ITS1-5.8S-ITS2 region of diatoms and tested ...

  12. Comparative responses of river biofilms at the community level to common organic solvent and herbicide exposure.

    Science.gov (United States)

    Paule, A; Roubeix, V; Swerhone, G D W; Roy, J; Lauga, B; Duran, R; Delmas, F; Paul, E; Rols, J L; Lawrence, J R

    2016-03-01

    Residual pesticides applied to crops migrate from agricultural lands to surface and ground waters. River biofilms are the first aquatic non-target organisms which interact with pesticides. Therefore, ecotoxicological experiments were performed at laboratory scale under controlled conditions to investigate the community-level responses of river biofilms to a chloroacetanilide herbicide (alachlor) and organic solvent (methanol) exposure through the development referenced to control. Triplicate rotating annular bioreactors, inoculated with river water, were used to cultivate river biofilms under the influence of 1 and 10 μg L(-1) of alachlor and 25 mg L(-1) of methanol. For this purpose, functional (thymidine incorporation and carbon utilization spectra) and structural responses of microbial communities were assessed after 5 weeks of development. Structural aspects included biomass (chlorophyll a, confocal laser scanning microscopy) and composition (fluor-conjugated lectin binding, molecular fingerprinting, and diatom species composition). The addition of alachlor resulted in a significant reduction of bacterial biomass at 1 μg L(-1), whereas at 10 μg L(-1), it induced a significant reduction of exopolymer lectin binding, algal, bacterial, and cyanobacterial biomass. However, there were no changes in biofilm thickness or thymidine incorporation. No significant difference between the bacterial community structures of control and alachlor-treated biofilms was revealed by terminal restriction fragment length polymorphism (T-RFLP) analyses. However, the methanol-treated bacterial communities appeared different from control and alachlor-treated communities. Moreover, methanol treatment resulted in an increase of bacterial biomass and thymidine incorporation as well. Changes in dominant lectin binding suggested changes in the exopolymeric substances and community composition. Chlorophyll a and cyanobacterial biomass were also altered by methanol. This study suggested

  13. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community

    KAUST Repository

    Xue, Zheng

    2014-07-15

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community. © 2014 © 2014 Taylor & Francis.

  14. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community.

    Science.gov (United States)

    Xue, Zheng; Lu, Huijie; Liu, Wen-Tso

    2014-01-01

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community. PMID:25115516

  15. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Yang, Liang; Qu, Di;

    2009-01-01

    in overnight cultures had no effect on established P. aeruginosa biofilms and planktonic growth. These findings reveal that P. aeruginosa extracellular products are important microbial competition factors that overcome competition with S. epidermidis, and the results may provide clues for the development...

  16. Establishing community trust at radioactively contaminated sites

    International Nuclear Information System (INIS)

    Establishing community trust is an essential element in the successful remediation of a radioactively contaminated site. The US Environmental Protection Agency (EPA), Region 2 has been involved in the clean up of numerous radioactively contaminated Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), Resource Conservation Recovery Act (RCRA), and Formerly Utilized Site Remedial Action Program (FUSRAP) sites in New Jersey and New York. Each site presented a unique challenge which centered around establishing and, often, re-establishing the trust of the surrounding community. Thanks to the United States government's history regarding the use of radioactive materials, people question whether governmental regulators could possibly have the public's best interests in mind when it comes to addressing radioactively contaminated sites. It has been our experience that EPA can use its position as guardian of the environment to help establish public confidence in remedial actions. The EPA can even use its position to lend credibility to remedial activities in situations where it is not directly responsible for the clean-up. Some ways that we have found to instill community confidence are: establishing radioanalytical cross-check programs using EPA's National Air and Radiation Environmental Laboratory to provide analytical quality assurance; and establishing an environmental radiation monitoring program for the contaminated site and surrounding community. (author)

  17. Biodegradation of carbamate pesticides by natural river biofilms in different seasons and their effects on biofilm community structure

    International Nuclear Information System (INIS)

    This study investigated the ability of natural river biofilms from different seasons to degrade the carbamate pesticides methomyl, carbaryl and carbofuran in single and multiple pesticide systems, and the effects of these pesticides on algal and bacterial communities within biofilms. Spring biofilms had the lowest biomass of algae and bacteria but showed the highest methomyl degradation (>99%) and dissipation rates, suggesting that they might contain microorganisms with high methomyl degradation abilities. Degradation of carbofuran (54.1–59.5%) by biofilms in four seasons was similar, but low degradation of carbaryl (0–27.5%) was observed. The coexistence of other pesticides was found to cause certain effects on pesticide degradation and primarily resulted in lower diversity of diatoms and bacteria than when using a single pesticide. The tolerant diatoms and bacteria potentially having the ability to degrade test pesticides were identified. River biofilms could be suitable biomaterials or used to isolate degraders for bioremediating pesticide-contaminated water. -- Highlights: •Natural river biofilms showed high ability to degrade methomyl and carbofuran. •The presence of other pesticides caused certain effects on pesticide degradation. •Carbamate pesticides caused adverse effects on communities of diatoms and bacteria. •The tolerant diatoms and bacteria were found as potential pesticide-degraders. -- Biodegradation of carbamate pesticides by river biofilms

  18. Correlation network analysis applied to complex biofilm communities.

    Directory of Open Access Journals (Sweden)

    Ana E Duran-Pinedo

    Full Text Available The complexity of the human microbiome makes it difficult to reveal organizational principles of the community and even more challenging to generate testable hypotheses. It has been suggested that in the gut microbiome species such as Bacteroides thetaiotaomicron are keystone in maintaining the stability and functional adaptability of the microbial community. In this study, we investigate the interspecies associations in a complex microbial biofilm applying systems biology principles. Using correlation network analysis we identified bacterial modules that represent important microbial associations within the oral community. We used dental plaque as a model community because of its high diversity and the well known species-species interactions that are common in the oral biofilm. We analyzed samples from healthy individuals as well as from patients with periodontitis, a polymicrobial disease. Using results obtained by checkerboard hybridization on cultivable bacteria we identified modules that correlated well with microbial complexes previously described. Furthermore, we extended our analysis using the Human Oral Microbe Identification Microarray (HOMIM, which includes a large number of bacterial species, among them uncultivated organisms present in the mouth. Two distinct microbial communities appeared in healthy individuals while there was one major type in disease. Bacterial modules in all communities did not overlap, indicating that bacteria were able to effectively re-associate with new partners depending on the environmental conditions. We then identified hubs that could act as keystone species in the bacterial modules. Based on those results we then cultured a not-yet-cultivated microorganism, Tannerella sp. OT286 (clone BU063. After two rounds of enrichment by a selected helper (Prevotella oris OT311 we obtained colonies of Tannerella sp. OT286 growing on blood agar plates. This system-level approach would open the possibility of

  19. Probing of microbial biofilm communities for coadhesion partners.

    Science.gov (United States)

    Ruhl, Stefan; Eidt, Andreas; Melzl, Holger; Reischl, Udo; Cisar, John O

    2014-11-01

    Investigations of interbacterial adhesion in dental plaque development are currently limited by the lack of a convenient assay to screen the multitude of species present in oral biofilms. To overcome this limitation, we developed a solid-phase fluorescence-based screening method to detect and identify coadhesive partner organisms in mixed-species biofilms. The applicability of this method was demonstrated using coaggregating strains of type 2 fimbrial adhesin-bearing actinomyces and receptor polysaccharide (RPS)-bearing streptococci. Specific adhesin/receptor-mediated coadhesion was detected by overlaying bacterial strains immobilized to a nitrocellulose membrane with a suspended, fluorescein-labeled bacterial partner strain. Coadhesion was comparable regardless of which cell type was labeled and which was immobilized. Formaldehyde treatment of bacteria, either in suspension or immobilized on nitrocellulose, abolished actinomyces type 2 fimbrial adhesin but not streptococcal RPS function, thereby providing a simple method for assigning complementary adhesins and glycan receptors to members of a coadhering pair. The method's broader applicability was shown by overlaying colony lifts of dental plaque biofilm cultures with fluorescein-labeled strains of type 2 fimbriated Actinomyces naeslundii or RPS-bearing Streptococcus oralis. Prominent coadhesion partners included not only streptococci and actinomyces, as expected, but also other bacteria not identified in previous coaggregation studies, such as adhesin- or receptor-bearing strains of Neisseria pharyngitis, Rothia dentocariosa, and Kingella oralis. The ability to comprehensively screen complex microbial communities for coadhesion partners of specific microorganisms opens a new approach in studies of dental plaque and other mixed-species biofilms. PMID:25107971

  20. Biofilm development during the start-up period of anaerobic biofilm reactors: the biofilm Archaea community is highly dependent on the support material

    OpenAIRE

    Habouzit, Frédéric; Hamelin, Jérôme; Santa-Catalina, Gaelle; Steyer, Jean-Philippe; Bernet, Nicolas

    2014-01-01

    To evaluate the impact of the nature of the support material on its colonization by a methanogenic consortium, four substrata made of different materials: polyvinyl chloride, 2 polyethylene and polypropylene were tested during the start-up of lab-scale fixed-film reactors. The reactor performances were evaluated and compared together with the analysis of the biofilms. Biofilm growth was quantified and the structure of bacterial and archaeal communities were characterized by molecular fingerpr...

  1. Characterization, Microbial Community Structure, and Pathogen Occurrence in Urban Faucet Biofilms in South China

    Directory of Open Access Journals (Sweden)

    Huirong Lin

    2015-01-01

    Full Text Available The composition and microbial community structure of the drinking water system biofilms were investigated using microstructure analysis and 454 pyrosequencing technique in Xiamen city, southeast of China. SEM (scanning electron microscope results showed different features of biofilm morphology in different fields of PVC pipe. Extracellular matrix material and sparse populations of bacteria (mainly rod-shaped and coccoid were observed. CLSM (confocal laser scanning microscope revealed different distributions of attached cells, extracellular proteins, α-polysaccharides, and β-polysaccharides. The biofilms had complex bacterial compositions. Differences in bacteria diversity and composition from different tap materials and ages were observed. Proteobacteria was the common and predominant group in all biofilms samples. Some potential pathogens (Legionellales, Enterobacteriales, Chromatiales, and Pseudomonadales and corrosive microorganisms were also found in the biofilms. This study provides the information of characterization and visualization of the drinking water biofilms matrix, as well as the microbial community structure and opportunistic pathogens occurrence.

  2. Microbial Biofilm Community Variation in Flowing Habitats: Potential Utility as Bioindicators of Postmortem Submersion Intervals

    Directory of Open Access Journals (Sweden)

    Jennifer M. Lang

    2016-01-01

    Full Text Available Biofilms are a ubiquitous formation of microbial communities found on surfaces in aqueous environments. These structures have been investigated as biomonitoring indicators for stream heath, and here were used for the potential use in forensic sciences. Biofilm successional development has been proposed as a method to determine the postmortem submersion interval (PMSI of remains because there are no standard methods for estimating the PMSI and biofilms are ubiquitous in aquatic habitats. We sought to compare the development of epinecrotic (biofilms on Sus scrofa domesticus carcasses and epilithic (biofilms on unglazed ceramic tiles communities in two small streams using bacterial automated ribosomal intergenic spacer analysis. Epinecrotic communities were significantly different from epilithic communities even though environmental factors associated with each stream location also had a significant influence on biofilm structure. All communities at both locations exhibited significant succession suggesting that changing communities throughout time is a general characteristic of stream biofilm communities. The implications resulting from this work are that epinecrotic communities have distinctive shifts at the first and second weeks, and therefore the potential to be used in forensic applications by associating successional changes with submersion time to estimate a PMSI. The influence of environmental factors, however, indicates the lack of a successional pattern with the same organisms and a focus on functional diversity may be more applicable in a forensic context.

  3. Microbial Biofilm Community Variation in Flowing Habitats: Potential Utility as Bioindicators of Postmortem Submersion Intervals

    OpenAIRE

    Jennifer M. Lang; Racheal Erb; Jennifer L. Pechal; Wallace, John R.; Ryan W. McEwan; Mark Eric Benbow

    2016-01-01

    Biofilms are a ubiquitous formation of microbial communities found on surfaces in aqueous environments. These structures have been investigated as biomonitoring indicators for stream heath, and here were used for the potential use in forensic sciences. Biofilm successional development has been proposed as a method to determine the postmortem submersion interval (PMSI) of remains because there are no standard methods for estimating the PMSI and biofilms are ubiquitous in aquatic habitats. We s...

  4. Community composition and interactions of biofilm bacteria on submerged freshwater macrophytes

    OpenAIRE

    Hempel, Melanie

    2008-01-01

    The aim of my PhD thesis was to investigate the bacterial biofilm community composition (BCC), on submerged macrophytes. The special interest was the composition and succession of the heterotrophic biofilm and possible influences such as environmental factors, habitat and plants on the biofilm and the interaction of isolates with each other and with aquatic herbivores. On the littoral zones of lakes, macrophytes offer a large area for colonization of bacteria and algae. Interactions between p...

  5. Surface-associated microbes continue to surprise us in their sophisticated strategies for assembling biofilm communities

    OpenAIRE

    Wozniak, Daniel J.; Parsek, Matthew R.

    2014-01-01

    Microorganisms are rarely found in isolation. Frequently, they live as complex consortia or communities known as biofilms. The microbes within these complex structures are typically enmeshed in a matrix of macromolecules collectively known as the extracellular polymeric substances (EPS). The last decade has seen enormous growth in the breadth and depth of biofilm-related research. An important area of focus has been the study of pure culture biofilms of different model species. This work has ...

  6. Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams

    OpenAIRE

    Wilhelm, Linda; Besemer, Katharina; Fasching, Christina; Urich, Tim; Singer, Gabriel A.; Quince, Christopher; Battin, Tom J.

    2014-01-01

    Glaciers harbour diverse microorganisms, which upon ice melt can be released downstream. In glacier-fed streams microorganisms can attach to stones or sediments to form benthic biofilms. We used 454-pyrosequencing to explore the bulk (16S rDNA) and putatively active (16S rRNA) microbial communities of stone and sediment biofilms across 26 glacier-fed streams. We found differences in community composition between bulk and active communities among streams and a stronger congruence between biofi...

  7. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing

    Science.gov (United States)

    Chao, Yuanqing; Mao, Yanping; Wang, Zhiping; Zhang, Tong

    2015-06-01

    The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions.

  8. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    OpenAIRE

    Lemire, Joe A.; Marc A Demeter; Iain George; Howard Ceri; Turner, Raymond J.

    2015-01-01

    Moving bed biofilm reactors (MBBRs) are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR) carriers (biofilm support materials), allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that ...

  9. Nitrification at different salinities: Biofilm community composition and physiological plasticity.

    Science.gov (United States)

    Gonzalez-Silva, Blanca M; Jonassen, Kjell Rune; Bakke, Ingrid; Østgaard, Kjetill; Vadstein, Olav

    2016-05-15

    This paper describes an experimental study of microbial communities of three moving bed biofilm reactors (MBBR) inoculated with nitrifying cultures originated from environments with different salinity; freshwater, brackish (20‰) and seawater. All reactors were run until they operated at a conversion efficiency of >96%. The microbial communities were profiled using 454-pyrosequencing of 16S rRNA gene amplicons. Statistical analysis was used to investigate the differences in microbial community structure and distribution of the nitrifying populations with different salinity environments. Nonmetric multidimensional scaling analysis (NMDS) and the PERMANOVA test based on Bray-Curtis similarities revealed significantly different community structure in the three reactors. The brackish reactor showed lower diversity index than fresh and seawater reactors. Venn diagram showed that 60 and 78% of the total operational taxonomic units (OTUs) in the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) guild, respectively, were unique OTUs for a given reactor. Similarity Percentages (SIMPER) analysis showed that two-thirds of the total difference in community structure between the reactors was explained by 10 OTUs, indicating that only a small number of OTUs play a numerically dominant role in the nitrification process. Acute toxicity of salt stress on ammonium and nitrite oxidizing activities showed distinctly different patterns, reaching 97% inhibition of the freshwater reactor for ammonium oxidation rate. In the brackish culture, inhibition was only observed at maximal level of salinity, 32‰. In the fully adapted seawater culture, higher activities were observed at 32‰ than at any of the lower salinities. PMID:26986496

  10. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko;

    bacterial granules or biofilms. In this sense, completely autotrophic nitrogen removal from high ammonium strength wastewater was achieved in a Membrane-Aereated Biofilm Reactor (MABR) in a single step. Here, a biofilm containing nitrifiers (Aerobic Ammonium and Nitrite Oxidizing Bacteria, AOB and NOB......Due to the necessity of a source of nitrite, most of the processes involving Anaerobic Ammonium Oxidation (Anammox) are based on a separated two-step process with a previous partial-nitritation reactor. However, these two processes can occur simultaneously in the same reactor by taking advantage of......, respectively) and Anaerobic Ammonium Oxidizing Bacteria (AnAOB) is grown on bubbleless aeration membranes to remove ammonium. Since oxygen permeates through the membrane-biofilm interface while ammonium diffuses into the biofilm from the biofilm-liquid interface, oxygen gradients can be established across the...

  11. Biofilm Community Dynamics in Bench-Scale Annular Reactors Simulating Arrestment of Chloraminated Drinking Water Nitrification

    Science.gov (United States)

    Annular reactors (ARs) were used to study biofilm community succession and provide an ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I to IV)....

  12. The dynamics of biofilm bacterial communities is driven by flow wax and wane in a temporary stream

    OpenAIRE

    Timoner Amer, Xisca; Borrego i Moré, Carles; Acuña i Salazar, Vicenç; Sabater, Sergi

    2014-01-01

    Biofilm communities are exposed to long periods of desiccation in temporary streams. We investigated how water flow intermittency affected the bacterial community structure colonizing three different streambed compartments in a Mediterranean stream. Massive parallel sequencing revealed different bacterial communities in biofilms from sand sediments and cobbles. Bacterial communities were similar (62% of shared operational taxonomic units) in the epipsammic and hyporheic biofilms, and more div...

  13. Combating biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong;

    2012-01-01

    Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life is...... believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review......, strategies to control biofilms are discussed, including those of inhibition of microbial attachment, interference of biofilm structure development and differentiation, killing of biofilm cells and induction of biofilm dispersion....

  14. In situ gene expression in mixed-culture biofilms: Evidence of metabolic interactions between community members

    DEFF Research Database (Denmark)

    Møller, Søren; Sternberg, Claus; Andersen, Jens Bo; Christensen, Bjarke Bak; Ramos, Juan L.; Givskov, Michael Christian; Molin, Søren

    1998-01-01

    Microbial communities growing in laboratory-based pow chambers were investigated in order to study compartmentalization of specific gene expression. Among the community members studied, the focus,vas in particular on Pseudomonas putida and a strain of an Acinetobacter sp., and the genes studied are...... both community and pure-culture biofilms, while the Pm promoter was induced in the mixed community but not in a pure-culture biofilm. By sequentially adding community members, induction of Pm was shown to be a consequence of direct metabolic interactions between an Acinetobacter species and P. putida...

  15. In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system

    KAUST Repository

    Lee, O.O.

    2014-01-08

    Using microscopic and molecular techniques combined with computational analysis, this study examined the structure and composition of microbial communities in biofilms that formed on different artificial substrates in a brine pool and on a seep vent of a cold seep in the Red Sea to test our hypothesis that initiation of the biofilm formation and spreading mode of microbial structures differs between the cold seep and the other aquatic environments. Biofilms on different substrates at two deployment sites differed morphologically, with the vent biofilms having higher microbial abundance and better structural features than the pool biofilms. Microbes in the pool biofilms were more taxonomically diverse and mainly composed of various sulfate-reducing bacteria whereas the vent biofilms were exclusively dominated by sulfur-oxidizing Thiomicrospira. These results suggest that the redox environments at the deployment sites might have exerted a strong selection on microbes in the biofilms at two sites whereas the types of substrates had limited effects on the biofilm development.

  16. Influence of phosphorus availability on the community structure and physiology of cultured biofilms.

    Science.gov (United States)

    Li, Shuangshuang; Wang, Chun; Qin, Hongjie; Li, Yinxia; Zheng, Jiaoli; Peng, Chengrong; Li, Dunhai

    2016-04-01

    Biofilms have important effects on nutrient cycling in aquatic ecosystems. However, publications about the community structure and functions under laboratory conditions are rare. This study focused on the developmental and physiological properties of cultured biofilms under various phosphorus concentrations performed in a closely controlled continuous flow incubator. The results showed that the biomass (Chl a) and photosynthesis of algae were inhibited under P-limitation conditions, while the phosphatase activity and P assimilation rate were promoted. The algal community structure of biofilms was more likely related to the colonization stage than with the phosphorus availability. Cyanobacteria were more competitive than other algae in biofilms, particularly when cultured under low P levels. A dominance shift occurred from non-filamentous algae in the early stage to filamentous algae in the mid and late stages under P concentrations of 0.01, 0.1 and 0.6mg/L. However, the total N content, dry weight biomass and bacterial community structure of biofilms were unaffected by phosphorus availability. This may be attributed to the low respiration rate, high accumulation of extracellular polymeric substances and high alkaline phosphatase activity in biofilms when phosphorus availability was low. The bacterial community structure differed over time, while there was little difference between the four treatments, which indicated that it was mainly affected by the colonization stage of the biofilms rather than the phosphorus availability. Altogether, these results suggested that the development of biofilms was influenced by the phosphorus availability and/or the colonization stage and hence determined the role that biofilms play in the overlying water. PMID:27090691

  17. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    KAUST Repository

    Zhang, Weipeng

    2013-11-11

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  18. Biofilm

    Czech Academy of Sciences Publication Activity Database

    Kvíderová, Jana

    Berlin: Springer, 2015 - (Amils, R.; Gargaud, M.; Cernicharo Quintanilla, J.; James Claves, H.; Irvine, W.; Pinti, D.; Viso, M.), s. 1-3 ISBN 978-3-642-27833-4 Institutional support: RVO:67985939 Keywords : biofilm * microbial mat * astrobiology Subject RIV: EF - Botanics

  19. Molecular Techniques Revealed Highly Diverse Microbial Communities in Natural Marine Biofilms on Polystyrene Dishes for Invertebrate Larval Settlement

    KAUST Repository

    Lee, On On

    2014-01-09

    Biofilm microbial communities play an important role in the larval settlement response of marine invertebrates. However, the underlying mechanism has yet to be resolved, mainly because of the uncertainties in characterizing members in the communities using traditional 16S rRNA gene-based molecular methods and in identifying the chemical signals involved. In this study, pyrosequencing was used to characterize the bacterial communities in intertidal and subtidal marine biofilms developed during two seasons. We revealed highly diverse biofilm bacterial communities that varied with season and tidal level. Over 3,000 operational taxonomic units with estimates of up to 8,000 species were recovered in a biofilm sample, which is by far the highest number recorded in subtropical marine biofilms. Nineteen phyla were found, of which Cyanobacteria and Proteobacteria were the most dominant one in the intertidal and subtidal biofilms, respectively. Apart from these, Actinobacteria, Bacteroidetes, and Planctomycetes were the major groups recovered in both intertidal and subtidal biofilms, although their relative abundance varied among samples. Full-length 16S rRNA gene clone libraries were constructed for the four biofilm samples and showed similar bacterial compositions at the phylum level to those revealed by pyrosequencing. Laboratory assays confirmed that cyrids of the barnacle Balanus amphitrite preferred to settle on the intertidal rather than subtidal biofilms. This preference was independent of the biofilm bacterial density or biomass but was probably related to the biofilm community structure, particularly, the Proteobacterial and Cyanobacterial groups. © 2014 Springer Science+Business Media New York.

  20. Temporal variations in the abundance and composition of biofilm communities colonizing drinking water distribution pipes.

    Directory of Open Access Journals (Sweden)

    John J Kelly

    Full Text Available Pipes that transport drinking water through municipal drinking water distribution systems (DWDS are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs (3% distance within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter.

  1. Nitrate levels modulate the abundance of Paracoccus sp. in a biofilm community.

    Science.gov (United States)

    Singh, Shantanu; Nerurkar, Anuradha S; Srinandan, C S

    2015-06-01

    Conditions required to enhance a particular species efficient in degradative capabilities is very useful in wastewater treatment processes. Paracoccus sp. is known to efficiently reduce nitrogen oxides (NOx) due to the branched denitrification pathway. Individual-based simulations showed that the relative fitness of Paracoccus sp. to Pseudomonas sp. increased significantly with nitrate levels above 5 mM. Spatial structure of the biofilm showed substantially less nitrite levels in the areas of Paracoccus sp. dominance. The simulation was validated in a laboratory reactor harboring biofilm community by fluorescent in situ hybridization, which showed that increasing nitrate levels enhanced the abundance of Paracoccus sp. Different levels of NOx did not display any significant effect on biofilm formation of Paracoccus sp., unlike several other bacteria. This study shows that the attribute of Paracoccus sp. to tolerate and efficiently reduce NOx is conferring a fitness payoff to the organism at high concentrations of nitrate in a multispecies biofilm community. PMID:25838197

  2. Evolution of the microbial community of the biofilm in a methane-based membrane biofilm reactor reducing multiple electron acceptors.

    Science.gov (United States)

    Chen, Ran; Luo, Yi-Hao; Chen, Jia-Xian; Zhang, Yin; Wen, Li-Lian; Shi, Ling-Dong; Tang, Youneng; Rittmann, Bruce E; Zheng, Ping; Zhao, He-Ping

    2016-05-01

    Previous work documented complete perchlorate reduction in a membrane biofilm reactor (MBfR) using methane as the sole electron donor and carbon source. This work explores how the biofilm's microbial community evolved as the biofilm stage-wise reduced different combinations of perchlorate, nitrate, and nitrite. The initial inoculum, carrying out anaerobic methane oxidation coupled to denitrification (ANMO-D), was dominated by uncultured Anaerolineaceae and Ferruginibacter sp. The microbial community significantly changed after it was inoculated into the CH4-based MBfR and fed with a medium containing perchlorate and nitrite. Archaea were lost within the first 40 days, and the uncultured Anaerolineaceae and Ferruginibacter sp. also had significant losses. Replacing them were anoxic methanotrophs, especially Methylocystis, which accounted for more than 25 % of total bacteria. Once the methanotrophs became important, methanol-oxidizing denitrifying bacteria, namely, Methloversatilis and Methylophilus, became important in the biofilm, probably by utilizing organic matter generated by the metabolism of methanotrophs. When methane consumption was equal to the maximum-possible electron-donor supply, Methylomonas, also an anoxic methanotroph, accounted for >10 % of total bacteria and remained a major part of the community until the end of the experiments. We propose that aerobic methane oxidation coupled to denitrification and perchlorate reduction (AMO-D and AMO-PR) directly oxidized methane and reduced NO3 (-) to NO2 (-) or N2O under anoxic condition, producing organic matter for methanol-assimilating denitrification and perchlorate reduction (MA-D and MA-PR) to reduce NO3 (-). Simultaneously, bacteria capable of anaerobic methane oxidation coupled to denitrification and perchlorate reduction (ANMO-D and ANMO-PR) used methane as the electron donor to respire NO3 (-) or ClO4 (-) directly. Graphical Abstract ᅟ. PMID:26841777

  3. Effects of organic pollution on biological communities of marine biofilm on hard substrata

    International Nuclear Information System (INIS)

    We examined the effect of organic enrichment on diatom and bacterial assemblages of marine epilithic biofilms on two locations in the Mediterranean, one situated in Spain and the other in Greece. Total organic carbon, total organic nitrogen, stable isotopes (δ13C and δ15N) and chlorophyll a indicated significant incorporation of organic wastes, increased primary production and trophic niche modifications on the biofilms close to the organic enrichment source. In Spain, where the organic load was higher than in Greece, diatom and, to some extent, bacterial assemblages varied following the organic enrichment gradient. The taxonomic richness of diatom and bacterial communities was not influenced by organic enrichment. Classical community parameters showed consistent patterns to organic pollution in both locations, whereas community assemblages were only influenced when organic pollution was greatest. The successional patterns of these communities were similar to other epilithic communities. The modification of community assemblages induced by organic pollution may affect ecological functions. - Highlights: • We examined the effect of organic enrichment on assemblages of marine biofilms. • Classical community parameters showed consistent patterns to organic pollution. • Diatom and bacterial assemblages were affected under high level of organic enrichment. • Successional patterns were similar to other communities inhabiting hard substrata. • Assemblage modifications induced by organic pollution may affect ecological functions. - Organic pollution modifies the assemblages of biofilm communities which may affect important ecological functions

  4. Characterization, Microbial Community Structure, and Pathogen Occurrence in Urban Faucet Biofilms in South China

    OpenAIRE

    Huirong Lin; Shuting Zhang; Song Gong; Shenghua Zhang; Xin Yu

    2015-01-01

    The composition and microbial community structure of the drinking water system biofilms were investigated using microstructure analysis and 454 pyrosequencing technique in Xiamen city, southeast of China. SEM (scanning electron microscope) results showed different features of biofilm morphology in different fields of PVC pipe. Extracellular matrix material and sparse populations of bacteria (mainly rod-shaped and coccoid) were observed. CLSM (confocal laser scanning microscope) revealed diffe...

  5. Terrestrial Runoff Controls the Bacterial Community Composition of Biofilms along a Water Quality Gradient in the Great Barrier Reef

    OpenAIRE

    Witt, Verena; Wild, Christian; Uthicke, Sven

    2012-01-01

    16S rRNA gene molecular analysis elucidated the spatiotemporal distribution of bacterial biofilm communities along a water quality gradient. Multivariate statistics indicated that terrestrial runoff, in particular dissolved organic carbon and chlorophyll a concentrations, induced shifts of specific bacterial communities between locations and seasons, suggesting microbial biofilms could be suitable bioindicators for water quality.

  6. Collaboration: the Key to Establishing Community Networks in Regional Australia

    OpenAIRE

    Wal Taylor; Stewart Marshall

    2002-01-01

    Despite the promise of community involvement, cohesion and empowerment offered by local community networks (CN) using Internet Technologies, few communities in regional Australia have been able to demonstrate sustainable and vibrant CN which demonstrate increased social, cultural or self-reliance capital. The Faculty of Informatics and Communication at Central Queensland University (CQU) and a local council have established a formal alliance to establish the COIN (Community Informatics) proje...

  7. STABILITY AND CHANGE IN ESTUARINE BIOFILM BACTERIAL COMMUNITY DIVERSITY

    Science.gov (United States)

    Biofilms develop on all surfaces in aquatic environments and are defined as matrix-enclosed microbial populations adherent to each other and/or surfaces (1, 31). A substantial part of the microbial activity in nature is associated with surfaces (12). Surface association (biofou...

  8. Unsaturated fatty acid, cis-2-decenoic acid, in combination with disinfectants or antibiotics removes pre-established biofilms formed by food-related bacteria.

    Directory of Open Access Journals (Sweden)

    Shayesteh Sepehr

    Full Text Available Biofilm formation by food-related bacteria and food-related pathogenesis are significant problems in the food industry. Even though much disinfection and mechanical procedure exist for removal of biofilms, they may fail to eliminate pre-established biofilms. cis-2 decenoic acid (CDA, an unsaturated fatty acid messenger produced by Pseudomonas aeruginosa, is reportedly capable of inducing the dispersion of established biofilms by multiple types of microorganisms. However, whether CDA has potential to boost the actions of certain antimicrobials is unknown. Here, the activity of CDA as an inducer of pre-established biofilms dispersal, formed by four main food pathogens; Staphylococcus aureus, Bacillus cereus, Salmonella enterica and E. coli, was measured using both semi-batch and continuous cultures bioassays. To assess the ability of CDA combined biocides treatments to remove pre-established biofilms formed on stainless steel discs, CFU counts were performed for both treated and untreated cultures. Eradication of the biofilms by CDA combined antibiotics was evaluated using crystal violet staining. The effect of CDA combined treatments (antibiotics and disinfectants on biofilm surface area and bacteria viability was evaluated using fluorescence microscopy, digital image analysis and LIVE/DEAD staining. MICs were also determined to assess the probable inhibitory effects of CDA combined treatments on the growth of tested microorganisms' planktonic cells. Treatment of pre-established biofilms with only 310 nM CDA resulted in at least two-fold increase in the number of planktonic cells in all cultures. While antibiotics or disinfectants alone exerted a trivial effect on CFU counts and percentage of surface area covered by the biofilms, combinational treatments with both 310 nM CDA and antibiotics or disinfectants led to approximate 80% reduction in biofilm biomass. These data suggests that combined treatments with CDA would pave the way toward

  9. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda;

    2014-01-01

    (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r...... reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface......-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal....

  10. Collaboration: the Key to Establishing Community Networks in Regional Australia

    Directory of Open Access Journals (Sweden)

    Wal Taylor

    2002-01-01

    Full Text Available Despite the promise of community involvement, cohesion and empowerment offered by local community networks (CN using Internet Technologies, few communities in regional Australia have been able to demonstrate sustainable and vibrant CN which demonstrate increased social, cultural or self-reliance capital. The Faculty of Informatics and Communication at Central Queensland University (CQU and a local council have established a formal alliance to establish the COIN (Community Informatics projects to research issues around this topic. This paper presents the initial findings from this work and draws conclusions for possible comparison with other international experience. The research focuses attention on community understanding and cohesion, local government priorities in a community with relatively low diffusion of the Internet and the competing demands in a regional university between traditional service provision in an increasingly competitive market and the needs of establishing outreach research for altruistic, industry establishment and commercial rationale.

  11. A Technique To Quantify the Population Size and Composition of the Biofilm Component in Communities of Bacteria in the Phyllosphere

    Science.gov (United States)

    Morris, Cindy E.; Monier, Jean-Michel; Jacques, Marie-Agnès

    1998-01-01

    The presence of microbial biofilms in the phyllosphere of terrestrial plants has recently been demonstrated, but few techniques to study biofilms associated with living plant tissues are available. Here we report a technique to estimate the proportion of the bacterial population on leaves that is assembled in biofilms and to quantitatively isolate bacteria from the biofilm and nonbiofilm (solitary) components of phyllosphere microbial communities. This technique is based on removal of bacteria from leaves by gentle washing, separation of biofilm and solitary bacteria by filtration, and disintegration of biofilms by ultrasonication. The filters used for this technique were evaluated for their nonspecific retention rates of solitary bacteria and for the efficiency of filtration for different concentrations of solitary bacteria in the presence of biofilms and other particles. The lethality and efficiency of disintegration of the sonication conditions used here were also evaluated. Isolation and quantification of bacteria by this technique is based on use of culture media. However, oligonucleotide probes, sera, or epifluorescent stains could also be used for direct characterization of the biofilm and solitary bacteria in the suspensions generated by this technique. Preliminary results from estimates of biofilm abundance in phyllosphere communities show that bacteria in biofilms constitute between about 10 and 40% of the total bacterial population on broad-leaf endive and parsley leaves. PMID:9835563

  12. Bioaccumulation of the Herbicide Diclofop in Extracellular Polymers and Its Utilization by a Biofilm Community during Starvation

    OpenAIRE

    Wolfaardt, G. M.; Lawrence, J R; Robarts, R. D.; Caldwell, D E

    1995-01-01

    Continuous-flow cell systems were used to cultivate a degradative biofilm community with the herbicide diclofop methyl as the sole carbon and energy source. The aromatic character of this compound and its breakdown products enabled direct visualization of their accumulation in the biofilm matrix. This accumulation could be inhibited by addition of a more labile carbon source to the culture medium or by inhibition of cell activity. The fluorescence of diclofop-grown biofilms remained constant ...

  13. ADAPTATION OF SUBSURFACE MICROBIAL BIOFILM COMMUNITIES IN RESPONSE TO CHEMICAL STRESSORS

    Science.gov (United States)

    The impact of this work will help improve our understanding of how subsurface biofilm communities respond to chemical stressors that are likely to be present at hazardous waste sites. Ultimately, these results can be used to determine more effective ways to insure proper envir...

  14. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the...... benefits and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial...

  15. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms

    International Nuclear Information System (INIS)

    The relationships between diatom species and cadmium (Cd) accumulated in biofilms of the Riou-Mort River (SW, France) were studied in July 2004 and March 2005. Biofilms were sampled from artificial substrates immersed along a metallic pollution gradient during 20 days. Dynamics of diatom communities and cadmium accumulation were followed by collecting samples after 4, 7, 14 and 20 days of biofilm colonization. Cd accumulation in biofilms during experiment was significantly higher in Cd polluted station (Joanis) than in reference station (Firmi) for both seasons. Periphytic diatom composition varied between sites and seasons. At Firmi station, seasonal dynamics of diatom communities were stable with the dominance of Cyclotella meneghiniana and Melosira varians in July and Surirellabrebissonnii and Navicula gregaria in March. At Joanis station, diatom communities mainly responded to high levels of metal by a high proportion of small, adnate species. Positive correlations between Eolimna minima, Nitzschia palea, Encyonema minutum, Surirella angusta, and Gomphonema parvulum and cadmium accumulation were observed, indicating that these species are tolerant to high levels of cadmium. On the other hand, negative correlations of C. meneghiniana, N. gregaria, Navicula lanceolata, M. varians and Nitzschia dissipata with cadmium qualify them as sensitive diatom species. Periphytic diatom composition through the presence of specific species highlight metal tolerant indicator diatom groups which will be meaningful for biomonitoring pollution in natural aquatic systems

  16. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Thi Thuy Duong [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi (Viet Nam); Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)], E-mail: duongthuy0712@yahoo.com; Morin, Soizic [Cemagref, UR REBX, 50 avenue de Verdun, F-33612 Cestas cedex (France); Herlory, Olivier [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France); Feurtet-Mazel, Agnes [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)], E-mail: a.feurtet-mazel@epoc.u-bordeaux1.fr; Coste, Michel [Cemagref, UR REBX, 50 avenue de Verdun, F-33612 Cestas cedex (France); Boudou, Alain [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)

    2008-10-20

    The relationships between diatom species and cadmium (Cd) accumulated in biofilms of the Riou-Mort River (SW, France) were studied in July 2004 and March 2005. Biofilms were sampled from artificial substrates immersed along a metallic pollution gradient during 20 days. Dynamics of diatom communities and cadmium accumulation were followed by collecting samples after 4, 7, 14 and 20 days of biofilm colonization. Cd accumulation in biofilms during experiment was significantly higher in Cd polluted station (Joanis) than in reference station (Firmi) for both seasons. Periphytic diatom composition varied between sites and seasons. At Firmi station, seasonal dynamics of diatom communities were stable with the dominance of Cyclotella meneghiniana and Melosira varians in July and Surirellabrebissonnii and Navicula gregaria in March. At Joanis station, diatom communities mainly responded to high levels of metal by a high proportion of small, adnate species. Positive correlations between Eolimna minima, Nitzschia palea, Encyonema minutum, Surirella angusta, and Gomphonema parvulum and cadmium accumulation were observed, indicating that these species are tolerant to high levels of cadmium. On the other hand, negative correlations of C. meneghiniana, N. gregaria, Navicula lanceolata, M. varians and Nitzschia dissipata with cadmium qualify them as sensitive diatom species. Periphytic diatom composition through the presence of specific species highlight metal tolerant indicator diatom groups which will be meaningful for biomonitoring pollution in natural aquatic systems.

  17. Antibiotic Discovery: Combatting Bacterial Resistance in Cells and in Biofilm Communities

    Directory of Open Access Journals (Sweden)

    Anahit Penesyan

    2015-03-01

    Full Text Available Bacterial resistance is a rapidly escalating threat to public health as our arsenal of effective antibiotics dwindles. Therefore, there is an urgent need for new antibiotics. Drug discovery has historically focused on bacteria growing in planktonic cultures. Many antibiotics were originally developed to target individual bacterial cells, being assessed in vitro against microorganisms in a planktonic mode of life. However, towards the end of the 20th century it became clear that many bacteria live as complex communities called biofilms in their natural habitat, and this includes habitats within a human host. The biofilm mode of life provides advantages to microorganisms, such as enhanced resistance towards environmental stresses, including antibiotic challenge. The community level resistance provided by biofilms is distinct from resistance mechanisms that operate at a cellular level, and cannot be overlooked in the development of novel strategies to combat infectious diseases. The review compares mechanisms of antibiotic resistance at cellular and community levels in the light of past and present antibiotic discovery efforts. Future perspectives on novel strategies for treatment of biofilm-related infectious diseases are explored.

  18. Studying Bacterial Multispecies Biofilms: Where to Start?

    Science.gov (United States)

    Røder, Henriette L; Sørensen, Søren J; Burmølle, Mette

    2016-06-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the benefits and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. PMID:27004827

  19. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation

    DEFF Research Database (Denmark)

    Stapper, A.P.; Narasimhan, G.; Oman, D.E.;

    2004-01-01

    Extracellular polymers can facilitate the non-specific attachment of bacteria to surfaces and hold together developing biofilms. This study was undertaken to qualitatively and quantitatively compare the architecture of biofilms produced by Pseudomonas aeruginosa strain PAO1 and its alginate...... biofilm formation using confocal laser scanning microscopy. Biofilm Image Processing (BIP) and Community Statistics (COMSTAT) software programs were used to provide quantitative measurements of the two-dimensional biofilm images. All three strains formed distinguishable biofilm architectures, indicating...... that the production of alginate is not critical for biofilm formation. Observation over a period of 5 days indicated a three-stage development pattern consisting of initiation, establishment and maturation. Furthermore, this study showed that phenotypically distinguishable biofilms can be...

  20. Syntrophic microbial communities on straw as biofilm carrier increase the methane yield of a biowaste-digesting biogas reactor

    Directory of Open Access Journals (Sweden)

    Frank R. Bengelsdorf

    2015-08-01

    Full Text Available Biogas from biowaste can be an important source of renewable energy, but the fermentation process of low-structure waste is often unstable. The present study uses a full-scale biogas reactor to test the hypothesis that straw as an additional biofilm carrier will increase methane yield; and this effect is mirrored in a specific microbial community attached to the straw. Better reactor performance after addition of straw, at simultaneously higher organic loading rate and specific methane yield confirmed the hypothesis. The microbial communities on straw as a biofilm carrier and of the liquid reactor content were investigated using 16S rDNA amplicon sequencing by means of 454 pyrosequencing technology. The results revealed high diversity of the bacterial communities in the liquid reactor content as well as the biofilms on the straw. The most abundant archaea in all samples belonged to the genera Methanoculleus and Methanosarcina. Addition of straw resulted in a significantly different microbial community attached to the biofilm carrier. The bacterium Candidatus Cloacamonas acidaminovorans and methanogenic archaea of the genus Methanoculleus dominated the biofilm on straw. Syntrophic interactions between the hydrogenotrophic Methanoculleus sp. and members of the hydrogen-producing bacterial community within biofilms may explain the improved methane yield. Thus, straw addition can be used to improve and to stabilize the anaerobic process in substrates lacking biofilm-supporting structures.

  1. Why firm-established user communities work for innovation

    DEFF Research Database (Denmark)

    Jeppesen, Lars Bo; Frederiksen, Lars

    2004-01-01

    Studies of the sources of innovations have recognized that many innovations are developedby users. However, the fact that firms employ communities of users to strengthen their innovationprocess has not yet received much attention. In firm-established user communities users freely revealinnovation...... conditioned by the issues studied in this paper.Keywords: Innovation, User community, User CharacteristicsJEL code(s): L21; L23; O31; O32...

  2. Why firm-established user communities work for innovation

    DEFF Research Database (Denmark)

    Jeppesen, Lars Bo; Frederiksen, Lars

    Studies of the sources of innovations have recognized that many innovations are developedby users. However, the fact that firms employ communities of users to strengthen their innovationprocess has not yet received much attention. In firm-established user communities users freely revealinnovation...... conditioned by the issues studied in this paper.Keywords: Innovation, User community, User CharacteristicsJEL code(s): L21; L23; O31; O32...

  3. Short-term arsenic exposure reduces diatom cell size in biofilm communities.

    Science.gov (United States)

    Barral-Fraga, Laura; Morin, Soizic; Rovira, Marona D M; Urrea, Gemma; Magellan, Kit; Guasch, Helena

    2016-03-01

    Arsenic (As) pollution in water has important impacts for human and ecosystem health. In freshwaters, arsenate (As(V)) can be taken up by microalgae due to its similarity with phosphate molecules, its toxicity being aggravated under phosphate depletion. An experiment combining ecological and ecotoxicological descriptors was conducted to investigate the effects of As(V) (130 μg L(-1) over 13 days) on the structure and function of fluvial biofilm under phosphate-limiting conditions. We further incorporated fish (Gambusia holbrooki) into our experimental system, expecting fish to provide more available phosphate for algae and, consequently, protecting algae against As toxicity. However, this protection role was not fully achieved. Arsenic inhibited algal growth and productivity but not bacteria. The diatom community was clearly affected showing a strong reduction in cell biovolume; selection for tolerant species, in particular Achnanthidium minutissimum; and a reduction in species richness. Our results have important implications for risk assessment, as the experimental As concentration used was lower than acute toxicity criteria established by the USEPA. PMID:26141976

  4. Community-based interference against integration of Pseudomonas aeruginosa into human salivary microbial biofilm.

    Science.gov (United States)

    He, X; Hu, W; He, J; Guo, L; Lux, R; Shi, W

    2011-12-01

    As part of the human gastrointestinal tract, the oral cavity represents a complex biological system and harbors diverse bacterial species. Unlike the gut microbiota, which is often considered a health asset, studies of the oral commensal microbiota have been largely limited to their implication in oral conditions such as dental caries and periodontal disease. Less emphasis has been given to their potential beneficial roles, especially the protective effects against oral colonization by foreign or pathogenic bacteria. In this study, we used salivary microbiota derived from healthy human subjects to investigate protective effects against colonization and integration of Pseudomonas aeruginosa, an opportunistic bacterial pathogen, into developing or pre-formed salivary biofilms. When co-cultivated in saliva medium, P. aeruginosa persisted in the planktonic phase, but failed to integrate into the salivary microbial community during biofilm formation. Furthermore, in saliva medium supplemented with sucrose, the oral microbiota inhibited the growth of P. aeruginosa by producing lactic acid. More interestingly, while pre-formed salivary biofilms were able to prevent P. aeruginosa colonization, the same biofilms recovered from mild chlorhexidine gluconate treatment displayed a shift in microbial composition and showed a drastic reduction in protection. Our study indicates that normal oral communities with balanced microbial compositions could be important in effectively preventing the integration of foreign or pathogenic bacterial species, such as P. aeruginosa. PMID:22053962

  5. Establishing a role for bacterial cellulose in environmental interactions: lessons learned from diverse biofilm-producing Proteobacteria

    Directory of Open Access Journals (Sweden)

    Richard Vincent Augimeri

    2015-11-01

    Full Text Available Bacterial cellulose (BC serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC containing biofilms is to establish close contact with a preferred host to facilitate efficient host-bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3’→5’-cyclic diguanylate (c-di-GMP levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host-bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, regulation and ecophysiological roles.

  6. Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria

    Science.gov (United States)

    Augimeri, Richard V.; Varley, Andrew J.; Strap, Janice L.

    2015-01-01

    Bacterial cellulose (BC) serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation, and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC-containing biofilms is to establish close contact with a preferred host to facilitate efficient host–bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology, and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3′→5′)-cyclic diguanylate (c-di-GMP) levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal, or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host–bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, its regulation and its ecophysiological roles. PMID:26635751

  7. Pyrosequencing Reveals a Core Community of Anodic Bacterial Biofilms in Bioelectrochemical Systems from China.

    Science.gov (United States)

    Xiao, Yong; Zheng, Yue; Wu, Song; Zhang, En-Hua; Chen, Zheng; Liang, Peng; Huang, Xia; Yang, Zhao-Hui; Ng, I-Son; Chen, Bor-Yann; Zhao, Feng

    2015-01-01

    Bioelectrochemical systems (BESs) are promising technologies for energy and product recovery coupled with wastewater treatment, and the core microbial community in electrochemically active biofilm in BESs remains controversy. In the present study, 7 anodic communities from 6 bioelectrochemical systems in 4 labs in southeast, north and south-central of China are explored by 454 pyrosequencing. A total of 251,225 effective sequences are obtained for 7 electrochemically active biofilm samples at 3% cutoff level. While Alpha-, Beta-, and Gamma-proteobacteria are the most abundant classes (averaging 16.0-17.7%), Bacteroidia and Clostridia are the two sub-dominant and commonly shared classes. Six commonly shared genera i.e., Azospira, Azospirillum, Acinetobacter, Bacteroides, Geobacter, Pseudomonas, and Rhodopseudomonas dominate the electrochemically active communities and are defined as core genera. A total of 25 OTUs with average relative abundance >0.5% were selected and designated as core OTUs, and some species relating to these OTUs have been reported electrochemically active. Furthermore, cyclic voltammetry and chronoamperometry tests show that two strains from Acinetobacter guillouiae and Stappia indica, bacteria relate to two core OTUs, are electrochemically active. Using randomly selected bioelectrochemical systems, the study has presented extremely diverse bacterial communities in anodic biofilms, though, we still can suggest some potentially microbes for investigating the electrochemical mechanisms in bioelectrochemical systems. PMID:26733958

  8. Biofilms: an emergent form of bacterial life.

    Science.gov (United States)

    Flemming, Hans-Curt; Wingender, Jost; Szewzyk, Ulrich; Steinberg, Peter; Rice, Scott A; Kjelleberg, Staffan

    2016-08-11

    Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle. PMID:27510863

  9. Functional Gene Composition, Diversity and Redundancy in Microbial Stream Biofilm Communities

    OpenAIRE

    Dopheide, Andrew; Lear, Gavin; He, Zhili; Zhou, Jizhong; Lewis, Gillian D.

    2015-01-01

    We surveyed the functional gene composition and diversity of microbial biofilm communities in 18 New Zealand streams affected by different types of catchment land use, using a comprehensive functional gene array, GeoChip 3.0. A total of 5,371 nutrient cycling and energy metabolism genes within 65 gene families were detected among all samples (342 to 2,666 genes per stream). Carbon cycling genes were most common, followed by nitrogen cycling genes, with smaller proportions of sulphur, phosphor...

  10. Metagenomic Sequencing of Marine Periphyton: Taxonomic and Functional Insights into Biofilm Communities

    Directory of Open Access Journals (Sweden)

    Kemal eSanli

    2015-10-01

    Full Text Available Periphyton communities are complex phototrophic, multispecies biofilms that develop on surfaces in aquatic environments. These communities harbor a large diversity of organisms comprising viruses, bacteria, algae, fungi, protozoans and metazoans. However, thus far the total biodiversity of periphyton has not been described. In this study, we use metagenomics to characterize periphyton communities from the marine environment of the Swedish west coast. Although we found approximately ten times more eukaryotic rRNA marker gene sequences compared to prokaryotic, the whole metagenome-based similarity searches showed that bacteria constitute the most abundant phyla in these biofilms. We show that marine periphyton encompass a range of heterotrophic and phototrophic organisms. Heterotrophic bacteria, including the majority of proteobacterial clades and Bacteroidetes, and eukaryotic macro-invertebrates were found to dominate periphyton. The phototrophic groups comprise Cyanobacteria and the alpha-proteobacterial genus Roseobacter, followed by different micro- and macro-algae. We also assess the metabolic pathways that predispose these communities to an attached lifestyle. Functional indicators of the biofilm form of life in periphyton involve genes coding for enzymes that catalyze the production and degradation of extracellular polymeric substances, mainly in the form of complex sugars such as starch and glycogen-like meshes together with chitin. Genes for 278 different transporter proteins were detected in the metagenome, constituting the most abundant protein complexes. Finally, genes encoding enzymes that participate in anaerobic pathways, such as denitrification and methanogenesis, were detected suggesting the presence of anaerobic or low-oxygen micro-zones within the biofilms.

  11. Fate of terrestrial DOC within stream biofilm communities: a stable isotope approach (Invited)

    Science.gov (United States)

    Wiegner, T. N.; Kaplan, L.; Ziegler, S. E.; Findlay, R. H.

    2010-12-01

    Heterotrophic members of the biofilm community play a critical ecological role in lotic ecosystems. They take up, degrade, and mineralize organic carbon, often dominate community respiration, and are a critical link to higher trophic levels through the microbial loop. The goal of our study was to identify who within the stream biofilm community actively metabolizes stream dissolved organic carbon (DOC) and ultimately controls stream ecosystem metabolism. This goal was accomplished by labeling heterotrophic members of the stream biofilm community in dark biofilm reactors through trace-additions of 13C-labeled tree tissue leachate (13C-DOC) in stream water for one month. Biofilm reactors receiving no 13C-DOC additions served as controls. Metabolic response of the biofilm community to the 13C-DOC additions was quantified through measures of DOC bioavailability, oxygen uptake, and bacterial production and abundance. Bioreactor community composition was assessed using phospholipid fatty acid (PLFA) biomarkers, and the metabolically active members of the community were identified through 13C isotopic analysis of the PLFAs. 13C-DOC additions increased DOC concentrations in stream water by 6% (±9) and changed the δ13C-DOC signature from -28‰ (±2) to +1021‰ (±763). 13C-DOC additions increased the bioavailable DOC in the stream water from 28% (±2) to 39% (±6), oxygen consumption from 20% (±5) to 33% (±9), bacterial cell abundance by a factor of 1.3, and total microbial biomass by a factor of 1.6, but did not significantly affect bacterial production. Bacteria comprised ~80% of the microbial community in the control and 13C-labeled reactors; the remainder of the microbial community was heterotrophic microeukaryotes. δ13C of PLFAs in the 13C-labeled biofilm reactors ranged from +246‰ to +1090‰ and were more depleted in 13C than the original 13C-DOC used to label them, suggesting preferential uptake of specific molecules within the 13C-DOC pool and

  12. Virulence factors in Proteus bacteria from biofilm communities of catheter-associated urinary tract infections.

    Science.gov (United States)

    Hola, Veronika; Peroutkova, Tereza; Ruzicka, Filip

    2012-07-01

    More than 40% of nosocomial infections are those of the urinary tract, most of these occurring in catheterized patients. Bacterial colonization of the urinary tract and catheters results not only in infection, but also various complications, such as blockage of catheters with crystalline deposits of bacterial origin, generation of gravels and pyelonephritis. The diversity of the biofilm microbial community increases with duration of catheter emplacement. One of the most important pathogens in this regard is Proteus mirabilis. The aims of this study were to identify and assess particular virulence factors present in catheter-associated urinary tract infection (CAUTI) isolates, their correlation and linkages: three types of motility (swarming, swimming and twitching), the ability to swarm over urinary catheters, biofilm production in two types of media, urease production and adherence of bacterial cells to various types of urinary tract catheters. We examined 102 CAUTI isolates and 50 isolates taken from stool samples of healthy people. Among the microorganisms isolated from urinary catheters, significant differences were found in biofilm-forming ability and the swarming motility. In comparison with the control group, the microorganisms isolated from urinary catheters showed a wider spectrum of virulence factors. The virulence factors (twitching motility, swimming motility, swarming over various types of catheters and biofilm formation) were also more intensively expressed. PMID:22533980

  13. Characterisation of the Physical Composition and Microbial Community Structure of Biofilms within a Model Full-Scale Drinking Water Distribution System

    OpenAIRE

    Fish, Katherine E.; Richard Collins; Nicola H. Green; Sharpe, Rebecca L.; Isabel Douterelo; A. Mark Osborn; Joby B Boxall

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms...

