WorldWideScience

Sample records for bioethanol

  1. Bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Charles; Larsen, Jan; Morgan, K. [DONG Energy, Fredericia (Denmark)

    2007-05-15

    Security of supply, sustainability and the market are controlling parameters for developing the energy system. Bioethanol is part of the solution to the question about security of supply and the demand for a sustainable development, and all over Europe 1st generation bioethanol plants are being established. Market demands on existing power plants and the simultaneous wish for establishing a capacity for the production of bioethanol with at first 1st generation technology and starchy biomass and then with 2nd generation technology and lignocellulose is the reason for DONG Energy's development of the concept IBUS (Integrated Biomass Utilisation System). In the IBUS concept the production of bioethanol with 1st and 2nd generation technology has been joined and integrated with the power and heat production of the central power plant. Until the summer of 2006 the IBUS straw plant at Skaerbaekvaerket was established by means of a EURO 15 mill. EU project. In addition to being a demonstration facility the plant is being upscaled to a 4 tonne straw per hour plant in preparation for demonstrating the process at a size which forms the basis of upscaling to fullscale 20 tonne per hour in 2008. The process includes continued hydrothermal pre-treatment, enzymatic hydrolysis at high dry matter concentrations, fermentation and distillation. The raw materials are wheat and maize straw. The perspective for DONG Energy is that the IBUS concept, in which bioethanol and CHP production are to be joined, is a step towards materialising the vision that a central power plant can be developed into an energy refinery. The presented development work within 2nd generation bioethanol technology will be carried out in cooperation with leading international players and Danish universities and knowledge centres Risoe National Laboratory, The Royal Veterinary and Agricultural University, Technical University of Denmark (DTU) and Novozymes. (au)

  2. Bioethanol

    NARCIS (Netherlands)

    Groenestijn, J.W. van; Abubackar, H.N.; Veiga, M.C.; Kennes, C.

    2013-01-01

    Production of bioethanol from cellulosic biomass plays an important role to support energy policies. To produce cellulosic ethanol via fermentation it is required to first break the lignocellulosic complex. Numerous technologies for such pretreatment are under development or in a pilot plant stage.

  3. Bioethanol: industrial world perspectives

    International Nuclear Information System (INIS)

    An overview of the production of bioethanol from biomass is presented, and the future for bioethanol in the transport, cogeneration, domestic appliances, and chemicals markets are examined. Bioethanol economics are considered, and yields and estimated prices for bioethanol produced from different crops are tabulated. Specific uses of bioethanol in the different markets are highlighted including the blending of ethanol with petrol in the transport market, the use of bioethanol for cooking in the domestic market, and the production of chemicals from bioethanol

  4. Bioethanol: fuel or feedstock?

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Falsig, Hanne; Jørgensen, Betina;

    2007-01-01

    Increasing amounts of bioethanol are being produced from fermentation of biomass, mainly to counteract the continuing depletion of fossil resources and the consequential escalation of oil prices. Today, bioethanol is mainly utilized as a fuel or fuel additive in motor vehicles, but it could also...

  5. Advances in bioethanol

    CERN Document Server

    Bajpai, Pratima

    2013-01-01

    The book provides an updated and detailed overview on advances in bioethanol. It looks at the historical perspectives, chemistry, sources and production of ethanol and discusses biotechnology breakthroughs and promising developments. The book also provides the details regarding the uses, advantages, problems, environmental effects and characteristics of bioethanol as a fuel. In addition, it presents information about ethanol in different parts of the world and also highlights the challenges and future of ethanol.

  6. Improvement of bioethanol yield by pervaporation

    OpenAIRE

    Nongauza, Sinethemba Aubrey

    2010-01-01

    Due to the depletion of petroleum reserves and environmental concerns, bioethanol has been identified as an alternative fuel to petrol. Bioethanol is a fuel of bio-origin derived from renewable biomass. Starch and sugar containing materials are the primary sources of carbon for bioethanol production. Starch is firstly hydrolysed into simple sugars which are later fermented to bioethanol using Saccharomyces cerevisiae (S. cerevisiae). The fermentation of sugars to bioethanol is however limited...

  7. Bioethanol: State and perspectives

    Directory of Open Access Journals (Sweden)

    Tasić Marija B.

    2006-01-01

    Full Text Available Processes of bioethanol production currently applied all over the world are reviewed in this paper. Attention is focused on potentially cheap biomass sources, as well as the most important operating factors controlling the progress and result of saccharification and fermentation reactions and affecting the yield of fermentable sugars and ethanol, respectively, such as: the type and concentration of acid, the type of enzyme, the type of working microorganism, operating temperature, duration time and pH. The hydrolysis conditions, namely duration time, temperature and sulfuric acid concentration, were combined in a single parameter, known as the "combined severity" (CS, in order to estimate the efficiency of bioethanol production from biomass. When the CS increases, the yield of fermentable sugars also increases. The decrease in the yield of monosaccharides coincides with the maximum concentrations of by-products, such as furfural and 5-hydroxymethylfurfural, which are well-known as yeast inhibitors. The highest ethanol yields has been obtained using the yeast Saccharomyces cerevisiae. With low oil prices and political reluctance to implement carbon taxes, fuel-ethanol production will remain uncompetitive unless some other form of cost reduction can be made, such as feedstock preparation costs.

  8. Bio-ethanol

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2007-01-01

    -20% for transportation. At that time, the electric car/fuel cell car has probably had time enough to mature, and it has a much higher energy efficiency. Therefore, bio-ethanol is not the right intermediate (short term) technology, and it is not the right long term technology either......Throughout the world, nations are seeking ways to decrease CO2 emissions and to reduce their dependency on fossil fuels, especially oil and gas deriving from so-called politically unstable regions. The efforts comprise the energy sector (heat and electricity) as well as the transport sector......, that biomass substitutes gas in the heat & power sector and gas substitute oil in the transport sector. By taking this path, we overall achieve almost twice as high a CO2 reduction and save almost twice as much oil, as if we want to substitute the oil via car engines through conversion to ethanol. We must...

  9. Feasibility of bioethanol production from microalgal biomass

    OpenAIRE

    Anjos, Mariana; A.A. Vicente; Teixeira, J. A.; Dragone, Giuliano

    2014-01-01

    The potential use of microalgal biomass as a feedstock for bioethanol production has attracted great attention in recent years. Bioethanol from microalgae can be produced through two distinct pathways: direct dark fermentation or fermentation of saccharified biomass by yeast. The main objective of this work was to assess the influence of increasing glucose concentration derived from hydrolysed microalgal biomass on bioethanol production. The green microalga C. vulgaris (strain P12) was cultiv...

  10. Pretreatment methods for bioethanol production.

    Science.gov (United States)

    Xu, Zhaoyang; Huang, Fang

    2014-09-01

    Lignocellulosic biomass, such as wood, grass, agricultural, and forest residues, are potential resources for the production of bioethanol. The current biochemical process of converting biomass to bioethanol typically consists of three main steps: pretreatment, enzymatic hydrolysis, and fermentation. For this process, pretreatment is probably the most crucial step since it has a large impact on the efficiency of the overall bioconversion. The aim of pretreatment is to disrupt recalcitrant structures of cellulosic biomass to make cellulose more accessible to the enzymes that convert carbohydrate polymers into fermentable sugars. This paper reviews several leading acidic, neutral, and alkaline pretreatments technologies. Different pretreatment methods, including dilute acid pretreatment (DAP), steam explosion pretreatment (SEP), organosolv, liquid hot water (LHW), ammonia fiber expansion (AFEX), soaking in aqueous ammonia (SAA), sodium hydroxide/lime pretreatments, and ozonolysis are intensively introduced and discussed. In this minireview, the key points are focused on the structural changes primarily in cellulose, hemicellulose, and lignin during the above leading pretreatment technologies.

  11. Bioethanol production from agricultural wastes

    OpenAIRE

    Duarte, José Cardoso; Sàágua, M. C.; Baeta-Hall, Lina; Correia, Anabela; Ribeiro, Belina; Lourenço, V.; Pereira, J.; Paixão, Susana M.

    2009-01-01

    In this study, different strains of Saccharomyces cerevisiae have been screened for the ability of bioethanol production. Yeasts were grown in synthetic liquid medium containing two different substrates: sucrose at different concentrations (10 to 400g/l) and cane molasses (120g/l of sucrose). The screening was made in batch regime and the growth rates, ethanol and biomass productions were determined. The results indicate a flocculent yeast strain – F as the more suitable microorganism to prod...

  12. Sugarcane for Bioethanol: Soil and Environmental Issues

    NARCIS (Netherlands)

    Hartemink, A.E.

    2008-01-01

    Cultivation of sugarcane for bioethanol is increasing and the area under sugarcane is expanding. Much of the sugar for bioethanol comes from large plantations where it is grown with relatively high inputs. Sugarcane puts a high demands on the soil because of the use of heavy machinery and because la

  13. Supply Portfolio of Bioethanol in the Republic of Korea

    OpenAIRE

    Jeong Hwan Bae

    2014-01-01

    Despite the co-benefits of bioethanol, such as energy security, environmental improvement, CO2 emission reduction and development of associated industry, bioethanolblended gasoline without subsidy is more expensive than pure gasoline in Korea. The renewable fuel standard (RFS) can contribute to the development of a bioethanol market. However, without controlling the portions of domestic bioethanol, it is highly plausible that a new bioethanol market will be filled with imported bioethanol. If...

  14. Pretreatments of lignocellulosic feedstock for bioethanol production

    OpenAIRE

    Predojević Zlatica J.

    2010-01-01

    The use of renewable energy sources (biofuels), either as a component in the conventional fossil fuels, gasoline and diesel, or as a pure biofuel, contributes to energy saving and decrease of total CO2 emission. The use of bioethanol mixed with gasoline significantly decreases gasoline consumption and contributes to environment protection. One of the problems in the production of bioethanol is the availability of sugar and starch based feedstock used for its production. However, lignocellulos...

  15. Bioethanol Quality Improvement of Coffee Fruit Leather

    Directory of Open Access Journals (Sweden)

    Edahwati Luluk

    2016-01-01

    Full Text Available Recently, Indonesia’s dependence on petroleum is to be reduced and even eliminated. To overcome the problem of finding the needed alternative materials that can produce ethanol, in this case as a substitute material or a transport fuel mix, boosting the octane number, and gasoline ethanol (gasohol can be conducted. In the red coffee processing (cooking that will produce 65% and 35% of coffee beans, coffee leather waste is a source of organic material with fairly high cellulose content of 46.82%, 3.01% of pectin and 7.68% of lignin. In this case, its existence is abundant in Indonesia and optimally utilized. During the coffee fruit peeling, the peel waste is only used as a mixture of animal feed or simply left to rot. The purpose of this study was to produce and improve the quality of the fruit skin of bioethanol from coffee cellulose. However, to improve the quality of bioethanol, the production of the lignin content in the skin of the coffee fruit should be eliminated or reduced. Hydrolysis process using organosolve method is expected to improve the quality of bioethanol produced. In particular, the use of enzyme Saccharomyces and Zymmomonas will change the resulting sugar into bioethanol. On one hand, by using batch distillation process for 8 hours with Saccharomyces, bioethanol obtains high purity which is 39.79%; on the other hand, by using the same batch distillation process with Zymmomonas, the bioethanol obtains 38.78%.

  16. Production and Purification of Bioethanol from Molasses and Cassava

    Science.gov (United States)

    Maryana, Roni; Wahono, Satriyo Krido

    2009-09-01

    This research aim to analysis bioethanol purification process. Bioethanol from cassava has been produced in previous research and the ethanol from molasses was taken from Bekonang region. The production of bioethanol from cassava was carried out through several processes such as homogenization, adding of α-amylase, β-amylase and yeast (Saccharomyces c). Two types of laboratory scale distillator have been used, the first type is 50 cm length and 4 cm diameter. The second type distillator is 30 cm length and 9 cm diameter. Both types have been used to distill bioethanol The initial concentration after the fermentation process is 15% for bioethanol from cassava and 20-30% ethanol from molasses. The results of first type distillator are 90% of bioethanol at 50° C and yield 2.5%; 70% of bioethanol at 60° C and yield 11.2%. 32% of bioethanol at 70° C and yield 42%. Meanwhile the second distillator results are 84% of bioethanol at 50° C with yield 12%; 51% of bioethanol at 60° C with yield 35.5%; 20% of bioethanol at 70° C with yield 78.8%; 16% of bioethanol at 80° C with yield 81.6%. The ethanol from molasses has been distillated once times in Bekonang after the fermentation process, the yield was about 20%. In this research first type distillator and the initial concentration is 20% has been used. The results are 95% of bioethanol at 75° C with yield 8%; 94% of bioethanol at 85° C with yield 13% when vacuum pump was used. And 94% of bioethanol at 90° C with yield 3.7% and 94% of bioethanol at 96° C with yield 10.27% without vacuum pump. The bioethanol purification use second type distillator more effective than first type distillator.

  17. EFFICIENT RECOVERY OF BIOETHANOL USING NOVEL PERVAPORATION-DEPHLEGMATION PROCESS

    Science.gov (United States)

    Bioethanol is the most important liquid fuel made in the U.S. from domestically produced renewable resources. Traditional production of bioethanol involves batch fermation of biomass followed by ethanol recovery from the fermentation broths using distillation. The distillation st...

  18. Recent trends in bioethanol production

    Directory of Open Access Journals (Sweden)

    Semenčenko Valentina V.

    2011-01-01

    Full Text Available The rapid depletion of the world petroleum supply and the increasing problem of greenhouse gas effects have strenghtened the worldwide interest in alternative, nonpetroleum sources of energy. Bioethanol accounts for the majority of biofuel use worldwide, either as a fuel or a gasoline enhancer. Utilization of bioethanol can significantly reduce petroleum use and exhaust greenhouse gas emission. The production of this fuel is increasing over the years, and has reached the level of 73.9 billion liters during the year 2009. Even though ethanol production for decades mainly depended on energy crops containing starch and sugar (corn, sugar cane etc., new technologies for converting lignocellulosic biomass into ethanol are under development today. The use of lignocellulosic biomass, such as agricultural residues, forest and municipial waste, for the production of biofuels will be unavoidable if liquid fossil fuels are to be replaced by renewable and sustainable alternatives. For biological conversion of lignocellulosic biomass, pretreatment plays a central role affecting all unit operations in the process and is also an important cost deterrent to the comercial viability of the process. The key obstacles are: pretreatment selection and optimization; decreasing the cost of the enzymatic hydrolysis; maximizing the conversion of sugars (including pentoses to ethanol; process scale-up and integration to minimize energy and water demand; characterization and evaluation of the lignin co-product; and lastly, the use of the representative and reliable data for cost estimation, and the determination of environmental and socio-economic impacts. Currently, not all pretreatments are capable of producing biomass that can be converted to sugars in high enough yield and concentration, while being economically viable. For the three main types of feedstocks, the developement of effective continuous fermentation technologies with near to 100% yields and elevated

  19. Scientific challenges of bioethanol production in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Henrique V.; Lopes, Mario Lucio [Fermentec, Piracicaba, SP (Brazil); Castro Oliveira, Juliana Velasco de [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Sao Paulo (Brazil); Buckeridge, Marcos S. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Sao Paulo (Brazil); Universidade de Sao Paulo, INCT do Bioetanol (Brazil). Dept. de Botanica; Goldman, Gustavo Henrique [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Sao Paulo (Brazil); Universidade de Sao Paulo, INCT do Bioetanol (Brazil). Dept. de Ciencias Farmaceuticas

    2011-09-15

    Bioethanol (fuel alcohol) has been produced by industrial alcoholic fermentation processes in Brazil since the beginning of the twentieth century. Currently, 432 mills and distilleries crush about 625 million tons of sugarcane per crop, producing about 27 billion liters of ethanol and 38.7 million tons of sugar. The production of bioethanol from sugarcane represents a major large-scale technology capable of producing biofuel efficiently and economically, providing viable substitutes to gasoline. The combination of immobilization of CO{sub 2} by sugarcane crops by photosynthesis into biomass together with alcoholic fermentation of this biomass has allowed production of a clean and high-quality liquid fuel that contains 93% of the original energy found in sugar. Over the last 30 years, several innovations have been introduced to Brazilian alcohol distilleries resulting in the improvement of plant efficiency and economic competitiveness. Currently, the main scientific challenges are to develop new technologies for bioethanol production from first and second generation feedstocks that exhibit positive energy balances and appropriately meet environmental sustainability criteria. This review focuses on these aspects and provides special emphasis on the selection of new yeast strains, genetic breeding, and recombinant DNA technology, as applied to bioethanol production processes. (orig.)

  20. Use of tropical maize for bioethanol production

    Science.gov (United States)

    Tropical maize is an alternative energy crop being considered as a feedstock for bioethanol production in the North Central and Midwest United States. Tropical maize is advantageous because it produces large amounts of soluble sugars in its stalks, creates a large amount of biomass, and requires lo...

  1. Bioethanol from different Finnish agricultural carbon sources

    Energy Technology Data Exchange (ETDEWEB)

    Kautola, H.; Kymaelaeinen, M.; Tokeensuu, L.; Alatalo, T. (HAMK University of Applied Sciences, Degree Programme in Biotechnology and Food Engineering, Haemeenlinna (Finland)); Caerdenas, R. (Universidad Central del Ecuador, Facultad Ciencias Quimicas, Escuela de Quimica, Av. America. Ciudadela Universitaria, Quito (Ecuador)); Siukola, K.; Naesi, J. (Suomen Biojalostus Oy, Renko (Finland))

    2007-07-01

    Bioethanol in fuel and its domestic production has become a great issue in Finland during the last few years. There has been discussion about what kind of raw materials should be used and are there any local priorities. In the years 2004-2007 local farmers in Haem e , in southern part of Finland, started to find alternative use for sugar beet due to drastic reduction of domestic sugar production in the near future. This was also the start of the experimental studies on bi oethanol production. The aim of the study was to find out how the change of carbon source will effect on bi oethanol yield. The bioethanol production was studied in laboratory scale using carbon sources of saccharose, glucose, sugar beet juice, sugar beet mash and barley hydrolysates pretreated with amylases, (beta-glucanase and xylanase). The yeast used was Saccharomyces sp. The pre experiments were performed in 250 mL flasks to optimize carbon, nitrogen and salts contents in production medium, also comparing different carbon sources and mixtures. The production was then studied in a 30 liter fermenter running for 36 hours. The preliminary studies showed that barley hydrolysate gave the best result 2,4% in bioethanol concentration during the performed fermentations, and saccharose was the best substrate in shake flask fermentations with a 9,6% bioethanol concentration. (orig.)

  2. Scientific challenges of bioethanol production in Brazil.

    Science.gov (United States)

    Amorim, Henrique V; Lopes, Mário Lucio; de Castro Oliveira, Juliana Velasco; Buckeridge, Marcos S; Goldman, Gustavo Henrique

    2011-09-01

    Bioethanol (fuel alcohol) has been produced by industrial alcoholic fermentation processes in Brazil since the beginning of the twentieth century. Currently, 432 mills and distilleries crush about 625 million tons of sugarcane per crop, producing about 27 billion liters of ethanol and 38.7 million tons of sugar. The production of bioethanol from sugarcane represents a major large-scale technology capable of producing biofuel efficiently and economically, providing viable substitutes to gasoline. The combination of immobilization of CO₂ by sugarcane crops by photosynthesis into biomass together with alcoholic fermentation of this biomass has allowed production of a clean and high-quality liquid fuel that contains 93% of the original energy found in sugar. Over the last 30 years, several innovations have been introduced to Brazilian alcohol distilleries resulting in the improvement of plant efficiency and economic competitiveness. Currently, the main scientific challenges are to develop new technologies for bioethanol production from first and second generation feedstocks that exhibit positive energy balances and appropriately meet environmental sustainability criteria. This review focuses on these aspects and provides special emphasis on the selection of new yeast strains, genetic breeding, and recombinant DNA technology, as applied to bioethanol production processes. PMID:21735264

  3. Influence of Yeast and Enzyme Variation on Bioethanol Yield

    OpenAIRE

    Liu, Guifang

    2012-01-01

    This is a study concerning the procedures of bio-ethanol production from the wood based biomass hydrolysates’ fermentation process. Required process conditions are analyzed and experimental data include raw material properties; bio-ethanol productivity and its impacts are evaluated to illustrate how the bio-ethanol production potential relates with the variation of the yeasts types. Theoretical background and experimental based research are majorly applied to achieve two targets that ...

  4. Bioethanol from Lignocellulosic Biomass: Current Findings Determine Research Priorities

    OpenAIRE

    Qian Kang; Lise Appels; Tianwei Tan; Raf Dewil

    2014-01-01

    “Second generation” bioethanol, with lignocellulose material as feedstock, is a promising alternative for first generation bioethanol. This paper provides an overview of the current status and reveals the bottlenecks that hamper its implementation. The current literature specifies a conversion of biomass to bioethanol of 30 to ~50% only. Novel processes increase the conversion yield to about 92% of the theoretical yield. New combined processes reduce both the number of operational steps and t...

  5. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    of fermentable sugars (glucose) as cellulose is tightly linked to hemicellulose and lignin. Lignocellulose is disrupted during pretreatment, but to degrade cellulose to single sugars, lignocellulolytic enzymes such as cellulases and hemicellulases are needed. Lignocellulolytic enzymes are costly...... for the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol processes....... Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  6. Bioethanol from biomass containing lignocellulose - potential and technologies; Bioethanol aus lignocellulosehaltiger Biomasse - Potenziale und Technologien

    Energy Technology Data Exchange (ETDEWEB)

    Faulstich, M.; Schieder, D.; Wagner, U.; Staudenbauer, W.; Igelspacher, R.; Schwarz, W.H.; Meyer-Pittroff, R.; Antoni, D. [Technische Univ. Muenchen (Germany); Prechtl, S. [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany); Bauer, W.P.; Kroner, T. [ia GmbH, Wissensmanagement und Ingenieurleistungen, Muenchen (Germany)

    2004-07-01

    The EU biofuels directive and the tax exemption of biogenic fuels have established a new market for bioethanol in the transport sector. Low-cost lignocellulose biomass (LCB) may be an option for broadening the raw materials base for bioethanol production and to meet the increasing demand for biogenic fuels. Appropriate conversion technologies have been the subject of much research worldwide during the past few years. Against this background, the Bavarian State Minister of Agriculture and Forestry initiated a feasibility study on ethanol production by bioconversion in Bavaria. (orig.)

  7. Hydrogen-based power generation from bioethanol steam reforming

    International Nuclear Information System (INIS)

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint

  8. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  9. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  10. Potential of bioethanol as a chemical building block for biorefineries: Preliminary sustainability assessment of 12 bioethanol-based products

    NARCIS (Netherlands)

    Posada Duque, J.A.; Patel, A.D.; Roes, A.L.; Blok, K.; Faaij, A.P.C.; Patel, M.K.

    2013-01-01

    The aim of this study is to present and apply a quick screening method and to identify the most promising bioethanol derivatives using an early-stage sustainability assessment method that compares a bioethanol-based conversion route to its respective petrochemical counterpart. The method combines, b

  11. Spartina argentinensis as feedstock for bioethanol

    Directory of Open Access Journals (Sweden)

    Emiliano Jozami

    2013-06-01

    Full Text Available Eighty-five percent of the energy consumed in the world comes from non-renewable sources. The transportation sector, highly dependent on oil, is responsible for 20-27% of the world primary energy consumption and for 13-28% of Greenhouse Gases (GHG emissions. The main renewable energy sources that can supply this sector are bioethanol and biodiesel. Production of these biofuels is rapidly expanding mainly through food raw materials such as corn, sugar cane, soybean and rapeseed, decreasing their availability as food in the market, thereby raising their price. These food-derived biofuels are called “first generation biofuels”. There are other renewable sources that can be used to produce bioethanol, called second-generation biofuels, which have the great advantage of using lignocellulosic materials, thereafter they do not compete with food crops for fertile land. This paper describes the possibility of producing bioethanol and/or electricity using pellets from natural rangelands in the Bajos Submeridionales (Submeridional Lowlands of the province of Santa Fe, Argentina, where the dominant species is Spartina argentinensis, a C4 perennial grass with high photosynthetic rate, which tolerates the conditions of alkalinity and the recurrent droughts and floods that shape the region. According to our estimates, enough ethanol could be produced in this region to satisfy the energy demand of vehicles with Otto combustion cycle in several Argentine provinces. Pellets production would allow electricity generation via syngas and power turbines. This would allow the production of liquid fuel and/or electricity with sustainability criteria, reducing the emission of GHG and generating jobs, economical growth and development in a depopulated region.

  12. Production of olefins from bioethanol. Catalysts, mechanism

    Directory of Open Access Journals (Sweden)

    Kusman Dossumov

    2012-12-01

    Full Text Available This review describes methods of catalytic obtaining from bioethanol of valuable industrial products – olefins, particularly ethylene. Аmong olefins, ethylene is the most popular key raw material of petrochemical synthesis. The scope of appllication of ethylene is almost unlimited in petrochemical products: polyethylene, ethylbenzene, styrene, ethylene dichloride, vinyl chloride etc. It also examines catalysts for the production of olefins and their properties. The most promising and commercially advantageous process of ethylene production by catalytic dehydration of ethanol on catalysts based on modified alumina. And this review discusses the mechanisms of catalytic conversion of ethanol to ethylene.

  13. Potential development of bioethanol production in Vojvodina

    Energy Technology Data Exchange (ETDEWEB)

    Dodic, Sinisa N.; Popov, Stevan D.; Dodic, Jelena M.; Rankovic, Jovana A.; Zavargo, Zoltan Z. [Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Bul. cara Lazara 1, Novi Sad 21000, Vojvodina (RS)

    2009-12-15

    The Autonomous Province of Vojvodina is an Autonomous Province in Serbia, containing about 27% of its total population according to the 2002 Census. Contribution of renewable energy sources in total energy consumption of Vojvodina contemporary amounts to less than 1%, apropos 280 GWh/year. By combining of methods of introduction of new and renewable sources, systematic application of methods for increasing of energetic efficacy, as well as of introduction of the new technologies, percentage of contribution of the non-conventional energy sources in Vojvodina could be increased to as much as 20%. This paper presents the potential of development of bioethanol production in Vojvodina. Production of bioethanol on small farms can be successfully applied for processing of only 30 kg of corn per day, with obtaining of crude ethanol in the so-called 'brandy ladle' and use of lygnocellulosic agricultural wastes as an energy source. In a case of construction of a larger number of such plants, the only possible solution is seen in the principle of construction of the so-called 'satellite plants', which will on small farm produce crude ethanol, with obtaining and consumption of stillage for animal feeding, and consumption of agricultural wastes as energetic fuels. If stillage is to be used as feed in wet feeding, it is estimated that, because of restrictions established by the magnitude of animal farm, the upper limit of capacity of such enterprises that process is at some 10-15 tons of corn per day, and production of 3000-3500 hL of absolute ethanol per day. In such a case, for animal feeding necessary is to have herd with 1300-1700 of milking cows or 5000-25,000 heads of sheep and/or pigs. Technological model of separate grain processing ad bioethanol production from dextrose hydrolysates of starch is interesting for countries possessing plants for bioethanol production from molasses and plants for cereals processing into starch and dextrose hydrolysates

  14. The bio-ethanol production with the thin stillage recirculation

    Directory of Open Access Journals (Sweden)

    M. Rakin

    2009-01-01

    Full Text Available In this paper, the bioethanol production with the thin stillage recirculation in mashing was investigated. The mashing was performed with recirculation of: 0, 10, 20 and 30 % of the thin stillage. The thin stillage recirculation was repeated six times. In the experiment without the thin stillage, the recirculation bioethanol yield (compared to the theoretical yield was 97.96 %, which implicates that the experiment conditions were chosen and performed well. With the addition of the thin stillage, the bioethanol yield increased and was above 100 %. Higher bioethanol yield than 100 % can be explained by the fact that the thin stillage contains carbohydrates, amino acids and yeast cells degradation products. The bioethanol yield increased with the increased number of thin stillage recirculation cycles. Dry matter content in fermenting slurry increased with the increased thin stillage quantity and the number of the thin stillage recirculation cycles (8.04 % for the first and 9.40 % for the sixth cycle. Dry matter content in thin stillage increased with the increased thin stillage quantity and the number of thin stillage recirculation cycles. Based on the obtained results it can be concluded that thin stillage recirculation increased the bioethanol yield. The highest bioethanol yields were obtained with recirculation of 10% thin stillage.

  15. Use of tropical maize for bioethanol production.

    Science.gov (United States)

    Chen, Ming-Hsu; Kaur, Prabhjot; Dien, Bruce; Below, Frederick; Vincent, Michael L; Singh, Vijay

    2013-08-01

    Tropical maize is an alternative energy crop being considered as a feedstock for bioethanol production in the North Central and Midwest United States. Tropical maize is advantageous because it produces large amounts of soluble sugars in its stalks, creates a large amount of biomass, and requires lower inputs (e.g. nitrogen) than grain corn. Soluble sugars, including sucrose, glucose and fructose were extracted by pressing the stalks at dough stage (R4). The initial extracted syrup fermented faster than the control culture grown on a yeast extract/phosphate/sucrose medium. The syrup was subsequently concentrated 1.25-2.25 times, supplemented with urea, and fermented using Saccharomyces cerevisiae for up to 96 h. The final ethanol concentrations obtained were 8.1 % (v/v) to 15.6 % (v/v), equivalent to 90.3-92.2 % of the theoretical yields. However, fermentation productivity decreased with sugar concentration, suggesting that the yeast might be osmotically stressed at the increased sugar concentrations. These results provide in-depth information for utilizing tropical maize syrup for bioethanol production that will help in tropical maize breeding and development for use as another feedstock for the biofuel industry. PMID:23508398

  16. Steam reforming of technical bioethanol for hydrogen production

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Johansson, Roger; Møller, Martin Hulbek;

    2008-01-01

    Essentially all work on ethanol steam reforming so far has been carried out using simulated bioethanol feedstocks, which means pure ethanol mixed with water. However, technical bioethanol consists of a lot of different components including sugars, which cannot be easily vaporized and steam reformed....... For ethanol steam reforming to be of practical interest, it is important to avoid the energy-intensive purification steps to fuel grade ethanol. Therefore, it is imperative to analyze how technical bioethanol, with the relevant impurities, reacts during the steam reforming process. We show how three different...... bioethanol will result in a faster catalyst deactivation than what is observed when using pure ethanol-water mixtures because of contaminants remaining in the feed. However, the initial activity of the catalysts are not affected by this, hence it is important to not only focus on catalyst activity but rather...

  17. Sustainable Process Design of Biofuels: Bioethanol Production from Cassava rhizome

    OpenAIRE

    Mangnimit, S.; Malakul, P.; Gani, Rafiqul

    2013-01-01

    This study is focused on the sustainable process design of bioethanol production from cassava rhizome. The study includes: process simulation, sustainability analysis, economic evaluation and life cycle assessment (LCA). A steady state process simulation if performed to generate a base case design of the bioethanol conversion process using cassava rhizome as a feedstock. The sustainability analysis is performed to analyze the relevant indicators in sustainability metrics, todefinedesign/retro...

  18. Evaluation and Modification of Processes for Bioethanol Separation and Production

    OpenAIRE

    Johnner P Sitompul; W. W.; Tatang H. Soerawidjaja

    2012-01-01

    This paper concerns on process evaluation and modification for bioethanol separation and production by applying pinch technology. Further, the paper is also focused on obtaining a most energy-efficient process among several processes. Three basic process configurations of bioethanol separation and production were selected for this study. The three separations and production systems are Othmer process, Barbet process and a separation process that operates under vacuum condition. Basically, eac...

  19. Bioethanol jako palivo ve spalovacích motorech

    OpenAIRE

    Mikule, Luděk

    2011-01-01

    The aim of this bachelor's thesis is to analyse the possibilities of bioethanol production and its utilization as fuel in combustion engines. The first part of this paper focuses on the production of bioethanol from sugar beet, cereal and lignocelluloses substance. The comparison of the production potential of various raw materials for biothenol production is also included in this section. The remaining part of the thesis introduces the possible uses of fuels with a different portion of bioet...

  20. The bio-ethanol production with the thin stillage recirculation

    OpenAIRE

    Rakin, M.; J. Pejin; O. Grujić; Lj. Mojović; D. Pejin

    2009-01-01

    In this paper, the bioethanol production with the thin stillage recirculation in mashing was investigated. The mashing was performed with recirculation of: 0, 10, 20 and 30 % of the thin stillage. The thin stillage recirculation was repeated six times. In the experiment without the thin stillage, the recirculation bioethanol yield (compared to the theoretical yield) was 97.96 %, which implicates that the experiment conditions were chosen and performed well. With the addition of the thin still...