  14. Using fatty acids to fingerprint biofilm communities: a means to quickly and accurately assess stream quality.

    Science.gov (United States)

    DeForest, Jared L; Drerup, Samuel A; Vis, Morgan L

    2016-05-01

    The assessment of lotic ecosystem quality plays an essential role to help determine the extent of environmental stress and the effectiveness of restoration activities. Methods that incorporate biological properties are considered ideal because they provide direct assessment of the end goal of a vigorous biological community. Our primary objective was to use biofilm lipids to develop an accurate biomonitoring tool that requires little expertise and time to facilitate assessment. A model was created of fatty acid biomarkers most associated with predetermined stream quality classification, exceptional warm water habitat (EWH), warm water habitat (WWH), and limited resource (LR-AMD), and validated along a gradient of known stream qualities. The fatty acid fingerprint of the biofilm community was statistically different (P = 0.03) and was generally unique to recognized stream quality. One striking difference was essential fatty acids (DHA, EPA, and ARA) were absent from LR-AMD and only recovered from WWH and EWH, 45 % more in EWH than WWH. Independently testing the model along a stream quality gradient, this model correctly categorized six of the seven sites, with no match due to low sample biomass. These results provide compelling evidence that biofilm fatty acid analysis can be a sensitive, accurate, and cost-effective biomonitoring tool. We conceive of future studies expanding this research to more in-depth studies of remediation efforts, determining the applicable geographic area for the method and the addition of multiple stressors with the possibility of distinguishing among stressors. PMID:27061804

  15. Three common metal contaminants of urban runoff (Zn, Cu and Pb) accumulate in freshwater biofilm and modify embedded bacterial communities

    International Nuclear Information System (INIS)

    We investigated the absorption rates of zinc, copper and lead in freshwater biofilm and assessed whether biofilm bacterial populations are affected by exposure to environmentally relevant concentrations of these metals in flow chamber microcosms. Metals were rapidly accumulated by the biofilm and then retained for at least 14 days after transfer to uncontaminated water. Changes in bacterial populations were assessed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene clone libraries. Significant differences in bacterial community structure occurred within only three days of exposure to metals and remained detectable at least 14 days after transfer to uncontaminated water. The rapid uptake of stormwater-associated metals and their retention in the biofilm highlight the potential role of biofilms in the transfer of metals to organisms at higher trophic levels. The sensitivity of stream biofilm bacterial populations to metal exposure supports their use as an indicator of stream ecological health. - The rapid accumulation of metals in biofilms and their impact on bacterial communities provide new insights into how these contaminants affect freshwater ecosystems.

  16. Establishing a School-based Research Community (SRC) for Astronomy.

    Science.gov (United States)

    Loughran, Thomas

    2007-12-01

    A School-based Research Community brings students into explicit collaboration with education and public outreach (E/PO) activities of scientific organizations and thus unites educational and research components of the scientific community. This poster presents an account of the nature of an SRC, and of the conditions required for planting one. An overview is given of elements required to nurture and protect such a community, and in that context the role of wiki use in such a course will be highlighted. Finally, the kind of fruit to be expected from such a community will be presented, with examples provided from an SCR established at Saint Joseph's High School in South Bend, Indiana (now in its third year.) The advantages of situating astronomy research in the context of an interdisciplinary SCR will also be sketched.

  17. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Directory of Open Access Journals (Sweden)

    Marie Ragon

    Full Text Available BACKGROUND: The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta and ascomycete fungi (Ascomycota dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. CONCLUSIONS/SIGNIFICANCE: Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in

  18. Establishing an outpatient anticoagulation clinic in a community hospital.

    Science.gov (United States)

    Norton, J L; Gibson, D L

    1996-05-15

    The establishment of a pharmacist-managed out-patient anticoagulation clinic in a private community hospital is described. Discussions by pharmacy with office-based physicians at a 187-bed, private, nonprofit community medical center indicated that the traditional system of anticoagulation management was not ideal for the physicians or their patients. Development of a pharmacist-managed anticoagulation clinic began in fall 1993; operations began in spring 1994. Planning included analyzing existing practices, reviewing the relevant literature, obtaining physician input, visiting an established anticoagulation clinic, formulating a business plan, and developing clinical protocols. Collaborative relationships were established with the hospital laboratory, business office, and risk management, information services, and medical records departments. Two pharmacists were trained to work in the clinic and provide coverage 24 hours a day. Services include patient assessment, monitoring of anticoagulation, warfarin dosage adjustment, medication management, patient education, follow-up care, and providing feedback to referring and attending physicians. The clinic has met with physician and patient satisfaction, has reduced the number of admissions to treat warfarin-related bleeding, and has been able to cover its direct costs. A pharmacist-managed anti-coagulation clinic was successfully established in a private community hospital. PMID:8734675

  19. Biofilm Community Diversity after Exposure to 0.4% Stannous Fluoride Gels

    Science.gov (United States)

    Reilly, Cavan; Rasmussen, Karin; Selberg, Tieg; Stevens, Justin; Jones, Robert S.

    2015-01-01

    Aims To test the effect of %0.4 stannous fluoride (SnF2) glycerin based gels on the bacterial ecology in both a clinical observational study and in vitro polymicobial biofilm model. Methods and Results The influence of stannous fluoride (0.4% SnF2) gels on bacteria was tested in both an observational study in children 6-12 years of age (n=20) and an in vitro biofilm model system. The plaque derived multi-species bacterial biofilm model was based on clinical bacterial strains derived directly from the clinical study. Potential changes in the plaque ecology were determined through the Human Oral Microbial Identification Microarray-HOMIM (n=10). The semiquantitative data resulting from this system were analyzed with cumulative logit models for each bacterial strain and Bonferroni adjustments were employed to correct for multiple hypothesis testing. Both hierarchical biclustering and principal components analysis were used to graphically assess reproducibility within subjects over time. Mixed effects models were used to examine changes in plaque scores and numbers of bacterial strains found in the various conditions. Conclusions Both the observational clinical study and the biofilm model showed that short-term use of 0.4% SnF2 gel has little effect on the bacterial plaque ecology. The amount of plaque accumulation on a subject's teeth, which was measured by plaque index scores failed to show statistical significant changes over the two baselines or after treatment (p=0.9928). The in vitro results were similar when examining the effect of 0.4% SnF2 gels on biofilm adherence through a crystal violet assay (p= 0.1157). Significance and Impact of the Study The bacteria within the dental biofilms showed resilience in maintaining the overall community diversity after exposure to 0.4% Stannous Fluoride Gels. The study supports that the immediate benefits of using these gels each night to manage caries in children may be strictly from fluoride ions inhibiting tooth

  20. A prospective study on evaluation of pathogenesis, biofilm formation, antibiotic susceptibility of microbial community in urinary catheter

    Science.gov (United States)

    Younis, Khansa Mohammed; Usup, Gires; Ahmad, Asmat

    2015-09-01

    This study is aimed to isolate, detect biofilm formation ability and antibiotic susceptibility of urinary catheter adherent microorganisms from elderly hospitalized patient at the Universiti Kebangsaan Malaysia Medical Center. Microorganisms were isolated from three samples of urinary catheters (UC) surface; one of the acute vascular rejection patient (UCB) and two from benign prostate hyperplasia patients (UCC and UCD). A total of 100 isolates was isolated with 35 from UCB, 38 (UCC) and 28 (UCD). Ninety six were identified as Gram-negative bacilli, one Gram-positive bacilli and three yeasts. Results of biofilm forming on sterile foley catheter showed that all the isolates can form biofilm at different degrees; strong biofilm forming: 32% from the 35 isolates (UCB), 25% out of 38 isolates (UCC), 26% out of 28 isolates (UCD). As for moderate biofilm forming; 3% from UCB, 10% from UCC and 2% from UCD. Weak biofilm forming in UCC (3%). The antibiotic susceptibility for (UCB) isolates showed highly resistant to ampicillin, novobiocin and penicillin 100 (%), kanamycin (97%), tetracycline (94%), chloramphenicol (91%), streptomycin (77%) and showed low level of resistance to gentamycin (17%), while all the isolates from (UCC-D) showed high resistant towards ampicillin and penicillin, novobiocin (94%), tetracycline (61%), streptomycin (53%), gentamycin (50%) and low level of resistance to kanamycin (48%), chloramphenicol (47%). The findings indicate that these isolates can spread within the community on urinary catheters surface and produce strong biofilm, therefore, monitoring antibiotic susceptibility of bacteria isolated in the aggregation is recommended.

  1. Impact of flow conditions on ammonium uptake and microbial community structure in benthic biofilms

    Science.gov (United States)

    Arnon, Shai; Yanuka, Keren; Nejidat, Ali

    2010-05-01

    Excess nitrogen in surface waters is widely recognized to be a major global problem that adversely affects ecosystems, human health, and the economy. Today, most efforts to understand and model nutrient dynamics at large scales relies on macro-scale parameterization, such as mean channel geometry and velocity with uniform flow assumptions, as well as gross averages of in-situ nutrient transformation rates. However, there is increasing evidence that nutrient transformations in hyporheic zone are regulated by coupling between physical, chemical, and microbiological processes. Ignoring this greatly hinders the estimation of average biochemical transformation rates under the variable flow conditions found in aquatic systems. We used a combination of macro- and micro-scale observations in laboratory flumes to show that interplay between hydrodynamic transport, redox gradients, and microbial metabolism controls ammonium utilization by hyporheic microbial communities. Biofilm structural characteristics were quantified using denaturing gradient gel electrophoresis (DGGE) and real time PCR, while redox and pH gradients were measured using microelectrodes. We found that overlying velocities had profound effect on ammonium uptake due to mass transfer of ammonium from the bulk water to the benthic biofilms, but also due to the delivery of oxygen into the sediment bed. Under laminar flow conditions we didn't observe any change of ammonium uptake as a response to increase in overlying velocity. However, under non-laminar conditions we observe monotonic increase in ammonium uptake, with the greatest uptake under the fastest flow condition. We will discuss ammonium uptake rates results in the context of the different microbial communities and the micro-scale observations that were obtained using the microelectrodes. We anticipate that combined knowledge of the response of the microbial community and bulk nitrogen utilization rates to flow conditions will support the development of

  2. Pyromorphite formation in a fungal biofilm community growing on lead metal.

    Science.gov (United States)

    Rhee, Young Joon; Hillier, Stephen; Pendlowski, Helen; Gadd, Geoffrey Michael

    2014-05-01

    Lead is a priority pollutant, and lead metal is widely found in the environment as a waterproofing structural component in roofing, fence post covers, venting and flashing, as well as in industrial and urban waste. However, little is known of microbial interactions with metallic lead. The objective of this research was to investigate fungal roles in transformations of lead in a surface biofilm community growing on lead sheeting. The lead surface was found to support a diverse fungal community with several members, such as Aureobasidum pullulans, Phoma macrostoma, Penicillium sp. and Botryotinia fuckeliana, probably originating from adjacent phylloplane communities. Many fungal isolates showed tolerance to lead compounds in growth inhibition assays and were able to mediate production of lead-containing secondary minerals in the presence of metallic lead. These exhibited widely differing morphologies to the lead-containing secondary minerals produced under abiotic conditions. The presence of pyromorphite (Pb5 (PO4 )3 Cl) (approximately 50 wt%) was detected in the lead sheet biofilm, and we speculate that animal (bird) faeces could be a significant source of phosphorus in this location. Pyromorphite formation represents biomineralization of mobile lead species into a very stable form, and this research provides the first demonstration of its occurrence in the natural environment. PMID:24707856

  3. Effect of nitrate on activity and community structure of a sulfidogenic wastewater biofilm

    DEFF Research Database (Denmark)

    Kofoed, Michael Vedel Wegener; Mohanakrishnan, Janani; Schramm, Andreas;

    reactor for 10 days. Gradients of nitrate and sulfide were recorded with microsensors before and after the addition of nitrate, and changes in community composition and biofilm activity were monitored on DNA and RNA level by denaturing gradient gel electrophoresis of 16S rRNA, sulfite reductase(dsrB), and......-like SRB to Desulfomicrobium-like species. Fluoresence in situ hybridization of SRB confirmed the shift and furthermore demonstrated that SRB, after nitrate addition, were overgrown by other, presumably nitrate reducing bacteria. Genes and transcripts of the periplasmic nitrate reductase could only be...

  4. Bacterial Communities Established in Bauxite Residues with Different Restoration Histories

    OpenAIRE

    Schmalenberger, Achim; O'Sullivan, Orla; Gahan, Jacinta; Cotter, Paul D.; Courtney, Ronan

    2013-01-01

    Bauxite residue is the alkaline byproduct generated when alumina is extracted from bauxite ores and is commonly deposited in impoundments. These sites represent hostile environments with increased salinity and alkalinity and little prospect of revegetation when left untreated. This study reports the establishment of bacterial communities in bauxite residues with and without restoration amendments (compost and gypsum addition, revegetation) in samples taken in 2009 and 2011 from 0 to 10 cm dep...

  5. Resilience and recovery: the effect of triclosan exposure timing during development, on the structure and function of river biofilm communities.

    Science.gov (United States)

    Lawrence, J R; Topp, E; Waiser, M J; Tumber, V; Roy, J; Swerhone, G D W; Leavitt, P; Paule, A; Korber, D R

    2015-04-01

    Triclosan (TCS) is a ubiquitous antibacterial agent found in soaps, scrubs, and consumer products. There is limited information on hazardous effects of TCS in the environment. Here, rotating annular reactors were used to cultivate river biofilm communities exposed to 1.8 μg l(-1) TCS with the timing and duration of exposure and recovery during development varied. Two major treatment regimens were employed: (i) biofilm development for 2, 4 or 6 weeks prior to TCS exposure and (ii) exposure of biofilms to TCS for 2, 4 or 6 weeks followed by recovery. Biofilms not exposed to TCS were used as a reference condition. Communities cultivated without and then exposed to TCS all exhibited reductions in algal biomass and significant (pbacterial biomass. CLSM imaging of biofilms at 8 weeks revealed unique endpoints in terms of community architecture. Community composition was altered by any exposure to TCS, as indicated by significant shifts in denaturing gradient gel electrophoresis fingerprints and exopolymer composition relative to the reference. Bacterial, algal and cyanobacterial components initially exposed to TCS were significantly different from those TCS-free at time zero. Pigment analyses suggested that significant changes in composition of algal and cyanobacterial populations occurred with TCS exposure. Bacterial thymidine incorporation rates were reduced by TCS exposure and carbon utilization spectra shifted in terms substrate metabolism. Direct counts of protozoans indicated that TCS was suppressive, whereas micrometazoan populations were, in some instances, stimulated. These results indicate that even a relatively brief exposure of a river biofilm community to relatively low levels of TCS alters both the trajectory and final community structure. Although some evidence of recovery was observed, removal of TCS did not result in a return to the unexposed reference condition. PMID:25731684

  6. Resilience and recovery: The effect of triclosan exposure timing during development, on the structure and function of river biofilm communities

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.R., E-mail: john.lawrence@ec.gc.ca [Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5 (Canada); Topp, E. [Agriculture and Agri-Food Canada, London, ON (Canada); Waiser, M.J.; Tumber, V.; Roy, J.; Swerhone, G.D.W. [Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5 (Canada); Leavitt, P. [University of Regina, Regina, SK (Canada); Paule, A. [Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK (Canada); Korber, D.R. [Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK (Canada)

    2015-04-15

    Highlights: • Triclosan negatively affected structure and metabolism of biofilms under all exposure conditions. • Biofilm age, timing and exposure regime alter the effects of triclosan. • Regardless of exposure regime algae and cyanobacteria were the most affected. • Although recovery was evident no community regained the reference condition. • Initial recruitment may be significant in determining community recovery. - Abstract: Triclosan (TCS) is a ubiquitous antibacterial agent found in soaps, scrubs, and consumer products. There is limited information on hazardous effects of TCS in the environment. Here, rotating annular reactors were used to cultivate river biofilm communities exposed to 1.8 μg l{sup −1} TCS with the timing and duration of exposure and recovery during development varied. Two major treatment regimens were employed: (i) biofilm development for 2, 4 or 6 weeks prior to TCS exposure and (ii) exposure of biofilms to TCS for 2, 4 or 6 weeks followed by recovery. Biofilms not exposed to TCS were used as a reference condition. Communities cultivated without and then exposed to TCS all exhibited reductions in algal biomass and significant (p < 0.05) reductions in cyanobacterial biomass. No significant effects were observed on bacterial biomass. CLSM imaging of biofilms at 8 weeks revealed unique endpoints in terms of community architecture. Community composition was altered by any exposure to TCS, as indicated by significant shifts in denaturing gradient gel electrophoresis fingerprints and exopolymer composition relative to the reference. Bacterial, algal and cyanobacterial components initially exposed to TCS were significantly different from those TCS-free at time zero. Pigment analyses suggested that significant changes in composition of algal and cyanobacterial populations occurred with TCS exposure. Bacterial thymidine incorporation rates were reduced by TCS exposure and carbon utilization spectra shifted in terms substrate metabolism

  7. Resilience and recovery: The effect of triclosan exposure timing during development, on the structure and function of river biofilm communities

    International Nuclear Information System (INIS)

    Highlights: • Triclosan negatively affected structure and metabolism of biofilms under all exposure conditions. • Biofilm age, timing and exposure regime alter the effects of triclosan. • Regardless of exposure regime algae and cyanobacteria were the most affected. • Although recovery was evident no community regained the reference condition. • Initial recruitment may be significant in determining community recovery. - Abstract: Triclosan (TCS) is a ubiquitous antibacterial agent found in soaps, scrubs, and consumer products. There is limited information on hazardous effects of TCS in the environment. Here, rotating annular reactors were used to cultivate river biofilm communities exposed to 1.8 μg l−1 TCS with the timing and duration of exposure and recovery during development varied. Two major treatment regimens were employed: (i) biofilm development for 2, 4 or 6 weeks prior to TCS exposure and (ii) exposure of biofilms to TCS for 2, 4 or 6 weeks followed by recovery. Biofilms not exposed to TCS were used as a reference condition. Communities cultivated without and then exposed to TCS all exhibited reductions in algal biomass and significant (p < 0.05) reductions in cyanobacterial biomass. No significant effects were observed on bacterial biomass. CLSM imaging of biofilms at 8 weeks revealed unique endpoints in terms of community architecture. Community composition was altered by any exposure to TCS, as indicated by significant shifts in denaturing gradient gel electrophoresis fingerprints and exopolymer composition relative to the reference. Bacterial, algal and cyanobacterial components initially exposed to TCS were significantly different from those TCS-free at time zero. Pigment analyses suggested that significant changes in composition of algal and cyanobacterial populations occurred with TCS exposure. Bacterial thymidine incorporation rates were reduced by TCS exposure and carbon utilization spectra shifted in terms substrate metabolism

  8. A survey of biofilms on wastewater aeration diffusers suggests bacterial community composition and function vary by substrate type and time.

    Science.gov (United States)

    Noble, Peter A; Park, Hee-Deung; Olson, Betty H; Asvapathanagul, Pitiporn; Hunter, M Colby; Garrido-Baserba, Manel; Lee, Sang-Hoon; Rosso, Diego

    2016-07-01

    Aeration diffusers in wastewater treatment plants generate air bubbles that promote mixing, distribution of dissolved oxygen, and microbial processing of dissolved and suspended matter in bulk solution. Biofouling of diffusers represents a significant problem to wastewater treatment plants because biofilms decrease oxygen transfer efficiency and increase backpressure on the blower. To better understand biofouling, we conducted a pilot study to survey the bacterial community composition and function of biofilms on different diffuser substrates and compare them to those in the bulk solution. DNA was extracted from the surface of ethylene-propylene-diene monomer (EPDM), polyurethane, and silicone diffusers operated for 15 months in a municipal treatment plant and sampled at 3 and 9 months. The bacterial community composition and function of the biofilms and bulk solution were determined by amplifying the 16S rRNA genes and pyrosequencing the amplicons and raw metagenomic DNA. The ordination plots and dendrograms of the 16S rRNA and functional genes showed that while the bacterial community composition and function of the bulk solution was independent of sampling time, the composition and function of the biofilms differed by diffuser type and testing time. For the EPDM and silicone diffusers, the biofilm communities were more similar in composition to the bulk solution at 3 months than 9 months. In contrast, the bacteria on the polyurethane diffusers were more dissimilar to the bulk solution at 3 months than 9 months. Taken together, the survey showed that the community composition and function of bacterial biofilms depend on the diffuser substrate and testing time, which warrants further elucidation. PMID:27294381

  9. Pyrosequencing assessment of prokaryotic and eukaryotic diversity in biofilm communities from a French river.

    Science.gov (United States)

    Bricheux, Geneviève; Morin, Loïc; Le Moal, Gwenaël; Coffe, Gérard; Balestrino, Damien; Charbonnel, Nicolas; Bohatier, Jacques; Forestier, Christiane

    2013-06-01

    Despite the recent and significant increase in the study of aquatic microbial communities, little is known about the microbial diversity of complex ecosystems such as running waters. This study investigated the biodiversity of biofilm communities formed in a river with 454 Sequencing™. This river has the particularity of integrating both organic and microbiological pollution, as receiver of agricultural pollution in its upstream catchment area and urban pollution through discharges of the wastewater treatment plant of the town of Billom. Different regions of the small subunit (SSU) ribosomal RNA gene were targeted using nine pairs of primers, either universal or specific for bacteria, eukarya, or archaea. Our aim was to characterize the widest range of rDNA sequences using different sets of polymerase chain reaction (PCR) primers. A first look at reads abundance revealed that a large majority (47-48%) were rare sequences (<5 copies). Prokaryotic phyla represented the species richness, and eukaryotic phyla accounted for a small part. Among the prokaryotic phyla, Proteobacteria (beta and alpha) predominated, followed by Bacteroidetes together with a large number of nonaffiliated bacterial sequences. Bacillariophyta plastids were abundant. The remaining bacterial phyla, Verrucomicrobia and Cyanobacteria, made up the rest of the bulk biodiversity. The most abundant eukaryotic phyla were annelid worms, followed by Diatoms, and Chlorophytes. These latter phyla attest to the abundance of plastids and the importance of photosynthetic activity for the biofilm. These findings highlight the existence and plasticity of multiple trophic levels within these complex biological systems. PMID:23520129

  10. Assessment of bacterial community structure in nitrifying biofilm under inorganic carbon-sufficient and -limited conditions.

    Science.gov (United States)

    Bae, Hyokwan; Chung, Yun-Chul; Yang, Heejeong; Lee, Changsoo; Aryapratama, Rio; Yoo, Young J; Lee, Seockheon

    2015-01-01

    In this work, nitrification and changes in the composition of the total bacterial community under inorganic carbon (IC)-limited conditions, in a nitrifying moving bed biofilm reactor, was investigated. A culture-independent analysis of cloning and sequencing based on the 16S rRNA gene was applied to quantify the bacterial diversity and to determine bacterial taxonomic assignment. IC concentrations had significant effects on the stability of ammonia-oxidation as indicated by the reduction of the nitrogen conversion rate with high NH4(+)-N loadings. The predominance of Nitrosomonas europaea was maintained in spite of changes in the IC concentration. In contrast, heterotrophic bacterial species contributed to a high bacterial diversity, and to a dynamic shift in the bacterial community structure, under IC-limited conditions. In this study, individual functions of heterotrophic bacteria were estimated based on taxonomic information. Possible key roles of coexisting heterotrophic bacteria are the assimilation of organic compounds of extracellular polymeric substances produced by nitrifiers, and biofilm formation by providing a filamentous structure and aggregation properties. PMID:25560266

  11. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyungmi; Okabe, Satoshi [Hokkaido Univ., Sapporo (Japan). Dept. of Urban and Environmental Engineering

    2009-07-15

    A mediator-less three-stage two-chamber microbial fuel cell (MFC) system was developed and operated continuously for more than 1.5 years to evaluate continuous power generation while treating artificial wastewater containing glucose (10 mM) concurrently. A stable power density of 28 W/m3 was attained with an anode hydraulic retention time of 4.5 h and phosphate buffer as the cathode electrolyte. An overall dissolved organic carbon removal ratio was about 85%, and coulombic efficiency was about 46% in this MFC system. We also analyzed the microbial community structure of anode biofilms in each MFC. Since the environment in each MFC was different due to passing on the products to the next MFC in series, the microbial community structure was different accordingly. The anode biofilm in the first MFC consisted mainly of bacteria belonging to the Gammaproteobacteria, identified as Aeromonas sp., while the Firmicutes dominated the anode biofilms in the second and third MFCs that were mainly fed with acetate. Cyclic voltammetric results supported the presence of a redox compound(s) associated with the anode biofilm matrix, rather than mobile (dissolved) forms, which could be responsible for the electron transfer to the anode. Scanning electron microscopy revealed that the anode biofilms were comprised of morphologically different cells that were firmly attached on the anode surface and interconnected each other with anchor-like filamentous appendages, which might support the results of cyclic voltammetry. (orig.)

  12. The effect of carbon nanotubes and titanium dioxide incorporated in PDMS on biofilm community composition and subsequent mussel plantigrade settlement.

    Science.gov (United States)

    Yang, Jin-Long; Li, Yi-Feng; Guo, Xing-Pan; Liang, Xiao; Xu, Yue-Feng; Ding, De-Wen; Bao, Wei-Yang; Dobretsov, Sergey

    2016-08-01

    This study investigated the effect of carbon nanotubes (CNTs) and titanium dioxide (TiO2) incorporated in PDMS on biofilm formation and plantigrade settlement of Mytilus coruscus. TiO2 increased bacterial density, and CNTs also increased bacterial density but reduced diatom density in biofilms after 28 days. Further analysis was conducted between bacterial communities on glass, PDMS, CNTs (0.5 wt%) and TiO2 (7.5 wt%). ANOSIM analysis revealed significant differences (R > 0.9) between seven, 14, 21 and 28 day-old bacterial communities. MiSeq sequencing showed that CNTs and TiO2 impacted the composition of 28 day-old bacterial communities by increasing the abundance of Proteobacteria and decreasing the abundance of Bacteroidetes. The maximum decreased settlement rate in 28 day-old biofilms on CNTs and TiO2 was > 50% in comparison to those on glass and PDMS. Thus, CNTs and TiO2 incorporated in PDMS altered the biomass and community composition of biofilms, and subsequently decreased mussel settlement. PMID:27348759

  13. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms

    DEFF Research Database (Denmark)

    Klausen, M.; Gjermansen, Morten; Kreft, J.-U.;

    2006-01-01

    Surface-associated microbial communities in many cases display dynamic developmental patterns. Model biofilms formed by Pseudomonas aeruginosa and Pseudomonas putida in laboratory flow-chamber setups represent examples of such behaviour. Dependent on the experimental conditions the bacteria in...... organisms do not possess comprehensive genetic programs for biofilm development. Instead the bacteria appear to have evolved a number of different mechanisms to optimize surface colonization, of which they express a subset in response to the prevailing environmental conditions. These mechanisms include the...... ability to regulate cellular adhesiveness and migration in response to micro-environmental signals including those secreted by the bacteria themselves....

  14. Comparative pyrosequencing analysis of bacterial community change in biofilm formed on seawater reverse osmosis membrane.

    Science.gov (United States)

    Kim, In S; Lee, Jinwook; Kima, Sung-Jo; Yu, Hye-Weon; Jang, Am

    2014-01-01

    The change in bacterial community structure induced by bacterial competition and succession was investigated during seawater reverse osmosis (SWRO) in order to elucidate a possible link between the bacterial consortium on SWRO membranes and biofouling. To date, there has been no definitive characterization of the microbial diversity in SWRO in terms of distinguishing time-dependent changes in the richness or abundance of bacterial species. For bacterial succession within biofilms on the membrane surface, SWRO using a cross-flow filtration membrane test unit was operated for 5 and 100h, respectively. As results of the pyrosequencing analysis, bacterial communities differed considerably among seawater and the 5 and 100 h samples. From a total of 33,876 pyrosequences (using a 95% sequence similarity), there were less than 1% of shared species, confirming the influence of the operational time factor and lack of similarity of these communities. During SWRO operation, the abundance of Pseudomonas stutzeri BBSPN3 (GU594474) belonging to gamma-Proteobacteria suggest that biofouling of SWRO membrane might be driven by the dominant influence of a specific species. In addition, among the bacterial competition of five bacterial species (Pseudomonas aeruginosa, Bacillus sp., Rhodobacter sp., Flavobacterium sp., and Mycobacterium sp.) competing for bacterial colonization on the SWRO membrane surfaces, it was exhibited that Bacillus sp. was the most dominant. The dominant influences ofPseudomonas sp. and Bacillus sp. on biofouling during actual SWRO is decisive depending on higher removal efficiency of the seawater pretreatment. PMID:24600849

  15. Molecular Studies of Filamentous and Biofilm-Forming Hyperthermophilic Communities in Yellowstone National Park

    Science.gov (United States)

    Summons, R. E.; Meyer-Dombard, D. R.; Bradley, A. S.; Dibbell, A. K.; Fredricks, H. F.; Hinrichs, K.; Jahnke, L. L.; Shock, E.; Amend, J. P.

    2005-12-01

    The Aquificales, the most deeply-branching order of Bacteria in the phylogenetic tree of life, comprises eight recognized thermophilic genera, including Aquifex, Hydrogenobacter, and Thermocrinis. The common metabolism for these Bacteria, when grown in culture, is the oxidation of hydrogen with molecular oxygen (Knallgas reaction). Aquificales have been identified by molecular techniques (16S rRNA gene surveys, fluorescent in situ hybridization) in Yellowstone National Park (YNP), sea vent chimneys and fluids, and many other terrestrial and marine locations. In situ, Aquificales can reside as biofilms on vent sinters but they also commonly form filamentous communities, otherwise known as pink streamers, which attach to solid substrates. Initial 16S rRNA gene surveys conducted on streamer communities from Octopus Spring YNP indicated that these were low diversity ecosystems dominated by a few phylotypes including Thermocrinis sp., Thermotoga sp. and one other bacterial clade (Reysenbach et al 1994). Archaea were notable for their absence. In one of the first geobiological studies of pink streamers and vent biofilms in Yellowstone National Park, Jahnke and coworkers (2001) used classical lipidological techniques to compare Aquificales cultures with environmental samples to show that YNP pink filaments were more phylogenetically diverse and physiologically more complex than the early genomic studies indicated. The presence of archaeol, the range and structures of other lipids and a wide dispersion in the carbon isotopic signatures of biomass and individual lipids (-15 to -27%) showed that Archaea were present in pink filament communities and that there was, at least, one additional bacterial group besides the dominant Aquificales component. New molecular studies that comprise analyses of 16S rRNA genes and total lipid extracts by liquid chromatography and mass spectrometry and chemical degradation with gas chromatography and mass spectrometry now show that Crenarchaea

  16. Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification.

    Science.gov (United States)

    Shin, Jung-Hun; Kim, Byung-Chun; Choi, Okkyoung; Kim, Hyunook; Sang, Byoung-In

    2015-10-28

    Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs. PMID:26095385

  17. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs

    Directory of Open Access Journals (Sweden)

    Florence eSchubotz

    2015-02-01

    Full Text Available Streamer biofilm communities (SBC are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75-88°C SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae, Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and ‘Bison Pool’, using various 13C-labeled substrates (bicarbonate, formate, acetate and glucose to determine the relative uptake of these different carbon sources. Highest 13C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. 13C-glucose showed a similar, but a 10 to 30 times lower uptake across most fatty acids. 13C bicarbonate uptake, signifying the presence of autotrophic communities was only significant at ‘Bison Pool’ and was observed predominantly in non-specific saturated C16, C18, C20 and C22 fatty acids. Incorporation of 13C-formate occurred only at very low rates at ‘Bison Pool’ and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. 13C uptake into archaeal lipids occurred predominantly with 13C acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being

  18. Anti-Staphylococcal Biofilm Effects of Human Cathelicidin Peptides.

    Science.gov (United States)

    Mishra, Biswajit; Golla, Radha M; Lau, Kyle; Lushnikova, Tamara; Wang, Guangshun

    2016-01-14

    Staphylococcus aureus can live together in the form of biofilms to avoid elimination by the host. Thus, a useful strategy to counteract bacterial biofilms is to re-engineer human antimicrobial peptide LL-37 so that it can be used as a remedy for preventing and removing biofilms. This study reports antibiofilm effects of four human cathelicidin LL-37 peptides against community-associated and hospital isolated methicillin-resistant Staphylococcus aureus (MRSA) strains. Although the intact molecule LL-37 inhibited biofilm formation at low concentrations, it did not inhibit bacterial attachment nor disrupt preformed biofilms. However, two 17-residue peptides, GF-17 and 17BIPHE2, inhibited bacterial attachment, biofilm growth, and disrupted established biofilms. An inactive peptide RI-10 was used as a negative control. Our results obtained using the S. aureus mutants in a static biofilm model are consistent with the literature obtained in a flow cell biofilm model. Because 17BIPHE2 is the most effective biofilm disruptor with desired stability to proteases, it is a promising lead for developing new anti-MRSA biofilm agents. PMID:26819677

  19. Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community

    Science.gov (United States)

    Thies, Stephan; Rausch, Sonja Christina; Kovacic, Filip; Schmidt-Thaler, Alexandra; Wilhelm, Susanne; Rosenau, Frank; Daniel, Rolf; Streit, Wolfgang; Pietruszka, Jörg; Jaeger, Karl-Erich

    2016-01-01

    DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library. PMID:27271534

  20. 78 FR 18415 - Council on Underserved Communities, Re-Establishment

    Science.gov (United States)

    2013-03-26

    ...; knowledge and experience in training and counseling entrepreneurs in underserved communities; and... urban. Dated: March 15, 2013. Dan Jones, SBA Committee Management Officer. BILLING CODE P ... barriers to success for small business owners in underserved communities; experience working in...

  1. Polysaccharide Capsule and Sialic Acid-Mediated Regulation Promote Biofilm-Like Intracellular Bacterial Communities during Cystitis ▿

    OpenAIRE

    Anderson, Gregory G.; Goller, Carlos C.; Justice, Sheryl; Hultgren, Scott J.; Seed, Patrick C.

    2010-01-01

    Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). A murine UTI model has revealed an infection cascade whereby UPEC undergoes cycles of invasion of the bladder epithelium, intracellular proliferation in polysaccharide-containing biofilm-like masses called intracellular bacterial communities (IBC), and then dispersal into the bladder lumen to initiate further rounds of epithelial colonization and invasion. We predicted that the UPEC K1 polysaccharid...

  2. Effect of organic carbon on nitrification efficiency and community composition of nitrifying biofilms

    Institute of Scientific and Technical Information of China (English)

    HU Jie; LI Daping; LIU Qiang; TAO Yong; HE Xiaohong; WANG Xiaomei; LI Xudong; GAO Ping

    2009-01-01

    The effects of organic carbon/inorganic nitrogen (C/N) ratio on the nitrification processes and the community shifts of nitrifying biofilms were investigated by kinetic comparison and denaturing gradient gel electrophoresis (DGGE) analysis. The results showed that the nitrification rate decreased with an increasing organic concentration. However, the effect became weak when the carbon concentration reached sufficiently high level. Denitrification was detected after organic carbon was added. The 12 h ammonium removal rate ranged from 85% to 30% at C/N = 0.5, 1, 2, 4, 8 and 16 compare to control (C/N = 0). The loss of nitrogen at C/N = 0.5, 1, 2, 4, (8 and 16 was 31%, 18%, 24%, 65%, 59% and 62% respectively, after 24 h. Sequence analysis of 16S rRNA gene fragments revealed that the dominant populations changed from nitrifying bacteria (Nitrosomonas europaea and Nitrobacter sp.) to denitrifying bacteria (Pseudomonas sp., Acidovorax sp. and Comamonas sp.) with C/N ratio increase. Although at high C/N ratio the denitrifying bacteria were the dominant populations, nitrifying bacteria grew simultaneously. Conrrespondingly, nitrification process coexisted with denitrification.

  3. Identification of ypqP as a New Bacillus subtilis biofilm determinant that mediates the protection of Staphylococcus aureus against antimicrobial agents in mixed-species communities.

    Science.gov (United States)

    Sanchez-Vizuete, Pilar; Le Coq, Dominique; Bridier, Arnaud; Herry, Jean-Marie; Aymerich, Stéphane; Briandet, Romain

    2015-01-01

    In most habitats, microbial life is organized in biofilms, three-dimensional edifices sustained by extracellular polymeric substances that enable bacteria to resist harsh and changing environments. Under multispecies conditions, bacteria can benefit from the polymers produced by other species ("public goods"), thus improving their survival under toxic conditions. A recent study showed that a Bacillus subtilis hospital isolate (NDmed) was able to protect Staphylococcus aureus from biocide action in multispecies biofilms. In this work, we identified ypqP, a gene whose product is required in NDmed for thick-biofilm formation on submerged surfaces and for resistance to two biocides widely used in hospitals. NDmed and S. aureus formed mixed biofilms, and both their spatial arrangement and pathogen protection were mediated by YpqP. Functional ypqP is present in other natural B. subtilis biofilm-forming isolates. However, the gene is disrupted by the SPβ prophage in the weak submerged-biofilm-forming strains NCIB3610 and 168, which are both less resistant than NDmed to the biocides tested. Furthermore, in a 168 laboratory strain cured of the SPβ prophage, the reestablishment of a functional ypqP gene led to increased thickness and resistance to biocides of the associated biofilms. We therefore propose that YpqP is a new and important determinant of B. subtilis surface biofilm architecture, protection against exposure to toxic compounds, and social behavior in bacterial communities. PMID:25326298

  4. Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice.

    Directory of Open Access Journals (Sweden)

    Matt S Conover

    Full Text Available Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and extracellular DNA (eDNA. In this report, we investigated the function of DNA in Bordetella biofilm development. We show that DNA is a significant component of Bordetella biofilm matrix. Addition of DNase I at the initiation of biofilm growth inhibited biofilm formation. Treatment of pre-established mature biofilms formed under both static and flow conditions with DNase I led to a disruption of the biofilm biomass. We next investigated whether eDNA played a role in biofilms formed in the mouse respiratory tract. DNase I treatment of nasal biofilms caused considerable dissolution of the biofilm biomass. In conclusion, these results suggest that eDNA is a crucial structural matrix component of both in vitro and in vivo formed Bordetella biofilms. This is the first evidence for the ability of DNase I to disrupt bacterial biofilms formed on host organs.

  5. Microbial Biofilm as a Smart Material

    DEFF Research Database (Denmark)

    Garde, Christian; Welch, Martin; Ferkinghoff-Borg, Jesper;

    2015-01-01

    Microbial biofilm colonies will in many cases form a smart material capable of responding to external threats dependent on their size and internal state. The microbial community accordingly switches between passive, protective, or attack modes of action. In order to decide which strategy to employ......, it is essential for the biofilm community to be able to sense its own size. The sensor designed to perform this task is termed a quorum sensor, since it only permits collective behaviour once a sufficiently large assembly of microbes have been established. The generic quorum sensor construct involves...

  6. Biofilm establishment and heavy metal removal capacity of an indigenous mining algal-microbial consortium in a photo-rotating biological contactor.

    Science.gov (United States)

    Orandi, S; Lewis, D M; Moheimani, N R

    2012-09-01

    An indigenous mining algal-microbial consortium was immobilised within a laboratory-scale photo-rotating biological contactor (PRBC) that was used to investigate the potential for heavy metal removal from acid mine drainage (AMD). The microbial consortium, dominated by Ulothrix sp., was collected from the AMD at the Sar Cheshmeh copper mine in Iran. This paper discusses the parameters required to establish an algal-microbial biofilm used for heavy metal removal, including nutrient requirements and rotational speed. The PRBC was tested using synthesised AMD with the multi-ion and acidic composition of wastewater (containing 18 elements, and with a pH of 3.5 ± 0.5), from which the microbial consortium was collected. The biofilm was successfully developed on the PRBC's disc consortium over 60 days of batch-mode operation. The PRBC was then run continuously with a 24 h hydraulic residence time (HRT) over a ten-week period. Water analysis, performed on a weekly basis, demonstrated the ability of the algal-microbial biofilm to remove 20-50 % of the various metals in the order Cu > Ni > Mn > Zn > Sb > Se > Co > Al. These results clearly indicate the significant potential for indigenous AMD microorganisms to be exploited within a PRBC for AMD treatment. PMID:22644382

  7. Influence of Nutrient Inputs, Hexadecane, and Temporal Variations on Denitrification and Community Composition of River Biofilms

    OpenAIRE

    Chénier, M. R.; Beaumier, D.; Fortin, N.; Roy, R.; Driscoll, B T; Lawrence, J R; Greer, C W

    2006-01-01

    Biofilms were cultivated on polycarbonate strips in rotating annular reactors using South Saskatchewan River water during the fall of 1999 and the fall of 2001, supplemented with carbon (glucose), nitrogen (NH4Cl), phosphorus (KH2PO4), or combined nutrients (CNP), with or without hexadecane, a model compound representing aliphatic hydrocarbons used to simulate a pollutant. In fall 1999 and fall 2001, comparable denitrification activities and catabolic potentials were observed in the biofilms,...

  8. Synergistic effects in mixed Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Holler, B.M.; Molin, Søren;

    2006-01-01

    pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from...... the cocultivation of 403 undomesticated E. coli strains with a characterized E. coli K-12 strain was detected at a significant frequency. The survey suggests that different mechanisms underlie the observed stimulation, yet synergistic development of biofilm within the subset of E. coli isolates (n...... = 56) exhibiting the strongest effects was most often linked to conjugative transmission of natural plasmids carried by the E. coli isolates (70%). Thus, the capacity of an isolate to promote the biofilm through cocultivation was (i) transferable to the K-12 strain, (ii) was linked with the acquisition...

  9. Establishing Schools as Professional Learning Communities: Perspectives from Malta

    Science.gov (United States)

    Bezzina, Christopher; Testa, Simon

    2005-01-01

    Over the last decade, Malta has been moving away from a highly centralized and bureaucratic system to one that encourages broader involvement in policy-making and more collaboration among stakeholders. As a result, educators and schools have greater responsibilities to determine the way forward and to develop schools as learning communities.…

  10. An Informatics Approach to Establishing a Sustainable Public Health Community

    Science.gov (United States)

    Kriseman, Jeffrey Michael

    2012-01-01

    This work involved the analysis of a public health system, and the design, development and deployment of enterprise informatics architecture, and sustainable community methods to address problems with the current public health system. Specifically, assessment of the Nationally Notifiable Disease Surveillance System (NNDSS) was instrumental in…

  11. Warming-induced changes in denitrifier community structure modulate the ability of phototrophic river biofilms to denitrify

    International Nuclear Information System (INIS)

    Microbial denitrification is the main nitrogen removing process in freshwater ecosystems. The aim of this study was to show whether and how water warming (+ 2.5 °C) drives bacterial diversity and structuring and how bacterial diversity affects denitrification enzymatic activity in phototrophic river biofilms (PRB). We used water warming associated to the immediate thermal release of a nuclear power plant cooling circuit to produce natural PRB assemblages on glass slides while testing 2 temperatures (mean temperature of 17 °C versus 19.5 °C). PRB were sampled at 2 sampling times during PRB accretion (6 and 21 days) in both temperatures. Bacterial community composition was assessed using ARISA. Denitrifier community abundance and denitrification gene mRNA levels were estimated by q-PCR and qRT-PCR, respectively, of 5 genes encoding catalytic subunits of the denitrification key enzymes. Denitrification enzyme activity (DEA) was measured by the acetylene-block assay at 20 °C. A mean water warming of 2.5 °C was sufficient to produce contrasted total bacterial and denitrifier communities and, therefore, to affect DEA. Indirect temperature effect on DEA may have varied between sampling time, increasing by up to 10 the denitrification rate of 6-day-old PRB and decreasing by up to 5 the denitrification rate of 21-day-old PRB. The present results suggest that indirect effects of warming through changes in bacterial community composition, coupled to the strong direct effect of temperature on DEA already demonstrated in PRB, could modulate dissolved nitrogen removal by denitrification in rivers and streams. - Highlights: •We produced river biofilms in 2 mean temperature conditions: 17 vs 19.5 °C. •We compared their denitrifiers' structuring and functioning in 6d- and 21d-old biofilms. •A difference of 2.5 °C produced contrasted denitrifier communities. •The indirect temperature effect on denitrification activity shifted between biofilm age. •Warming impact

  12. Warming-induced changes in denitrifier community structure modulate the ability of phototrophic river biofilms to denitrify

    Energy Technology Data Exchange (ETDEWEB)

    Boulêtreau, Stéphanie, E-mail: stephanie.bouletreau@univ-tlse3.fr [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Lyautey, Emilie [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Dubois, Sophie [Université de Bordeaux, EPOC - OASU, UMR 5805, Station Marine d' Arcachon, 2 rue du Professeur Jolyet, 33120 Arcachon (France); Compin, Arthur [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Delattre, Cécile; Touron-Bodilis, Aurélie [EDF Recherche et Développement, LNHE (Laboratoire National d' Hydraulique et Environnement), 6 quai Watier, F-78401 Chatou (France); Mastrorillo, Sylvain [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Garabetian, Frédéric [Université de Bordeaux, EPOC - OASU, UMR 5805, Station Marine d' Arcachon, 2 rue du Professeur Jolyet, 33120 Arcachon (France)

    2014-01-01

    Microbial denitrification is the main nitrogen removing process in freshwater ecosystems. The aim of this study was to show whether and how water warming (+ 2.5 °C) drives bacterial diversity and structuring and how bacterial diversity affects denitrification enzymatic activity in phototrophic river biofilms (PRB). We used water warming associated to the immediate thermal release of a nuclear power plant cooling circuit to produce natural PRB assemblages on glass slides while testing 2 temperatures (mean temperature of 17 °C versus 19.5 °C). PRB were sampled at 2 sampling times during PRB accretion (6 and 21 days) in both temperatures. Bacterial community composition was assessed using ARISA. Denitrifier community abundance and denitrification gene mRNA levels were estimated by q-PCR and qRT-PCR, respectively, of 5 genes encoding catalytic subunits of the denitrification key enzymes. Denitrification enzyme activity (DEA) was measured by the acetylene-block assay at 20 °C. A mean water warming of 2.5 °C was sufficient to produce contrasted total bacterial and denitrifier communities and, therefore, to affect DEA. Indirect temperature effect on DEA may have varied between sampling time, increasing by up to 10 the denitrification rate of 6-day-old PRB and decreasing by up to 5 the denitrification rate of 21-day-old PRB. The present results suggest that indirect effects of warming through changes in bacterial community composition, coupled to the strong direct effect of temperature on DEA already demonstrated in PRB, could modulate dissolved nitrogen removal by denitrification in rivers and streams. - Highlights: •We produced river biofilms in 2 mean temperature conditions: 17 vs 19.5 °C. •We compared their denitrifiers' structuring and functioning in 6d- and 21d-old biofilms. •A difference of 2.5 °C produced contrasted denitrifier communities. •The indirect temperature effect on denitrification activity shifted between biofilm age.

  13. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina).

    Science.gov (United States)

    Urbieta, María Sofía; González-Toril, Elena; Bazán, Ángeles Aguilera; Giaveno, María Alejandra; Donati, Edgardo

    2015-03-01

    Copahue is a natural geothermal field (Neuquén province, Argentina) dominated by the Copahue volcano. As a consequence of the sustained volcanic activity, Copahue presents many acidic pools, hot springs and solfataras with different temperature and pH conditions that influence their microbial diversity. The occurrence of microbial biofilms was observed on the surrounding rocks and the borders of the ponds, where water movements and thermal activity are less intense. Microbial biofilms are particular ecological niches within geothermal environments; they present different geochemical conditions from that found in the water of the ponds and hot springs which is reflected in different microbial community structure. The aim of this study is to compare microbial community diversity in the water of ponds and hot springs and in microbial biofilms in the Copahue geothermal field, with particular emphasis on Cyanobacteria and other photosynthetic species that have not been detected before in Copahue. In this study, we report the presence of Cyanobacteria, Chloroflexi and chloroplasts of eukaryotes in the microbial biofilms not detected in the water of the ponds. On the other hand, acidophilic bacteria, the predominant species in the water of moderate temperature ponds, are almost absent in the microbial biofilms in spite of having in some cases similar temperature conditions. Species affiliated with Sulfolobales in the Archaea domain are the predominant microorganism in high temperature ponds and were also detected in the microbial biofilms. PMID:25605537

  14. A novel model of chronic wounds: importance of redox imbalance and biofilm-forming bacteria for establishment of chronicity.

    Directory of Open Access Journals (Sweden)

    Sandeep Dhall

    Full Text Available Chronic wounds have a large impact on health, affecting ∼6.5 M people and costing ∼$25B/year in the US alone. We previously discovered that a genetically modified mouse model displays impaired healing similar to problematic wounds in humans and that sometimes the wounds become chronic. Here we show how and why these impaired wounds become chronic, describe a way whereby we can drive impaired wounds to chronicity at will and propose that the same processes are involved in chronic wound development in humans. We hypothesize that exacerbated levels of oxidative stress are critical for initiation of chronicity. We show that, very early after injury, wounds with impaired healing contain elevated levels of reactive oxygen and nitrogen species and, much like in humans, these levels increase with age. Moreover, the activity of anti-oxidant enzymes is not elevated, leading to buildup of oxidative stress in the wound environment. To induce chronicity, we exacerbated the redox imbalance by further inhibiting the antioxidant enzymes and by infecting the wounds with biofilm-forming bacteria isolated from the chronic wounds that developed naturally in these mice. These wounds do not re-epithelialize, the granulation tissue lacks vascularization and interstitial collagen fibers, they contain an antibiotic-resistant mixed bioflora with biofilm-forming capacity, and they stay open for several weeks. These findings are highly significant because they show for the first time that chronic wounds can be generated in an animal model effectively and consistently. The availability of such a model will significantly propel the field forward because it can be used to develop strategies to regain redox balance that may result in inhibition of biofilm formation and result in restoration of healthy wound tissue. Furthermore, the model can lead to the understanding of other fundamental mechanisms of chronic wound development that can potentially lead to novel therapies.

  15. Community Response to a Heavy Precipitation Event in High Temperature, Chemosynthetic Biofilms and Sediments

    Science.gov (United States)

    Meyer-Dombard, D. R.; Loiacono, S. T.; Shock, E.

    2012-12-01

    Coordinated analysis of the "Bison Pool" (BP) Environmental Genome and a complementary contextual geochemical dataset of ~75 parameters revealed biogeochemical cycling and metabolic and microbial community shifts in a Yellowstone National Park hot spring ecosystem (1). The >22m outflow of BP is a gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of nutrients. Microbial life at BP transitions from a 92°C chemosynthetic community in the BP source pool to a 56°C photosynthetic mat community. Metagenomic data at BP showed the potential for both heterotrophic and autotrophic carbon metabolism (rTCA and acetyl-CoA cycles) in the highest temperature, chemosynthetic regions (1). This region of the outflow is dominated by Aquificales and Pyrococcus relatives, with smaller contributions of heterotrophic Bacteria. Following a 2h heavy precipitation event we observed an influx of exogenous organic material into the source pool supplied from the meadow surrounding the BP area. We sampled biomass and fluid at several locations within the outflow immediately following the event, and on several occasions for the next eight days. Elemental analysis and carbon and nitrogen isotopic analyses were conducted on biomass and sediment, and dissolved organic and inorganic carbon content and δ13C of fluids were analyzed. DNA and RNA were extracted, and following RT-PCR, nitrogen cycle functional gene expression was evaluated. Previous work at BP has shown that chemosynthetic biomass may carry isotopic signatures of fractionation during carbon fixation, via the acetyl-CoA and rTCA cycles (2). However, the addition of exogenous organic carbon during the rain event had an immediate and dramatic effect on the sediments and biofilms in the chemosynthetic zone of the outflow. Dissolved organic carbon was the highest measured in six years. Chemosynthetic biomass responded by incorporating the organic carbon. Carbon isotopic signatures in chemosynthetic

  16. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  17. In Situ Ecophysiology of Microbial Biofilm Communities Analyzed by CMEIAS Computer-Assisted Microscopy at Single-Cell Resolution

    Directory of Open Access Journals (Sweden)

    Youssef G. Yanni

    2013-06-01

    Full Text Available This paper describes the utility of CMEIAS (Center for Microbial Ecology Image Analysis System computer-assisted microscopy to extract data from accurately segmented images that provide 63 different insights into the ecophysiology of microbial populations and communities within biofilms and other habitats. Topics include quantitative assessments of: (i morphological diversity as an indicator of impacts that substratum physicochemistries have on biofilm community structure and dominance-rarity relationships among populations; (ii morphotype-specific distributions of biovolume body size that relate microbial allometric scaling, metabolic activity and growth physiology; (iii fractal geometry of optimal cellular positioning for efficient utilization of allocated nutrient resources; (iv morphotype-specific stress responses to starvation, environmental disturbance and bacteriovory predation; (v patterns of spatial distribution indicating positive and negative cell–cell interactions affecting their colonization behavior; and (vi significant methodological improvements to increase the accuracy of color-discriminated ecophysiology, e.g., differentiation of cell viability based on cell membrane integrity, cellular respiratory activity, phylogenetically differentiated substrate utilization, and N-acyl homoserine lactone-mediated cell–cell communication by bacteria while colonizing plant roots. The intensity of these ecophysiological attributes commonly varies at the individual cell level, emphasizing the importance of analyzing them at single-cell resolution and the proper spatial scale at which they occur in situ.

  18. Purification of high ammonia wastewater in a biofilm airlift loop bioreactor with microbial communities analysis.

    Science.gov (United States)

    Qiu, Chunsheng; Zhang, Dandan; Sun, Liping; Wen, Jianping

    2015-01-01

    A 70 m(3) gas-liquid-solid three-phase flow airlift loop bioreactor, in which biofilm attached on granular active carbon carriers, was used for purification of the high ammonia wastewater from bioethanol production. Under the optimum operating conditions, COD and NH4 (+)-N average removal rate of 89.0 and 98.6 % were obtained at hydraulic retention time of 10 h. Scanning electron microscopy was applied for observation of the biofilm formation. High contaminants removal efficiency was achieved by holding high biomass concentration in the reactor due to the attached biofilm over the carriers. The 16S rRNA gene clone library analysis indicated that 68.6 % of the clones were affiliated with the two phyla Bacteroidetes and Proteobacteria, and residual clones clustered with various sequences from uncultured bacteria. The presence of various anoxic/anaerobic bacteria indicated that the oxygen gradient inside the biofilm could provide appropriate micro-environment for nitrogen removal through simultaneous nitrification and denitrification. PMID:25344088

  19. Diversity of Bacterial Biofilm Communities on Sprinklers from Dairy Farm Cooling Systems in Israel.

    Science.gov (United States)

    Shpigel, Nahum Y; Pasternak, Zohar; Factor, Gilad; Gottlieb, Yuval

    2015-01-01

    On dairy farms in hot climates worldwide, cows suffer from heat stress, which is alleviated by the use of water cooling systems. Sprinklers and showerheads are known to support the development of microbial biofilms, which can be a source of infection by pathogenic microorganisms. The aim of this study was to investigate the presence of microbial biofilms in dairy cooling systems, and to analyze their population compositions using culture-independent technique, 16S rRNA gene sequencing. Biofilm samples were collected on eight dairy farms from 40 sprinklers and the microbial constituents were identified by deep sequencing of the 16S rRNA gene. A total of 9,374 operational taxonomic units (OTUs) was obtained from all samples. The mean richness of the samples was 465 ± 268 OTUs which were classified into 26 different phyla; 76% of the reads belonged to only three phyla: Proteobacteria, Actinobacteria and Firmicutes. Although the most prevalent OTUs (Paracoccus, Methyloversatilis, Brevundimonas, Porphyrobacter, Gp4, Mycobacterium, Hyphomicrobium, Corynebacterium and Clostridium) were shared by all farms, each farm formed a unique microbial pattern. Some known potential human and livestock pathogens were found to be closely related to the OTUs found in this study. This work demonstrates the presence of biofilm in dairy cooling systems which may potentially serve as a live source for microbial pathogens. PMID:26407190

  20. Biofilm structure and its influence on clogging in drip irrigation emitters distributing reclaimed wastewater

    Institute of Scientific and Technical Information of China (English)

    YAN Dazhuang; BAI Zhihui; Mike Rowan; GU Likun; Ren Shumei; YANG Peiling

    2009-01-01

    Using reclaimed wastewater for crop irrigation is a practical alternative to discharge wastewater treatment plant effluents into surface waters.However,biofouling has been identified as a major contributor to emitter clogging in drip irrigation systems distributing reclaimed wastewater.Little is known about the biofilm structure and its influence on clogging in the drip emitter flow path.This study was first to investigate the microbial characteristics of mature biofilms present in the emitters and the effect of flow path structures on the biofilm microbial communities.The analysis of biofilm matrix structure using a scanning electron microscopy (SEM) revealed that particles in the matrix of the biofilm coupled extracellular polysaccharides (EPS) and formed sediment in the emitter flow path.Analysis of biofilm mass including protein,polysaccharide and phospholipid fatty acids (PLFAs) showed that emitter flow path style influenced biofilm community structure and diversity.The correlations of biofilm biomass and discharge reduction after 360 h irrigation were computed and suggest that PFLAs provide the best correlation coefficient.Comparatively,the emitter with the unsymmetrical dentate structure and shorter flow path (Emitter C) had the best anti-clogging capability.By optimizing the dentate structure,the internal flow pattern within the flow path could be enhanced as an important method to control the biofilm within emitter flow path.This study established electron microscope techniques and biochemical microbial analysis methods that may provide a framework for future emitter biofilm studies.

  1. Nutrient transitions are a source of persisters in Escherichia coli biofilms.

    Directory of Open Access Journals (Sweden)

    Stephanie M Amato

    Full Text Available Chronic and recurrent infections have been attributed to persisters in biofilms, and despite this importance, the mechanisms of persister formation in biofilms remain unclear. The plethora of biofilm characteristics that could give rise to persisters, including slower growth, quorum signaling, oxidative stress, and nutrient heterogeneity, have complicated efforts to delineate formation pathways that generate persisters during biofilm development. Here we sought to specifically determine whether nutrient transitions, which are a common metabolic stress encountered within surface-attached communities, stimulate persister formation in biofilms and if so, to then identify the pathway. To accomplish this, we established an experimental methodology where nutrient availability to biofilm cells could be controlled exogenously, and then used that method to discover that diauxic carbon source transitions stimulated persister formation in Escherichia coli biofilms. Previously, we found that carbon source transitions stimulate persister formation in planktonic E. coli cultures, through a pathway that involved ppGpp and nucleoid-associated proteins, and therefore, tested the functionality of that pathway in biofilms. Biofilm persister formation was also found to be dependent on ppGpp and nucleoid-associated proteins, but the importance of specific proteins and enzymes between biofilm and planktonic lifestyles was significantly different. Data presented here support the increasingly appreciated role of ppGpp as a central mediator of bacterial persistence and demonstrate that nutrient transitions can be a source of persisters in biofilms.

  2. Mucosal biofilms of Candida albicans

    OpenAIRE

    Ganguly, Shantanu; Mitchell, Aaron P.

    2011-01-01

    Biofilms are microbial communities that form on surfaces and are embedded in an extracellular matrix. C. albicans forms pathogenic mucosal biofilms that are evoked by changes in host immunity or mucosal ecology. Mucosal surfaces are inhabited by many microbial species; hence these biofilms are polymicrobial. Several recent studies have applied paradigms of biofilm analysis to study mucosal C. albicans infections. These studies reveal that the Bcr1 transcription factor is a master regulator of...

  3. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display a...... remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because the...... use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  4. Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community

    Directory of Open Access Journals (Sweden)

    Parro Víctor

    2010-06-01

    Full Text Available Abstract Background Extreme acidic environments are characterized by their high metal content and lack of nutrients (oligotrophy. Macroscopic biofilms and filaments usually grow on the water-air interface or under the stream attached to solid substrates (streamers. In the Río Tinto (Spain, brown filaments develop under the water stream where the Gram-negative iron-oxidizing bacteria Leptospirillum spp. (L. ferrooxidans and L. ferriphilum and Acidithiobacillus ferrooxidans are abundant. These microorganisms play a critical role in bioleaching processes for industrial (biominery and environmental applications (acid mine drainage, bioremediation. The aim of this study was to investigate the physiological differences between the free living (planktonic and the sessile (biofilm associated lifestyles of Leptospirillum spp. as part of its natural extremely acidophilic community. Results Total RNA extracted from environmental samples was used to determine the composition of the metabolically active members of the microbial community and then to compare the biofilm and planktonic environmental transcriptomes by hybridizing to a genomic microarray of L. ferrooxidans. Genes up-regulated in the filamentous biofilm are involved in cellular functions related to biofilm formation and maintenance, such as: motility and quorum sensing (mqsR, cheAY, fliA, motAB, synthesis of cell wall structures (lnt, murA, murB, specific proteases (clpX/clpP, stress response chaperons (clpB, clpC, grpE-dnaKJ, groESL, etc. Additionally, genes involved in mixed acid fermentation (poxB, ackA were up-regulated in the biofilm. This result, together with the presence of small organic acids like acetate and formate (1.36 mM and 0.06 mM respectively in the acidic (pH 1.8 water stream, suggests that either L. ferrooxidans or other member of the microbial community are producing acetate in the acidophilic biofilm under microaerophilic conditions. Conclusions Our results indicate that the

  5. Disturbance of the bacterial cell wall specifically interferes with biofilm formation.

    Science.gov (United States)

    Bucher, Tabitha; Oppenheimer-Shaanan, Yaara; Savidor, Alon; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2015-12-01

    In nature, bacteria communicate via chemical cues and establish complex communities referred to as biofilms, wherein cells are held together by an extracellular matrix. Much research is focusing on small molecules that manipulate and prevent biofilm assembly by modifying cellular signalling pathways. However, the bacterial cell envelope, presenting the interface between bacterial cells and their surroundings, is largely overlooked. In our study, we identified specific targets within the biosynthesis pathways of the different cell wall components (peptidoglycan, wall teichoic acids and teichuronic acids) hampering biofilm formation and the anchoring of the extracellular matrix with a minimal effect on planktonic growth. In addition, we provide convincing evidence that biofilm hampering by transglycosylation inhibitors and D-Leucine triggers a highly specific response without changing the overall protein levels within the biofilm cells or the overall levels of the extracellular matrix components. The presented results emphasize the central role of the Gram-positive cell wall in biofilm development, resistance and sustainment. PMID:26472159

  6. Process Performance and Bacterial Community Structure Under Increasing Influent Disturbances in a Membrane-Aerated Biofilm Reactor.

    Science.gov (United States)

    Tian, Hailong; Yan, Yingchun; Chen, Yuewen; Wu, Xiaolei; Li, Baoan

    2016-02-01

    The membrane-aerated biofilm reactor (MABR) is a promising municipal wastewater treatment process. In this study, two cross-flow MABRs were constructed to explore the carbon and nitrogen removal performance and bacterial succession, along with changes of influent loading shock comprising flow velocity, COD, and NH4-N concentrations. Redundancy analysis revealed that the function of high flow velocity was mainly embodied in facilitating contaminants diffusion and biosorption rather than the success of overall bacterial populations (p > 0.05). In contrast, the influent NH4-N concentration contributed most to the variance of reactor efficiency and community structure (p < 0.05). Pyrosequencing results showed that Anaerolineae, and Beta- and Alphaproteobacteria were the dominant groups in biofilms for COD and NH4-N removal. Among the identified genera, Nitrosomonas and Nitrospira were the main nitrifiers, and Hyphomicrobium, Hydrogenophaga, and Rhodobacter were the key denitrifiers. Meanwhile, principal component analysis indicated that bacterial shift in MABR was probably the combination of stochastic and deterministic processes. PMID:26528534

  7. Antifouling coatings influence both abundance and community structure of colonizing biofilms: a case study in the Northwestern Mediterranean Sea.

    Science.gov (United States)

    Camps, Mercedes; Barani, Aude; Gregori, Gérald; Bouchez, Agnès; Le Berre, Brigitte; Bressy, Christine; Blache, Yves; Briand, Jean-François

    2014-08-01

    When immersed in seawater, substrates are rapidly colonized by both micro- and macroorganisms. This process is responsible for important economic and ecological prejudices, particularly when related to ship hulls or aquaculture nets. Commercial antifouling coatings are supposed to reduce biofouling, i.e., micro- and macrofoulers. In this study, biofilms that primarily settled on seven different coatings (polyvinyl chloride [PVC], a fouling release coating [FRC], and five self-polishing copolymer coatings [SPC], including four commercial ones) were quantitatively studied, after 1 month of immersion in summer in the Toulon Bay (Northwestern Mediterranean Sea, France), by using flow cytometry (FCM), microscopy, and denaturing gradient gel electrophoresis. FCM was used after a pretreatment to separate cells from the biofilm matrix, in order to determine densities of heterotrophic bacteria, picocyanobacteria, and pico- and nanoeukaryotes on these coatings. Among diatoms, the only microphytobenthic class identified by microscopy, Licmophora, Navicula, and Nitzschia were determined to be the dominant taxa. Overall, biocide-free coatings showed higher densities than all other coatings, except for one biocidal coating, whatever the group of microorganisms. Heterotrophic bacteria always showed the highest densities, and diatoms showed the lowest, but the relative abundances of these groups varied depending on the coating. In particular, the copper-free SPC failed to prevent diatom settlement, whereas the pyrithione-free SPC exhibited high picocyanobacterial density. These results highlight the interest in FCM for antifouling coating assessment as well as specific selection among microbial communities by antifouling coatings. PMID:24907329

  8. Development of Guidelines for the Establishment and Operation of a California Community College Foundation.

    Science.gov (United States)

    Nusz, Phyllis Jane

    A study was conducted to research and develop guidelines for the establishment and operation of a California community college foundation. The study involved a review of state regulations for the establishment of a non-profit foundation, a literature review, participation in two fund-raising seminars, personal interviews with foundation staff at…

  9. Establishment and Implementation of the Balingasay Marine Protected Area: A Community-Based Approach

    Directory of Open Access Journals (Sweden)

    Severino Salmo III

    2000-12-01

    Full Text Available A community-based approach in the establishment and implementation of a marine protected area (MPA in Balingasay, Bolinao, Pangasinan is presented. The factors necessary to facilitate the successful establishment and implementation of a community-managed MPA include heightening of environmental awareness, community mobilization, and legal/institutional and financial assistance. A heightened environmental awareness encouraged the community to undertake resource management action. The formation of a people’s organization, SAMMABAL (Samahan ng mga Mangingisda at Mamamayan ng Balingasay, was crucial in assessing environmental problems (e.g., overfishing and identifying the establishment of an MPA as a management tool to address the problem. SAMMABAL was also instrumental in eliciting community support for the issuance of a municipal ordinance in the establishment of the MPA. Subsequently, the organization initiated the patrolling of the MPA. Institutions involved in the community-based management of the MPA also included the multi-sectoral council (BRMC – Balingasay Resource Management Council and representatives from the barangay council and the municipal government. This institutional arrangement has proven to be very resilient, indicating a high probability of sustaining its successes despite some obstacles and shortcomings. Clear delineation of the role and functions of the institutions and the stakeholders was essential in advancing the initiative. This case study will draw on the lessons from the experience of a four-year community-managed MPA.

  10. Host Responses to Biofilm.

    Science.gov (United States)

    Watters, C; Fleming, D; Bishop, D; Rumbaugh, K P

    2016-01-01

    From birth to death the human host immune system interacts with bacterial cells. Biofilms are communities of microbes embedded in matrices composed of extracellular polymeric substance (EPS), and have been implicated in both the healthy microbiome and disease states. The immune system recognizes many different bacterial patterns, molecules, and antigens, but these components can be camouflaged in the biofilm mode of growth. Instead, immune cells come into contact with components of the EPS matrix, a diverse, hydrated mixture of extracellular DNA (bacterial and host), proteins, polysaccharides, and lipids. As bacterial cells transition from planktonic to biofilm-associated they produce small molecules, which can increase inflammation, induce cell death, and even cause necrosis. To survive, invading bacteria must overcome the epithelial barrier, host microbiome, complement, and a variety of leukocytes. If bacteria can evade these initial cell populations they have an increased chance at surviving and causing ongoing disease in the host. Planktonic cells are readily cleared, but biofilms reduce the effectiveness of both polymorphonuclear neutrophils and macrophages. In addition, in the presence of these cells, biofilm formation is actively enhanced, and components of host immune cells are assimilated into the EPS matrix. While pathogenic biofilms contribute to states of chronic inflammation, probiotic Lactobacillus biofilms cause a negligible immune response and, in states of inflammation, exhibit robust antiinflammatory properties. These probiotic biofilms colonize and protect the gut and vagina, and have been implicated in improved healing of damaged skin. Overall, biofilms stimulate a unique immune response that we are only beginning to understand. PMID:27571696

  11. Biofilm dispersion in Pseudomonas aeruginosa.

    Science.gov (United States)

    Kim, Soo-Kyoung; Lee, Joon-Hee

    2016-02-01

    In recent decades, many researchers have written numerous articles about microbial biofilms. Biofilm is a complex community of microorganisms and an example of bacterial group behavior. Biofilm is usually considered a sessile mode of life derived from the attached growth of microbes to surfaces, and most biofilms are embedded in self-produced extracellular matrix composed of extracellular polymeric substances (EPSs), such as polysaccharides, extracellular DNAs (eDNA), and proteins. Dispersal, a mode of biofilm detachment indicates active mechanisms that cause individual cells to separate from the biofilm and return to planktonic life. Since biofilm cells are cemented and surrounded by EPSs, dispersal is not simple to do and many researchers are now paying more attention to this active detachment process. Unlike other modes of biofilm detachment such as erosion or sloughing, which are generally considered passive processes, dispersal occurs as a result of complex spatial differentiation and molecular events in biofilm cells in response to various environmental cues, and there are many biological reasons that force bacterial cells to disperse from the biofilms. In this review, we mainly focus on the spatial differentiation of biofilm that is a prerequisite for dispersal, as well as environmental cues and molecular events related to the biofilm dispersal. More specifically, we discuss the dispersal-related phenomena and mechanisms observed in Pseudomonas aeruginosa, an important opportunistic human pathogen and representative model organism for biofilm study. PMID:26832663

  12. In situ gene expression in mixed-culture biofilms: Evidence of metabolic interactions between community members

    DEFF Research Database (Denmark)

    Møller, Søren; Sternberg, Claus; Andersen, Jens Bo;

    1998-01-01

    are involved in the biodegradation of toluene and related aromatic compounds. The upper-pathway promoter (Pu) and the meta-pathway promoter (Pm) from the TOL plasmid were fused independently to the gene coding for the green fluorescent protein (GFP), and expression from these promoters was studied in P. putida......, Furthermore, in fixed biofilm samples organism identity was determined and gene expression was visualized at the same time by combining GFP expression with in situ hybridization with fluorescence-labeled 16S rRNA targeting probes. This combination of techniques is a powerful approach for investigating...

  13. Effect of interspecific competition on trait variation in Phaeobacter inhibens biofilms.

    Science.gov (United States)

    Lutz, Carla; Thomas, Torsten; Steinberg, Peter; Kjelleberg, Staffan; Egan, Suhelen

    2016-05-01

    Interspecific competition between bacteria shapes community dynamics, causing evolutionary changes that affect life history traits. Here, we studied the role of interspecific competition on the generation of trait diversity using a two-species model system of marine, surface-associated bacteria. Bacterial biofilms of Phaeobacter inhibens were established alone or in competition with Pseudoalteromonas tunicata and phenotypic traits of dispersal cells were assessed during biofilm development. P. inhibens dispersal isolates from competition biofilms displayed less phenotypic variation, were superior competitors, were less susceptible to predation, and reached higher planktonic biomass than isolates from noncompetition biofilms. Moreover, the maintenance of competitive ability exhibited by individual dispersal isolates from competition biofilms did not result in an obvious reduction (measured as a negative trait correlation) in other traits, but was rather positively correlated with planktonic growth. However, where negative correlations between traits were found, they were exhibited by individuals derived from noncompetitive biofilms, whose populations also had a higher degree of trait variation than those from biofilms experiencing competition. Our observations indicate that interspecific competition during biofilm formation is important for maintaining both competitive ability and affects variation in ecologically relevant traits. Given that most bacteria in biofilms exist in diverse, multispecies communities, an understanding of how bacteria respond to biotic factors such as interspecific competition is critical for understanding the dynamics of bacterial populations in both ecological and evolutionary time. PMID:26914307

  14. Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting

    KAUST Repository

    Zhang, Weipeng

    2015-11-28

    The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep sea environments. Using artificial surface-based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of the present study sheds new light on microbial community assembly in special habitats and bridges a gap in species sorting theory.

  15. Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting.

    Science.gov (United States)

    Zhang, Weipeng; Tian, Renmao; Bo, Yang; Cao, Huiluo; Cai, Lin; Chen, Lianguo; Zhou, Guowei; Sun, Jin; Zhang, Xixiang; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2016-05-01

    The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep-sea environments. Using artificial surface-based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of this study shed new light on microbial community assembly in special habitats and bridge a gap in species sorting theory. PMID:26614914

  16. Community perceptions towards the establishment of an urban forest plantation: a case of Dzivaresekwa, Zimbabwe

    Directory of Open Access Journals (Sweden)

    A. Mureva

    2014-06-01

    Full Text Available The health of urban forest communities not only depend on the government and nongovernmental organizations, but also strongly rely on local community stewardship. A study was carried out to assess community perceptions on the establishment of an urban forest plantation among urban residents in Dzivaresekwa, an urban area in Harare. Randomized systematic sampling was used to select 150 households and one resident per household was interviewed using a pretested questionnaire with both closed and open-ended questions. The objectives of the study were to determine how age and gender and employment status variables, were related to the urban residents’ perceptions towards establishment of a forest plantation in an urban area. Most females (58.3% viewed the plantation as a threat while most men (51.7% viewed the plantation as a recreational area. The highest proportion (61.9% of the middle age group (21-40 years perceived the plantation as a source of employment. There was a statistically significant relationship (p = 0.040 between gender and the general perception of establishing a forest plantation in the urban area. However, there was no statistically significant relationship (p = 0.203 between age groups and the perception of establishing a forest plantation in the urban area. It is concluded that the community had diverse perceptions on urban community forestry.

  17. Uncertainty of establishment scheme in the Community Land Model-Dynamic Global Vegetation Model

    Science.gov (United States)

    Song, X.; Zeng, X.

    2010-12-01

    Dynamic global vegetation models are very important tools to simulate and predict the relationship between terrestrial ecosystem processes and climate change. They usually consist of several main sub-models, such as establishment, growth, mortality due to stress, competition, reproductive and so forth. In this study, we focus on the establishment sub-model. Establishment sub-model describes the processes of germination of tree seeds and establishment of seedlings. However, due to the complexity of the ecological process and the lack of observation data, current DGVMs use different parameterization schemes of establishment, and the uncertainties of these establishment scheme as well as their impacts on vegetation distribution remain largely unknown. Our work is to introduce several new different establishment schemes, each based on different physical and ecological considerations, into a modified Community Land Model - Dynamic Global Vegetation Model (CLM-DGVM). The sensitivities of the vegetation distribution to different establishment schemes and some essential parameters in the schemes are investigated in different vegetation zones. Our research indicates that establishment scheme has remarkable effects not only on the percent of coverage and population density of different plant functional types (PFTs) but also the community structure such as coexistence of PFTs and even the dominant vegetation. Such changes will alter the ecosystem functioning, and hence have further impacts on climate through the vegetation-atmosphere feedback.

  18. Impact of early colonizers on in vitro subgingival biofilm formation.

    Directory of Open Access Journals (Sweden)

    Thomas W Ammann

    Full Text Available The aim of this study was to investigate the impact of early colonizing species on the structure and the composition of the bacterial community developing in a subgingival 10-species biofilm model system. The model included Streptococcus oralis, Streptococcus anginosus, Actinomycesoris, Fusobacterium nucleatum subsp. nucleatum, Veillonella dispar, Campylobacter rectus, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. Based on literature, we considered Streptococcus oralis, Streptococcus anginosus, and Actinomyces oris as early colonizers and examined their role in the biofilms by either a delayed addition to the consortium, or by not inoculating at all the biofilms with these species. We quantitatively evaluated the resulting biofilms by real-time quantitative PCR and further compared the structures using confocal laser scanning microscopy following fluorescence in situ hybridisation. The absence of the early colonizers did not hinder biofilm formation. The biofilms reached the same total counts and developed to normal thickness. However, quantitative shifts in the abundances of individual species were observed. In the absence of streptococci, the overall biofilm structure appeared looser and more dispersed. Moreover, besides a significant increase of P. intermedia and a decrease of P. gingivalis , P. intermedia appeared to form filamented long chains that resembled streptococci. A. oris, although growing to significantly higher abundance in absence of streptococci, did not have a visible impact on the biofilms. Hence, in the absence of the early colonizers, there is a pronounced effect on P. intermedia and P. gingivalis that may cause distinct shifts in the structure of the biofilm. Streptococci possibly facilitate the establishment of P. gingivalis into subgingival biofilms, while in their absence P. intermedia became more dominant and forms elongated chains.

  19. Qualitative community stability determines parasite establishment and richness in estuarine marshes

    OpenAIRE

    Tavis K Anderson; Sukhdeo, Michael V. K.

    2013-01-01

    The establishment of parasites with complex life cycles is generally thought to be regulated by free-living species richness and the stability of local ecological interactions. In this study, we test the prediction that stable host communities are prerequisite for the establishment of complex multi-host parasite life cycles. The colonization of naïve killifish, Fundulus heteroclitus, by parasites was investigated in 4 salt marsh sites that differed in time since major ecological restoration, ...

  20. BV and non-BV associated Gardnerella vaginalis establish similar synergistic interactions with other BV-associated microorganisms in dual-species biofilms.

    Science.gov (United States)

    Castro, Joana; Cerca, Nuno

    2015-12-01

    Dual-species biofilm formation between Gardnerella vaginalis strains isolated from women with or without bacterial vaginosis (BV) and other 24 BV-associated microorganisms support that the key difference in virulence potential between BV-negative and BV-positive G. vaginalis strains seems not to be related with biofilm maturation. PMID:26505928

  1. BV and non-BV associated Gardnerella vaginalis establish similar synergistic interactions with other BV-associated microorganisms in dual-species biofilms

    OpenAIRE

    Castro, J.; Cerca, Nuno

    2015-01-01

    Dual-species biofilm formation between Gardnerella vaginalis strains isolated from women with or without bacterial vaginosis (BV) and other 24 BV-associated microorganisms support that the key difference in virulence potential between BV-negative and BV-positive G. vaginalis strains seems not to be related with biofilm maturation.

  2. Establishing a community-wide DNA barcode library as a new tool for arctic research

    DEFF Research Database (Denmark)

    Wirta, H.; Várkonyi, G.; Rasmussen, C.;

    2016-01-01

    DNA sequences offer powerful tools for describing the members and interactions of natural communities. In this study, we establish the to-date most comprehensive library of DNA barcodes for a terrestrial site, including all known macroscopic animals and vascular plants of an intensively studied...

  3. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly;

    2016-01-01

    abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects and...... vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during this...... early stage of plant community development. Effects of herbivores on plant biomass depended on plant species or genus but not on plant status (i.e., exotic vs native). Thus, aboveground herbivory did not promote the dominance of exotic plant species during early establishment of the phylogenetically...

  4. Qualitative community stability determines parasite establishment and richness in estuarine marshes

    Directory of Open Access Journals (Sweden)

    Tavis K. Anderson

    2013-06-01

    Full Text Available The establishment of parasites with complex life cycles is generally thought to be regulated by free-living species richness and the stability of local ecological interactions. In this study, we test the prediction that stable host communities are prerequisite for the establishment of complex multi-host parasite life cycles. The colonization of naïve killifish, Fundulus heteroclitus, by parasites was investigated in 4 salt marsh sites that differed in time since major ecological restoration, and which provided a gradient in free-living species richness. The richness of the parasite community, and the rate at which parasite species accumulated in the killifish, were similar between the low diversity unrestored site and the two high diversity (10- and 20-year restored marsh sites. The parasite community in the newly restored marsh (0 year included only directly-transmitted parasite species. To explain the paradox of a low diversity, highly invaded salt marsh (unrestored having the same parasite community as highly diverse restored marsh sites (10 and 20 yrs we assessed qualitative community stability. We find a significant correlation between system stability and parasite species richness. These data suggest a role for local stability in parasite community assembly, and support the idea that stable trophic relationships are required for the persistence of complex parasite life cycles.

  5. Interactions in multispecies biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Ren, Dawei; Bjarnsholt, Thomas;

    2014-01-01

    The recent focus on complex bacterial communities has led to the recognition of interactions across species boundaries. This is particularly pronounced in multispecies biofilms, where synergistic interactions impact the bacterial distribution and overall biomass produced. Importantly, in a number...... of settings, the interactions in a multispecies biofilm affect its overall function, physiology, or surroundings, by resulting in enhanced resistance, virulence, or degradation of pollutants, which is of significant importance to human health and activities. The underlying mechanisms causing these...

  6. Biofilm in endodontics: A review

    Science.gov (United States)

    Jhajharia, Kapil; Parolia, Abhishek; Shetty, K Vikram; Mehta, Lata Kiran

    2015-01-01

    Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilms’ formation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to

  7. Sulfur as a Matrix for the Development of Microbial Biofilm Communities

    Science.gov (United States)

    Parker, C.; Bell, E.; Johnson, J. E.; Ma, X.; Stamps, B. W.; Rideout, J.; Johnson, H. A.; Vuono, D.; Spear, J. R.; Hanselmann, K.

    2013-12-01

    The high temperature, low oxygen, and high sulfide concentration of many hot springs select for a low diversity of organisms. The stringent requirements for growth and survival limit the types of interactions, which allow the microbial sulfur metabolism to be examined in depth. We combined geochemical, microbial and molecular data to understand mat development in the warm, oxygen-poor sulfidic Stinking Spring, Utah, USA. The upper flow zone of this spring has a variety of observable microbial biofilm structures that are linked to the activities of both sulfide-oxidizing and oxygenic bacteria. The diverse architecture of the microbial assemblages consist of bulbous ridge structures on the bottom of the streambed, floating mats that cover a large portion of the water surface area, and two morphologically different streamers; green long filaments and white shorter filaments, which both contain large amounts of elemental sulfur. We performed structural analysis using phase contrast and epifluorescence microscopy, and SEM coupled with EDS mapping. Amplicon sequenced 16S rRNA genes analyzed by QIIME and ARB indicated that the predominant organisms present were the cyanobacterial genus Leptolyngbya, and an ɛ-Proteobacteria closely related to the sulfur oxidizing genus Sulfurovum. Metagenomic analysis was conducted on six libraries from three locations using MG-RAST to analyze for genes associated with sulfur metabolism, specifically sulfur oxidation (sox) genes. The presence of sox genes and the microbial sulfur deposition strategy changes downstream as the sulfide concentration decreases. When sulfide is low, the streamers themselves become white and shorter with elemental sulfur deposited intracellularly, and diatoms seem to dominate over cyanobacteria, but do not form associations with the streamer structures. We propose that the microbial biofilms and green streamers present in the sulfide-rich section of the stream are formed in a multi-step process. Initial growth

  8. Virulence aspects of Staphylococcus epidermidis : biofilm formations and Poly-N-Acetyl-Glucosamine production

    OpenAIRE

    Cerca, Nuno

    2006-01-01

    Tese Doutoramento em Engenharia Química e Biológica Staphylococcus epidermidis and other Staphylococci are now well established as major nosocomial pathogens associated with infections of indwelling medical devices. The major virulence factor of these organisms is their ability to adhere to devices and form biofilms. Biofilms are complex microbial communities wherein bacteria acquire different characteristics from their planktonic counterparts, like enhanced resistance to antibiotics and h...

  9. Composition of Microbial Oral Biofilms during Maturation in Young Healthy Adults

    OpenAIRE

    Langfeldt, D.; Neulinger, S.; Heuer, W.; Staufenbiel, I.; S. Künzel; Baines, J.; Eberhard, J; R. Schmitz

    2014-01-01

    In the present study we aimed to analyze the bacterial community structure of oral biofilms at different maturation stages in young healthy adults. Oral biofilms established on membrane filters were collected from 32 human subjects after 5 different maturation intervals (1, 3, 5, 9 and 14 days) and the respective phylogenetic diversity was analyzed by 16S rDNA amplicon sequencing. Our analyses revealed highly diverse entire colonization profiles, spread into 8 phyla/candidate divisions and in...

  10. Cometabolic degradation of lincomycin in a Sequencing Batch Biofilm Reactor (SBBR) and its microbial community.

    Science.gov (United States)

    Li, Yancheng; Zhou, Jian; Gong, Benzhou; Wang, Yingmu; He, Qiang

    2016-08-01

    Cometabolism technology was employed to degrade lincomycin wastewater in Sequencing Batch Biofilm Reactor (SBBR). In contrast with the control group, the average removal rate of lincomycin increased by 56.0% and Total Organic Carbon (TOC) increased by 52.5% in the cometabolic system with glucose as growth substrate. Under the same condition, Oxidation-Reduction Potential (ORP) was 85.1±7.3mV in cometabolic system and 198.2±8.4mV in the control group, indicating that glucose changed the bulk ORP and created an appropriate growing environment for function bacteria. Functional groups of lincomycin were effectively degraded in cometabolic system proved by FTIR and GC-MS. Meanwhile, results of DGGE and 16S rDNA showed great difference in dominant populations between cometabolic system and the control group. In cometabolic system, Roseovarius (3.35%), Thiothrix (2.74%), Halomonas (2.49%), Ignavibacterium (2.02%), and TM7_genus_incertae_sedis (1.93%) were verified as dominant populations at genus level. Cometabolism may be synergistically caused by different functional dominant bacteria. PMID:27183234

  11. Influence of flow on the structure of bacterial biofilms.

    OpenAIRE

    Stoodley, Paul; Boyle, John D.; Lappin-Scott, Hilary M.

    2000-01-01

    Bacteria attached to surfaces in biofilms are responsible for the contamination of industrial processes and many types of microbial infections and disease. Once established, biofilms are notoriously difficult to eradicate. A more complete understanding of how biofilms form and behave is crucial if we are to predict, and ultimately control, biofilm processes. A major breakthrough in biofilm research came in the early 1990’s when confocal scanning laser microscopy (CSLM) showed that biofilms fo...

  12. The ``Swiss cheese'' instability of bacterial biofilms

    Science.gov (United States)

    Jang, Hongchul; Rusconi, Roberto; Stocker, Roman

    2012-11-01

    Bacteria often adhere to surfaces, where they develop polymer-encased communities (biofilms) that display dramatic resistance to antibiotic treatment. A better understanding of cell detachment from biofilms may lead to novel strategies for biofilm disruption. Here we describe a new detachment mode, whereby a biofilm develops a nearly regular array of ~50-100 μm holes. Using surface-treated microfluidic devices, we create biofilms of controlled shape and size. After the passage of an air plug, the break-up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a ``Swiss cheese'' pattern is left in the residual biofilm. Fluorescent staining of the polymeric matrix (EPS) reveals that resistance to cell dislodgement correlates with local biofilm age, early settlers having had more time to hunker down. Because few survivors suffice to regrow a biofilm, these results point at the importance of considering microscale heterogeneity in assessing the effectiveness of biofilm removal strategies.

  13. Establishment of a Hub for the Light Water Reactor Sustainability Online Monitoring Community

    Energy Technology Data Exchange (ETDEWEB)

    Nancy J. Lybeck; Magdy S. Tawfik; Binh T. Pham

    2011-08-01

    Implementation of online monitoring and prognostics in existing U.S. nuclear power plants will involve coordinating the efforts of national laboratories, utilities, universities, and private companies. Internet-based collaborative work environments provide necessary communication tools to facilitate interaction between geographically diverse participants. Available technologies were considered, and a collaborative workspace was established at INL as a hub for the light water reactor sustainability online monitoring community.

  14. Establishing an implementation network: lessons learned from community-based participatory research

    Directory of Open Access Journals (Sweden)

    Garcia Piedad

    2009-03-01

    Full Text Available Abstract Background Implementation of evidence-based mental health assessment and intervention in community public health practice is a high priority for multiple stakeholders. Academic-community partnerships can assist in the implementation of efficacious treatments in community settings; yet, little is known about the processes by which these collaborations are developed. In this paper, we discuss our application of community-based participatory research (CBPR approach to implementation, and we present six lessons we have learned from the establishment of an academic-community partnership. Methods With older adults with psychosis as a focus, we have developed a partnership between a university research center and a public mental health service system based on CBPR. The long-term goal of the partnership is to collaboratively establish an evidence-based implementation network that is sustainable within the public mental healthcare system. Results In building a sustainable partnership, we found that the following lessons were instrumental: changing attitudes; sharing staff; expecting obstacles and formalizing solutions; monitoring and evaluating; adapting and adjusting; and taking advantage of emerging opportunities. Some of these lessons were previously known principles that were modified as the result of the CBPR process, while some lessons derived directly from the interactive process of forming the partnership. Conclusion The process of forming of academic-public partnerships is challenging and time consuming, yet crucial for the development and implementation of state-of-the-art approaches to assessment and interventions to improve the functioning and quality of life for persons with serious mental illnesses. These partnerships provide necessary organizational support to facilitate the implementation of clinical research findings in community practice benefiting consumers, researchers, and providers.

  15. Selection and identification of a bacterial community able to degrade and detoxify m-nitrophenol in continuous biofilm reactors.

    Science.gov (United States)

    González, Ana J; Fortunato, María S; Papalia, Mariana; Radice, Marcela; Gutkind, Gabriel; Magdaleno, Anahí; Gallego, Alfredo; Korol, Sonia E

    2015-12-01

    Nitroaromatics are widely used for industrial purposes and constitute a group of compounds of environmental concern because of their persistence and toxic properties. Biological processes used for decontamination of nitroaromatic-polluted sources have then attracted worldwide attention. In the present investigation m-nitrophenol (MNP) biodegradation was studied in batch and continuous reactors. A bacterial community able to degrade the compound was first selected from a polluted freshwater stream and the isolates were identified by the analysis of the 16S rRNA gene sequence. The bacterial community was then used in biodegradation assays. Batch experiments were conducted in a 2L aerobic microfermentor at 28 °C and with agitation (200 rpm). The influence of abiotic factors in the biodegradation process in batch reactors, such as initial concentration of the compound and initial pH of the medium, was also studied. Continuous degradation of MNP was performed in an aerobic up-flow fixed-bed biofilm reactor. The biodegradation process was evaluated by determining MNP and ammonium concentrations and chemical oxygen demand (COD). Detoxification was assessed by Vibrio fischeri and Pseudokirchneriella subcapitata toxicity tests. Under batch conditions the bacterial community was able to degrade 0.72 mM of MNP in 32 h, with efficiencies higher than 99.9% and 89.0% of MNP and COD removals respectively and with concomitant release of ammonium. When the initial MNP concentration increased to 1.08 and 1.44 mM MNP the biodegradation process was accomplished in 40 and 44 h, respectively. No biodegradation of the compound was observed at higher concentrations. The community was also able to degrade 0.72 mM of the compound at pH 5, 7 and 9. In the continuous process biodegradation efficiency reached 99.5% and 96.8% of MNP and COD removal respectively. The maximum MNP removal rate was 37.9 gm(-3) day(-1). Toxicity was not detected after the biodegradation process. PMID:26283285

  16. Biofilm and Planktonic Bacterial and Fungal Communities Transforming High-Molecular-Weight Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Folwell, Benjamin D; McGenity, Terry J; Whitby, Corinne

    2016-04-15

    High-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs) are natural components of fossil fuels that are carcinogenic and persistent in the environment, particularly in oil sands process-affected water (OSPW). Their hydrophobicity and tendency to adsorb to organic matter result in low bioavailability and high recalcitrance to degradation. Despite the importance of microbes for environmental remediation, little is known about those involved in HMW-PAH transformations. Here, we investigated the transformation of HMW-PAHs using samples of OSPW and compared the bacterial and fungal community compositions attached to hydrophobic filters and in suspension. It was anticipated that the hydrophobic filters with sorbed HMW-PAHs would select for microbes that specialize in adhesion. Over 33 days, more pyrene was removed (75% ± 11.7%) than the five-ring PAHs benzo[a]pyrene (44% ± 13.6%) and benzo[b]fluoranthene (41% ± 12.6%). For both bacteria and fungi, the addition of PAHs led to a shift in community composition, but thereafter the major factor determining the fungal community composition was whether it was in the planktonic phase or attached to filters. In contrast, the major determinant of the bacterial community composition was the nature of the PAH serving as the carbon source. The main bacteria enriched by HMW-PAHs werePseudomonas,Bacillus, andMicrobacteriumspecies. This report demonstrates that OSPW harbors microbial communities with the capacity to transform HMW-PAHs. Furthermore, the provision of suitable surfaces that encourage PAH sorption and microbial adhesion select for different fungal and bacterial species with the potential for HMW-PAH degradation. PMID:26850299

  17. Permeabilizing biofilms

    Science.gov (United States)

    Soukos, Nikolaos S.; Lee, Shun; Doukas, Apostolos G.

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  18. Effects of species diversity on establishment and coexistence: a phylloplane fungal community model system.

    Science.gov (United States)

    Stohr, S N; Dighton, J

    2004-10-01

    A model system was devised, evaluating the influence that species diversity (species richness) has on fungal establishment and coexistence. Seven members of the fungal phylloplane community of Vaccinium macrocarpon (American cranberry) were selected to assess how species diversity affected development and coexistence of another community member, Pestalotia vaccinii. Pestalotia was engaged in competitive interactions on 1% Malt Extract Agar (MEA) petri dishes with each of the seven individual saprotrophs (two-way interaction), in random combinations with three of the seven saprotrophs (four-way interaction), and in random combinations with five of the seven saprotrophs (six-way interaction). The saprotrophic fungi used in this study were Aspergillus sp., Alternaria alternata, Cladosporium cladosporoides, Curvularia lunata, Epicoccum purpuracens, Penicillium sp., and Pithomyces chartarum. We hypothesized that species diversity would have a significant impact on the establishment and coexistence of Pestalotia vaccinii in culture. In an effort to minimize density-dependent effects, the number of viable spores employed in the three types of interactions was kept constant. Target spore concentrations of 50 viable spores of P. vaccinii and 50 saprotroph spores were used, regardless of the number of species involved in the interaction. This proved to be a very important factor in the experiment. As our results show, species diversity had little or no effect on the establishment and coexistence of Pestalotia vaccinii; however, spore density played an extremely important role in the establishment and development of fungal propagules in our model. PMID:15692863

  19. Small molecule control of bacterial biofilms

    OpenAIRE

    Worthington, Roberta J.; Richards, Justin J.; Melander, Christian

    2012-01-01

    Bacterial biofilms are defined as a surface attached community of bacteria embedded in a matrix of extracellular polymeric substances that they have produced. When in the biofilm state, bacteria are more resistant to antibiotics and the host immune response than are their planktonic counterparts. Biofilms are increasingly recognized as being significant in human disease, accounting for 80% of bacterial infections in the body and diseases associated with bacterial biofilms include: lung infect...

  20. Current understanding of multi-species biofilms

    OpenAIRE

    Yang, Liang; Liu, Yang; Wu,Hong; Høiby, Niels; Molin, Søren; Zhi-jun SONG

    2011-01-01

    Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually formed by multiple bacterial species. Conventional methods for bacterial cleaning, such as applications of antibiotics and/or disinfectants are often ineffective for biofilm populations due to their...

  1. Bioinspired, Dynamic, Structured Surfaces for Biofilm Prevention

    OpenAIRE

    Epstein, Alexander

    2012-01-01

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even l...

  2. Discovering Biofilms: Inquiry-Based Activities for the Classroom

    Science.gov (United States)

    Redelman, Carly V.; Marrs, Kathleen; Anderson, Gregory G.

    2012-01-01

    In nature, bacteria exist in and adapt to different environments by forming microbial communities called "biofilms." We propose simple, inquiry-based laboratory exercises utilizing a biofilm formation assay, which allows controlled biofilm growth. Students will be able to qualitatively assess biofilm growth via staining. Recently, we developed a…

  3. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures.

    Science.gov (United States)

    Vázquez-Nion, D; Rodríguez-Castro, J; López-Rodríguez, M C; Fernández-Silva, I; Prieto, B

    2016-07-01

    Microbial communities of natural subaerial biofilms developed on granitic historic buildings of a World Heritage Site (Santiago de Compostela, NW Spain) were characterized and cultured in liquid BG11 medium. Environmental barcoding through next-generation sequencing (Pacific Biosciences) revealed that the biofilms were mainly composed of species of Chlorophyta (green algae) and Ascomycota (fungi) commonly associated with rock substrata. Richness and diversity were higher for the fungal than for the algal assemblages and fungi showed higher heterogeneity among samples. Cultures derived from natural biofilms showed the establishment of stable microbial communities mainly composed of Chlorophyta and Cyanobacteria. Although most taxa found in these cultures were not common in the original biofilms, they are likely common pioneer colonizers of building stone surfaces, including granite. Stable phototrophic multi-species cultures of known microbial diversity were thus obtained and their reliability to emulate natural colonization on granite should be confirmed in further experiments. PMID:27192622

  4. Experimental evolution in biofilm populations.

    Science.gov (United States)

    Steenackers, Hans P; Parijs, Ilse; Foster, Kevin R; Vanderleyden, Jozef

    2016-05-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  5. Beneficial biofilms

    Directory of Open Access Journals (Sweden)

    Sara R Robertson

    2015-10-01

    Full Text Available Surface-adherent biofilm growth is a common trait of bacteria and other microorganisms in nature. Within biofilms, organisms are present in high density and are enmeshed in an organic matrix containing polysaccharides and other molecules. The close proximity of organisms within biofilms facilitates microbial interactions and signaling, including many metabolic processes in which consortia rather than individual organisms participate. Biofilm growth also enables microorganisms to withstand chemical and biological stresses. Here, we review some current literature and document representative beneficial aspects of biofilms using examples from wastewater treatment, microbial fuel cells, biological repair (biocementation of stonework, and biofilm protection against Candida albicans infections. Finally, we address a chemical ecology strategy whereby desired microbial succession and beneficial biofilm formation can be encouraged via manipulation of culture conditions and bacterial signaling.

  6. Biofilm formation on abiotic surfaces

    DEFF Research Database (Denmark)

    Tang, Lone

    2011-01-01

    Bacteria can attach to any surface in contact with water and proliferate into complex communities enclosed in an adhesive matrix, these communities are called biofilms. The matrix makes the biofilm difficult to remove by physical means, and bacteria in biofilm can survive treatment with many...... antibiotics, disinfectants and cleaning agents. Biofilms are therefore very difficult to eradicate, and an attractive approach to limit biofilm formation is to reduce bacterial adhesion. In this thesis it was shown that lowering the surface roughness had a greater effect on bacterial retention compared to...... changing the surface hydrophobicity. The influence of surface topography in the <100 nanometer range was less clear and its effect on bacterial retention depended on the strain used in the experiment. Extracellular DNA (eDNA) is an the ubiquitous biomolecule of great importance for bacterial adhesion. The...

  7. Establishing effective working relations with a potential user community - NASA Lewis Research Center experience

    Science.gov (United States)

    Foster, P.

    1977-01-01

    The NASA Lewis Research Center has held a series of six major and unique technology utilization conferences which were major milestones in planned structured efforts to establish effective working relationships with specific technology user communities. These efforts were unique in that the activities undertaken prior to the conference were extensive, and effectively laid the groundwork for productive technology transfer following, and as a direct result of, the conferences. The effort leading to the conference was in each case tailored to the characteristics of the potential user community, however, the common factors comprise a basic framework applicable to similar endeavors. The process is essentially a planned sequence of steps that constitute a technical market survey and a marketing program for the development of beneficial applications of aerospace technology beyond the aerospace field.

  8. Establishing a community-wide DNA barcode library as a new tool for arctic research.

    Science.gov (United States)

    Wirta, H; Várkonyi, G; Rasmussen, C; Kaartinen, R; Schmidt, N M; Hebert, P D N; Barták, M; Blagoev, G; Disney, H; Ertl, S; Gjelstrup, P; Gwiazdowicz, D J; Huldén, L; Ilmonen, J; Jakovlev, J; Jaschhof, M; Kahanpää, J; Kankaanpää, T; Krogh, P H; Labbee, R; Lettner, C; Michelsen, V; Nielsen, S A; Nielsen, T R; Paasivirta, L; Pedersen, S; Pohjoismäki, J; Salmela, J; Vilkamaa, P; Väre, H; von Tschirnhaus, M; Roslin, T

    2016-05-01

    DNA sequences offer powerful tools for describing the members and interactions of natural communities. In this study, we establish the to-date most comprehensive library of DNA barcodes for a terrestrial site, including all known macroscopic animals and vascular plants of an intensively studied area of the High Arctic, the Zackenberg Valley in Northeast Greenland. To demonstrate its utility, we apply the library to identify nearly 20 000 arthropod individuals from two Malaise traps, each operated for two summers. Drawing on this material, we estimate the coverage of previous morphology-based species inventories, derive a snapshot of faunal turnover in space and time and describe the abundance and phenology of species in the rapidly changing arctic environment. Overall, 403 terrestrial animal and 160 vascular plant species were recorded by morphology-based techniques. DNA barcodes (CO1) offered high resolution in discriminating among the local animal taxa, with 92% of morphologically distinguishable taxa assigned to unique Barcode Index Numbers (BINs) and 93% to monophyletic clusters. For vascular plants, resolution was lower, with 54% of species forming monophyletic clusters based on barcode regions rbcLa and ITS2. Malaise catches revealed 122 BINs not detected by previous sampling and DNA barcoding. The insect community was dominated by a few highly abundant taxa. Even closely related taxa differed in phenology, emphasizing the need for species-level resolution when describing ongoing shifts in arctic communities and ecosystems. The DNA barcode library now established for Zackenberg offers new scope for such explorations, and for the detailed dissection of interspecific interactions throughout the community. PMID:26602739

  9. Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities.

    Directory of Open Access Journals (Sweden)

    Johann G Zaller

    Full Text Available Both earthworms and arbuscular mycorrhizal fungi (AMF are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m(-2. AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study

  10. Community Genomic and Proteomic Analyses of Chemoautotrophic Iron-Oxidizing "Leptospirillum rubarum" (Group II) and "Leptospirillum ferrodiazotrophum" (Group III) Bacteria in Acid Mine Drainage Biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Goltsman, Daniela [University of California, Berkeley; Denef, Vincent [University of California, Berkeley; Singer, Steven [Lawrence Livermore National Laboratory (LLNL); Verberkmoes, Nathan C [ORNL; Lefsrud, Mark G [ORNL; Mueller, Ryan [University of California, Berkeley; Dick, Gregory J. [University of California, Berkeley; Sun, Christine [University of California, Berkeley; Wheeler, Korin [Lawrence Livermore National Laboratory (LLNL); Zelma, Adam [Lawrence Livermore National Laboratory (LLNL); Baker, Brett J. [University of California, Berkeley; Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Shah, Manesh B [ORNL; Thelen, Michael P. [University of California, Berkeley; Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley

    2009-01-01

    We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum group II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, Iron Mountain, CA, acid mine drainage biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum groups II and III, respectively, and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and >60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid carries conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacterial groups have genes for community-essential functions, including carbon fixation and biosynthesis of vitamins, fatty acids, and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum group II uses a methyl-dependent and Leptospirillum group III a methyl-independent response pathway. Although only Leptospirillum group III can fix nitrogen, these proteins were not identified by proteomics. The abundances of core proteins are similar in all communities, but the abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum groups II and III.

  11. Community genomic and proteomic analysis of chemoautotrophic, iron-oxidizing "Leptospirillum rubarum" (Group II) and Leptospirillum ferrodiazotrophum (Group III) in acid mine drainage biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Goltsman, Daniela [University of California, Berkeley; Denef, Vincent [University of California, Berkeley; Singer, Steven [Lawrence Livermore National Laboratory (LLNL); Verberkmoes, Nathan C [ORNL; Lefsrud, Mark G [McGill University, Montreal, Quebec; Mueller, Ryan [University of California, Berkeley; Dick, Gregory J. [University of California, Berkeley; Sun, Christine [University of California, Berkeley; Wheeler, Korin [Lawrence Livermore National Laboratory (LLNL); Zelma, Adam [Lawrence Livermore National Laboratory (LLNL); Baker, Brett J. [University of California, Berkeley; Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Shah, Manesh B [ORNL; Thelen, Michael P. [University of California, Berkeley; Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley

    2009-01-01

    We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum Groups II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, CA acid mine drainage (AMD) biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum Groups II and III, respectively and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and > 60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid encodes conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacteria have genes for community-essential functions, including carbon fixation, biosynthesis of vitamins, fatty acids and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum Group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum Group II uses a methyl-dependent and Leptospirillum Group III a methyl-independent response pathway. Although only Leptospirillum Group III can fix nitrogen, these proteins were not identified by proteomics. Abundances of core proteins are similar in all communities, but abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum Groups II and III.

  12. Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France

    Energy Technology Data Exchange (ETDEWEB)

    Morin, S. [Unite de Recherche Reseaux, Epuration et Qualite des Eaux REQE, Cemagref, 50 avenue de Verdun, F-33612 Cestas Cedex (France)]|[Equipe Geochimie et Ecotoxicologie des Metaux dans les systemes Aquatiques GEMA, UMR 5805 EPOC, Univ. Bordeaux 1, Place du Docteur Bertrand Peyneau, F-33120 Arcachon (France)], E-mail: soizic.morin@bordeaux.cemagref.fr; Duong, T.T. [Unite de Recherche Reseaux, Epuration et Qualite des Eaux REQE, Cemagref, 50 avenue de Verdun, F-33612 Cestas Cedex (France)]|[Equipe Geochimie et Ecotoxicologie des Metaux dans les systemes Aquatiques GEMA, UMR 5805 EPOC, Univ. Bordeaux 1, Place du Docteur Bertrand Peyneau, F-33120 Arcachon (France); Dabrin, A.; Coynel, A. [Equipe Geochimie et Ecotoxicologie des Metaux dans les systemes Aquatiques GEMA, UMR 5805 EPOC, Universite Bordeaux 1, Avenue des Facultes, F-33405 Talence (France); Herlory, O.; Baudrimont, M. [Equipe Geochimie et Ecotoxicologie des Metaux dans les systemes Aquatiques GEMA, UMR 5805 EPOC, Univ. Bordeaux 1, Place du Docteur Bertrand Peyneau, F-33120 Arcachon (France); Delmas, F. [Unite de Recherche Reseaux, Epuration et Qualite des Eaux REQE, Cemagref, 50 avenue de Verdun, F-33612 Cestas Cedex (France); Durrieu, G. [Equipe Geochimie et Ecotoxicologie des Metaux dans les systemes Aquatiques GEMA, UMR 5805 EPOC, Univ. Bordeaux 1, Place du Docteur Bertrand Peyneau, F-33120 Arcachon (France); Schaefer, J. [Equipe Geochimie et Ecotoxicologie des Metaux dans les systemes Aquatiques GEMA, UMR 5805 EPOC, Univ. Bordeaux 1, Avenue des Facultes, F-33405 Talence (France); Winterton, P. [Univ. Paul Sabatier-Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 4 (France); Blanc, G. [Equipe Geochimie et Ecotoxicologie des Metaux dans les systemes Aquatiques GEMA, UMR 5805 EPOC, Univ. Bordeaux 1, Avenue des Facultes, F-33405 Talence (France); Coste, M. [Unite de Recherche Reseaux, Epuration et Qualite des Eaux REQE, Cemagref, 50 avenue de Verdun, F-33612 Cestas Cedex (France)

    2008-02-15

    In a metal-polluted stream in the Riou Mort watershed in SW France, periphytic biofilm was analyzed for diatom cell densities and taxonomic composition, dry weight and metal bio-accumulation (cadmium and zinc). Periphytic diatom communities were affected by the metal but displayed induced tolerance, seen through structural impact (dominance of small, adnate species) as well as morphological abnormalities particularly in the genera Ulnaria and Fragilaria. Species assemblages were characterized by taxa known to occur in metal-polluted environments, and shifts in the community structure expressed seasonal patterns: high numbers of Eolimna minima, Nitzschia palea and Pinnularia parvulissima were recorded in Summer and Autumn, whereas the species Surirella brebissonii, Achnanthidium minutissimum, Navicula lanceolata and Surirella angusta were dominant in Winter and Spring. Commonly used indices such as the Shannon diversity index and Specific Pollution Sensitivity Index reflected the level of pollution and suggest seasonal periodicity, the lowest diversities being observed in Summer. - Periphytic biofilm diatom communities are suitable indicators for the bioassay of elevated levels of metals in contaminated river water.