  1. Effect of wheat gluten proteins on bioethanol yield from grain

    Energy Technology Data Exchange (ETDEWEB)

    Buresova, Iva [Agrotest Fyto, Ltd., Havlickova 2787/121, 767 01 Kromeriz (Czech Republic); Hrivna, Ludek [Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic)

    2011-04-15

    Bioethanol can be used as motor fuel and/or as a gasoline enhancer. A high yield feedstock for bioethanol production is cereal grain. Cereal grains containing less gluten proteins (glutenin and gliadin), but high starch, are favoured by distillers because they increase the bioethanol conversion. The direct effect of wheat gluten proteins on bioethanol yield was studied on triticale grain. Examined triticale Presto 1R.1D{sub 5+10}-2 and Presto Valdy were developed by introducing selected segments of wheat chromosome 1D into triticale chromosome 1R. Even if the samples analysed in this study do not afford to make definitive assumptions, it can be noticed that in analysed cases the presence of gliadin had more significant effect on investigated parameters than the presence of glutenin. Despite the presence of glutenin subunits did not significantly decrease the investigated parameters - specific weight, Hagberg falling number and starch content in grain met the requirements for grain for bioethanol production - protein content was higher than is optimal. The fermentation experiments demonstrated good bioethanol yields but depression in grain yields caused by the presence of wheat gliadin and glutenin decreased the energy balance of Presto Valdy and Presto 1R.1D{sub 5+10}-2. (author)

  2. Environmental sustainability assessment of bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Bio-ethanol is playing an important role in renewable energy for transport according to Thai government policy. This study aims to evaluate the energy efficiency and renewability of bio-ethanol system and identify the current significant environmental risks and availability of feedstocks in Thailand. Four of the seven existing ethanol plants contributing 53% of the total ethanol fuel production in Thailand have been assessed by the net energy balance method and Life Cycle Assessment (LCA). A renewability and net energy ratio portfolio has been used to indicate whether existing bio-ethanol production systems have net energy gain and could help reduce dependency on fossil energy. In addition, LCA has been conducted to identify and evaluate the environmental hotspots of 'cradle to gate' bio-ethanol production. The results show that there are significant differences of energy and environmental performance among the four existing production systems even for the same feedstock. The differences are dependent on many factors such as farming practices, feedstock transportion, fuel used in ethanol plants, operation practices and technology of ethanol conversion and waste management practices. Recommendations for improving the overall energy and environmental performance of the bio-ethanol system are suggested in order to direct the bio-ethanol industry in Thailand towards environmental sustainability.

  3. To bioethanol through genomics of microbial synergies

    Energy Technology Data Exchange (ETDEWEB)

    Epstein,

    2013-08-27

    The strategic goal of this project was to advance our understanding of activities and interactions of microorganisms through the advancement of microbial cultivation approaches. In this project we aimed to develop, advance, and use both culture-dependent techniques to address our main hypothesis: “uncultivable” microorganisms and their consortia represent a untapped source of novel species for efficient production of bioethanol. This project has two specific goals: 1. To develop and optimize a high throughput diffusion chamber cultivation approach to isolation of novel environmental bacteria relevant to DOE missions. 2. To use the optimized method to identify and cultivate novel microbial species and their consortia that synergistically hydrolyze various substrates and ferment the sugars to ethanol.

  4. Bioethanol Production Optimization: A Thermodynamic Analysis

    Science.gov (United States)

    Álvarez, Víctor H.; Rivera, Elmer Ccopa; Costa, Aline C.; Filho, Rubens Maciel; Maciel, Maria Regina Wolf; Aznar, Martín

    In this work, the phase equilibrium of binary mixtures for bioethanol production by continuous extractive process was studied. The process is composed of four interlinked units: fermentor, centrifuge, cell treatment unit, and flash vessel (ethanol-congener separation unit). A proposal for modeling the vapor-liquid equilibrium in binary mixtures found in the flash vessel has been considered. This approach uses the Predictive Soave-Redlich-Kwong equation of state, with original and modified molecular parameters. The congeners considered were acetic acid, acetaldehyde, furfural, methanol, and 1-pentanol. The results show that the introduction of new molecular parameters r and q in the UNIFAC model gives more accurate predictions for the concentration of the congener in the gas phase for binary and ternary systems.

  5. Coproduction of bioethanol with other biofuels

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Westermann, Peter

    2007-01-01

    Large scale transformation of biomass to more versatile energy carriers has most commonly been focused on one product such as ethanol or methane. Due to the nature of the biomass and thermodynamic and biological constraints, this approach is not optimal if the energy content of the biomass...... pilot-scale biorefineries for multiple fuel production and also discuss perspectives for further enhancement of biofuel yields from biomass. The major fuels produced in this refinery are ethanol, hydrogen, and methane. We also discuss the applicability of our biorefinery concept as a bolt-on plant...... on conventional corn- or grain-based bioethanol plants, and suggest that petroleum-base refineries and biorefineries appropriately can be coupled during the transition period from a fossil fuel to a renewable fuel economy....

  6. DSMZ 24726 for second generation bioethanol production

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to a novel anaerobic, extreme thermophilic, ethanol high- yielding bacterium. The invention is based on the isolation of the bacterial strain referred to herein as "DTU01", which produces ethanol as the main fermentation product, followed by acetate and lactate. The ....... The isolated organism is an extremely interesting and very promising organism for the establishment of a sustainable bioethanol production process. The invention further relates to a method for producing a fermentation product such as ethanol.......The present invention relates to a novel anaerobic, extreme thermophilic, ethanol high- yielding bacterium. The invention is based on the isolation of the bacterial strain referred to herein as "DTU01", which produces ethanol as the main fermentation product, followed by acetate and lactate...

  7. Produksi bioethanol dari jerami padi (Oryza sativa) melalui hidrolisis asan dan fermentasi dengan Saccharomyces cerevisiae

    OpenAIRE

    SRI KUSUMASTUTI HAYUNINGTYAS; SUNARTO; SITI LUSI ARUM SARI

    2014-01-01

    Hayuningtyas SK, Sunarto, Sari SLA. 2013. The production of bioethanol from rice straw (Oryza sativa) by acid hydrolysis and fermentation with Saccharomyces cerevisiae. Bioteknologi 11: 1-4. Bioethanol is one of the alternative fuels that are considered more environmentally friendly. Bioethanol can be obtained from material that contains cellulose, such as rice straw. This study aimed to determine the optimum fermentation time to product bioethanol from rice straw hydrolysis and measured of b...

  8. Effects of bioethanol ultrasonic generated aerosols application on diesel engine performances

    OpenAIRE

    Mariasiu Florin; Burnete Nicolae V.; Moldovanu Dan; Varga Bogdan O.; Iclodean Calin; Kocsis Levente

    2015-01-01

    In this paper the effects of an experimental bioethanol fumigation application using an experimental ultrasound device on performance and emissions of a single cylinder diesel engine have been experimentally investigated. Engine performance and pollutant emissions variations were considered for three different types of fuels (biodiesel, biodiesel-bioethanol blend and biodiesel and fumigated bioethanol). Reductions in brake specific fuel consumption and NOx ...

  9. Options for decentralized production of bioethanol from lignocelluloses; Moeglichkeiten zur dezentralen Produktion von Bioethanol aus Lignocellulosen

    Energy Technology Data Exchange (ETDEWEB)

    Schieder, D.; Schneider, R.; Prechtl, S.; Faulstich, M. [ATZ-EVUS, Entwicklungszentrum Verfahrenstechnik, Abt. Umwelt, Sulzbach-Rosenberg (Germany)

    2003-07-01

    The report discusses possibilities for a decentralized production of bioethanol from lignocelluloses. An agricultural distillery is used as an example for a concept of applying lignocelluloses in order to achieve a partial substitution of 'costly' material by products from set-aside agricultural land as well as agricultural by- and waste-products. Target is to reduce production costs to such an extent that a marketable selling price for the produced alcohol may be achieved. This, on the one hand, requires appropriate processes for the decomposition of raw materials and, on the other hand, a systematic recycling of the occurring waste material. (orig.)

  10. Diversity of lactic acid bacteria of the bioethanol process

    Directory of Open Access Journals (Sweden)

    Azevedo Vasco

    2010-11-01

    Full Text Available Abstract Background Bacteria may compete with yeast for nutrients during bioethanol production process, potentially causing economic losses. This is the first study aiming at the quantification and identification of Lactic Acid Bacteria (LAB present in the bioethanol industrial processes in different distilleries of Brazil. Results A total of 489 LAB isolates were obtained from four distilleries in 2007 and 2008. The abundance of LAB in the fermentation tanks varied between 6.0 × 105 and 8.9 × 108 CFUs/mL. Crude sugar cane juice contained 7.4 × 107 to 6.0 × 108 LAB CFUs. Most of the LAB isolates belonged to the genus Lactobacillus according to rRNA operon enzyme restriction profiles. A variety of Lactobacillus species occurred throughout the bioethanol process, but the most frequently found species towards the end of the harvest season were L. fermentum and L. vini. The different rep-PCR patterns indicate the co-occurrence of distinct populations of the species L. fermentum and L. vini, suggesting a great intraspecific diversity. Representative isolates of both species had the ability to grow in medium containing up to 10% ethanol, suggesting selection of ethanol tolerant bacteria throughout the process. Conclusions This study served as a first survey of the LAB diversity in the bioethanol process in Brazil. The abundance and diversity of LAB suggest that they have a significant impact in the bioethanol process.

  11. Bioethanol production from dried sweet sorghum stalk

    Energy Technology Data Exchange (ETDEWEB)

    Almodares, A.; Etemadifar, Z.; Ghoreishi, F.; Yosefi, F. [Biology Dept. Univ. of Isfahan, Isfahan (Iran, Islamic Republic of)], e-mail: aalmodares@yahoo.com

    2012-11-01

    Bioethanol as a renewable transportation fuel has a great potential for energy and clean environment. Among crops sweet sorghum is one of the best feedstock for ethanol production under hot and dry climatic conditions. Because it has higher tolerance to salt and drought comparing to sugarcane and corn that are currently used for bio-fuel production in the world. Generally mills are used to extract the juice from sweet sorghum stalks. Three roller mills extract around nearly 50 percent of the juice and more mills is needed to extract higher percentage of the juice. More over under cold weather the stalks become dry and juice is not extracted from the stalk, therefore reduce harvesting period. In this study stalks were harvested, leaves were stripped from the stalks and the stalks were chopped to nearly 4 mm length and sun dried. The dry stalks were grounded to 60 mesh powder by a mill. Fermentation medium consists of 15-35% (w/w) sweet sorghum powder, micronutrients and active yeast inoculum from 0.5-1% (w/w) by submerge fermentation method. The fermentation time and temperature were 48-72 hours and 30 deg, respectively. The results showed the highest amount of ethanol (14.5 % w/w sorghum) was produced with 10% sweet sorghum powder and 1% of yeast inoculum, three day fermentation at 30 deg.

  12. Pretreatments employed in lignocellulosic materials for bioethanol production: an overview

    Directory of Open Access Journals (Sweden)

    Danay Carrillo-Nieves

    2014-01-01

    Full Text Available Lignocellulosic materials are raw materials with high cellulose content and they constitute the most abun- dant sources of biomass on planet. They are attractive for their low cost and high availability in diverse climates and places for the bioethanol production, however, the main impediment for its use is the appro- priate selection from the technological and economic point of view of the stages of pretreatments and hydrolysis, that allow the breaking down of the lignocellulosic matrix to obtain the necessary substrates in the processes of fermentation. Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol, which have been divided in three groups for its study in: physi- cal-chemical, hydrothermal and biological. The aim of this paper is to analyze the potential of several pre- treatment methods for bioethanol production from lignocellulosic materials.

  13. Primary certification of reference material for electrolytic conductivity of bioethanol

    Science.gov (United States)

    da Silva, L. F.; Gomes, M. R. F.; Cassini, G. C.; Faria, A. C. V.; Fraga, I. C. S.

    2016-07-01

    Nowadays the preservation of the planet is spreading into the international scene with the use of renewable energy sources such as bioethanol. The challenge is to guarantee the quality of produced bioethanol, and the electrolytic conductivity (EC) is one of the specified parameters for this purpose. However, is necessary to demonstrate the metrological traceability of the measurement results for EC in this matrix. This study presents the certification of a reference material for EC in bioethanol by using only primary measurements. The value of primary certified reference material (CRM) is (0.77 ± 0.06) µS.cm-1, and its use will provide the metrological traceability needed for measurement results in laboratories.

  14. Production of Bioethanol From Lignocellulosic Biomass Using Thermophilic Anaerobic Bacteria

    DEFF Research Database (Denmark)

    Georgieva, Tania I.

    2006-01-01

    Bioethanol (ethanol produced from biomass) as a motor fuel is an attractive renewable fully sustainable energy sources as a means of lowering dependence on fossil fuels and air pollution towards greenhouse gasses, particularly CO2. Bioethanol, unlike gasoline, is an oxygenated fuel, which burns...... cleaner and thus lowers emissions of CO, NOx and unburned hydrocarbons pollutants, which are constituents in ground level ozone and particulate matter pollution (smog). In addition, bioethanol can replace currently used gasoline octane booster MTBE (methyl tertiary butyl ether), which causes serious...... are residual lignocellulose (wastes) created from forest industries or from agricultural food crops (wheat straw, corn stover, rice straw). The lignocellulose contains lignin, which binds carbohydrate polymers (cellulose and hemicellulose) forming together a rather resistant structure. In this regards, a pre...

  15. Bioethanol production from Ficus religiosa leaves using microwave irradiation.

    Science.gov (United States)

    Klein, Miri; Griess, Ofir; Pulidindi, Indra Neel; Perkas, Nina; Gedanken, Aharon

    2016-07-15

    A microwave assisted feasible process for the production of bioethanol from Ficus religiosa leaves was developed. Under the process conditions (8 min. microwave irradiation, 1 M HCl), 10.1 wt% glucose yield was obtained from the leaves. Microwave based hydrolysis process yielded higher glucose content (10.1 wt%) compared to the conventional hydrothermal process (4.1 wt%). Upon fermentation of the hydrolysate using Baker's yeast, 3 wt% (dry wt. basis) of bioethanol was produced. PMID:27064733

  16. Microwave pretreatment of switchgrass for bioethanol production

    Science.gov (United States)

    Keshwani, Deepak Radhakrishin

    Lignocellulosic materials are promising alternative feedstocks for bioethanol production. These materials include agricultural residues, cellulosic waste such as newsprint and office paper, logging residues, and herbaceous and woody crops. However, the recalcitrant nature of lignocellulosic biomass necessitates a pretreatment step to improve the yield of fermentable sugars. The overall goal of this dissertation is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass. Existing research on bioenergy and value-added applications of switchgrass is reviewed in Chapter 2. Switchgrass is an herbaceous energy crop native to North America and has high biomass productivity, potentially low requirements for agricultural inputs and positive environmental impacts. Based on results from test plots, yields in excess of 20 Mg/ha have been reported. Environmental benefits associated with switchgrass include the potential for carbon sequestration, nutrient recovery from run-off, soil remediation and provision of habitats for grassland birds. Published research on pretreatment of switchgrass reported glucose yields ranging from 70-90% and xylose yields ranging from 70-100% after hydrolysis and ethanol yields ranging from 72-92% after fermentation. Other potential value-added uses of switchgrass include gasification, bio-oil production, newsprint production and fiber reinforcement in thermoplastic composites. Research on microwave-based pretreatment of switchgrass and coastal bermudagrass is presented in Chapter 3. Pretreatments were carried out by immersing the biomass in dilute chemical reagents and exposing the slurry to microwave radiation at 250 watts for residence times ranging from 5 to 20 minutes. Preliminary experiments identified alkalis as suitable chemical reagents for microwave-based pretreatment. An evaluation of different alkalis identified sodium hydroxide as the most effective alkali reagent. Under optimum pretreatment

  17. Microwave pretreatment of switchgrass for bioethanol production

    Science.gov (United States)

    Keshwani, Deepak Radhakrishin

    Lignocellulosic materials are promising alternative feedstocks for bioethanol production. These materials include agricultural residues, cellulosic waste such as newsprint and office paper, logging residues, and herbaceous and woody crops. However, the recalcitrant nature of lignocellulosic biomass necessitates a pretreatment step to improve the yield of fermentable sugars. The overall goal of this dissertation is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass. Existing research on bioenergy and value-added applications of switchgrass is reviewed in Chapter 2. Switchgrass is an herbaceous energy crop native to North America and has high biomass productivity, potentially low requirements for agricultural inputs and positive environmental impacts. Based on results from test plots, yields in excess of 20 Mg/ha have been reported. Environmental benefits associated with switchgrass include the potential for carbon sequestration, nutrient recovery from run-off, soil remediation and provision of habitats for grassland birds. Published research on pretreatment of switchgrass reported glucose yields ranging from 70-90% and xylose yields ranging from 70-100% after hydrolysis and ethanol yields ranging from 72-92% after fermentation. Other potential value-added uses of switchgrass include gasification, bio-oil production, newsprint production and fiber reinforcement in thermoplastic composites. Research on microwave-based pretreatment of switchgrass and coastal bermudagrass is presented in Chapter 3. Pretreatments were carried out by immersing the biomass in dilute chemical reagents and exposing the slurry to microwave radiation at 250 watts for residence times ranging from 5 to 20 minutes. Preliminary experiments identified alkalis as suitable chemical reagents for microwave-based pretreatment. An evaluation of different alkalis identified sodium hydroxide as the most effective alkali reagent. Under optimum pretreatment

  18. Second generation bioethanol. Where do we stand?; Bioethanol der zweiten Generation. Wo stehen wir?

    Energy Technology Data Exchange (ETDEWEB)

    Schieder, Doris; Sieber, V. [Technische Univ. Muenchen, Straubing (Germany). Lehrstuhl fuer Chemie Biogener Rohstoffe; Rohowsky, B.; Faulstich, M. [Technische Univ. Muenchen Wissenschaftszentrum Straubing (Germany). Lehrstuhl fuer Rohstoff- und Energietechnologie

    2010-07-01

    Second generation biofuels from plant biomass or from biogenic residues are often viewed as a supplement or an alternative to the first generation of biofuels as they may offer an option to enhance biofuels production without competing with food production. R + D activities on the introduction of second generation bioethanol have reached an advanced status, but there are still open questions. In spite of many projects, industrial-scale application of second generation biotechnology has not really started yet. While the biofuels substitution goals of the EU and other states may be favourable, the expected production cost is still relatively high, and the price of the end product will be the key factor to ensure successful launching in the market.

  19. Ultrasound-assisted bioethanol production from waste newspaper.

    Science.gov (United States)

    Subhedar, Preeti B; Gogate, Parag R

    2015-11-01

    The present work deals with intensification of bioethanol production from waste newspaper using Saccharomyces cerevisiae using ultrasonic irradiations. The effect of different process parameters such as application of ultrasonic irradiation at different growth phases, irradiation time, ultrasonic power and duty cycle on the bioethanol production has been investigated. The favorable conditions for the maximum yield were established as application of ultrasonic irradiation (duration of 10 min) to fermentation broth at 12 h of growth phase with 25 kHz frequency, 160 W power and 20% duty cycle. The bioethanol productivity was increased by 1.8 times from 7.8 to 14.1 g/L compared with the non-sonicated control fermentation. Decrease in glucose concentration from 0.63% to 0.2% w/v in ultrasound-assisted fermentation confirmed the improved substrate uptake of the microbial cell due to the application of ultrasound. ESEM analysis also confirmed the changes in the cell morphology leading to improved cell permeability. Results were fitted to an unstructured kinetic model comprising of the kinetic and physiological parameters. Overall, the work has demonstrated an intensified approach for the bioethanol production based on the use of ultrasound. PMID:26186818

  20. The water footprint of sweeteners and bio-ethanol

    NARCIS (Netherlands)

    Gerbens-Leenes, P.W.; Hoekstra, A.Y.

    2012-01-01

    An increasing demand for food together with a growing demand for energy crops result in an increasing demand for and competition over water. Sugar cane, sugar beet and maize are not only essential food crops, but also important feedstock for bio-ethanol. Crop growth requires water, a scarce resource

  1. Pressurized liquid extraction of ginger (Zingiber officinale Roscoe) with bioethanol:

    DEFF Research Database (Denmark)

    Hu, Jiajin; Guo, Zheng; Glasius, Marianne;

    2011-01-01

    To develop an efficient green extraction approach for recovery of bioactive compounds from natural plants, we examined the potential of pressurized liquid extraction (PLE) of ginger (Zingiber officinale Roscoe) with bioethanol/water as solvents. The advantages of PLE over other extraction...

  2. Ultrasound-assisted bioethanol production from waste newspaper.

    Science.gov (United States)

    Subhedar, Preeti B; Gogate, Parag R

    2015-11-01

    The present work deals with intensification of bioethanol production from waste newspaper using Saccharomyces cerevisiae using ultrasonic irradiations. The effect of different process parameters such as application of ultrasonic irradiation at different growth phases, irradiation time, ultrasonic power and duty cycle on the bioethanol production has been investigated. The favorable conditions for the maximum yield were established as application of ultrasonic irradiation (duration of 10 min) to fermentation broth at 12 h of growth phase with 25 kHz frequency, 160 W power and 20% duty cycle. The bioethanol productivity was increased by 1.8 times from 7.8 to 14.1 g/L compared with the non-sonicated control fermentation. Decrease in glucose concentration from 0.63% to 0.2% w/v in ultrasound-assisted fermentation confirmed the improved substrate uptake of the microbial cell due to the application of ultrasound. ESEM analysis also confirmed the changes in the cell morphology leading to improved cell permeability. Results were fitted to an unstructured kinetic model comprising of the kinetic and physiological parameters. Overall, the work has demonstrated an intensified approach for the bioethanol production based on the use of ultrasound.

  3. Oxidation of Bioethanol using Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Wang, Feng;

    2014-01-01

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite-1 is reported and their high...

  4. Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite.

    Science.gov (United States)

    Karimi, Samira; Ghobadian, Barat; Omidkhah, Mohammad-Reza; Towfighi, Jafar; Tavakkoli Yaraki, Mohammad

    2016-05-01

    An experimental study of bioethanol adsorption on natural Iranian clinoptilolite was carried out. Dynamic breakthrough curves were used to investigate the best adsorption conditions in bioethanol liquid phase. A laboratory setup was designed and fabricated for this purpose. In order to find the best operating conditions, the effect of liquid pressure, temperature and flow rate on breakthrough curves and consequently, maximum ethanol uptake by adsorbent were studied. The effects of different variables on final bioethanol concentration were investigated using Response Surface Methodology (RSM). The results showed that by working at optimum condition, feed with 96% (v/v) initial ethanol concentration could be purified up to 99.9% (v/v). In addition, the process was modeled using Box-Behnken model and optimum operational conditions to reach 99.9% for final ethanol concentration were found equal to 10.7 °C, 4.9 bar and 8 mL/min for liquid temperature, pressure and flow rate, respectively. Therefore, the selected natural Iranian clinoptilolite was found to be a promising adsorbent material for bioethanol dehydration process. PMID:27222748

  5. Oxidation of Bioethanol using Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Wang, Feng;

    2014-01-01

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite‐1 is reported and their high...

  6. Integrated decision making for the optimal bioethanol supply chain

    International Nuclear Information System (INIS)

    Highlights: • Optimal allocation, design and production planning of integrated ethanol plants is considered. • Mixed Integer Programming model is presented for solving the integration problem. • Different tradeoffs can be assessed and analyzed. • The modeling framework represents an useful tool for guiding decision making. - Abstract: Bioethanol production poses different challenges that require an integrated approach. Usually previous works have focused on specific perspectives of the global problem. On the contrary, bioethanol, in particular, and biofuels, in general, requires an integrated decision making framework that takes into account the needs and concerns of the different members involved in its supply chain. In this work, a Mixed Integer Linear Programming (MILP) model for the optimal allocation, design and production planning of integrated ethanol/yeast plants is considered. The proposed formulation addresses the relations between different aspects of the bioethanol supply chain and provides an efficient tool to assess the global operation of the supply chain taking into account different points of view. The model proposed in this work simultaneously determines the structure of a three-echelon supply chain (raw material sites, production facilities and customer zones), the design of each installed plant and operational considerations through production campaigns. Yeast production is considered in order to reduce the negative environmental impact caused by bioethanol residues. Several cases are presented in order to assess the approach capabilities and to evaluate the tradeoffs among all the decisions

  7. Thermodynamic evaluation of hydrogen production via bioethanol steam reforming

    International Nuclear Information System (INIS)

    In this article, a thermodynamic analysis for bioethanol steam reforming for hydrogen production is presented. Bioethanol is a newly proposed renewable energy carrier mainly produced from biomass fermentation. Reforming of bioethanol provides a promising method for hydrogen production from renewable resources. Steam reforming of ethanol (SRE) takes place under the action of a metal catalyst capable of breaking C-C bonds into smaller molecules. A large domain for the water/bioethanol molar ratio as well as the temperature and average pressure has been used in the present work. The interval of investigated temperature was 100-800°C, the pressure was in the range of 1-10 bar and the molar ratio was between 3-25. The variations of gaseous species concentration e.g. H2, CO, CO2, CH4 were analyzed. The concentrations of the main products (H2 and CO) at lower temperature are smaller than the ones at higher temperature due to by-products formation (methane, carbon dioxide, acetylene etc.). The concentration of H2 obtained in the process using high molar ratio (>20) is higher than the one at small molar ratio (near stoichiometric). When the pressure is increased the hydrogen concentration decreases. The results were compared with literature data for validation purposes

  8. Evaluation and Modification of Processes for Bioethanol Separation and Production

    Directory of Open Access Journals (Sweden)

    Johnner P Sitompul

    2012-04-01

    Full Text Available This paper concerns on process evaluation and modification for bioethanol separation and production by applying pinch technology. Further, the paper is also focused on obtaining a most energy-efficient process among several processes. Three basic process configurations of bioethanol separation and production were selected for this study. The three separations and production systems are Othmer process, Barbet process and a separation process that operates under vacuum condition. Basically, each process is combination of Danish Distilleries process with a separation system yielding 95% (v/v bioethanol. The production capacity of the plant is estimated about 4 x 107 litre of bioethanol 95% (v/v per year. The result of the studies shows that the most energy efficient process among the three processes evaluated is the Othmer process, followed by the Barbet process and the process involving vacuum operation. The evaluation also shows that further energy saving can be carried for Barbet and Othmer process configuration when Tmin = 10oC for heat exchange possible.

  9. Thermodynamic evaluation of hydrogen production via bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zsolt; Cormos, Ana-Maria; Imre-Lucaci, Árpád; Cormos, Cǎlin C.

    2013-11-01

    In this article, a thermodynamic analysis for bioethanol steam reforming for hydrogen production is presented. Bioethanol is a newly proposed renewable energy carrier mainly produced from biomass fermentation. Reforming of bioethanol provides a promising method for hydrogen production from renewable resources. Steam reforming of ethanol (SRE) takes place under the action of a metal catalyst capable of breaking C-C bonds into smaller molecules. A large domain for the water/bioethanol molar ratio as well as the temperature and average pressure has been used in the present work. The interval of investigated temperature was 100-800°C, the pressure was in the range of 1-10 bar and the molar ratio was between 3-25. The variations of gaseous species concentration e.g. H2, CO, CO2, CH4 were analyzed. The concentrations of the main products (H2 and CO) at lower temperature are smaller than the ones at higher temperature due to by-products formation (methane, carbon dioxide, acetylene etc.). The concentration of H2 obtained in the process using high molar ratio (>20) is higher than the one at small molar ratio (near stoichiometric). When the pressure is increased the hydrogen concentration decreases. The results were compared with literature data for validation purposes.

  10. Thermodynamic evaluation of hydrogen production via bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zsolt; Cormos, Ana-Maria; Imre-Lucaci, Árpád; Cormos, Călin C. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, RO-400028, Cluj-Napoca (Romania)

    2013-11-13

    In this article, a thermodynamic analysis for bioethanol steam reforming for hydrogen production is presented. Bioethanol is a newly proposed renewable energy carrier mainly produced from biomass fermentation. Reforming of bioethanol provides a promising method for hydrogen production from renewable resources. Steam reforming of ethanol (SRE) takes place under the action of a metal catalyst capable of breaking C-C bonds into smaller molecules. A large domain for the water/bioethanol molar ratio as well as the temperature and average pressure has been used in the present work. The interval of investigated temperature was 100-800°C, the pressure was in the range of 1-10 bar and the molar ratio was between 3-25. The variations of gaseous species concentration e.g. H{sub 2}, CO, CO{sub 2}, CH{sub 4} were analyzed. The concentrations of the main products (H{sub 2} and CO) at lower temperature are smaller than the ones at higher temperature due to by-products formation (methane, carbon dioxide, acetylene etc.). The concentration of H2 obtained in the process using high molar ratio (>20) is higher than the one at small molar ratio (near stoichiometric). When the pressure is increased the hydrogen concentration decreases. The results were compared with literature data for validation purposes.

  11. Autohydrolysis Pretreatment of Lignocellulosic Biomass for Bioethanol Production

    Science.gov (United States)

    Han, Qiang

    Autohydrolysis, a simple and environmental friendly process, has long been studied but often abandoned as a financially viable pretreatment for bioethanol production due to the low yields of fermentable sugars at economic enzyme dosages. The introduction of mechanical refining can generate substantial improvements for autohydrolysis process, making it an attractive pretreatment technology for bioethanol commercialization. In this study, several lignocellulosic biomass including wheat straw, switchgrass, corn stover, waste wheat straw have been subjected to autohydrolysis pretreatment followed by mechanical refining to evaluate the total sugar recovery at affordable enzyme dosages. Encouraging results have been found that using autohydrolysis plus refining strategy, the total sugar recovery of most feedstock can be as high as 76% at 4 FPU/g enzymes dosages. The mechanical refining contributed to the improvement of enzymatic sugar yield by as much as 30%. Three non-woody biomass (sugarcane bagasse, wheat straw, and switchgrass) and three woody biomass (maple, sweet gum, and nitens) have been subjected to autohydrolysis pretreatment to acquire a fundamental understanding of biomass characteristics that affect the autohydrolysis and the following enzymatic hydrolysis. It is of interest to note that the nonwoody biomass went through substantial delignification during autohydrolysis compared to woody biomass due to a significant amount of p-coumaric acid and ferulic acid. It has been found that hardwood which has a higher S/V ratio in the lignin structure tends to have a higher total sugar recovery from autohydrolysis pretreatment. The economics of bioethanol production from autohydrolysis of different feedstocks have been investigated. Regardless of different feedstocks, in the conventional design, producing bioethanol and co-producing steam and power, the minimum ethanol revenues (MER) required to generate a 12% internal rate of return (IRR) are high enough to

  12. Assessing the sustainability of bioethanol production in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Khatiwada, Dilip

    2010-10-15

    Access to modern energy services derived from renewable sources is a prerequisite, not only for economic growth, rural development and sustainable development, but also for energy security and climate change mitigation. The least developed countries (LDCs) primarily use traditional biomass and have little access to commercial energy sources. They are more vulnerable to problems relating to energy security, air pollution, and the need for hard-cash currency to import fossil fuels. This thesis evaluates sugarcane-molasses bioethanol, a renewable energy source with the potential to be used as a transport fuel in Nepal. Sustainability aspects of molasses-based ethanol have been analyzed. Two important indicators for sustainability, viz. net energy and greenhouse gas (GHG) balances have been used to assess the appropriateness of bioethanol in the life cycle assessment (LCA) framework. This thesis has found that the production of bioethanol is energy-efficient in terms of the fossil fuel inputs required to produce it. Life cycle greenhouse gas (GHG) emissions from production and combustion are also lower than those of gasoline. The impacts of important physical and market parameters, such as sugar cane productivity, the use of fertilizers, energy consumption in different processes, and price have been observed in evaluating the sustainability aspects of bioethanol production. The production potential of bioethanol has been assessed. Concerns relating to the fuel vs. food debate, energy security, and air pollution have also been discussed. The thesis concludes that the major sustainability indicators for molasses ethanol in Nepal are in line with the goals of sustainable development. Thus, Nepal could be a good example for other LDCs when favorable governmental policy, institutional set-ups, and developmental cooperation from donor partners are in place to strengthen the development of renewable energy technologies

  13. FOOD VS. FUEL – A TURNING POINT FOR BIOETHANOL?

    Directory of Open Access Journals (Sweden)

    Katharina Harlander

    2008-09-01

    Full Text Available Recently concerns have been raised that biofuels would affect food prices. Bioethanol is made from sugar or starch containing plants that are also used in food production. In public perception this led to an emotional resistance against biofuels that in real terms is not substantiated. Generally, biofuels are a political product. Triggered by the oil crisis in the early 1970ies national fuel ethanol programmes were first launched in Brazil and in the United States. Concerns regarding energy security and sustainability together with the option of new markets for surplus agricultural production in recent years led to similar policy measures in the European Union and in numerous countries around the globe. Accordingly the industry invested heavily in new bioethanol plants - especially in the US – and created an additional demand for corn and wheat with some record-breaking prices noted in late 2007. A look back into statistics shows a drastic decline of real prices for decades and by now they are only back at the level of 30 years ago. One important detail is the real portion of grain used for bioethanol, which is still only 1.6 percent in the EU and therefore unlikely to be the real driver for the price development. Moreover the share of raw material is up to 70% of bioethanol production cost that makes the bioethanol industry itself a victim of price increases. Subsequently investor interest in this field slowed down, a development also watched in the US. The prospects of the agricultural markets of the European Commission conclude that Europe can do both, nutrition and biofuels.