  13. Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France

    International Nuclear Information System (INIS)

    In a metal-polluted stream in the Riou Mort watershed in SW France, periphytic biofilm was analyzed for diatom cell densities and taxonomic composition, dry weight and metal bio-accumulation (cadmium and zinc). Periphytic diatom communities were affected by the metal but displayed induced tolerance, seen through structural impact (dominance of small, adnate species) as well as morphological abnormalities particularly in the genera Ulnaria and Fragilaria. Species assemblages were characterized by taxa known to occur in metal-polluted environments, and shifts in the community structure expressed seasonal patterns: high numbers of Eolimna minima, Nitzschia palea and Pinnularia parvulissima were recorded in Summer and Autumn, whereas the species Surirella brebissonii, Achnanthidium minutissimum, Navicula lanceolata and Surirella angusta were dominant in Winter and Spring. Commonly used indices such as the Shannon diversity index and Specific Pollution Sensitivity Index reflected the level of pollution and suggest seasonal periodicity, the lowest diversities being observed in Summer. - Periphytic biofilm diatom communities are suitable indicators for the bioassay of elevated levels of metals in contaminated river water

  14. The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides

    DEFF Research Database (Denmark)

    Balestrino, D.; Ghigo, J.M.; Charbonnel, N.;

    2008-01-01

    showed that LPS is involved in initial adhesion on both glass and polyvinyl-chloride and the capsule required for the appropriate initial coverage of substratum and the construction of mature biofilm architecture. These results give new insight into the bacterial factors sequentially associated with the...

  15. A Subinhibitory Concentration of Clarithromycin Inhibits Mycobacterium avium Biofilm Formation

    OpenAIRE

    Carter, George; Young, Lowell S.; Bermudez, Luiz E.

    2004-01-01

    Mycobacterium avium causes disseminated infection in immunosuppressed individuals and lung infection in patients with chronic lung diseases. M. avium forms biofilm in the environment and possibly in human airways. Antibiotics with activity against the bacterium could inhibit biofilm formation. Clarithromycin inhibits biofilm formation but has no activity against established biofilm.

  16. Mechanisms of biofilm resistance to antimicrobial agents.

    Science.gov (United States)

    Mah, T F; O'Toole, G A

    2001-01-01

    Biofilms are communities of microorganisms attached to a surface. It has become clear that biofilm-grown cells express properties distinct from planktonic cells, one of which is an increased resistance to antimicrobial agents. Recent work has indicated that slow growth and/or induction of an rpoS-mediated stress response could contribute to biocide resistance. The physical and/or chemical structure of exopolysaccharides or other aspects of biofilm architecture could also confer resistance by exclusion of biocides from the bacterial community. Finally, biofilm-grown bacteria might develop a biofilm-specific biocide-resistant phenotype. Owing to the heterogeneous nature of the biofilm, it is likely that there are multiple resistance mechanisms at work within a single community. Recent research has begun to shed light on how and why surface-attached microbial communities develop resistance to antimicrobial agents. PMID:11166241

  17. Investigating Biofilm Recalcitrance In Pipe Flow Systems

    Science.gov (United States)

    Aggarwal, S.; Stewart, P. S.; Hozalski, R. M.

    2015-12-01

    It is challenging to remove biofilms from pipe walls owing to their recalcitrant nature. Several physiological explanations resulting from the community existence of microbes have been offered to explain the recalcitrant nature of biofilms. Herein a biophysical aspect of biofilm recalcitrance is being reported. While optimal efficiency argument suggests that bacterial biofilms would be just strong enough to withstand the surrounding shear forces, our experimental findings reveal the biofilms to be at least 330 to 55000 times stronger. Additionally, Monte-Carlo simulations for biofilm detachment in drinking water systems were performed, which show that the existing flow velocities are insufficient for significant biofilm removal and warrant alternative detachment strategies. This emphasizes the importance of considering strategies for biofilm weakening (and subsequent detachment) in conjunction with or as an alternative to bacterial inactivation.

  18. D-amino acids trigger biofilm disassembly.

    Science.gov (United States)

    Kolodkin-Gal, Ilana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-04-30

    Bacteria form communities known as biofilms, which disassemble over time. In our studies outlined here, we found that, before biofilm disassembly, Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine, and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofilms in the presence of D-amino acids contained alterations in a protein (YqxM) required for the formation and anchoring of the fibers to the cell. D-amino acids also prevented biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. D-amino acids are produced by many bacteria and, thus, may be a widespread signal for biofilm disassembly. PMID:20431016

  19. A unique self-organization of bacterial sub-communities creates iridescence in Cellulophaga lytica colony biofilms

    Science.gov (United States)

    Kientz, Betty; Luke, Stephen; Vukusic, Peter; Péteri, Renaud; Beaudry, Cyrille; Renault, Tristan; Simon, David; Mignot, Tâm; Rosenfeld, Eric

    2016-01-01

    Iridescent color appearances are widespread in nature. They arise from the interaction of light with micron- and submicron-sized physical structures spatially arranged with periodic geometry and are usually associated with bright angle-dependent hues. Iridescence has been reported for many animals and marine organisms. However, iridescence has not been well studied in bacteria. Recently, we reported a brilliant “pointillistic” iridescence in colony biofilms of marine Flavobacteria that exhibit gliding motility. The mechanism of their iridescence is unknown. Here, using a multi-disciplinary approach, we show that the cause of iridescence is a unique periodicity of the cell population in the colony biofilm. Cells are arranged together to form hexagonal photonic crystals. Our model highlights a novel pattern of self-organization in a bacterial biofilm. ”Pointillistic” bacterial iridescence can be considered a new light-dependent phenomenon for the field of microbiology.

  20. Suspended sludge and biofilm shaped different anammox communities in two pilot-scale one-stage anammox reactors.

    Science.gov (United States)

    Zheng, Bingyu; Zhang, Liang; Guo, Jianhua; Zhang, Shujun; Yang, Anming; Peng, Yongzhen

    2016-07-01

    The abundance and diversity of anammox bacteria was investigated in two pilot-scale integrated fixed-film activated sludge (IFAS) reactors treating high ammonium wastewater. Reactor A was inoculated with nitrifying sludge, while Reactor B was inoculated with suspended anammox sludge with the dominant anammox bacteria of Candidatus 'Kuenenia'. After 180days' operation, the predominate anammox bacteria was Candidatus 'Brocadia' (65%) in the biofilm, while Candidatus 'Kuenenia' (86%) outcompeted with other anammox bacteria in suspended sludge in Reactor A. Candidatus 'Kuenenia' were dominated in suspended sludge through the entire experiment in Reactor B. In contrast, the predominated species shifted from Candidatus 'Kuenenia' (89%) into Candidatus 'Brocadia' (66%) in the biofilm of Reactor B. This study indicated that Candidatus 'Brocadia' preferred to grow in the biofilm, while Candidatus 'Kuenenia' would dominant over other anammox bacteria in the suspended sludge. Further studies are required to identify the internal factors affecting the distribution of anammox bacteria. PMID:27023382

  1. Biofilm Formation and Sloughing in Serratia marcescens Are Controlled by Quorum Sensing and Nutrient Cues

    OpenAIRE

    Rice, S A; Koh, K. S.; Queck, S. Y.; Labbate, M.; Lam, K W; Kjelleberg, S

    2005-01-01

    We describe here a role for quorum sensing in the detachment, or sloughing, of Serratia marcescens filamentous biofilms, and we show that nutrient conditions affect the biofilm morphotype. Under reduced carbon or nitrogen conditions, S. marcescens formed a classical biofilm consisting of microcolonies. The filamentous biofilm could be converted to a microcolony-type biofilm by switching the medium after establishment of the biofilm. Similarly, when initially grown as a microcolony biofilm, S....

  2. Biofilm Infections

    DEFF Research Database (Denmark)

    A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized as...... being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections such as...... diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well as...

  3. Biofilm Infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Jensen, Peter Østrup; Moser, Claus Ernst; Høiby, Niels

    being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections such as......A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized as...... diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well as...

  4. Pattern formation in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Parsek, Matthew R.; Tolker-Nielsen, Tim

    2008-01-01

    Bacteria are capable of forming elaborate multicellular communities called biofilms. Pattern formation in biofilms depends on cell proliferation and cellular migration in response to the available nutrients and other external cues, as well as on self-generated intercellular signal molecules and the...... production of an extracellular matrix that serves as a structural 'scaffolding' for the biofilm cells. Pattern formation in biofilms allows cells to position themselves favorably within nutrient gradients and enables buildup and maintenance of physiologically distinct subpopulations, which facilitates...... survival of one or more subpopulations upon environmental insult, and therefore plays an important role in the innate tolerance displayed by biofilms toward adverse conditions....

  5. D-Amino Acids Trigger Biofilm Disassembly

    OpenAIRE

    Kolodkin-Gal, Illana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-01-01

    Bacteria form communities known as biofilms, which disassemble over time. Here we found that prior to biofilm disassembly Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofi...

  6. Strategies for combating bacterial biofilm infections

    Institute of Scientific and Technical Information of China (English)

    Hong Wu; Claus Moser; Heng-Zhuang Wang; Niels Hiby; Zhi-Jun Song

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwelling devices. Clinical observations and experimental studies indicated clearly that antibiotic treatment alone is in most cases insufficient to eradicate biofilm infections. Therefore, to effectively treat biofilm infections with currently available antibiotics and evaluate the outcomes become important and urgent for clinicians. The review summarizes the latest progress in treatment of clinical biofilm infections and scientific investigations, discusses the diagnosis and treatment of different biofilm infections and introduces the promising laboratory progress, which may contribute to prevention or cure of biofilm infections. We conclude that, an efficient treatment of biofilm infections needs a well-established multidisciplinary collaboration, which includes removal of the infected foreign bodies, selection of biofilm-active, sensitive and well-penetrating antibiotics, systemic or topical antibiotic administration in high dosage and combinations, and administration of anti-quorum sensing or biofilm dispersal agents.

  7. Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina-like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm.

    Science.gov (United States)

    Foesel, Bärbel U; Gieseke, Armin; Schwermer, Carsten; Stief, Peter; Koch, Liat; Cytryn, Eddie; de la Torré, José R; van Rijn, Jaap; Minz, Dror; Drake, Harold L; Schramm, Andreas

    2008-02-01

    Zero-discharge marine aquaculture systems are an environmentally friendly alternative to conventional aquaculture. In these systems, water is purified and recycled via microbial biofilters. Here, quantitative data on nitrifier community structure of a trickling filter biofilm associated with a recirculating marine aquaculture system are presented. Repeated rounds of the full-cycle rRNA approach were necessary to optimize DNA extraction and the probe set for FISH to obtain a reliable and comprehensive picture of the ammonia-oxidizing community. Analysis of the ammonia monooxygenase gene (amoA) confirmed the results. The most abundant ammonia-oxidizing bacteria (AOB) were members of the Nitrosomonas sp. Nm143-lineage (6.7% of the bacterial biovolume), followed by Nitrosomonas marina-like AOB (2.2% of the bacterial biovolume). Both were outnumbered by nitrite-oxidizing bacteria of the Nitrospira marina-lineage (15.7% of the bacterial biovolume). Although more than eight other nitrifying populations were detected, including Crenarchaeota closely related to the ammonia-oxidizer 'Nitrosopumilus maritimus', their collective abundance was below 1% of the total biofilm volume; their contribution to nitrification in the biofilter is therefore likely to be negligible. PMID:18093145

  8. Planktonic and biofilm communities from 7-day-old chicken cecal microflora cultures: Characterization and resistance to Salmonella colonization

    Science.gov (United States)

    Over the last few years, both scientific organizations and regulatory agencies have focused on the use of antimicrobial agents in food animals and the related risk of developing antibiotic resistance. Despite increased information relating to the importance of bacterial biofilms and their potential...

  9. Bacterial interactions in dental biofilm.

    Science.gov (United States)

    Huang, Ruijie; Li, Mingyun; Gregory, Richard L

    2011-01-01

    Biofilms are masses of microorganisms that bind to and multiply on a solid surface, typically with a fluid bathing the microbes. The microorganisms that are not attached but are free floating in an aqueous environment are termed planktonic cells. Traditionally, microbiology research has addressed results from planktonic bacterial cells. However, many recent studies have indicated that biofilms are the preferred form of growth of most microbes and particularly those of a pathogenic nature. Biofilms on animal hosts have significantly increased resistance to various antimicrobials compared to planktonic cells. These microbial communities form microcolonies that interact with each other using very sophisticated communication methods (i.e., quorum-sensing). The development of unique microbiological tools to detect and assess the various biofilms around us is a tremendously important focus of research in many laboratories. In the present review, we discuss the major biofilm mechanisms and the interactions among oral bacteria. PMID:21778817

  10. The Affordance of Blogging on Establishing Communities of Practice in a Pre-Service Elementary Teacher Education Program

    Science.gov (United States)

    Justice, Julie; Anderson, Janice; Nichols, Kathleen; Gorham, Jennifer Jones; Wall, Steve; Boyd, Ashley; Altheiser, Leah

    2013-01-01

    This study examines the affordances of blogging on establishing communities of practice within an elementary teacher education program. Building upon the previous work with in-service teachers of Luehmann (2008), we examined pre-service teacher participation in an online community of practice where pre-service teachers, over the course of their…

  11. EPS in Environmental Microbial Biofilms as Examined by Advanced Imaging Techniques

    Science.gov (United States)

    Neu, T. R.; Lawrence, J. R.

    2006-12-01

    Biofilm communities are highly structured associations of cellular and polymeric components which are involved in biogenic and geogenic environmental processes. Furthermore, biofilms are also important in medical (infection), industrial (biofouling) and technological (biofilm engineering) processes. The interfacial microbial communities in a specific habitat are highly dynamic and change according to the environmental parameters affecting not only the cellular but also the polymeric constituents of the system. Through their EPS biofilms interact with dissolved, colloidal and particulate compounds from the bulk water phase. For a long time the focus in biofilm research was on the cellular constituents in biofilms and the polymer matrix in biofilms has been rather neglected. The polymer matrix is produced not only by different bacteria and archaea but also by eukaryotic micro-organisms such as algae and fungi. The mostly unidentified mixture of EPS compounds is responsible for many biofilm properties and is involved in biofilm functionality. The chemistry of the EPS matrix represents a mixture of polymers including polysaccharides, proteins, nucleic acids, neutral polymers, charged polymers, amphiphilic polymers and refractory microbial polymers. The analysis of the EPS may be done destructively by means of extraction and subsequent chemical analysis or in situ by means of specific probes in combination with advanced imaging. In the last 15 years laser scanning microscopy (LSM) has been established as an indispensable technique for studying microbial communities. LSM with 1-photon and 2-photon excitation in combination with fluorescence techniques allows 3-dimensional investigation of fully hydrated, living biofilm systems. This approach is able to reveal data on biofilm structural features as well as biofilm processes and interactions. The fluorescent probes available allow the quantitative assessment of cellular as well as polymer distribution. For this purpose

  12. Effect of Escherichia coli Morphogene bolA on Biofilms

    OpenAIRE

    Vieira, Helena L. A.; Freire, Patrick; Arraiano, Cecília M.

    2004-01-01

    Biofilm physiology is established under a low growth rate. The morphogene bolA is mostly expressed under stress conditions or in stationary phase, suggesting that bolA could be implicated in biofilm development. In order to verify this hypothesis, we tested the effect of bolA on biofilm formation. Overexpression of bolA induces biofilm development, while bolA deletion decreases biofilms.

  13. Biofilms in wounds

    DEFF Research Database (Denmark)

    Cooper, R A; Bjarnsholt, Thomas; Alhede, M

    2014-01-01

    Following confirmation of the presence of biofilms in chronic wounds, the term biofilm became a buzzword within the wound healing community. For more than a century pathogens have been successfully isolated and identified from wound specimens using techniques that were devised in the nineteenth...... century by Louis Pasteur and Robert Koch. Although this approach still provides valuable information with which to help diagnose acute infections and to select appropriate antibiotic therapies, it is evident that those organisms isolated from clinical specimens with the conditions normally used in...... extracellular polymeric substances (EPS). Cells within such aggregations (or biofilms) display varying physiological and metabolic properties that are distinct from those of planktonic cells, and which contribute to their persistence. There are many factors that influence healing in wounds and the discovery of...

  14. Biofilm responses to marine fish farm wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sanz-Lazaro, Carlos, E-mail: carsanz@um.es [Departamento de Ecologia e Hidrologia, Facultad de Biologia, Universidad de Murcia, 30100 Murcia (Spain); Navarrete-Mier, Francisco; Marin, Arnaldo [Departamento de Ecologia e Hidrologia, Facultad de Biologia, Universidad de Murcia, 30100 Murcia (Spain)

    2011-03-15

    The changes in the biofilm community due to organic matter enrichment, eutrophication and metal contamination derived from fish farming were studied. The biofilm biomass, polysaccharide content, trophic niche and element accumulation were quantified along an environmental gradient of fish farm wastes in two seasons. Biofilm structure and trophic diversity was influenced by seasonality as well as by the fish farm waste load. Fish farming enhanced the accumulation of organic carbon, nutrients, selenium and metals by the biofilm community. The accumulation pattern of these elements was similar regardless of the structure and trophic niche of the community. This suggests that the biofilm communities can be considered a reliable tool for assessing dissolved aquaculture wastes. Due to the ubiquity of biofilms and its wide range of consumers, its role as a sink of dissolved wastes may have important implications for the transfer of aquaculture wastes to higher trophic levels in coastal systems. - Research highlights: > Biofilms can act as a trophic pathway of fish farm dissolved wastes. > Biofilms are reliable tools for monitoring fish farm dissolved wastes. > The influence of the fish farm dissolved wastes can be detected 120-350 m from farm. - Under the influence of fish farming biofilm accumulates organic carbon, nutrients, selenium and metals, regardless of the structure and trophic niche of the community.

  15. Biofilm responses to marine fish farm wastes

    International Nuclear Information System (INIS)

    The changes in the biofilm community due to organic matter enrichment, eutrophication and metal contamination derived from fish farming were studied. The biofilm biomass, polysaccharide content, trophic niche and element accumulation were quantified along an environmental gradient of fish farm wastes in two seasons. Biofilm structure and trophic diversity was influenced by seasonality as well as by the fish farm waste load. Fish farming enhanced the accumulation of organic carbon, nutrients, selenium and metals by the biofilm community. The accumulation pattern of these elements was similar regardless of the structure and trophic niche of the community. This suggests that the biofilm communities can be considered a reliable tool for assessing dissolved aquaculture wastes. Due to the ubiquity of biofilms and its wide range of consumers, its role as a sink of dissolved wastes may have important implications for the transfer of aquaculture wastes to higher trophic levels in coastal systems. - Research highlights: → Biofilms can act as a trophic pathway of fish farm dissolved wastes. → Biofilms are reliable tools for monitoring fish farm dissolved wastes. → The influence of the fish farm dissolved wastes can be detected 120-350 m from farm. - Under the influence of fish farming biofilm accumulates organic carbon, nutrients, selenium and metals, regardless of the structure and trophic niche of the community.

  16. Medical Biofilms

    OpenAIRE

    Bryers, James D.

    2008-01-01

    For more than two decades, Biotechnology and Bioengineering has documented research focused on natural and engineered microbial biofilms within aquatic and subterranean ecosystems, wastewater and waste-gas treatment systems, marine vessels and structures, and industrial bioprocesses. Compared to suspended culture systems, intentionally engineered biofilms are heterogeneous reaction systems that can increase reactor productivity, system stability, and provide inherent cell: product separation....

  17. Salmonella biofilms

    NARCIS (Netherlands)

    Castelijn, G.A.A.

    2013-01-01

    Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm formation. A collectio

  18. Biofilm Development

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2015-01-01

    , and not by specific genetic programs. It appears that biofilm formation can occur through multiple pathways and that the spatial structure of the biofilms is species dependent as well as dependent on environmental conditions. Bacterial subpopulations, e.g., motile and nonmotile subpopulations, can develop...

  19. Spatial structure, cooperation and competition in biofilms.

    Science.gov (United States)

    Nadell, Carey D; Drescher, Knut; Foster, Kevin R

    2016-09-01

    Bacteria often live within matrix-embedded communities, termed biofilms, which are now understood to be a major mode of microbial life. The study of biofilms has revealed their vast complexity both in terms of resident species composition and phenotypic diversity. Despite this complexity, theoretical and experimental work in the past decade has identified common principles for understanding microbial biofilms. In this Review, we discuss how the spatial arrangement of genotypes within a community influences the cooperative and competitive cell-cell interactions that define biofilm form and function. Furthermore, we argue that a perspective rooted in ecology and evolution is fundamental to progress in microbiology. PMID:27452230

  20. Effects of habitat-forming species richness, evenness, identity, and abundance on benthic intertidal community establishment and productivity.

    Directory of Open Access Journals (Sweden)

    Julie Lemieux

    Full Text Available In a context of reduced global biodiversity, the potential impacts from the loss of habitat-forming species (HFS on ecosystem structure and functioning must be established. These species are often the main community primary producers and have a major role in the establishment of organisms through facilitation processes. This study focuses on macroalgae and mussels as HFS within an intertidal zone along the St. Lawrence estuary (Quebec, Canada. Over a 16-week period, we manipulated the in situ diversity profile (richness, evenness, identity, and abundance of the dominant HFS (Fucus distichus edentatus, F. vesiculosus, and Mytilus spp. in order to define their role in both the establishment of associated species and community primary production. Contrary to expectation, no general change in HFS richness, evenness, abundance, or identity on associated species community establishment was observed. However, over the study period, the HFS diversity profile modified the structure within the trophic guilds, which may potentially affect further community functions. Also, our results showed that the low abundance of HFS had a negative impact on the primary productivity of the community. Our results suggest that HFS diversity profiles have a limited short-term role in our study habitat and may indicate that biological forcing in these intertidal communities is less important than environmental conditions. As such, there was an opportunistic establishment of species that ensured rapid colonization regardless of the absence, or the diversity profile, of facilitators such as HFS.

  1. Effects of habitat-forming species richness, evenness, identity, and abundance on benthic intertidal community establishment and productivity.

    Science.gov (United States)

    Lemieux, Julie; Cusson, Mathieu

    2014-01-01

    In a context of reduced global biodiversity, the potential impacts from the loss of habitat-forming species (HFS) on ecosystem structure and functioning must be established. These species are often the main community primary producers and have a major role in the establishment of organisms through facilitation processes. This study focuses on macroalgae and mussels as HFS within an intertidal zone along the St. Lawrence estuary (Quebec, Canada). Over a 16-week period, we manipulated the in situ diversity profile (richness, evenness, identity, and abundance) of the dominant HFS (Fucus distichus edentatus, F. vesiculosus, and Mytilus spp.) in order to define their role in both the establishment of associated species and community primary production. Contrary to expectation, no general change in HFS richness, evenness, abundance, or identity on associated species community establishment was observed. However, over the study period, the HFS diversity profile modified the structure within the trophic guilds, which may potentially affect further community functions. Also, our results showed that the low abundance of HFS had a negative impact on the primary productivity of the community. Our results suggest that HFS diversity profiles have a limited short-term role in our study habitat and may indicate that biological forcing in these intertidal communities is less important than environmental conditions. As such, there was an opportunistic establishment of species that ensured rapid colonization regardless of the absence, or the diversity profile, of facilitators such as HFS. PMID:25313459

  2. Sub-inhibitory concentrations of different pharmaceutical products affect the meta-transcriptome of river biofilm communities cultivated in rotating annular reactors.

    Science.gov (United States)

    Yergeau, Etienne; Sanschagrin, Sylvie; Waiser, Marley J; Lawrence, John R; Greer, Charles W

    2012-06-01

    Surface waters worldwide are contaminated by pharmaceutical products that are released into the environment from wastewater treatment plants. Here, we hypothesize that pharmaceutical products have effects on organisms as well as genes related to nutrient cycling in complex microbial communities. To test this hypothesis, biofilms were grown in reactors and subjected low concentrations of three antibiotics [erythromycin, ER, sulfamethoxazole, SL and sulfamethazine, SN) and a lipid regulator (gemfibrozil, GM). Total community RNA was extracted and sequenced together with PCR amplicons of the 16S rRNA gene using 454 pyrosequencing. Exposure to pharmaceutical products resulted in very little change in bacterial community composition at the phylum level based on 16S rRNA gene amplicons, even though some genera were significantly affected. In contrast, large shifts were observed in the active community composition based on taxonomic affiliations of mRNA sequences. Consequently, expression of gene categories related to N, P and C cycling were strongly affected by the presence of pharmaceutical products, with each treatment having specific effects. These results indicate that low pharmaceutical product concentrations rapidly provoke a variety of functional shifts in river bacterial communities. In the longer term these shifts in gene expression and microbial activity could lead to a disruption of important ecosystem processes like nutrient cycling. PMID:23760799

  3. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics.

    Science.gov (United States)

    Klein, Marlise I; Xiao, Jin; Lu, Bingwen; Delahunty, Claire M; Yates, John R; Koo, Hyun

    2012-01-01

    Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the

  4. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics.

    Directory of Open Access Journals (Sweden)

    Marlise I Klein

    Full Text Available Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA and glucan-binding (gbpB during this transition (P<0.05. Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism, and molecular chaperones (GroEL. Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms demonstrating fundamental differences in the matrix assembly, survival and biofilm

  5. Analysis of the attempt to establish a community currency into a Scottish Neighbourhood; focusing on community participation and engagement

    OpenAIRE

    McLoughlin, James

    2012-01-01

    The Transition Town Movement is a grassroots, community development movement which emerged in the UK and which aims to make communities more sustainable, stronger and more resilient in the face of environmental, economic and social problems we currently face. One initiative which has been adopted by the Transition Town Movement is community currencies; a broad term for a currency that operates within defined boundary (such as a community), alongside national currency and which facilitates th...

  6. pH landscapes in a novel five-species model of early dental biofilm.

    Directory of Open Access Journals (Sweden)

    Sebastian Schlafer

    Full Text Available BACKGROUND: Despite continued preventive efforts, dental caries remains the most common disease of man. Organic acids produced by microorganisms in dental plaque play a crucial role for the development of carious lesions. During early stages of the pathogenetic process, repeated pH drops induce changes in microbial composition and favour the establishment of an increasingly acidogenic and aciduric microflora. The complex structure of dental biofilms, allowing for a multitude of different ecological environments in close proximity, remains largely unexplored. In this study, we designed a laboratory biofilm model that mimics the bacterial community present during early acidogenic stages of the caries process. We then performed a time-resolved microscopic analysis of the extracellular pH landscape at the interface between bacterial biofilm and underlying substrate. METHODOLOGY/PRINCIPAL FINDINGS: Strains of Streptococcus oralis, Streptococcus sanguinis, Streptococcus mitis, Streptococcus downei and Actinomyces naeslundii were employed in the model. Biofilms were grown in flow channels that allowed for direct microscopic analysis of the biofilms in situ. The architecture and composition of the biofilms were analysed using fluorescence in situ hybridization and confocal laser scanning microscopy. Both biofilm structure and composition were highly reproducible and showed similarity to in-vivo-grown dental plaque. We employed the pH-sensitive ratiometric probe C-SNARF-4 to perform real-time microscopic analyses of the biofilm pH in response to salivary solutions containing glucose. Anaerobic glycolysis in the model biofilms created a mildly acidic environment. Decrease in pH in different areas of the biofilms varied, and distinct extracellular pH-microenvironments were conserved over several hours. CONCLUSIONS/SIGNIFICANCE: The designed biofilm model represents a promising tool to determine the effect of potential therapeutic agents on biofilm growth

  7. Effect of Different Disinfection Protocols on Microbial and Biofilm Contamination of Dental Unit Waterlines in Community Dental Practices

    OpenAIRE

    Laura Dallolio; Amalia Scuderi; Rini, Maria S.; Sabrina Valente; Patrizia Farruggia; Bucci Sabattini, Maria A.; Gianandrea Pasquinelli; Anna Acacci; Greta Roncarati; Erica Leoni

    2014-01-01

    Output water from dental unit waterlines (DUWLs) may be a potential source of infection for both dental healthcare staff and patients. This study compared the efficacy of different disinfection methods with regard to the water quality and the presence of biofilm in DUWLs. Five dental units operating in a public dental health care setting were selected. The control dental unit had no disinfection system; two were disinfected intermittently with peracetic acid/hydrogen peroxide 0.26% and two un...

  8. Antifouling Coatings Influence both Abundance and Community Structure of Colonizing Biofilms: a Case Study in the Northwestern Mediterranean Sea

    OpenAIRE

    Camps, Mercedes; Barani, Aude; Gregori, Gerald; Bouchez, Agnes; Le Berre, Brigitte; Bressy, Christine; Blache , Yves

    2014-01-01

    When immersed in seawater, substrates are rapidly colonized by both micro- and macroorganisms. This process is responsible for important economic and ecological prejudices, particularly when related to ship hulls or aquaculture nets. Commercial antifouling coatings are supposed to reduce biofouling, i.e., micro- and macrofoulers. In this study, biofilms that primarily settled on seven different coatings (polyvinyl chloride [PVC], a fouling release coating [FRC], and five self-polishing copoly...

  9. Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms Rid A-1977-2009

    DEFF Research Database (Denmark)

    KUHL, M.; JØRGENSEN, BB

    1992-01-01

    The microzonation of O2 respiration, H2S oxidation, and SO4(2-) reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100-mu-m) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured......, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H2S produced from sulfate reduction was reoxidized by O2 in a narrow reaction zone, and no H2S escaped to the overlying...... water. Turnover times of H2S and O2 in the reaction zone were only a few seconds owing to rapid bacterial H2S oxidation. Anaerobic H2S oxidation with NO3- could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO4(2-) or organic substrate...

  10. Exploiting social evolution in biofilms

    OpenAIRE

    Boyle, Kerry E.; Heilmann, Silja; van Ditmarsch, Dave; Xavier, Joao B.

    2013-01-01

    Bacteria are highly social organisms that communicate via signaling molecules, move collectively over surfaces and make biofilm communities. Nonetheless, our main line of defense against pathogenic bacteria consists of antibiotics – drugs that target individual-level traits of bacterial cells and thus, regrettably, select for resistance against their own action. A possible solution lies in targeting the mechanisms by which bacteria interact with each other within biofilms. The emerging field ...

  11. The Challenging World of Biofilm Physiology.

    Science.gov (United States)

    Donné, Joke; Dewilde, Sylvia

    2015-01-01

    Worldwide, infectious diseases are one of the leading causes of death among children. At least 65% of all infections are caused by the biofilm mode of bacterial growth. Bacteria colonise surfaces and grow as multicellular biofilm communities surrounded by a polymeric matrix as a common survival strategy. These sessile communities endow bacteria with high tolerance to antimicrobial agents and hence cause persistent and chronic bacterial infections, such as dental caries, periodontitis, otitis media, cystic fibrosis and pneumonia. The highly complex nature and the rapid adaptability of the biofilm population impede our understanding of the process of biofilm formation, but an important role for oxygen-binding proteins herein is clear. Much research on this bacterial lifestyle is already performed, from genome/proteome analysis to in vivo antibiotic susceptibility testing, but without significant progress in biofilm treatment or eradication. This review will present the multiple challenges of biofilm research and discuss possibilities to cross these barriers in future experimental studies. PMID:26616519

  12. Establishment of a catchment monitoring network through a participatory approach in a rural community in South Africa

    Directory of Open Access Journals (Sweden)

    V. M. Kongo

    2010-12-01

    Full Text Available The establishment of a catchment monitoring network is a process, from the inception of the idea to its implementation, the latter being the construction of relevant gauging structures and installation of the various instruments. It is useful that the local communities and other stakeholders are involved and participate in such a process, as was highlighted during the establishment of the hydrological monitoring network in the Potshini catchment in Bergville District in the KwaZulu-Natal Province, South Africa. The paper highlights the participatory establishment of a hydrological monitoring network in a small rural inhabited catchment, in line with the overall objective of the Smallholder System Innovations (SSI research programme, to monitor hydrological processes at both field and catchment scale for water resources management research purposes. The engagement and participation of the Potshini community precipitated a learning opportunity for both the researchers and the local community on (i the understanding of hydrological processes inherent in the catchment (ii appreciating the inherent dynamics in establishing a catchment monitoring network in the midst of a community (iii paradigm shift on how to engage different stakeholders at different levels of participation. The participatory engagement in the monitoring process led to appreciation and uptake of some of the research results by the Potshini community and ensured continued support from all stakeholders. This paper is of the view that the participation of the local community and other stakeholders in catchment monitoring and instilling a sense of ownership and management of natural resources to the local communities needs to be encouraged at all times. Success stories in water resources management by local communities can be realized if such a process is integrated with other development plans in the catchment at all forums, with due recognition of the social dynamics of the

  13. Analysis of the Microbial Community in an Acidic Hollow-Fiber Membrane Biofilm Reactor (Hf-MBfR Used for the Biological Conversion of Carbon Dioxide to Methane.

    Directory of Open Access Journals (Sweden)

    Hyun Chul Shin

    Full Text Available Hydrogenotrophic methanogens can use gaseous substrates, such as H2 and CO2, in CH4 production. H2 gas is used to reduce CO2. We have successfully operated a hollow-fiber membrane biofilm reactor (Hf-MBfR for stable and continuous CH4 production from CO2 and H2. CO2 and H2 were diffused into the culture medium through the membrane without bubble formation in the Hf-MBfR, which was operated at pH 4.5-5.5 over 70 days. Focusing on the presence of hydrogenotrophic methanogens, we analyzed the structure of the microbial community in the reactor. Denaturing gradient gel electrophoresis (DGGE was conducted with bacterial and archaeal 16S rDNA primers. Real-time qPCR was used to track changes in the community composition of methanogens over the course of operation. Finally, the microbial community and its diversity at the time of maximum CH4 production were analyzed by pyrosequencing methods. Genus Methanobacterium, related to hydrogenotrophic methanogens, dominated the microbial community, but acetate consumption by bacteria, such as unclassified Clostridium sp., restricted the development of acetoclastic methanogens in the acidic CH4 production process. The results show that acidic operation of a CH4 production reactor without any pH adjustment inhibited acetogenic growth and enriched the hydrogenotrophic methanogens, decreasing the growth of acetoclastic methanogens.

  14. Establishment of a Migrant Community: The Story of the Jamahs in Iloilo City, Philippines

    Directory of Open Access Journals (Sweden)

    Ronaldo F. Frufonga

    2016-02-01

    Full Text Available This study was conceptualized to reconstruct the history of the Muslims in Iloilo City who attend worship at the San Nicolas mosque. The study employed the descriptive case study method. The in-depth and semi –structured interviews were the main tools. Other tools were informal and direct observations and focus group discussion. Inconsistencies in the narratives were straightened out in the focus group discussion. The key informants were five Maranao Muslim males from Marawi City. Reasons for migration are mostly economic and majorities are traders from Lanao Del Sur. In the 1970’s more migrants came most were single young males to avoid the then conflict between the Muslim rebels and the government troops during the Martial Law. All of the first generation migrants are males, the wives and female children followed once the males had established themselves. There were no concrete problems they have encountered as a community. The second and third generations have already adapted to the Ilonggo lifestyle. In general they encountered no resistance from the Ilonggos, instead, they feel accepted. They have no recollection of stories of resistance from the first generation migrants either.

  15. Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm.

    Science.gov (United States)

    Jayashree, C; Tamilarasan, K; Rajkumar, M; Arulazhagan, P; Yogalakshmi, K N; Srikanth, M; Banu, J Rajesh

    2016-09-15

    Tubular upflow microbial fuel cell (MFC) utilizing sea food processing wastewater was evaluated for wastewater treatment efficiency and power generation. At an organic loading rate (OLR) of 0.6 g d(-1), the MFC accomplished total and soluble chemical oxygen demand (COD) removal of 83 and 95%, respectively. A maximum power density of 105 mW m(-2) (2.21 W m(-3)) was achieved at an OLR of 2.57 g d(-1). The predominant bacterial communities of anode biofilm were identified as RB1A (LC035455), RB1B (LC035456), RB1C (LC035457) and RB1E (LC035458). All the four strains belonged to genera Stenotrophomonas. The results of the study reaffirms that the seafood processing wastewater can be treated in an upflow MFC for simultaneous power generation and wastewater treatment. PMID:27254294

  16. Microbial pathogenesis and biofilm development

    DEFF Research Database (Denmark)

    Reisner, A.; Høiby, N.; Tolker-Nielsen, Tim;

    2004-01-01

    cycles of different microorganisms will eventually lead to improved treatments. Several bacteria have evolved specific strategies for virulent colonization of humans in addition to their otherwise harmless establishment as environmental inhabitants. In many such cases biofilm development seems to play a...... of polysaccharides. A recent striking finding is that DNA released from biofilm cells may be important as an initial matrix former [3]. At later times other EPS molecules may add to the shape and quality of the mature biofilm structure. Figure 1 summarizes the principle stepsinvolved in the...

  17. Establishing an implementation network: lessons learned from community-based participatory research

    OpenAIRE

    Garcia Piedad; Hough Richard L; Lebowitz Barry; Lindamer Laurie A; Aguirre Alfredo; Halpain Maureen C; Depp Colin; Jeste Dilip V

    2009-01-01

    Abstract Background Implementation of evidence-based mental health assessment and intervention in community public health practice is a high priority for multiple stakeholders. Academic-community partnerships can assist in the implementation of efficacious treatments in community settings; yet, little is known about the processes by which these collaborations are developed. In this paper, we discuss our application of community-based participatory research (CBPR) approach to implementation, a...

  18. Wound biofilms: lessons learned from oral biofilms

    OpenAIRE

    Mancl, Kimberly A.; Kirsner, Robert S.; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque,are a primary cause of oral diseases including caries, gingivitis and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible, thus biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well-elucidated. In contrast, wound research has relati...

  19. Variable-Number Tandem-Repeat Analysis of Respiratory and Household Water Biofilm Isolates of "Mycobacterium avium subsp. hominissuis" with Establishment of a PCR Database.

    Science.gov (United States)

    Iakhiaeva, Elena; Howard, Susan T; Brown Elliott, Barbara A; McNulty, Steven; Newman, Kristopher L; Falkinham, Joseph O; Williams, Myra; Kwait, Rebecca; Lande, Leah; Vasireddy, Ravikiran; Turenne, Christine; Wallace, Richard J

    2016-04-01

    "Mycobacterium aviumsubsp.hominissuis" is an important cause of pulmonary disease. It is acquired from environmental sources, but there is no methodology for large population studies. We evaluated the potential of variable-number tandem-repeat (VNTR) analysis. Clinical and household biofilmM. aviumisolates underwent molecular identification. Testing for IS901was done to separateM. aviumsubsp.aviumfromM. aviumsubsp.hominissuis VNTR types were defined using VNTR loci, and subtyping was performed using 3'hsp65and internal transcribed spacer (ITS) sequencing. Forty-nine VNTR types and eight subtypes ofM. aviumsubsp.hominissuis(IS901negative) were identified among 416 isolates ofM. aviumfrom 121 patients and 80 biofilm sites. Of those types, 67% were found only among patient isolates, 11% only among household water isolates, and 23% among both. Of 13 VNTR types that included ≥4 patients, the majority (61.5%) represented geographic clustering (same city). Most VNTR types with multiple patients belonged to the same 3'hsp65sequence code (sequevar). A total of 44 isolates belonging to fourM. aviumsubsp.hominissuisVNTR types (8%), including three with the rare Mav-F ITS sequence and 0/8 subspecies, produced amplicons with IS901PCR primers. By sequencing, all 44 amplicons were not IS901but ISMav6, which was recently observed in Japan but had not been previously described among U.S. isolates. VNTR analysis ofM. aviumsubsp.hominissuisisolates is easier and faster than pulsed-field gel electrophoresis. Seven VNTR loci separated 417 isolates into 49 types. No isolates ofM. aviumsubsp.aviumwere identified. The distributions of the VNTR copy numbers, the allelic diversity, and the low prevalence of ISMav6 differed from the findings for respiratory isolates reported from Japan. PMID:26739155

  20. The Host’s Reply to Candida Biofilm

    Directory of Open Access Journals (Sweden)

    Jeniel E. Nett

    2016-03-01

    Full Text Available Candida spp. are among the most common nosocomial fungal pathogens and are notorious for their propensity toward biofilm formation. When growing on a medical device or mucosal surface, these organisms reside as communities embedded in a protective matrix, resisting host defenses. The host responds to Candida biofilm by depositing a variety of proteins that become incorporated into the biofilm matrix. Compared to free-floating Candida, leukocytes are less effective against Candida within a biofilm. This review highlights recent advances describing the host’s response to Candida biofilms using ex vivo and in vivo models of mucosal and device-associated biofilm infections.

  1. Biofilm induced tolerance towards antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Anders Folkesson

    Full Text Available Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms.

  2. Effect of different disinfection protocols on microbial and biofilm contamination of dental unit waterlines in community dental practices.

    Science.gov (United States)

    Dallolio, Laura; Scuderi, Amalia; Rini, Maria S; Valente, Sabrina; Farruggia, Patrizia; Sabattini, Maria A Bucci; Pasquinelli, Gianandrea; Acacci, Anna; Roncarati, Greta; Leoni, Erica

    2014-02-01

    Output water from dental unit waterlines (DUWLs) may be a potential source of infection for both dental healthcare staff and patients. This study compared the efficacy of different disinfection methods with regard to the water quality and the presence of biofilm in DUWLs. Five dental units operating in a public dental health care setting were selected. The control dental unit had no disinfection system; two were disinfected intermittently with peracetic acid/hydrogen peroxide 0.26% and two underwent continuous disinfection with hydrogen peroxide/silver ions (0.02%) and stabilized chlorine dioxide (0.22%), respectively. After three months of applying the disinfection protocols, continuous disinfection systems were more effective than intermittent systems in reducing the microbial contamination of the water, allowing compliance with the CDC guidelines and the European Council regulatory thresholds for drinking water. P. aeruginosa, Legionella spp, sulphite-reducing Clostridium spores, S. aureus and β-haemolytic streptococci were also absent from units treated with continuous disinfection. The biofilm covering the DUWLs was more extensive, thicker and more friable in the intermittent disinfection dental units than in those with continuous disinfection. Overall, the findings showed that the products used for continuous disinfection of dental unit waterlines showed statistically better results than the intermittent treatment products under the study conditions. PMID:24552789

  3. Effect of Different Disinfection Protocols on Microbial and Biofilm Contamination of Dental Unit Waterlines in Community Dental Practices

    Directory of Open Access Journals (Sweden)

    Laura Dallolio

    2014-02-01

    Full Text Available Output water from dental unit waterlines (DUWLs may be a potential source of infection for both dental healthcare staff and patients. This study compared the efficacy of different disinfection methods with regard to the water quality and the presence of biofilm in DUWLs. Five dental units operating in a public dental health care setting were selected. The control dental unit had no disinfection system; two were disinfected intermittently with peracetic acid/hydrogen peroxide 0.26% and two underwent continuous disinfection with hydrogen peroxide/silver ions (0.02% and stabilized chlorine dioxide (0.22%, respectively. After three months of applying the disinfection protocols, continuous disinfection systems were more effective than intermittent systems in reducing the microbial contamination of the water, allowing compliance with the CDC guidelines and the European Council regulatory thresholds for drinking water. P. aeruginosa, Legionella spp, sulphite-reducing Clostridium spores, S. aureus and β-haemolytic streptococci were also absent from units treated with continuous disinfection. The biofilm covering the DUWLs was more extensive, thicker and more friable in the intermittent disinfection dental units than in those with continuous disinfection. Overall, the findings showed that the products used for continuous disinfection of dental unit waterlines showed statistically better results than the intermittent treatment products under the study conditions.

  4. Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Ren, Dawei

    structured aggregation consisting of multiple species of bacteria whose function relies on a complex web of cooperative and/or competitive interactions between community members, indicating that research in “whole-entity” should not be based on the assembled results from “mono pieces”. As one of the best...... by transcriptomic analysis are also presented. Due to the poor reproducibility of most biofilm quantification assays, the first part of my work is to develop a rapid, reproducible and sensitive approach for quantitative screening of biofilm formation by bacteria when cultivated as mono- and multispecies biofilms......, followed by species specific qPCR based on SYBR Green I fluorescence to measure the relative proportion of individual species in mixed-species biofilms. The reported approach was described in Manuscript 1 which can be used as a standard procedure for evaluating interspecies interactions in defined...

  5. Differential growth of wrinkled biofilms

    CERN Document Server

    Espeso, D R; Einarsson, B

    2015-01-01

    Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Foppl-Von Karman equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to repr...

  6. Role of biofilm in catheter-associated urinary tract infection

    OpenAIRE

    Trautner, Barbara W.; Darouiche, Rabih O.

    2004-01-01

    The predominant form of life for the majority of microorganisms in any hydrated biologic system is a cooperative community termed a “biofilm.” A biofilm on an indwelling urinary catheter consists of adherent microorganisms, their extracellular products, and host components deposited on the catheter. The biofilm mode of life conveys a survival advantage to the microorganisms associated with it and, thus, biofilm on urinary catheters results in persistent infections that are resistant to antimi...

  7. The Pseudomonas Quinolone Signal Inhibits Biofilm Development of Streptococcus mutans

    OpenAIRE

    Inaba, Tomohiro; Oura, Hiromu; Morinaga, Kana; Toyofuku, Masanori; Nomura, Nobuhiko

    2015-01-01

    Bacteria often thrive in natural environments through a sessile mode of growth, known as the biofilm. Biofilms are well-structured communities and their formation is tightly regulated. However, the mechanisms by which interspecies interactions alter the formation of biofilms have not yet been elucidated in detail. We herein demonstrated that a quorum-sensing signal in Pseudomonas aeruginosa (the Pseudomonas quinolone signal; PQS) inhibited biofilm formation by Streptococcus mutans. Although t...

  8. Ten Steps for the Establishment of the Comprehensive Community College Library.

    Science.gov (United States)

    Tanis, Norman E.

    Because community college boards of trustees and citizens committees often make the initial decisions about major college policies and building plans, it is important that they become aware of the basic sequence of events which will promote excellent community college libraries. The ten steps involve: (1) provision of funds for the library in the…

  9. Establishment of a community managed marine reserve in the Bay of Ranobe, southwest Madagascar

    Directory of Open Access Journals (Sweden)

    Roderick D. Stein-Rostaing

    2009-06-01

    Full Text Available The Bay of Ranobe, in southwest Madagascar, once noted for its high biodiversity and fish abundance, is under increasing pressure from overfishing, pollution, sedimentation and tourism. The declining health of the coral reef is reflected in fishery productivity and survey data on biological diversity. Sustainable conservation requires the engagement of all interested parties and the integration of their needs into resource management. The British NGO ReefDoctor has adopted this approach in establishing the first community-protected site in the Bay of Ranobe, the Massif des Roses. This is a large coral patch with a high percentage of live coral cover (38 % and important fish diversity compared to other sites surveyed in the lagoon. Since 25 May 2007 it has been legally recognised as a community managed marine reserve under temporary protection where fishing is banned. Tourists must now pay an entry fee to visit the site, with the proceeds contributing to the funding of community projects. In conjunction with the protection of this site, ReefDoctor has worked with local people, regional and local government, tour operators and hotels, and conservation organisations to set up ‘FIMIHARA’, an association representative of local people responsible for the management of this site and the development of sustainable conservation initiatives in the Bay of Ranobe. This paper explains the approach taken by ReefDoctor, by setting up and working with FIMIHARA, to protect the Massif des Roses site and develop other conservation initiatives and community projects in the Bay of Ranobe. RÉSUMÉ: La baie de Ranobe, au sud - ouest de Madagascar, autrefois remarquable pour sa biodiversité et l’abondance de la pêche, est de plus en plus menacée par la surpêche, la sédimentation, la pollution et le tourisme. Le déclin de l’état de santé du récif corallien se reflète dans la diminution de la productivité des pêcheries et dans les suivis de la

  10. Current understanding of multi-species biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong;

    2011-01-01

    Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually...... formed by multiple bacterial species. Conventional methods for bacterial cleaning, such as applications of antibiotics and/or disinfectants are often ineffective for biofilm populations due to their special physiology and physical matrix barrier. It has been estimated that billions of dollars are spent...... every year worldwide to deal with damage to equipment, contaminations of products, energy losses, and infections in human beings resulted from microbial biofilms. Microorganisms compete, cooperate, and communicate with each other in multi-species biofilms. Understanding the mechanisms of multi...

  11. Microbial communities established on Mont Blanc summit with Saharan dust deposition

    Science.gov (United States)

    Chuvochina, M.; Alekhina, I.; Normand, P.; Petit, J. R.; Bulat, S.

    2009-04-01

    Dust originating from the Sahara desert can be uplifted during storms, transported across the Mediterranean towards the Alpine region and deposited during snowfalls. The microbes associated with dust particles can be involved in establishing microbiota in icy environments as well as affect ecosystem and human health. Our objective was to use a culture-free DNA-based approach to assess bacterial content and diversity and furthermore, to identify ‘icy' microbes which could be brought on the Mont Blanc (MtBl) summit with Saharan dust and became living in the snow. Saharan dust fallout on MtBl summit from one event (MB5, event June 2006) vs. control libraries and that from another event (May 2008) were collected in Grenoble (SD, 200 m a.s.l.) and at Col du Dome (MB-SD, 4250 m a.s.l.). Soil from Ksar Ghilane (SS, Saharan desert, Tunisia, March 2008) was taken for overall comparison as a possible source population. Fresh snow falling in Grenoble (85) was collected as example of diversity in this area. To assess the microbial diversity 16S rRNA gene libraries (v3-v5 region) were constructed for corresponding dust-snow samples (MB5, SS, SD, 85 and MB-SD) along with clear snow samples and several controls. For both MB5 and MB-SD samples full-gene technique was evoked in attempt to differentiate reproduced bacteria from damaged DNA. Before sequencing the clones were rybotyped. All clone libraries were distinct in community composition except for some single phylotypes (or closely related groups) overlap. Thus, clone libraries from two different events that were collected at Col du Dome area within 2 year interval (MB5 and MB-SD) were different in community composition except one of the abundant phylotype from MB-SD library (Geodermatophilus sp.) which was shared (98% sequence similarity) with single representative from MB-5 library. These bacteria are pigmented and radiation-resistant, so it could be an indicator of desert origin for our sequences. For MB5 library two

  12. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    Directory of Open Access Journals (Sweden)

    E. S. Vorobey

    2012-03-01

    Full Text Available Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molecules of the Quorum sensing system. Coordination of bacterial cells activity in the biofilms gives them significant advantages: in the biofilms bacteria are protected from the influence of the host protective factors and the antibacterial drugs.

  13. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions

    OpenAIRE

    Zhang, Wei; Sileika, Tadas S.; Chen, Cheng; Liu, Yang; Lee, Jisun; Packman, Aaron I.

    2011-01-01

    Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimension...

  14. Dynamic interactions of neutrophils and biofilms

    Directory of Open Access Journals (Sweden)

    Josefine Hirschfeld

    2014-12-01

    Full Text Available Background: The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. Objective/design: In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. Results/conclusion: Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.

  15. Some elements for the community development starting from the establishment and use of an energetic forest

    International Nuclear Information System (INIS)

    With this article it is looked to present several elements of community development starting from the forestry and use of energetic forests, in such a way that they guarantee a better level of the population's life, as well as the protection of the natural resources. It seeks to offer development perspectives starting from the appropriate handling of the forestall resource by means of the community participation, like productive force that should be impelled by the technical and economic contribution of the Colombian state. It is necessary to define the protagonistic paper of the municipal authorities and the community like actors in the process of sustainable development of the forestall resource as well as to identify the processes required in a system that integrates the state, the community and the natural resources for the obtaining of goods and ecological, economic and social services of the rural sector

  16. Monitoring Of Water Quality And Establishing Maintenance System In A Rural Community In Nepal

    OpenAIRE

    Shrestha, Santosh

    2014-01-01

    This thesis is a part of the LEAP (Livelihood Environmental Awareness Project) Organized by CODEF (Community Development Forum) with the support of KEMA (Mikkeli- Kehitysmaayhdistys). The study includes the water improvement systems and strategy to raise the awareness of water and personal hygiene for the community of Devichaur. The goal of this thesis is to minimize the number of diarrhoeal cases in the rural part of Nepal, Devichaur, situated in the Lalitpur district. The number of diarr...

  17. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    OpenAIRE

    E. S. Vorobey; O. S. Voronkova; A. I. Vinnikov

    2012-01-01

    Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molec...

  18. MICROBIAL BIOFILMS AS INDICATORS OF ESTUARINE CONDITION

    Science.gov (United States)

    Microbial biofilms are complex communities of bacteria, protozoa, microalgae, and micrometazoa which exist in a polymer matrix on submerged surfaces. Their development is integrative of environmental conditions and is affected by local biodiversity, the availability of organic ma...

  19. Research plan for establishing the effects of time varying noise exposures on community annoyance and acceptability

    Science.gov (United States)

    Borsky, P. N.

    1980-01-01

    The design of a community noise survey to determine the effects of time varying noise exposures in residential communities is presented. Complex physical and human variables involved in the health and welfare effects of environmental noise and the number-level tradeoffs and time of day penalties are among the factors considered. Emphasis is placed on community reactions where noise exposures are equal in day or evening but differ in the night time, and the effects of ambient noise on more intense aircraft noise exposures. Thirteen different times of day and types of operation situations with exposed populations up to 8-10 miles from the airport are identified. A detailed personal interview questionnaire as well as specific instructions to interviewers are included.

  20. Advancement of the 10-species subgingival Zurich Biofilm model by examining different nutritional conditions and defining the structure of the in vitro biofilms

    Directory of Open Access Journals (Sweden)

    Ammann Thomas W

    2012-10-01

    Full Text Available Abstract Background Periodontitis is caused by a highly complex consortium of bacteria that establishes as biofilms in subgingival pockets. It is a disease that occurs worldwide and its consequences are a major health concern. Investigations in situ are not possible and the bacterial community varies greatly between patients and even within different loci. Due to the high complexity of the consortium and the availability of samples, a clear definition of the pathogenic bacteria and their mechanisms of pathogenicity are still not available. In the current study we addressed the need of a defined model system by advancing our previously described subgingival biofilm model towards a bacterial composition that reflects the one observed in diseased sites of patients and analysed the structure of these biofilms. Results We further developed the growth media by systematic variation of key components resulting in improved stability and the firm establishment of spirochetes in the 10-species subgingival Zurich biofilm model. A high concentration of heat-inactivated human serum allowed the best proliferation of the used species. Therefore we further investigated these biofilms by analysing their structure by confocal laser scanning microscopy following fluorescence in situ hybridisation. The species showed mutual interactions as expected from other studies. The abundances of all organisms present in this model were determined by microscopic counting following species-specific identification by both fluorescence in situ hybridisation and immunofluorescence. The newly integrated treponemes were the most abundant organisms. Conclusions The use of 50% of heat-inactivated human serum used in the improved growth medium resulted in significantly thicker and more stable biofilms, and the quantitative representation of the used species represents the in vivo community of periodontitis patients much closer than in biofilms grown in the two media with less or no

  1. Automatic quantification of early transition points in biofilm formation

    Science.gov (United States)

    Thatcher, Travis; Bienvenu, Samuel; Strain, Shinji; Gordon, Vernita

    2010-10-01

    Biofilms are multicellular, dynamic communities of interacting single-cell organisms, like bacteria. Biofilms are responsible for many infectious diseases as well as for significant damage in industrial settings, yet many aspects of biofilm formation are not well understood. Identifying and quantifying the interactions leading to biofilm formation will not only be important for understanding the basic science of these and other multicellular systems, but it will also be essential for designing targeted strategies to prevent or disrupt biofilms. In particular, it is not clear what physical interactions, and corresponding biological mechanisms, are responsible for the early steps in biofilm formation. Because of this, we are developing high-throughput software techniques to analyze micrograph movies of biofilm formation, from attachment to surfaces through the development of microcolonies. This work will focus on developing software tools to identify and quantify key steps in biofilm formation, first in non-chemotacting systems and later in chemotacting (and autotacting) systems.