  14. White paper on perspectives of biofuels in Denmark - with focus on 2nd generation bioethanol; Hvidbog om perspektiver for biobraendstoffer i Danmark - med fokus paa 2. generations bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Gy.; Foghmar, J.

    2009-11-15

    The white paper presents the perspectives - both options and barriers - for a Danish focus on production and use of biomass, including sustainable 2nd generation bioethanol, for transport. The white paper presents the current knowledge of biofuels and bioethanol and recommendations for a Danish strategy. (ln)

  15. Produksi bioethanol dari jerami padi (Oryza sativa melalui hidrolisis asan dan fermentasi dengan Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    SRI KUSUMASTUTI HAYUNINGTYAS

    2014-05-01

    Full Text Available Hayuningtyas SK, Sunarto, Sari SLA. 2013. The production of bioethanol from rice straw (Oryza sativa by acid hydrolysis and fermentation with Saccharomyces cerevisiae. Bioteknologi 11: 1-4. Bioethanol is one of the alternative fuels that are considered more environmentally friendly. Bioethanol can be obtained from material that contains cellulose, such as rice straw. This study aimed to determine the optimum fermentation time to product bioethanol from rice straw hydrolysis and measured of bioethanol product from rice straw by acid hydrolysis and Saccharomyces cerevisiae fermentation. The results showed that rice straw hydrolysis by sulfuric acid catalyst produced higher reducing sugar: 21.7 g/100 g rice straw. The optimum fermentation time was 5 days which produced of 8.96% bioethanol.

  16. Bioethanol development in China and the potential impacts on its agricultural economy

    International Nuclear Information System (INIS)

    China is now the third largest bioethanol producer in the world after the United State and Brazil. The overall goals of this paper are to provide an overview of China's current bioethanol program, its future trend, and the likely impacts on its agricultural economy in the future. The analysis shows that China has developed an ambitious long-run biofuel program with a series of financial and institutional supports. While there are several potential feedstock crops available for bioethanol production, lack of land for feedstock production is one of major constraints in China's bioethanol expansion. The results show that although China's bioethanol expansion will have little impacts on overall agricultural prices in international markets, it will have significant impacts on the prices, productions, and trade of those energy crops being used for bioethanol production in China. (author)

  17. Combustion parameters of spark ignition engine using waste potato bioethanol and gasoline blended fuels

    Science.gov (United States)

    Ghobadian, B.; Najafi, G.; Abasian, M.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the combustion parameters of a SI engine operating on bioethanol-gasoline blends (E0-E20: 20% bioethanol and 80% gasoline by volume). A reactor was designed, fabricated and evaluated for bioethanol production from potato wastes. The results showed that increasing the bioethanol content in the blend fuel will decrease the heating value of the blended fuel and increase the octane number. Combustion parameters were evaluated and analyzed at different engine speeds and loads (1000-5000 rpm). The results revealed that using bioethanol-gasoline blended fuels will increase the cylinder pressure and its 1st and 2nd derivatives (P(θ), P•(θ) and P••(θ)). Moreover, using bioethanol- gasoline blends will increase the heat release (Q•(θ)) and worked of the cycle. This improvement was due to the high oxygen percentage in the ethanol.

  18. Effects of bioethanol ultrasonic generated aerosols application on diesel engine performances

    Directory of Open Access Journals (Sweden)

    Mariasiu Florin

    2015-01-01

    Full Text Available In this paper the effects of an experimental bioethanol fumigation application using an experimental ultrasound device on performance and emissions of a single cylinder diesel engine have been experimentally investigated. Engine performance and pollutant emissions variations were considered for three different types of fuels (biodiesel, biodiesel-bioethanol blend and biodiesel and fumigated bioethanol. Reductions in brake specific fuel consumption and NOx pollutant emissions are correlated with the use of ultrasonic fumigation of bioethanol fuel, comparative to use of biodiesel-bioethanol blend. Considering the fuel consumption as diesel engine’s main performance parameter, the proposed bioethanol’s fumigation method, offers the possibility to use more efficient renewable biofuels (bioethanol, with immediate effects on environmental protection.

  19. The Bioethanol Industry in Sub-Saharan Africa: History, Challenges, and Prospects

    OpenAIRE

    Evanie Devi Deenanath; Sunny Iyuke; Karl Rumbold

    2012-01-01

    Recently, interest in using bioethanol as an alternative to petroleum fuel has been escalating due to decrease in the availability of crude oil. The application of bioethanol in the motor-fuel industry can contribute to reduction in the use of fossil fuels and in turn to decreased carbon emissions and stress of the rapid decline in crude oil availability. Bioethanol production methods are numerous and vary with the types of feedstock used. Feedstocks can be cereal grains (first generation fee...

  20. Wirtschaftlichkeit von Bioethanol – Produktion und Produktionskosten im nationalen und internationalen Vergleich

    OpenAIRE

    Henniges, Oliver

    2007-01-01

    In this article the profitability of the bioethanol production in Germany is analysed under consideration of the international competition. Therefore, the production costs of bioethanol from wheat and beet in Germany as well as from sugar cane and corn in other representative countries are compared. Based on this, the competitiveness of imported as well as domestic bioethanol against gasoline on the German market are analyzed and the maximum payable feedstock price for sugar beet is calculate...

  1. Preparation and Characterization of Zeolite Membrane for Bioethanol Purification

    Directory of Open Access Journals (Sweden)

    Aprilina Purbasari

    2013-06-01

    Full Text Available The use of bioethanol as an alternative fuel with a purity of more than 99.5% wt has prompted research on bioethanol purification. One of the promising methods used for bioethanol purification is pervaporation membrane. This research is aimed to prepare and characterize zeolite membranes for pervaporation membrane. The membrane preparation consisted of two stages, namely support preparation and zeolite deposition on the support. In support preparation, α- alumina and kaolin with specific composition (50:30; 40:40; 50:30 was mixed with additives and water. After pugging and aging process, the mixture became paste and extruded into tubular shape. The tube was then calcined at temperature of 1250 °C for 3 hours. After that, zeolite 4A was deposited on the tubes using clear solution made of 10 %wt zeolite and 90 %wt water and heated at temperature of 80 °C for 3 hours. Furthermore, the resulting zeolite membranes was washed with deionized water for 5 minutes and dried in oven at temperature of 100 °C for 24 hours. Characterization of zeolite membranes included mechanical strength test, XRD, and SEM. In the mechanical strength test, the membrane sample with α- alumina:kaolin = 50:30 (membrane A has the highest mechanical strength of 46.65 N/mm2. Result of XRD analysis for the membrane A indicated that mullite and corundum phases were formed, which mullite phase was more dominant. Meanwhile the result of SEM analysis shows that zeolite crystals have been formed and covered the pores support, but the deposition of zeolite has not been optimal yet. The performance examination for bioethanol purification showed that the membrane could increase the purity of bioethanol from 95% to 98.5% wt. © 2013 BCREC UNDIP. All rights reservedReceived: 23rd October 2012; Revised: 15th February 2013; Accepted: 16th February 2013[How to Cite: Purbasari, A., Istirokhatun, T., Devi, A.M., Mahsunnah, L. , Susanto, H. (2013. Preparation and Characterization of Zeolite

  2. The Bioethanol Industry in Sub-Saharan Africa: History, Challenges, and Prospects

    Directory of Open Access Journals (Sweden)

    Evanie Devi Deenanath

    2012-01-01

    Full Text Available Recently, interest in using bioethanol as an alternative to petroleum fuel has been escalating due to decrease in the availability of crude oil. The application of bioethanol in the motor-fuel industry can contribute to reduction in the use of fossil fuels and in turn to decreased carbon emissions and stress of the rapid decline in crude oil availability. Bioethanol production methods are numerous and vary with the types of feedstock used. Feedstocks can be cereal grains (first generation feedstock, lignocellulose (second generation feedstock, or algae (third generation feedstock feedstocks. To date, USA and Brazil are the leading contributors to global bioethanol production. In sub-Saharan Africa, bioethanol production is stagnant. During the 1980s, bioethanol production has been successful in several countries including Zimbabwe, Malawi, and Kenya. However, because of numerous challenges such as food security, land availability, and government policies, achieving sustainability was a major hurdle. This paper examines the history and challenges of bioethanol production in sub-Saharan Africa (SSA and demonstrates the bioethanol production potential in SSA with a focus on using bitter sorghum and cashew apple juice as unconventional feedstocks for bioethanol production.

  3. The bioethanol industry in sub-Saharan Africa: history, challenges, and prospects.

    Science.gov (United States)

    Deenanath, Evanie Devi; Iyuke, Sunny; Rumbold, Karl

    2012-01-01

    Recently, interest in using bioethanol as an alternative to petroleum fuel has been escalating due to decrease in the availability of crude oil. The application of bioethanol in the motor-fuel industry can contribute to reduction in the use of fossil fuels and in turn to decreased carbon emissions and stress of the rapid decline in crude oil availability. Bioethanol production methods are numerous and vary with the types of feedstock used. Feedstocks can be cereal grains (first generation feedstock), lignocellulose (second generation feedstock), or algae (third generation feedstock) feedstocks. To date, USA and Brazil are the leading contributors to global bioethanol production. In sub-Saharan Africa, bioethanol production is stagnant. During the 1980s, bioethanol production has been successful in several countries including Zimbabwe, Malawi, and Kenya. However, because of numerous challenges such as food security, land availability, and government policies, achieving sustainability was a major hurdle. This paper examines the history and challenges of bioethanol production in sub-Saharan Africa (SSA) and demonstrates the bioethanol production potential in SSA with a focus on using bitter sorghum and cashew apple juice as unconventional feedstocks for bioethanol production. PMID:22536020

  4. Bioethanol production from sweet potato using Saccharomyces diastaticus

    Science.gov (United States)

    Abdullah, Suryani, Irma; Pradia Paundradewa, J.

    2015-12-01

    Sweet potato contains about 16 to 40% dry matter and about 70-90% of the dry matter is a carbohydrate made up of starch, sugar, cellulose, hemicellulose and pectin so suitable for used as raw material for bioethanol. In this study focused on the manufacture of bioethanol with changes in temperature and concentration variations of yeast with sweet potato raw materials used yeast Saccharomyces diastaticus. Operating variables used are at a temperature of 30°C; 31,475°C; 35°C; 38,525°C; and 40°C with a yeast concentration of 25.9%; 30%; 40%; 50% and 54.1%. The experimental results obtained, the optimum conditions of ethanol fermentation with yeast Saccharomyces diastaticus on 36,67 °C temperature and yeast concentration of 43,43 % v / v.

  5. Multistage process for the production of bioethanol from almond shell.

    Science.gov (United States)

    Kacem, Imen; Koubaa, Mohamed; Maktouf, Sameh; Chaari, Fatma; Najar, Taha; Chaabouni, Moncef; Ettis, Nadia; Ellouz Chaabouni, Semia

    2016-07-01

    This work describes the feasibility of using almond shell as feedstock for bioethanol production. A pre-treatment step was carried out using 4% NaOH for 60min at 121°C followed by 1% sulfuric acid for 60min at 121°C. Enzymatic saccharification of the pre-treated almond shell was performed using Penicillium occitanis enzymes. The process was optimized using a hybrid design with four parameters including the incubation time, temperature, enzyme loads, and polyethylene glycol (PEG) concentration. The optimum hydrolysis conditions led to a sugar yield of 13.5%. A detoxification step of the enzymatic hydrolysate was carried out at pH 5 using 1U/ml of laccase enzyme produced by Polyporus ciliatus. Fermenting efficiency of the hydrolysates was greatly improved by laccase treatment, increasing the ethanol yield from 30% to 84%. These results demonstrated the efficiency of using almond shell as a promising source for bioethanol production. PMID:27017125

  6. Sustainable Process Design of Biofuels: Bioethanol Production from Cassava rhizome

    DEFF Research Database (Denmark)

    Mangnimit, S.; Malakul, P.; Gani, Rafiqul

    2013-01-01

    This study is focused on the sustainable process design of bioethanol production from cassava rhizome. The study includes: process simulation, sustainability analysis, economic evaluation and life cycle assessment (LCA). A steady state process simulation if performed to generate a base case design...... of the bioethanol conversion process using cassava rhizome as a feedstock. The sustainability analysis is performed to analyze the relevant indicators in sustainability metrics, to definedesign/retrofit targets for process improvements. Economic analysis is performed to evaluate the profitability of the process...... in order to identify the most sustainable design for the production of ethanol. The capacity for ethanol production from cassava rhizome is set to 150,000 liters/day, which is about 1.3 % of the total demand of ethanol in Thailand. LCA on the base case design pointed to large amounts of CO2 and CO...

  7. Assessing the potential of wild yeasts for bioethanol production

    OpenAIRE

    RUYTERS, Stefan; Mukherjee, Vaskar; Verstrepen, Kevin; Thevelein, Johan; Willems, Kris; Lievens, Bart

    2015-01-01

    Bioethanol fermentations expose yeasts to a new, complex and challenging fermentation medium with specific inhibitors and sugar mixtures depending on the type of carbon source. It is, therefore, suggested that the natural diversity of yeasts should be further exploited in order to find yeasts with good ethanol yield in stressed fermentation media. In this study, we screened more than 50 yeast isolates of which we selected five isolates with promising features. The species Candida bombi, Wicke...

  8. Efficient Bioethanol Production From Oil Palm Frond Petiole

    OpenAIRE

    Sharifah Soplah Binti Syed Abdullah

    2015-01-01

    The growing interest in bioenergy and particularly in second generation bioethanol (SGB) is a great challenge as the development of lignocellulose-related technologies are not very well established in the world. Another major constraint is the relatively higher cost of SGB, both in terms of investment costs and final energy costs. This causes the commercialization of research findings on SGB faces stiff competition from fossil fuels. Hence, this study was aimed to produce SGB but using a stra...

  9. Innovative enzymes for bioethanol production from lignocellulosic materials

    OpenAIRE

    Marcolongo, Loredana

    2015-01-01

    The general aim of this work was to add new knowledge on novel hemicellulolytic enzymes involved in the hydrolysis of lignocellulosic materials, considered as a key process for the bioethanol production. Therefore, it is not only focused on (hemi)cellulolytic enzymes from mesophilic fungi and bacteria but also on newly isolated and characterized xylanase and β-xylosidase from the thermophilic bacteria Geobacillus thermodenitrificans A333 and Anoxybacillus sp. 3M, respectively. The cove...

  10. Bioethanol Fuel Production Concept Study: Topline Report; TOPICAL

    International Nuclear Information System (INIS)

    The DOE is in the process of developing technologies for converting plant matter other than feed stock, e.g., corn stover, into biofuels. The goal of this research project was to determine what the farming community thinks of ethanol as a fuel source, and specifically what they think of bioethanol produced from corn stover. This project also assessed the image of the DOE and the biofuels program and determined the perceived barriers to ethanol-from-stover production

  11. Pretreatments employed in lignocellulosic materials for bioethanol production: an overview

    OpenAIRE

    Danay Carrillo-Nieves; Lourdes Zumalacárregui-de Cárdenas; Olga Sánchez-Collazo; Georgina Michelena-Alvarez; Hector Yznaga-Blanco; José Luis Martínez-Hernández; Cristóbal Noé-Aguilar

    2014-01-01

    Lignocellulosic materials are raw materials with high cellulose content and they constitute the most abun- dant sources of biomass on planet. They are attractive for their low cost and high availability in diverse climates and places for the bioethanol production, however, the main impediment for its use is the appro- priate selection from the technological and economic point of view of the stages of pretreatments and hydrolysis, that allow the breaking down of the lignocellulosic matrix to o...

  12. PRETREATMENT TECHNOLOGIES IN BIOETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS

    OpenAIRE

    Vanja Janušić; Duška Ćurić; Tajana Krička; Neven Voća; Ana Matin

    2008-01-01

    Bioethanol is today most commonly produced from corn grain and sugar cane. It is expected that there will be limits to the supply of these raw materials in the near future. Therefore, lignocellulosic biomass, namely agricultural and forest waste, is seen as an attractive feedstock for future supplies of ethanol.Lignocellulosic biomass consists of lignin, hemicellulose and cellulose. Indeed, complexicity of the lignocellulosic biomass structure causes a pretreatment to be applied prior to cel...

  13. Energy analysis of biochemical conversion processes of biomass to bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Bakari, M.; Ngadi, M.; Bergthorson, T. [McGill Univ., Ste-Anne-de-Bellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Bioethanol is among the most promising of biofuels that can be produced from different biomass such as agricultural products, waste and byproducts. This paper reported on a study that examined the energy conversion of different groups of biomass to bioethanol, including lignocelluloses, starches and sugar. Biochemical conversion generally involves the breakdown of biomass to simple sugars using different pretreatment methods. The energy needed for the conversion steps was calculated in order to obtain mass and energy efficiencies for the conversions. Mass conversion ratios of corn, molasses and rice straw were calculated as 0.3396, 0.2300 and 0.2296 kg of bioethanol per kg of biomass, respectively. The energy efficiency of biochemical conversion of corn, molasses and rice straw was calculated as 28.57, 28.21 and 31.33 per cent, respectively. The results demonstrated that lignocelluloses can be efficiently converted with specific microorganisms such as Mucor indicus, Rhizopus oryzae using the Simultaneous Saccharification and Fermentation (SSF) methods.

  14. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949–2015)

    OpenAIRE

    Chao-Chen Chung; Siang-Cing Yang

    2016-01-01

    This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS). Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present researc...

  15. Validation of some engine combustion and emission parameters of a bioethanol fuelled DI diesel engine using theoretical modelling

    OpenAIRE

    Sivalingam, Murugan; Mahapatra, Subranshu Sekhar; Hansdah, Dulari; Horák, Bohumil

    2015-01-01

    Earlier reports indicate that ethanol/bioethanol can replace conventional diesel fuel by 15%, when it is emulsified with diesel and used as an alternative fuel in a compression ignition (CI) engine. In this study, initially BMDE15, a bioethanol emulsion containing 15% bioethanol, 84% diesel and 1% surfactant was characterised for its fuel properties and compared with those of diesel fuel properties. The numerical value indicates the percentage of bioethanol in the BMDE15 emulsion. For the inv...

  16. Purification of bioethanol effluent in an UASB reactor system with simultaneous biogas formation

    DEFF Research Database (Denmark)

    Torry-Smith, Mads Peter; Sommer, Peter; Ahring, Birgitte Kiær

    2003-01-01

    In this study, the prospect of using an Upflow Anaerobic Sludge Blanket (UASB) reactor for detoxification of process water derived from bioethanol production has been investigated. The bioethanol effluent (BEE) originated from wet oxidized wheat straw fermented by Saccharomyces cerevisiae and The...

  17. Life Cycle Assessment of an Advanced Bioethanol Technology in the Perspective of Constrained Biomass Availability

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Thyø, Kathrine Anker; Wenzel, Henrik

    2008-01-01

    Among the existing environmental assessments of bioethanol, the studies suggesting an environmental benefit of bioethanol all ignore the constraints on the availability of biomass resources and the implications competition for biomass has on the assessment. We show that toward 2030, regardless of....../or biogas, natural gas or electricity for transport are advantageous....

  18. From biofuel to bioproduct: is bioethanol a suitable fermentation feedstock for synthesis of bulk chemicals?

    NARCIS (Netherlands)

    Weusthuis, R.A.; Aarts, J.M.M.J.G.; Sanders, J.P.M.

    2011-01-01

    The first pilot-scale factories for the production of bioethanol from lignocellulose have been installed, indicating that we are on the brink of overcoming most hurdles for an economically feasible process. When bioethanol is competitive as biofuel with fuels originating from petrochemical resources

  19. Build Your Own Second-Generation Bioethanol Plant in the Classroom!

    NARCIS (Netherlands)

    Seters, van J.R.; Sijbers, J.P.J.; Denis, M.; Tramper, J.

    2011-01-01

    The production of bioethanol from cellulosic waste is described. The experiment is suitable for students in secondary school classroom settings and leads to bioethanol in a concentration high enough to burn the liquid. The experiment consists of three steps: (i) the cellulose of the waste material i

  20. Build Your Own Second-Generation Bioethanol Plant in the Classroom!

    Science.gov (United States)

    van Seters, Janneke R.; Sijbers, Jeroen P. J.; Denis, Misha; Tramper, Johannes

    2011-01-01

    The production of bioethanol from cellulosic waste is described. The experiment is suitable for students in secondary school classroom settings and leads to bioethanol in a concentration high enough to burn the liquid. The experiment consists of three steps: (i) the cellulose of the waste material is converted to glucose by cellulase enzymes, (ii)…

  1. Life cycle analysis for bioethanol production from sugar beet crops in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Foteinis, Spyros; Kouloumpis, Victor [Department of Environmental Engineering, Technical University of Crete, GR 73100 Chania (Greece); Tsoutsos, Theocharis, E-mail: theocharis.tsoutsos@enveng.tuc.gr [Department of Environmental Engineering, Technical University of Crete, GR 73100 Chania (Greece)

    2011-09-15

    The main aim of this study is to evaluate whether the potential transformation of the existing sugar plants of Northern Greece to modern bioethanol plants, using the existing cultivations of sugar beet, would be an environmentally sustainable decision. Using Life Cycle Inventory and Impact Assessment, all processes for bioethanol production from sugar beets were analyzed, quantitative data were collected and the environmental loads of the final product (bioethanol) and of each process were estimated. The final results of the environmental impact assessment are encouraging since bioethanol production gives better results than sugar production for the use of the same quantity of sugar beets. If the old sugar plants were transformed into modern bioethanol plants, the total reduction of the environmental load would be, at least, 32.6% and a reduction of more than 2 tons of CO{sub 2}e/sugar beet of ha cultivation could be reached. Moreover bioethanol production was compared to conventional fuel (gasoline), as well as to other types of biofuels (biodiesel from Greek cultivations). - Highlights: > Bioethanol production gives better results than sugar production from sugar beets. > In most cases, sugar beets, as an already industrialized plant has organizational virtues. > Bioethanol could be a sustainable independent way of energy production, alternative to biodiesel.

  2. Energy analysis of using macroalgae from eutrophic waters as a bioethanol feedstock

    DEFF Research Database (Denmark)

    Seghetta, Michele; Østergård, Hanne; Bastianoni, Simone

    2014-01-01

    , and in KB runoff from agricultural land constitutes 86%. The environmental support needed for producing one Joule of bioethanol is somewhat more than for a number of other bioethanol feedstocks being 2.12 x 106 solar equivalent Joules (seJ) for OL and 2.56 x 106 seJ for KB. However, a high percentage...

  3. Bioethanol from lignocellulose. An ecological and economic assessment of selected concepts; Bioethanol aus Lignozellulose. Eine oekologische und oekonomische Bewertung ausgewaehlter Konzepte

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, Kathleen; Zech, Konstantin [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Mueller-Langer, Franziska

    2014-08-01

    Against the background of an increased use of residual and waste materials in this paper the specific GHG emissions and production costs of different lignocellulosic based bioethanol concepts are assessed and compared to a conventional wheat based bioethanol concept and to the fossil reference. In order to find the best concept regarding both the environment and the economics the GHG emissions and production costs are compared and the GHG mitigation costs are calculated. Concept 5 (reference concept with C5 sugar to bioethanol and a natural gas-/biogasboiler) could be a good compromise between the both targets. Furthermore this concept has lower GHG emissions and lower production costs compared to the conventional wheat based bioethanol concept.

  4. Bioethanol Production from Indica IR.64 Rice Straw Biomass by Direct Saccharification and Fermentation

    Directory of Open Access Journals (Sweden)

    Ario Betha Juanssilfero

    2015-02-01

    Full Text Available Lignocellulosic substances such as agricultural wastes are attractive feed stocks for bioethanol production. Indica IR.64 rice straw is one of abundant agricultural wastes in Indonesia and could be used to bioethanol production. It has several characteristics such as high content of cellulose and hemicelluloses that can be readily hydrolyzed into fermentable sugars. A simple process (the direct saccharification and fermentation process to produce ethanol from rice straw was developed in order to establish an efficient bioethanol production. In this work, no harsh pre-treatment steps were applied and also use a simple one-vat reactor without the risk of losing liberated carbohydrate. The first step in using rice straw for bioethanol production is size reduction through milling and sieving process prior to enzymatic hydrolysis. Direct saccharification and fermentation (DSF of Indica IR.64 rice straw was examined and compared with two type of control (systems devoid of yeast and enzyme. The experiment were carried out under anaerobic condition, where the cellulase crude enzyme and cellulosic substrates (rice straw produced glucose from the cellulose and Saccharomyces cerevisiae directly assimilated the glucose to bioethanol. The faster rate of bioethanol production during DSF by Saccharomyces cerevisiae was obtained within the first 12h. The maximum ethanol concentration, ethanol yield, and theoretical ethanol yield of untreated rice straw were 0.25 g/L, 10 and 14.88%, respectively. Nevertheless, the direct saccharification and fermentation shows the potential for lower cost and higher efficiency for bioethanol production.

  5. Potential CO2 Emission Reduction by Development of Non-Grain-Based Bioethanol in China

    Science.gov (United States)

    Li, Hongqiang; Wang, Limao; Shen, Lei

    2010-10-01

    Assessment of the potential CO2 emission reduction by development of non-grain-based ethanol in China is valuable for both setting up countermeasures against climate change and formulating bioethanol policies. Based on the land occupation property, feedstock classification and selection are conducted, identifying sweet sorghum, cassava, and sweet potato as plantation feedstocks cultivated from low-quality arable marginal land resources and molasses and agricultural straws as nonplantation feedstocks derived from agricultural by-products. The feedstock utilization degree, CO2 reduction coefficient of bioethanol, and assessment model of CO2 emission reduction potential of bioethanol are proposed and established to assess the potential CO2 emission reduction by development of non-grain-based bioethanol. The results show that China can obtain emission reduction potentials of 10.947 and 49.027 Mt CO2 with non-grain-based bioethanol in 2015 and 2030, which are much higher than the present capacity, calculated as 1.95 Mt. It is found that nonplantation feedstock can produce more bioethanol so as to obtain a higher potential than plantation feedstock in both 2015 and 2030. Another finding is that developing non-grain-based bioethanol can make only a limited contribution to China’s greenhouse gas emission reduction. Moreover, this study reveals that the regions with low and very low potentials for emission reduction will dominate the spatial distribution in 2015, and regions with high and very high potentials will be the majority in 2030.

  6. Security of feedstocks supply for future bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. - Research highlights: →Bioethanol in Thailand derived from molasses, cassava, sugarcane juice could yield reductions of 64%, 49% and 87% in GHGs when compared to conventional gasoline. →High yields improvement are required for a reliable and sufficient supply of molasses, cassava and sugarcane to satisfy the long-term demands for bio-ethanol and other related industries. →Other factors to enhance long-term security of feedstocks supply for sustainable bioethanol production in Thailand include increasing use of sugarcane juice as feedstock and promoting production of bioethanol derived from agricultural residues.

  7. Response Surface Optimization of Bioethanol Production from Sugarcane Molasses by Pichia veronae Strain HSC-22.

    Science.gov (United States)

    Hamouda, Hamed I; Nassar, Hussein N; Madian, Hekmat R; Abu Amr, Salem S; El-Gendy, Nour Sh

    2015-01-01

    Pichia veronae strain HSC-22 (accession number KP012558) showed a good tolerance to relatively high temperature, ethanol and sugar concentrations. Response surface optimization based on central composite design of experiments predicted the optimal values of the influencing parameters that affect the production of bioethanol from sugarcane molasses to be as follows: initial pH 5, 25% (w : v) initial molasses concentration, 35°C, 116 rpm, and 60 h. Under these optimum operating conditions the maximum bioethanol production on a batch fermenter scale was recorded as 32.32 g/L with 44% bioethanol yield. PMID:26779347

  8. Response Surface Optimization of Bioethanol Production from Sugarcane Molasses by Pichia veronae Strain HSC-22

    Science.gov (United States)

    Hamouda, Hamed I.; Nassar, Hussein N.; Madian, Hekmat R.; Abu Amr, Salem S.; El-Gendy, Nour Sh.

    2015-01-01

    Pichia veronae strain HSC-22 (accession number KP012558) showed a good tolerance to relatively high temperature, ethanol and sugar concentrations. Response surface optimization based on central composite design of experiments predicted the optimal values of the influencing parameters that affect the production of bioethanol from sugarcane molasses to be as follows: initial pH 5, 25% (w : v) initial molasses concentration, 35°C, 116 rpm, and 60 h. Under these optimum operating conditions the maximum bioethanol production on a batch fermenter scale was recorded as 32.32 g/L with 44% bioethanol yield. PMID:26779347

  9. Response Surface Optimization of Bioethanol Production from Sugarcane Molasses by Pichia veronae Strain HSC-22

    Directory of Open Access Journals (Sweden)

    Hamed I. Hamouda

    2015-01-01

    Full Text Available Pichia veronae strain HSC-22 (accession number KP012558 showed a good tolerance to relatively high temperature, ethanol and sugar concentrations. Response surface optimization based on central composite design of experiments predicted the optimal values of the influencing parameters that affect the production of bioethanol from sugarcane molasses to be as follows: initial pH 5, 25% (w : v initial molasses concentration, 35°C, 116 rpm, and 60 h. Under these optimum operating conditions the maximum bioethanol production on a batch fermenter scale was recorded as 32.32 g/L with 44% bioethanol yield.

  10. Integrated hydrolyzation and fermentation of sugar beet pulp to bioethanol.

    Science.gov (United States)

    Rezić, Tonči; Oros, Damir; Marković, Iva; Kracher, Daniel; Ludwig, Roland; Santek, Božidar

    2013-09-28

    Sugar beet pulp is an abundant industrial waste material that holds a great potential for bioethanol production owing to its high content of cellulose, hemicelluloses, and pectin. Its structural and chemical robustness limits the yield of fermentable sugars obtained by hydrolyzation and represents the main bottleneck for bioethanol production. Physical (ultrasound and thermal) pretreatment methods were tested and combined with enzymatic hydrolysis by cellulase and pectinase to evaluate the most efficient strategy. The optimized hydrolysis process was combined with a fermentation step using a Saccharomyces cerevisiae strain for ethanol production in a single-tank bioreactor. Optimal sugar beet pulp conversion was achieved at a concentration of 60 g/l (39% of dry weight) and a bioreactor stirrer speed of 960 rpm. The maximum ethanol yield was 0.1 g ethanol/g of dry weight (0.25 g ethanol/g total sugar content), the efficiency of ethanol production was 49%, and the productivity of the bioprocess was 0.29 g/l·h, respectively. PMID:23851274

  11. Yeast strains designed for 2. generation bioethanol production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roennow, B.

    2013-04-15

    The aim of the project was to develop a suitable fermentation organism for 2G bioethanol production that would efficiently ferment all of the sugars in lignocellulosic biomass into ethanol at a commercially viable rate (comparable to yeast based 1G ethanol production). More specifically, a yeast strain would be developed with the ability to ferment also the pentoses in lignocellulosic biomass and thereby increase the ethanol yield of the process by 30-45% with a profound positive effect on the total process economy. The project has succeeded in developing a new industrial yeast strain V1. The yeast strain can transform the difficult C5 sugars to ethanol from waste products such as straw and the like from the agricultural sector. The classic issues relating to industrial uses such as inhibitor and ethanol tolerance and high ethanol production is resolved satisfactorily. The potential of the use of the new strain for 2nd generation bioethanol production is that the ethanol yields increase by 30-45%. With the increased ethanol yield follows a marked improvement in the overall process economics. (LN)

  12. Energy from whey - comparison of the biogas and bioethanol processes

    International Nuclear Information System (INIS)

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project which investigated how energy could be generated from the whey produced in the cheese-making process. The first part of the project aimed to validate a concept for on-site production and use of biogas at a medium-sized cheese factory. The results of the first step, an experimental study carried out using a down-flow fixed-film bio-reactor, are discussed. This allowed the determination of the optimal working parameters as well as providing an estimate of the performance of the process. The second part of the project aimed to compare the bio-ethanol and biogas production processes. It was carried out in collaboration with AlcoSuisse and the Energy Systems Laboratory at the Swiss Federal Institute of Technology (EPFL) in Lausanne. The results of a life-cycle assessment (LCA) are discussed, which compared the two processes from an environmental point of view. Here, two impacts were considered: fossil fuel consumption and greenhouse effect. The replacement of fuel-oil with biogas for heat production and the replacement of conventional petrol with mixture including 5% bio-ethanol were examined. The results are presented that show that there was no significant difference between the two processes. According to the authors, the treatment of one cubic meter of cheese-whey allows savings of more than 20 litres of oil equivalent and 60 kg of CO2 emissions

  13. Assessing the potential of wild yeasts for bioethanol production.

    Science.gov (United States)

    Ruyters, Stefan; Mukherjee, Vaskar; Verstrepen, Kevin J; Thevelein, Johan M; Willems, Kris A; Lievens, Bart

    2015-01-01

    Bioethanol fermentations expose yeasts to a new, complex and challenging fermentation medium with specific inhibitors and sugar mixtures depending on the type of carbon source. It is, therefore, suggested that the natural diversity of yeasts should be further exploited in order to find yeasts with good ethanol yield in stressed fermentation media. In this study, we screened more than 50 yeast isolates of which we selected five isolates with promising features. The species Candida bombi, Wickerhamomyces anomalus and Torulaspora delbrueckii showed better osmo- and hydroxymethylfurfural tolerance than Saccharomyces cerevisiae. However, S. cerevisiae isolates had the highest ethanol yield in fermentation experiments mimicking high gravity fermentations (25 % glucose) and artificial lignocellulose hydrolysates (with a myriad of inhibitors). Interestingly, among two tested S. cerevisiae strains, a wild strain isolated from an oak tree performed better than Ethanol Red, a S. cerevisiae strain which is currently commonly used in industrial bioethanol fermentations. Additionally, a W. anomalus strain isolated from sugar beet thick juice was found to have a comparable ethanol yield, but needed longer fermentation time. Other non-Saccharomyces yeasts yielded lower ethanol amounts. PMID:25413210

  14. Modeling of a bioethanol combustion engine under different operating conditions

    International Nuclear Information System (INIS)

    Highlights: • Bioethanol/gasoline blends’ fuel effects on engine’s efficiency, CO and NOx emissions. • Fuel consumption and EGR optimizations with respect to estimated engine’s work. • Ignition timing and blends’ effects on engine’s efficiency. • Rich mixture, gasoline/bioethanol blends and EGR effects on engine’s efficiency. - Abstract: A physical model based on a thermodynamic analysis was designed to characterize the combustion reaction parameters. The time-variations of pressure and temperature required for the calculation of specific heat ratio are obtained from the solution of energy conservation equation. The chemical combustion of biofuel is modeled by an overall reaction in two-steps. The rich mixture and EGR were varied to obtain the optimum operating conditions for the engine. The NOx formation is modeled by using an eight-species six-step mechanism. The effect of various formation steps of NOx in combustion is considered via a phenomenological model of combustion speed. This simplified model, which has been validated by the most available published results, is used to characterize and control, in real time, the impact of biofuel on engine performances and NOx emissions as well. It has been demonstrated that a delay of the ignition timing leads to an increase of the gas mixture temperature and cylinder pressure. Furthermore, it has been found that the CO is lower near the stoichiometry. Nevertheless, we notice that lower rich mixture values result in small NOx emission rates

  15. Bioethanol Production from Sugarcane Bagasse using Fermentation Process

    Directory of Open Access Journals (Sweden)

    Y. C. Wong

    2014-06-01

    Full Text Available The aim of this study is to produce bioethanol from sugarcane bagasse using fermentation process and to determine the effect of pH and temperature on bioethanol yield. Enzymes such as alpha- amylase and glucoamylase were used to breakdown the cellulose in sugarcane bagasse. Saccharomyces cerevisiea, (yeast also was used in the experiment for fermentation. Five samples were prepared at different pH was varied to determine the effects of pH on ethanol yield at 370 C and another five samples were prepared to determine the effect of temperature on ethanol yield, the pH was kept constant at 4.5. The ethanol concentrations were determined by running the samples in High Performance Liquid Chromatography (HPLC. The results showed that at highest ethanol concentration was obtained pH 4.5 and temperature 350C. This indicated that pH 4.5 and 350C was the optimum parameter for the yeast to produce ethanol.

  16. Atomization and spray characteristics of bioethanol and bioethanol blended gasoline fuel injected through a direct injection gasoline injector

    International Nuclear Information System (INIS)

    The focus of this study was to investigate the spray characteristics and atomization performance of gasoline fuel (G100), bioethanol fuel (E100), and bioethanol blended gasoline fuel (E85) in a direct injection gasoline injector in a gasoline engine. The overall spray and atomization characteristics such as an axial spray tip penetration, spray width, and overall SMD were measured experimentally and predicted by using KIVA-3V code. The development process and the appearance timing of the vortices in the test fuels were very similar. In addition, the numerical results accurately described the experimentally observed spray development pattern and shape, the beginning position of the vortex, and the spray breakup on the spray surface. Moreover, the increased injection pressure induced the occurrence of a clear circular shape in the downstream spray and a uniform mixture between the injected spray droplets and ambient air. The axial spray tip penetrations of the test fuels were similar, while the spray width and spray cone angle of E100 were slightly larger than the other fuels. In terms of atomization performance, the E100 fuel among the tested fuels had the largest droplet size because E100 has a high kinematic viscosity and surface tension.

  17. SIMULATION OF THE FERMENTATION PROCESS TO OBTAIN BIOETHANOL FROM RICE RESIDUES

    Directory of Open Access Journals (Sweden)

    Verónica Capdevila

    2015-06-01

    Full Text Available In this paper presents a simulation model of the fermentation/separation process of bioethanol from hydrolyzed pretreated rice husk, using Aspen HYSYS simulator. Sensitivity studies performed on the developed model indicated levels for selected variables: biomass/water ratio of 1:2,89 ; biomass flow of 50 t/h and inlet temperature separator of 30°C, leading to maximize the yield of bioethanol. From these variables, a bioethanol production of 8,81 t/h with a purity of 65,51% w/w is obtained, corresponding to a flow of hydrolyzed treated biomass of 50 t/h. This work represents an advance in the development of the simulation model of the complete process to obtain second generation of bioethanol from rice husks.

  18. Life Cycle Assessment of an Advanced Bioethanol Technology in the Perspective of Constrained Biomass Availability

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Thyø, Katrine; Wenzel, Henrik

    of alternative uses. Since natural gas and coal will be used as fuels for heat and power production at least within this time frame, the lost alternatives include substitution of natural gas or coal in the heat and power sector. In a case study, we investigate the environmental feasibility of using advanced...... show that for the case of this advanced bioethanol technology, in terms of reducing greenhouse emissions and fossil fuel dependency, more is lost than gained when prioritizing biomass or land for bioethanol. Technology pathways involving heat and power production and/or biogas, natural gas......Among the existing environmental assessments of bioethanol for transport, the studies suggesting an environmental benefit of bioethanol all ignore the constraints on the availability of biomass resources and the implications competition for biomass has on the assessment. We show that toward 2030...

  19. Dynamic impacts of high oil prices on the bioethanol and feedstock markets

    International Nuclear Information System (INIS)

    This study investigates the impacts of high international oil prices on the bioethanol and corn markets in the US. Between 2007 and 2008, the prices of major grain crops had increased sharply, reflecting the rise in international oil prices. These dual price shocks had caused substantial harm to the global economy. Employing a structural vector auto-regression model (SVAR), we analyze how increases in international oil prices could impact the prices of and demand for corn, which is used as a major bioethanol feedstock in the US. The results indicate that an increase in the oil price would increase bioethanol demand for corn and corn prices in the short run and that corn prices would stabilize in the long run as corn exports and feedstock demand for corn decline. Consequently, policies supporting biofuels should encourage the use of bioethanol co-products for feed and the development of marginal land to mitigate increases in the feedstock price. (author)

  20. Design and control of an alternative distillation sequence for bioethanol purification

    DEFF Research Database (Denmark)

    Errico, Massimiliano; Ramírez-Márquez, César; Torres Ortega, Carlo Edgar;

    2015-01-01

    BACKGROUND: Bioethanol is a green fuel considered to be a sustainable alternative to petro-derived gasoline. The transport sector contributes significantly to carbon dioxide emission and consequently has a negative impact on the air quality and is responsible for the increase of the greenhouse...... separation is presented. The steady state performance and the dynamic beavior are analyzed compared with the classical configuration reported in the literature. RESULTS: Ethanol-water azeotropic separation represents a challenge for bioethanol purification. Usually a three column sequence is used to obtain...... fuel grade bioethanol by extractive distillation. In order to reduce bioethanol purification cost a two column separation sequence is proposed. This configuration shows a 10% saving in capital costs together with higher ethanol recovery and better control properties compared with the classical three...

  1. Susceptibility of Saccharomyces cerevisiae to inhibitors and impact on bioethanol production yield

    OpenAIRE

    Fosso-Kankeu, Elvis; Marx, Sanette; Meyer, Anton

    2014-01-01

    There have been increasing concerns in developing countries over the competition between food and energy resulting from the production of bioethanol from edible biomass. Second generation lignocellulose feedstock is an attractive alternative, as bioethanol can be produced from non-edible materials. However, the pretreatment required for hydrolysis of lignocellulose into pentose and hexose sugars often results in the production of inhibitors likely to impede the activity of Saccharomyces cerev...

  2. Biological Pretreatment of Rubberwood with Ceriporiopsis subvermispora for Enzymatic Hydrolysis and Bioethanol Production

    OpenAIRE

    Forough Nazarpour; Dzulkefly Kuang Abdullah; Norhafizah Abdullah; Nazila Motedayen; Reza Zamiri

    2013-01-01

    Rubberwood (Hevea brasiliensis), a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm) and pretreatment time on the biological pretreatmen...

  3. Concentrated Sulfuric Acid Hydrolysis of Hardwood Aspen and Softwood Pine for Bioethanol Production

    OpenAIRE

    Janga, Kando Khalifa

    2011-01-01

    Bioethanol production from lignocellulosic biomass has been targeted as an alternative solution to the existing dependence on fossil fuels in the transportation sector. However, the recalcitrant nature of lignocelluloses has been a challenge to the hydrolytic processes and hence commercialization.This study has investigated the feasibility of the concentrated sulfuric acid hydrolysis (CSAH) process for bioethanol production from wood-based lignocelluloses. This is because the process enjoys h...

  4. Optimization of the enzymatic conversion of maize stover to bioethanol / by Nombongo Mabentsela

    OpenAIRE

    Mabentsela, Nombongo

    2010-01-01

    The severe effects associated with global warming and the rapid increase in oil prices are the driving forces behind the demand for clean carbon–neutral and biofuels such as bioethanol. Research studies are now focusing on using lignocellulosic biomass for bioethanol production due to concerns about food security and inflation. The chosen feedstock for this study was maize stover, given that it is the most abundant agricultural residue in South Africa. Maize stover consists of ...

  5. Sugar palm (Argena pinnata). Potential of sugar palm for bio-ethanol production

    OpenAIRE

    Elbersen, H.W.; Oyen, L.P.A.

    2010-01-01

    The energetic and economic feasibility of bioethanol production from sugar palm is virtually unknown. A positive factor are the potentially very high yields while the long non-productive juvenile phase and the high labor needs can be seen as problematic. Expansion to large scale sugar palm cultivation comes with risks. Small-scale cultivation of sugar palm perfectly fits into local farming systems. In order to make a proper assessment of the value palm sugar as bio-ethanol crop more informati...

  6. Exergy and CO2 Analyses as Key Tools for the Evaluation of Bio-Ethanol Production

    OpenAIRE

    Qian Kang; Tianwei Tan

    2016-01-01

    The background of bioethanol as an alternative to conventional fuels is analyzed with the aim of examining the efficiency of bioethanol production by first (sugar-based) and second (cellulose-based) generation processes. Energy integration is of paramount importance for a complete recovery of the processes’ exergy potential. Based upon literature data and our own findings, exergy analysis is shown to be an important tool in analyzing integrated ethanol production from an efficiency and cost p...

  7. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments

    OpenAIRE

    Saini, Jitendra Kumar; Saini, Reetu; Tewari, Lakshmi

    2014-01-01

    Production of liquid biofuels, such as bioethanol, has been advocated as a sustainable option to tackle the problems associated with rising crude oil prices, global warming and diminishing petroleum reserves. Second-generation bioethanol is produced from lignocellulosic feedstock by its saccharification, followed by microbial fermentation and product recovery. Agricultural residues generated as wastes during or after processing of agricultural crops are one of such renewable and lignocellulos...

  8. Tax exemption for biofuels in Germany: Is bio-ethanol really an option for climate policy?

    OpenAIRE

    Henke, Jan Michael; Klepper, Gernot; Schmitz, Norbert

    2003-01-01

    Last year the German Parliament exempted biofuels from the gasoline tax. The promotion of biofuels is being justified by allegedly positive effects on climate, energy, and agricultural policy goals. The paper takes a closer look at bio-ethanol as a substitute for gasoline. We analyze the basic conditions that provide the setting for the production and promotion of biofuels and show that the production of bio-ethanol in Germany is not competitive. Using energy and greenhouse gas balances we de...

  9. Bioethanol from poplar: a commercially viable alternative to fossil fuel in the European Union

    OpenAIRE

    Littlewood, Jade; Guo, Miao; Boerjan, Wout; MURPHY, RICHARD J.

    2014-01-01

    Background: The European Union has made it a strategic objective to develop its biofuels market in order to minimize greenhouse gas (GHG) emissions, to help mitigate climate change and to address energy insecurity within the transport sector. Despite targets set at national and supranational levels, lignocellulosic bioethanol production has yet to be widely commercialized in the European Union. Here, we use techno-economic modeling to compare the price of bioethanol produced from short rotati...

  10. Study of bio-ethanol production from cellulosic waste (rice straw)

    OpenAIRE

    Tadayosi, YOSHIMURA; Marie, HATAKAWA; Fumio, TAKAHASHI; Takatoshi, KAWASHIMA

    2012-01-01

    This basic research was carried out on bio-ethanol derived from cellulosic waste (rice straw). In view of the fact that rice straw is incorporated into the soil after harvesting the grains to increase mineral soil content, we examined the option of using high pressure pretreatment which does not involve chemical treatment, thus allowing residues from bio-ethanol production to be returned to the soil as a liquid fertilizer. Results from this study showed that i) high-pressure treatment enhance...

  11. Exploiting the inter-strain divergence of Fusarium oxysporum for microbial bioprocessing of lignocellulose to bioethanol

    OpenAIRE

    Ali, Shahin S; Khan, Mojibur; Fagan, Brian; Mullins, Ewen; Fiona M Doohan

    2012-01-01

    Microbial bioprocessing of lignocellulose to bioethanol still poses challenges in terms of substrate catabolism. A targeted evolution-based study was undertaken to determine if inter-strain microbial variability could be exploited for bioprocessing of lignocellulose to bioethanol. The microorganism studied was Fusarium oxysporum because of its capacity to both saccharify and ferment lignocellulose. Strains of F. oxysporum were isolated and assessed for their genetic variability. Using optimis...

  12. Bioethanol Production from Indica IR.64 Rice Straw Biomass by Direct Saccharification and Fermentation

    OpenAIRE

    Ario Betha Juanssilfero; Apridah Cameliawati Djohan; Awan Purnawan; Yopi Yopi

    2015-01-01

    Lignocellulosic substances such as agricultural wastes are attractive feed stocks for bioethanol production. Indica IR.64 rice straw is one of abundant agricultural wastes in Indonesia and could be used to bioethanol production. It has several characteristics such as high content of cellulose and hemicelluloses that can be readily hydrolyzed into fermentable sugars. A simple process (the direct saccharification and fermentation process) to produce ethanol from rice straw was developed in orde...

  13. Long-term bioethanol system and its implications on GHG emissions: a case study of Thailand.

    Science.gov (United States)

    Silalertruksa, Thapat; Gheewala, Shabbir H

    2011-06-01

    The study evaluates greenhouse gas (GHG) emissions performance of future bioethanol systems in Thailand to ascertain whether bioethanol for transport could help the country mitigate a global warming impact. GHG emission factors of bioethanol derived from cassava, molasses, and sugar cane are analyzed using 12 scenarios covering the critical variables possibly affecting the GHG performance, i.e., (1) the possible direct land use change caused by expanding feedstock cultivation areas; (2) types of energy carriers used in ethanol plants; and (3) waste utilization, e.g., biogas recovery and dry distillers grains with solubles (DDGS) production. The assessment reveals that GHG performance of a Thai bioethanol system is inclined to decrease in the long run due to the effects from the expansion of plantation areas to satisfy the deficit of cassava and molasses. Therefore, bioethanol will contribute to the country's strategic plan on GHG mitigation in the transportation sector only if the production systems are sustainably managed, i.e., coal replaced by biomass in ethanol plants, biogas recovery, and adoption of improved agricultural practices to increase crop productivity without intensification of chemical fertilizers. Achieving the year 2022 government policy targets for bioethanol with recommended measures would help mitigate GHG emissions up to 4.6 Gg CO(2)-eq per year. PMID:21528843

  14. The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience

    Science.gov (United States)

    Jäger, Alexander; Ortner, Tina; Kahr, Heike

    2015-04-01

    The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience The successful use of bioethanol as a fuel requires its widespread acceptance by consumers. Due to the planned introduction of a 10 per cent proportion of bioethanol in petrol in Austria, the University of Applied Sciences Upper Austria carried out a representative opinion poll to collect information on the population's acceptance of biofuels. Based on this survey, interviews with important stakeholders were held to discuss the results and collect recommendations on how to increase the information level and acceptance. The results indicate that there is a lack of interest and information about biofuels, especially among young people and women. First generation bioethanol is strongly associated with the waste of food resources, but the acceptance of the second generation, produced from agricultural remnants like straw from wheat or corn, is considerably higher. The interviewees see more transparent, objective and less technical information about biofuels as an essential way to raise the information level and acceptance rate. As the production of bioethanol from straw is now economically feasible, there is one major scientific question to answer: In which way does the withdrawal of straw from the fields affect the formation of humus and, therefore, the quality of the soil? An interdisciplinary approach of researchers in the fields of bioethanol production, geoscience and agriculture in combination with political decision makers are required to make the technologies of renewable bioenergy acceptable to the population.

  15. Recent trends in global production and utilization of bio-ethanol fuel

    International Nuclear Information System (INIS)

    Bio-fuels are important because they replace petroleum fuels. A number of environmental and economic benefits are claimed for bio-fuels. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide. Production of bio-ethanol from biomass is one way to reduce both consumption of crude oil and environmental pollution. Using bio-ethanol blended gasoline fuel for automobiles can significantly reduce petroleum use and exhaust greenhouse gas emission. Bio-ethanol can be produced from different kinds of raw materials. These raw materials are classified into three categories of agricultural raw materials: simple sugars, starch and lignocellulose. Bio-ethanol from sugar cane, produced under the proper conditions, is essentially a clean fuel and has several clear advantages over petroleum-derived gasoline in reducing greenhouse gas emissions and improving air quality in metropolitan areas. Conversion technologies for producing bio-ethanol from cellulosic biomass resources such as forest materials, agricultural residues and urban wastes are under development and have not yet been demonstrated commercially. (author)

  16. The EC bioethanol blend mandate policy: its effect on ACP sugar trade and potential interaction with EPA policies

    OpenAIRE

    Sukati, M.A.

    2013-01-01

    The study aim was to determine effects of the EC bioethanol blend mandate policy and its potential interaction with the EPA policies on EU/ACP countries. The research analysis focussed on welfare outcomes, changes in trade balance and output of bioethanol crops commodities due to these policies. Emphasis of our analysis was placed on sugar given the economic importance of this commodity to many ACP member states. Absence of an EU bioethanol partial equilbrium model means we had to design one ...

  17. Mandarin peel wastes pretreatment with steam explosion for bioethanol production.

    Science.gov (United States)

    Boluda-Aguilar, María; García-Vidal, Lidia; González-Castañeda, Fayiny Del Pilar; López-Gómez, Antonio

    2010-05-01

    The mandarin (Citrus reticulata L.) citrus peel wastes (MCPW) were studied for bioethanol production, obtaining also as co-products: d-limonene, galacturonic acid, and citrus pulp pellets (CPP). The steam explosion pretreatment was analysed at pilot plant level to decrease the hydrolytic enzymes requirements and to separate and recover the d-limonene. The effect of steam explosion on MCPW lignocellulosic composition was analyzed by means thermogravimetric analysis. The d-limonene contents and their influence on ethanol production have been also studied, while concentration of sugars, galacturonic acid and ethanol have been analysed to measure the saccharification and fermentation (HF and SSF) processes efficiency obtained by MCPW steam explosion pretreatment. Ethanol contents of 50-60L/1000kg raw MCPW can be obtained and CPP yields can be regulated by means the control of enzymes dose and the steam explosion pretreatment which can significantly reduce the enzymes requirements. PMID:20093022

  18. Operator Training Simulator for an Industrial Bioethanol Plant

    Directory of Open Access Journals (Sweden)

    Inga Gerlach

    2016-09-01

    Full Text Available Operator training simulators (OTS are software tools for training process operators in large-scale industrial applications. Here, we describe the development, implementation and training of an OTS for a large-scale industrial plant for bioethanol production. The design of the OTS is based on conceptual analysis (previously reported by us in this journal of various configuration alternatives and training procedures at the plant. In this article, we report on how the conceptual design is used in simulation models and graphical user interfaces and how the design is applied for training of operators in the real plant environment. The results imply that OTS would be time- and cost-efficient tools for application in the biotechnological industry.

  19. PRETREATMENT TECHNOLOGIES IN BIOETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS

    Directory of Open Access Journals (Sweden)

    Vanja Janušić

    2008-07-01

    Full Text Available Bioethanol is today most commonly produced from corn grain and sugar cane. It is expected that there will be limits to the supply of these raw materials in the near future. Therefore, lignocellulosic biomass, namely agricultural and forest waste, is seen as an attractive feedstock for future supplies of ethanol. Lignocellulosic biomass consists of lignin, hemicellulose and cellulose. Indeed, complexicity of the lignocellulosic biomass structure causes a pretreatment to be applied prior to cellulose and hemicellulose hydrolysis into fermentable sugars. Pretreatment technologies can be physical (mechanical comminution, pyrolysis, physico-chemical (steam explosion, ammonia fiber explosion, CO2 explosion, chemical (ozonolysis, acid hydrolysis, alkaline hydrolysis, oxidative delignification, organosolvent process and biological ones.

  20. Use of extremophilic bacteria for second generation bioethanol production

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    production from food crops, such as corn (starch) or sugar cane (sucrose) is already an established process, with the USA and Brazil supplying 86% of the market. The major challenge remains in the use of different waste sources – agricultural, forestry, animal and household waste - as a feedstock....... The recalcitrance of these materials and their diverse sugar composition make the industrial yeast strains currently used unsuitable for a second generation bioethanol production process. One of the alternative strategies is the use of extreme thermophilic microorganisms. Currently, selected members from the genera...... Clostridium, Thermoanaerobacter, Geobacillus and Thermoanaerobacterium are among the best candidates. A new strain of Thermoanaerobacter, closely related to T. italicus and T. mathranii, has achieved 0.43 gethanol/gxylose, which is 83% of the theoretical yield of ethanol based on xylose and the highest value...

  1. SACCHARIFICATION OF CORNCOB USING CELLULOLYTIC BACTERIA FOR BIOETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    TITI CANDRA SUNARTI

    2010-08-01

    Full Text Available The use of cellulose degrading enzyme (cellulases for hydrolysis of lignocellulosic material is a part of bioethanol production process. In this experiment, delignified corncob, its cellulose fraction and alpha cellulose were used as substrates to produce fermentable sugar by using three local isolates of celluloytic bacteria (C5-1, C4-4, C11-1 and Cmix ; mixed cultures of three isolates, and Saccharomyces cereviseae to produce ethanol. The results showed that all isolates of cellulolytic bacteria can grow on cellulose fraction better than on delignified corncob, and alpha cellulose. The highest hydrolytic activity produced from cellulose fraction was by isolate C4-4, which liberated 3.50 g/l of total sugar. Ethanol can be produced by mixed culture of bacteria and yeast, but because of competitive growth, the fermentation only produced 0.39-0.47 g/l of ethanol.

  2. Biomass for bioethanol production and technological process in Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Nadiradze, K.; Phirosmanashvili, N. [Association for Farmers Rights Defence, Tbilisi (Georgia)

    2010-07-01

    This study discussed the use of biomass for bioethanol production in Georgia and its potential impacts on the country's rural economy. Eighty-five per cent of the country's lands are forested or used for agricultural purposes, and more than 56 per cent of the adult population is involved in the agricultural sector. The privatization of land in post-Soviet Georgia has resulted in the creation of a new social class of land-owners. The use of biofuel in petroleum fuel has significantly lowered greenhouse gases (GHGs) in the country. The biofuel is produced using local agricultural and forest wastes. Use of the biofuel has lowered the country's reliance on imported oil and has increased its energy security. The production of ethanol in Georgia has resulted in significant socio-economic benefits in the country.

  3. Thermotolerant Yeasts for Bioethanol Production Using Lignocellulosic Substrates

    Science.gov (United States)

    Pasha, Chand; Rao, L. Venkateswar

    No other sustainable option for production of transportation fuels can match ethanol made from lignocellulosic biomass with respect to its dramatic environmental, economic, strategic and infrastructure advantages. Substantial progress has been made in advancing biomass ethanol (bioethanol) production technology to the point that it now has commercial potential, and several firms are engaged in the demanding task of introducing first-of-a-kind technology into the marketplace to make bioethanol a reality in existing fuel-blending markets. In order to lower pollution India has a long-term goal to use biofuels (bioethanol and biodiesel). Ethanol may be used either in pure form, or as a blend in petrol in different proportions. Since the cost of raw materials, which can account up to 50 % of the total production cost, is one of the most significant factors affecting the economy of alcohol, nowadays efforts are more concentrated on using cheap and abundant raw materials. Several forms of biomass resources exist (starch or sugar crops, weeds, oil plants, agricultural, forestry and municipal wastes) but of all biomass cellulosic resources represent the most abundant global source. The lignocellulosic materials include agricultural residues, municipal solid wastes (MSW), pulp mill refuse, switchgrass and lawn, garden wastes. Lignocellulosic materials contain two types of polysaccharides, cellulose and hemicellulose, bound together by a third component lignin. The principal elements of the lignocellulosic research include: i) evaluation and characterization of the waste feedstock; ii) pretreatment including initial clean up or dewatering of the feedstock; and iii) development of effective direct conversion bioprocessing to generate ethanol as an end product. Pre-treatment of lignocellulosic materials is a step in which some of the hemicellulose dissolves in water, either as monomeric sugars or as oligomers and polymers. The cellulose cannot be enzymatically hydrolyzed to

  4. Integrated bioethanol and biomanure production from potato waste.

    Science.gov (United States)

    Chintagunta, Anjani Devi; Jacob, Samuel; Banerjee, Rintu

    2016-03-01

    Disposal of potato processing waste and the problem of pollution associated with it is a vital issue that is being faced by the potato processing plants. The conventional peeling methods presently followed in the processing plants for removing the potato peel, also result in the loss of some portion of the mash which is rich in starch. Indiscriminate discharge of the waste causes detrimental effects in the environment, so this problem can be resolved by successful utilization of the waste for the generation of value added products. Hence, the present work focuses on integrated production of bioethanol and biomanure to utilize the waste completely leading to zero waste generation. The first part of the work describes a comparative study of ethanol production from potato peel and mash wastes by employing co-culture of Aspergillus niger and Saccharomyces cerevisiae at various incubation time (24-120 h) instead of application of enzymes. The solid state fermentation of potato peel and mash inoculated with co-culture, resulted in bioethanol production of 6.18% (v/v) and 9.30% (v/v) respectively. In the second part of the work, the residue obtained after ethanol production was inoculated with seven different microorganisms (Nostoc muscorum, Fischerella muscicola, Anabaena variabilis, Aulosira fertilissima, Cylindrospermum muscicola, Azospirillium lipoferum, Azotobacter chroococcum) and mixture of all the organisms in equal ratio for nitrogen (N), phosphorous (P) and potassium (K) enrichment. Among them, A. variabilis was found to enrich N, P and K content of the residue by nearly 7.66, 21.66 and 15 fold than that of the initial content, ultimately leading to improved N:P:K ratio of approximately 2:1:1. The application of simultaneous saccharification and fermentation (SSF) for the conversion of potato waste to ethanol and enrichment of residue obtained after ethanol production with microorganisms to be used as manure envisages environmental sustainability. PMID:26316099

  5. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949–2015

    Directory of Open Access Journals (Sweden)

    Chao-Chen Chung

    2016-02-01

    Full Text Available This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS. Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present research, technology, development and innovation (RTDI policies as well as the influence of these policies on the functional dynamics of bio-ethanol innovation system, mechanisms prohibiting the system from flourishing are determined. It is suggested that the production of bio-ethanol in Taiwan would be achieved if the government: (1 fixes long-term targets for both domestic bio-ethanol development and emission reduction; and (2 comprehensively designs a set of interrelated RTDI policies in accordance with the functional pattern of the bio-ethanol innovation system and consistently implements these policies. If such measures were implemented, it is considered that the bio-ethanol innovation system in Taiwan would flourish.

  6. Bio-ethanol Production from Wheat in the Winter Rainfall Region of South Africa: A Quantitative Risk Analysis

    OpenAIRE

    Richardson, James W.; Lemmer, Wessel J.; Outlaw, Joe L.

    2007-01-01

    Contrary to developments in other parts of the world, South Africa has not developed a bio-ethanol industry. The objective was to quantify the risks and economic viability of a wheat based bio-ethanol plant in the winter rainfall region of South Africa. Monte Carlo simulation of a bio-ethanol plant was used to quantify the risk that investors will likely face. Under the Base scenario a 103 million liter bio-ethanol plant would not offer a reasonable chance of being economically viable. Altern...

  7. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949-2015).

    Science.gov (United States)

    Chung, Chao-Chen; Yang, Siang-Cing

    2016-02-19

    This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS). Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present research, technology, development and innovation (RTDI) policies as well as the influence of these policies on the functional dynamics of bio-ethanol innovation system, mechanisms prohibiting the system from flourishing are determined. It is suggested that the production of bio-ethanol in Taiwan would be achieved if the government: (1) fixes long-term targets for both domestic bio-ethanol development and emission reduction; and (2) comprehensively designs a set of interrelated RTDI policies in accordance with the functional pattern of the bio-ethanol innovation system and consistently implements these policies. If such measures were implemented, it is considered that the bio-ethanol innovation system in Taiwan would flourish.

  8. BIOETHANOL PRODUCTION FROM CELLULOSE IN RED ALGAE Gracilaria verrucosa BY SEPARATED HYDROLYSIS AND FERMENTATION SYSTEM USING Trichoderma viride AND Zymomonas mobilis

    OpenAIRE

    Ahmad, Ahyar

    2014-01-01

    In this study, renewable marine cellulose from red algae Gracilaria verrucosa was utilized for the production of bioethanol. Bioethanol from the red alga cellulose was produced by the enzymatic hydrolysis and fermentation methods and the conversion value of the cellulose in Gracilaria verrucosa was estimated. Trichoderma viride fungus and Zymomonas mobilis bacterium were used for enzymatic hydrolysis and bioethanol fermentation, r...

  9. Draft Genome Sequence of Saccharomyces cerevisiae IR-2, a Useful Industrial Strain for Highly Efficient Production of Bioethanol

    OpenAIRE

    Sahara, Takehiko; Fujimori, Kazuhiro E.; Nezuo, Maiko; Tsukahara, Masatoshi; Tochigi, Yuki; Ohgiya, Satoru; Kamagata, Yoichi

    2014-01-01

    We sequenced the genome of Saccharomyces cerevisiae IR-2, which is a diploid industrial strain with flocculation activity and the ability to efficiently produce bioethanol. The approximately 11.4-Mb draft genome information provides useful insights into metabolic engineering for the production of bioethanol from biomass.

  10. An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland

    Science.gov (United States)

    The recent emphasis on corn production to meet the increasing demand for bioethanol has resulted in trepidation regarding the sustainability of the global food supply. To assess the potential of alternative crops as sources of bioethanol production, we grew sweet potato (Ipomoea batatas) and cassav...