  2. Teamwork in Establishing a Professional Learning Community in a New Icelandic School

    Science.gov (United States)

    Svanbjörnsdóttir, Birna María; Macdonald, Allyson; Frímannsson, Gudmundur Heidar

    2016-01-01

    The focus of the action research reported here is on how leaders and teachers used teamwork in developing a professional learning community in a new compulsory school in Iceland. Collaboration is a critical issue in schools as it can improve practice that supports student achievement. Results from the TALIS 2008 study show that Icelandic teachers…

  3. Building healthy communities: establishing health and wellness metrics for use within the real estate industry.

    Science.gov (United States)

    Trowbridge, Matthew J; Pickell, Sarah Gauche; Pyke, Christopher R; Jutte, Douglas P

    2014-11-01

    It is increasingly well recognized that the design and operation of the communities in which people live, work, learn, and play significantly influence their health. However, within the real estate industry, the health impacts of transportation, community development, and other construction projects, both positive and negative, continue to operate largely as economic externalities: unmeasured, unregulated, and for the most part unconsidered. This lack of transparency limits communities' ability to efficiently advocate for real estate investment that best promotes their health and well-being. It also limits market incentives for innovation within the real estate industry by making it more difficult for developers that successfully target health behaviors and outcomes in their projects to differentiate themselves competitively. In this article we outline the need for actionable, community-relevant, practical, and valuable metrics jointly developed by the health care and real estate sectors to better evaluate and optimize the "performance" of real estate development projects from a population health perspective. Potential templates for implementation, including the successful introduction of sustainability metrics by the green building movement, and preliminary data from selected case-study projects are also discussed. PMID:25367986

  4. Focus on the physics of biofilms

    Science.gov (United States)

    Lecuyer, Sigolene; Stocker, Roman; Rusconi, Roberto

    2015-03-01

    Bacteria are the smallest and most abundant form of life. They have traditionally been considered as primarily planktonic organisms, swimming or floating in a liquid medium, and this view has shaped many of the approaches to microbial processes, including for example the design of most antibiotics. However, over the last few decades it has become clear that many bacteria often adopt a sessile, surface-associated lifestyle, forming complex multicellular communities called biofilms. Bacterial biofilms are found in a vast range of environments and have major consequences on human health and industrial processes, from biofouling of surfaces to the spread of diseases. Although the study of biofilms has been biologists’ territory for a long time, a multitude of phenomena in the formation and development of biofilms hinges on physical processes. We are pleased to present a collection of research papers that discuss some of the latest developments in many of the areas to which physicists can contribute a deeper understanding of biofilms, both experimentally and theoretically. The topics covered range from the influence of physical environmental parameters on cell attachment and subsequent biofilm growth, to the use of local probes and imaging techniques to investigate biofilm structure, to the development of biofilms in complex environments and the modeling of colony morphogenesis. The results presented contribute to addressing some of the major challenges in microbiology today, including the prevention of surface contamination, the optimization of biofilm disruption methods and the effectiveness of antibiotic treatments.

  5. Paradigm of universalistic particularism to reform the Indonesian economic law in the framework of establishing the 2015 ASEAN Economic Community

    Directory of Open Access Journals (Sweden)

    S.H., M. Hum. TAUFIQURRAHMAN

    2014-06-01

    Full Text Available A reality that cannot be denied that the laws of Indonesia applicable today, especially regarding international trade transactions, are less conducive to the changes. This can be understood because the law that in fact is a legacy of the Dutch colonial government has not been changed at all, but the dynamics of the community continue to run endlessly. Changes in society increasingly run quickly along with the progress achieved in the field of Science and Technology, particularly Information and Communication. Such an objective conditions will in turn lead to new legal issues in the community, namely the absence of law and the emergence of the legal gap between what the law in book with what the law in action. The increasingly complex legal issues in related to be the establishment of an ASEAN Economic Community (AEC of 2015. The theory used to analyze is the Jeremy Bentham’s Legislation Theory and the Theory of Legal Development from Mochtar Kusumaatmadja. While the research method applied is normative legal research methods with the statute, and conceptual approaches. The analysis shows that the convergence paradigm namely universalistic particularism is appropriate used in law reform in Indonesia. In addition, in order to provide a clear direction of Indonesian economic law reform efforts in the context of the establishment of 2015 AEC, it is necessary to establish the Indonesian Economic System in the national legislation.

  6. Ultrastructure of Biofilms Formed by Bacteria from Industrial Processes

    OpenAIRE

    Raulio, Mari

    2010-01-01

    Microorganisms exist predominantly as sessile multispecies communities in natural habitats. Most bacterial species can form these matrix-enclosed microbial communities called biofilms. Biofilms occur in a wide range of environments, on every surface with sufficient moisture and nutrients, also on surfaces in industrial settings and engineered water systems. This unwanted biofilm formation on equipment surfaces is called biofouling. Biofouling can significantly decrease equipment performance a...

  7. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide

    OpenAIRE

    Valle, Jaione; Da Re, Sandra; Henry, Nelly; Fontaine, Thierry; Balestrino, Damien; Latour-Lambert, Patricia; Ghigo, Jean-Marc

    2006-01-01

    The development of surface-attached biofilm bacterial communities is considered an important source of nosocomial infections. Recently, bacterial interference via signaling molecules and surface active compounds was shown to antagonize biofilm formation, suggesting that nonantibiotic molecules produced during competitive interactions between bacteria could be used for biofilm reduction. Hence, a better understanding of commensal/pathogen interactions within bacterial community could lead to a...

  8. Modeling of the Bacillus subtilis Bacterial Biofilm Growing on an Agar Substrate

    OpenAIRE

    Wang, Xiaoling; Wang, Guoqing; Hao, Mudong

    2015-01-01

    Bacterial biofilms are organized communities composed of millions of microorganisms that accumulate on almost any kinds of surfaces. In this paper, a biofilm growth model on an agar substrate is developed based on mass conservation principles, Fick's first law, and Monod's kinetic reaction, by considering nutrient diffusion between biofilm and agar substrate. Our results show biofilm growth evolution characteristics such as biofilm thickness, active biomass, and nutrient concentration in the ...

  9. Biofilm Matrix Proteins

    OpenAIRE

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enz...

  10. Linear surface roughness growth and flow smoothening in a three-dimensional biofilm model

    CERN Document Server

    Head, D A

    2013-01-01

    The sessile microbial communities known as biofilms exhibit different surface structures as environmental factors are varied, including nutrient availability and flow-generated shear stresses. Here we modify an established agent-based biofilm model to include adhesive interactions, permitting it to mechanically react to an imposed stress. This model is employed to analyse the growth of surface roughness of single-species, three-dimensional biofilms. We find linear growth laws of surface geometry in both horizontal and vertical directions, and an active surface layer whose thickness anti-correlates with roughness. Flow is consistently shown to reduce surface roughness without affecting the active layer. We argue that the rapid roughening is due to non-local surface interactions mediated by the nutrient field which are curtailed by sufficiently rapid flows, and suggest simplified models will need to be developed to elucidate the underlying mechanisms.

  11. CLIMATIC FACTORS AND ESTABLISHMENT OF QUERCUS ILEX - COMMUNITIES IN TRIESTE PROVINCE (NE ITALY)

    OpenAIRE

    A. FURLANETTO; M. CODOGNO

    2004-01-01

    In the coastal area called "Cernizza" (near Duino. ca 15 km NW from Trieste), at an altitude between 0 and 40 m. is located a wood vegetation complex characterized by Quercus ilex and Carpinus orientalis. The bedrocks of this site is carbonatic. This wood vegetation does not occur in other sites or the Trieste province, where deciduous oak woods (Q. pubescells, Q. petraea s.1.) are dominant both on arenaceus and on carbonatic rocks. Other Quercus ilex communities are occurring only as scrubs ...

  12. Establishing a community-based approach to electronic journal archiving: the UK LOCKSS Pilot Programme

    OpenAIRE

    Ross, Seamus; Rusbridge, Adam

    2008-01-01

    Lots of Copies Keep Stuff Safe (LOCKSS ) represents a sophisticated combination of technical and business-aware elements that can be deployed to ensure the long-term accessibility to electronic journal content even if the publisher ceases to exist, a subscription is terminated, or the already acquired content becomes damaged. Given the potential benefits of LOCKSS to the UK community, and in consideration of the implications of the NESLi2 licences, the Joint Information Systems Committee and ...

  13. Early life establishment of site-specific microbial communities in the gut

    OpenAIRE

    Romano-Keeler, Joann; Moore, Daniel J.; Wang, Chunlin; Brucker, Robert M.; Fonnesbeck, Christopher; Slaughter, James C; Li, Haijing; Curran, Danielle P; Meng, Shufang; Correa, Hernan; Lovvorn III, Harold N; Tang, Yi-Wei; Bordenstein, Seth; George Jr, Alfred L; Weitkamp, Jörn-Hendrik

    2014-01-01

    Fecal sampling is widely utilized to define small intestinal tissue-level microbial communities in healthy and diseased newborns. However, this approach may lead to inaccurate assessments of disease or therapeutics in newborns because of the assumption that the taxa in the fecal microbiota are representative of the taxa present throughout the gastrointestinal tract. To assess the stratification of microbes in the newborn gut and to evaluate the probable shortcoming of fecal sampling in place ...

  14. Establishment of a fish community in the hayden-rhodes and salt-gila aqueducts, Arizona

    Science.gov (United States)

    Mueller, G.

    1996-01-01

    Fish populations were studied in the Central Arizona Project's canal system during the first 4 years of aqueduct operation (1986-1989). Ichthyoplankton entering the canal from Lake Havasu averaged 1 larva/m3 during April-June 1987 and 1988. Larval fish densities increased significantly in downstream samples, substantiating diver observations that fish were spawning in the canal system. Of the 16 fish species collected, 14 were assumed to have originated from Lake Havasu and 2 were introduced by anglers from their bait buckets. Initially, the fish community was dominated numerically by threadfin shad Dorosoma petenense (>88%), centrarchids (< 10%), cyprinids (<2%), and striped bass Morone saxatilis (<1%). However, as annual water diversions increased from 13 x 108 m3 in 1986 to 9.4 x 108 m3 in 1989, community composition shifted from clupeids to centrarchids (70%). Fish densities dropped from an estimated 1,260 fish/ha in 1986 to 17 fish/ha in 1989, and biomass dropped from 116 to 73 kg/ha. Declines were attributed to higher operational velocities, associated scour, deprivation, and predation. Although initial populations adjusted downward to planned operational conditions, the fish community continued to represent a potentially valuable, but as yet unused, resource.

  15. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Directory of Open Access Journals (Sweden)

    Zhejun Wang

    Full Text Available Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM, peptide 1018 was able to significantly (p50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  16. Effects of Eutrophication, Seasonality and Macrofouling on the Diversity of Bacterial Biofilms in Equatorial Coral Reefs

    OpenAIRE

    Sawall, Yvonne; Richter, Claudio; Ramette, Alban

    2012-01-01

    Biofilms play an important role as a settlement cue for invertebrate larvae and significantly contribute to the nutrient turnover in aquatic ecosystems. Nevertheless, little is known about how biofilm community structure generally responds to environmental changes. This study aimed to identify patterns of bacterial dynamics in coral reef biofilms in response to associated macrofouling community structure, microhabitat (exposed vs. sheltered), seasonality, and eutrophication. Settl...

  17. Pseudomonas aeruginosa forms Biofilms in Acute InfectionIndependent of Cell-to-Cell Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N.; Rumbaugh, Kendra P.

    2006-09-20

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 hours of infection in thermally-injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections. P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild type and QS-deficient P. aeruginosa formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independent of QS.

  18. Aspartate inhibits Staphylococcus aureus biofilm formation.

    Science.gov (United States)

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp. PMID:25687923

  19. Establishing a community of practice of researchers, practitioners, policy-makers and communities to sustainably manage environmental health risks in Ecuador

    Directory of Open Access Journals (Sweden)

    Henry Bonnie

    2011-11-01

    Full Text Available Abstract Background The Sustainably Managing Environmental Health Risk in Ecuador project was launched in 2004 as a partnership linking a large Canadian university with leading Cuban and Mexican institutes to strengthen the capacities of four Ecuadorian universities for leading community-based learning and research in areas as diverse as pesticide poisoning, dengue control, water and sanitation, and disaster preparedness. Methods In implementing curriculum and complementary innovations through application of an ecosystem approach to health, our interdisciplinary international team focused on the question: “Can strengthening of institutional capacities to support a community of practice of researchers, practitioners, policy-makers and communities produce positive health outcomes and improved capacities to sustainably translate knowledge?” To assess progress in achieving desired outcomes, we review results associated with the logic framework analysis used to guide the project, focusing on how a community of practice network has strengthened implementation, including follow-up tracking of program trainees and presentation of two specific case studies. Results By 2009, train-the-trainer project initiation involved 27 participatory action research Master’s theses in 15 communities where 1200 community learners participated in the implementation of associated interventions. This led to establishment of innovative Ecuadorian-led master’s and doctoral programs, and a Population Health Observatory on Collective Health, Environment and Society for the Andean region based at the Universidad Andina Simon Bolivar. Building on this network, numerous initiatives were begun, such as an internationally funded research project to strengthen dengue control in the coastal community of Machala, and establishment of a local community eco-health centre focusing on determinants of health near Cuenca. Discussion Strengthening capabilities for producing and

  20. Investigating biofilm structure developing on carriers from lab-scale moving bed biofilm reactors based on light microscopy and optical coherence tomography.

    Science.gov (United States)

    Li, Chunyan; Felz, Simon; Wagner, Michael; Lackner, Susanne; Horn, Harald

    2016-01-01

    This study focused on characterizing the structure of biofilms developed on carriers used in lab-scale moving bed biofilm reactors. Both light microscopy (2D) and optical coherence tomography (OCT) were employed to track the biofilm development on carriers of different geometry and under different aeration rates. Biofilm structure was further characterized with respect to average biofilm thickness, biofilm growth velocity, biomass volume, compartment filling degree, surface area, etc. The results showed that carriers with a smaller compartment size stimulated a quick establishment of biofilms. Low aeration rates favored fast development of biofilms. Comparison between the results derived from 2D and 3D images revealed comparable results with respect to average biofilm thickness and compartment filling degree before the carrier compartments were fully willed with biomass. However, 3D imaging with OCT was capable of visualizing and quantifying the heterogeneous structure of biofilms, which cannot be achieved using 2D imaging. PMID:26476614

  1. Incentives for Participation by Local Communities in the Establishment of Commercial Plantations in Sichuan Province, China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The 1998 floods in China triggered the implementation of the Natural Forest Conservation Program (NFCP) which includes: (i) a logging ban over state-owned natural forests in order to protect the deteriorating natural environment, and (ii) strategies for the establishment of commercial plantations and relocation of laid-off forest workers, with the aim of mitigating the negative socioeconomic impacts of the logging ban. In this paper, Sichuan province is used as a case study to analyze the disincentives ...

  2. Planktonic and biofilm community characterization and Salmonella resistance of 14-day old chicken cecal microflora derived continuous-flow cultures

    Science.gov (United States)

    These studies were initiated to compare the composition of GIT bacterial communities in birds during the transition period in age where their susceptibility to Salmonella shifts to resistance. One of the challenges to developing probiotics is to develop an efficacious culture of minimal diversity, ...

  3. Effect of Changing Treatment Disinfectants on the Microbiology of Distributed Water and Pipe Biofilm Communities using Conventional and Metagenomic Approaches

    Science.gov (United States)

    The purpose of this research was to add to our knowledge of chlorine and monochloramine disinfectants, with regards to effects on the microbial communities in distribution systems. A whole metagenome-based approach using sophisticated molecular tools (e.g., next generation sequen...

  4. CLIMATIC FACTORS AND ESTABLISHMENT OF QUERCUS ILEX - COMMUNITIES IN TRIESTE PROVINCE (NE ITALY

    Directory of Open Access Journals (Sweden)

    A. FURLANETTO

    2004-01-01

    Full Text Available In the coastal area called "Cernizza" (near Duino. ca 15 km NW from Trieste, at an altitude between 0 and 40 m. is located a wood vegetation complex characterized by Quercus ilex and Carpinus orientalis. The bedrocks of this site is carbonatic. This wood vegetation does not occur in other sites or the Trieste province, where deciduous oak woods (Q. pubescells, Q. petraea s.1. are dominant both on arenaceus and on carbonatic rocks. Other Quercus ilex communities are occurring only as scrubs on the calcareous coastal cliffs characterized by primitive lithosoils. In order to detect if this wood community might be an expression of the c1imate dominating this particular zone, some Duino's c1imatic data, relative lo a record period of 9 years. have been compared with the Trieste's ones. The analysed parameters were the following: air temperature. rainfall, evaporation. wind speed and relative humidity. From the comparison of these paramenters it emerged that the Duino's climate is more humid than the Trieste's one. Only in springtime Duino is less rainy than Trieste according lo the analysis of the monthly mean values of precipitation. From the ecophysiological point of view, a study of the seasonal changes of the root hydraulic conductance in some forest trees (Nardini el al .. 1998 has pointed out the superiority of Quercus ilex compared to Quercus pubescens, as regards the competitive ability of the seedlings during the spring. For this reason, the smaller spring rainfall could explain the occurrence of Quercus ilex stands not only in the neighbourhood of Duino but also at the beginning of the large valleys characterized by S•N direction in the South Eastern Alps.

  5. Putative Role of β-1,3 Glucans in Candida albicans Biofilm Resistance▿

    OpenAIRE

    Nett, Jeniel; Lincoln, Leslie; Marchillo, Karen; Massey, Randall; Holoyda, Kathleen; Hoff, Brian; VanHandel, Michelle; Andes, David

    2006-01-01

    Biofilms are microbial communities, embedded in a polymeric matrix, growing attached to a surface. Nearly all device-associated infections involve growth in the biofilm life style. Biofilm communities have characteristic architecture and distinct phenotypic properties. The most clinically important phenotype involves extraordinary resistance to antimicrobial therapy, making biofilm infections very difficulty to cure without device removal. The current studies examine drug resistance in Candid...

  6. Sponge larval settlement cues: the role of microbial biofilms in a warming ocean

    OpenAIRE

    S. Whalan; Webster, N. S.

    2014-01-01

    Microbial biofilms play important roles in initiating settlement of marine invertebrate larvae. Given the importance of habitat selection by the motile larval phase, understanding settlement choices is critical if we are to successfully predict the population dynamics of sessile adults. Marine microbial biofilms show remarkable variability in community composition, often mediated by environmental conditions and biofilm age. To determine if biofilm communities were influenced by the time allow...

  7. Streptococcus gordonii glucosyltransferase promotes biofilm interactions with Candida albicans

    Directory of Open Access Journals (Sweden)

    Austin Ricker

    2014-01-01

    Full Text Available Background: Candida albicans co-aggregates with Streptococcus gordonii to form biofilms and their interactions in mucosal biofilms may lead to pathogenic synergy. Although the functions of glucosyltransferases (Gtf of Mutans streptococci have been well characterized, the biological roles of these enzymes in commensal oral streptococci, such as S. gordonii, in oral biofilm communities are less clear. Objective: The objective of this work was to explore the role of GtfG, the single Gtf enzyme of S. gordonii, in biofilm interactions with C. albicans. Design: Biofilms were grown under salivary flow in flow cells in vitro, or under static conditions in 96 well plates. A panel of isogenic S. gordonii CH1 gtfG mutants and complemented strains were co-inoculated with C. albicans strain SC5314 to form mixed biofilms. Biofilm accretion and binding interactions between the two organisms were tested. Biofilms were quantified using confocal microscopy or the crystal violet assay. Results: The presence of GtfG enhanced dual biofilm accretion, and sucrose supplementation further augmented dual biofilm formation, pointing to a role of newly synthesized glucans. GtfG also promoted binding to C. albicans preformed biofilms. Soluble α-1,6-glucans played a role in these interactions since: 1 a strain producing only soluble glucans (CH107 formed robust dual biofilms under conditions of salivary flow; and 2 the dual biofilm was susceptible to enzymatic breakdown by dextranase which specifically degrades soluble α-1,6-glucans. Conclusion: Our work identified a novel molecular mechanism for C. albicans and S. gordonii biofilm interactions, mediated by GtfG. This protein promotes early biofilm binding of S. gordonii to C. albicans which leads to increased accretion of streptococcal cells in mixed biofilms. We also showed that soluble glucans, with α-1,6-linkages, promoted inter-generic adhesive interactions.

  8. Differential growth of wrinkled biofilms

    Science.gov (United States)

    Espeso, D. R.; Carpio, A.; Einarsson, B.

    2015-02-01

    Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste, and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Föppl-Von Kármán equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to reproduce wrinkled structures often formed by biofilms on air-agar interfaces, as well as spatial distributions of differentiated cells commonly observed with B. subtilis.

  9. STAPHYLOCOCCUS AUREUS BIOFILM FORMATION ON POLYPYRROLE: AN ELECTRICAL OVERVIEW

    Directory of Open Access Journals (Sweden)

    Erlon R. Cordeiro

    2015-09-01

    Full Text Available The development of organic devices based on conducting polymers for biofilm detection requires the combination of superior electrical response and high surface area for biofilm incorporation. Polypyrrole is a potential candidate for application in biofilm detection and control due to its characteristic superior electrical response and strong interaction with bacteria, which enables the use of the bioelectric effect in resulting devices. In this study, chemically synthesized polypyrrole was applied as a support for biofilm growth of S. aureus. Modifications in the electrical response of the polymeric template were explored to identify general mechanisms established during the deposition of the biofilm.

  10. Introduction to Biofilms Thematic Minireview Series.

    Science.gov (United States)

    Allewell, Norma M

    2016-06-10

    The biofilms that many bacteria and fungi produce enable them to form communities, adhere tightly to surfaces, evade host immunity, and resist antibiotics. Pathogenic microorganisms that form biofilms are very difficult to eradicate and thus are a frequent source of life-threatening, hospital-acquired infections. This series of five minireviews from the Journal of Biological Chemistry provides a broad overview of our current understanding of biofilms and the challenges that remain. The structure, biosynthesis, and biological function of the biofilms produced by pathogenic fungi are the subject of the first article, by Sheppard and Howell. Gunn, Bakaletz, and Wozniak focus on the biochemistry and structure of bacterial biofilms, how these structures enable bacteria to evade host immunity, and current and developing strategies for overcoming this resistance. The third and fourth articles present two of the best understood cell signaling pathways involved in biofilm formation. Valentini and Filloux focus on cyclic di-GMP, while Kavanaugh and Horswill discuss the quorum-sensing (agr) system and the relationship between quorum sensing and biofilm formation. Mechanisms of antibiotic resistance, particularly the role of efflux pumps and the development of persister cells, are the topics of the final article by Van Acker and Coenye. The advances described in this series guarantee that ongoing interdisciplinary and international efforts will lead to new insights into the basic biology of biofilm formation, as well as new strategies for therapeutic interventions. PMID:27129220

  11. Biofilms: The Stronghold of Legionella pneumophila

    Directory of Open Access Journals (Sweden)

    Mena Abdel-Nour

    2013-10-01

    Full Text Available Legionellosis is mostly caused by Legionella pneumophila and is defined as a severe respiratory illness with a case fatality rate ranging from 5% to 80%. L. pneumophila is ubiquitous in natural and anthropogenic water systems. L. pneumophila is transmitted by inhalation of contaminated aerosols produced by a variety of devices. While L. pneumophila replicates within environmental protozoa, colonization and persistence in its natural environment are also mediated by biofilm formation and colonization within multispecies microbial communities. There is now evidence that some legionellosis outbreaks are correlated with the presence of biofilms. Thus, preventing biofilm formation appears as one of the strategies to reduce water system contamination. However, we lack information about the chemical and biophysical conditions, as well as the molecular mechanisms that allow the production of biofilms by L. pneumophila. Here, we discuss the molecular basis of biofilm formation by L. pneumophila and the roles of other microbial species in L. pneumophila biofilm colonization. In addition, we discuss the protective roles of biofilms against current L. pneumophila sanitation strategies along with the initial data available on the regulation of L. pneumophila biofilm formation.

  12. Commission of the european communities. Joint research centre. Petten Establishment. Annual Report 1977

    International Nuclear Information System (INIS)

    1977 marked the beginning of a new multiannual research programme for the European Commission's Joint research Centre. Regarding the exploitation of HFR (High Flux Reactor), the year was one of steady, on-schedule operation with high utilization, although this fell off slightly in the autumn due to overloading of our capsule project engineering team and manufacturing services. We are pleased to note that the HFR Users' Meeting, held in October, drew about 100 participants from Europe and America and demonstrated a lively interest in the Commission's materials testing reactor. Technical improvements to the plant are being examined as one means of maintaining or even increasing this interest in the 1980's. Following the wishes of the Council of Ministers, new Advisory Committees for Programme Management have been set up for all the Joint Research Centre's activities and those for HFR and High Temperature Materials Programmes have met at Petten. This latter Committee is entirely new to its task, the programme having been served until 1977 by a number of ad hoc meetings of national experts. The work of the Organic Chemistry Laboratory falls under the wings of the Community Reference Bureau Advisory Committee, who have met in Brussels and strongly encouraged the development of the activity

  13. Establishment and Evaluation of the Vegetative Community in A Surface Flow Constructed Wetland Treating Industrial Park Contaminants

    Directory of Open Access Journals (Sweden)

    C. C. Galbrand

    2008-01-01

    Full Text Available A surface flow constructed wetland, designed to curve in a kidney shape in order to increase the length to width ratio to 5:1 was used to treat runoff from an industrial park. A natural wetland system located approximately 200 m downstream of the constructed wetland was selected to act as the vegetative community model for the constructed wetland. The selected model was a riparian, open water marsh dominated by emergent macrophytes. Baseline plant species surveying was conducted. In total, 21 emergent wetland plant species, 40 upland vascular plant species, 17 upland shrub species and 13 upland tree species were identified in the model site. The species from the model site were screened for suitability in the constructed wetland based on the following criteria: (a phytoremediation potential (especially metal uptake, (b sedimentation and erosion control, (c habitat function, (d public deterrent potential and (e rate of plant establishment, tolerances and maintenance requirements. Transplantation was chosen as the main vegetation establishment methodology in the constructed wetland. The species woolgrass (Scirpus cyperinus and soft rush (Juncus effusus were chosen to dominate the interior berms and littoral edges of the constructed wetland cells. The buffer areas were dominated by meadowsweet (Spiraea alba var. latifolia and the open water areas were dominated by cowlily (Nuphar variegate and pickerelweed (Pontederia cordata species. A diverse, self-sustaining vegetative community was successfully established in the constructed wetland. The transplant success was gauged by mortality census in the spring of 2003. Over all, 138 dead transplants were observed, many of which had died as a direct result of washout. These computes to an overall site establish success rate of about 87.3%. The species, which suffered the highest mortality rates, were the pickerelweed, with approximately 50 dead plants, the meadowsweet with 32 observed dead plants and

  14. The Biofilm Challenge

    DEFF Research Database (Denmark)

    Alhede, Maria; Alhede, Morten

    2014-01-01

    The concept of biofilms has emerged in the clinical setting during the last decade. Infections involving biofilms have been documented in all parts of the human body, and it is currently believed that the presence of biofilm-forming bacteria is equivalent to chronic infection. A quick Pubmed search...... reveals the significance of biofilms, as evidenced by a dramatic increase in scientific publications on the topic, as well as in publications concerning wounds with biofilms, which reached 600 publications in 2013. Judged from the number of publications, it appears that biofilms play a significant role in...... wounds. However, the impact of biofilms is often debated, because infected wounds were also treated before the concept of biofilms was coined. In this short review, we will address the significance of biofilms and their role in wounds, and discuss the future tasks of the biofilm challenge....

  15. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    to various persistent infections in humans and animals, and to a variety of complications in industry, where solid–water interfaces occur. Knowledge about the molecular mechanisms involved in biofilm formation is necessary for creating strategies to control biofilms. Recent studies have shown that......Bacteria in nature primarily live in surface-associated communities commonly known as biofilms. Because bacteria in biofilms, in many cases, display tolerance to host immune systems, antibiotics, and biocides, they are often difficult or impossible to eradicate. Biofilm formation, therefore, leads...... extracellular DNA is an important component of the extracellular matrix of microbial biofilms. The present chapter is focussed on extracellular DNA as matrix component in biofilms formed by Pseudomonas aeruginosa as an example from the Gram-negative bacteria, and Streptococcus and Staphylococcus as examples...

  16. Genetic Basis for Saccharomyces cerevisiae Biofilm in Liquid Medium

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz; Bojsen, Rasmus Kenneth; Gro Rejkjær Sørensen, Laura; Weiss Nielsen, Martin; Lisby, Michael; Folkesson, Sven Anders; Regenberg, Birgitte

    2014-01-01

    Biofilm-forming microorganisms switch between two forms: free-living planktonic and sessile multicellular. Sessile communities of yeast biofilms in liquid medium provide a primitive example of multicellularity and are clinically important because biofilms tend to have other growth characteristics...... than free-living cells. We investigated the genetic basis for yeast, Saccharomyces cerevisiae, biofilm on solid surfaces in liquid medium by screening a comprehensive deletion mutant collection in the S1278b background and found 71 genes that were essential for biofilm development. Quantitative...... functioned specifically in biofilm and mat formation. In a tpk3 mutant, transcription of FLO11 was induced three-fold compared with wild-type, but biofilm development and cell–cell adhesion was absent, suggesting that Tpk3p regulates FLO11 positive posttranscriptionally and negative transcriptionally. The...

  17. Bursting the bubble on bacterial biofilms

    DEFF Research Database (Denmark)

    Crusz, Shanika A; Popat, Roman; Rybtke, Morten Theil;

    2012-01-01

    The flow cell biofilm system is an important and widely used tool for the in vitro cultivation and evaluation of bacterial biofilms under hydrodynamic conditions of flow. This paper provides an introduction to the background and use of such systems, accompanied by a detailed guide to the assembly...... of the apparatus including the description of new modifications which enhance its performance. As such, this is an essential guide for the novice biofilm researcher as well as providing valuable trouble-shooting techniques for even the most experienced laboratories. The adoption of a common and...... reliable methodology amongst researchers would enable findings to be shared and replicated amongst the biofilm research community, with the overall aim of advancing understanding and management of these complex and widespread bacterial communities....

  18. Tracking the Dynamic Relationship between Cellular Systems and Extracellular Subproteomes in Pseudomonas aeruginosa Biofilms.

    Science.gov (United States)

    Park, Amber J; Murphy, Kathleen; Surette, Matthew D; Bandoro, Christopher; Krieger, Jonathan R; Taylor, Paul; Khursigara, Cezar M

    2015-11-01

    The transition of the opportunistic pathogen Pseudomonas aeruginosa from free-living bacteria into surface-associated biofilm communities represents a viable target for the prevention and treatment of chronic infectious disease. We have established a proteomics platform that identified 2443 and 1142 high-confidence proteins in P. aeruginosa whole cells and outer-membrane vesicles (OMVs), respectively, at three time points during biofilm development (ProteomeXchange identifier PXD002605). The analysis of cellular systems, specifically the phenazine biosynthetic pathway, demonstrates that whole-cell protein abundance correlates to end product (i.e., pyocyanin) concentrations in biofilm but not in planktonic cultures. Furthermore, increased cellular protein abundance in this pathway results in quantifiable pyocyanin in early biofilm OMVs and OMVs from both growth modes isolated at later time points. Overall, our data indicate that the OMVs being released from the surface of the biofilm whole cells have unique proteomes in comparison to their planktonic counterparts. The relative abundance of OMV proteins from various subcellular sources showed considerable differences between the two growth modes over time, supporting the existence and preferential activation of multiple OMV biogenesis mechanisms under different conditions. The consistent detection of cytoplasmic proteins in all of the OMV subproteomes challenges the notion that OMVs are composed of outer membrane and periplasmic proteins alone. Direct comparisons of outer-membrane protein abundance levels between OMVs and whole cells shows ratios that vary greatly from 1:1 and supports previous studies that advocate the specific inclusion, or "packaging", of proteins into OMVs. The quantitative analysis of packaged protein groups suggests biogenesis mechanisms that involve untethered, rather than absent, peptidoglycan-binding proteins. Collectively, individual protein and biological system analyses of biofilm OMVs

  19. The role of biofilms in onychomycosis.

    Science.gov (United States)

    Gupta, Aditya K; Daigle, Deanne; Carviel, Jessie L

    2016-06-01

    Onychomycosis is a fungal infection of nails primarily caused by dermatophyte fungi. Fungi are traditionally understood as existing in the environment as planktonic organisms; however, recent advancements in microbiology suggest that fungi form biofilms-complex sessile microbial communities irreversibly attached to epithelial surfaces by means of an extracellular matrix. The extracellular matrix also acts as a protective barrier to the organisms within the biofilm. The biofilm is surprisingly resistant to injury and may act as a persistent source of infection possibly accounting for antifungal resistance in onychomycosis. PMID:27012826

  20. Spatiotemporal evolution of bacterial biofilm colonies

    Science.gov (United States)

    Wilking, James; Koehler, Stephan; Sinha, Naveen; Seminara, Agnese; Brenner, Michael; Weitz, David

    2014-03-01

    Many bacteria on earth live in surface-attached communities known as biofilms. Gene expression in a biofilm is typically varied, resulting in a variety of phenotypes within a single film. These phenotypes play a critical role in biofilm physiology and development. We use time-resolved, wide-field fluorescence microscopy to image triple-labeled fluorescent Bacillus Subtilis colonies grown on agar to determine in a non-invasive fashion the evolving phenotypes. We infer their transition rates from the resulting spatiotemporal maps of gene expression. Moreover, we correlate these transition rates with local measurements of nutrient concentration to determine the influence of extracellular signals on gene expression.

  1. Establishment of the bacterial fecal community during the first month of life in Brazilian newborns

    Directory of Open Access Journals (Sweden)

    Kátia Brandt

    2012-01-01

    Full Text Available OBJECTIVE: The establishment of the intestinal microbiota in newborns is a critical period with possible long-term consequences for human health. In this research, the development of the fecal microbiota of a group of exclusively breastfed neonates living in low socio-economic conditions in the city of São Paulo, Brazil, during the first month of life, was studied. METHODS: Fecal samples were collected from ten neonates on the second, seventh, and 30th days after birth. One of the neonates underwent antibiotic therapy. Molecular techniques were used for analysis; DNA was extracted from the samples, and 16S rRNA libraries were sequenced and phylogenetically analyzed after construction. A real-time polymerase chain reaction (PCR was performed on the samples taken from the 30th day to amplify DNA from Bifidobacterium sp. RESULTS: The primary phylogenetic groups identified in the samples were Escherichia and Clostridium. Staphylococcus was identified at a low rate. Bifidobacterium sp. was detected in all of the samples collected on the 30th day. In the child who received antibiotics, a reduction in anaerobes and Escherichia, which was associated with an overgrowth of Klebsiella, was observed throughout the experimental period. CONCLUSION: The observed pattern of Escherichia predominance and reduced Staphylococcus colonization is in contrast with the patterns observed in neonates living in developed countries.

  2. Metagenomic and metaproteomic analyses of Accumulibacter phosphatis-enriched floccular and granular biofilm.

    Science.gov (United States)

    Barr, Jeremy J; Dutilh, Bas E; Skennerton, Connor T; Fukushima, Toshikazu; Hastie, Marcus L; Gorman, Jeffrey J; Tyson, Gene W; Bond, Philip L

    2016-01-01

    Biofilms are ubiquitous in nature, forming diverse adherent microbial communities that perform a plethora of functions. Here we operated two laboratory-scale sequencing batch reactors enriched with Candidatus Accumulibacter phosphatis (Accumulibacter) performing enhanced biological phosphorus removal. Reactors formed two distinct biofilms, one floccular biofilm, consisting of small, loose, microbial aggregates, and one granular biofilm, forming larger, dense, spherical aggregates. Using metagenomic and metaproteomic methods, we investigated the proteomic differences between these two biofilm communities, identifying a total of 2022 unique proteins. To understand biofilm differences, we compared protein abundances that were statistically enriched in both biofilm states. Floccular biofilms were enriched with pathogenic secretion systems suggesting a highly competitive microbial community. Comparatively, granular biofilms revealed a high-stress environment with evidence of nutrient starvation, phage predation pressure, and increased extracellular polymeric substance and cell lysis. Granular biofilms were enriched in outer membrane transport proteins to scavenge the extracellular milieu for amino acids and other metabolites, likely released through cell lysis, to supplement metabolic pathways. This study provides the first detailed proteomic comparison between Accumulibacter-enriched floccular and granular biofilm communities, proposes a conceptual model for the granule biofilm, and offers novel insights into granule biofilm formation and stability. PMID:26279094

  3. Microbial interactions in building of communities

    Science.gov (United States)

    Wright, Christopher J.; Burns, Logan H.; Jack, Alison A.; Back, Catherine R.; Dutton, Lindsay C.; Nobbs, Angela H.; Lamont, Richard J.; Jenkinson, Howard F.

    2012-01-01

    SUMMARY Establishment of a community is considered to be essential for microbial growth and survival in the human oral cavity. Biofilm communities have increased resilience to physical forces, antimicrobial agents, and nutritional variations. Specific cell-to-cell adherence processes, mediated by adhesin-receptor pairings on respective microbial surfaces, are able to direct community development. These interactions co-localize species in mutually beneficial relationships, such as streptococci, veillonellae, Porphyromonas gingivalis and Candida albicans. In transition from the planktonic mode of growth to a biofilm community, microorganisms undergo major transcriptional and proteomic changes. These occur in response to sensing of diffusible signals, such as autoinducer molecules, and to contact with host tissues or other microbial cells. Underpinning many of these processes are intracellular phosphorylation events that regulate a large number of microbial interactions relevant to community formation and development. PMID:23253299

  4. Biophysics of biofilm infection.

    Science.gov (United States)

    Stewart, Philip S

    2014-04-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could (1) allow prevailing hydrodynamic shear to remove biofilm, (2) increase the efficacy of designed interventions for removing biofilms, (3) enable phagocytic engulfment of softened biofilm aggregates, and (4) improve phagocyte mobility and access to biofilm. PMID:24376149

  5. Desiccation stress in two intertidal beachrock biofilms

    OpenAIRE

    Petrou, Katherina; Trimborn, Scarlett; Kühl, Michael; Ralph, Peter J.

    2014-01-01

    Chlorophyll a fluorescence was used to look at the effect of desiccation on the photophysiology in two beachrock microbial biofilms from the intertidal rock platform of Heron Island, Australia. The photophysiological response to desiccation differed between the beachrock microbial communities. The black biofilm from the upper shoreline, dominated by Calothrix sp., showed a response typical of desiccation-tolerant cyanobacteria, where photosynthesis closed down during air exposure with a rapid...

  6. Screening of Compounds against Gardnerella vaginalis Biofilms.

    Directory of Open Access Journals (Sweden)

    Cornelia Gottschick

    Full Text Available Bacterial vaginosis (BV is a common infection in reproductive age woman and is characterized by dysbiosis of the healthy vaginal flora which is dominated by Lactobacilli, followed by growth of bacteria like Gardnerella vaginalis. The ability of G. vaginalis to form biofilms contributes to the high rates of recurrence that are typical for BV and which unfortunately make repeated antibiotic therapy inevitable. Here we developed a biofilm model for G. vaginalis and screened a large spectrum of compounds for their ability to prevent biofilm formation and to resolve an existing G. vaginalis biofilm. The antibiotics metronidazole and tobramycin were highly effective in preventing biofilm formation, but had no effect on an established biofilm. The application of the amphoteric tenside sodium cocoamphoacetate (SCAA led to disintegration of existing biofilms, reducing biomass by 51% and viability by 61% and it was able to increase the effect of metronidazole by 40% (biomass and 61% (viability. Our data show that attacking the biofilm and the bacterial cells by the combination of an amphoteric tenside with the antibiotic metronidazole might be a useful strategy against BV.

  7. Screening of Compounds against Gardnerella vaginalis Biofilms.

    Science.gov (United States)

    Gottschick, Cornelia; Szafranski, Szymon P; Kunze, Brigitte; Sztajer, Helena; Masur, Clarissa; Abels, Christoph; Wagner-Döbler, Irene

    2016-01-01

    Bacterial vaginosis (BV) is a common infection in reproductive age woman and is characterized by dysbiosis of the healthy vaginal flora which is dominated by Lactobacilli, followed by growth of bacteria like Gardnerella vaginalis. The ability of G. vaginalis to form biofilms contributes to the high rates of recurrence that are typical for BV and which unfortunately make repeated antibiotic therapy inevitable. Here we developed a biofilm model for G. vaginalis and screened a large spectrum of compounds for their ability to prevent biofilm formation and to resolve an existing G. vaginalis biofilm. The antibiotics metronidazole and tobramycin were highly effective in preventing biofilm formation, but had no effect on an established biofilm. The application of the amphoteric tenside sodium cocoamphoacetate (SCAA) led to disintegration of existing biofilms, reducing biomass by 51% and viability by 61% and it was able to increase the effect of metronidazole by 40% (biomass) and 61% (viability). Our data show that attacking the biofilm and the bacterial cells by the combination of an amphoteric tenside with the antibiotic metronidazole might be a useful strategy against BV. PMID:27111438

  8. Screening of Compounds against Gardnerella vaginalis Biofilms

    Science.gov (United States)

    Gottschick, Cornelia; Szafranski, Szymon P.; Kunze, Brigitte; Sztajer, Helena; Masur, Clarissa; Abels, Christoph; Wagner-Döbler, Irene

    2016-01-01

    Bacterial vaginosis (BV) is a common infection in reproductive age woman and is characterized by dysbiosis of the healthy vaginal flora which is dominated by Lactobacilli, followed by growth of bacteria like Gardnerella vaginalis. The ability of G. vaginalis to form biofilms contributes to the high rates of recurrence that are typical for BV and which unfortunately make repeated antibiotic therapy inevitable. Here we developed a biofilm model for G. vaginalis and screened a large spectrum of compounds for their ability to prevent biofilm formation and to resolve an existing G. vaginalis biofilm. The antibiotics metronidazole and tobramycin were highly effective in preventing biofilm formation, but had no effect on an established biofilm. The application of the amphoteric tenside sodium cocoamphoacetate (SCAA) led to disintegration of existing biofilms, reducing biomass by 51% and viability by 61% and it was able to increase the effect of metronidazole by 40% (biomass) and 61% (viability). Our data show that attacking the biofilm and the bacterial cells by the combination of an amphoteric tenside with the antibiotic metronidazole might be a useful strategy against BV. PMID:27111438

  9. Microscale Confinement features in microfluidic devices can affect biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Aloke [ORNL; Karig, David K [ORNL; Neethirajan, Suresh [University of Guelph; Acharya, Rajesh K [ORNL; Mukherjee, Partha P [ORNL; Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL

    2013-01-01

    Biofilms are aggregations of microbes that are encased by extra-cellular polymeric substances (EPS) and adhere to surfaces and interfaces. Biofilm development on abiotic surfaces is a dynamic process, which typically proceeds through an initial phase of adhesion of plankntonic microbes to the substrate, followed by events such as growth, maturation and EPS secretion. However, the coupling of hydrodynamics, microbial adhesion and biofilm growth remain poorly understood. Here, we investigate the effect of semiconfined features on biofilm formation. Using a microfluidic device and fluorescent time-lapse microscopy, we establish that confinement features can significantly affect biofilm formation. Biofilm dynamics change not only as a function of confinement features, but also of the total fluid flow rate, and our combination of experimental results and numerical simulations reveal insights into the link between hydrodynamics and biofilm formation.

  10. The influence of biofilms in the biology of plasmids

    OpenAIRE

    Cook, Laura C.C.; Dunny, Gary M.

    2014-01-01

    The field of plasmid biology has historically focused on bacteria growing in liquid culture. Surface attached communities of bacterial biofilms have recently been understood to be the normal environment of bacteria in the natural world. Thus, studies examining plasmid replication, maintenance, and transfer in biofilms are essential for a true understanding of bacterial plasmid biology. This chapter reviews the current knowledge of the interplay between bacterial biofilms and plasmids, focusin...

  11. Seasonal dynamics of bacterial biofilms on the kelp Laminaria hyperborea

    OpenAIRE

    Bengtsson, Mia M.; Sjøtun, Kjersti; Øvreås, Lise

    2010-01-01

    Seasonal variations of the cell density and bacterial community composition in biofilms growing on the surface of the kelp Laminaria hyperborea from 2 sites on the southwestern coast of Norway were investigated using total cell enumeration and denaturing gradient gel electrophoresis (DGGE) fingerprinting. The major taxonomical groups of bacteria inhabiting the biofilms were identified by DGGE band sequence classification. The microbial cell density of the biofilm appeared to be ...

  12. The Host’s Reply to Candida Biofilm

    OpenAIRE

    Nett, Jeniel E.

    2016-01-01

    Candida spp. are among the most common nosocomial fungal pathogens and are notorious for their propensity toward biofilm formation. When growing on a medical device or mucosal surface, these organisms reside as communities embedded in a protective matrix, resisting host defenses. The host responds to Candida biofilm by depositing a variety of proteins that become incorporated into the biofilm matrix. Compared to free-floating Candida, leukocytes are less effective against Candida within a bio...

  13. Rat Indwelling Urinary Catheter Model of Candida albicans Biofilm Infection

    OpenAIRE

    Nett, Jeniel E.; Brooks, Erin G.; Cabezas-Olcoz, Jonathan; Sanchez, Hiram; Zarnowski, Robert; Marchillo, Karen; Andes, David R.

    2014-01-01

    Indwelling urinary catheters are commonly used in the management of hospitalized patients. Candida can adhere to the device surface and propagate as a biofilm. These Candida biofilm communities differ from free-floating Candida, exhibiting high tolerance to antifungal therapy. The significance of catheter-associated candiduria is often unclear, and treatment may be problematic considering the biofilm drug-resistant phenotype. Here we describe a rodent model for the study of urinary catheter-a...

  14. Temporal and Stochastic Control of Staphylococcus aureus Biofilm Development

    OpenAIRE

    Moormeier, Derek E.; Bose, Jeffrey L.; Horswill, Alexander R.; Bayles, Kenneth W.

    2014-01-01

    ABSTRACT Biofilm communities contain distinct microniches that result in metabolic heterogeneity and variability in gene expression. Previously, these niches were visualized within Staphylococcus aureus biofilms by observing differential expression of the cid and lrg operons during tower formation. In the present study, we examined early biofilm development and identified two new stages (designated “multiplication” and “exodus”) that were associated with changes in matrix composition and a di...

  15. Performance and microbial communities of Mn(II)-based autotrophic denitrification in a Moving Bed Biofilm Reactor (MBBR).

    Science.gov (United States)

    Su, Jun Feng; Luo, Xian Xin; Wei, Li; Ma, Fang; Zheng, Sheng Chen; Shao, Si Cheng

    2016-07-01

    In this study, Mn(II) as electron donor was tested for the effects on denitrification in the MBBR under the conditions of initial nitrate concentration (10mgL(-1), 30mgL(-1), 50mgL(-1)), pH (5, 6, 7) and hydraulic retention time (HRT) (4h, 8h, 12h) which conducted by response surface methodology (RSM), the results demonstrated that the highest nitrate removal efficiency was occurred under the conditions of initial nitrate concentration of 47.64mgL(-1), HRT of 11.96h and pH 5.21. Analysis of SEM and flow cytometry suggested that microorganisms were immobilized on the Yu Long plastic carrier media successfully before the reactor began to operate. Furthermore, high-throughput sequencing was employed to characterize and compare the community compositions and structures of MBBR under the optimum conditions, the results showed that Pseudomonas sp. SZF15 was the dominant contributor for effective removal of nitrate in the MBBR. PMID:27061262

  16. Biofilms constructed for the removal of hydrocarbon pollutants from hypersaline liquids.

    Science.gov (United States)

    Al-Mailem, D M; Eliyas, M; Khanafer, M; Radwan, S S

    2015-01-01

    Hydrocarbonoclastic biofilms were established on sterile glass plates vertically submerged for 1 month in a hypersaline soil/water suspension containing 0.3% crude oil. The culture-dependent analysis of the microbial community in those biofilms revealed hydrocarbonoclastic species in the magnitude of 10(3) cells cm(-2). Those species belonged to the halophilic bacterial genera Marinobacter, Halomonas, Dietzia, Bacillus, Arhodomonas, Aeromonas and Kocuria as well as to the haloarchaeal genera Haloferax and Halobacterium. Those organisms were not evenly distributed over the biofilm surface area. The culture-independent analysis revealed a different community composition, which was based on four uncultured and four cultured taxa. Depending on the culture conditions and the sort of chemical amendments, the biofilms succeeded in removing in 2 weeks up to about 60-70% of crude oil, pure n-hexadecane and pure phenanthrene in hypersaline pond water samples. The amendment with KCl, MgSO4 and a vitamin mixture composed of thiamin, pyridoxine, vitamin B12, biotin, riboflavin and folic acid was most effective. PMID:25293792

  17. Fluorescence-Based Quasicontinuous and In Situ Monitoring of Biofilm Formation Dynamics in Natural Marine Environments

    OpenAIRE

    Fischer, Matthias; Friedrichs, Gernot; Lachnit, Tim

    2014-01-01

    Analyzing the dynamics of biofilm formation helps to deepen our understanding of surface colonization in natural environments. While methods for screening biofilm formation in the laboratory are well established, studies in marine environments have so far been based upon destructive analysis of individual samples and provide only discontinuous snapshots of biofilm establishment. In order to explore the development of biofilm over time and under various biotic and abiotic conditions, we applie...

  18. Biofilm Fixed Film Systems

    Directory of Open Access Journals (Sweden)

    Dipesh Das

    2011-09-01

    Full Text Available The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, rotating biological contactors, fluidized bed bioreactors, submerged bed biofilm reactors, biological granular activated carbon, membrane bioreactors, and immobilized cell reactors. Innovative reactors, not easily classified, are then presented, followed by a section on biofilms on sand, soil and sediment.

  19. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions

    Science.gov (United States)

    Zhang, Wei; Sileika, Tadas S.; Chen, Cheng; Liu, Yang; Lee, Jisun; Packman, Aaron I.

    2012-01-01

    Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimensional fluid flow conditions. This device provides precise control of flow conditions and can be used to create well-defined physical and chemical gradients that significantly affect biofilm heterogeneity. Moreover, the top and bottom of the flow chamber are transparent, so biofilm growth and flow conditions are fully observable using non-invasive confocal microscopy and high-resolution video imaging. To demonstrate the capability of the device, we observed the growth of Pseudomonas aeruginosa biofilms under imposed flow gradients. We found a positive relationship between patterns of fluid velocity and biofilm biomass because of faster microbial growth under conditions of greater local nutrient influx, but this relationship eventually reversed because high hydrodynamic shear leads to the detachment of cells from the surface. These results reveal that flow gradients play a critical role in the development of biofilm communities. By providing new capability for observing biofilm growth, solute and particle transport, and net chemical transformations under user-specified environmental gradients, this new planar flow cell system has broad utility for studies of environmental biotechnology and basic biofilm microbiology, as well as applications in bioreactor design, environmental engineering, biogeochemistry, geomicrobiology, and biomedical research. PMID:21656713

  20. Biofilms in Infections of the Eye

    Directory of Open Access Journals (Sweden)

    Paulo J. M. Bispo

    2015-03-01

    Full Text Available The ability to form biofilms in a variety of environments is a common trait of bacteria, and may represent one of the earliest defenses against predation. Biofilms are multicellular communities usually held together by a polymeric matrix, ranging from capsular material to cell lysate. In a structure that imposes diffusion limits, environmental microgradients arise to which individual bacteria adapt their physiologies, resulting in the gamut of physiological diversity. Additionally, the proximity of cells within the biofilm creates the opportunity for coordinated behaviors through cell–cell communication using diffusible signals, the most well documented being quorum sensing. Biofilms form on abiotic or biotic surfaces, and because of that are associated with a large proportion of human infections. Biofilm formation imposes a limitation on the uses and design of ocular devices, such as intraocular lenses, posterior contact lenses, scleral buckles, conjunctival plugs, lacrimal intubation devices and orbital implants. In the absence of abiotic materials, biofilms have been observed on the capsule, and in the corneal stroma. As the evidence for the involvement of microbial biofilms in many ocular infections has become compelling, developing new strategies to prevent their formation or to eradicate them at the site of infection, has become a priority.

  1. The directive establishing a community framework for the nuclear safety of nuclear installations: the European Union approach to nuclear safety

    International Nuclear Information System (INIS)

    This article aims at explaining the evolution leading to the adoption of the recent Council Directive 2009/71/EURATOM establishing a Community framework for the nuclear safety of nuclear installations adopted with the consent of all 27 members states following the overwhelming support of the European Parliament, that creates for the first time, a binding legal framework that brings legal certainty to European Union citizens and reinforces the role and independence of national regulators. The paper is divided into three sections. The first section addresses the competence of the European Atomic energy Community to legislate in the area of nuclear safety. It focuses on the 2002 landmark ruling of the European Court of justice that confirmed this competence by recognizing the intrinsic link between radiation protection and nuclear safety. The second part describes the history of the Nuclear safety directive from the initial 2003 European Commission proposal to today 's text in force. The third part is dedicated to a description of the content of the Directive and its implications on the further development of nuclear safety in the European Union. (N.C.)

  2. Composition and Susceptibility to Chlorhexidine of Multispecies Biofilms of Oral Bacteria

    OpenAIRE

    Pratten, J.; Barnett, P.; Wilson, M

    1998-01-01

    Using a constant-depth film fermentor, we have grown a six-membered biofilm community with a bacterial composition similar to that found in supragingival dental plaque. Cryosectioning revealed the distribution of bacteria throughout the biofilm. Exposure to 0.2% chlorhexidine for up to 5 min had little effect on biofilm viability.

  3. Molecular Basis for Saccharomyces cerevisiae Biofilm Development

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz

    In this study, I sought to identify genes regulating the global molecular program for development of sessile multicellular communities, also known as biofilm, of the eukaryotic microorganism, Saccharomyces cerevisiae (yeast). Yeast biofilm has a clinical interest, as biofilms can cause chronic...

  4. Generalized Relationship between Numbers of Bacteria and Their Viability in Biofilms

    OpenAIRE

    Sjollema, Jelmer; Rustema-Abbing, Minie; van der Mei, Henny C; Busscher, Henk J.

    2011-01-01

    Bacterial biofilms are confined communities that are encapsulated in protective layers of extracellular polymeric substances. Microscopic evaluation of biofilms of diverse bacterial strains on various substrata reveals that, in general, the percentage of viable bacteria decreases with the total number of bacteria in a biofilm.

  5. Carbon gas fluxes in re-established wetlands on organic soils differ relative to plant community and hydrology

    Science.gov (United States)

    Miller, Robin L.

    2011-01-01

    We measured CO2 and CH4 fluxes for 6 years following permanent flooding of an agriculturally managed organic soil at two water depths (~25 and ~55 cm standing water) in the Sacramento–San Joaquin Delta, California, as part of research studying C dynamics in re-established wetlands. Flooding rapidly reduced gaseous C losses, and radiocarbon data showed that this, in part, was due to reduced oxidation of "old" C preserved in the organic soils. Both CO2 and CH4 emissions from the water surface increased during the first few growing seasons, concomitant with emergent marsh establishment, and thereafter appeared to stabilize according to plant communities. Areas of emergent marsh vegetation in the shallower wetland had greater net CO2 influx (-485 mg Cm-1 h-1), and lower CH4 emissions (11.5 mg Cm-2 h-1), than in the deeper wetland (-381 and 14.1 mg Cm-2 h-1, respectively). Areas with submerged and floating vegetation in the deeper wetland had CH4 emissions similar to emergent vegetation (11.9 and 12.6 mg Cm-2 h-1, respectively), despite lower net CO2 influx (-102 gC m-2 h-1). Measurements of plant moderated net CO2 influx and CH4 efflux indicated greatest potential reduction of greenhouse gases in the more shallowly flooded wetland.

  6. Biofilm formation and dispersal in Gram-positive bacteria

    NARCIS (Netherlands)

    Abee, T.; Kovacs, A.T.; Kuipers, O.P.; Veen, van der S.

    2011-01-01

    Biofilms are structured communities of bacteria, which are adhered to a surface and embedded in a self-produced matrix of extracellular polymeric substances. Since biofilms are very resistant to antimicrobial agents, they are at the basis of a range of problems, including quality and safety issues i

  7. Pseudomonas aeruginosa and Saccharomyces cerevisiae Biofilm in Flow Cells

    DEFF Research Database (Denmark)

    Weiss Nielsen, Martin; Sternberg, Claus; Molin, Søren;

    2011-01-01

    Many microbial cells have the ability to form sessile microbial communities defined as biofilms that have altered physiological and pathological properties compared to free living microorganisms. Biofilms in nature are often difficult to investigate and reside under poorly defined conditions(1). ...

  8. Listeria monocytogenes biofilm formation on silver ion impregnated cutting boards

    Science.gov (United States)

    Listeria monocytogenes is a human pathogen that can be a member of a biofilm community attached to surfaces in poultry processing plants. When present as a biofilm on product contact surfaces, this organism can effectively cross contaminate fully cooked ready-to-eat meat. Plastic cutting boards ca...

  9. [Multi-Species Biofilms in Ecology, Medicine, and Biotechnology].

    Science.gov (United States)

    Nozhevnikova, A N; Botchkova, E A; Plakunov, V K

    2015-01-01

    The structure, composition, and developmental patterns of multi-species biofilms are analyzed, as well as the mechanisms of interaction of their microbial components. The main methodological approaches used for analysis of multi-species biofilms, including omics technologies, are characterized. Environmental communities (cyanobacterial mats and methanotrophic communities), as well as typical multi-species communities of medical importance (oral cavity, skin, and gut microbiomes) are described. A special section deals with the role of multi-species biofilms in such biotechnological processes as wastewater treatment, heavy metal removal, corrosion control, and environmental bioremediation. PMID:26964353

  10. Biofilm Fixed Film Systems

    OpenAIRE

    Dipesh Das; Yung-Tse Hung; Charles Moretti; Hasibul Hasan; Harvey Gullicks

    2011-01-01

    The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, r...

  11. Rheology of biofilms

    OpenAIRE

    Winston, M.; Rupp, C.J.; Vinogradov, A.; Towler, B.W.; Adams, H; Stoodley, P

    2003-01-01

    The paper describes an experimental study concerning the mechanical properties of bacterial biofilms formed from the early dental plaque colonizer Streptoccocus mutans and pond water biofilms. Experiments reported in this paper demonstrate that both types of biofilms exhibit mechanical behavior similar to that of rheological fluids. The time-dependent properties of both biofilms have been modeled using the principles of viscoelasticity theory. The Burger model has been found to accurately re...

  12. Biophysics of Biofilm Infection

    OpenAIRE

    Stewart, Philip S.

    2014-01-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofi...

  13. Implications of Biofilm Formation on Urological Devices

    Science.gov (United States)

    Cadieux, Peter A.; Wignall, Geoffrey R.; Carriveau, Rupp; Denstedt, John D.

    2008-09-01

    Despite millions of dollars and several decades of research targeted at their prevention and eradication, biofilm-associated infections remain the major cause of urological device failure. Numerous strategies have been aimed at improving device design, biomaterial composition, surface properties and drug delivery, but have been largely circumvented by microbes and their plethora of attachment, host evasion, antimicrobial resistance, and dissemination strategies. This is not entirely surprising since natural biofilm formation has been going on for millions of years and remains a major part of microorganism survival and evolution. Thus, the fact that biofilms develop on and in the biomaterials and tissues of humans is really an extension of this natural tendency and greatly explains why they are so difficult for us to combat. Firstly, biofilm structure and composition inherently provide a protective environment for microorganisms, shielding them from the shear stress of urine flow, immune cell attack and some antimicrobials. Secondly, many biofilm organisms enter a metabolically dormant state that renders them tolerant to those antibiotics and host factors able to penetrate the biofilm matrix. Lastly, the majority of organisms that cause biofilm-associated urinary tract infections originate from our own oral cavity, skin, gastrointestinal and urogenital tracts and therefore have already adapted to many of our host defenses. Ultimately, while biofilms continue to hold an advantage with respect to recurrent infections and biomaterial usage within the urinary tract, significant progress has been made in understanding these dynamic microbial communities and novel approaches offer promise for their prevention and eradication. These include novel device designs, antimicrobials, anti-adhesive coatings, biodegradable polymers and biofilm-disrupting compounds and therapies.

  14. Pseudomonas aeruginosa Forms Biofilms in Acute Infection Independent of Cell-to-Cell Signaling▿ †

    OpenAIRE

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N; Rumbaugh, Kendra P.

    2007-01-01

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 h of infection in thermally injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections as well. Using light, electron, and confocal scanning laser microscopy, P. aeruginosa biofilms were visualized within burn...

  15. An Update on the Management of Endodontic Biofilms Using Root Canal Irrigants and Medicaments

    OpenAIRE

    Mohammadi, Zahed; Soltani, Mohammad Karim; Shalavi, Sousan

    2014-01-01

    Microbial biofilm is defined as a sessile multicellular microbial community characterized by cells that are firmly attached to a surface and enmeshed in a self-produced matrix of extracellular polymeric substances. Biofilms play a very important role in pulp and periradicular pathosis. The aim of this article was to review the role of endodontic biofilms and the effects of root canal irrigants, medicaments as well as lasers on biofilms A Medline search was performed on the English articles pu...

  16. Inhibitory effects of Tamarix hispida extracts on planktonic form and biofilm formation of six pathogenic bacteria

    OpenAIRE

    Zianab Mohsenipour; Mehdi Hassanshahian

    2015-01-01

     Introduction: Biofilms are communities of microorganisms embedded in a self-produced extracellular polymeric matrix. Bacterial cells are protected from antimicrobial agents in biofilm structure. Biofilms formation cause many problems in industry, medicine and microbial drug resistance; thus it is essential to find new techniques for removing and inhibiting biofilms. This study aimed to examine the antimicrobial effect of Tamarix hispida alcoholic extracts against six path...

  17. Biofilms: A microbial home

    OpenAIRE

    Chandki, Rita; Banthia, Priyank; Banthia, Ruchi

    2011-01-01

    Microbial biofilms are mainly implicated in etiopathogenesis of caries and periodontal disease. Owing to its properties, these pose great challenges. Continuous and regular disruption of these biofilms is imperative for prevention and management of oral diseases. This essay provides a detailed insight into properties, mechanisms of etiopathogenesis, detection and removal of these microbial biofilms.

  18. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  19. Biofilm-based central line-associated bloodstream infections.

    Science.gov (United States)

    Yousif, Ammar; Jamal, Mohamed A; Raad, Issam

    2015-01-01

    Different types of central venous catheters (CVCs) have been used in clinical practice to improve the quality of life of chronically and critically ill patients. Unfortunately, indwelling devices are usually associated with microbial biofilms and eventually lead to catheter-related bloodstream infections (CLABSIs).An estimated 250,000-400,000 CLABSIs occur every year in the United States, at a rate of 1.5 per 1,000 CVC days and a mortality rate of 12-25 %. The annual cost of caring for patients with CLABSIs ranges from 296 million to 2.3 billion dollars.Biofilm formation occurs on biotic and abiotic surfaces in the clinical setting. Extensive studies have been conducted to understand biofilm formation, including different biofilm developmental stages, biofilm matrix compositions, quorum-sensing regulated biofilm formation, biofilm dispersal (and its clinical implications), and multi-species biofilms that are relevant to polymicrobial infections.When microbes form a matured biofilm within human hosts through medical devices such as CVCs, the infection becomes resistant to antibiotic treatment and can develop into a chronic condition. For that reason, many techniques have been used to prevent the formation of biofilm by targeting different stages of biofilm maturation. Other methods have been used to diagnose and treat established cases of CLABSI.Catheter removal is the conventional management of catheter associated bacteremia; however, the procedure itself carries a relatively high risk of mechanical complications. Salvaging the catheter can help to minimize these complications.In this article, we provide an overview of microbial biofilm formation; describe the involvement of various genetic determinants, adhesion proteins, organelles, mechanism(s) of biofilm formation, polymicrobial infections, and biofilm-associated infections on indwelling intravascular catheters; and describe the diagnosis, management, and prevention of catheter-related bloodstream infections

  20. Anti-Biofilm Compounds Derived from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Christian Melander

    2011-10-01

    Full Text Available Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues—including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds.

  1. Mechanism and risk factors of oral biofilm formation

    Directory of Open Access Journals (Sweden)

    Ewa Pasich

    2013-08-01

    Full Text Available Recent microbiological investigations completely changed our understanding of the role of biofilm in the formation of the mucosal immune barrier and in pathogenesis of chronic inflammation of bacterial etiology. It is now clear that formation of bacterial biofilm on dental surfaces is characteristic for existence of oral microbial communities. It has also been proved that uncontrolled biofilms on dental tissues, as well as on different biomaterials (e.g. orthodontic appliances, are the main cause of dental diseases such as dental caries and periodontitis.The aim of this paper is to explain mechanisms and consequences of orthodontic biofilm formation. We will discuss current opinions on the influence of different biomaterials employed for orthodontic treatment in biofilm formation and new strategies employed in prevention and elimination of oral biofilm (“dental plaque”.

  2. Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials.

    Science.gov (United States)

    Corcoran, M; Morris, D; De Lappe, N; O'Connor, J; Lalor, P; Dockery, P; Cormican, M

    2014-02-01

    Salmonellosis is the second most common cause of food-borne illness worldwide. Contamination of surfaces in food processing environments may result in biofilm formation with a risk of food contamination. Effective decontamination of biofilm-contaminated surfaces is challenging. Using the CDC biofilm reactor, the activities of sodium hypochlorite, sodium hydroxide, and benzalkonium chloride were examined against an early (48-h) and relatively mature (168-h) Salmonella biofilm. All 3 agents result in reduction in viable counts of Salmonella; however, only sodium hydroxide resulted in eradication of the early biofilm. None of the agents achieved eradication of mature biofilm, even at the 90-min contact time. Studies of activity of chemical disinfection against biofilm should include assessment of activity against mature biofilm. The difficulty of eradication of established Salmonella biofilm serves to emphasize the priority of preventing access of Salmonella to postcook areas of food production facilities. PMID:24362427

  3. Impact of Seasonal Variations and Nutrient Inputs on Nitrogen Cycling and Degradation of Hexadecane by Replicated River Biofilms

    OpenAIRE

    Chénier, Martin R.; Beaumier, Danielle; Roy, Réal; Driscoll, Brian T.; Lawrence, John R.; Greer, Charles W.

    2003-01-01

    Biofilm communities cultivated in rotating annular bioreactors using water from the South Saskatchewan River were assessed for the effects of seasonal variations and nutrient (C, N, and P) additions. Confocal laser microscopy revealed that while control biofilms were consistently dominated by bacterial biomass, the addition of nutrients shifted biofilms of summer and fall water samples to phototrophic-dominated communities. In nutrient-amended biofilms, similar patterns of nitrification, deni...

  4. Comparison of post-fire seedling establishment between scrub communities in mediterranean and non-mediterranean climate ecosystems

    Science.gov (United States)

    Carrington, M.E.; Keeley, J.E.

    1999-01-01

    I Both fire regimes and the conditions under which fires occur vary widely. Abiotic conditions (such as climate) in combination with fire season, frequency and intensity could influence vegetation responses to fire. A variety of adaptations facilitate post-fire recruitment in mediterranean climate ecosystems, but responses of other communities are less well known. We evaluated the importance of climate by comparing sites with mediterranean and subtropical climates. 2 We used paired burned and mature sites in chamise chaparral, mixed chaparral and coastal sage scrub (California), and rosemary scrub, sand pine scrub and sand-hill (Florida), to test whether (i) patterns of pre-fire and post-fire seedling recruitment are more similar between communities within a region than between regions, and (ii) post-fire stimulation of seedling establishment is greater in regions with marked fire-induced contrasts in abiotic site characteristics. 3 Post-fire seedling densities were more similar among sites within climatic regions than between regions. Both seedling densities and proportions of species represented by seedlings after fires were generally higher in California. 4 The only site characteristic showing a pre-fire-post-fire contrast was percentage open canopy, and the effect was greater in California than in Florida. Soil properties were unaffected by fire. 5 Mediterranean climate ecosystems in other regions have nutrient-poor soils similar to our subtropical Florida sites, but show post-fire seedling recruitment patterns more similar to the nutrient-rich sites in California. Climate therefore appears to play a more major role than soil characteristics.

  5. Influence of culture conditions on Escherichia coli O157:H7 biofilm formation by atomic force microscopy

    International Nuclear Information System (INIS)

    Biofilms are complex microbial communities that are resistant against attacks by bacteriophages and removal by drugs and chemicals. In this study, biofilms of Escherichia coli O157:H7, a bacterial pathogen, were investigated using atomic force microscopy (AFM) in terms of the dynamic transition of morphology and surface properties of bacterial cells over the development of biofilms. The physical and topographical properties of biofilms are different, depending on nutrient availability. Compared to biofilms formed in a high nutrient medium, biofilms form faster and a higher number of bacterial cells were recovered on glass surface in a low nutrient medium. We demonstrate that AFM can obtain high-resolution images and the elastic information about biofilms. As E. coli biofilm becomes mature, the magnitude of the force between a tip and the surface of the biofilm gets stronger, suggesting that extracellular polymeric substances (EPSs), sticky components of biofilms, accumulate over the surface of cells upon the initial attachment of bacterial cells to surfaces

  6. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.

  7. Investigation of mass transfer phenomena in biofilm systems; Untersuchung von Stoffuebergangsphaenomenen in Biofilmsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Waesche, S.; Hempel, D.C. [Technische Univ. Braunschweig (Germany). Inst. fuer Bioverfahrenstechnik; Horn, H. [Fachhochschule Magdeburg (Germany). Hydro- und Abfallchemie

    1999-07-01

    Substance transfer in the boundary layer bulk/biofilm can be only inadequately described by conventional model concepts. In such cases where the surface structure of a biofilm adapts to given hydraulic conditions, the substance transfer phenomena need to be studied in depth. In addition, the entire biofilm structure is much influenced both by substrate conditions and by hydrodynamic conditions during growth. With a view to quantifying these factors, biofilms were cultured under various substrate and hydrodynamic conditions in tube reactors with a diameter of 2.6 cm. For characterizing the cultured biofilms, biofilm density and substrate turnover measured as maximum mass transfer density were determined in each test series. Biofilm density (dry biomass/biofilm volume) was determined by gravimetry. Maximum mass transfer densities in biofilm were established in batch experiments with excess substrate. By means of oxygen microelectrodes, oxygen profiles in the biofilm were measured directly in the reactor. These measurements concerned biofilms of thicknesses ranging from 400 to 2000 {mu}m, where the biofilms did not yet exhibit erosion. (orig.) [German] Der Stoffuebergang in der Grenzschicht Bulk/Biofilm ist mit herkoemmlichen Modellvorstellungen nur ungenuegend beschreibbar. Eine sich an die aktuellen hydraulischen Bedingungen anpassende Oberflaechenstruktur des Biofilms erfordert eine intensive Untersuchung der Stoffuebergangsphaenomene in derartigen Systemen. Darueber hinaus wird die gesamte Biofilmstruktur sowohl von den Substratbedingungen als auch von den hydrodynamischen Bedingungen waehrend des Wachstums stark beeinflusst. Um diese Faktoren quantifizieren zu koennen, wurden Biofilme bei verschiedenen Substrat- und hydrodynamischen Bedingungen in Rohrreaktoren mit einem Durchmesser von 2,6 cm kultiviert. Zur Charakterisierung der kultivierten Biofilme wurde die Biofilmdichte und der Substratumsatz, gemessen als maximale Massestromdichte, bei jeder Versuchsreihe

  8. Mycobacterium avium Possesses Extracellular DNA that Contributes to Biofilm Formation, Structural Integrity, and Tolerance to Antibiotics.

    Directory of Open Access Journals (Sweden)

    Sasha J Rose

    Full Text Available Mycobacterium avium subsp. hominissuis is an opportunistic pathogen that is associated with biofilm-related infections of the respiratory tract and is difficult to treat. In recent years, extracellular DNA (eDNA has been found to be a major component of bacterial biofilms, including many pathogens involved in biofilm-associated infections. To date, eDNA has not been described as a component of mycobacterial biofilms. In this study, we identified and characterized eDNA in a high biofilm-producing strain of Mycobacterium avium subsp. hominissuis (MAH. In addition, we surveyed for presence of eDNA in various MAH strains and other nontuberculous mycobacteria. Biofilms of MAH A5 (high biofilm-producing strain and MAH 104 (reference strain were established at 22°C and 37°C on abiotic surfaces. Acellular biofilm matrix and supernatant from MAH A5 7 day-old biofilms both possess abundant eDNA, however very little eDNA was found in MAH 104 biofilms. A survey of MAH clinical isolates and other clinically relevant nontuberculous mycobacterial species revealed many species and strains that also produce eDNA. RAPD analysis demonstrated that eDNA resembles genomic DNA. Treatment with DNase I reduced the biomass of MAH A5 biofilms when added upon biofilm formation or to an already established biofilm both on abiotic surfaces and on top of human pharyngeal epithelial cells. Furthermore, co-treatment of an established biofilm with DNase 1 and either moxifloxacin or clarithromycin significantly increased the susceptibility of the bacteria within the biofilm to these clinically used antimicrobials. Collectively, our results describe an additional matrix component of mycobacterial biofilms and a potential new target to help treat biofilm-associated nontuberculous mycobacterial infections.

  9. Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic diatoms in relation with biofilm maturity

    International Nuclear Information System (INIS)

    A study was undertaken to examine cadmium accumulation in freshwater biofilm, its effects on biofilm development and on diatom community structure in laboratory experimental conditions. A suspension of a biofilm originated from the Riou-Mort River (South West France) was inoculated into three experimental units containing clean glass substrates under laboratory conditions. Settling and already developed biofilms were exposed to a Cd concentration of 100 μg L-1. Metal accumulation (total and intracellular metal content) in biofilms, dry weight and ash-free dry mass, diatom cell density and diatom community composition were analyzed. Both total and intracellular Cd accumulated by the biofilm throughout the experiment increased with duration of metal exposure. Biofilms in the course of maturation were showed higher Cd content and less effective development than settled biofilms. However diatom communities in younger biofilms exposed to Cd increased their tolerance to Cd by a highly significant development of Nitzschia palea. In contrast, Cd exposure had different effect in installed biofilm and taxonomic composition. These results indicate that mature biofilm may limit Cd accumulation into its architecture and protect diatom communities from the effects of metals.

  10. Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic diatoms in relation with biofilm maturity

    Energy Technology Data Exchange (ETDEWEB)

    Duong, Thi Thuy, E-mail: duongthuy0712@yahoo.com [Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi (Viet Nam); Morin, Soizic, E-mail: soizic.morin@cemagref.fr [Cemagref, UR REBX, 50 avenue de Verdun, F-33612 Cestas Cedex (France); Coste, Michel [Cemagref, UR REBX, 50 avenue de Verdun, F-33612 Cestas Cedex (France); Herlory, Olivier; Feurtet-Mazel, Agnes; Boudou, Alain [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)

    2010-01-01

    A study was undertaken to examine cadmium accumulation in freshwater biofilm, its effects on biofilm development and on diatom community structure in laboratory experimental conditions. A suspension of a biofilm originated from the Riou-Mort River (South West France) was inoculated into three experimental units containing clean glass substrates under laboratory conditions. Settling and already developed biofilms were exposed to a Cd concentration of 100 {mu}g L{sup -1}. Metal accumulation (total and intracellular metal content) in biofilms, dry weight and ash-free dry mass, diatom cell density and diatom community composition were analyzed. Both total and intracellular Cd accumulated by the biofilm throughout the experiment increased with duration of metal exposure. Biofilms in the course of maturation were showed higher Cd content and less effective development than settled biofilms. However diatom communities in younger biofilms exposed to Cd increased their tolerance to Cd by a highly significant development of Nitzschia palea. In contrast, Cd exposure had different effect in installed biofilm and taxonomic composition. These results indicate that mature biofilm may limit Cd accumulation into its architecture and protect diatom communities from the effects of metals.

  11. Effect of Cinnamomum burmannii Nees ex Bl. and Massoia aromatica Becc. Essential Oils on Planktonic Growth and Biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus In Vitro

    Directory of Open Access Journals (Sweden)

    Sylvia Utami Tunjung Pratiwi

    2015-03-01

    Full Text Available Summary. Biofilms are communities of microorganisms that can be found in almost every habitat. They can be attached to a surface and protected by an extracellular matrix of biomolecules that substantially protect microorganisms from environmental effects. The aim of this research is to explore the potency of essential oils from Cinnamomum burmannii Nees ex Bl. and Massoia aromatica Becc. against planktonic growth and biofilm formation of, two opportunistic pathogens, Pseudomonas aeruginosa PAO1 and Staphylococcus aureus Cowan I. Essential oil from C. burmannii  and M. aromatica showed a 50% inhibition of  P. aeruginosa and S. aureus planktonic growth (PMIC50 at concentration of 0.12 % v/v. Essential oil from C. burmannii and M.  aromatica showed capability to inhibit 50% (MBIC50 of P. aeruginosa and S. aureus biofilm formation at concentration of 0.03 % v/v, whereas higher concentration (0.12 % v/v was needed by C. burmannii and M. aromatica oil to disrupt 50% of P. aeruginosa and S. aureus established biofilm. The analysis by GC-MS showed cinnamic aldehyde (92.02 % to be the major component of C. burmannii essential oil, whereas Massoialactone (92.05 % was the main constituent of M. aromatica essential oil. The results obtained in this study have made the oil of C. burmannii and M. aromatica oil as an interesting source for antibiofilm agents in the development of new strategies to treat infections caused by P. aeruginosa and  S. aureus biofilm.Industrial Relevance. Instead of freely swimming in solution (planktonic, in nature microbial tends to adhere to surfaces, and develop microbial biofilms. Microbial biofilms are exhibits resistance to both antimicrobial drugs and the host defence systems, which often results in persistent and difficult-to-treat infections. This makes the discovery of anti-infective agents which are active against planktonic and biofilm microbial represents an important goal. Plant is an interesting source for finding

  12. Redox Conductivity of Current-Producing Mixed Species Biofilms

    Science.gov (United States)

    Fan, Yanzhen; Liu, Hong

    2016-01-01

    While most biological materials are insulating in nature, efficient extracellular electron transfer is a critical property of biofilms associated with microbial electrochemical systems and several microorganisms are capable of establishing conductive aggregates and biofilms. Though construction of these conductive microbial networks is an intriguing and important phenomenon in both natural and engineered systems, few studies have been published related to conductive biofilms/aggregates and their conduction mechanisms, especially in mixed-species environments. In the present study, current-producing mixed species biofilms exhibited high conductivity across non-conductive gaps. Biofilm growth observed on the inactive electrode contributed to overall power outputs, suggesting that an electrical connection was established throughout the biofilm assembly. Electrochemical gating analysis of the biofilms over a range of potentials (-600–200 mV, vs. Ag/AgCl) resulted in a peak-manner response with maximum conductance of 3437 ± 271 μS at a gate potential of -360 mV. Following removal of the electron donor (acetate), a 96.6% decrease in peak conductivity was observed. Differential responses observed in the absence of an electron donor and over varying potentials suggest a redox driven conductivity mechanism in mixed-species biofilms. These results demonstrated significant differences in biofilm development and conductivity compared to previous studies using pure cultures. PMID:27159497

  13. Redox Conductivity of Current-Producing Mixed Species Biofilms.

    Science.gov (United States)

    Li, Cheng; Lesnik, Keaton Larson; Fan, Yanzhen; Liu, Hong

    2016-01-01

    While most biological materials are insulating in nature, efficient extracellular electron transfer is a critical property of biofilms associated with microbial electrochemical systems and several microorganisms are capable of establishing conductive aggregates and biofilms. Though construction of these conductive microbial networks is an intriguing and important phenomenon in both natural and engineered systems, few studies have been published related to conductive biofilms/aggregates and their conduction mechanisms, especially in mixed-species environments. In the present study, current-producing mixed species biofilms exhibited high conductivity across non-conductive gaps. Biofilm growth observed on the inactive electrode contributed to overall power outputs, suggesting that an electrical connection was established throughout the biofilm assembly. Electrochemical gating analysis of the biofilms over a range of potentials (-600-200 mV, vs. Ag/AgCl) resulted in a peak-manner response with maximum conductance of 3437 ± 271 μS at a gate potential of -360 mV. Following removal of the electron donor (acetate), a 96.6% decrease in peak conductivity was observed. Differential responses observed in the absence of an electron donor and over varying potentials suggest a redox driven conductivity mechanism in mixed-species biofilms. These results demonstrated significant differences in biofilm development and conductivity compared to previous studies using pure cultures. PMID:27159497

  14. Isolation of Extracellular Polymeric Substances from Biofilms of the Thermoacidophilic Archaeon Sulfolobus acidocaldarius

    OpenAIRE

    Jachlewski, Silke; Jachlewski, Witold D.; Linne, Uwe; Bräsen, Christopher; Wingender, Jost; Siebers, Bettina

    2015-01-01

    Extracellular polymeric substances (EPS) are the major structural and functional components of microbial biofilms. The aim of this study was to establish a method for EPS isolation from biofilms of the thermoacidophilic archaeon, Sulfolobus acidocaldarius, as a basis for EPS analysis. Biofilms of S. acidocaldarius were cultivated on the surface of gellan gum-solidified Brock medium at 78°C for 4 days. Five EPS extraction methods were compared, including shaking of biofilm suspensions in phosp...

  15. Detection of Cellulose and Comparative Biopolymeric Analyses of low pH, Sub-aerial Biofilms of the Richmond Mine, Iron Mountain California

    Science.gov (United States)

    Schrenk, M. O.; Cody, G. D.; Thelen, M.; Banfield, J. F.

    2006-12-01

    substantially less cellulose relative to the total amount of polysaccharides. A significant proportion of the extracellular polymers within the IM biofilms were not derived from cellulose but may be lipopolysaccharides associated with dead cell mass and polyglucose polymers such as starches and glycogen. The widespread occurrence of cellulose within the extracellular matrix indicates that this molecule may play an important role in establishing the architecture of the biofilms and facilitate their flotation at the air-water interface. Overall, the organic geochemical approaches used in this study serve as an important link in tying the molecular biological data from IM back to the fundamental biogeochemical processes such as biological production and community dynamics.

  16. Identification of ypqP as a New Bacillus subtilis Biofilm Determinant That Mediates the Protection of Staphylococcus aureus against Antimicrobial Agents in Mixed-Species Communities

    OpenAIRE

    Sanchez-Vizuete, Maria Pilar; Le Coq, Dominique; Bridier, Arnaud; Herry, Jean-Marie; Aymerich, Stephane; Briandet, Romain

    2014-01-01

    In most habitats, microbial life is organized in biofilms, three-dimensional edifices sustained by extracellular polymeric substances that enable bacteria to resist harsh and changing environments. Under multispecies conditions, bacteria can benefit from the polymers produced by other species ("public goods"), thus improving their survival under toxic conditions. A recent study showed that a Bacillus subtilis hospital isolate (NDmed) was able to protect Staphylococcus aureus from biocide acti...

  17. Community-Level Assessment of the Effects of the Broad-Spectrum Antimicrobial Chlorhexidine on the Outcome of River Microbial Biofilm Development▿

    OpenAIRE

    Lawrence, J R; Zhu, B.; Swerhone, G. D. W.; Topp, E.; Roy, J; L. I. Wassenaar; Rema, T.; Korber, D R

    2008-01-01

    Chlorhexidine is a common-use antibacterial agent found in a range of personal-care products. We used rotating annular reactors to cultivate river biofilms under the influence of chlorhexidine or its molar equivalent in nutrients. Studies of the degradation of [14C]chlorhexidine demonstrated that no mineralization of the compound occurred. During studies with 100 μg liter−1 chlorhexidine, significant changes were observed in the protozoan and micrometazoan populations, the algal and cyanobact...

  18. The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly.

    Science.gov (United States)

    Pepe-Ranney, Charles; Hall, Edward K

    2015-01-01

    The influence of resource availability on planktonic and biofilm microbial community membership is poorly understood. Heterotrophic bacteria derive some to all of their organic carbon (C) from photoautotrophs while simultaneously competing with photoautotrophs for inorganic nutrients such as phosphorus (P) or nitrogen (N). Therefore, C inputs have the potential to shift the competitive balance of aquatic microbial communities by increasing the resource space available to heterotrophs (more C) while decreasing the resource space available to photoautotrophs (less mineral nutrients due to increased competition from heterotrophs). To test how resource dynamics affect membership of planktonic communities and assembly of biofilm communities we amended a series of flow-through mesocosms with C to alter the availability of C among treatments. Each mesocosm was fed with unfiltered seawater and incubated with sterilized microscope slides as surfaces for biofilm formation. The highest C treatment had the highest planktonic heterotroph abundance, lowest planktonic photoautotroph abundance, and highest biofilm biomass. We surveyed bacterial 16S rRNA genes and plastid 23S rRNA genes to characterize biofilm and planktonic community membership and structure. Regardless of resource additions, biofilm communities had higher alpha diversity than planktonic communities in all mesocosms. Heterotrophic plankton communities were distinct from heterotrophic biofilm communities in all but the highest C treatment where heterotrophic plankton and biofilm communities resembled each other after 17 days. Unlike the heterotrophs, photoautotrophic plankton communities were different than photoautotrophic biofilm communities in composition in all treatments including the highest C treatment. Our results suggest that although resource amendments affect community membership and structure, microbial lifestyle (biofilm vs. planktonic) has a stronger influence on community composition. PMID:26236289

  19. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    International Nuclear Information System (INIS)

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H2S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H2S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H2S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the biofilm. • Sulfate

  20. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Yu, Tong, E-mail: tong.yu@ualberta.ca; Liu, Yang, E-mail: yang.liu@ualberta.ca

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H{sub 2}S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the

  1. Cohorts and community: a case study of community engagement in the establishment of a health and demographic surveillance site in Malaysia

    Directory of Open Access Journals (Sweden)

    Pascale Allotey

    2014-05-01

    Full Text Available Background: Community engagement is an increasingly important requirement of public health research and plays an important role in the informed consent and recruitment process. However, there is very little guidance about how it should be done, the indicators for assessing effectiveness of the community engagement process and the impact it has on recruitment, retention, and ultimately on the quality of the data collected as part of longitudinal cohort studies. Methods: An instrumental case study approach, with data from field notes, policy documents, unstructured interviews, and focus group discussions with key community stakeholders and informants, was used to explore systematically the implementation and outcomes of the community engagement strategy for recruitment of an entire community into a demographic and health surveillance site in Malaysia. Results: For a dynamic cohort, community engagement needs to be an ongoing process. The community engagement process has likely helped to facilitate the current response rate of 85% in the research communities. The case study highlights the importance of systematic documentation of the community engagement process to ensure an understanding of the effects of the research on recruitment and the community. Conclusions: A critical lesson from the case study data is the importance of relationships in the recruitment process for large population-based studies, and the need for ongoing documentation and analysis of the impact of cumulative interactions between research and community engagement.

  2. Bacterial biofilms in patients with indwelling urinary catheters.

    Science.gov (United States)

    Stickler, David J

    2008-11-01

    Bacteria have a basic survival strategy: to colonize surfaces and grow as biofilm communities embedded in a gel-like polysaccharide matrix. The catheterized urinary tract provides ideal conditions for the development of enormous biofilm populations. Many bacterial species colonize indwelling catheters as biofilms, inducing complications in patients' care. The most troublesome complications are the crystalline biofilms that can occlude the catheter lumen and trigger episodes of pyelonephritis and septicemia. The crystalline biofilms result from infection by urease-producing bacteria, particularly Proteus mirabilis. Urease raises the urinary pH and drives the formation of calcium phosphate and magnesium phosphate crystals in the biofilm. All types of catheter are vulnerable to encrustation by these biofilms, and clinical prevention strategies are clearly needed, as bacteria growing in the biofilm mode are resistant to antibiotics. Evidence indicates that treatment of symptomatic, catheter-associated urinary tract infection is more effective if biofilm-laden catheters are changed before antibiotic treatment is initiated. Infection with P. mirabilis exposes the many faults of currently available catheters, and plenty of scope exists for improvement in both their design and production; manufacturers should take up the challenge to improve patient outcomes. PMID:18852707

  3. A trait-based approach to bacterial biofilms in soil.

    Science.gov (United States)

    Lennon, Jay T; Lehmkuhl, Brent K

    2016-09-01

    A trait-based approach focuses on attributes of taxa that influence the structure and function of communities. Biofilm production is a common trait among microorganisms in a wide range of environmental, engineered, and host-associated ecosystems. Here, we used Pseudomonas aeruginosa to link biofilm production to moisture availability, a common stressor for microorganisms in soil. First, we demonstrate that biofilm production is a response trait that influences the desiccation phenotype by increasing survivorship, shifting the niche space, and reducing the minimum water potential needed to sustain a net-positive growth rate (Ψ*). Although the allocation of resources to biofilms is thought to be costly, we found no evidence for a trade-off between fitness and biofilm production along a soil moisture gradient. Second, we demonstrated that biofilm production is an effect trait. Specifically, biofilm production increased water retention in soils that were exposed to a series of drying and rewetting cycles. Although this form of niche construction should affect species interactions, we found no evidence that the benefits of biofilm production were extended to another co-occurring soil bacterium. Together, our results support the view that biofilm production is an important trait that may contribute to the distribution, abundance, and functioning of microorganisms in soils. PMID:27104876

  4. Control of Biofilms with the Fatty Acid Signaling Molecule cis-2-Decenoic Acid

    Directory of Open Access Journals (Sweden)

    Cláudia N. H. Marques

    2015-11-01

    Full Text Available Biofilms are complex communities of microorganisms in organized structures attached to surfaces. Importantly, biofilms are a major cause of bacterial infections in humans, and remain one of the most significant challenges to modern medical practice. Unfortunately, conventional therapies have shown to be inadequate in the treatment of most chronic biofilm infections based on the extraordinary innate tolerance of biofilms to antibiotics. Antagonists of quorum sensing signaling molecules have been used as means to control biofilms. QS and other cell-cell communication molecules are able to revert biofilm tolerance, prevent biofilm formation and disrupt fully developed biofilms, albeit with restricted effectiveness. Recently however, it has been demonstrated that Pseudomonas aeruginosa produces a small messenger molecule cis-2-decenoic acid (cis-DA that shows significant promise as an effective adjunctive to antimicrobial treatment of biofilms. This molecule is responsible for induction of the native biofilm dispersion response in a range of Gram-negative and Gram-positive bacteria and in yeast, and has been shown to reverse persistence, increase microbial metabolic activity and significantly enhance the cidal effects of conventional antimicrobial agents. In this manuscript, the use of cis-2-decenoic acid as a novel agent for biofilm control is discussed. Stimulating the biofilm dispersion response as a novel antimicrobial strategy holds significant promise for enhanced treatment of infections and in the prevention of biofilm formation.

  5. The catabolite repression control protein Crc plays a role in the development of antimicrobial-tolerant subpopulations in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Zhang, Lianbo; Chiang, Wen-Chi; Gao, Qingguo;

    2012-01-01

    Bacteria form complex surface-attached biofilm communities in nature. Biofilm cells differentiate into subpopulations which display tolerance towards antimicrobial agents. However, the signal transduction pathways regulating subpopulation differentiation in biofilms are largely unelucidated. In t....... In the present study, we show that the catabolite repression control protein Crc regulates the metabolic state of Pseudomonas aeruginosa cells in biofilms, and plays an important role in the development of antimicrobial-tolerant subpopulations in P. aeruginosa biofilms....

  6. Does bacterial communication play a role for the effect of triclosan, Corsodyl and Listerine on biofilm formation and growth of Streptococcus mutans?

    OpenAIRE

    2011-01-01

    Biofilm and biofilm formation Bacteria colonize biological and inert surfaces in the form of matrixencapsulated communities referred to as biofilms (1). These microbial biofilms are a highly distinct form of microbial life compared with the planktonic, or freely floating, form of microbial life that has been exhaustively studied for the last century (2). Bacterial biofilms account for the majority of chronic diseases, including gingivitis, endocarditis and nosocomial infections (1). Mic...

  7. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease

    Directory of Open Access Journals (Sweden)

    Yashuan eChao

    2015-01-01

    Full Text Available Streptococcus pneumoniae (the pneumococcus is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over 1 million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo.In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of

  8. Electrical spiking in bacterial biofilms

    OpenAIRE

    Masi, Elisa; Ciszak, Marzena; Santopolo, Luisa; Frascella, Arcangela; Giovannetti, Luciana; Marchi, Emmanuela; Viti, Carlo; Mancuso, Stefano

    2015-01-01

    In nature, biofilms are the most common form of bacterial growth. In biofilms, bacteria display coordinated behaviour to perform specific functions. Here, we investigated electrical signalling as a possible driver in biofilm sociobiology. Using a multi-electrode array system that enables high spatio-temporal resolution, we studied the electrical activity in two biofilm-forming strains and one non-biofilm-forming strain. The action potential rates monitored during biofilm-forming bacterial gro...

  9. Three-Dimensional Stratification of Bacterial Biofilm Populations in a Moving Bed Biofilm Reactor for Nitritation-Anammox

    Directory of Open Access Journals (Sweden)

    Robert Almstrand

    2014-01-01

    Full Text Available Moving bed biofilm reactors (MBBRs are increasingly used for nitrogen removal with nitritation-anaerobic ammonium oxidation (anammox processes in wastewater treatment. Carriers provide protected surfaces where ammonia oxidizing bacteria (AOB and anammox bacteria form complex biofilms. However, the knowledge about the organization of microbial communities in MBBR biofilms is sparse. We used new cryosectioning and imaging methods for fluorescence in situ hybridization (FISH to study the structure of biofilms retrieved from carriers in a nitritation-anammox MBBR. The dimensions of the carrier compartments and the biofilm cryosections after FISH showed good correlation, indicating little disturbance of biofilm samples by the treatment. FISH showed that Nitrosomonas europaea/eutropha-related cells dominated the AOB and Candidatus Brocadia fulgida-related cells dominated the anammox guild. New carriers were initially colonized by AOB, followed by anammox bacteria proliferating in the deeper biofilm layers, probably in anaerobic microhabitats created by AOB activity. Mature biofilms showed a pronounced three-dimensional stratification where AOB dominated closer to the biofilm-water interface, whereas anammox were dominant deeper into the carrier space and towards the walls. Our results suggest that current mathematical models may be oversimplifying these three-dimensional systems and unless the multidimensionality of these systems is considered, models may result in suboptimal design of MBBR carriers.

  10. Bacteriophages and Biofilms

    OpenAIRE

    Harper, David R; Helena M. R. T. Parracho; James Walker; Richard Sharp; Gavin Hughes; Maria Werthén; Susan Lehman; Sandra Morales

    2014-01-01

    Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this commo...

  11. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Margarida Carrolo

    Full Text Available Streptococcus pneumoniae (pneumococcus is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.

  12. Diffuse urban pollution increases metal tolerance of natural heterotrophic biofilms

    International Nuclear Information System (INIS)

    This study is a first attempt to investigate the impact of urban contamination on metal tolerance of heterotrophic river biofilms using a short-term test based on β-glucosidase activity. Tolerance levels to Cu, Cd, Zn, Ni and Pb were evaluated for biofilms collected at three sites along an urban gradient in the Seine river (France). Metallic pollution increased along the river, but concentrations remained low compared to environmental quality standards. Biofilm metal tolerance increased downstream from the urban area. Multivariate analysis confirmed the correlation between tolerance and contamination and between multi-metallic and physico-chemical gradients. Therefore, tolerance levels have to be interpreted in relation to the whole chemical and physical characteristics and not solely metal exposure. We conclude that community tolerance is a sensitive biological response to urban pressure and that mixtures of contaminants at levels lower than quality standards might have a significant impact on periphytic communities. - Highlights: ► A new short-term test based on β-glucosidase activity to assess biofilm metal tolerance. ► Cd, Cu, Ni, Pb and Zn tolerance of natural biofilms collected along an urban gradient. ► Metal tolerance levels increase upstream to downstream the river. ► Community tolerance increases at environmental quality standard exposure concentrations. ► Biofilm tolerance is a sensitive biological response to diffuse urban pollution. - Metal concentrations below environmental quality standards increase tolerance levels of natural, hetetrophic biofilms downstream from an urban area.

  13. In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms

    Directory of Open Access Journals (Sweden)

    Des eField

    2016-04-01

    Full Text Available The development and spread of pathogenic bacteria that are resistant to the existing catalogue of antibiotics is a major public health threat. Biofilms are complex, sessile communities of bacteria embedded in an organic polymer matrix which serve to further enhance antimicrobial resistance. Consequently, novel compounds and innovative methods are urgently required to arrest the proliferation of drug-resistant infections in both nosocomial and community environments. Accordingly, it has been suggested that antimicrobial peptides could be used as novel natural inhibitors that can be used in formulations with synergistically-acting antibiotics. Nisin is a member of the lantibiotic family of antimicrobial peptides that exhibit potent antibacterial activity against many Gram-positive bacteria. Recently we have used bioengineering strategies to enhance the activity of nisin against several high profile targets, including multi-drug resistant clinical pathogens such as methicillin-resistant Staphylococcus aureus (MRSA, vancomycin-resistant enterococci (VRE, staphylococci and streptococci associated with bovine mastitis. We have also identified nisin derivatives with an enhanced ability to impair biofilm formation and to reduce the density of established biofilms of methicillin resistant Staphylococcus pseudintermedius (MRSP. The present study was aimed at evaluating the potential of nisin and nisin derivatives to increase the efficacy of conventional antibiotics and to assess the possibility of killing and/or eradicating biofilm-associated cells of a variety of staphylococcal targets. Growth curve-based comparisons established that combinations of derivatives nisin V + penicillin or nisin I4V + chloramphenicol had an enhanced inhibitory effect against S. aureus SA113 and S. pseudintermedius DSM21284 respectively compared to the equivalent nisin A + antibiotic combinations or when each antimicrobial was administered alone. Furthermore, the metabolic

  14. In Vitro Activities of Nisin and Nisin Derivatives Alone and In Combination with Antibiotics against Staphylococcus Biofilms.

    Science.gov (United States)

    Field, Des; O' Connor, Rory; Cotter, Paul D; Ross, R Paul; Hill, Colin

    2016-01-01

    The development and spread of pathogenic bacteria that are resistant to the existing catalog of antibiotics is a major public health threat. Biofilms are complex, sessile communities of bacteria embedded in an organic polymer matrix which serve to further enhance antimicrobial resistance. Consequently, novel compounds and innovative methods are urgently required to arrest the proliferation of drug-resistant infections in both nosocomial and community environments. Accordingly, it has been suggested that antimicrobial peptides could be used as novel natural inhibitors that can be used in formulations with synergistically acting antibiotics. Nisin is a member of the lantibiotic family of antimicrobial peptides that exhibit potent antibacterial activity against many Gram-positive bacteria. Recently we have used bioengineering strategies to enhance the activity of nisin against several high profile targets, including multi-drug resistant clinical pathogens such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, staphylococci, and streptococci associated with bovine mastitis. We have also identified nisin derivatives with an enhanced ability to impair biofilm formation and to reduce the density of established biofilms of methicillin resistant S. pseudintermedius. The present study was aimed at evaluating the potential of nisin and nisin derivatives to increase the efficacy of conventional antibiotics and to assess the possibility of killing and/or eradicating biofilm-associated cells of a variety of staphylococcal targets. Growth curve-based comparisons established that combinations of derivatives nisin V + penicillin or nisin I4V + chloramphenicol had an enhanced inhibitory effect against S. aureus SA113 and S. pseudintermedius DSM21284, respectively, compared to the equivalent nisin A + antibiotic combinations or when each antimicrobial was administered alone. Furthermore, the metabolic activity of established biofilms treated with nisin

  15. Carbon-Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    Science.gov (United States)

    During nitrification, nitrite is produced as an intermediate when ammonia is oxidized to nitrate. It is well established that nitrifying biofilm are involved in nitrification episodes in chloraminated drinking water distribution systems with nitrite accumulation occurring during ...

  16. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    Full Text Available Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.

  17. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis

    Science.gov (United States)

    Ge, Xiuchun; Shi, Xiaoli; Shi, Limei; Liu, Jinlin; Stone, Victoria; Kong, Fanxiang; Kitten, Todd; Xu, Ping

    2016-01-01

    Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation. PMID:26950587

  18. Destruction of Bacterial Biofilms Using Gas Discharge Plasma

    Science.gov (United States)

    Abramzon, Nina

    2005-03-01

    Biofilms are bacterial communities embedded in an exopolysaccharidic matrix with a complex architectural structure. Bacteria in biofilms show different properties from those in free life thus, conventional methods of killing bacteria are often ineffective with biofilms. The use of plasmas potentially offers an alternative to conventional sterilization methods since plasmas contain a mixture of charged particles, chemically reactive species, and UV radiation. 4 and 7 day-old biofilms were produced using two bacterial species: Rhizobium gallicum and Chromobacterium violaceum. Gas discharge plasma was produced by using an AtomfloTM reactor (Surfx Technologies) and bacterial biofilms were exposed to it for different periods of time. Our results show that a 10-minute plasma treatment was able to kill 100% of the cells in most cases. Optical emission spectroscopy was used to study plasma composition which is then correlated with the effectiveness of killing. These results indicate the potentiality of plasma as an alternative sterilization method. Supported by CSuperb.

  19. Biofilm Formation and Dispersal under the Influence of the Global Regulator CsrA of Escherichia coli

    OpenAIRE

    Jackson, Debra W.; Suzuki, Kazushi; Oakford, Lawrence; Simecka, Jerry W.; Hart, Mark E.; Romeo, Tony

    2002-01-01

    The predominant mode of growth of bacteria in the environment is within sessile, matrix-enclosed communities known as biofilms. Biofilms often complicate chronic and difficult-to-treat infections by protecting bacteria from the immune system, decreasing antibiotic efficacy, and dispersing planktonic cells to distant body sites. While the biology of bacterial biofilms has become a major focus of microbial research, the regulatory mechanisms of biofilm development remain poorly defined and thos...

  20. Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater

    OpenAIRE

    Ling, Fangqiong; Liu, Wen-Tso

    2012-01-01

    This study evaluated the continuous impact of monochloramine disinfection on laboratory-grown biofilms through the characterization of biofilm architecture and microbial community structure. Biofilm development and disinfection were achieved using CDC (Centers for Disease Control and Prevention) biofilm reactor systems with polyvinyl chloride (PVC) coupons as the substratum and sand filter-pretreated groundwater as the source of microbial seeding and growth nutrient. After 2 weeks of growth, ...

  1. Characterizing Pilus-Mediated Adhesion of Biofilm-Forming E. coli to Chemically Diverse Surfaces Using Atomic Force Microscopy

    OpenAIRE

    Xu, He; Murdaugh, Anne E.; Chen, Wei; Aidala, Katherine E.; Ferguson, Megan A.; Spain, Eileen M.; Núñez, Megan E.

    2013-01-01

    Biofilms are complex communities of microorganisms living together at an interface. Because biofilms are often associated with contamination and infection, it is critical to understand how bacterial cells adhere to surfaces in the early stages of biofilm formation. Even harmless commensal Escherichia coli naturally forms biofilms in the human digestive tract by adhering to epithelial cells, a trait that presents major concerns in the case of pathogenic E. coli strains. The laboratory strain E...

  2. Strategies for antimicrobial drug delivery to biofilm.

    Science.gov (United States)

    Martin, Claire; Low, Wan Li; Gupta, Abhishek; Amin, Mohd Cairul Iqbal Mohd; Radecka, Iza; Britland, Stephen T; Raj, Prem; Kenward, Ken M A

    2015-01-01

    Biofilms are formed by the attachment of single or mixed microbial communities to a variety of biological and/or synthetic surfaces. Biofilm micro-organisms benefit from many advantages of the polymicrobial environment including increased resistance against antimicrobials and protection against the host organism's defence mechanisms. These benefits stem from a number of structural and physiological differences between planktonic and biofilm-resident microbes, but two main factors are the presence of extracellular polymeric substances (EPS) and quorum sensing communication. Once formed, biofilms begin to synthesise EPS, a complex viscous matrix composed of a variety of macromolecules including proteins, lipids and polysaccharides. In terms of drug delivery strategies, it is the EPS that presents the greatest barrier to diffusion for drug delivery systems and free antimicrobial agents alike. In addition to EPS synthesis, biofilm-based micro-organisms can also produce small, diffusible signalling molecules involved in cell density-dependent intercellular communication, or quorum sensing. Not only does quorum sensing allow microbes to detect critical cell density numbers, but it also permits co-ordinated behaviour within the biofilm, such as iron chelation and defensive antibiotic activities. Against this backdrop of microbial defence and cell density-specific communication, a variety of drug delivery systems have been developed to deliver antimicrobial agents and antibiotics to extracellular and/or intracellular targets, or more recently, to interfere with the specific mechanisms of quorum sensing. Successful delivery strategies have employed lipidic and polymeric-based formulations such as liposomes and cyclodextrins respectively, in addition to inorganic carriers e.g. metal nanoparticles. This review will examine a range of drug delivery systems and their application to biofilm delivery, as well as pharmaceutical formulations with innate antimicrobial properties

  3. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester.

    Science.gov (United States)

    Tian, Zhe; Zhang, Yu; Li, Yuyou; Chi, Yongzhi; Yang, Min

    2015-02-01

    The purpose of this study was to explore how fast the thermophilic anaerobic microbial community could be established during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Stable thermophilic anaerobic digestion was achieved within 20 days from a mesophilic digester treating sewage sludge by adopting the one-step startup strategy. The succession of archaeal and bacterial populations over a period of 60 days after the temperature increment was followed by using 454-pyrosequencing and quantitative PCR. After the increase of temperature, thermophilic methanogenic community was established within 11 days, which was characterized by the fast colonization of Methanosarcina thermophila and two hydrogenotrophic methanogens (Methanothermobacter spp. and Methanoculleus spp.). At the same time, the bacterial community was dominated by Fervidobacterium, whose relative abundance rapidly increased from 0 to 28.52 % in 18 days, followed by other potential thermophilic genera, such as Clostridium, Coprothermobacter, Anaerobaculum and EM3. The above result demonstrated that the one-step startup strategy could allow the rapid establishment of the thermophilic anaerobic microbial community. PMID:25463927

  4. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  5. Establishing the Medication Safety Research Network of Indiana (Rx-SafeNet): Perspectives of Community Pharmacy Employees

    OpenAIRE

    Seel, Lindsey V.; Hultgren, Kyle E.; Snyder, Margie E

    2012-01-01

    The objective of this cross-sectional survey was to determine community pharmacy employee research project priorities and assess interest levels, barriers, and facilitators to joining a new community pharmacy practice-based research network (PBRN) and use this information in subsequent PBRN development. One hundred forty pharmacists and 40 support staff responded. The majority (72%) of respondents were somewhat interested or needed more information to determine their level o...

  6. Challenges of establishing a Community Advisory Board (CAB in a low-income, low-resource setting: experiences from Bagamoyo, Tanzania

    Directory of Open Access Journals (Sweden)

    Shubis Kafuruki

    2009-06-01

    Full Text Available Abstract Objective Community Advisory Boards are now seen as standard practice for clinical vaccine and drug trials worldwide. In the past, most Community Advisory Boards (CABs were established by activists and lobbyists to monitor HIV/AIDS vaccine and drug trials in developed countries. In Africa the first CAB was established in Uganda in 1990 in conjunction with an HIV vaccine project and has since been followed by others in South Africa, Zimbabwe, and Kenya. In 2007, the Bagamoyo branch of the Ifakara Health Institute initiated the formation of a CAB. The aim was to properly educate and empower elected CAB members to become full partners in all research activities concerning the public within the Bagamoyo area. Methods and Results Beginning in 2007, staff visited each of the 24 villages within the study area to inform the communities about the proposed CAB and asked them to elect two individuals to represent their village on the CAB. The first attempt was hampered by community leaders selecting themselves, which led to inconsistent attendance, gender imbalance, and political infighting. New criteria for the selection of representatives were implemented to exclude governmental leaders, illiterate representatives and to promote a one-to-one gender balance. The newly appointed representatives underwent training and have participated in CAB meetings largely devoid of the negative issues previously encountered. Conclusion The successfully established CAB has led to improved relations with the community and facilitated the recruitment of study subjects. Our experiences show that, it is possible to establish a non-specific CAB in a low-income setting.