  11. Second generation bioethanol potential from selected Malaysia's biodiversity biomasses: A review.

    Science.gov (United States)

    Aditiya, H B; Chong, W T; Mahlia, T M I; Sebayang, A H; Berawi, M A; Nur, Hadi

    2016-01-01

    Rising global temperature, worsening air quality and drastic declining of fossil fuel reserve are the inevitable phenomena from the disorganized energy management. Bioethanol is believed to clear out the effects as being an energy-derivable product sourced from renewable organic sources. Second generation bioethanol interests many researches from its unique source of inedible biomass, and this paper presents the potential of several selected biomasses from Malaysia case. As one of countries with rich biodiversity, Malaysia holds enormous potential in second generation bioethanol production from its various agricultural and forestry biomasses, which are the source of lignocellulosic and starch compounds. This paper reviews potentials of biomasses and potential ethanol yield from oil palm, paddy (rice), pineapple, banana and durian, as the common agricultural waste in the country but uncommon to be served as bioethanol feedstock, by calculating the theoretical conversion of cellulose, hemicellulose and starch components of the biomasses into bioethanol. Moreover, the potential of the biomasses as feedstock are discussed based on several reported works. PMID:26253329

  12. Use of bioethanol as an additive or substitute for petrol and diesel oil increases in Europe

    International Nuclear Information System (INIS)

    Brazil has used bioethanol for decades, to replace gasoline and gasoline additives based on mineral resources. The United States initiated a bioethanol programme 15 years ago, to reduce vehicle emissions and encourage the use of renewable raw materials in fuels. Today, the bioethanol production capacity is 12 million tons/a in Brazil and 5 million tons/a in the United States. In Europe, Sweden and France have been the first to follow this trend. The first European fuel ethanol plant was constructed in France in 1995, and another plant has been designed and is awaiting an investment decision. Spain is going ahead with a project, and a fuel ethanol plant may start up in Sweden in 1998. JPI Process Contracting was chosen as the contractor for the French and Spanish projects. Since bioethanol is more expensive than fossil fuels and fuel additives for vehicles, governments typically support bioethanol production through tax exemptions for a period of 5 to 10 years. In the meantime, new processes based on cellulosic raw materials are actively studied in several countries, but development to full commercial scale could take as much as 10 years. (author)

  13. Bioethanol fermentation as alternative valorization route of agricultural digestate according to a biorefinery approach.

    Science.gov (United States)

    Sambusiti, C; Monlau, F; Barakat, A

    2016-07-01

    This study investigates the feasibility of producing bioethanol from solid digestate after a mechanical fractionation (i.e. centrifugal milling), in order to improve the energy recovery from agricultural wastes and the sustainability of anaerobic digestion plants. A bioethanol yield of 37gkg(-1)TS was evaluated for the solid digestate fraction. Mass and energetic balances were performed and compared between two scenarios: (A) one-stage bioethanol fermentation and (B) two-stage anaerobic digestion-bioethanol fermentation, in order to evaluate the feasibility and the advantages of the two-stage process. Results revealed that, compared to the one-stage process, the dual anaerobic digestion-bioethanol process permitted: (i) to diversify biofuels production; (ii) to provide the thermal energy sufficient for drying digestate (13,351kWhthday(-1)), for the subsequent milling step; (iii) to reduce the electric energy requirement for the milling step (from 23,880 to 3580kWhelday(-1)); (iv) to produce extra electrical energy of 8483kWhelday(-1); (v) to improve the reduction of waste streams generated (from 13% to 54% of organic matter removal). PMID:27115615

  14. Literature survey with chemical equilibrium calculations of bioethanol processing for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares Coderch, X

    2005-07-01

    Bioethanol is being potentially considered as one of the most desirable fossil fuel substitutes. Its subsequent reforming process contributes to obtain hydrogen from a renewable source and, moreover, corroborates the theory that hydrogen fuel cells might become in a near future a truly zero-emission power engine. However, product gas obtained from bioethanol reforming needs to fulfil fuel cell requirements prior to feed the stack. Therefore, this master's thesis deals with bioethanol processing theoretical research. Ethanol production from lignocellulosic biomass is extensively detailed, concentrating on the dilute acid hydrolisis process. Bioethanol processing is conceived as a sum of a reforming process and a further gas cleaning. Steam reforming (STR) is stated as the most developed reforming process nowadays, but partial oxidation (PDX) and autothermal reforming (ATR) are emerging as valuable alternatives. Cleaning system units are helping to reduce CO/CO{sub 2} content in hydrogen gas when feeding fuel cells. Bioethanol processing equilibrium reactionsare simulatedusing HSC software, focusing on hydrogen production via steam reforming. Subsequently, these results are compared with ethanol reforming using both PDX and ATR. STR shows highest hydrogen production, increasing its amount when lowering the water/ethanol ratio at the reformer inlet. ATR leads to the smallest CO amount. Lower amounts could be achieved when using lower reaction temperatures and proper catalysts. Study of pressure influence denotes that is advisable to operate at ambient pressure. (orig.)

  15. Techno-economic analysis of bioethanol production from rice straw by liquid-state fermentation

    Science.gov (United States)

    Hidayata, M. H. M.; Salleh, S. F.; Riayatsyahb, T. M. I.; Aditiyac, H. B.; Mahliaa, T. M. I.; Shamsuddina, A. H.

    2016-03-01

    Renewable energy is the latest approach of the Malaysian government in an effort to find sustainable alternative energy sources and to fulfill the ever increasing energy demand. Being a country that thrives in the service and agricultural sector, bioethanol production from lignocellulosic biomass presents itself as a promising option. However, the lack of technical practicality and complexity in the operation system hinder it from being economically viable. Hence, this research acquired multiple case studies in order to provide an insight on the process involved and its implication on production as well as to obtain a cost analysis of bioethanol production. The energy input and cost of three main components of the bioethanol production which are the collection, logistics, and pretreatment of rice straw were evaluated extensively. The theoretical bioethanol yield and conversion efficiency obtained were 250 L/t and 60% respectively. The findings concluded that bioethanol production from rice straw is currently not economically feasible in Malaysia’s market due to lack of efficiency in the pretreatment phase and overbearing logistics and pretreatment costs. This work could serve as a reference to future studies of biofuel commercialization in Malaysia.

  16. Security of feedstocks supply for future bio-ethanol production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Silalertruksa, Thapat; Gheewala, Shabbir H. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 126 Prachauthit Road, Bangkok 10140 (Thailand)

    2010-11-15

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. (author)

  17. Integrated bioethanol and protein production from brown seaweed Laminaria digitata.

    Science.gov (United States)

    Hou, Xiaoru; Hansen, Jonas Høeg; Bjerre, Anne-Belinda

    2015-12-01

    A wild-growing glucose-rich (i.e. 56.7% glucose content) brown seaweed species Laminaria digitata, collected from the North Coast of Denmark in August 2012, was used as the feedstock for an integrated bioethanol and protein production. Glutamic acid and aspartic acid are the two most abundant amino acids in the algal protein, both with proportional content of 10% in crude protein. Only minor pretreatment of milling was used on the biomass to facilitate the subsequent enzymatic hydrolysis and fermentation. The Separate Hydrolysis and Fermentation (SHF) resulted in obviously higher ethanol yield than the Simultaneous Saccharification and Fermentation (SSF). High conversion rate at maximum of 84.1% glucose recovery by enzymatic hydrolysis and overall ethanol yield at maximum of 77.7% theoretical were achieved. Protein content in the solid residues after fermentation was enriched by 2.7 fold, with similar distributions of amino acids, due to the hydrolysis of polymers in the seaweed cell wall matrix. PMID:26342344

  18. Production of bioethanol using agricultural waste: banana pseudo stem

    Directory of Open Access Journals (Sweden)

    Snehal Ingale

    2014-09-01

    Full Text Available India is amongst the largest banana (Musa acuminata producing countries and thus banana pseudo stem is commonly available agricultural waste to be used as lignocellulosic substrate. Present study focuses on exploitation of banana pseudo stem as a source for bioethanol production from the sugars released due to different chemical and biological pretreatments. Two fungal strains Aspergillus ellipticus and Aspergillus fumigatus reported to be producing cellulolytic enzymes on sugarcane bagasse were used under co-culture fermentation on banana pseudo stem to degrade holocellulose and facilitate maximum release of reducing sugars. The hydrolysate obtained after alkali and microbial treatments was fermented by Saccharomyces cerevisiae NCIM 3570 to produce ethanol. Fermentation of cellulosic hydrolysate (4.1 g% gave maximum ethanol (17.1 g/L with yield (84% and productivity (0.024 g%/h after 72 h. Some critical aspects of fungal pretreatment for saccharification of cellulosic substrate using A. ellipticus and A. fumigatus for ethanol production by S. cerevisiae NCIM 3570 have been explored in this study. It was observed that pretreated banana pseudo stem can be economically utilized as a cheaper substrate for ethanol production.

  19. Production of bioethanol using agricultural waste: banana pseudo stem.

    Science.gov (United States)

    Ingale, Snehal; Joshi, Sanket J; Gupte, Akshaya

    2014-01-01

    India is amongst the largest banana (Musa acuminata) producing countries and thus banana pseudo stem is commonly available agricultural waste to be used as lignocellulosic substrate. Present study focuses on exploitation of banana pseudo stem as a source for bioethanol production from the sugars released due to different chemical and biological pretreatments. Two fungal strains Aspergillus ellipticus and Aspergillus fumigatus reported to be producing cellulolytic enzymes on sugarcane bagasse were used under co-culture fermentation on banana pseudo stem to degrade holocellulose and facilitate maximum release of reducing sugars. The hydrolysate obtained after alkali and microbial treatments was fermented by Saccharomyces cerevisiae NCIM 3570 to produce ethanol. Fermentation of cellulosic hydrolysate (4.1 g%) gave maximum ethanol (17.1 g/L) with yield (84%) and productivity (0.024 g%/h) after 72 h. Some critical aspects of fungal pretreatment for saccharification of cellulosic substrate using A. ellipticus and A. fumigatus for ethanol production by S. cerevisiae NCIM 3570 have been explored in this study. It was observed that pretreated banana pseudo stem can be economically utilized as a cheaper substrate for ethanol production.

  20. Spirogyra biomass a renewable source for biofuel (bioethanol Production

    Directory of Open Access Journals (Sweden)

    Fuad Salem Eshaq

    2010-12-01

    Full Text Available Biofuels refer to renewable fuels from biological sources that can be used for heat, electricity and fuel. The fuels obtained from algae are termed as third generation fuels. The production of fuel from algae provides many advantages when compared to the fuel produced from other sources like agrobased raw materials. Other than environmental pollution control the algal biofuel will help in reduction of the fuel cost when compared to the agrobased and fossil fuels. In the present study algae specifically Spirogyra was used for the production of bioethanol by the fermentative process. A comparative study was carried out by using chemically pre-treated anduntreated Spirogyra biomass. The Spirogyra has a very simple cell wall made up of cellulose and starch that can be converted to ethanol by the fermentation process. The Spirogyra biomass was subjected to saccharification process by the fungal organism Aspergillus niger MTCCC 2196 for the hydrolysis, this process was followed by the fermentation using yeast Saccharomyces cerevisiae MTCC170 for the production of alcohol. A high yield of ethanol was recorded for untreated Spirogyra biomass when compared to chemically pre-treated biomass. The yield of alcohol using algal biomass is more when compared to alcohol produced from other sources like agrobased rawmaterials.

  1. Energy and Environmental Performance of Bioethanol from Different Lignocelluloses

    Directory of Open Access Journals (Sweden)

    Lin Luo

    2010-01-01

    Full Text Available Climate change and the wish to reduce the dependence on oil are the incentives for the development of alternative energy sources. The use of lignocellulosic biomass together with cellulosic processing technology provides opportunities to produce fuel ethanol with less competition with food and nature. Many studies on energy analysis and life cycle assessment of second-generation bioethanol have been conducted. However, due to the different methodology used and different system boundary definition, it is difficult to compare their results. To permit a direct comparison of fuel ethanol from different lignocelluloses in terms of energy use and environmental impact, seven studies conducted in our group were summarized in this paper, where the same technologies were used to convert biomass to ethanol, the same system boundaries were defined, and the same allocation procedures were followed. A complete set of environmental impacts ranging from global warming potential to toxicity aspects is used. The results provide an overview on the energy efficiency and environmental performance of using fuel ethanol derived from different feedstocks in comparison with gasoline.

  2. Cost assessment of bioethanol from the viewpoint of consumer

    Energy Technology Data Exchange (ETDEWEB)

    Anahideh, H.; Nourbakhsh, S. H.; Shakouri G, H. [Department of Industrial Engineering, Engineering Collage, University of Tehran (Iran, Islamic Republic of)], e-mail: h.anahideh@ut.ac.ir, email: nourbakhsh@ut.ac.ir, email: hshakouri@ut.ac.ir

    2011-07-01

    Demand for transportation fuels has risen progressively over the last decade. Utilization of biomass waste as a raw material for future energy production has attracted a good deal of attention as an alternative to petroleum based fuels, the primary source of energy for transportation at present. Today, bioethanol, an alcohol made by fermentation, is probably the most used non-fossil alternative transport biofuel in the world. It is usually used as a gasoline additive to increase octane and improve vehicle emissions. This paper presents a cost assessment of fuels E-10, E-85 and gasoline from the viewpoint of the consumer. The imposed costs to the consumer are calculated as well as the hidden costs, which the consumer may not notice. The price of a tank of E-85 is found to be greater than that of a tank of gasoline but the environmental cost of it is much less than that of either E-10 or gasoline. The price of E-10, on the other hand, is the same as the price of gasoline but its cost, in terms of CO2 emissions, is lower.

  3. Pequi cake composition, hydrolysis and fermentation to bioethanol

    Directory of Open Access Journals (Sweden)

    A. L. Macedo

    2011-03-01

    Full Text Available Pequizeiro (Caryocar brasiliense Camb fruits have been evaluated as a potential raw material for the newly established biodiesel industry. This scenario demands applications using the solid co-product derived from the extraction of pequi oil, called cake or meal. This study analyses the acid hydrolysis of carbohydrates present in the pequi meal in order to obtain fermentable sugars and evaluates their conversion to bioethanol. There was 27% starch in the pequi meal. The use of a CCRD experimental design type to study the acid saccharification of pequi meal results in 61.6% conversion of its starch content to reducing sugars. Positive and significant linear effects were observed for H2SO4 concentration and temperature factors, while the quadratic effect of H2SO4 concentration and the linear effect of solid-liquid ratio were negative. Even, with non-optimized fermentative condition using 1% of dried baker's yeast in conical flasks, it was possible to obtain a value equivalent to 53 L of ethanol per ton of hydrolyzed pequi meal.

  4. Using Populus as a lignocellulosic feedstock for bioethanol.

    Science.gov (United States)

    Porth, Ilga; El-Kassaby, Yousry A

    2015-04-01

    Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome. PMID:25676392

  5. Feasibility of bioethanol production from tubers of Dioscorea sansibarensis and Pyrenacantha kaurabassana.

    Science.gov (United States)

    Moshi, Anselm P; Nyandele, Jane P; Ndossi, Humphrey P; Eva, Sosovele M; Hosea, Ken M

    2015-11-01

    Inedible tubers from Dioscorea sansibarensis (DS) and Pyrenacantha kaurabassana (PK) were found to be suitable feedstock for bioethanol production. Important composition parameters for bioethanol production for DS and PK are dry matter (% fresh tubers) ca. 20 and 6, total carbohydrates % dry weight base (db) ca. 68 and 47 and total protein (% db) ca. 16 and 10, respectively. DS and PK were found to contain inulin and galactomannan as principal polysaccharides (% of total carbohydrate) ca. 90 and 70, respectively. Diluted acid hydrolysis yielded ca. 100% of total reducing sugars. Ethanol yield ca. 56 and 35g/L was obtained at high efficiency through batch fermentation of acid hydrolysate (25% w/v) of DS and PK, respectively. A simple technique of recording and monitoring ethanol through CO2 generated during fermentation correlated strongly with HPLC measurement R(2)=0.99. Thus, tubers from these plants are potential feedstocks for bioethanol production with no competing uses. PMID:26298406

  6. The sustainability of cassava-based bioethanol production in southern Mali

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld; Birch-Thomsen, Torben; Bruun, Thilde Bech;

    2015-01-01

    of cassava-based bioethanol production in southern Mali, assessing its environmental, economic and social sustainability. Results demonstrate that environmental sustainability of cassava-based bioethanol production depends on the ‘baseline’ chosen: Compared to the situation before the decline in cotton...... production 10 years ago, the carbon stocks will increase. However, if compared to the current situation, where considerable carbon stocks have accumulated in fallow fields, the loss of carbon will be substantial. Increased cassava production will create greater incomes and better temporal distribution...... of labour input. Analysis of the significance of current cassava production for food security shows that bioethanol production should be based on the attiéké variety of cassava, thereby avoiding interference with the important role of the bonouma in assuring food security in northern Mali. The key factor...

  7. Challenges for the production of bioethanol from biomass using recombinant yeasts.

    Science.gov (United States)

    Kricka, William; Fitzpatrick, James; Bond, Ursula

    2015-01-01

    Lignocellulose biomass, one of the most abundant renewable resources on the planet, is an alternative sustainable energy source for the production of second-generation biofuels. Energy in the form of simple or complex carbohydrates can be extracted from lignocellulose biomass and fermented by microorganisms to produce bioethanol. Despite 40 years of active and cutting-edge research invested into the development of technologies to produce bioethanol from lignocellulosic biomass, the process remains commercially unviable. This review describes the achievements that have been made in generating microorganisms capable of utilizing both simple and complex sugars from lignocellulose biomass and the fermentation of these sugars into ethanol. We also provide a discussion on the current "roadblocks" standing in the way of making second-generation bioethanol a commercially viable alternative to fossil fuels. PMID:26003934

  8. Thermophilic amylase from Thermus sp. isolation and its potential application for bioethanol production

    Directory of Open Access Journals (Sweden)

    Amin Fatoni

    2012-11-01

    Full Text Available Limited reserves of fossil energy stimulate researchers to explore for a new alternative energy, such as bioethanol.A thermophilic amylase producing bacterium was isolated from local hot-springs and its characteristic and potential applicationfor bioethanol production was determined. The obtained amylase was studied to determine its optimum temperature, pH,enzymatic reaction time, and substrate concentration. Tapioca waste was used as the substrate to find the potential of theamylase for degrading starch into glucose, and then the process was continued by fermentation to produce bioethanol. Theamylase producer bacterium was proposed as genus Thermus sp. The crude amylase that was obtained has the optimumtemperature of 60°C and optimum pH of 8.0, optimum substrate concentration at 10% (w/w and optimum enzymatic reactiontime of 45 minutes. These enzymes convert the starches of waste tapioca at optimum conditions, with the result of 2.9%ethanol produced from raw materials.

  9. Stabilization of cereal markets by flexible use of cereals for bio-ethanol

    International Nuclear Information System (INIS)

    This report addresses the question if it is possible to stabilize the grain market and the grain price by means of variation in the deployment of grain for producing bio-ethanol in the Eu-27. The time horizon of this study is 2020, taking into account the blending obligation for biofuels of minimal 10% in the Eu-27. A basic scenarios and several alternative scenarios are developed by means of an economic calculation model. In the alternative scenarios more or less grain is used for own production of bio-ethanol in the Eu-27. The variation depends on the volume of the grain production compared to the basic scenario. The effect of the additional own production of bio-ethanol on the grain price is subsequently addressed.

  10. Aspects of the bioethanol use at the turbocharged spark ignition engine

    Directory of Open Access Journals (Sweden)

    Obeid Zuhair

    2015-01-01

    Full Text Available In the actual content of pollution regulations for the automotives, the use of alternative fuels becomes a priority of the thermal engine scientific research domain. From this point of view bioethanol can represents a viable alternative fuel for spark ignition engines offering the perspective of pollutant emissions reduction and combustion improvement. The paper presents results of the experimental investigations of a turbo-supercharged spark ignition engine (developed from a natural admission spark ignition engine fuelled with gasoline fuelled with bioethanol-gasoline blends. The engine is equipped with a turbocharger for low pressure supercharging, up till 1.4 bar. An correlation between air supercharging pressure-compression ratio-dosage-spark ignition timing-brake power is establish to avoid knocking phenomena at the engine operate regime of full load and 3000 min-1. The influences of the bioethanol on pollutant emissions level are presented.

  11. Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion.

    Science.gov (United States)

    Fernandes, Maria C; Ferro, Miguel D; Paulino, Ana F C; Mendes, Joana A S; Gravitis, Janis; Evtuguin, Dmitry V; Xavier, Ana M R B

    2015-06-01

    The correct choice of the specific lignocellulosic biomass pretreatment allows obtaining high biomass conversions for biorefinery implementations and cellulosic bioethanol production from renewable resources. Cynara cardunculus (cardoon) pretreated by steam explosion (SE) was involved in second-generation bioethanol production using separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF) processes. Steam explosion pretreatment led to partial solubilisation of hemicelluloses and increased the accessibility of residual polysaccharides towards enzymatic hydrolysis revealing 64% of sugars yield against 11% from untreated plant material. Alkaline extraction after SE pretreatment of cardoon (CSEOH) promoted partial removal of degraded lignin, tannins, extractives and hemicelluloses thus allowing to double glucose concentration upon saccharification step. Bioethanol fermentation in SSF mode was faster than SHF process providing the best results: ethanol concentration 18.7 g L(-1), fermentation efficiency of 66.6% and a yield of 26.6g ethanol/100 g CSEOH or 10.1 g ethanol/100 g untreated cardoon.

  12. Bioethanol production from residual lignocellulosic materials: A review – Part 1

    Directory of Open Access Journals (Sweden)

    CRISTIAN-TEODOR BURUIANA

    2013-08-01

    Full Text Available Lignocellulosic materials (LCM are produced in large quantities and without clear application and their use as raw material for bioethanol production shows economic and ecologic benefits. LCM are composed mainly of three polymers: cellulose made up of glucose units, hemicellulose made up of several sugars (as xylose or arabinose, and lignin made up of phenylpropane units, interconnected in a strong structure. Pretreatment is an important step for bioethanol production from LCM, causing the solubilisation of hemicellulosic fraction (leading to the recovery of hemicellulose-derived saccharides in order to obtain a solid phase enriched in cellulose and more susceptible to enzymatic attack. This study provides a comparative data regarding the chemical composition of various LCM used for bioethanol production, as well as different pretreatment technologies for improving the enzymatic hydrolysis of LCM.

  13. Recycling of cellulases in a continuous process for production of bioethanol

    DEFF Research Database (Denmark)

    Haven, Mai Østergaard

    The focus of the work presented in this thesis is recycling of commercial enzymes in a continuous process for production of bioethanol from biomass. To get a deeper understanding of the factors affecting the potential for enzyme recycling, the interactions between enzymes and biomass, the adsorpt......The focus of the work presented in this thesis is recycling of commercial enzymes in a continuous process for production of bioethanol from biomass. To get a deeper understanding of the factors affecting the potential for enzyme recycling, the interactions between enzymes and biomass......, the adsorption and desorption as well as stability and recovery of activity was investigated. More knowledge on these factors have enabled a process adapted for enzyme recycling. The driver being that enzyme consumption remains a major cost when producing bioethanol from lignocellulosic biomass. Unlike previous...

  14. Hybrid optical fiber sensor and artificial neural network system for bioethanol quality control and productivity enhancement

    Science.gov (United States)

    Gusken, Edmilton; Salgado, Ricardo M.; Rossell, Carlos E. V.; Ohishi, Takaaki; Suzuki, Carlos K.

    2008-04-01

    Bioethanol is produced by bio-chemical process that converts sugar or biomass feedstock into ethanol. After bio-chemical process, the solution is distilled under controlled conditions of pressure and temperature, in order to obtain an ethanol-water solution. However, the ethanol concentration analysis is generally performed off-line and, sometimes, a re-distillation process becomes necessary. In this research, an optical apparatus based on Fresnel reflection has been used in combination with artificial neural networks for determination of bioethanol concentration in hydro-alcoholic solution at any temperature. The volumetric concentration and temperature effect was investigated. This intelligent system can effectively detect and update in real-time the correction of distillation parameters to reduce losses of bioethanol and also to improve the quality in a production plant.

  15. Improvement of saccharification process for bioethanol production from Undaria sp. by gamma irradiation

    Science.gov (United States)

    Yoon, Minchul; Choi, Jong-il; Lee, Ju-Woon; Park, Don-Hee

    2012-08-01

    Recently, many research works have reported on improvements to the saccharification process that increase bioethanol production from cellulosic materials. Gamma irradiation has been studied as an effective method for the depolymerization of complex polysaccharides. In this study, the effect of gamma irradiation on saccharification of Undaria biomass for bioethanol production was investigated. The Undaria biomass was irradiated at doses of 0, 10, 50, 100, 200 and 500 kGy and then hydrolyzed using sulfuric acid. The effects of gamma irradiation were measured through microscopic analysis to determine morphological changes and concentration of the reducing sugar of hydrolysates. Microscopic images show that gamma irradiation causes structure breakage of the Undaria cell wall. The concentration of reducing sugar of hydrolysates significantly increased as a result of gamma irradiation, with or without acid hydrolysis. These results indicate that the combined method of gamma irradiation with acid hydrolysis can significantly improve the saccharification process for bioethanol production from marine algae materials.

  16. Upgrading of lignocellulosic biorefinery to value-added chemicals: Sustainability and economics of bioethanol-derivatives

    DEFF Research Database (Denmark)

    Cheali, Peam; Posada, John A.; Gernaey, Krist;

    2015-01-01

    In this study, several strategies to upgrade lignocellulosic biorefineries for production of value-added chemicals are systematically generated and evaluated with respect to economic and sustainability objectives. A superstructure-based process synthesis approach under uncertainty integrated...... with a sustainability assessment method is used as evaluation tool. First, an existing superstructure representing the lignocellulosic biorefinery design network is extended to include the options for catalytic conversion of bioethanol to value-added derivatives. Second, the optimization problem for process upgrade...... of operating profit for biorefineries producing bioethanol-derived chemicals (247 MM$/a and 241 MM$/a for diethyl ether and 1,3-butadiene, respectively). Second, the optimal designs for upgrading bioethanol (i.e. production of 1,3-butadiene and diethyl ether) performed also better with respect...

  17. Comparison of hydrophilic variation and bioethanol production of furfural residues after delignification pretreatment.

    Science.gov (United States)

    Bu, Lingxi; Tang, Yong; Xing, Yang; Zhang, Weiming; Shang, Xinhui; Jiang, Jianxin

    2014-01-01

    Furfural residue (FR) is a waste lignocellulosic material with enormous potential for bioethanol production. In this study, bioethanol production from FR after delignification was compared. Hydrophilic variation was measured by conductometric titration to detect the relationship between hydrophilicity and bioethanol production. It was found that ethanol yield increased as delignification enhanced, and it reached up to 75.6% of theoretical yield for samples with 8.7% lignin. The amount of by-products decreased as delignification increased. New inflection points appeared in conductometric titration curves of samples that were partially delignified, but they vanished in the curves of the highly delignified samples. Total charges and carboxyl levels increased after slight delignification, and they decreased upon further delignification. These phenomena suggested some new hydrophilic groups were formed during pretreated delignification, which would be beneficial to enzymatic hydrolysis. However, some newly formed groups may act as toxicant to the yeast during simultaneous saccharification and fermentation.

  18. Sustainability of bioethanol production from wheat with recycled residues as evaluated by Emergy assessment

    DEFF Research Database (Denmark)

    Coppola, F.; Bastianoni, S.; Østergård, Hanne

    2009-01-01

    , were considered. Material and energy flows were assessed to evaluate the bioethanol yield, the production efficiency in terms of Emergy used compared to energy produced (transformity), and the environmental load (ELR) in terms of use of non-renewable resources. These three indicators varied among......An Emergy assessment study of 24 bioethanol production scenarios was carried out for the comparison of bioethanol production using winter wheat grains and/or straw as feedstock and conversion technologies based on starch (1st generation) and/or lignocellulose (2nd generation). An integrated biomass...... utilization system (IBUS) was used for combining the two kinds of feedstock. The crop was cultivated under four combinations of Danish soil conditions (sand or sandy loam) and crop managements (organic or conventional). For each of the production processes, two scenarios, with or without recycling of residues...

  19. Batch-injection stripping voltammetry of zinc at a gold electrode: application for fuel bioethanol analysis

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted - Highlights: • Anodic stripping voltammetry of Zn at gold electrode for fuel bioethanol analysis. • Portable batch injection analysis coupled to anodic stripping voltammetry. • Efficient gold electrode cleaning between measurements of Zn in fuel bioethanol. • Adequate sensitivity, recovery values and no sample treatment required. • On-site determination of metals on fuel bioethanol using mercury-free electrode. - Abstract: This article reports for the first time the anodic stripping voltammetric (ASV) detection of Zn at a gold disk macroelectrode for the analysis of fuel bioethanol. The accurate determination of Zn at gold macroelectrodes was only possible with the aid of batch injection analysis (BIA) associated with ASV; this statement was proved by comparison with a conventional three-electrode system. The BIA system consisted of injections of bioethanol sample plugs (up to 1 mL) at 28.3 μL s−1 directly onto a working (gold disc) electrode immersed in 0.04 mol L−1 Britton-Robinson buffer (pH 7) solution through an electronic micropipette and the Zn deposition occurs simultaneously. The highest analytical response for Zn was obtained for a deposition time of 90 s, which indicated that Zn deposition also occurred from diffusion after the injection ended. The proposed method presented a low detection limit (5 μg L−1), a linear range between 25 and 250 μg L−1, and adequate recovery values (88–104%) for spiked samples, but no sample treatment was required. Such remarkable analytical features associated with the portability characteristics of BIA demonstrated the promising application of the proposed method for routine and on-site determination of metals in fuel bioethanol

  20. The impact of a growing bioethanol industry on food production in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Gauder, Martin; Graeff-Hoenninger, S.; Claupein, W. [Department of Crop Science, University of Hohenheim, Stuttgart (Germany)

    2011-03-15

    The Brazilian production of major food commodities increased fivefold between 1961 and 2008. In the same time, the area cropped with sugar cane increased with high growth rates, currently covering 3% of the area dedicated to agricultural production in Brazil. In order to assess a possible competition between biofuel and food production, the development of agricultural productivity and area expansion in the past was analysed. Furthermore, the future situation of land resources for agricultural production was illustrated. The findings of this study indicated that area resources of more than 20 million hectare would be available for agricultural production in the upcoming years. A current constraint of food production throughout land dedicated to biofuels was not found. Three scenarios were investigated, simulating possibilities of future changes in Brazilian agriculture. The results demonstrated that primary food production could be enhanced by 1.5 times while bioethanol production was enhanced simultaneously by 1.8 times over the years 2007/2008 and 2020. The generated bioethanol volumes would meet 38% of the total energy demand in Brazilian transport sector, applied to the year 2007. The second scenario evaluated an agricultural development with a higher focus on biofuels. It was projected that the production of bioethanol could be increased by 3.0 times to 76.7 million m{sup 3} of bioethanol, while increasing at the same time primary food production with the factor 1.4 aligned to the projected population growth. This bioethanol volume represents 67% of the total energy demand in Brazilian transport sector in the year 2007. A third scenario demonstrated that food production could be increased even with no area expansion higher than the projected population growth, due to a continued increase of productivity. At the same time bioethanol production would rise to 32 million m{sup 3} without occupying more area. (author)

  1. Development of industrial yeast for second generation bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X.

    2012-01-15

    The cost of lignocellulose-based bioethanol needs to be reduced, in order to commercialize this clean and sustainable fuel substitute for fossil fuels. A microorganism that can completely and efficiently convert all the sugars in lignocellulose into ethanol is one of the prerequisites of a cost-effective production process. In addition, the microorganisms should also have a high tolerance towards the inhibitory compounds present in the lignocellulosic hydrolysate, which are formed during the pretreatment of lignocellulose. Baker's yeast, Saccharomyces cerevisiae, is generally regarded as a robust microorganism and can efficiently ferment glucose. But it lacks the ability to ferment xylose which comprises 20-35% of lignocellulose. Naturally xylose-fermenting yeast such as Pichia stipitis is much more sensitive to inhibitors than S. cerevisiae and it requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, a novel xylose fermenting yeast Spathaspora passalidarum displayed fast cell growth and efficient xylose fermentation under anaerobic conditions. In contrast, P. stipitis was almost unable to utilize xylose under the same conditions. It is further demonstrated that S. passalidarum converts xylose by means of NADH-preferred xylose reductase (XR) and NAD+-dependent xylitol dehydrogenase (XDH). Thus, the capacity of S. passalidarum to utilize xylose under anaerobic conditions is possibly due to a balance between supply and demand of cofactor through this XR-XDH pathway. Only one other XR with NADH preference has been reported so far. Unfortunately, S. passalidarum also has a low tolerance towards inhibitors generated during pretreatment, which prevents immediate use of this yeast in industrial application. S. passalidarum is able to convert the inhibitor furfural to furfuryl alcohol in a synthetic medium when the addition of furfural is low. The enzymes

  2. Bioethanol production: Pretreatment and enzymatic hydrolysis of softwood

    Energy Technology Data Exchange (ETDEWEB)

    Tengborg, Charlotte

    2000-05-01

    The enzymatic hydrolysis process can be used to produce bioethanol from softwood, which are the dominating raw material in the Northern hemisphere. This thesis deals with the development of the process focusing on the pretreatment and the enzymatic hydrolysis stages. The influence of pretreatment conditions on sugar yield, and the effect of inhibitors on the ethanol yield, were investigated for spruce and pine. The maximum yields of hemicellulose sugars and glucose were obtained under different pretreatment conditions. This indicates that two-stage pretreatment may be preferable. The added catalysts, H{sub 2}SO{sub 4} and SO{sub 2}, resulted in similar total sugar yields about 40 g/100 g dry raw material. However, the fermentability of SO{sub 2}-impregnated material was better. This pretreatment resulted in the formation of inhibitors to the subsequent process steps, e.g. sugar and lignin degradation products. The glucose yield in the enzymatic hydrolysis stage was affected by various parameters such as enzyme loading, temperature, pH, residence time, substrate concentration, and agitation. To decrease the amount of fresh water used and thereby waste water produced, the sugar-rich prehydrolysate from the pretreatment step was included in the enzymatic hydrolysis of the solid fraction, resulting in a reduction in the cellulose conversion of up to 36%. Different prehydrolysate detoxification methods, such as treatment with Ca(OH){sub 2}, laccase, and fermentation using yeast, were investigated. The latter was shown to be very efficient. The amount of fresh water used can be further reduced by recycling various process streams. This was simulated experimentally in a bench-scale process. A reduction in fresh water demand of 50% was obtained without any further negative effects on either hydrolysis or fermentation.