  7. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm.

    Science.gov (United States)

    Liu, Hong; Yu, Tong; Liu, Yang

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H2S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H2S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. PMID:26204047

  8. Marine bacteria from the French Atlantic coast displaying high forming-biofilm abilities and different biofilm 3D architectures

    OpenAIRE

    Doghri, Ibtissem; Rodrigues, Sophie; Bazire, Alexis; Dufour, Alain; Akbar, David; Sopena, Valérie; Sablé, Sophie; Lanneluc, Isabelle

    2015-01-01

    Background Few studies have reported the species composition of bacterial communities in marine biofilms formed on natural or on man-made existing structures. In particular, the roles and surface specificities of primary colonizers are largely unknown for most surface types. The aim of this study was to obtain potentially pioneering bacterial strains with high forming-biofilm abilities from two kinds of marine biofilms, collected from two different surfaces of the French Atlantic coast: an in...

  9. The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth

    OpenAIRE

    Ojha, Anil; Hatfull, Graham F.

    2007-01-01

    Many species of mycobacteria form structured biofilm communities at liquid–air interfaces and on solid surfaces. Full development of Mycobacterium smegmatis biofilms requires addition of supplemental iron above 1 μM ferrous sulphate, although addition of iron is not needed for planktonic growth. Microarray analysis of the M. smegmatis transcriptome shows that iron-responsive genes – especially those involved in siderophore synthesis and iron uptake – are strongly induced during biofilm format...

  10. Cohorts and community: a case study of community engagement in the establishment of a health and demographic surveillance site in Malaysia

    OpenAIRE

    Allotey, Pascale; Reidpath, Daniel D.; Devarajan, Nirmala; Rajagobal, Kanason; Yasin, Shajahan; Arunachalam, Dharmalingam; Imelda, Johanna Deborah; Soyiri, Irenous; Davey, Tamzyn; Jahan, Nowrozy; Team, The Seaco

    2014-01-01

    Background: Community engagement is an increasingly important requirement of public health research and plays an important role in the informed consent and recruitment process. However, there is very little guidance about how it should be done, the indicators for assessing effectiveness of the community engagement process and the impact it has on recruitment, retention, and ultimately on the quality of the data collected as part of longitudinal cohort studies.Methods: An instrumental case stu...

  11. Establishing the SouthWestern Academic Health Network (SWAHN): A Survey Exploring the Needs of Academic and Community Networks in SouthWestern Ontario.

    Science.gov (United States)

    Nicholson, Kathryn; Randhawa, Jasmine; Steele, Margaret

    2015-10-01

    With the evolving fields of health research, health professional education and advanced clinical care comes a need to bring researchers, educators and health care providers together to enhance communication, knowledge-sharing and interdisciplinary collaboration. There is also a need for active collaboration between academic institutions and community organizations to improve health care delivery and health outcomes in the community setting. In Canada, an Academic Health Sciences Network model has been proposed to achieve such activities. The SouthWestern Academic Health Network (SWAHN) has been established among three universities, three community colleges, community hospitals, community-based organizations and health care providers and two Local Health Integrated Networks (LHINs) in Southwestern Ontario. A survey was conducted to understand the characteristics, activities, existing partnerships, short- and long-term goals of the academic and community health networks in SouthWestern Ontario to inform the development of SWAHN moving forward. A total of 114 health networks were identified from the two participating LHINs, 103 community health networks and 11 academic health networks. A mailed survey was sent to all networks and responses were analyzed using both quantitative and qualitative approaches. The short- and long-term goals of these networks were categorized into five main themes: Public Health, Education, Research, System Delivery and Special Populations. Overall, this study helped to elicit important information from the academic and community based networks, which will inform the future work of SWAHN. This research has also demonstrated the significance of collecting information from both academic and community partners during the formation of other interdisciplinary health networks. PMID:25795223

  12. Meningococcal biofilm formation

    DEFF Research Database (Denmark)

    Lappann, M.; Haagensen, Janus Anders Juul; Claus, H.;

    2006-01-01

    We show that in a standardized in vitro flow system unencapsulated variants of genetically diverse lineages of Neisseria meningitidis formed biofilms, that could be maintained for more than 96 h. Biofilm cells were resistant to penicillin, but not to rifampin or ciprofloxacin. For some strains......, microcolony formation within biofilms was observed. Microcolony formation in strain MC58 depended on a functional copy of the pilE gene encoding the pilus subunit pilin, and was associated with twitching of cells. Nevertheless, unpiliated pilE mutants formed biofilms showing that attachment and accumulation...... PilX alleles was identified among genetically diverse meningococcal strains. PilX alleles differed in their propensity to support autoaggregation of cells in suspension, but not in their ability to support microcolony formation within biofilms in the continuous flow system....

  13. Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater

    KAUST Repository

    Ling, Fangqiong

    2013-01-01

    This study evaluated the continuous impact of monochloramine disinfection on laboratory-grown biofilms through the characterization of biofilm architecture and microbial community structure. Biofilm development and disinfection were achieved using CDC (Centers for Disease Control and Prevention) biofilm reactor systems with polyvinyl chloride (PVC) coupons as the substratum and sand filter-pretreated groundwater as the source of microbial seeding and growth nutrient. After 2 weeks of growth, the biofilms were subjected to chloramination for 8 more weeks at concentrations of 7.5±1.4 to 9.1±0.4 mg Cl2 L-1. Control reactors received no disinfection during the development of biofilms. Confocal laser scanning microscopy and image analysis indicated that chloramination could lead to 81.4-83.5% and 86.3-95.6% reduction in biofilm biomass and thickness, respectively, but could not eliminate biofilm growth. 16S rRNA gene terminal restriction fragment length polymorphism analysis indicated that microbial community structures between chloraminated and non-chloraminated biofilms exhibited different successional trends. 16S rRNA gene pyrosequencing analysis further revealed that chloramination could select members of Actinobacteria and Acidobacteria as the dominant populations, whereas natural development leads to the selection of members of Nitrospira and Bacteroidetes as dominant biofilm populations. Overall, chloramination treatment could alter the growth of multi-species biofilms on the PVC surface, shape the biofilm architecture, and select a certain microbial community that can survive or proliferate under chloramination.

  14. Development and maturation of Escherichia coli K-12 biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Haagensen, J.A.J.; Schembri, Mark;

    2003-01-01

    The development and maturation of E. coli biofilms in flow-chambers was investigated. We found that the presence of transfer constitutive IncF plasmids induced biofilm development forming structures resembling those reported for Pseudomonas aeruginosa . The development occurred in a step-wise pro......The development and maturation of E. coli biofilms in flow-chambers was investigated. We found that the presence of transfer constitutive IncF plasmids induced biofilm development forming structures resembling those reported for Pseudomonas aeruginosa . The development occurred in a step....... We further provide evidence that flagella, type 1 fimbriae, curli and Ag43 are all dispensable for the observed biofilm maturation. In addition, our results indicate that cell-to-cell signalling mediated by autoinducer 2 (AI-2) is not required for differentiation of E. coli within a biofilm community....... We suggest on the basis of these results that E. coli K-12 biofilm development and maturation is dependent on cell-cell adhesion factors, which may act as inducers of self-assembly processes that result in differently structured biofilms depending on the adhesive properties on the cell surface....

  15. Extracellular DNA Shields against Aminoglycosides in Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Nilsson, Martin; Jensen, Peter Østrup;

    2013-01-01

    Within recent years, it has been established that extracellular DNA is a key constituent of the matrix of microbial biofilms. In addition, it has recently been demonstrated that DNA binds positively charged antimicrobials such as aminoglycosides and antimicrobial peptides. In the present study, we...... provide evidence that extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. We show that exogenously supplemented DNA integrates into P. aeruginosa biofilms and increases their tolerance toward aminoglycosides. We provide evidence that biofilms formed by a DNA release......-deficient P. aeruginosa quorum-sensing mutant are more susceptible to aminoglycoside treatment than wild-type biofilms but become rescued from the detrimental action of aminoglycosides upon supplementation with exogenous DNA. Furthermore, we demonstrate that exposure to lysed polymorphonuclear leukocytes...

  16. DNase inhibits Gardnerella vaginalis biofilms in vitro and in vivo.

    Science.gov (United States)

    Hymes, Saul R; Randis, Tara M; Sun, Thomas Yang; Ratner, Adam J

    2013-05-15

    Bacterial vaginosis is a highly prevalent and poorly understood polymicrobial disorder of the vaginal microbiota, with significant adverse sequelae. Gardnerella vaginalis predominates in bacterial vaginosis. Biofilms of G. vaginalis are present in human infections and are implicated in persistent disease, treatment failure, and transmission. Here we demonstrate that G. vaginalis biofilms contain extracellular DNA, which is essential to their structural integrity. Enzymatic disruption of this DNA specifically inhibits biofilms, acting on both newly forming and established biofilms. DNase liberates bacteria from the biofilm to supernatant fractions and potentiates the activity of metronidazole, an antimicrobial agent used in the treatment of bacterial vaginosis. Using a new murine vaginal colonization model for G. vaginalis, we demonstrate >10-fold inhibition of G. vaginalis colonization by DNase. We conclude that DNase merits investigation as a potential nonantibiotic adjunct to existing bacterial vaginosis therapies in order to decrease the risk of chronic infection, recurrence, and associated morbidities. PMID:23431033

  17. The Effect of Predators on Cholera Biofilms: If it Lyses, We Can Smash It

    Science.gov (United States)

    Kalziqi, Arben; Bernardy, Eryn; Thomas, Jacob; Ratcliff, Will; Hammer, Brian; Yunker, Peter

    Many microbes form biofilms--dense clumps of cells and proteins--on surfaces. Biofilms are complex communities that facilitate the study of biological competition (e.g., two types of microbes may compete to form a biofilm in the same location) and interesting physics (e.g., the source of a biofilm's rigidity). Vibrio cholerae can produce biofilms which have a network-like structure--however, cholera can be genetically engineered to kill other cholera with different genotypes, which leaves behind a structureless ``slime'' rather than such a biofilm. Through mechanical creep testing of both predator-prey and non-predator populations, we found that the predator-prey population responds viscously and decreases in height with repeated compression, whereas the non-predator population responds elastically and maintains its original height. The current work suggests that cell lysis after killing disrupts biofilm formation, preventing microbial colonies from forming rigid networks.

  18. Candida Biofilms and the Host: Models and New Concepts for Eradication

    Directory of Open Access Journals (Sweden)

    Hélène Tournu

    2012-01-01

    Full Text Available Biofilms define mono- or multispecies communities embedded in a self-produced protective matrix, which is strongly attached to surfaces. They often are considered a general threat not only in industry but also in medicine. They constitute a permanent source of contamination, and they can disturb the proper usage of the material onto which they develop. This paper relates to some of the most recent approaches that have been elaborated to eradicate Candida biofilms, based on the vast effort put in ever-improving models of biofilm formation in vitro and in vivo, including novel flow systems, high-throughput techniques and mucosal models. Mixed biofilms, sustaining antagonist or beneficial cooperation between species, and their interplay with the host immune system are also prevalent topics. Alternative strategies against biofilms include the lock therapy and immunotherapy approaches, and material coating and improvements. The host-biofilm interactions are also discussed, together with their potential applications in Candida biofilm elimination.

  19. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms.

    Science.gov (United States)

    Schwartz, Kelly; Ganesan, Mahesh; Payne, David E; Solomon, Michael J; Boles, Blaise R

    2016-01-01

    Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology. PMID:26365835

  20. Start-up phase of an anaerobic full-scale farm reactor - Appearance of mesophilic anaerobic conditions and establishment of the methanogenic microbial community.

    Science.gov (United States)

    Goux, Xavier; Calusinska, Magdalena; Fossépré, Marie; Benizri, Emile; Delfosse, Philippe

    2016-07-01

    The goal of this study was to investigate how the microbial community structure establishes during the start-up phase of a full-scale farm anaerobic reactor inoculated with stale and cold cattle slurry. The 16S/18S high-throughput amplicon sequencing results showed an increase of the bacterial, archaeal and eukaryotic diversity, evenness and richness during the settlement of the mesophilic anaerobic conditions. When a steady performing digestion process was reached, the microbial diversity, evenness and richness decreased, indicating the establishment of a few dominant microbial populations, best adapted to biogas production. Interestingly, among the environmental parameters, the temperature, alkalinity, free-NH3, total solids and O2 content were found to be the main drivers of microbial dynamics. Interactions between eukaryotes, characterized by a high number of unknown organisms, and the bacterial and archaeal communities were also evidenced, suggesting that eukaryotes might play important roles in the anaerobic digestion process. PMID:27099947

  1. Distribution of bacterial growth activity in flow-chamber biofilms

    DEFF Research Database (Denmark)

    Sternberg, Claus; Christensen, Bjarke B.; Johansen, Tove; Nielsen, Alex Toftgaard; Andersen, Jens Bo; Givskov, Michael Christian; Molin, Søren

    1999-01-01

    community. With the use of these reporter tools, it is demonstrated that individual cells of a toluene-degrading P. putida strain growing in a benzyl alcohol-supplemented biofilm have different levels of growth activity which develop as the biofilm gets older. Cells that eventually grow very slowly or not......In microbial communities such as those found in biofilms, individual organisms most often display heterogeneous behavior with respect to their metabolic activity, growth status, gene expression pattern, etc. In that context, a novel reporter system for monitoring of cellular growth activity has...... at all may be stimulated to restart growth if provided with a more easily metabolizable carbon source. Thus, the dynamics of biofilm growth activity has been tracked to the level of individual cells, cell clusters, and microcolonies....

  2. The interconnection between biofilm formation and horizontal gene transfer

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Burmølle, Mette; Hansen, Lars H.;

    2012-01-01

    . Biofilms, furthermore, promote plasmid stability and may enhance the host range of mobile genetic elements that are transferred horizontally. Plasmids, on the other hand, are very well suited to promote the evolution of social traits such as biofilm formation. This, essentially, transpires because plasmids...... believed importance in the understanding of the adaptation and subsequent evolution of social traits in bacteria. Here, we discuss current evidence for such interconnectedness centred on plasmids. Horizontal transfer rates are typically higher in biofilm communities compared with those in planktonic states...

  3. Biofilm architecture of Phanerozoic cryptic carbonate marine veneers

    Science.gov (United States)

    Riding, Robert

    2002-01-01

    Thin (bacterial biofilm. Morphologic attributes include rounded aggregate nanofabric, internal channels, external towers, mushrooms, and plumes. All can be interpreted as characteristics of attached bacterial communities, i.e., aggregates as microcolonies, originally embedded in a matrix of extracellular polymeric substances; channels as water conduits and/or uncolonized nutrient-poor spaces; external protuberances as localized growths; and plumes as surface streamers. Cryptic habitat favored pristine biofilm preservation by precluding disturbance and overgrowth, and suggests aphotic and anoxic conditions. These examples provide diagnostic morphologic criteria for wider recognition of biofilm in Phanerozoic and older carbonates.

  4. Correlative Imaging of Structural and Elemental Composition of Bacterial Biofilms

    International Nuclear Information System (INIS)

    Synchrotron-based phase contrast tomography (holotomography) and scanning hard X-ray fluorescence microscopy (SXFM) are combined to characterize the three-dimensional (3D) structural and corresponding elemental distribution of bacterial biofilms of Pseudomonas aeruginosa. Samples were fixed without contrast agents or microtomal sectioning. Within an intact microbial community single bacteria are clearly resolved, and their morphology can be directly visualized together with the elemental content. Such 3D set of complementary information at cellular level is essential for gaining a deeper understanding of biofilm evolution aiming to develop potential strategies on biofilm growth control and prevention

  5. Correlative Imaging of Structural and Elemental Composition of Bacterial Biofilms

    Science.gov (United States)

    Yang, Y.; Heine, R.; Xu, F.; Suhonen, H.; Helfen, L.; Rosenhahn, A.; Gorniak, T.; Kirchen, S.; Schwartz, T.; Baumbach, T.

    2013-10-01

    Synchrotron-based phase contrast tomography (holotomography) and scanning hard X-ray fluorescence microscopy (SXFM) are combined to characterize the three-dimensional (3D) structural and corresponding elemental distribution of bacterial biofilms of Pseudomonas aeruginosa. Samples were fixed without contrast agents or microtomal sectioning. Within an intact microbial community single bacteria are clearly resolved, and their morphology can be directly visualized together with the elemental content. Such 3D set of complementary information at cellular level is essential for gaining a deeper understanding of biofilm evolution aiming to develop potential strategies on biofilm growth control and prevention.

  6. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    Directory of Open Access Journals (Sweden)

    Yang Zamin K

    2010-05-01

    Full Text Available Abstract Background Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors. Results qPCR monitoring of the culture revealed C. cellulolyticum to be dominant as expected and confirmed the presence of D. vulgaris and G. sulfurreducens. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of C. cellulolyticum and D. vulgaris were electron donor limited whereas G. sulfurreducens was electron acceptor limited. Conclusions The results demonstrate that C. cellulolyticum, D. vulgaris, and G. sulfurreducens can be grown in coculture in a continuous culture system in which D. vulgaris and G. sulfurreducens are dependent upon the metabolic byproducts of C. cellulolyticum for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network.

  7. The policy basis for community health financing in Cameroon: establishment of the North West Provincial Special Fund for Health.

    Science.gov (United States)

    Schmidt-Ehry, B; Massow, F V; Monekosso, G; Amida, G; Cosmas, C

    1997-01-01

    National health systems in Africa and around the world have and are still undergoing reforms in response to the Alma Ata Declaration. In Africa, people centred, community based and locally managed strategies are widely accepted. And in many countries like Cameroon, revolving funds for essential drugs have been adopted as an entry point to the implementation of primary health care elements in community health centres. The current reforms are leading to a sharing of financing responsibilities between people and government, with catalytic support from external agencies. Economic, social and political crises in Africa in the past decade have earned the countries stiff structural adjustment policies with severe consequences on health budgets, health manpower, and health status. This paper describes the policy basis for community financing in Cameroon. It suggests that revolving essential drugs funds (as proposed in the Bamako Initiative) cannot be viewed in isolation, but as part of the community and national response to the crises situation; it also demonstrated the capacity of the health sector to fight back to overcome the ill effects of structural adjustment. And last but not the least, these funds have provided an opportunity for the exercise of democracy and the participatory management by these officials of public goods and services. PMID:17583973

  8. Performance comparison of biofilm and suspended sludge from a sequencing batch biofilm reactor treating mariculture wastewater under oxytetracycline stress.

    Science.gov (United States)

    Zheng, Dong; Gao, Mengchun; Wang, Zhe; She, Zonglian; Jin, Chunji; Chang, Qingbo

    2016-09-01

    The performance, extracellular polymeric substances (EPS) and microbial community of a sequencing batch biofilm reactor (SBBR) were investigated in treating mariculture wastewater under oxytetracycline stress. The chemical oxygen demand and [Formula: see text]-N removal efficiencies of the SBBR decreased with the increase of oxytetracycline concentration, and no obvious [Formula: see text]-N and [Formula: see text]-N accumulation in the effluent appeared at less than 10 mg L(-1) oxytetracycline. The specific oxygen utilization rate of the suspended sludge was more than that of the biofilm at different oxytetracycline concentrations. The specific ammonium oxidation rate (SAOR) of the biofilm was more easily affected by oxytetracycline than that of the suspended sludge, whereas the effect of oxytetracycline on the specific nitrite oxidation rate (SNOR) of the biofilm was less than that of the suspended sludge. The specific nitrate reduction rate of both the biofilm and suspended sludge was higher than the sum of the SAOR and SNOR at different oxytetracycline concentrations. The protein and polysaccharide contents in the EPS of the biofilm and suspended sludge increased with the increase of oxytetracycline concentration. The appearance of oxytetracycline in the influent could affect the chemical composition of the loosely bound EPS and tightly bound EPS. The amino, carboxyl and hydroxyl groups might be involved with interaction between EPS and oxytetracycline. The denaturing gradient gel electrophoresis profiles indicated that the variation of oxytetracycline concentration in the influent could affect the microbial communities of both the biofilm and suspended sludge. PMID:26854088

  9. Bioinspired, dynamic, structured surfaces for biofilm prevention

    Science.gov (United States)

    Epstein, Alexander K.

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even low surface tension commercial antimicrobials. Our study shows multiple contributing factors, including biochemical components and multiscale reentrant topography. Reliant on surface chemistry, conventional strategies for preventing biofilm only transiently affect attachment and/or are environmentally toxic. In this work, we look to Nature's antifouling solutions, such as the dynamic spiny skin of the echinoderm, and we develop a versatile surface nanofabrication platform. Our benchtop approach unites soft lithography, electrodeposition, mold deformation, and material selection to enable many degrees of freedom—material, geometric, mechanical, dynamic—that can be programmed starting from a single master structure. The mechanical properties of the bio-inspired nanostructures, verified by AFM, are precisely and rationally tunable. We examine how synthetic dynamic nanostructured surfaces control the attachment of pathogenic biofilms. The parameters governing long-range patterning of bacteria on high-aspect-ratio (HAR) nanoarrays are combinatorially elucidated, and we discover that sufficiently low effective stiffness of these HAR arrays mechanoselectively inhibits ˜40% of Pseudomonas aeruginosa biofilm attachment. Inspired by the active echinoderm skin, we design and fabricate externally actuated dynamic elastomer surfaces with active surface microtopography. We extract from a large parameter space the critical topographic length scales and actuation time scales for achieving

  10. Nontypeable Haemophilus influenzae biofilms: role in chronic airway infections

    OpenAIRE

    Swords, W. Edward

    2012-01-01

    Like many pathogens inhabiting mucosal surfaces, nontypeable Haemophilus influenzae (NTHi) forms multicellular biofilm communities both in vitro and in various infection models. In the past 15 years much has been learned about determinants of biofilm formation by this organism and potential roles in bacterial virulence, especially in the context of chronic and recurrent infections. However, this concept has not been without some degree of controversy, and in the past some have expressed doubt...

  11. The effects of silver nanoparticles on intact wastewater biofilms

    Directory of Open Access Journals (Sweden)

    Zhiya eSheng

    2015-07-01

    Full Text Available Silver nanoparticles (Ag-NPs have strong antibacterial properties, which may adversely affect biological wastewater treatment processes. To determine the overall effect, intact biofilm samples were collected from the rotating biological contactor (RBC at the local wastewater treatment plant and treated with 200 mg Ag/L Ag-NPs for 24 h. The biofilm uptake of Ag-NPs was monitored with transmission electron microscopy (TEM. Forty-five min after Ag-NP application, Ag-NPs were seen in the biofilm extracellular polymeric substances (EPS. After 24 h, Ag-NPs had entered certain microbial cells, while other cells contained no observable Ag-NPs. Some cells were dying after the uptake of Ag-NPs. However, there was no significant reduction in cultivable bacteria in the biofilms, based on heterotrophic plate counts (HPC. While this may indicate that wastewater biofilms are highly resistant to Ag-NPs, the HPC represents only a small portion of the total microbial population. To further investigate the effects of Ag-NPs, a GeoChip microarray was used to directly detect changes in the functional gene structure of the microbial community in the biofilm. A clear decrease (34.6% decrease in gene number in gene diversity was evident in the GeoChip analysis. However, the complete loss of any specific gene was rare. Some gene families present in both treated and untreated biofilms. However, this doesn’t necessarily mean that there was no change in these families. Signal intensity decreased in certain variants in each family while other variants increased to compensate the effects of Ag-NPs. The results indicate that Ag-NP treatment decreased microbial community diversity but did not significantly affect the microbial community function. This provides direct evidence for the functional redundancy of microbial community in engineered ecosystems such as wastewater biofilms.

  12. Assessing the response of degradative biofilms to groundwater pollutants

    OpenAIRE

    Keasling, Jay D.

    2002-01-01

    There is limited knowledge of interspecies interactions in biofilm communities. In this study, Pseudomonas sp. GJ1, a 2-chloroethanol (2-CE) degrading organism, and Pseudomonas putida DMP1, a p-cresol degrader, produced distinct biofilms in response to model mixed waste streams comprised of 2-CE and various p-cresol concentrations. The two organisms maintained a commensal relationship, with DMP1 mitigating the inhibitory effects of p-cresol on GJ1. A triple labeling technique compatible with ...

  13. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease

    OpenAIRE

    Chao, Yashuan; Marks, Laura R.; Pettigrew, Melinda M.; Hakansson, Anders P.

    2015-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over one million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease...

  14. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease

    OpenAIRE

    Yashuan eChao; Marks, Laura R.; Pettigrew, Melinda M.; Hakansson, Anders P.

    2015-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over 1 million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease i...

  15. Establishment and Evaluation of the Vegetative Community in A Surface Flow Constructed Wetland Treating Industrial Park Contaminants

    OpenAIRE

    C. C. Galbrand; A. M. Snow; Abdel E. Ghaly; Cote, R.

    2008-01-01

    A surface flow constructed wetland, designed to curve in a kidney shape in order to increase the length to width ratio to 5:1 was used to treat runoff from an industrial park. A natural wetland system located approximately 200 m downstream of the constructed wetland was selected to act as the vegetative community model for the constructed wetland. The selected model was a riparian, open water marsh dominated by emergent macrophytes. Baseline plant species surveying was conducted. In total, 21...

  16. Paradigm of universalistic particularism to reform the Indonesian economic law in the framework of establishing the 2015 ASEAN Economic Community

    OpenAIRE

    S.H., M. Hum. TAUFIQURRAHMAN

    2014-01-01

    A reality that cannot be denied that the laws of Indonesia applicable today, especially regarding international trade transactions, are less conducive to the changes. This can be understood because the law that in fact is a legacy of the Dutch colonial government has not been changed at all, but the dynamics of the community continue to run endlessly. Changes in society increasingly run quickly along with the progress achieved in the field of Science and Technology, particularly Information a...

  17. Pharmacokinetics and pharmacodynamics of antibiotics in biofilm infections of Pseudomonas aeruginosa in vitro and in vivo

    DEFF Research Database (Denmark)

    Hengzhuang, Wang; Høiby, Niels; Ciofu, Oana

    2014-01-01

    efficient dosing regimen and to minimize the development of antimicrobial tolerance and resistance in biofilm infections. Unfortunately, most previous PK/PD studies of antibiotics have been done on planktonic cells, and extrapolation of the results on biofilms is problematic as bacterial biofilms differ...... from planktonic grown cells in the growth rate, gene expression, and metabolism. Here, we set up several protocols for the studies of PK/PD of antibiotics in biofilm infections of P. aeruginosa in vitro and in vivo. It should be underlined that none of the protocols in biofilms have yet been......Although progress on biofilm research has been obtained during the past decades, the treatment of biofilm infections with antibiotics remains a riddle. The pharmacokinetic (PK) and pharmacodynamic (PD) profiles of an antimicrobial agent provide important information helping to establish an...

  18. Regulation of biofilm formation in Salmonella typhimurium and Escherichia coli Nissle 1917

    OpenAIRE

    Monteiro, Cláudia

    2011-01-01

    Bacteria have the ability to grow in cell communities designated biofilms. This mode of growth is widespread and offers numerous advantages to the bacteria in terms of survival, persistence and propagation. Bacteria have developed different ways of building up a biofilm. Complex regulatory mechanisms control this sophisticated mode of growth in response to environmental conditions. This thesis focuses on the regulation of biofilm formation by the food-borne pathogen Salmonel...

  19. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids

    OpenAIRE

    Sanchez, Laura M.; Cheng, Andrew T.; Warner, Christopher J. A.; Loni Townsley; Peach, Kelly C.; Gabriel Navarro; Nicholas J Shikuma; Bray, Walter M.; Riener, Romina M.; Yildiz, Fitnat H.; Linington, Roger G.

    2016-01-01

    Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition,...

  20. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin

    OpenAIRE

    Das, Manash C.; Padmani Sandhu; Priya Gupta; Prasenjit Rudrapaul; Utpal C. De; Prosun Tribedi; Yusuf Akhter; Surajit Bhattacharjee

    2016-01-01

    Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pathogenic bacterium. Vitexin, a polyphenolic group of phytochemical with antimicrobial property, has been studied for its antibiofilm potential against Pseudomonas aeruginosa in combin...

  1. Comparison of two methods for quantification of Acinetobacter baumannii biofilm formation

    OpenAIRE

    Saghar Hendiani; Ahya Abdi-Ali; Parisa Mohammadi

    2014-01-01

    Introduction: ‏ Medical devices are made from a variety of materials such as polypropylene, polycarbonate, poly styrene, glass and etc. by attaching to this surfaces, Acinetobacter baumannii can form biofilms and then cause several device associated infections. Biofilms are communities of bacteria attached to the surfaces. In this study, biofilm formation ability in clinical isolates of Acinetobacter baumannii was assessed by two methods on different surfaces. Materials and methods: ‏ Biof...

  2. ANALYSIS OF CHROMATE UPTAKE IN BACTERIAL BIOFILMS DEVELOPED ON ABIOTIC SUPPORT

    OpenAIRE

    Aditi Bhattacharya

    2014-01-01

    Microorganisms also practice community living and form biofilms developed on preferred surfaces. The sessile and planktonic organisms show differences in hydrophobicity as determined by the BATH index. The saccharides of the EPS produced was determined using the phenol-sulphuric acid method and Rhamnolipids using the Orcinol method. Dye released from stained biofilms is also indicative of the density of the biofilm. Motility was reduced on formation of cell aggregates in m...

  3. Assessing biofilm development in drinking water distribution systems by Machine Learning methods

    OpenAIRE

    Ramos Martínez, Eva

    2016-01-01

    [EN] One of the main challenges of drinking water utilities is to ensure high quality supply, in particular, in chemical and microbiological terms. However, biofilms invariably develop in all drinking water distribution systems (DWDSs), despite the presence of residual disinfectant. As a result, water utilities are not able to ensure total bacteriological control. Currently biofilms represent a real paradigm in water quality management for all DWDSs. Biofilms are complex communities of microo...

  4. Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae

    DEFF Research Database (Denmark)

    Matz, Carsten; Moreno, Ana Maria; Alhede, Morten;

    2008-01-01

    Bacteria and protozoa coexist in a wide range of biofilm communities of natural, technical and medical importance. Generally, this interaction is characterized by the extensive grazing activity of protozoa on bacterial prey populations. We hypothesized that the close spatial coexistence in biofilms...... findings suggest that conserved virulence pathways and specifically the T3SS play a central role in bacteria- protozoa interactions in biofilms and may be instrumental for the environmental persistence and evolution of opportunistic bacterial pathogens....

  5. Insights on Escherichia coli Biofilm Formation and Inhibition from Whole-Transcriptome Profiling

    OpenAIRE

    Thomas K. Wood

    2009-01-01

    Biofilms transform independent cells into specialized cell communities. Here are presented some insights into biofilm formation ascertained with the best-characterized strain, Escherichia coli. Investigations of biofilm formation and inhibition with this strain using whole-transcriptome profiling coupled to phenotypic assays, in vivo DNA binding studies, and isogenic mutants have led to discoveries related to the role of stress, to the role of intra- and interspecies cell signaling, to the im...

  6. Biofilm Formation by the Fungal Pathogen Candida albicans: Development, Architecture, and Drug Resistance

    OpenAIRE

    Chandra, Jyotsna; Kuhn, Duncan M.; Mukherjee, Pranab K.; Hoyer, Lois L.; McCormick, Thomas; Ghannoum, Mahmoud A.

    2001-01-01

    Biofilms are a protected niche for microorganisms, where they are safe from antibiotic treatment and can create a source of persistent infection. Using two clinically relevant Candida albicans biofilm models formed on bioprosthetic materials, we demonstrated that biofilm formation proceeds through three distinct developmental phases. These growth phases transform adherent blastospores to well-defined cellular communities encased in a polysaccharide matrix. Fluorescence and confocal scanning l...

  7. Filifactor alocis - involvement in periodontal biofilms

    Directory of Open Access Journals (Sweden)

    Göbel Ulf B

    2010-03-01

    Full Text Available Abstract Background Bacteria in periodontal pockets develop complex sessile communities that attach to the tooth surface. These highly dynamic microfloral environments challenge both clinicians and researchers alike. The exploration of structural organisation and bacterial interactions within these biofilms is critically important for a thorough understanding of periodontal disease. In recent years, Filifactor alocis, a fastidious, Gram-positive, obligately anaerobic rod was repeatedly identified in periodontal lesions using DNA-based methods. It has been suggested to be a marker for periodontal deterioration. The present study investigated the epidemiology of F. alocis in periodontal pockets and analysed the spatial arrangement and architectural role of the organism in in vivo grown subgingival biofilms. Results A species-specific oligonucleotide probe, FIAL, was designed and evaluated. A total of 490 subgingival plaque samples were submitted to PCR and subsequent dot blot hybridization to compare the prevalence of F. alocis in patients suffering from generalized aggressive periodontitis (GAP, chronic periodontitis (CP, and control subjects resistant to periodontitis. Moreover, a specially designed carrier system was used to collect in vivo grown subgingival biofilms from GAP patients. Subsequent topographic analysis was performed using fluorescence in situ hybridization. While the majority of patients suffering from GAP or CP harboured F. alocis, it was rarely detected in the control group. In the examined carrier-borne biofilms the organism predominantly colonized apical parts of the pocket in close proximity to the soft tissues and was involved in numerous structures that constitute characteristic architectural features of subgingival periodontal biofilms. Conclusions F. alocis is likely to make a relevant contribution to the pathogenetic structure of biofilms accounting for periodontal inflammation and can be considered an excellent marker

  8. Development of Spatial Distribution Patterns by Biofilm Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Hansen, Susse Kirkelund; Bak Christensen, Bjarke;

    2015-01-01

    Confined spatial patterns of microbial distribution are prevalent in nature, such as in microbial mats, soil communities, and water stream biofilms. The symbiotic two-species consortium of Pseudomonas putida and Acinetobacter sp. C6, originally isolated from a creosote-polluted aquifer, has evolved......, as well as the ecology of engineered communities that have the potential for enhanced and sustainable bioprocessing capacity....

  9. Compaction and relaxation of biofilms

    KAUST Repository

    Valladares Linares, R.

    2015-06-18

    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  10. Microbial fuel cell based on Klebsiella pneumoniae biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lixia [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Zhou, Shungui; Zhuang, Li; Zhang, Jintao; Lu, Na; Deng, Lifang [Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Li, Weishan [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510006 (China)

    2008-10-15

    In this paper we reported a novel microbial fuel cell (MFC) based on Klebsiella pneumoniae (K. pneumoniae) strain L17 biofilm, which can utilize directly starch and glucose to generate electricity. The electrochemical activity of K. pneumoniae and the performance of the MFC were evaluated by cyclic voltammetry, scanning electron microscope (SEM) and polarization curve measurement. The results indicated that an established K. pneumoniae biofilm cells were responsible for the direct electron transfer from fuels to electrode during electricity production. The SEM observation proved the ability of K. pneumoniae to colonize on the electrode surface. This MFC generated power from the direct electrocatalysis by the K. pneumoniae strain L17 biofilm. (author)

  11. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism.

    Science.gov (United States)

    Vital-Lopez, Francisco G; Reifman, Jaques; Wallqvist, Anders

    2015-10-01

    A hallmark of Pseudomonas aeruginosa is its ability to establish biofilm-based infections that are difficult to eradicate. Biofilms are less susceptible to host inflammatory and immune responses and have higher antibiotic tolerance than free-living planktonic cells. Developing treatments against biofilms requires an understanding of bacterial biofilm-specific physiological traits. Research efforts have started to elucidate the intricate mechanisms underlying biofilm development. However, many aspects of these mechanisms are still poorly understood. Here, we addressed questions regarding biofilm metabolism using a genome-scale kinetic model of the P. aeruginosa metabolic network and gene expression profiles. Specifically, we computed metabolite concentration differences between known mutants with altered biofilm formation and the wild-type strain to predict drug targets against P. aeruginosa biofilms. We also simulated the altered metabolism driven by gene expression changes between biofilm and stationary growth-phase planktonic cultures. Our analysis suggests that the synthesis of important biofilm-related molecules, such as the quorum-sensing molecule Pseudomonas quinolone signal and the exopolysaccharide Psl, is regulated not only through the expression of genes in their own synthesis pathway, but also through the biofilm-specific expression of genes in pathways competing for precursors to these molecules. Finally, we investigated why mutants defective in anthranilate degradation have an impaired ability to form biofilms. Alternative to a previous hypothesis that this biofilm reduction is caused by a decrease in energy production, we proposed that the dysregulation of the synthesis of secondary metabolites derived from anthranilate and chorismate is what impaired the biofilms of these mutants. Notably, these insights generated through our kinetic model-based approach are not accessible from previous constraint-based model analyses of P. aeruginosa biofilm

  12. Establishment of exotic parasites: the origins and characteristics of an avian malaria community in an isolated island avifauna.

    Science.gov (United States)

    Ewen, John G; Bensch, Staffan; Blackburn, Tim M; Bonneaud, Camille; Brown, Ruth; Cassey, Phillip; Clarke, Rohan H; Pérez-Tris, Javier

    2012-10-01

    Knowledge of the processes favouring the establishment of exotic parasites is poor. Herein, we test the characteristics of successful exotic parasites that have co-established in the remote island archipelago of New Zealand, due to the introduction of numerous avian host species. Our results show that avian malaria parasites (AM; parasites of the genus Plasmodium) that successfully invaded are more globally generalist (both geographically widespread and with a broad taxonomic range of hosts) than AM parasites not co-introduced to New Zealand. Furthermore, the successful AM parasites are presently more prevalent in their native range than AM parasites found in the same native range but not co-introduced to New Zealand. This has resulted in an increased number and greater taxonomic diversity of AM parasites now in New Zealand. PMID:22788956

  13. Microbial Community Structure during Nitrate and Perchlorate Reduction in Ion-exchange Brine Using the Hydrogen-based membrane Biofilm Reactor (MBIR)

    Science.gov (United States)

    Detoxification of perchlorate by microbial communities under denitrifying conditions has been recently reported, although the identity of the mixed populations involved in perchlorate reduction is not well understood. In order to address this, the bacterial diversity of membrane ...

  14. Shaping the Growth Behaviour of Biofilms Initiated from Bacterial Aggregates.

    Science.gov (United States)

    Melaugh, Gavin; Hutchison, Jaime; Kragh, Kasper Nørskov; Irie, Yasuhiko; Roberts, Aled; Bjarnsholt, Thomas; Diggle, Stephen P; Gordon, Vernita D; Allen, Rosalind J

    2016-01-01

    Bacterial biofilms are usually assumed to originate from individual cells deposited on a surface. However, many biofilm-forming bacteria tend to aggregate in the planktonic phase so that it is possible that many natural and infectious biofilms originate wholly or partially from pre-formed cell aggregates. Here, we use agent-based computer simulations to investigate the role of pre-formed aggregates in biofilm development. Focusing on the initial shape the aggregate forms on the surface, we find that the degree of spreading of an aggregate on a surface can play an important role in determining its eventual fate during biofilm development. Specifically, initially spread aggregates perform better when competition with surrounding unaggregated bacterial cells is low, while initially rounded aggregates perform better when competition with surrounding unaggregated cells is high. These contrasting outcomes are governed by a trade-off between aggregate surface area and height. Our results provide new insight into biofilm formation and development, and reveal new factors that may be at play in the social evolution of biofilm communities. PMID:26934187

  15. Community response to low-level radioactive waste: A case study of an attempt to establish a waste reduction and incineration facility

    International Nuclear Information System (INIS)

    The Federal Low-Level Radioactive Wast Policy Act of 1980 specified a 1986 deadline for the establishment of state and regional low-level radioactive waste disposal sites. There is little optimism that the deadline will be met. Morris K. Udall has introduced Bill HR 1083 in Congress which proposes extending the deadline to 1993 and specifying a 40 percent reduction in the volume of wastes shipped. Waste volume can be reduced through incineration and compaction technologies. However, it may be as difficult to convince communities that a waste treatment facility is a good investment as it is to convince them that a disposal site is worth having. In other words, the waste volume reduction argument may ultimately depend on cutbacks in the nuclear industry. This research reports one community's response to the possibility of a local low-level radioactive waste compaction and incineration facility. The case is especially interesting because the community needs new industries and has a history of living with a nuclear materials facility. In spite of that the community's response was quite negative, fueled by a vocal local opposition group and anti-nuclear activists

  16. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances

    Science.gov (United States)

    Shiga toxin–producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their pla...

  17. Intra-amoeba multiplication induces chemotaxis and biofilm colonization and formation for Legionella.

    Directory of Open Access Journals (Sweden)

    Renaud Bigot

    Full Text Available Legionella pneumophila, a facultative intracellular bacterium, is the causative agent of legionellosis. In the environment this pathogenic bacterium colonizes the biofilms as well as amoebae, which provide a rich environment for the replication of Legionella. When seeded on pre-formed biofilms, L. pneumophila was able to establish and survive and was only found at the surface of the biofilms. Different phenotypes were observed when the L. pneumophila, used to implement pre-formed biofilms or to form mono-species biofilms, were cultivated in a laboratory culture broth or had grown intracellulary within the amoeba. Indeed, the bacteria, which developed within the amoeba, formed clusters when deposited on a solid surface. Moreover, our results demonstrate that multiplication inside the amoeba increased the capacity of L. pneumophila to produce polysaccharides and therefore enhanced its capacity to establish biofilms. Finally, it was shown that the clusters formed by L. pneumophila were probably related to the secretion of a chemotaxis molecular agent.

  18. Intra-amoeba multiplication induces chemotaxis and biofilm colonization and formation for Legionella.

    Science.gov (United States)

    Bigot, Renaud; Bertaux, Joanne; Frere, Jacques; Berjeaud, Jean-Marc

    2013-01-01

    Legionella pneumophila, a facultative intracellular bacterium, is the causative agent of legionellosis. In the environment this pathogenic bacterium colonizes the biofilms as well as amoebae, which provide a rich environment for the replication of Legionella. When seeded on pre-formed biofilms, L. pneumophila was able to establish and survive and was only found at the surface of the biofilms. Different phenotypes were observed when the L. pneumophila, used to implement pre-formed biofilms or to form mono-species biofilms, were cultivated in a laboratory culture broth or had grown intracellulary within the amoeba. Indeed, the bacteria, which developed within the amoeba, formed clusters when deposited on a solid surface. Moreover, our results demonstrate that multiplication inside the amoeba increased the capacity of L. pneumophila to produce polysaccharides and therefore enhanced its capacity to establish biofilms. Finally, it was shown that the clusters formed by L. pneumophila were probably related to the secretion of a chemotaxis molecular agent. PMID:24205008

  19. Use of CMEIAS Image Analysis Software to Accurately Compute Attributes of Cell Size, Morphology, Spatial Aggregation and Color Segmentation that Signify in Situ Ecophysiological Adaptations in Microbial Biofilm Communities

    Directory of Open Access Journals (Sweden)

    Frank B. Dazzo

    2015-03-01

    Full Text Available In this review, we describe computational features of computer-assisted microscopy that are unique to the Center for Microbial Ecology Image Analysis System (CMEIAS software, and examples illustrating how they can be used to gain ecophysiological insights into microbial adaptations occurring at micrometer spatial scales directly relevant to individual cells occupying their ecological niches in situ. These features include algorithms that accurately measure (1 microbial cell length relevant to avoidance of protozoan bacteriovory; (2 microbial biovolume body mass relevant to allometric scaling and local apportionment of growth-supporting nutrient resources; (3 pattern recognition rules for morphotype classification of diverse microbial communities relevant to their enhanced fitness for success in the particular habitat; (4 spatial patterns of coaggregation that reveal the local intensity of cooperative vs. competitive adaptations in colonization behavior relevant to microbial biofilm ecology; and (5 object segmentation of complex color images to differentiate target microbes reporting successful cell-cell communication. These unique computational features contribute to the CMEIAS mission of developing accurate and freely accessible tools of image bioinformatics that strengthen microscopy-based approaches for understanding microbial ecology at single-cell resolution.

  20. Effects of Low-Dose Amoxicillin on Staphylococcus aureus USA300 Biofilms.

    Science.gov (United States)

    Mlynek, Kevin D; Callahan, Mary T; Shimkevitch, Anton V; Farmer, Jackson T; Endres, Jennifer L; Marchand, Mélodie; Bayles, Kenneth W; Horswill, Alexander R; Kaplan, Jeffrey B

    2016-05-01

    Previous studies showed that sub-MIC levels of β-lactam antibiotics stimulate biofilm formation in most methicillin-resistant Staphylococcus aureus (MRSA) strains. Here, we investigated this process by measuring the effects of sub-MIC amoxicillin on biofilm formation by the epidemic community-associated MRSA strain USA300. We found that sub-MIC amoxicillin increased the ability of USA300 cells to attach to surfaces and form biofilms under both static and flow conditions. We also found that USA300 biofilms cultured in sub-MIC amoxicillin were thicker, contained more pillar and channel structures, and were less porous than biofilms cultured without antibiotic. Biofilm formation in sub-MIC amoxicillin correlated with the production of extracellular DNA (eDNA). However, eDNA released by amoxicillin-induced cell lysis alone was evidently not sufficient to stimulate biofilm. Sub-MIC levels of two other cell wall-active agents with different mechanisms of action-d-cycloserine and fosfomycin-also stimulated eDNA-dependent biofilm, suggesting that biofilm formation may be a mechanistic adaptation to cell wall stress. Screening a USA300 mariner transposon library for mutants deficient in biofilm formation in sub-MIC amoxicillin identified numerous known mediators of S. aureus β-lactam resistance and biofilm formation, as well as novel genes not previously associated with these phenotypes. Our results link cell wall stress and biofilm formation in MRSA and suggest that eDNA-dependent biofilm formation by strain USA300 in low-dose amoxicillin is an inducible phenotype that can be used to identify novel genes impacting MRSA β-lactam resistance and biofilm formation. PMID:26856828

  1. Development of bacterial biofilms on artificial corals in comparison to surface-associated microbes of hard corals.

    Directory of Open Access Journals (Sweden)

    Michael John Sweet

    Full Text Available Numerous studies have demonstrated the differences in bacterial communities associated with corals versus those in their surrounding environment. However, these environmental samples often represent vastly different microbial micro-environments with few studies having looked at the settlement and growth of bacteria on surfaces similar to corals. As a result, it is difficult to determine which bacteria are associated specifically with coral tissue surfaces. In this study, early stages of passive settlement from the water column to artificial coral surfaces (formation of a biofilm were assessed. Changes in bacterial diversity (16S rRNA gene, were studied on artificially created resin nubbins that were modelled from the skeleton of the reef building coral Acropora muricata. These models were dip-coated in sterile agar, mounted in situ on the reef and followed over time to monitor bacterial community succession. The bacterial community forming the biofilms remained significantly different (R = 0.864 p<0.05 from that of the water column and from the surface mucus layer (SML of the coral at all times from 30 min to 96 h. The water column was dominated by members of the α-proteobacteria, the developed community on the biofilms dominated by γ-proteobacteria, whereas that within the SML was composed of a more diverse array of groups. Bacterial communities present within the SML do not appear to arise from passive settlement from the water column, but instead appear to have become established through a selection process. This selection process was shown to be dependent on some aspects of the physico-chemical structure of the settlement surface, since agar-coated slides showed distinct communities to coral-shaped surfaces. However, no significant differences were found between different surface coatings, including plain agar and agar enhanced with coral mucus exudates. Therefore future work should consider physico-chemical surface properties as

  2. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.

    Science.gov (United States)

    Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu

    2015-02-01

    Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system. PMID:25555820

  3. Biofilms in wounds: a review of present knowledge.

    Science.gov (United States)

    Cooper, R A; Bjarnsholt, T; Alhede, M

    2014-11-01

    Following confirmation of the presence of biofilms in chronic wounds, the term biofilm became a buzzword within the wound healing community. For more than a century pathogens have been successfully isolated and identified from wound specimens using techniques that were devised in the nineteenth century by Louis Pasteur and Robert Koch. Although this approach still provides valuable information with which to help diagnose acute infections and to select appropriate antibiotic therapies, it is evident that those organisms isolated from clinical specimens with the conditions normally used in diagnostic laboratories are mainly in a planktonic form that is unrepresentative of the way in which most microbial species exist naturally. Usually microbial species adhere to each other, as well as to living and non-living surfaces, where they form complex communities surrounded by collectively secreted extracellular polymeric substances (EPS). Cells within such aggregations (or biofilms) display varying physiological and metabolic properties that are distinct from those of planktonic cells, and which contribute to their persistence. There are many factors that influence healing in wounds and the discovery of biofilms in chronic wounds has provided new insight into the reasons why. Increased tolerance of biofilms to antimicrobial agents explains the limited efficacy of antimicrobial agents in chronic wounds and illustrates the need to develop new management strategies. This review aims to explain the nature of biofilms, with a view to explaining their impact on wounds. PMID:25375405

  4. Identification of Carbohydrate Metabolism Genes in the Metagenome of a Marine Biofilm Community Shown to Be Dominated by Gammaproteobacteria and Bacteroidetes

    Directory of Open Access Journals (Sweden)

    Jennifer L. Edwards

    2010-10-01

    Full Text Available Polysaccharides are an important source of organic carbon in the marine environment and degradation of the insoluble and globally abundant cellulose is a major component of the marine carbon cycle. Although a number of species of cultured bacteria are known to degrade crystalline cellulose, little is known of the polysaccharide hydrolases expressed by cellulose-degrading microbial communities, particularly in the marine environment. Next generation 454 Pyrosequencing was applied to analyze the microbial community that colonizes and degrades insoluble polysaccharides in situ in the Irish Sea. The bioinformatics tool MG-RAST was used to examine the randomly sampled data for taxonomic markers and functional genes, and showed that the community was dominated by members of the Gammaproteobacteria and Bacteroidetes. Furthermore, the identification of 211 gene sequences matched to a custom-made database comprising the members of nine glycoside hydrolase families revealed an extensive repertoire of functional genes predicted to be involved in cellulose utilization. This demonstrates that the use of an in situ cellulose baiting method yielded a marine microbial metagenome considerably enriched in functional genes involved in polysaccharide degradation. The research reported here is the first designed to specifically address the bacterial communities that colonize and degrade cellulose in the marine environment and to evaluate the glycoside hydrolase (cellulase and chitinase gene repertoire of that community, in the absence of the biases associated with PCR-based molecular techniques.

  5. Illness Mapping: a time and cost effective method to estimate healthcare data needed to establish community-based health insurance

    Directory of Open Access Journals (Sweden)

    Binnendijk Erika

    2012-10-01

    Full Text Available Abstract Background Most healthcare spending in developing countries is private out-of-pocket. One explanation for low penetration of health insurance is that poorer individuals doubt their ability to enforce insurance contracts. Community-based health insurance schemes (CBHI are a solution, but launching CBHI requires obtaining accurate local data on morbidity, healthcare utilization and other details to inform package design and pricing. We developed the “Illness Mapping” method (IM for data collection (faster and cheaper than household surveys. Methods IM is a modification of two non-interactive consensus group methods (Delphi and Nominal Group Technique to operate as interactive methods. We elicited estimates from “Experts” in the target community on morbidity and healthcare utilization. Interaction between facilitator and experts became essential to bridge literacy constraints and to reach consensus. The study was conducted in Gaya District, Bihar (India during April-June 2010. The intervention included the IM and a household survey (HHS. IM included 18 women’s and 17 men’s groups. The HHS was conducted in 50 villages with1,000 randomly selected households (6,656 individuals. Results We found good agreement between the two methods on overall prevalence of illness (IM: 25.9% ±3.6; HHS: 31.4% and on prevalence of acute (IM: 76.9%; HHS: 69.2% and chronic illnesses (IM: 20.1%; HHS: 16.6%. We also found good agreement on incidence of deliveries (IM: 3.9% ±0.4; HHS: 3.9%, and on hospital deliveries (IM: 61.0%. ± 5.4; HHS: 51.4%. For hospitalizations, we obtained a lower estimate from the IM (1.1% than from the HHS (2.6%. The IM required less time and less person-power than a household survey, which translate into reduced costs. Conclusions We have shown that our Illness Mapping method can be carried out at lower financial and human cost for sourcing essential local data, at acceptably accurate levels. In view of the good fit of

  6. Biofilms and the food industry

    Directory of Open Access Journals (Sweden)

    Nathanon Trachoo

    2003-11-01

    Full Text Available In the past, interest in biofilms was limited to research related to water distribution systems, waste water treatment and dental plaques. Biofilm has become a more popular research topic in many other areas in recent years including food safety. Biofilm formation can compromise the sanitation of food surfaces and environmental surfaces by spreading detached organisms to other areas of processing plants. Unfortunately, these detached organisms are not similar to normal microorganisms suspended in an aquatic environment but are more resistant to several stresses or microbial inactivation including some food preservation methods. Microstructures of biofilms as revealed by different types of microscopic techniques showed that biofilms are highly complex and consist of many symbiotic organisms, some of which are human pathogens. This article reviewed the process of biofilm formation, the significance of biofilms on food or food contact surfaces, their ability to protect foodborne pathogens from environmental stresses and recent methods for the study of biofilms on food contact surfaces.

  7. Esoteric communiqué amid microbes in an oral biofilm

    Directory of Open Access Journals (Sweden)

    Harpreet Singh Grover

    2013-01-01

    Full Text Available Dental biofilms are complex and multispecies ecosystems, and its formation requires coordinated chemical signaling between different micro-organisms present in the oral cavity. During the initial stages of its formation, planktonic bacterial cells directly attach to surfaces of the oral cavity or indirectly bind to other bacterial cells. This binding occurs through co-aggregation, which is critical for the temporary retention of bacteria on dental surfaces as well as bacterial colonization. It is during this colonization that the micro-organisms are able to interact with each other. In general, interspecies interactions involve communication, typically via quorum sensing, and metabolic cooperation or competition. Interactions among species within a biofilm can be antagonistic, such as competition over nutrients and growth inhibition, or synergistic. In this review, we discuss these important interactions among oral bacteria within the dental biofilm communities and novel therapies that could inhibit pathogenic micro-organisms and disrupt biofilm.