  3. Application of lignocellulolytic fungi for bioethanol production from renewable biomass

    Directory of Open Access Journals (Sweden)

    Jović Jelena M.

    2015-01-01

    Full Text Available Pretreatment is a necessary step in the process of conversion of lignocellulosic biomass to ethanol; by changing the structure of lignocellulose, enhances enzymatic hydrolysis, but, often, it consumes large amounts of energy and/or needs an application of expensive and toxic chemicals, which makes the process economically and ecologically unfavourable. Application of lignocellulolytic fungi (from the class Ascomycetes, Basidiomycetes and Deuteromycetes is an attractive method for pre-treatment, environmentally friendly and does not require the investment of energy. Fungi produce a wide range of enzymes and chemicals, which, combined in a variety of ways, together successfully degrade lignocellulose, as well as aromatic polymers that share features with lignin. On the basis of material utilization and features of a rotten wood, they are divided in three types of wood-decay fungi: white rot, brown rot and soft rot fungi. White rot fungi are the most efficient lignin degraders in nature and, therefore, have a very important role in carbon recycling from lignified wood. This paper describes fungal mechanisms of lignocellulose degradation. They involve oxidative and hydrolytic mechanisms. Lignin peroxidase, manganese peroxidase, laccase, cellobiose dehydrogenase and enzymes able to catalyze formation of hydroxyl radicals (•OH such as glyoxal oxidase, pyranose-2-oxidase and aryl-alcohol oxidase are responsible for oxidative processes, while cellulases and hemicellulases are involved in hydrolytic processes. Throughout the production stages, from pre-treatment to fermentation, the possibility of their application in the technology of bioethanol production is presented. Based on previous research, the advantages and disadvantages of biological pre-treatment are pointed out.

  4. Saccharification of Sugarcane Bagasse by Enzymatic Treatment for bioethanol production

    Directory of Open Access Journals (Sweden)

    Ahmed, F. M.

    2012-06-01

    Full Text Available Aims: The escalating demands for traditional fossil fuels with unsecured deliverance and issues of climate change compel the researchers to develop alternative fuels like bioethanol. This study examines the prospect of biofuel production from high carbohydrate containing lignocellulosic material, e.g. sugarcane bagasse through biological means. Methodology and Results: Cellulolytic enzymes were collected from the culture filtrate of thermotolerant Trichodermaviride grown on variously pre-treated sugarcane bagasse. CMCase and FPase enzyme activities were determined as a measure of suitable substrate pre-treatment and optimum condition for cellulolytic enzyme production. The highest CMCase and FPase activity was found to be 1.217 U/ml and 0.109 U/ml respectively under the production conditions of 200 rpm, pH 4.0 and 50 °C using steamed NaOH treated bagasse as substrate. SEM was carried out to compare and confirm the activity of cellulolytic enzymes on sugarcane bagasse. Saccharification of pre-treated bagasse was carried out with crude enzymes together using a two-factor experimental design. Under optimized conditions the pre-treated bagasse was saccharified up to 42.7 % in 24 h. The hydrolysate was concentrated by heating to suitable concentration and then used for fermentation by an indigenous isolate of Saccharomyces cerevisiae. With 50 and 80 % brix containing liquor the concentration of alcohol was 0.579 % and 1.15 % respectively. Conclusion, significance and impact of study: This is the first report in Bangladesh for the production of cellulosicethanol using local isolates. Though the rate of alcohol production was very low, a great impetus in this field can maximize the production thereby meet the demand for fuel in future.

  5. Effect of early injection strategy on spray atomization and emission reduction characteristics in bioethanol blended diesel fueled engine

    International Nuclear Information System (INIS)

    This study is to investigate the emission reduction characteristics of bioethanol blended diesel fuel at early injection condition including spray, atomization and evaporation characteristics. The spray atomization and evaporation characteristics were investigated using spray visualization system and KIVA-3V code, respectively. In this work, the effect of ethanol blending on the spray behavior is more evident at early injection condition. In the calculation results, the droplet size of bioethanol blended fuel was smaller than that of diesel, and bioethanol blended diesel droplets firstly evaporated by its volatility and superior atomization characteristics. In early injection condition, the bioethanol blending caused an increase in indicated mean effective pressure with an extension of the ignition delay. The cooling effect of the bioethanol fuel reduced NOx. The HC emission increased and the CO emission decreased because of the ethanol blending. The geometry mean diameter and total number density increased as a result of ethanol blending, the particle number in the nuclei mode decreased, and the particle number in the accumulation mode increased in early injection condition. -- Highlights: ► The overall spray, combustion and emission characteristics of bioethanol-blended diesel fuel are measured. ► Experimental results are compared in the early injection- and the conventional injection cases. ► Atomization and evaporation characteristics of diesel-bioethanol blended fuel were numerically analyzed using KIVA-3V. ► In the early injection cases, the cooling effect of bioethanol fuel is clearer compared to the conventional injection. ► By the early injection strategy with bioethanol blended diesel fuel, the exhaust emissions can be significantly reduced.

  6. Design and Modelling of Sustainable Bioethanol Supply Chain by Minimizing the Total Ecological Footprint in Life Cycle Perspective

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Manzardo, Alessandro; Toniolo, Sara;

    2013-01-01

    manners in bioethanol systems, this study developed a model for designing the most sustainable bioethanol supply chain by minimizing the total ecological footprint under some prerequisite constraints including satisfying the goal of the stakeholders', the limitation of resources and energy, the capacity......The purpose of this paper is to develop a model for designing the most sustainable bioethanol supply chain. Taking into consideration of the possibility of multiple-feedstock, multiple transportation modes, multiple alternative technologies, multiple transport patterns and multiple waste disposal...

  7. Temperature Optimization for Bioethanol Production from Corn Cobs Using Mixed Yeast Strains

    Directory of Open Access Journals (Sweden)

    Clarence S. Yah

    2010-01-01

    Full Text Available Problem statement: Dilute sulphuric acid and enzymatic hydrolysis methods were used for sugar extraction. Xylose and glucose sugars were obtained from corn cobs. Approach: Acid hydrolysis of corn cobs gave higher amount of sugars than enzymatic hydrolysis. Results: The results showed that optimal temperature and time for sugar fermentation were approximately 25°C and 50 h by two yeast strains (S. cerevisiae and P. Stipitis respectively. At 20 and 40°C, less bioethanol was produced. Bioethanol produced at 25°C was 11.99 mg mL-1, while at 40 and 20°C were 2.50 and 6.40 mg mL-1 respectively. Conclusion/Recommendations: Data obtained revealed that xylose level decreased from 27.87-3.92 mg mL-1 during the first 50 h of fermentation and complete metabolism of glucose was observed during this time. Xylose and bioethanol levels remained constant after 50 h. Varying the temperature of the fermentation process improves the effective utilization of corn cobs sugars for bioethanol production can be achieved.

  8. Bioethanol Production from Coconut Fiber Using Alkaline Pretreatment and Acid Hydrolysis Method

    Directory of Open Access Journals (Sweden)

    Asyeni Miftahul Jannah

    2015-01-01

    Full Text Available Supporting Indonesia government program to decrease fuel consumption, using renewable energy such of bioethanol is one of the best ways. This research was done in order to utilize agriculture waste (coconut fiber as raw material to produce bioetanol. However, coconut fiber contents lignin that will inhibit conversion process of glucose into ethanol. In this research, pretreatment steps aim to release and breakdown lignin in coconut fiber. Pretreatment was conducted by using alkaline method with 3% Sodium Hydroxide solution. Hydrolysis method was used to produce glucose by using Sulfuric Acid solution with various concentrations (1%, 2%, 3%, and 4 % while in fermentation process used Saccharomyces cerevisiae with various times (5, 7, 9, and 11 days and distillation used to get pure product of bioethanol. The results showed that higher H2SO4 concentration using on hydrolysis process made more glucose converted to bioethanol. The highest bioethanol content produced was 5.9420% from sample of 4% H2SO4 in 7 days of fermentation.

  9. Promoting Bio-Ethanol in the United States by Incorporating Lessons from Brazil's National Alcohol Program

    Science.gov (United States)

    Du, Yangbo

    2007-01-01

    Current U.S. energy policy supports increasing the use of bio-ethanol as a gasoline substitute, which Brazil first produced on a large scale in response to the 1970s energy crises. Brazil's National Alcohol Program stood out among its contemporaries regarding its success at displacing a third of Brazil's gasoline requirements, primarily due to…

  10. The water footprint of sweeteners and bio-ethanol from sugar cane, sugar beet and maize

    NARCIS (Netherlands)

    Gerbens-Leenes, P.W.; Hoekstra, A.Y.

    2009-01-01

    Sugar cane and sugar beet are used for sugar for human consumption. In the US, maize is used, amongst others, for the sweetener High Fructose Maize Syrup (HFMS). Sugar cane, sugar beet and maize are also important for bio-ethanol production. The growth of crops requires water, a scarce resource. The

  11. Toxicological challenges to microbial bioethanol production and strategies for improved tolerance.

    Science.gov (United States)

    Akinosho, Hannah; Rydzak, Thomas; Borole, Abhijeet; Ragauskas, Arthur; Close, Dan

    2015-12-01

    Bioethanol production output has increased steadily over the last two decades and is now beginning to become competitive with traditional liquid transportation fuels due to advances in engineering, the identification of new production host organisms, and the development of novel biodesign strategies. A significant portion of these efforts has been dedicated to mitigating the toxicological challenges encountered across the bioethanol production process. From the release of potentially cytotoxic or inhibitory compounds from input feedstocks, through the metabolic co-synthesis of ethanol and potentially detrimental byproducts, and to the potential cytotoxicity of ethanol itself, each stage of bioethanol production requires the application of genetic or engineering controls that ensure the host organisms remain healthy and productive to meet the necessary economies required for large scale production. In addition, as production levels continue to increase, there is an escalating focus on the detoxification of the resulting waste streams to minimize their environmental impact. This review will present the major toxicological challenges encountered throughout each stage of the bioethanol production process and the commonly employed strategies for reducing or eliminating potential toxic effects. PMID:26423392

  12. ENERGY DEMANDS AND OTHER ENVIRONMENTAL IMPACTS ACROSS THE LIFE CYCLE OF BIOETHANOL USED AS FUEL

    Science.gov (United States)

    Most assessments of converting biomass to fuels are limited to energy and greenhouse gas (GHG) balances to determine if there is a net loss or gain. A fairly consistent conclusion of these studies is that the use of bio-ethanol in place of conventional fuels leads to a net gain....

  13. A promising low beta-glucan barley mutation of m351 for better bioethanol production use

    Science.gov (United States)

    Bioethanol is an important liquid fuel complement. Barley is an alternative raw material for ethanol production and its byproduct is a nutritious feed. The barley m351mutant line, which has a mutation for low beta-glucan content, was tested for its ethanol production efficiency and feed fraction qua...

  14. LIFE CYCLE BASED STUDIES ON BIOETHANOL FUEL FOR SUSTAINABLE TRANSPORTATION: A LITERATURE REVIEW

    Science.gov (United States)

    A literature search was conducted and revealed 45 publications (1996-2005) that compare bio-ethanol systems to conventional fuel on a life-cycle basis, or using life cycle assessment. Feedstocks, such as sugar beets, wheat, potato, sugar cane, and corn, have been investigated in...

  15. Bioethanol combustion in an industrial gas turbine combustor: simulations and experiments

    NARCIS (Netherlands)

    Sallevelt, J.L.H.P.; Pozarlik, A.K.; Beran, Martin; Axelsson, L.; Brem, G.

    2014-01-01

    Combustion tests with bioethanol and diesel as a reference have been performed in OPRA's 2 MWe class OP16 gas turbine combustor. The main purposes of this work are to investigate the combustion quality of ethanol with respect to diesel and to validate the developed CFD model for ethanol spray combus

  16. Modeling of Production and Quality of Bioethanol Obtained from Sugarcane Fermentation Using Direct Dissolved Sugars Measurements

    Directory of Open Access Journals (Sweden)

    Borja Velazquez-Marti

    2016-04-01

    Full Text Available Bioethanol production from sugarcane represents an opportunity for urban-agricultural development in small communities of Ecuador. Despite the fact that the industry for bioethanol production from sugarcane in Brazil is fully developed, it is still considered expensive as a small rural business. In order to be able to reduce the costs of monitoring the production process, and avoid the application of expensive sensors, the aim of this research was modeling the kinetics of production of bioethanol based on direct measurements of Brix grades, instead of the concentration of alcohol, during the process of cane juice bio-fermentation with Saccharomyces cerevisiae. This avoids the application of expensive sensors that increase the investment costs. Fermentation experiments with three concentrations of yeast and two temperatures were carried out in a laboratory reactor. In each case Brix grades, amount of ethanol and alcoholic degree were measured. A mathematical model to predict the quality and production of bioethanol was developed from Brix grade measurements, obtaining an adjusted coefficient of determination of 0.97. The model was validated in a pilot plant.

  17. Bioethanol production by inherent enzymes from rye and wheat with addition of organic farming cheese whey

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Christensen, Anne Deen; Thomsen, Mette Hedegaard;

    2011-01-01

    . Throughout our studies, wheat and rye grain was used as raw material in bioethanol production with the purpose of producing in situ enzymes (during germination) for the hydrolysis of starch in the grains and compared with commercial amylase enzyme preparations. Whey permeate was incorporated into the grain...

  18. Bioethanol Production from Liquid Waste of Rice Flour with Batch Process

    Directory of Open Access Journals (Sweden)

    Ketut Sari Ni

    2016-01-01

    Full Text Available Liquid waste rice flour is abundant liquid wastes but it is still underutilized. So far, it is only used for process water in factory production, wastewater, and even regarded as environment pollution. Rice flour liquid waste has higher levels of glucose, starch and protein which can be used as one of ethanol producers. This study aims to assess the process of hydrolysis, fermentation, and batch distillation process, as well as to search for alternative raw materials products of bioethanol. There are three processes of making bioethanol, namely biological hydrolysis process done by using bacillus; the process of fermentation by using Saccharomyces cerevisiae (SC; and batch distillation. After the third process was done, the results were: glucose is 5% - 10% in the process of hydrolysis; ethanol content is 11% - 16% in the fermentation process; and the levels are high enough for bio-ethanol, which is 95% - 96% in the batch distillation process. So it can be concluded that the liquid waste of rice flour can be used as raw materials for the manufacture of alternative bioethanol.

  19. Sequential co-production of biodiesel and bioethanol with spent coffee grounds.

    Science.gov (United States)

    Kwon, Eilhann E; Yi, Haakrho; Jeon, Young Jae

    2013-05-01

    The sequential co-production of bioethanol and biodiesel from spent coffee grounds was investigated. The direct conversion of bioethanol from spent coffee grounds was not found to be a desirable option because of the relatively slow enzymatic saccharification behavior in the presence of triglycerides and the free fatty acids (FFAs) found to exist in the raw materials. Similarly, the direct transformation of the spent coffee grounds into ethanol without first extracting lipids was not found to be a feasible alternative. However, the crude lipids extracted from the spent coffee grounds were themselves converted into fatty acid methyl ester (FAME) and fatty acid ethyl ester (FAEE) via the non-catalytic biodiesel transesterification reaction. The yields of bioethanol and biodiesel were 0.46 g g(-1) and 97.5±0.5%, which were calculated based on consumed sugar and lipids extracted from spent coffee grounds respectively. Thus, this study clearly validated our theory that spent coffee grounds could be a strong candidate for the production of bioethanol and biodiesel. PMID:23567719

  20. Integration of chlorogenic acid recovery and bioethanol production from spent coffee grounds

    DEFF Research Database (Denmark)

    Burniol Figols, Anna; Cenian, Katarzyna; Skiadas, Ioannis V.;

    2016-01-01

    Spent coffee grounds (SCG) are an abundant by-product of the coffee industry with a complex composition that makes them a promising feedstock for a biorefinery. The objective of this study was to evaluate SCG as a substrate for combined chlorogenic acid and bioethanol production after dilute acid...

  1. Analysis of the potential for sustainable, cassava-based bioethanol production in Mali

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld; Bruun, Thilde Bech; Birch-Thomsen, Torben;

    The present project is covered in five main reports: 1) Analyses of the potential for sustainable, cassava-based bio-ethanol production in Mali 2) Agricultural residues for energy production in Mali 3) Pre-feasibility study for an electric power plant based on rice straw 4) Estimation of wind...

  2. Continuous recycling of enzymes during production of lignocellulosic bioethanol in demonstration scale

    DEFF Research Database (Denmark)

    Haven, Mai Østergaard; Lindedam, Jane; Jeppesen, Martin D.;

    2015-01-01

    Recycling of enzymes in production of lignocellulosic bioethanol has been tried for more than 30 years. So far, the successes have been few and the experiments have been carried out at conditions far from those in an industrially feasible process. Here we have tested continuous enzyme recycling...

  3. Stabilisation of the grain market by the flexible use of grain for bioethanol

    NARCIS (Netherlands)

    Helming, J.F.M.; Pronk, A.; Woltjer, I.

    2010-01-01

    This report reviews whether the grain market and grain price can be stabilised by the variation of the use of grain in the EU-27's production of bioethanol. The time horizon of this study is 2020, whereby account is taken of the minimum 10% obligation for biofuel use in the EU-27. An economic comput

  4. Bitter sweet : How sustainable is bio-ethanol production in Brazil?

    NARCIS (Netherlands)

    Azadi, Hossein; de Jong, Sanne; Derudder, Ben; De Maeyer, Philippe; Witlox, Frank

    2012-01-01

    While biofuels have currently been regarded as a good alternative for fossil fuels, there remain many debates on their impacts on human and environment. This paper tried to shed light on bio-ethanol in Brazil as one of the main producers and exporters in the world. The main question was to understan

  5. Sugar palm (Argena pinnata). Potential of sugar palm for bio-ethanol production

    NARCIS (Netherlands)

    Elbersen, H.W.; Oyen, L.P.A.

    2010-01-01

    The energetic and economic feasibility of bioethanol production from sugar palm is virtually unknown. A positive factor are the potentially very high yields while the long non-productive juvenile phase and the high labor needs can be seen as problematic. Expansion to large scale sugar palm cultivati

  6. Changes of Saccharomyces cerevisiae cell membrane components and promotion to ethanol tolerance during the bioethanol fermentation.

    Science.gov (United States)

    Dong, Shi-Jun; Yi, Chen-Feng; Li, Hao

    2015-12-01

    During bioethanol fermentation process, Saccharomyces cerevisiae cell membrane might provide main protection to tolerate accumulated ethanol, and S. cerevisiae cells might also remodel their membrane compositions or structure to try to adapt to or tolerate the ethanol stress. However, the exact changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation still remains poorly understood. This study was performed to clarify changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation. Both cell diameter and membrane integrity decreased as fermentation time lasting. Moreover, compared with cells at lag phase, cells at exponential and stationary phases had higher contents of ergosterol and oleic acid (C18:1) but lower levels of hexadecanoic (C16:0) and palmitelaidic (C16:1) acids. Contents of most detected phospholipids presented an increase tendency during fermentation process. Increased contents of oleic acid and phospholipids containing unsaturated fatty acids might indicate enhanced cell membrane fluidity. Compared with cells at lag phase, cells at exponential and stationary phases had higher expressions of ACC1 and HFA1. However, OLE1 expression underwent an evident increase at exponential phase but a decrease at following stationary phase. These results indicated that during bioethanol fermentation process, yeast cells remodeled membrane and more changeable cell membrane contributed to acquiring higher ethanol tolerance of S. cerevisiae cells. These results highlighted our knowledge about relationship between the variation of cell membrane structure and compositions and ethanol tolerance, and would contribute to a better understanding of bioethanol fermentation process and construction of industrial ethanologenic strains with higher ethanol tolerance.

  7. Analisa Penggunaan Bahan Bakar Bioethanol Dari Batang Padi Sebagai Campuran Pada Bensin

    Directory of Open Access Journals (Sweden)

    Andre Dwiky Kurniawan

    2014-03-01

    Full Text Available Kandungan minyak bumi didunia semakin menipis, karena semakin bertambahnya kebutuhan manusia terhadap penggunaan  minyak bumi sebagai bahan bakar. Dengan kondisi yang semakin menipis ini, cadangan minyak diprediksi hanya cukup untuk beberapa tahun ke depan. Semakin menipisnya kandungan minyak bumi menyebabkan harga bahan bakar melambung tinggi. Indonesia merupakan negara yang mempunyai sumber daya alam yang melimpah.  Banyak kekayaan alam yang terdapat di Indonesia, dimana sektor pertanian merupakan salah satu urat nadi bangsa Indonesia.  Sektor pertanian merupakan sektor yang mempunyai peranan strategis dalam struktur pembangunan perekonomian nasional. Melimpahnya sumber daya alam dan semakin menipisnya kandungan minyak bumi di Indonesia mendorong manusia beralih menggunakan bahan bakar alternative yang ramah lingkungan dan mempunyai jumlah atau stok yang banyak.  Bahan bakar yang berasal dari alam disebut bioethanol.  Salah satu sumber daya alam yang bisa digunakan untuk dijadikan bahan bakar yaitu Batang padi.  Pada saat panen padi para petani hanya mengambil biji atau berasnya saja, sekam dan batang padi hasil panen dibuang begitu saja padahal sekam dan batang padi bisa digunakan untuk membuat bahan bakar alternative yaitu bioethanol. Penelitian ini membahas tentang bagaimana pembuatan bioethanol dari batang padi, kandungan ethanol dalam batang padi, uji performa mesin otto dengan variasi konsentrasi bahan bakar bensin dengan etanol dengan variasi 100% Bensin, 75% Bensin + 25%Etanol, 50% Bensin + 50% Etanol, 25% Bensin + 75% Etanol dan 100% Etanol. Serta dengan variasi pembebanan yaitu dengan menggunakan beban 500, 1000, 1500, 2000,2500 watt. Selain itu juga dilakukan penelitian emisi yang dihasilkan oleh bahan bakar bioethanol. Dari hasil pengujian yang telah dilakukan bahan bakar bioethanol memilki kandungan ethanol sebesar 95% dan hasil uji performa dari mesin otto dengan menggunakan variasi konsentrasi bahan bakar dan variasi

  8. Fuel-cycle assessment of selected bioethanol production.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.; Wang, M.; Hong, H.; Energy Systems

    2007-01-31

    A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO{sub 2}], nitrous oxide [N{sub 2}O], and methane [CH{sub 4}]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO{sub x}], sulfur oxide [SO{sub x}], and particulate matter with diameters smaller than 10 micrometers [PM{sub 10}]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil

  9. Draft Genome Sequence of Saccharomyces cerevisiae Strain NCIM3186 Used in the Production of Bioethanol from Sweet Sorghum

    OpenAIRE

    Sravanthi Goud, Burragoni; Ulaganathan, Kandasamy

    2015-01-01

    Here, we report the draft genome sequence of Saccharomyces cerevisiae strain NCIM3186 used in bioethanol production from sweet sorghum. The size of the genome is approximately 11.9 Mb and contains 5,347 protein-coding genes.

  10. Energy efficiency and environmental performance of bioethanol production from sweet sorghum stem based on life cycle analysis.

    Science.gov (United States)

    Wang, Mingxin; Chen, Yahui; Xia, Xunfeng; Li, Jun; Liu, Jianguo

    2014-07-01

    Life cycle analysis method was used to evaluate the energy efficiency and environmental performance of bioethanol production from sweet sorghum stem in China. The scope covers three units, including plant cultivation, feedstock transport, and bioethanol conversion. Results show that the net energy ratio was 1.56 and the net energy gain was 8.37 MJ/L. Human toxicity was identified as the most significant negative environmental impact, followed by eutrophication and acidification. Steam generation in the bioethanol conversion unit contributed 82.28% and 48.26% to total human toxicity and acidification potential, respectively. Fertilizers loss from farmland represented 67.23% of total eutrophication potential. The results were significantly affected by the inventory allocation methods, vinasse reusing approaches, and feedstock yields. Reusing vinasse as fuel for steam generation and better cultivation practice to control fertilizer loss could significantly contribute to enhance the energy efficiency and environmental performance of bioethanol production from sweet sorghum stem.

  11. An integral analysis for second generation bioethanol production via a dynamic model-based simulation approach: stochastic nonlinear optimisation

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist;

    There are different technological routes to biofuels production such as, biohydrogen, biomethane, biobutanol, among others. Bioethanol production from lignocellulosic feedstock has acquired special attention, and its feasibility has been demonstrated at laboratory, pilot and demo-plant scale[1...

  12. Design and modeling of sustainable bioethanol supply chain by minimizing the total ecological footprint in life cycle perspective.

    Science.gov (United States)

    Ren, Jingzheng; Manzardo, Alessandro; Toniolo, Sara; Scipioni, Antonio; Tan, Shiyu; Dong, Lichun; Gao, Suzhao

    2013-10-01

    The purpose of this paper is to develop a model for designing the most sustainable bioethanol supply chain. Taking into consideration of the possibility of multiple-feedstock, multiple transportation modes, multiple alternative technologies, multiple transport patterns and multiple waste disposal manners in bioethanol systems, this study developed a model for designing the most sustainable bioethanol supply chain by minimizing the total ecological footprint under some prerequisite constraints including satisfying the goal of the stakeholders', the limitation of resources and energy, the capacity of warehouses, the market demand and some technological constraints. And an illustrative case of multiple-feedstock bioethanol system has been studied by the proposed method, and a global best solution by which the total ecological footprint is the minimal has been obtained. PMID:23978606

  13. Thermodynamic and economic analysis of integrating lignocellulosic bioethanol production in a Danish combined heat and power unit

    OpenAIRE

    Lythcke-Jørgensen, Christoffer Ernst; HAGLIND, Fredrik; Clausen, Lasse Røngaard

    2013-01-01

    Integrating lignocellulosic bioethanol production with combined heat and power (CHP) production in polygeneration systems is considered an efficient and competitive way to produce a sustainable fuel for the transportation sector. This study assessed the energy economy of integrating lignocellulosic bioethanol production in the Danish CHP unit Avedøreværket 1. Numerical models of the plants were developed, and feasible integration solutions were identified and optimised using exergy analysis. ...

  14. An integral analysis for second generation bioethanol production via a dynamic model-based simulation approach: stochastic nonlinear optimisation

    OpenAIRE

    Morales Rodriguez, Ricardo; Anne S Meyer; Gernaey, Krist; Sin, Gürkan

    2011-01-01

    There are different technological routes to biofuels production such as, biohydrogen, biomethane, biobutanol, among others. Bioethanol production from lignocellulosic feedstock has acquired special attention, and its feasibility has been demonstrated at laboratory, pilot and demo-plant scale[1,2,3]. Despite the reported progress and the promising results, however, at present this technology is not cost-competitive compared with first generation bioethanol production or fossil-fuels. Therefore...

  15. Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol

    OpenAIRE

    Wimalasena, Tithira T.; Greetham, Darren; Marvin, Marcus E.; Liti, Gianni; Chandelia, Yogeshwar; Hart, Andrew; Louis, Edward J.; Phister, Trevor G.; Tucker, Gregory A.; Smart, Katherine A.

    2014-01-01

    Background During industrial fermentation of lignocellulose residues to produce bioethanol, microorganisms are exposed to a number of factors that influence productivity. These include inhibitory compounds produced by the pre-treatment processes required to release constituent carbohydrates from biomass feed-stocks and during fermentation, exposure of the organisms to stressful conditions. In addition, for lignocellulosic bioethanol production, conversion of both pentose and hexose sugars is ...

  16. Innovation subject to sustainability : the European policy on biofuels and its effects on innovation in the Brazilian bioethanol industry

    OpenAIRE

    Henrique Pacini; Alexandre Betinardi Strapasson

    2012-01-01

    Biofuels are a suitable complement for fossil energy in the transport sector and bioethanol is the main biofuel traded worldwide. Based on the assumption that innovation can be influenced by regulation, the Brazilian bioethanol industry is facing new requirements from external actors while reaching for international markets. Until 2010, national environmental laws were the main sustainability instrument that the biofuel industry faced. With the introduction of sustainability criteria for biof...

  17. A Life Cycle Assessment (LCA) comparison of three management options for waste papers: bioethanol production, recycling and incineration with energy recovery.

    Science.gov (United States)

    Wang, Lei; Templer, Richard; Murphy, Richard J

    2012-09-01

    This study uses Life Cycle Assessment (LCA) to assess the environmental profiles and greenhouse gas (GHG) emissions for bioethanol production from waste papers and to compare them with the alternative waste management options of recycling or incineration with energy recovery. Bioethanol production scenarios both with and without pre-treatments were conducted. It was found that an oxidative lime pre-treatment reduced GHG emissions and overall environmental burdens for a newspaper-to-bioethanol process whereas a dilute acid pre-treatment raised GHG emissions and overall environmental impacts for an office paper-to-bioethanol process. In the comparison of bioethanol production systems with alternative management of waste papers by different technologies, it was found that the environmental profiles of each system vary significantly and this variation affects the outcomes of the specific comparisons made. Overall, a number of configurations of bioethanol production from waste papers offer environmentally favourable or neutral profiles when compared with recycling or incineration.

  18. Process Design and Costing of Bioethanol Technology: A Tool for Determining the Status and Direction of Research and Development.

    Science.gov (United States)

    Wooley; Ruth; Glassner; Sheehan

    1999-10-01

    Bioethanol is a fuel-grade ethanol made from trees, grasses, and waste materials. It represents a sustainable substitute for gasoline in today's passenger cars. Modeling and design of processes for making bioethanol are critical tools used in the U.S. Department of Energy's bioethanol research and development program. We use such analysis to guide new directions for research and to help us understand the level at which and the time when bioethanol will achieve commercial success. This paper provides an update on our latest estimates for current and projected costs of bioethanol. These estimates are the result of very sophisticated modeling and costing efforts undertaken in the program over the past few years. Bioethanol could cost anywhere from $1.16 to $1.44 per gallon, depending on the technology and the availability of low cost feedstocks for conversion to ethanol. While this cost range opens the door to fuel blending opportunities, in which ethanol can be used, for example, to improve the octane rating of gasoline, it is not currently competitive with gasoline as a bulk fuel. Research strategies and goals described in this paper have been translated into cost savings for ethanol. Our analysis of these goals shows that the cost of ethanol could drop by 40 cents per gallon over the next ten years by taking advantage of exciting new tools in biotechnology that will improve yield and performance in the conversion process.

  19. Effective heterogeneous transition metal glycerolates catalysts for one-step biodiesel production from low grade non-refined Jatropha oil and crude aqueous bioethanol

    OpenAIRE

    Pak-Chung Lau; Tsz-Lung Kwong; Ka-Fu Yung

    2016-01-01

    The utilization of bioethanol as the alcohol source for biodiesel production is more environmentally advantageous over methanol owing to its lower toxicity, lower flammability and its sustainable supply from renewable agricultural resources. However, as the presence of water in crude bioethanol is the critical factor limiting the biodiesel production process, the energy-intensive and costly purification of bioethanol is necessary for biodiesel application. Manganese glycerolate (MnGly) is rep...

  20. Environmental sustainability analysis of UK whole-wheat bioethanol and CHP systems

    International Nuclear Information System (INIS)

    The UK whole-wheat bioethanol and straw and DDGS-based combined heat and power (CHP) generation systems were assessed for environmental sustainability using a range of impact categories or characterisations (IC): cumulative primary fossil energy (CPE), land use, life cycle global warming potential over 100 years (GWP100), acidification potential (AP), eutrophication potential (EP) and abiotic resources use (ARU). The European Union (EU) Renewable Energy Directive's target of greenhouse gas (GHG) emission saving of 60% in comparison to an equivalent fossil-based system by 2020 seems to be very challenging for stand-alone wheat bioethanol system. However, the whole-wheat integrated system, wherein the CHP from the excess straw grown in the same season and from the same land is utilised in the wheat bioethanol plant, can be demonstrated for potential sustainability improvement, achieving 85% emission reduction and 97% CPE saving compared to reference fossil systems. The net bioenergy from this system and from 172,370 ha of grade 3 land is 12.1 PJ y−1 providing land to energy yield of 70 GJ ha−1 y−1. The use of DDGS as an animal feed replacing soy meal incurs environmental emission credit, whilst its use in heat or CHP generation saves CPE. The hot spots in whole system identified under each impact category are as follows: bioethanol plant and wheat cultivation for CPE (50% and 48%), as well as for ARU (46% and 52%). EP and GWP100 are distributed among wheat cultivation (49% and 37%), CHP plant (26% and 30%) and bioethanol plant (25%, and 33%), respectively. -- Highlights: ► UK whole-wheat energy system can achieve 85% GHG emission reduction. ► UK whole-wheat energy system can achieve 97% primary energy saving. ► The land to energy yield of the UK whole-wheat system is 70 GJ ha−1 y−1. ► Fertiliser production is the hotspot. ► DDGS and straw-based CHP system integration to wheat bioethanol is feasible

  1. Sustainable bioethanol production combining biorefinery principles and intercropping strategies

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, M.H.; Haugaard-Nielsen, H.; Petersson, A.; Thomsen, A.B.; Jensen, E.S. [Risoe National Lab., DTU, Biosystems Dept., Roskilde (Denmark)

    2007-05-15

    species interactions as a response to the actual growing conditions observed which is not achieved with sole cropping of one species/cultivar. It is also concluded that when growing pea as a sole cropping available soil mineral N reduce N{sub 2} fixation and the full potential of symbiotic nitrogen fixation is not exploited which is regarded as an overall inefficient use of N sources. Using clover-grass intercropping raw materials, as another potential species combination with equivalent field responses to e.g. pea-wheat intercropping, conversion yields obtained in laboratory experiments show that wet oxidation is an efficient method for fractionating clover, grass, and clover-grass mixtures into a convertible solid cellulose fraction and a soluble hemicellulose fraction. The highest yield of fermentable sugars after enzymatic hydrolysis is achieved in clover-grass (mixed 1:1) pretreated at 195 deg. C for 10 minutes using 12 bar oxygen. The optimum pretreatment conditions for clover, grass, and clover-grass mixtures is not significantly different from that of wheat, which indicates that wheat straw and clover-grass (from intercropping) could be pretreated in one step. The produced sugars were converted into ethanol by Mucor indicus giving good ethanol yields Y{sub E/TS,Aerobic} = 0.37 and Y{sub E/TS,oxygen} {sub li} It is also concluded that fructans from unheated clover-grass juice can be co-converted into ethanol by natural enzymes and yeast increasing the ethanol production significantly. Using field data and biomass conversion yields obtained in laboratory experiments a decentralized biorefinery concept for co-production of bioethanol and biogas is described with strong emphasis on sustainability, localness and recycling principles. (au)

  2. Assessment of holocellulose for the production of bioethanol by conserving Pinus radiata cones as renewable feedstock.

    Science.gov (United States)

    Victor, Amudhavalli; Pulidindi, Indra Neel; Gedanken, Aharon

    2015-10-01

    Renewable and green energy sources are much sought. Bioethanol is an environmentally friendly transportation fuel. Pine cones from Pinus radiata were shown to be a potential feedstock for the production of bioethanol. Alkaline (NaOH) pretreatment was carried out to delignify the lignocellulosic material and generate holocellulose (72 wt. % yield). The pretreated biomass was hydrolysed using HCl as catalyst under microwave irradiation and hydrothermal conditions. Microwave irradiation was found to be better than the hydrothermal process. Microwave irradiation accelerated the hydrolysis of biomass (42 wt. % conversion) with the reaction conditions being 3 M HCl and 5 min of irradiation time. Interestingly, even the xylose, which is the major component of the hydrolyzate was found to be metabolized to ethanol using Baker's yeast (Saccharomyces cerevisiae) under the experimental conditions. 5.7 g of ethanol could be produced from 100 g of raw pine cones. PMID:26247310

  3. Performance Assessment of SOFC Systems Integrated with Bio-Ethanol Production and Purification Processes

    Directory of Open Access Journals (Sweden)

    Sumittra Charojrochkul

    2010-03-01

    Full Text Available The overall electrical efficiencies of the integrated systems of solid oxide fuel cell (SOFC and bio-ethanol production with purification processes at different heat integration levels were investigated. The simulation studies were based on the condition with zero net energy. It was found that the most suitable operating voltage is between 0.7 and 0.85 V and the operating temperature is in the range from 973 to 1173 K. For the effect of percent ethanol recovery, the optimum percent ethanol recovery is at 95%. The most efficient case is the system with full heat integration between SOFC and bio-ethanol production and purification processes with biogas reformed for producing extra hydrogen feed for SOFC which has the overall electrical efficiency = 36.17%. However more equipment such as reformer and heat exchangers are required and this leads to increased investment cost.

  4. Biorefinery of corn cob for microbial lipid and bio-ethanol production: An environmental friendly process.

    Science.gov (United States)

    Cai, Di; Dong, Zhongshi; Wang, Yong; Chen, Changjing; Li, Ping; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    Microbial lipid and bio-ethanol were co-generated by an integrated process using corn cob bagasse as raw material. After pretreatment, the acid hydrolysate was used as substrate for microbial lipid fermentation, while the solid residue was further enzymatic hydrolysis for bio-ethanol production. The effect of acid loading and pretreatment time on microbial lipid and ethanol production were evaluated. Under the optimized condition for ethanol production, ∼131.3g of ethanol and ∼11.5g of microbial lipid were co-generated from 1kg raw material. On this condition, ∼71.6% of the overall fermentable sugars in corn cob bagasse could be converted into valuable products. At the same time, at least 33% of the initial COD in the acid hydrolysate was depredated.

  5. Development of Education Program Applying Internal Combustion Engine with Bioethanol as Fuel

    Science.gov (United States)

    Utsumi, Noah; Yoshida, Masashi; Inada, Yuji

    One of the ways to mitigate global warming is to reduce carbon dioxide emissions. In Japan, carbon dioxide emissions from vehicles, which run on fossil fuels, account for about 1/4 of the total carbon dioxide emissions. In this study, we applied a commercial engine, and remodeled the engine which could work using bioethanol as a fuel. We subsequently examined the influence of exhaust emission of the engine with the bioethanol and documented the entire study as teaching materials, including the remodeling method. Next, we began our mechanical engineering courses at the university by using the teaching materials in this study as introductory education, with the aim of stimulating the interest of the students. We then developed an education program for the students.

  6. Performance of Membrane-Assisted Solid Oxide Fuel Cell System Fuelled by Bioethanol

    Directory of Open Access Journals (Sweden)

    Amornchai Arpornwichanop

    2011-04-01

    Full Text Available The membrane separation units for bioethanol purification including pervaporation and vapor permeation are integrated with the bioethanol-fuelled solid oxide fuel cell (SOFC system. The preliminary calculations indicate that Hydrophilic type is a suitable membrane for vapor permeation to be installed after a hydrophobic pervaporation. Based on energy self-sufficient condition and data of available pervaporation membranes, the simulation results show that the use of vapor permeation unit after the pervaporation can significantly improve the overall electrical efficiency from 10.96% for the system with pervaporation alone to 26.56%. Regarding the effect of ethanol recovery, the ethanol recovery at 75% can offer the optimal overall efficiency from the proposed purification system compared to the ethanol recovery at 31.16% for the case with the single pervaporation.

  7. Technology Evaluation of Process Configurations for Second Generation Bioethanol Production using Dynamic Model-based Simulations

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist;

    2011-01-01

    An assessment of a number of different process flowsheets for bioethanol production was performed using dynamic model-based simulations. The evaluation employed diverse operational scenarios such as, fed-batch, continuous and continuous with recycle configurations. Each configuration was evaluated...... in continuous mode with a recycle of the SSCF reactor effluent, results in the best productivity of bioethanol among the proposed process configurations, with a yield of 0.18 kg ethanol /kg dry-biomass....... against the following benchmark criteria, yield (kg ethanol/kg dry-biomass), final product concentration and number of unit operations required in the different process configurations. The results has shown the process configuration for simultaneous saccharification and co-fermentation (SSCF) operating...

  8. Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production.

    Science.gov (United States)

    da Silva, André Rodrigues Gurgel; Torres Ortega, Carlo Edgar; Rong, Ben-Guang

    2016-10-01

    In this work, a method based on process synthesis, simulation and evaluation has been used to setup and study the industrial scale lignocellulosic bioethanol productions processes. Scenarios for pretreatment processes of diluted acid, liquid hot water and ammonia fiber explosion were studied. Pretreatment reactor temperature, catalyst loading and water content as well as solids loading in the hydrolysis reactor were evaluated regarding its effects on the process energy consumption and bioethanol concentration. The best scenarios for maximizing ethanol concentration and minimizing total annual costs (TAC) were selected and their minimum ethanol selling price was calculated. Ethanol concentration in the range of 2-8% (wt.) was investigated after the pretreatment. The best scenarios maximizing the ethanol concentration and minimizing TAC obtained a reduction of 19.6% and 30.2% respectively in the final ethanol selling price with respect to the initial base case. PMID:27403858

  9. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Serrano, Maria; Thomsen, Anne Belinda;

    2009-01-01

    The production of bioethanol, biohydrogen and biogas from wheat straw was investigated within a biorefinery framework. Initially, wheat straw was hydrothermally liberated to a cellulose rich fiber fraction and a hemicellulose rich liquid fraction (hydrolysate). Enzymatic hydrolysis and subsequent....... Additionally, evaluation of six different wheat straw-to-biofuel production scenaria showed that either use of wheat straw for biogas production or multi-fuel production were the energetically most efficient processes compared to production of mono-fuel such as bioethanol when fermenting C6 sugars alone. Thus......, multiple biofuels production from wheat straw can increase the efficiency for material and energy and can presumably be more economical process for biomass utilization. (C) 2008 Elsevier Ltd. All rights reserved....

  10. The Role of Systems Modeling for Sustainable Development Policy Analysis: the Case of Bio-Ethanol

    Directory of Open Access Journals (Sweden)

    Albert W. Chan

    2004-12-01

    Full Text Available A dynamic systems modeling technique has been developed to assess technologies according to the criterion of sustainability. In a case study, the potential contribution of bio-ethanol toward achieving Canada’s commitment to the Kyoto targets for greenhouse gas reductions is analyzed. The analysis concludes that, although bio-ethanol may help reduce greenhouse gas emissions, the technology by itself is insufficient to meet the Kyoto target. Applying the systems modeling approach to analyze sustainability helps highlight those policy issues that warrant more in-depth study. Although the systems model may not provide definitive answers, it raises relevant questions about physical constraints that might be encountered and estimates the extent to which sustainability targets may be met under various scenarios.

  11. Bioconversion of glycerol for bioethanol production using isolated Escherichia coli SS1

    Directory of Open Access Journals (Sweden)

    Sheril Norliana Suhaimi

    2012-06-01

    Full Text Available Bioconverting glycerol into various valuable products is one of glycerol's promising applications due to its high availability at low cost and the existence of many glycerol-utilizing microorganisms. Bioethanol and biohydrogen, which are types of renewable fuels, are two examples of bioconverted products. The objectives of this study were to evaluate ethanol production from different media by local microorganism isolates and compare the ethanol fermentation profile of the selected strains to use of glucose or glycerol as sole carbon sources. The ethanol fermentations by six isolates were evaluated after a preliminary screening process. Strain named SS1 produced the highest ethanol yield of 1.0 mol: 1.0 mol glycerol and was identified as Escherichia coli SS1 Also, this isolated strain showed a higher affinity to glycerol than glucose for bioethanol production.

  12. Biorefinery of corn cob for microbial lipid and bio-ethanol production: An environmental friendly process.

    Science.gov (United States)

    Cai, Di; Dong, Zhongshi; Wang, Yong; Chen, Changjing; Li, Ping; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    Microbial lipid and bio-ethanol were co-generated by an integrated process using corn cob bagasse as raw material. After pretreatment, the acid hydrolysate was used as substrate for microbial lipid fermentation, while the solid residue was further enzymatic hydrolysis for bio-ethanol production. The effect of acid loading and pretreatment time on microbial lipid and ethanol production were evaluated. Under the optimized condition for ethanol production, ∼131.3g of ethanol and ∼11.5g of microbial lipid were co-generated from 1kg raw material. On this condition, ∼71.6% of the overall fermentable sugars in corn cob bagasse could be converted into valuable products. At the same time, at least 33% of the initial COD in the acid hydrolysate was depredated. PMID:27060242

  13. Pre-treatment and hydrolysis methods for bioethanol production from lignocellulosic material

    Directory of Open Access Journals (Sweden)

    Ali Osman Adıgüzel

    2013-06-01

    Full Text Available Science and technology has rapidly expended and used for human benefits over the last 20 years. Humanity can solve some problems with the help of developing technology. But, they faced with fundemantal problem such as environmental distortion from increasing population and consumption of energy, raw material acarcity, nutrient deficiency, and waste management. Therefore, the main theme in our research covers the pre-treatment and hydrolysis methods use during production bioethanol from agricultural, forestry and municipal wastes.

  14. Effect of Selected Fermentation Parameters on Bioethanol Production from Ripe Carabao Mango (Mangifera indica) Peelings

    OpenAIRE

    Elisa D. Gutierrez; Kerstin Mae L. Amul; Rafael M. Carpio; Adrian Rex M. Toledo

    2015-01-01

    The study aimed to determine the effects of selected fermentation parameters on bioethanol production from ripe carabao mango (Mangifera indica) peelings. Based on the results of the study, untreated peelings has compositional analysis in w/w% of 41.51%, 32.10%, 25.94% and 20.05% of extractives, holocellulose, alpha cellulose and acid insoluble respectively. On the other hand, after dilute acid pretreatment, the compositional analysis of extractives, holocellulose, alpha cellulose, acid insol...

  15. Production of 2nd generation Bioethanol from Lucerne - Optimization of Hydrothermal Pretreatment

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe; Jensen, Morten; Schmidt, Jens Ejbye

    2012-01-01

    Lucerne (Medicago sativa) has many qualities associated with sustainable agriculture such as nitrogen fixation and high biomass yield. Therefore, there is interest in whether lucerne is a suitable biomass substrate for bioethanol production, and if hydrothermal pretreatment (HTT) of lucerne...... improves enzymatic convertibility, providing sufficient enzymatic conversion of carbohydrate to simple sugars for ethanol production. The HTT process was optimised for lucerne hay, and the pretreated biomass was assessed by carbohydrate analysis, inhibitor characterisation of liquid phases...

  16. Bioconversion of biodegradable municipal solid waste (BMSW) to glucose for bio-ethanol production.

    OpenAIRE

    Li, A

    2008-01-01

    Municipal solid waste (MSW), as an emerging biomass source, presents a unique opportunity for large-scale second-generation bioethanol production. Feedstock supply is reliable and in sufficient quantity, making it a promising biomass source but the conversion yield is currently too low to make it financially attractive. This work presented in this thesis provides a better understanding of bioconversion systems, in particular of pre-treatment and hydrolysis processes which contribute to more t...

  17. Engineering of core Pentose Metabolism in Saccharomyces cerevisiae for Bio-ethanol Production

    OpenAIRE

    Pereira, Filipa Alexandra Barroso

    2013-01-01

    Tese de Doutoramento em Ciências (Especialidade em Biologia) Renewable fuels that do not contribute to atmospheric carbon dioxide have gained increased attention due to peak oil and the possibility of carbon dioxide induced climate change. Bioethanol is the currently largest biofuel in terms of annual production and is mainly produce by fermentation of hexose sugars in sucrose or starch from sugarcane or corn by the yeast Saccharomyces cerevisiae. Second generation biofuel is ...

  18. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    OpenAIRE

    Jørgensen Henning; Felby Claus; Thygesen Lisbeth G; Kristensen Jan B; Elder Thomas

    2008-01-01

    Abstract Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of t...

  19. Dynamic impacts of high oil prices on the bioethanol and feedstock markets

    International Nuclear Information System (INIS)

    This study investigates the impacts of high international oil prices on the bioethanol and corn markets in the US. Between 2007 and 2008, the prices of major grain crops had increased sharply, reflecting the rise in international oil prices. These dual price shocks had caused substantial harm to the global economy. Employing a structural vector auto-regression model (SVAR), we analyze how increases in international oil prices could impact the prices of and demand for corn, which is used as a major bioethanol feedstock in the US. The results indicate that an increase in the oil price would increase bioethanol demand for corn and corn prices in the short run and that corn prices would stabilize in the long run as corn exports and feedstock demand for corn decline. Consequently, policies supporting biofuels should encourage the use of bioethanol co-products for feed and the development of marginal land to mitigate increases in the feedstock price. - Research highlights: → World economy experienced 'dual shocks', which were caused by skyrocketed oil prices and grain prices between 2007 and 2008. → Sharp increases in ethanol production in response to high oil prices were considered as a major driving force to 'ag-flation' in the United States. → Applying a time series econometric tool, called the 'structural vector auto-regression model', we evaluated relationship between ethanol production and corn prices. → The result shows that ethanol production affects corn prices in the short run, while corn prices are lowered as other corn demands (feed for livestock or export demand) decline in the long run.

  20. Progress in the production of bioethanol on starch-based feedstocks

    OpenAIRE

    Dragiša Savić; Maja Vukašinović; Svetlana Nikolić; Jelena Pejin; Marica Rakin; Siniša Markov; Dušanka Pejin; Ljiljana Mojović; Olgica Grujić

    2009-01-01

    Bioethanol produced from renewable biomass, such as sugar, starch, or lignocellulosic materials, is one of the alternative energy resources, which is both renewable and environmentally friendly. Although, the priority in global future ethanol production is put on lignocellulosic processing, which is considered as one of the most promising second-generation biofuel technologies, the utilizetion of lignocellulosic material for fuel ethanol is still under improvement. Sugar- based (molasses, sug...

  1. Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization

    OpenAIRE

    Gulten Izmirlioglu; Ali Demirci

    2015-01-01

    Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium componen...

  2. Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production

    OpenAIRE

    Mukherjee, Vaskar; Steensels, Jan; Lievens, Bart; Van De Voorde, Ilse; Verplaetse, Alex; Aerts, Guido; Willems, Kris; Thevelein, Johan; Verstrepen, Kevin; Ruyters, Stefan

    2014-01-01

    Saccharomyces cerevisiae is the organism of choice for many food and beverage fermentations because it thrives in high-sugar and high-ethanol conditions. However, the conditions encountered in bioethanol fermentation pose specific challenges, including extremely high sugar and ethanol concentrations, high temperature, and the presence of specific toxic compounds. It is generally considered that exploring the natural biodiversity of Saccharomyces strains may be an interesting route to find sup...

  3. Energy Security, Food Security, and Economics of Sugarcane Bioethanol in India

    OpenAIRE

    Gunatilake, Herath; Abeygunawardena, Piya

    2011-01-01

    Energy security has been an important global policy issue for more than 4 decades. Transport biofuels like bioethnol have been receiving increased attention in recent years as a solution to heavy dependence on imported petroleum fuels, which brings destabilizing price effects on the economy and causes serious environmental problems like climate change. India's biofuel policy proposes an ambitious target of replacing 20% of petrol by blending bioethanol by 2017. This paper examines the economi...

  4. Increment of carbohydrate concentration of Chlorella minutissima microalgae for bioethanol production

    OpenAIRE

    Ana Cláudia Freitas Margarites; Jorge Alberto Vieira Costa

    2014-01-01

    Microalgae, like any other microorganism react to changes in the external environment with changes in their intracellular environment. Thus, the manipulation of cultivation conditions, especially the presence or absence of certain nutrients, stimulates the biosynthesis of compounds of interest. Their carbohydrates can be used to produce bioethanol. The objective of this study was to evaluate the effect of the medium and the concentrations of nitrogen and phosphate components used ...

  5. Production of Bioethanol from Carrot Pomace Using the Thermotolerant Yeast Kluyveromyces marxianus

    OpenAIRE

    Kow-Jen Duan; Bo-Hong Jiang; Chi-Yang Yu

    2013-01-01

    Carrot pomace, a major agricultural waste from the juice industry, was used as a feedstock for bioethanol production by fermentation with the thermotolerant yeast Kluyveromyces marxianus . Treatment of the carrot pomace with Accellerase TM 1000 and pectinase at 50 °C for 84 h, resulted in conversion of 42% of its mass to fermentable sugars, mainly glucose, fructose, and sucrose. Simultaneous saccharification and fermentation (SSF) at 42 °C was performed on 10% ( w / v ) carrot pomace; the c...

  6. A Comparative Analysis of the Brazilian Bioethanol Sector and the Malaysian Palm Biofuel Sector

    OpenAIRE

    AhChoy Er

    2011-01-01

    The aim of this paper is to carry out a comparative analysis of the Brazilian bioethanol sector and the Malaysian palm biofuel sector.  The major findings for the Brazilian experience are economic nationalism, mandatory policy with initial focus on the domestic market, a nationwide biofuel infrastructure, incentivized mill construction and the adoption of flex-fuel vehicles are the cornerstone of its success.  Production factors like abundant sugar cane feedstock and evolving production techn...

  7. Direct Bioconversion of Oil Palm Empty Fruit Bunches for Bioethanol Production By Solid State Bioconversion

    OpenAIRE

    Nassereldeen Ahmed Kabbashi; Md. Zahangir Alam; M. Fahrurrazi Tompang

    2010-01-01

    The bioethanol production was conducted by utilizing agriculture waste, palm oil empty fruit bunches (EFB) with the aid of T. harzianum and yeast, Saccharomyces cerevisiae using solid state bioconversion method. The compatibility of various fungal strains was done as to develop the direct bioconversion process of compatible mixed culture. Analyzes such ethanol estimation, reducing sugar and glucosamine as growth indicator were conducted in order to select the best experimented run for ...

  8. Comparison of different process strategies for bioethanol production from Eucheuma cottonii: An economic study.

    Science.gov (United States)

    Tan, Inn Shi; Lee, Keat Teong

    2016-01-01

    The aim of this work was to evaluate the efficacy of red macroalgae Eucheuma cottonii (EC) as feedstock for third-generation bioethanol production. Dowex (TM) Dr-G8 was explored as a potential solid catalyst to hydrolyzed carbohydrates from EC or macroalgae extract (ME) and pretreatment of macroalgae cellulosic residue (MCR), to fermentable sugars prior to fermentation process. The highest total sugars were produced at 98.7 g/L when 16% of the ME was treated under the optimum conditions of solid acid hydrolysis (8% (w/v) Dowex (TM) Dr-G8, 120°C, 1h) and 2% pretreated MCR (P-MCR) treated by enzymatic hydrolysis (pH 4.8, 50°C, 30 h). A two-stream process resulted in 11.6g/L of bioethanol from the fermentation of ME hydrolysates and 11.7 g/L from prehydrolysis and simultaneous saccharification and fermentation of P-MCR. The fixed price of bioethanol obtained from the EC is competitive with that obtained from other feedstocks. PMID:26283313

  9. Viability assessment of regional biomass pre-processing center based bioethanol value chains

    Science.gov (United States)

    Carolan, Joseph E.

    Petroleum accounts for 94% of all liquid fuels and 36% of the total of all energy consumed in the United States. Petroleum dependence is problematic because global petroleum reserves are estimated to last only for 40 to 60 years at current consumption rates; global supplies are often located in politically unstable or unfriendly regions; and fossil fuels have negative environmental footprints. Domestic policies have aimed at promoting alternative, renewable liquid fuels, specifically bio-fuels derived from organic matter. Cellulosic bio-ethanol is one promising alternative fuel that has featured prominently in federal bio-fuel mandates under the Energy Independence and Security Act, 2007. However, the cellulosic bio-ethanol industry faces several technical, physical and industrial organization challenges. This dissertation examines the concept of a network of regional biomass pre-treatment centers (RBPC) that form an extended biomass supply chain feeding into a simplified biorefinery as a way to overcome these challenges. The analyses conducted address the structural and transactional issues facing bio-ethanol value chain establishment; the technical and financial feasibility of a stand alone pre-treatment center (RBPC); the impact of distributed pre-treatment on biomass transport costs; a comparative systems cost evaluation of the performance of the RBPC chain versus a fully integrated biorefinery (gIBRh), followed by application of the analytical framework to three case study regions.

  10. Bioethanol Production by Carbohydrate-Enriched Biomass of Arthrospira (Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Dimitris Georgakakis

    2013-08-01

    Full Text Available In the present study the potential of bioethanol production using carbohydrate-enriched biomass of the cyanobacterium Arthrospira platensis was studied. For the saccharification of the carbohydrate-enriched biomass, four acids (H2SO4, HNO3, HCl and H3PO4 were investigated. Each acid were used at four concentrations, 2.5 N, 1 N, 0.5 N and 0.25 N, and for each acid concentration the saccharification was conducted under four temperatures (40 °C, 60 °C, 80 °C and 100 °C. Higher acid concentrations gave in general higher reducing sugars (RS yields (%, gRS/gTotal sugars with higher rates, while the increase in temperature lead to higher rates at lower acid concentration. The hydrolysates then were used as substrate for ethanolic fermentation by a salt stress-adapted Saccharomyces cerevisiae strain. The bioethanol yield (%, gEtOH/gBiomass was significantly affected by the acid concentration used for the saccharification of the carbohydrates. The highest bioethanol yields of 16.32% ± 0.90% (gEtOH/gBiomass and 16.27% ± 0.97% (gEtOH/gBiomass were obtained in hydrolysates produced with HNO3 0.5 N and H2SO4 0.5 N, respectively.

  11. Emerging bio-ethanol projects in Nigeria. Their opportunities and challenges

    International Nuclear Information System (INIS)

    Despite being a major petroleum producing and exporting country, Nigeria has for a long time imported refined petroleum products for domestic consumption. The country has recently made an entrance into the bio-energy sector by seeding the market with imported ethanol until enough capability exists for the domestic production of ethanol. The Nigerian Biofuel Policy was released in 2007 calling for the domestic production of bio-ethanol to meet the national demand of 5.14 billion litres/year. Some investors have responded by investing over $3.86 billion for the construction of 19 ethanol bio-refineries, 10,000 units of mini-refineries and feedstock plantations for the production of over 2.66 billion litres of fuel grade ethanol per annum. Also, another 14 new projects are in the offing. Of the 20 pioneer projects, 4 are at the conception phase, 8 are in the planning phase, and 7 are under construction with only 1 operational. The potential benefits of the emerging bio-ethanol projects include investment in the economy, employment, energy security and boost rural infrastructure, while the major challenge is land take (859,561 ha). This is the first time an attempt is been made to document the emerging bio-ethanol projects in Nigeria. (author)

  12. Emerging bio-ethanol projects in Nigeria: Their opportunities and challenges

    International Nuclear Information System (INIS)

    Despite being a major petroleum producing and exporting country, Nigeria has for a long time imported refined petroleum products for domestic consumption. The country has recently made an entrance into the bio-energy sector by seeding the market with imported ethanol until enough capability exists for the domestic production of ethanol. The Nigerian Biofuel Policy was released in 2007 calling for the domestic production of bio-ethanol to meet the national demand of 5.14 billion litres/year. Some investors have responded by investing over $3.86 billion for the construction of 19 ethanol bio-refineries, 10,000 units of mini-refineries and feedstock plantations for the production of over 2.66 billion litres of fuel grade ethanol per annum. Also, another 14 new projects are in the offing. Of the 20 pioneer projects, 4 are at the conception phase, 8 are in the planning phase, and 7 are under construction with only 1 operational. The potential benefits of the emerging bio-ethanol projects include investment in the economy, employment, energy security and boost rural infrastructure, while the major challenge is land take (859,561 ha). This is the first time an attempt is been made to document the emerging bio-ethanol projects in Nigeria.

  13. Metal and metalloid determination in bioethanol through inductively coupled plasma-optical emission spectroscopy

    Science.gov (United States)

    Sánchez, Carlos; Lienemann, Charles-Philippe; Todolí, José-Luis

    2016-01-01

    A new method to carry out the elemental determination of metals in bioethanol through ICP-OES has been developed. The procedure is based on the use of a heated torch integrated sample introduction system (hTISIS) to directly introduce the vaporized sample into the plasma. Two injection modes (continuous liquid aspiration and air-segmented flow injection analysis) have been evaluated. In a first step, the matrix effects caused by several ethanol-water mixtures were removed by operating the hTISIS at 400 °C in segmented injection. Meanwhile, the results also proved that the system could be operated in continuous mode at 200 °C with the complete interference removal. Finally, twenty-eight real samples with bioethanol contents between 55% and 100% were analyzed with the methods previously developed. Regarding validation, recoveries from 80% to 120% were obtained for 18 analytes and the concentrations found with the proposed method were in agreement with those encountered with a preconcentration method, taken as a reference procedure. Limits of detection went from 3 ng mL- 1 for manganese to about 500 ng mL- 1 for calcium. This allowed to quantify Cr, Fe, Mg, Mn and Zn in segmented flow injection and Al, Cd, Cr, Cu, K, Mg, Mn, Na and Zn in continuous sample aspiration mode in bioethanol samples.

  14. A review of conversion processes for bioethanol production with a focus on syngas fermentation

    Directory of Open Access Journals (Sweden)

    Mamatha Devarapalli

    2015-09-01

    Full Text Available Bioethanol production from corn is a well-established technology. However, emphasis on exploring non-food based feedstocks is intensified due to dispute over utilization of food based feedstocks to generate bioethanol. Chemical and biological conversion technologies for non-food based biomass feedstocks to biofuels have been developed. First generation bioethanol was produced from sugar based feedstocks such as corn and sugar cane. Availability of alternative feedstocks such as lignocellulosic and algal biomass and technology advancement led to the development of complex biological conversion processes, such as separate hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, simultaneous saccharification and co-fermentation (SSCF, consolidated bioprocessing (CBP, and syngas fermentation. SHF, SSF, SSCF, and CBP are direct fermentation processes in which biomass feedstocks are pretreated, hydrolyzed and then fermented into ethanol. Conversely, ethanol from syngas fermentation is an indirect fermentation that utilizes gaseous substrates (mixture of CO, CO2 and H2 made from industrial flue gases or gasification of biomass, coal or municipal solid waste. This review article provides an overview of the various biological processes for ethanol production from sugar, lignocellulosic, and algal biomass. This paper also provides a detailed insight on process development, bioreactor design, and advances and future directions in syngas fermentation.

  15. Pressurized liquid extraction of ginger (Zingiber officinale Roscoe) with bioethanol: an efficient and sustainable approach.