  8. Pathogens protection against the action of disinfectants in multispecies biofilms

    Directory of Open Access Journals (Sweden)

    Pilar eSanchez-Vizuete

    2015-07-01

    Full Text Available Biofilms constitute the prevalent way of life for microorganisms in both natural and man-made environments. Biofilm-dwelling cells display greater tolerance to antimicrobial agents than those that are free-living, and the mechanisms by which this occurs have been investigated extensively using single-strain axenic models. However, there is growing evidence that interspecies interactions may profoundly alter the response of the community to such toxic exposure. In this paper, we propose an overview of the studies dealing with multispecies biofilms resistance to biocides, with particular reference to the protection of pathogenic species by resident surface flora when subjected to disinfectants treatments. The mechanisms involved in such protection include interspecies signaling, interference between biocides molecules and public goods in the matrix or the physiology and genetic plasticity associated with a structural spatial arrangement. After describing these different mechanisms, we will discuss the experimental methods available for their analysis in the context of complex multispecies biofilms.

  9. Growth of Escherichia coli in Model Distribution System Biofilms Exposed to Hypochlorous Acid or Monochloramine

    OpenAIRE

    Williams, Margaret M.; Braun-Howland, Ellen B.

    2003-01-01

    Bacteria indigenous to water distribution systems were used to grow multispecies biofilms within continuous-flow slide chambers. Six flow chambers were also inoculated with an Escherichia coli isolate obtained from potable water. The effect of disinfectants on bacterial populations was determined after exposure of established biofilms to 1 ppm of hypochlorous acid (ClOH) for 67 min or 4 ppm of monochloramine (NH2Cl) for 155 min. To test the ability of bacterial populations to initiate biofilm...

  10. The Presence of Pathogenic Bacteria in Recirculating Aquaculture System Biofilms and their Response to Various Sanitizers

    OpenAIRE

    King, Robin K.

    2001-01-01

    THE PRESENCE OF BACTERIAL PATHOGENS IN BIOFILMS OF RECIRCULATING AQUACULTURE SYSTEMS AND THEIR RESPONSE TO VARIOUS SANITIZERS Robin K. King ABSTRACT Recirculating aquaculture offers a prospect for successful fish farming, but this form of aquaculture presents a great potential for pathogenic microorganisms to become established in the system through the formation of biofilms. Biofilms are capable of forming on all aquaculture system components, incorporating the various microflor...

  11. Establishing a communications-intensive network to resolve artificial intelligence issues within NASA's Space Station Freedom research centers community

    Science.gov (United States)

    Howard, E. Davis, III

    1990-01-01

    MITRE Corporation's, A Review of Space Station Freedom Program Capabilities for the Development and Application of Advanced Automation, cites as a critical issue the following situation, extant at the NASA facilities visited in the course of preparing the review: The major issues noted with regard to design and research facilities deal with cooperative problem solving, technology transfer, and communication between these facilities. While the authors were visiting lab and test beds to collect information, personnel at many of these facilities were interested in any information they could collect on activities at other facilities. A formal means of gathering this information could not be identified by these personnel. While communication between some facilities was taking place or was planned, for technology transfer or coordination of schedules (e.g., for SADP demonstrations), poor communication between these facilities could lead to a lack of technical standards, duplication of effort, poorly defined interfaces, scheduling problems, and increased cost. Formal mechanisms by which effective communication and cooperative problem solving can take place, and information can be disseminated, must be defined. A solution is proposed for the communications aspects of the issues addressed above; and offered at the same time a solution which can prove effective in dealing with some of the problems being encountered with expertise being lost via retirement or defection to the private sector. The proffered recommendations are recognizably cost-effective and tap the rising sector of expert knowledge being produced by the American academic community.

  12. Redox stratified biofilms to support completely autotrophic nitrogen removal: Principles and results

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Smets, Barth F.

    biofilm structure with aerobic ammonium oxidizing bacteria dominating the areas of the biofilm closer to the membrane surface while anaerobic oxidizing bacteria populated mainly the outer biofilm region. The biofilm was approximately 500 m thick and featured both aerobic and anaerobic ammonium oxidizing...... the outgrowth of nitrite oxidizing bacteria communities. Autotrophic nitrogen removal is already revealing itself as a cheap alternative to treat concentrated nitrogen streams. However, we believe that this concept can be taken a step further in MABRs and become an even more cost-effective, compact...

  13. Biofilm development in membrane bioreactors

    OpenAIRE

    Savnik, Veronika

    2010-01-01

    Prevention of biofilm development and its removal has crucial meaning in membrane reactor. Biofilm causes pore blocking on membranes, which causes a drop in efficiency of mixed liquor filtration and consequently deteriorates the efficiency of whole membrane bioreactor. This thesis deals with factors that affect biofilm development in membrane bioreactors. Structure and growth of biofilm are presented from its initial attachment of individual particles, their parameters of adhesion, hydrodynam...

  14. Microalgal biofilms for wastewater treatment

    OpenAIRE

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scenario analysis. Then biofilms were grown on wastewater treatment plant effluent in horizontal flow cells under different nutrient loads to determine the maximum uptake capacity of the biofilms for N...

  15. Biofilm Formation by Bacteria Isolated from Intravenous Catheters

    Directory of Open Access Journals (Sweden)

    Sina Hedayati

    2015-10-01

    Full Text Available Background: Reports on the association of nosocomial bacterial infections with indwelling medical devices such as intravenous catheters (IVC has increased in recent years. The potential to form biofilm on these devices seems to be the main reason for establishment of such infections. The aim of this study was to measure the potential of biofilm formation by bacterialisolates from IVCs.Methods: Seventy-one IVCs were collected from hospitalized patients in ICU, NICU, hematology and oncology wards at Taleghani Hospital from Jan 2010 to Jan 2011. The bacterial isolates were identified using the standard biochemical tests and the potential to form biofilms was determined by the microtiter plate assay method (MTP and colony morphology using Congo red agar plates (CRA.Results: Overall, 54 (71% IVCs were colonized and 76 bacteria were isolated among which, 64 (84.2% were coagulase negative staphylococci (CoNS, 3 (3.9% S. aureus, 3 (3.9% Enterococcus spp., 2 (2.6% E. coli and 4 (5.3% were miscellaneous isolates not further identified. Among the CoNS, biofilm formation was observed in 68.7% and 82.8% of bacteriausing MTP and CRA methods, respectively. S. aureus and E. coli isolates also were biofilm producers but Enterococcus and other unknown isolates were biofilm negative.Conclusions: Our results confirm that the prevalent biofilm forming bacteria on IVCs were CoNS and that was the reason for high rates of nosocomial infections.

  16. Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Maria José Alves

    2014-08-01

    Full Text Available Microorganisms can colonize a wide variety of medical devices, putting patients in risk for local and systemic infectious complications, including local-site infections, catheter-related bloodstream infections, and endocarditis. These microorganisms are able to grow adhered to almost every surface, forming architecturally complex communities termed biofilms. The use of natural products has been extremely successful in the discovery of new medicine, and mushrooms could be a source of natural antimicrobials. The present study reports the capacity of wild mushroom extracts to inhibit in vitro biofilm formation by multi-resistant bacteria. Four Gram-negative bacteria biofilm producers (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Acinetobacter baumannii isolated from urine were used to verify the activity of Russula delica, Fistulina hepatica, Mycena rosea, Leucopaxilus giganteus, and Lepista nuda extracts. The results obtained showed that all tested mushroom extracts presented some extent of inhibition of biofilm production. Pseudomonas aeruginosa was the microorganism with the highest capacity of biofilm production, being also the most susceptible to the extracts inhibition capacity (equal or higher than 50%. Among the five tested extracts against E. coli, Leucopaxillus giganteus (47.8% and Mycenas rosea (44.8% presented the highest inhibition of biofilm formation. The extracts exhibiting the highest inhibitory effect upon P. mirabilis biofilm formation were Sarcodon imbricatus (45.4% and Russula delica (53.1%. Acinetobacter baumannii was the microorganism with the lowest susceptibility to mushroom extracts inhibitory effect on biofilm production (highest inhibition—almost 29%, by Russula delica extract. This is a pioneer study since, as far as we know, there are no reports on the inhibition of biofilm production by the studied mushroom extracts and in particular against multi-resistant clinical isolates; nevertheless, other

  17. Copper affects biofilm inductiveness to larval settlement of the serpulid polychaete Hydroides elegans (Haswell)

    KAUST Repository

    Bao, Wei Yang

    2010-01-01

    Copper (Cu) contamination is a potential threat to the marine environment due to the use of Cu-based antifouling paints. Cu stress on larval settlement of the polychaete Hydroides elegans was investigated, and this was linked to Cu stress on biofilms and on the biofilm development process. The inductiveness of young biofilms was more easily altered by Cu stress than that of old biofilms, indicating the relative vulnerability of young biofilms. This might result from changes in bacterial survival, the bacterial community composition and the chemical profiles of young biofilms. Cu also affected biofilm development and the chemical high performance liquid chromatograph fingerprint profile. The results indicate that Cu affected larval settlement mainly through its effect on the process of biofilm development in the marine environment, and the chemical profile was crucial to biofilm inductiveness. It is strongly recommended that the effects of environmentally toxic substances on biofilms are evaluated in ecotoxicity bioassays using larval settlement of invertebrates as the end point. © 2010 Taylor & Francis.

  18. Comparison of two methods for quantification of Acinetobacter baumannii biofilm formation

    Directory of Open Access Journals (Sweden)

    Saghar Hendiani

    2014-01-01

    Full Text Available Introduction: ‏ Medical devices are made from a variety of materials such as polypropylene, polycarbonate, poly styrene, glass and etc. by attaching to this surfaces, Acinetobacter baumannii can form biofilms and then cause several device associated infections. Biofilms are communities of bacteria attached to the surfaces. In this study, biofilm formation ability in clinical isolates of Acinetobacter baumannii was assessed by two methods on different surfaces. Materials and methods: ‏ Biofilm formation by 75 clinical isolates of A. baumannii was evaluated on polycarbonate surface (microtiter plate and polypropylene surface (falcon by crystal violet and 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide salt (XTT tetrazolium sodium salt assay methods. Falcon or tube method was carried out under static and agitation conditions. Results: ‏ Results showed the most isolates can form biofilm but higher numbers of isolates form biofilm on polypropylene surface under agitation. XTT method confirmed strong biofilm formation ability of 10 isolates. Discussion and conclusion: Each of the two assays showed an excellent applicability for the quantification of biofilms. The Crystal violet assay is cheap, easy and is usually used for the quantification of biofilms formed by microorganisms but XTT is more reliable and repeatable. Most of A. baumannii isolates have potential to form biofilm on the medical devices which may result in device-associated infections.

  19. Imaging of bacterial multicellular behaviour in biofilms in liquid by atmospheric scanning electron microscopy.

    Science.gov (United States)

    Sugimoto, Shinya; Okuda, Ken-Ichi; Miyakawa, Reina; Sato, Mari; Arita-Morioka, Ken-Ichi; Chiba, Akio; Yamanaka, Kunitoshi; Ogura, Teru; Mizunoe, Yoshimitsu; Sato, Chikara

    2016-01-01

    Biofilms are complex communities of microbes that attach to biotic or abiotic surfaces causing chronic infectious diseases. Within a biofilm, microbes are embedded in a self-produced soft extracellular matrix (ECM), which protects them from the host immune system and antibiotics. The nanoscale visualisation of delicate biofilms in liquid is challenging. Here, we develop atmospheric scanning electron microscopy (ASEM) to visualise Gram-positive and -negative bacterial biofilms immersed in aqueous solution. Biofilms cultured on electron-transparent film were directly imaged from below using the inverted SEM, allowing the formation of the region near the substrate to be studied at high resolution. We visualised intercellular nanostructures and the exocytosis of membrane vesicles, and linked the latter to the trafficking of cargos, including cytoplasmic proteins and the toxins hemolysin and coagulase. A thick dendritic nanotube network was observed between microbes, suggesting multicellular communication in biofilms. A universal immuno-labelling system was developed for biofilms and tested on various examples, including S. aureus biofilms. In the ECM, fine DNA and protein networks were visualised and the precise distribution of protein complexes was determined (e.g., straight curli, flagella, and excreted cytoplasmic molecular chaperones). Our observations provide structural insights into bacteria-substratum interactions, biofilm development and the internal microbe community. PMID:27180609

  20. Establishing a community-based lung cancer multidisciplinary clinic as part of a large integrated health care system: aurora health care.

    Science.gov (United States)

    Bjegovich-Weidman, Marija; Haid, Max; Kumar, Santhosh; Huibregtse, Carol; McDonald, Jean; Krishnan, Santosh

    2010-11-01

    A community cancer clinic, through cooperation with its parent health care system, developed a lung cancer multidisciplinary clinic (MDC) to enhance patient care and prevent out-migration to competing health care systems. The local medical and radiation oncologists collaborated with a thoracic surgeon from the tertiary care hospital in establishing the lung MDC. All the participating physicians are employed by the health care system. A cancer care coordinator assured that all necessary tests were obtained and available to the physicians at least 1 day before the clinic. The multidisciplinary team also included a pulmonologist and met every third week. Other sub-specialists were involved as necessary. Final treatment recommendations using National Comprehensive Cancer Network guidelines were made for each patient at the MDC visit. This clinic, once established, resulted in significant improvements in the quality of care, patient satisfaction and retention of patients. Time from diagnosis to initiation of treatment was reduced to a mean of 18 days from a mean of 24 days. The community cancer clinic had an increase in lung cancer patient care by 28% and a 9.1% increase in gross revenue. The tertiary care hospital benefited by providing all patients with definitive surgery, including minimally invasive surgery. The tertiary hospital thoracic surgeon had a 75% increase in referrals from the lung MDC geographic area over the previous year. This collaboration in the development of MDCs demonstrates how patients, caregivers, and the health care system benefit from MDCs. PMID:21358947

  1. Biofilm retention on surfaces with variable roughness and hydrophobicity

    DEFF Research Database (Denmark)

    Tang, Lone; Pillai, Saju; Revsbech, Niels Peter;

    2011-01-01

    (SS) was compared to two novel nanostructured sol-gel coatings with differing hydrophobicity. Surfaces were characterized with respect to roughness, hydrophobicity, protein adsorption, biofilm retention, and community composition of the retained bacteria. Fewer bacteria were retained on the sol-gel...... coated surfaces compared to the rougher SS. However, the two sol-gel coatings did not differ in either protein adsorption, biofilm retention, or microbial community composition. When polished to a roughness similar to sol-gel, the SS was colonized by the same amount of bacteria as the sol-gel, but the...

  2. Biofilm Cohesive Strength as a Basis for Biofilm Recalcitrance: Are Bacterial Biofilms Overdesigned?

    OpenAIRE

    Srijan Aggarwal; Philip S. Stewart; Hozalski, Raymond M.

    2016-01-01

    Bacterial biofilms are highly resistant to common antibacterial treatments, and several physiological explanations have been offered to explain the recalcitrant nature of bacterial biofilms. Herein, a biophysical aspect of biofilm recalcitrance is being reported on. While engineering structures are often overdesigned with a factor of safety (FOS) usually under 10, experimental measurements of biofilm cohesive strength suggest that the FOS is on the order of thousands. In other words, bacteria...

  3. 湖社创建缘由与时代特征%On the Reasons of Establishing the Hu Community and Its Age Characteristics

    Institute of Scientific and Technical Information of China (English)

    周虹

    2011-01-01

    On June 1,1924,the Hu Community was established by the merchants,who came from six areas of Huzhou and lived in Shanghai.The reasons why it was established resulted from the change of concepts in the modern society,namely,economic xenophobia,townsman concept,democratic and republican thought,lack of leadership and power segmentation,social order in chaos and the rise of social force,because of which the Hu Community had its own characteristics and time imprints,mainly because its members came from various vocations and professions and its members were young in age and were political elites.The Community had a national townsman network,its members came from unbalanced distribution areas,and its operation of the affairs was open and creative.%湖社是1924年6月1日由湖属六邑的旅沪商人成立的湖州同乡团体,其创建原因主要包括近代社会中的观念层面,即经济排外主义、同乡观念和民主共和思想,政治层面的领导权缺失和权力分割,社会层面的秩序失范和社会力量兴起。为此成立的湖社有其自身特点和时代烙印,主要表现为社员职业的多元化、年龄的年轻化、社员政治精英化,全国性的同乡网络和社员地区分布不平衡和社务的公开化和创造性。

  4. Changes in tolerance to herbicide toxicity throughout development stages of phototrophic biofilms.

    Science.gov (United States)

    Paule, A; Roubeix, V; Lauga, B; Duran, R; Delmas, F; Paul, E; Rols, J L

    2013-11-15

    Ecotoxicological experiments have been performed in laboratory-scale microcosms to investigate the sensitivity of phototrophic biofilm communities to the alachlor herbicide, in relation to the stages of phototrophic biofilm maturation (age of the phototrophic biofilms) and physical structure (intact biofilm versus recolonization). The phototrophic biofilms were initially cultivated on artificial supports in a prototype rotating annular bioreactor (RAB) with Taylor-Couette type flow under constant operating conditions. Biofilms were collected after 1.6 and 4.4 weeks of culture providing biofilms with different maturation levels, and then exposed to nominal initial alachlor concentration of 10 μg L(-1) in either intact or recolonized biofilms for 15 days in microcosms (mean time-weighted average concentration - TWAC of 5.52 ± 0.74 μg L(-1)). At the end of the exposure period, alachlor effects were monitored by a combination of biomass descriptors (ash-free dry mass - AFDM, chlorophyll a), structural molecular fingerprinting (T-RFLP), carbon utilization spectra (Biolog) and diatom species composition. We found significant effects that in terms of AFDM, alachlor inhibited growth of the intact phototrophic biofilms. No effect of alachlor was observed on diatom composition or functional and structural properties of the bacterial community regardless of whether they were intact or recolonized. The intact three-dimensional structure of the biofilm did not appear to confer protection from the effects of alachlor. Bacterial community structure and biomass level of 4.4 weeks - intact phototrophic biofilms were significantly influenced by the biofilm maturation processes rather than alachlor exposure. The diatom communities which were largely composed of mobile and colonizer life-form populations were not affected by alachlor. This study showed that the effect of alachlor (at initial concentration of 10 μg L(-1) or mean TWAC of 5.52 ± 0.74 μg L(-1)) is mainly limited to

  5. DNA-microarrays identification of Streptococcus mutans genes associated with biofilm thickness

    Directory of Open Access Journals (Sweden)

    Feldman Mark

    2008-12-01

    Full Text Available Abstract Background A biofilm is a complex community of microorganisms that develop on surfaces in diverse environments. The thickness of the biofilm plays a crucial role in the physiology of the immobilized bacteria. The most cariogenic bacteria, mutans streptococci, are common inhabitants of a dental biofilm community. In this study, DNA-microarray analysis was used to identify differentially expressed genes associated with the thickness of S. mutans biofilms. Results Comparative transcriptome analyses indicated that expression of 29 genes was differentially altered in 400- vs. 100-microns depth and 39 genes in 200- vs. 100-microns biofilms. Only 10 S. mutans genes showed differential expression in both 400- vs. 100-microns and 200- vs. 100-microns biofilms. All of these genes were upregulated. As sucrose is a predominant factor in oral biofilm development, its influence was evaluated on selected genes expression in the various depths of biofilms. The presence of sucrose did not noticeably change the regulation of these genes in 400- vs. 100-microns and/or 200- vs. 100-microns biofilms tested by real-time RT-PCR. Furthermore, we analyzed the expression profile of selected biofilm thickness associated genes in the luxS- mutant strain. The expression of those genes was not radically changed in the mutant strain compared to wild-type bacteria in planktonic condition. Only slight downregulation was recorded in SMU.2146c, SMU.574, SMU.609, and SMU.987 genes expression in luxS- bacteria in biofilm vs. planktonic environments. Conclusion These findings reveal genes associated with the thickness of biofilms of S. mutans. Expression of these genes is apparently not regulated directly by luxS and is not necessarily influenced by the presence of sucrose in the growth media.

  6. Fate and Effects of Metals in River Biofilms

    Science.gov (United States)

    Lawrence, J. R.

    2002-12-01

    Studies were carried out to assess the influence of: nutrients, dissolved oxygen concentration (DO) and nickel (Ni) concentration on river biofilm development, structure, function and composition. Biofilms were cultivated in rotating annular reactors with river water at 0.5 mg/l or 7.5 mg/l DO, plus a combination of carbon, nitrogen and phosphorus (CNP), and with or without 0, 0.01, 0.05, 0.1, or 0.5 mg/l Ni. The effects of Ni were apparent in the elimination of cyanobacterial populations and reduced photosynthetic biomass in the biofilm. Application of lectin binding analyses indicated changes in exopolymer abundance and a shift in the glycoconjugate make up of the biofilms as well in the response to all treatments. Differences in exopolymer chemistry and community composition were detected between biofilms developed under each nutrient regime. This variation in biofilm chemistry was reflected in the sorption of nickel. Based on X-ray mapping and ICP-MS analyses the treatments C, N and P all resulted in increased (p Archeae were not detected. Amplification of the alkB gene indicated a positive effect of nutrients and a negative effect of Ni. The nirS gene was not detected in samples treated with 0.5 mg/l Ni indicating a negative effect on specific populations of bacteria, such as denitrifiers. DGGE analyses indicated effects of both nutrients and Ni, with 0.5 mg/l Ni resulting in the appearance of unique bands in DNA from Ni, DO, and CNP treatments. FISH analyses indicated a significant decrease in beta proteobacterial and cytophaga-flavobacterium abundance. However, proportionally the biofilms changed from gamma-proteobacterial to beta proteobacterial dominated communities. The observations indicate that guideline Ni concentrations may have significant impacts on river microbial community diversity and function.

  7. Maintenance of Geobacter-dominated biofilms in microbial fuel cells treating synthetic wastewater.

    Science.gov (United States)

    Commault, Audrey S; Lear, Gavin; Weld, Richard J

    2015-12-01

    Geobacter-dominated biofilms can be selected under stringent conditions that limit the growth of competing bacteria. However, in many practical applications, such stringent conditions cannot be maintained and the efficacy and stability of these artificial biofilms may be challenged. In this work, biofilms were selected on low-potential anodes (-0.36 V vs Ag/AgCl, i.e. -0.08 V vs SHE) in minimal acetate or ethanol media. Selection conditions were then relaxed by transferring the biofilms to synthetic wastewater supplemented with soil as a source of competing bacteria. We tracked community succession and functional changes in these biofilms. The Geobacter-dominated biofilms showed stability in their community composition and electrochemical properties, with Geobacter sp. being still electrically active after six weeks in synthetic wastewater with power densities of 100±19 mW·m(-2) (against 74±14 mW·m(-2) at week 0) for all treatments. After six weeks, the ethanol-selected biofilms, despite their high taxon richness and their efficiency at removing the chemical oxygen demand (0.8 g·L(-1) removed against the initial 1.3 g·L(-1) injected), were the least stable in terms of community structure. These findings have important implications for environmental microbial fuel cells based on Geobacter-dominated biofilms and suggest that they could be stable in challenging environments. PMID:25935865

  8. Paparan zat besi pada ekspresi protein spesifik extracellular polymeric substance biofilm Aggregatibacter actinomycetemcomitans

    Directory of Open Access Journals (Sweden)

    Marchella Hendrayanti W

    2014-06-01

    Full Text Available Background: The study of biofilms bacteria could be an alternative of preventive treatment in reducing prevalence of aggressive periodontitis in the community, because biofilm protects the bacteria from environmental conditions, including the attack of immune system and antimicrobial. Aggregatibacter actinomycetemcomitans is a major cause of bacterial aggressive periodontitis. Purpose: This study aims to examine the iron exposure to specific protein expression of extracellular polymeric substance (EPS of Aggregatibacter actinomycetemcomitans biofilm. Methods: Protein containing EPS biofilm was isolated from cultures of A.actinomycetemcomitans. The protein was processed through several procedures: electrophoresis , electroelution , immunization of rabbits , serum isolation , and purification of antibodies. After the Western blotting procedure the antibody was used. Protein containing EPS biofilms exposed to iron, then once again isolated from cultures of A. actinomycetemcomitans. The electrophoresis and Western blotting were done on the isolated protein. Results: The result showed that the the expression of specific proteins in EPS biofilm decreased in response to iron exposure. Conclusions: Iron exposure could influenced the specific protein expression in EPS biofilm of Aggregatibacter actinomycetemcomitans.Latar belakang: Penelitian terhadap bakteri biofilm dapat menjadi alternatif perawatan preventif dalam menurunkan prevalensi periodontitis agresif di masyarakat, karena biofilm melindungi bakteri terhadap kondisi lingkungan, termasuk serangan sistem imun dan antimikroba. Aggregatibacter actinomycetemcomitans merupakan bakteri penyebab utama periodontitis agresif. Tujuan: Studi ini bertujuan meneliti paparan zat besi terhadap ekspresi protein spesifik extracellular polymeric substance (EPS Aggregatibacter actinomycetemcomitans. Metode: Protein yang mengandung EPS biofilm diisolasi dari kultur A. actinomycetemcomitans. Protein yang diisolasi

  9. Combining polar organic chemical integrative samplers (POCIS) with toxicity testing to evaluate pesticide mixture effects on natural phototrophic biofilms

    International Nuclear Information System (INIS)

    Polar organic chemical integrative samplers (POCIS) are valuable tools in passive sampling methods for monitoring polar organic pesticides in freshwaters. Pesticides extracted from the environment using such methods can be used to toxicity tests. This study evaluated the acute effects of POCIS extracts on natural phototrophic biofilm communities. Our results demonstrate an effect of POCIS pesticide mixtures on chlorophyll a fluorescence, photosynthetic efficiency and community structure. Nevertheless, the range of biofilm responses differs according to origin of the biofilms tested, revealing spatial variations in the sensitivity of natural communities in the studied stream. Combining passive sampler extracts with community-level toxicity tests offers promising perspectives for ecological risk assessment. - Research highlights: → Polar organic chemical integrative samplers (POCIS) were used for monitoring polar organic pesticides in a contaminated river. → The acute effects of POCIS extracts were tested on natural phototrophic biofilm communities. → POCIS pesticide mixtures affected chlorophyll a fluorescence, photosynthetic efficiency and community structure. → Biofilm responses differed according to origin of the biofilms tested, revealing variations in the sensitivity of natural communities. → Combining passive sampler extracts with community-level toxicity tests offers promising perspectives for ecological risk assessment. - Pesticide mixtures extracted from POCIS can affect chl a fluorescence, photosynthetic efficiency and community structure of natural biofilms.

  10. Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Alhede, Maria; Bjarnsholt, Thomas; Givskov, Michael;

    2014-01-01

    biofilms, which protect the aggregated, biopolymer-embedded bacteria from the detrimental actions of antibiotic treatments and host immunity. A key component in the protection against innate immunity is rhamnolipid, which is a quorum sensing (QS)-regulated virulence factor. QS is a cell-to-cell signaling...... mechanism used to coordinate expression of virulence and protection of aggregated biofilm cells. Rhamnolipids are known for their ability to cause hemolysis and have been shown to cause lysis of several cellular components of the human immune system, for example, macrophages and polymorphonuclear leukocytes...

  11. Manipulation of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  12. Manipulatiaon of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Burkhalter, R.; Macnaughton, S.J.; Palmer, R.J.; Smith, C.A.; Whitaker, K.W.; White, D.C.; Zinn, M.; kirkegaard, R.

    1998-08-09

    The Biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms by generated. The most effective monitoring of biofilm formation, succession and desquamation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in the distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  13. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment

    KAUST Repository

    Duddu, Ravindra

    2009-05-01

    We present a two-dimensional biofilm growth model in a continuum framework using an Eulerian description. A computational technique based on the eXtended Finite Element Method (XFEM) and the level set method is used to simulate the growth of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions of the model and the governing equations of transport, biofilm kinetics and biofilm mechanics are presented. Our 2D biofilm growth results are in good agreement with those obtained by Picioreanu et al. (Biotechnol Bioeng 69(5):504-515, 2000). Detachment due to erosion is modeled using two continuous speed functions based on: (a) interfacial shear stress and (b) biofilm height. A relation between the two detachment models in the case of a 1D biofilm is established and simulated biofilm results with detachment in 2D are presented. The stress in the biofilm due to fluid flow is evaluated and higher stresses are observed close to the substratum where the biofilm is attached. © 2008 Wiley Periodicals, Inc.

  14. The growth of Gardnerella vaginalis and Lactobacillus acidophilus in Sorbarod biofilms.

    Science.gov (United States)

    Muli, F W; Struthers, J K

    1998-05-01

    Sorbarod biofilms were investigated for their suitability in establishing continuous culture biofilms for the study of bacterial vaginosis. Two important organisms in the condition, Gardnerella vaginalis and Lactobacillus acidophilus, were studied. In contrast to growth in broth culture, both organisms were maintained for at least 96 h in a steady state on the biofilms. With G. vaginalis, the haemolytic activity was consistently maintained in the biofilms in contrast to short-term activity in broth culture which matched the bacterial titre. The simple Sorbarod system appears to be suitable for studying the growth conditions of bacteria in continuous culture and has potential for investigating interactions between micro-organisms. PMID:9879940

  15. EVALUATION OF THE ANTIMICROBIAL EFFECTS OF NEW HETEROCYCLIC BIS-QUATERNARY AMMONIUM COMPOUNDS ON BIOFILMS

    Directory of Open Access Journals (Sweden)

    OANA E. CONSTANTIN

    2016-07-01

    Full Text Available Considering the well-known mechanism of adaptable resistance of microorganisms to chemical compounds through biofilms formation and the widespread use of N-heterocyclic quaternary ammonium salts (QAC as disinfectants, in this study we have evaluate the effect of 8 newly synthesized symmetrical and unsymmetrical diquaternary ammonium salts of 1,2-bis-(4-pyridil-ethane on bacterial biofilms produced by three different bacterial strains. The effect of the exposure to quaternary ammonium salts on biofilm communities was investigated within biofilms obtained in a conventional testing system, on stainless steel and glass surfaces. Differential plate counts were used to characterize the developed communities and the effects of QAC exposure and the results were correlated with epifluorescence microphotographs. The data obtained revealed a significant reduction of bacterial cells in the biofilms tested with 4-7 log CFU for all the QAC.

  16. Microbial endolithic biofilms: a means of surviving the harsh conditions of the Antarctic

    Science.gov (United States)

    de Los Ríos, Asunción; Wierzchos, Jacek; Sancho, Leopoldo G.; Grube, Martín; Ascaso, Carmen

    2002-11-01

    Much of the Antarctic continent's microbiota is restricted to endolithic microecosystems which harbour distinct microbial communities as biofilms. The lithic substrate and the microorganisms comprising these films are intimately linked, giving rise to complex mineral-microbe interactions. The Antarctic biofilms analysed in this study were characterised by the presence of extracellular polymer substances. Cyanobacteria appeared as key components of these biofilms in zones where there were no nearby lichen thalli. Fungal cells were the predominant organisms in areas inhabited by epilithic lichens. The combined use of microscopy and molecular techniques enabled the identification of the different biological components of biofilms found in subsurface layers of the lighic substrate. It is proposed that in this extreme environment, the structure of the biofilm may favour the formation of microsites with specific physicochemical conditions that permit the survival of microbial communities.

  17. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound

    DEFF Research Database (Denmark)

    Hentzer, Morten; Riedel, K.; Rasmussen, Thomas Bovbjerg;

    2002-01-01

    of important virulence factors, indicating a general effect on target genes of the las quorum sensing circuit. The furanone was applied to P. aeruginosa biofilms established in biofilm flow chambers. The Gfp-based analysis reveals that the compound penetrates microcolonies and blocks cell signalling and quorum...

  18. Metagenomic and metaproteomic analyses of Accumulibacter phosphatis enriched floccular and granular biofilm

    NARCIS (Netherlands)

    Barr, Jeremy J; Dutilh, Bas E; Skennerton, Connor T; Fukushima, Toshikazu; Hastie, Marcus L; Gorman, Jeffrey J; Tyson, Gene W; Bond, Philip L

    2015-01-01

    Biofilms are ubiquitous in nature, forming diverse adherent microbial communities that perform a plethora of functions. Here we operated two laboratory-scale sequencing batch reactors enriched with Candidatus Accumulibacter phosphatis (Accumulibacter) performing enhanced biological phosphorus remova

  19. Co-occurence of filamentation defects and impaired biofilms in Candida albicans protein kinase mutants.

    Science.gov (United States)

    Konstantinidou, Nina; Morrissey, John Patrick

    2015-12-01

    Pathogenicity of Candida albicans is linked with its developmental stages, notably the capacity switch from yeast-like to hyphal growth, and to form biofilms on surfaces. To better understand the cellular processes involved in C. albicans development, a collection of 63 C. albicans protein kinase mutants was screened for biofilm formation in a microtitre plate assay. Thirty-eight mutants displayed some degree of biofilm impairment, with 20 categorised as poor biofilm formers. All the poor biofilm formers were also defective in the switch from yeast to hyphae, establishing it as a primary defect. Five genes, VPS15, IME2, PKH3, PGA43 and CEX1, encode proteins not previously reported to influence hyphal development or biofilm formation. Network analysis established that individual components of some processes, most interestingly MAP kinase pathways, are not required for biofilm formation, most likely indicating functional redundancy. Mutants were also screened for their response to bacterial supernatants and it was found that Pseudomonas aeruginosa supernatants inhibited biofilm formation in all mutants, regardless of the presence of homoserine lactones (HSLs). In contrast, Candida morphology was only affected by supernatant containing HSLs. This confirms the distinct HSL-dependent inhibition of filamentation and the HSL-independent impairment of biofilm development by P. aeruginosa. PMID:26472756

  20. Surface modification of materials to encourage beneficial biofilm formation

    Directory of Open Access Journals (Sweden)

    Amreeta Sarjit

    2015-10-01

    Full Text Available Biofilms are communities of sessile microorganisms that grow and produce extrapolymeric substances on an abiotic or biotic surface. Although biofilms are often associated with negative impacts, the role of beneficial biofilms is wide and include applications in bioremediation, wastewater treatment and microbial fuel cells. Microbial adhesion to a surface, which is highly dependent on the physicochemical properties of the cells and surfaces, is an essential step in biofilm formation. Surface modification therefore represents an important way to modulate microbial attachment and ultimately biofilm formation by microorganisms. In this review different surface modification processes such as organosilane surface modification, plasma treatment, and chemical modification of carbon nanotubes, electro-oxidation and covalent-immobilization with neutral red and methylene blue molecules are outlined. The effectiveness of these modifications and their industrial applications are also discussed. There is inadequate literature on surface modification as a process to enhance beneficial biofilm formation. These methods need to be safe, economically viable, scalable and environmental friendly and their potential to fulfil these criteria for many applications has yet to be determined.

  1. Effects of gene augmentation on the removal of 2,4-dichlorophenoxyacetic acid in a biofilm reactor under different scales and substrate conditions

    International Nuclear Information System (INIS)

    With a conjugative plasmid pJP4 carrying strain as the donor, two bioaugmentation experiments were conducted in a microcosm biofilm reactor with 2,4-D as the sole carbon source operated in fed-batch mode, and an enlarged lab-scale sequence batch biofilm reactor with mixed carbon sources of 2,4-D and other easily biodegradable compounds, respectively. In the microcosm study under sole carbon source condition, bioaugmentation led to a persistently increased 2,4-D degradation rate in the five operation cycles with enhancement of 13-64%. For the enlarged lab-scale bioaugmentation experiment under mixed carbon source conditions, no enhancement in 2,4-D removal could be observed during start-up period. After a period of operation, biofilm samples from the bioaugmented reactor demonstrated a stronger degradation capacity than the control and showed the presence of a large number of transconjugants. This study indicates that bioaugmentation based on plasmid horizontal transfer is a feasible strategy to establish functional microbial community in a biofilm reactor, and the strong selective pressure of 2,4-D existing alone and persistently was more favorable for the success of gene augmentation.

  2. The Root Canal Biofilm

    NARCIS (Netherlands)

    Sluis, van der L.W.M.; Boutsioukis, C.; Jiang, L.M.; Macedo, R.; Verhaagen, B.; Versluis, M.; Chávez de Paz, E.; Sedgley, C.M.; Kishen, A.

    2015-01-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products from the root canal wall, their removal out of the root cana

  3. Evaluation of Methods for the Extraction of DNA from Drinking Water Distribution System Biofilms

    OpenAIRE

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L.; LeChevallier, Mark W.; Liu, Wen-Tso

    2011-01-01

    While drinking water biofilms have been characterized in various drinking water distribution systems (DWDS), little is known about the impact of different DNA extraction methods on the subsequent analysis of microbial communities in drinking water biofilms. Since different DNA extraction methods have been shown to affect the outcome of microbial community analysis in other environments, it is necessary to select a DNA extraction method prior to the application of molecular tools to characteri...

  4. Species sorting during biofilm assembly by artificial substrates deployed in a cold seep system

    KAUST Repository

    Zhang, Wei Peng

    2014-10-17

    Studies focusing on biofilm assembly in deep-sea environments are rarely conducted. To examine the effects of substrate type on microbial community assembly, biofilms were developed on different substrates for different durations at two locations in the Red Sea: in a brine pool and in nearby bottom water (NBW) adjacent to the Thuwal cold seep II. The composition of the microbial communities in 51 biofilms and water samples were revealed by classification of pyrosequenced 16S rRNA gene amplicons. Together with the microscopic characteristics of the biofilms, the results indicate a stronger selection effect by the substrates on the microbial assembly in the brine pool compared with the NBW. Moreover, the selection effect by substrate type was stronger in the early stages compared with the later stages of the biofilm development. These results are consistent with the hypotheses proposed in the framework of species sorting theory, which states that the power of species sorting during microbial community assembly is dictated by habitat conditions, duration and the structure of the source community. Therefore, the results of this study shed light on the control strategy underlying biofilm-associated marine fouling and provide supporting evidence for ecological theories important for understanding the formation of deep-sea biofilms.

  5. Glyceryl trinitrate and caprylic acid for the mitigation of the Desulfovibrio vulgaris biofilm on C1018 carbon steel.

    Science.gov (United States)

    Li, Y; Zhang, P; Cai, W; Rosenblatt, J S; Raad, I I; Xu, D; Gu, T

    2016-02-01

    Microbiologically influenced corrosion (MIC), also known as biocorrosion, is caused by corrosive biofilms. MIC is a growing problem, especially in the oil and gas industry. Among various corrosive microbes, sulfate reducing bacteria (SRB) are often the leading culprit. Biofilm mitigation is the key to MIC mitigation. Biocide applications against biofilms promote resistance over time. Thus, it is imperative to develop new biodegradable and cost-effective biocides for large-scale field applications. Using the corrosive Desulfovibrio vulgaris (an SRB) biofilm as a model biofilm, this work demonstrated that a cocktail of glyceryl trinitrate (GTN) and caprylic acid (CA) was very effective for biofilm prevention and mitigation of established biofilms on C1018 carbon steel coupons. The most probable number sessile cell count data and confocal laser scanning microscope biofilm images proved that the biocide cocktail of 25 ppm (w/w) GTN + 0.1% (w/w) CA successfully prevented the D. vulgaris biofilm establishment on C1018 carbon steel coupons while 100 ppm GTN + 0.1% CA effectively mitigated pre-established D. vulgaris biofilms on C1018 carbon steel coupons. In both cases, the cocktails were able to reduce the sessile cell count from 10(6) cells/cm(2) to an undetectable level. PMID:26745983

  6. Bacterial biofilms on gold grains-implications for geomicrobial transformations of gold.

    Science.gov (United States)

    Rea, Maria Angelica; Zammit, Carla M; Reith, Frank

    2016-06-01

    The biogeochemical cycling of gold (Au), i.e. its solubilization, transport and re-precipitation, leading to the (trans)formation of Au grains and nuggets has been demonstrated under a range of environmental conditions. Biogenic (trans)formations of Au grains are driven by (geo)biochemical processes mediated by distinct biofilm consortia living on these grains. This review summarizes the current knowledge concerning the composition and functional capabilities of Au-grain communities, and identifies contributions of key-species involved in Au-cycling. To date, community data are available from grains collected at 10 sites in Australia, New Zealand and South America. The majority of detected operational taxonomic units detected belong to the α-, β- and γ-Proteobacteria and the Actinobacteria. A range of organisms appears to contribute predominantly to biofilm establishment and nutrient cycling, some affect the mobilization of Au via excretion of Au-complexing ligands, e.g. organic acids, thiosulfate and cyanide, while a range of resident Proteobacteria, especially Cupriavidus metallidurans and Delftia acidovorans, have developed Au-specific biochemical responses to deal with Au-toxicity and reductively precipitate mobile Au-complexes. This leads to the biomineralization of secondary Au and drives the environmental cycle of Au. PMID:27098381

  7. Morphological changes in Proteus mirabilis O18 biofilm under the influence of a urease inhibitor and a homoserine lactone derivative.

    Science.gov (United States)

    Czerwonka, Grzegorz; Arabski, Michał; Wąsik, Sławomir; Jabłońska-Wawrzycka, Agnieszka; Rogala, Patrycja; Kaca, Wiesław

    2014-03-01

    Proteus mirabilis is a pathogenic gram-negative bacterium that frequently causes kidney infections, typically established by ascending colonization of the urinary tract. The present study is focused on ureolytic activity and urease inhibition in biofilms generated by P. mirabilis O18 cells. Confocal microscopy revealed morphological alterations in biofilms treated with urea and a urease inhibitor (acetohydroxamic acid, AHA), as some swarmer cells were found to protrude from the biofilm. The presence of a quorum-sensing molecule (N-butanoyl homoserine lactone, BHL) increased biofilm thickness and its ureolytic activity. Laser interferometric determination of diffusion showed that urea easily diffuses through P. mirabilis biofilm, while AHA is blocked. This may suggest that the use of urease inhibitors in CAUTIs may by less effective than in other urease-associated infections. Spectroscopic studies revealed differences between biofilm and planktonic cells indicating that polysaccharides and nucleic acids are involved in extracellular matrix and biofilm formation. PMID:24481535

  8. Scanning Transmission X-Ray, Laser Scanning, and Transmission Electron Microscopy Mapping of the Exopolymeric Matrix of Microbial Biofilms

    OpenAIRE

    Lawrence, J R; Swerhone, G. D. W.; Leppard, G. G.; Araki, T; Zhang, X.; West, M. M.; Hitchcock, A. P.

    2003-01-01

    Confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and soft X-ray scanning transmission X-ray microscopy (STXM) were used to map the distribution of macromolecular subcomponents (e.g., polysaccharides, proteins, lipids, and nucleic acids) of biofilm cells and matrix. The biofilms were developed from river water supplemented with methanol, and although they comprised a complex microbial community, the biofilms were dominated by heterotrophic bacteria. TEM provid...

  9. Extracellular DNA Is Essential for Maintaining Bordetella Biofilm Integrity on Abiotic Surfaces and in the Upper Respiratory Tract of Mice

    OpenAIRE

    Conover, Matt S.; Mishra, Meenu; Deora, Rajendar

    2011-01-01

    Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the Gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and extracellular...

  10. In vitro modeling of host-parasite interactions: the 'subgingival' biofilm challenge of primary human epithelial cells

    Directory of Open Access Journals (Sweden)

    Thurnheer Thomas

    2009-12-01

    Full Text Available Abstract Background Microbial biofilms are known to cause an increasing number of chronic inflammatory and infectious conditions. A classical example is chronic periodontal disease, a condition initiated by the subgingival dental plaque biofilm on gingival epithelial tissues. We describe here a new model that permits the examination of interactions between the bacterial biofilm and host cells in general. We use primary human gingival epithelial cells (HGEC and an in vitro grown biofilm, comprising nine frequently studied and representative subgingival plaque bacteria. Results We describe the growth of a mature 'subgingival' in vitro biofilm, its composition during development, its ability to adapt to aerobic conditions and how we expose in vitro a HGEC monolayer to this biofilm. Challenging the host derived HGEC with the biofilm invoked apoptosis in the epithelial cells, triggered release of pro-inflammatory cytokines and in parallel induced rapid degradation of the cytokines by biofilm-generated enzymes. Conclusion We developed an experimental in vitro model to study processes taking place in the gingival crevice during the initiation of inflammation. The new model takes into account that the microbial challenge derives from a biofilm community and not from planktonically cultured bacterial strains. It will facilitate easily the introduction of additional host cells such as neutrophils for future biofilm:host cell challenge studies. Our methodology may generate particular interest, as it should be widely applicable to other biofilm-related chronic inflammatory diseases.

  11. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Alexander K.; Pokroy, Boaz; Seminara, Agnese; Aizenberg, Joanna (Harvard)

    2011-09-28

    Most of the world's bacteria exist in robust, sessile communities known as biofilms, ubiquitously adherent to environmental surfaces from ocean floors to human teeth and notoriously resistant to antimicrobial agents. We report the surprising observation that Bacillus subtilis biofilm colonies and pellicles are extremely nonwetting, greatly surpassing the repellency of Teflon toward water and lower surface tension liquids. The biofilm surface remains nonwetting against up to 80% ethanol as well as other organic solvents and commercial biocides across a large and clinically important concentration range. We show that this property limits the penetration of antimicrobial liquids into the biofilm, severely compromising their efficacy. To highlight the mechanisms of this phenomenon, we performed experiments with mutant biofilms lacking ECM components and with functionalized polymeric replicas of biofilm microstructure. We show that the nonwetting properties are a synergistic result of ECM composition, multiscale roughness, reentrant topography, and possibly yet other factors related to the dynamic nature of the biofilm surface. Finally, we report the impenetrability of the biofilm surface by gases, implying defense capability against vapor-phase antimicrobials as well. These remarkable properties of B. subtilis biofilm, which may have evolved as a protection mechanism against native environmental threats, provide a new direction in both antimicrobial research and bioinspired liquid-repellent surface paradigms.

  12. Individual Constituents from Essential Oils Inhibit Biofilm Mass Production by Multi-Drug Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Laura Espina

    2015-06-01

    Full Text Available Biofilm formation by Staphylococcus aureus represents a problem in both the medical field and the food industry, because the biofilm structure provides protection to embedded cells and it strongly attaches to surfaces. This circumstance is leading to many research programs seeking new alternatives to control biofilm formation by this pathogen. In this study we show that a potent inhibition of biofilm mass production can be achieved in community-associated methicillin-resistant S. aureus (CA-MRSA and methicillin-sensitive strains using plant compounds, such as individual constituents (ICs of essential oils (carvacrol, citral, and (+-limonene. The Crystal Violet staining technique was used to evaluate biofilm mass formation during 40 h of incubation. Carvacrol is the most effective IC, abrogating biofilm formation in all strains tested, while CA-MRSA was the most sensitive phenotype to any of the ICs tested. Inhibition of planktonic cells by ICs during initial growth stages could partially explain the inhibition of biofilm formation. Overall, our results show the potential of EOs to prevent biofilm formation, especially in strains that exhibit resistance to other antimicrobials. As these compounds are food additives generally recognized as safe, their anti-biofilm properties may lead to important new applications, such as sanitizers, in the food industry or in clinical settings.

  13. Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers

    Science.gov (United States)

    Kim, Minyoung Kevin; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L.; Stone, Howard A.

    2014-06-01

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development of S. aureus. We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in flows with curved streamlines to bridge the distances between corners, we developed a mathematical model based on resistive force theory of slender filaments. Understanding physical aspects of biofilm formation of S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen.

  14. Single particle tracking reveals spatial and dynamic organization of the Escherichia coli biofilm matrix

    International Nuclear Information System (INIS)

    Biofilms are communities of surface-adherent bacteria surrounded by secreted polymers known as the extracellular polymeric substance. Biofilms are harmful in many industries, and thus it is of great interest to understand their mechanical properties and structure to determine ways to destabilize them. By performing single particle tracking with beads of varying surface functionalization it was found that charge interactions play a key role in mediating mobility within biofilms. With a combination of single particle tracking and microrheological concepts, it was found that Escherichia coli biofilms display height dependent charge density that evolves over time. Statistical analyses of bead trajectories and confocal microscopy showed inter-connecting micron scale channels that penetrate throughout the biofilm, which may be important for nutrient transfer through the system. This methodology provides significant insight into a particular biofilm system and can be applied to many others to provide comparisons of biofilm structure. The elucidation of structure provides evidence for the permeability of biofilms to microscale objects, and the ability of a biofilm to mature and change properties over time. (paper)

  15. Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers

    International Nuclear Information System (INIS)

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development of S. aureus. We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in flows with curved streamlines to bridge the distances between corners, we developed a mathematical model based on resistive force theory of slender filaments. Understanding physical aspects of biofilm formation of S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen. (paper)

  16. Effect of carbon on whole-biofilm metabolic response to high doses of streptomycin.

    Science.gov (United States)

    Jackson, Lindsay M D; Kroukamp, Otini; Wolfaardt, Gideon M

    2015-01-01

    Biofilms typically exist as complex communities comprising multiple species with the ability to adapt to a variety of harsh conditions. In clinical settings, antibiotic treatments based on planktonic susceptibility tests are often ineffective against biofilm infections. Using a CO2 evolution measurement system we delineated the real-time metabolic response in continuous flow biofilms to streptomycin doses much greater than their planktonic susceptibilities. Stable biofilms from a multispecies culture (containing mainly Pseudomonas aeruginosa and Stenotrophomonas maltophilia), Gram-negative environmental isolates, and biofilms formed by pure culture P. aeruginosa strains PAO1 and PAO1 ΔMexXY (minimum planktonic inhibitory concentrations between 1.5 and 3.5 mg/l), were exposed in separate experiments to 4000 mg/l streptomycin for 4 h after which growth medium resumed. In complex medium, early steady state multispecies biofilms were susceptible to streptomycin exposure, inferred by a cessation of CO2 production. However, multispecies biofilms survived high dose exposures when there was extra carbon in the antibiotic medium, or when they were grown in defined citrate medium. The environmental isolates and PAO1 biofilms showed similar metabolic profiles in response to streptomycin; ceasing CO2 production after initial exposure, with CO2 levels dropping toward baseline levels prior to recovery back to steady state levels, while subsequent antibiotic exposure elicited increased CO2 output. Monitoring biofilm metabolic response in real-time allowed exploration of conditions resulting in vulnerability after antibiotic exposure compared to the resistance displayed following subsequent exposures. PMID:26441887

  17. Bacterial biofilm formation, pathogenicity, diagnostics and control: An overview

    Directory of Open Access Journals (Sweden)

    Sawhney Rajesh

    2009-07-01

    Full Text Available Bacterial biofilms are complex, mono- or poly-microbialn communities adhering to biotic or abiotic surfaces. This adaptation has been implicated as a survival strategy. The formation of biofilms is mediated by mechanical, biochemical and genetical factors. The biofilms enhance the virulence of the pathogen and have their potential role in various infections, such as dental caries, cystic fibrosis, osteonecrosis, urinary tract infection and eye infections. A number of diagnostic techniques, viz., bright-field microscopy, epifluorescence microscopy, scanning electron microscopy, confocal laser scanning microscopy and amplicon length heterogeneity polymerase chain reaction, have been employed for detection of these communities. Researchers have worked on applications of catheter lock solutions, a fish protein coating, acid shock treatment, susceptibility to bacteriophages, etc., for biofilm control. However, we need to rearrange our strategies to have thorough insight and concentrate on priority basis to develop new accurate, precise and rapid diagnostic protocols for detection and evaluation of biofilm. Above all, the strict compliance to these techniques is required for accurate diagnosis and control.

  18. Physical solutions to the public goods dilemma in bacterial biofilms

    Science.gov (United States)

    Drescher, Knut; Nadell, Carey; Stone, Howard; Wingreen, Ned; Bassler, Bonnie

    2013-11-01

    Bacteria frequently live in densely populated surface-bound communities, termed biofilms. Biofilm-dwelling cells rely on secretion of extracellular substances to construct their communities and to capture nutrients from the environment. Some secreted factors behave as cooperative public goods: they can be exploited by non-producing cells. The means by which public good producing bacteria avert exploitation in biofilm environments are largely unknown. Using experiments with Vibrio cholerae, which secretes extracellular enzymes to digest its primary food source, the solid polymer chitin, we show that the public goods dilemma may be solved by two dramatically different, physical mechanisms: cells can produce thick biofilms that confine the goods to producers, or fluid flow can remove soluble products of chitin digestion, denying access to non-producers. Both processes limit the distance over which enzyme-secreting cells provide a benefit to neighbors, resulting in preferential benefit to nearby clonemates. Our results demonstrate how bacterial physiology and environmental conditions can interact with social phenotypes to influence the evolutionary dynamics of cooperation within biofilms.

  19. Visualization of extracellular matrix components within sectioned Salmonella biofilms on the surface of human gallstones.

    Directory of Open Access Journals (Sweden)

    Joanna M Marshall

    Full Text Available Chronic carriage of Salmonella Typhi is mediated primarily through the formation of bacterial biofilms on the surface of cholesterol gallstones. Biofilms, by definition, involve the formation of a bacterial community encased within a protective macromolecular matrix. Previous work has demonstrated the composition of the biofilm matrix to be complex and highly variable in response to altered environmental conditions. Although known to play an important role in bacterial persistence in a variety of contexts, the Salmonella biofilm matrix remains largely uncharacterized under physiological conditions. Initial attempts to study matrix components and architecture of the biofilm matrix on gallstone surfaces were hindered by the auto-fluorescence of cholesterol. In this work we describe a method for sectioning and direct visualization of extracellular matrix components of the Salmonella biofilm on the surface of human cholesterol gallstones and provide a description of the major matrix components observed therein. Confocal micrographs revealed robust biofilm formation, characterized by abundant but highly heterogeneous expression of polysaccharides such as LPS, Vi and O-antigen capsule. CsgA was not observed in the biofilm matrix and flagellar expression was tightly restricted to the biofilm-cholesterol interface. Images also revealed the presence of preexisting Enterobacteriaceae encased within the structure of the gallstone. These results demonstrate the use and feasibility of this method while highlighting the importance of studying the native architecture of the gallstone biofilm. A better understanding of the contribution of individual matrix components to the overall biofilm structure will facilitate the development of more effective and specific methods to disrupt these bacterial communities.

  20. Inactivation model for disinfection of biofilms in drinking water

    International Nuclear Information System (INIS)

    The purpose of the project was to investigate experimentally the effects of free chlorine, monochloramine and chlorine dioxide on the removal of biofilm growth in water as it applies to drinking water in distribution systems. In particular, biofilm kill for a particular dosage of disinfectant was measured as a function of time for each disinfectant over a range of disinfectant concentrations. These results were used to formulate concentration-time (Ct) inactivation values for each disinfectant to compare the efficacy of the three disinfectants for biofilm control. The biofilm reactor system consisted of a 125 mL columns, each containing tightly packed 3 mm glass beads on which heterotrophic bacterial biofilm is established. Following an initial biofilm inoculation period, the glass beads were removed from the columns and placed into glass jars for disinfection with free chlorine, monochloramine and chlorine dioxide. Cell counts were determined on a time series basis with the goal of achieving a Ct inactivation model that is similar to models presently used for inactivation of suspended cells. Ultimately this research could be used to develop a rationale method for setting regulatory values for secondary disinfection in drinking water distribution systems, which presently in only a few states and provinces. (author)