    Science.gov (United States)

    Hu, Jiajin; Guo, Zheng; Glasius, Marianne; Kristensen, Kasper; Xiao, Langtao; Xu, Xuebing

    2011-08-26

    To develop an efficient green extraction approach for recovery of bioactive compounds from natural plants, we examined the potential of pressurized liquid extraction (PLE) of ginger (Zingiber officinale Roscoe) with bioethanol/water as solvents. The advantages of PLE over other extraction approaches, in addition to reduced time/solvent cost, the extract of PLE showed a distinct constituent profile from that of Soxhlet extraction, with significantly improved recovery of diarylheptanoids, etc. Among the pure solvents tested for PLE, bioethanol yield the highest efficiency for recovering most constituents of gingerol-related compounds; while for a broad concentration spectrum of ethanol aqueous solutions, 70% ethanol gave the best performance in terms of yield of total extract, complete constituent profile and recovery of most gingerol-related components. PLE with 70% bioethanol operated at 1500 psi and 100 °C for 20 min (static extraction time: 5 min) is recommended as optimized extraction conditions, achieving 106.8%, 109.3% and 108.0% yield of [6]-, [8]- and [10]-gingerol relative to the yield of corresponding constituent obtained by 8h Soxhlet extraction (absolute ethanol as extraction solvent). PMID:21782193

  16. Role of energy policy in renewable energy accomplishment: The case of second-generation bioethanol

    International Nuclear Information System (INIS)

    Renewable energy has been in the limelight ever since the price of crude petroleum oil increases to the unprecedented height of US$96 per barrel recently. This is due to the diminishing oil reserves in the world and political instabilities in some oil-exporting countries. The advantages of renewable energy compared to fossil fuels are enormous in terms of environment and availability. Biofuels like bioethanol and biodiesel are currently being produced from agricultural products such as sugarcane and rapeseed oil, respectively. Collectively, these biofuels from food sources are known as first-generation biofuels. Although first-generation biofuels have the potential to replace fossil fuels as the main source of energy supply, its production is surrounded by certain issues like tropical forests' destruction. Instead, second-generation bioethanol, which utilizes non-edible sources such as lignocellulose biomass to produce ethanol, has been shown to be more suitable as the source of renewable energy. However, there are challenges and obstacles such as cost, technology and environmental issues that need to be overcome. Hence, the introduction of energy policy is crucial in promoting and implementing second-generation bioethanol effectively and subsequently become a major source of renewable energy

  17. Emission characteristics when using bioethanol as a fuel for passenger cars

    International Nuclear Information System (INIS)

    In 1991 the Swedish Transport and Communication Research Board (KFB), was asked by the Swedish Government to carry out investigations and field tests in order to demonstrate the possibility of using bioethanol and biogas as automotive fuels. A five-year programme was set up for the investigations and demonstrations and the programme was later extended to a seven-year programme. Despite the fact that most of the work has been directed towards heavy-duty vehicles and especially buses in city traffic some important investigations have been carried out in order to demonstrate the use of bioethanol and biogas in passenger cars. The programme for passenger cars has consisted of running and testing 53 Flexible Fuel Vehicles (FFV), fuelled with bioethanol (E85), a project run by the Swedish Ethanol Development Foundation, and 20 other cars fuelled with biogas, a project carried out by the City of Stockholm's Material Supply Organisation, and sponsored by KFB. For both fleets of vehicles the exhaust emissions have been extensively characterised at a laboratory in Finland owned by the Technical Research Centre of Finland. The aim of this paper is to present some interesting results from the demonstrations of the use of E85 in FFV's and thereby especially focus on the results of the characterisation of both regulated and non-regulated emissions 23 refs, 16 figs, 9 tabs

  18. Energy and eMergy evaluation of bioethanol production from wheat in Henan Province, China

    International Nuclear Information System (INIS)

    Ethanol production from wheat has become an emerging economic activity in Henan Province due to the establishment in 2001 of the National Program for Alcohol Production. The program aimed at facing the unfolding world energy crisis in the near future and increasing China's energy security. Instead, in spite of claims for 'green energy', such an activity is likely to generate great environmental damage and social problems. Moreover, the international market prices for raw materials (especially cereals) and fossil oil are putting this activity under siege. This research presents an energy and eMergy analysis of a typical wheat plantation/alcohol distillery system, in the Henan Province. Comparison is drawn with bioethanol production in Italy, based on corn from intensive, industrialized agriculture. Energy and eMergy indices of ethanol production from wheat and corn in the two agro-industrial systems are respectively as follows: output/input energy ratio, 1.09 (wheat) and 1.19 (corn); transformity of bioethanol, 2.77x105 and 1.89x105 seJ/J; renewability, 20% and 11%; eMergy yield ratio, 1.24 and 1.14; environmental loading ratio, 4.05 and 7.84; and finally eMergy sustainability index, 0.31 and 0.15. Results show that bioethanol from food crops is not a sustainable source of fuel

  19. Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass.

    Science.gov (United States)

    Papa, G; Rodriguez, S; George, A; Schievano, A; Orzi, V; Sale, K L; Singh, S; Adani, F; Simmons, B A

    2015-05-01

    In this study the efficiency of mild ionic liquid (IL) pretreatment and pressurized hot water (PHW) is evaluated and compared in terms of bioethanol and biomethane yields, with corn stover (CS) and switchgrass (SG) as model bioenergy crops. Both feedstocks pretreated with the IL 1-ethyl-3-methylimidazolium acetate [C2C1Im][OAc] at 100°C for 3h exhibited lower glucose yield that those treated with harsher pretreatment conditions previously used. Compared to PHW, IL pretreatment demonstrated higher bioethanol yields; moreover IL pretreatment enhanced biomethane production. Taking into consideration both bioethanol and biomethane productions, results indicated that when using IL pretreatment, the total energy produced per kg of total solids was higher compared to untreated biomasses. Specifically energy produced from CS and SG was +18.6% and +34.5% respectively, as compared to those obtained by hot water treatment, i.e. +2.3% and +23.4% for CS and SG, respectively. PMID:25725408

  20. Biological Pretreatment of Rubberwood with Ceriporiopsis subvermispora for Enzymatic Hydrolysis and Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Forough Nazarpour

    2013-01-01

    Full Text Available Rubberwood (Hevea brasiliensis, a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm and pretreatment time on the biological pretreatment were first determined by chemical analysis and X-ray diffraction and their best condition obtained with 1 mm particle size and 90 days pretreatment. Further morphological study on rubberwood with 1 mm particle size pretreated by fungus was performed by FT-IR spectra analysis and SEM observation and the result indicated the ability of this fungus for pretreatment. A study on enzymatic hydrolysis resulted in an increased sugar yield of 27.67% as compared with untreated rubberwood (2.88%. The maximum ethanol concentration and yield were 17.9 g/L and 53% yield, respectively, after 120 hours. The results obtained demonstrate that rubberwood pretreated by C. subvermispora can be used as an alternative material for the enzymatic hydrolysis and bioethanol production.

  1. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass.

    Science.gov (United States)

    Li, Yinping; Cui, Jiefen; Zhang, Gaoli; Liu, Zhengkun; Guan, Huashi; Hwang, Hueymin; Aker, Winfred G; Wang, Peng

    2016-08-01

    The seaweed Ulva prolifera, distributed in inter-tidal zones worldwide, contains a large percentage of cellulosic materials. The technical feasibility of using U. prolifera residue (UPR) obtained after extraction of polysaccharides as a renewable energy resource was investigated. An environment-friendly and economical pretreatment process was conducted using hydrogen peroxide. The hydrogen peroxide pretreatment improved the efficiency of enzymatic hydrolysis. The resulting yield of reducing sugar reached a maximum of 0.42g/g UPR under the optimal pretreatment condition (hydrogen peroxide 0.2%, 50°C, pH 4.0, 12h). The rate of conversion of reducing sugar in the concentrated hydrolysates to bioethanol reached 31.4% by Saccharomyces cerevisiae fermentation, which corresponds to 61.7% of the theoretical maximum yield. Compared with other reported traditional processes on Ulva biomass, the reducing sugar and bioethanol yield are substantially higher. Thus, hydrogen peroxide pretreatment is an effective enhancement of the process of bioethanol production from the seaweed U. prolifera. PMID:27132221

  2. Potential bioethanol feedstock availability around nine locations in the Republic of Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Deverell, R.; McDonnell, K.; Devlin, G. [Department of Biosystems Engineering, Agriculture and Food Science Building, University College Dublin, Belfield (Ireland)

    2009-07-01

    The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland's distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks. (author)

  3. Recycle bioreactor for bioethanol production from wheat starch. 2. Fermentation and economics

    Energy Technology Data Exchange (ETDEWEB)

    Lang, X.; Hill, G.A.; MacDonald, D.G. [Department of Chemical Engineering, Saskatchewan (Canada)

    2001-06-01

    Bioethanol has been produced using sugars from cold hydrolysis of pure wheat starch, sterile wheat flour, and unsterile wheat flour. The conversion of sugars to ethanol from pure starch reached 96% of the theoretical maximum while that from sterile wheat flour was 69% and from unsterile wheat flour only 35%. These data indicate that sequential hydrolysis and fermentation of wheat flour is not feasible. However, the simultaneous cold hydrolysis and fermentation of both wheat starch and wheat flour proved successful. Both sugar sources produced 95% of the theoretical maximum amount of ethanol. The process could be repeated in a sequential batch fashion for over 110 h of operation, achieving high ethanol yields in each run. A scale-up design of bioethanol production using sequential batch, simultaneous cold starch hydrolysis, and fermentation indicates that this process would be economically feasible. High levels of revenue are generated from both the bioethanol and the byproduct: food-grade wheat gluten. The payback period is predicted to be < 2 years with a discounted cash flow rate of return of 46%. (author)

  4. Emerging bio-ethanol projects in Nigeria. Their opportunities and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Ohimain, Elijah I. [Department of Natural Resources and Environmental Design, School of Agriculture and Environmental Sciences, North Carolina A and T State University, 1601 E. Market St., Greensboro, NC 27411 (United States)

    2010-11-15

    Despite being a major petroleum producing and exporting country, Nigeria has for a long time imported refined petroleum products for domestic consumption. The country has recently made an entrance into the bio-energy sector by seeding the market with imported ethanol until enough capability exists for the domestic production of ethanol. The Nigerian Biofuel Policy was released in 2007 calling for the domestic production of bio-ethanol to meet the national demand of 5.14 billion litres/year. Some investors have responded by investing over $3.86 billion for the construction of 19 ethanol bio-refineries, 10,000 units of mini-refineries and feedstock plantations for the production of over 2.66 billion litres of fuel grade ethanol per annum. Also, another 14 new projects are in the offing. Of the 20 pioneer projects, 4 are at the conception phase, 8 are in the planning phase, and 7 are under construction with only 1 operational. The potential benefits of the emerging bio-ethanol projects include investment in the economy, employment, energy security and boost rural infrastructure, while the major challenge is land take (859,561 ha). This is the first time an attempt is been made to document the emerging bio-ethanol projects in Nigeria. (author)

  5. Sugar Beet (Beta vulgaris L. Yields and Potential for Bioethanol Production under Irrigation Regime

    Directory of Open Access Journals (Sweden)

    Simona C. BÂRSAN

    2015-12-01

    Full Text Available The current study was carried out to analyse three sugar beet genotypes regarding to the economic yield and the potential to produce bioethanol, under the influence of furrow irrigation regime in specific conditions of Transylvanian Plain, North-West Romania. The research factors, genotype (‘Leila’, ‘Clementina’ and ‘Libero’ and irrigation regime were studied within a polyfactorial experimental design. The results obtained indicated that in specific climatic conditions of Transylvanian Plain, ‘Libero’ genotype had a great performance and produced the highest yields. The average production of ‘Libero’ genotype was superior than ‘Clementina’ and ‘Leila’ varieties, both in irrigated and non-irrigated conditions, as it follows: 38.98 t ha–1, respectively, 52.72 t ha–1 in the first year of research; 47.63 t ha–1, respectively, 59.73 t ha–1 (in the second year; 2014-60.87 t ha–1, respectively, 74.43 t ha–1 (in the third year. Moreover, the production increased with 11.5% under irrigated conditions for all the studied genotypes. The results also revealed the positive influence of the irrigation regime on the qualitative parameters of the bioethanol (ethanol, higher saturated monoalcohols, methanol, water, inorganic chloride, cooper, phosphorous, sulphur etc. indicating that the obtained bioethanol might be a viable alternative for fossil fuels.

  6. Carob pod as a feedstock for the production of bioethanol in Mediterranean areas

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, S.; Lozano, L.J.; Godinez, C.; Juan, D.; Perez, A.; Hernandez, F.J. [Technical University of Cartagena, Department of Chemical and Environmental Engineering, C/Dr. Fleming S/N, Campus Muralla del Mar, 30202 Cartagena (Spain)

    2010-11-15

    There is a growing interest worldwide to find out new and cheap carbohydrate sources for production of bioethanol. In this context, carob pod (Ceratonia siliqua) is proposed as an economical source for bioethanol production, especially, in arid regions. The carob tree is an evergreen shrub native to the Mediterranean region, cultivated for its edible seed pods and it is currently being reemphasised as an alternative in dryland areas, because no carbon-enriched lands are necessary. In this work, the global process of ethanol production from carob pod was studied. In a first stage, aqueous extraction of sugars from the pod was conducted, achieving very high yields (>99%) in a short period of time. The process was followed by acid or alkaline hydrolysis of washed pod at different operating conditions, the best results (R = 38.20%) being reached with sulphuric acid (2% v/v) at 90 C, using a L/S (liquid/solid) ratio of 7.5 and shaking at 700 rpm for 420 min. After that, fermentation of hydrolysates were tested at 30 C, 125 rpm, 200 g/L of sugars and 15 g/L of yeast with three different kinds of yeasts. In these conditions a maximum of 95 g/L of ethanol was obtained after 24 h. Finally, the distillation and dehydration of water-bioethanol mixtures was analyzed using the chemical process simulation software CHEMCAD with the aim of estimate the energy requirements of the process. (author)

  7. A genetic base of utilisation of maize grain as a valuable renewable raw material for bioethanol production

    Directory of Open Access Journals (Sweden)

    Semenčenko Valentina

    2015-01-01

    Full Text Available Maize (Zea mays L. is one of the most important cereal crops, and as such, one of the most significant naturally renewable carbohydrate raw materials for the production of energy and multitude of different products. Many studies have shown that the kernel composition and starch structure of maize are highly influenced by genetic background of the maize. Maize grain consists of approximately 70% of starch, which makes it a very suitable feedstock for the bioethanol production. This study was conducted with aim to understand how different genetic background affects bioethanol yield and other fermentation properties of the selected maize genotypes in the process of maize grain- based bioethanol production. Twenty seven maize hybrids, including genotypes of standard chemical composition as well as specialty maize hybrids such as popping, waxy, white kernel and red kernel hybrids, developed at the Maize Research Institute, Zemun Polje, were investigated in this study. The lowest bioethanol yield of 7.25% w/w obtained for hybrid ZP 611k after 48 h of fermentation and the highest by genotype ZP 434 (8.96% w/w. A very significant positive correlation was determined between kernel starch content and the bioethanol yield after 48h of fermentation, as well as volumetric productivity (48h (r=0.67. Between bioethanol yield after 48h of fermentation and soft endosperm content in kernel of the investigated ZP maize hybrids a very significant positive correlation was assessed (r=0.66. Higher overall bioethanol yields have been obtained from genotypes containing higher starch and lower protein and lipid contents. [Projekat Ministarstva nauke Republike Srbije, br. TR 31068

  8. Energy from whey - comparison of the biogas and bioethanol processes; Energie a partir de petit-lait : comparaison des filieres biogaz et bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Fruteau de Laclos, H.; Membrez, Y. [Erep SA, Aclens (Switzerland)

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project which investigated how energy could be generated from the whey produced in the cheese-making process. The first part of the project aimed to validate a concept for on-site production and use of biogas at a medium-sized cheese factory. The results of the first step, an experimental study carried out using a down-flow fixed-film bio-reactor, are discussed. This allowed the determination of the optimal working parameters as well as providing an estimate of the performance of the process. The second part of the project aimed to compare the bio-ethanol and biogas production processes. It was carried out in collaboration with AlcoSuisse and the Energy Systems Laboratory at the Swiss Federal Institute of Technology (EPFL) in Lausanne. The results of a life-cycle assessment (LCA) are discussed, which compared the two processes from an environmental point of view. Here, two impacts were considered: fossil fuel consumption and greenhouse effect. The replacement of fuel-oil with biogas for heat production and the replacement of conventional petrol with mixture including 5% bio-ethanol were examined. The results are presented that show that there was no significant difference between the two processes. According to the authors, the treatment of one cubic meter of cheese-whey allows savings of more than 20 litres of oil equivalent and 60 kg of CO{sub 2} emissions.

  9. The potential of macroalgae as a source of carbohydrates for use in bioethanol fermentation

    Directory of Open Access Journals (Sweden)

    Nwachukwu A. N., Chukwu M. A.

    2012-01-01

    Full Text Available Fossil fuel which is the global energy source gives rise to land contamination, air pollution, climate change, fuel crises, hike of price of petroleum products, crises in oil producing nations, dependency on oil producing countries and high risk associated with oil exploitation has led to a search for sustainable and efficient energy sources. Several types and sources of biofuels have been recently studied as potential source of energy to replace the environmentally unfriendly fossil fuels. Bioethanol produced from terrestrial plants have attracted the attention of the global society, though numerous controversies and debates were associated with the technology; such as the issue of food versus fuel competition, which further encouraged more research work on a sustainable renewable bioethanol source. This study aims at determining total carbohydrates from macroalgal specie (Laminaria digitata for use in bioethanol fermentation, also using wet and analytical chemistry to extract and spectrophotometrically analyse the sample in respect to glucose and sucrose standards. The samples were lyophilized and the resulting powder extracted in a water bath at 100oC in 15minutes. The analysis was performed using anthrone (colorimetric method and the analyte read in a UV-visible spectrophotometer at 620nm. The result showed that carbohydrates were present in the samples, indicated by green and yellow, colourless pigments. Glucose and sucrose were the main identified sugars from the standards analysed. The concentration of sugars varied with time; months and seasons of the year. Result of the samples showed highest level of sugar concentration in May 2010 and lowest sugar concentration in November 2010. It was observed that the mass of sugars (glucose and sucrose deposited as a result of photosynthesis, significantly contributed to the weight of biomass. The implication of the result indicated that: the smaller the biomass, the most likely it is to have lower

  10. Optimization of bioethanol production from carbohydrate rich wastes by extreme thermophilic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Tomas, A.F.

    2013-05-15

    Second-generation bioethanol is produced from residual biomass such as industrial and municipal waste or agricultural and forestry residues. However, Saccharomyces cerevisiae, the microorganism currently used in industrial first-generation bioethanol production, is not capable of converting all of the carbohydrates present in these complex substrates into ethanol. This is in particular true for pentose sugars such as xylose, generally the second major sugar present in lignocellulosic biomass. The transition of second-generation bioethanol production from pilot to industrial scale is hindered by the recalcitrance of the lignocellulosic biomass, and by the lack of a microorganism capable of converting this feedstock to bioethanol with high yield, efficiency and productivity. In this study, a new extreme thermophilic ethanologenic bacterium was isolated from household waste. When assessed for ethanol production from xylose, an ethanol yield of 1.39 mol mol-1 xylose was obtained. This represents 83 % of the theoretical ethanol yield from xylose and is to date the highest reported value for a native, not genetically modified microorganism. The bacterium was identified as a new member of the genus Thermoanaerobacter, named Thermoanaerobacter pentosaceus and was subsequently used to investigate some of the factors that influence secondgeneration bioethanol production, such as initial substrate concentration and sensitivity to inhibitors. Furthermore, T. pentosaceus was used to develop and optimize bioethanol production from lignocellulosic biomass using a range of different approaches, including combination with other microorganisms and immobilization of the cells. T. pentosaceus could produce ethanol from a wide range of substrates without the addition of nutrients such as yeast extract and vitamins to the medium. It was initially sensitive to concentrations of 10 g l-1 of xylose and 1 % (v/v) ethanol. However, long term repeated batch cultivation showed that the strain

  11. Determination of total acidity index in bioethanol by automated potentiometric titration; Determinacao do indice de acidez total em bioetanol por titulacao potenciometrica automatizada

    Energy Technology Data Exchange (ETDEWEB)

    Sobral, Sidney Pereira; Ribeiro, Carla de Matos; Fraga, Isabel Cristina Serta; Goncalves, Mary Ane [Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (DIMCI/INMETRO), Duque de Caxias, RJ (Brazil). Diretoria de Metrologia Cientifica e Industrial], E-mail: spsobral@inmetro.gov.br

    2009-07-01

    This paper determines the total acidity index of bioethanol by volumetric titration with potentiometric detection. Also, viewing the optimization of the method, studies are exhibited related to the repeatable, besides the comparison with the colorimetric method with the objective to contribute to the certification of bioethanol reference materials.

  12. Simulation of integrated first and second generation bioethanol production from sugarcane: comparison between different biomass pretreatment methods.

    Science.gov (United States)

    Dias, Marina O S; da Cunha, Marcelo Pereira; Maciel Filho, Rubens; Bonomi, Antonio; Jesus, Charles D F; Rossell, Carlos E V

    2011-08-01

    Sugarcane bagasse is used as a fuel in conventional bioethanol production, providing heat and power for the plant; therefore, the amount of surplus bagasse available for use as raw material for second generation bioethanol production is related to the energy consumption of the bioethanol production process. Pentoses and lignin, byproducts of the second generation bioethanol production process, may be used as fuels, increasing the amount of surplus bagasse. In this work, simulations of the integrated bioethanol production process from sugarcane, surplus bagasse and trash were carried out. Selected pre-treatment methods followed, or not, by a delignification step were evaluated. The amount of lignocellulosic materials available for hydrolysis in each configuration was calculated assuming that 50% of sugarcane trash is recovered from the field. An economic risk analysis was carried out; the best results for the integrated first and second generation ethanol production process were obtained for steam explosion pretreatment, high solids loading for hydrolysis and 24-48 h hydrolysis. The second generation ethanol production process must be improved (e.g., decreasing required investment, improving yields and developing pentose fermentation to ethanol) in order for the integrated process to be more economically competitive. PMID:20838849

  13. Simulation of integrated first and second generation bioethanol production from sugarcane: comparison between different biomass pretreatment methods.

    Science.gov (United States)

    Dias, Marina O S; da Cunha, Marcelo Pereira; Maciel Filho, Rubens; Bonomi, Antonio; Jesus, Charles D F; Rossell, Carlos E V

    2011-08-01

    Sugarcane bagasse is used as a fuel in conventional bioethanol production, providing heat and power for the plant; therefore, the amount of surplus bagasse available for use as raw material for second generation bioethanol production is related to the energy consumption of the bioethanol production process. Pentoses and lignin, byproducts of the second generation bioethanol production process, may be used as fuels, increasing the amount of surplus bagasse. In this work, simulations of the integrated bioethanol production process from sugarcane, surplus bagasse and trash were carried out. Selected pre-treatment methods followed, or not, by a delignification step were evaluated. The amount of lignocellulosic materials available for hydrolysis in each configuration was calculated assuming that 50% of sugarcane trash is recovered from the field. An economic risk analysis was carried out; the best results for the integrated first and second generation ethanol production process were obtained for steam explosion pretreatment, high solids loading for hydrolysis and 24-48 h hydrolysis. The second generation ethanol production process must be improved (e.g., decreasing required investment, improving yields and developing pentose fermentation to ethanol) in order for the integrated process to be more economically competitive.

  14. Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae.

    Science.gov (United States)

    El-Dalatony, Marwa M; Kurade, Mayur B; Abou-Shanab, Reda A I; Kim, Hoo; Salama, El-Sayed; Jeon, Byong-Hun

    2016-11-01

    Separate hydrolysis fermentation (SHF) and simultaneous saccharification fermentation (SSF) processes were studied for bioethanol production from microalgal biomass. SSF was selected as an efficient process to enhance the bioethanol yield through repeated-batches using immobilized yeast cells. Combined sonication and enzymatic hydrolysis of Chlamydomonas mexicana generated 10.5 and 8.48g/L of ethanol in SSF and SHF, respectively. Yeast utilized maximum portion of total reducing sugar (TRS) reaching a consumption efficiency of 91-98%. A bioethanol yield of 0.5g/g (88.2% of theoretical yield) and volumetric productivity of 0.22g/L/h was obtained after 48h of SSF. Immobilized yeast cells enabled repetitive production of ethanol for 7 cycles displaying a fermentation efficiency up to 79% for five consecutive cycles. The maximum ethanol production was 9.7g/L in 2nd-4th cycles. A total energy recovery of 85.81% was achieved from microalgal biomass in the form of bioethanol. Repeated-batch SSF demonstrated the possibility of cost-effective bioethanol production. PMID:27479800

  15. Fractionation of oil palm empty fruit bunch by bisulfite pretreatment for the production of bioethanol and high value products.

    Science.gov (United States)

    Tan, Liping; Wang, Meimei; Li, Xuezhi; Li, Hongxing; Zhao, Jian; Qu, Yinbo; Choo, Yuen May; Loh, Soh Kheang

    2016-01-01

    In this work, fractionation of empty fruit bunch (EFB) by bisulfite pretreatment was studied for the production of bioethanol and high value products to achieve biorefinery of EFB. EFB was fractionated to solid and liquor components by bisulfite process. The solid components were used for bioethanol production by quasi-simultaneous saccharification and fermentation. The liquor components were then converted to furfural by hydrolysis with sulfuric acid. Preliminary results showed that the concentration of furfural was highest at 18.8g/L with 0.75% sulfuric acid and reaction time of 25min. The conversion of xylose to furfural was 82.5%. Furthermore, we attempted to fractionate the liquor into hemicellulose sugars and lignin by different methods for producing potential chemicals, such as xylose, xylooligosaccharide, and lignosulfonate. Our research showed that the combination of bisulfite pretreatment and resin separation could effectively fractionate EFB components to produce bioethanol and other high value chemicals. PMID:26539970

  16. Simultaneous detection of the absorption spectrum and refractive index ratio with a spectrophotometer: monitoring contaminants in bioethanol

    Science.gov (United States)

    Kontturi, V.; Hyvärinen, S.; García, A.; Carmona, R.; Murzin, D. Yu; Mikkola, J.-P.; Peiponen, K.-E.

    2011-05-01

    The optical properties of a biofuel resulting from the fungi-treated lignocellulosic biomass in an ethanol matrix were studied. The matrix simulates the case that the bioethanol is contaminated by sugars, water and colour pigments that reduce the quality of the biofuel and compromise the combustion process. It is suggested that by applying a spectrophotometer only, it is possible to obtain valid information, i.e. the spectral features of the contaminants as well as the refractive index ratio of bioethanol. This allows for simultaneous purity and density detection of biomass-derived liquids or liquid biofuels, in comparison to a reference representing an ideal bioethanol (pure ethyl alcohol, ethanol of 99.5% purity (v/v)).

  17. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1.

    Science.gov (United States)

    Lee, Ok Kyung; Oh, You-Kwan; Lee, Eun Yeol

    2015-11-01

    The residual biomass of Chlorella sp. KR-1 obtained after lipid extraction was used for saccharification and bioethanol production. The carbohydrate was saccharified using simple enzymatic and chemical methods using Pectinex at pH 5.5 and 45°C and 0.3N HCl at 121°C for 15min with 76.9% and 98.2% yield, respectively, without any pretreatment. The residual biomass contained 49.7% carbohydrate consisting of 82.4% fermentable sugar and 17.6% non-fermentable sugar, which is valuable for bioethanol fermentation. Approximately 98.2% of the total carbohydrate was converted into monosaccharide (fermentable+non-fermentable sugar) using dilute acid saccharification. The fermentable sugar was subsequently fermented to bioethanol through separate hydrolysis and fermentation with a fermentation yield of 79.3%. Overall, 0.4g ethanol/g fermentable sugar and 0.16g ethanol/g residual biomass were produced.

  18. Innovation subject to sustainability: the European policy on biofuels and its effects on innovation in the Brazilian bioethanol industry

    Directory of Open Access Journals (Sweden)

    Henrique Pacini

    2012-08-01

    Full Text Available Biofuels are a suitable complement for fossil energy in the transport sector and bioethanol is the main biofuel traded worldwide. Based on the assumption that innovation can be influenced by regulation, the Brazilian bioethanol industry is facing new requirements from external actors while reaching for international markets. Until 2010, national environmental laws were the main sustainability instrument that the biofuel industry faced. With the introduction of sustainability criteria for biofuels in the European Fuels Quality Directive (FQD and Renewable Energy Directive (RED of 2009, bioethanol producers have been pressured to innovate in respect of the requirements of future markets. Here, the aim is to analyse the case of Brazil, given the potential exports of sugarcane-based ethanol from this country to the EU. Brazil provides an interesting overview of how a bioethanol industry innovated while facing sustainability requirements in the past. A comparison between the European requirements and the industry´s status quo is then explored. The EU criteria are likely to have effects on the Brazilian bioethanol industry and incremental improvements in sustainability levels might take place based on the sustainability requirements. In addition, the industry could follow two other paths, namely risk diversification by engaging in multi-output models; and market leakage towards less-regulated markets. At the same time, an environmental overregulation of the biofuel market may make it more difficult for emerging biofuel industries in other countries, especially in Africa, by creating a barrier rather than contributing to its expansion. The results of this analysis show the main challenges to be addressed and the potential positive and negative impacts of the European Union biofuels policy on the Brazilian bioethanol industry.

  19. Wheat straw, household waste and hay as a source of lignocellulosic biomass for bioethanol and biogas production

    DEFF Research Database (Denmark)

    Tomczak, Anna; Bruch, Magdalena; Holm-Nielsen, Jens Bo

    2010-01-01

    To meet the increasing need for bioenergy three lignocellulosic materials: raw hay, pretreated wheat straw and pretreated household waste were considered for the production of bioethanol and biogas. Several mixtures of household waste supplemented with different fractions of wheat straw and hay in...... fermentation process with Saccharomyces cerevisiae were investigated. Wheat straw and household wastes were pretreated using IBUS technology, patented by Dong Energy, which includes milling, stem explosion treatment and enzymatic hydrolysis. Methane production was investigated using stillages, the effluents...... from bioethanol fermentation experiment. Previous trial of biogas production from above mentioned household wastes was enclosed....

  20. Evaluation of the biomass potential for the production of lignocellulosic bioethanol from various agricultural residues in Austria and Worldwide

    Science.gov (United States)

    Kahr, Heike; Steindl, Daniel; Wimberger, Julia; Schürz, Daniel; Jäger, Alexander

    2013-04-01

    Due to the fact that the resources of fossil fuels are steadily decreasing, researchers have been trying to find alternatives over the past few years. As bioethanol of the first generation is based on potential food, its production has become an increasingly controversial topic. Therefore the focus of research currently is on the production of bioethanol of the second generation, which is made from cellulosic and lignocellulosic materials. However, for the production of bioethanol of the second generation the fibres have to be pre-treated. In this work the mass balances of various agricultural residues available in Austria were generated and examined in lab scale experiments for their bioethanol potential. The residues were pretreatment by means of state of the art technology (steam explosion), enzymatically hydrolysed and fermented with yeast to produce ethanol. Special attention was paid the mass balance of the overall process. Due to the pretreatment the proportion of cellulose increases with the duration of the pre-treatment, whereby the amount of hemicellulose decreases greatly. However, the total losses were increasing with the duration of the pre-treatment, and the losses largely consist of hemicellulose. The ethanol yield varied depending on the cellulose content of the substrates. So rye straw 200 °C 20 min reaches an ethanol yield of 169 kg/t, by far the largest yield. As result on the basis of the annual straw yield in Austria, approximately 210 000 t of bioethanol (266 million litres) could be produced from the straw of wheat (Triticum vulgare), rye (Secale cereale), oat (Avena sativa) and corn (Zea mays) as well as elephant grass (Miscanthus sinensis) using appropriate pre-treatment. So the greenhouse gas emissions produced by burning fossil fuels could be reduced significantly. About 1.8 million tons of motor gasoline are consumed in Austria every year. The needed quantity for a transition to E10 biofuels could thus be easily provided by bioethanol

  1. Sugarcane bioethanol and the sustainable development; Alcool combustivel derivado da cana-de-acucar e o desenvolvimento sustentavel

    Energy Technology Data Exchange (ETDEWEB)

    Leme, Rodrigo Marcelo [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Programa de Pos-graduacao em Planejamento de Sistemas Energeticos

    2004-07-01

    The use of the sugarcane bioethanol in Brazil was strongly boosted during the 1970 's and 1980 's, with the advent of the National Alcohol Programme (PROALCOOL). Following this period a decade of uncertainties came up, when the decline in the Program results were noticeable. Nowadays, it seems that new and good perspectives arise, due to the emergent external and internal markets. In this paper the evolution of the sugarcane bioethanol use in Brazil is addressed, stressing the importance and legacy of the PROALCOOL. The future perspectives of the alcohol are also discussed. (author)

  2. DETOXIFICATION AND SEPARATION OF LIGNOCELLULOSIC BIOMASS PRIOR TO FERMENTATION FOR BIOETHANOL PRODUCTION BY REMOVAL OF LIGNIN AND HEMICELLULOSES

    Directory of Open Access Journals (Sweden)

    Run-Cang Sun

    2009-05-01

    Full Text Available Lignocellulosic materials such as agricultural residues have been recog-nized as potential sustainable sources of mixed sugars for fermentation to bioethanol. To obtain a high overall ethanol yield and achieve an economically feasible production process, the removal of lignin and hemicelluloses improves the accessibility of cellulosic material to hydro-lytic enzymes and avoids the degradation products that are inhibitory to the yeast used in the subsequent fermentation. Technological advances, e.g., environmentally friendly removal of lignin and hemicelluloses from lignocellulosic biomass prior to fermentation of the librated glucose from cellulose into bioethanol, has the potential to provide for sustainable and cost effective production of biofuel.

  3. Cathode Assessment for Maximizing Current Generation in Microbial Fuel Cells Utilizing Bioethanol Effluent as Substrate

    Directory of Open Access Journals (Sweden)

    Guotao Sun

    2016-05-01

    Full Text Available Implementation of microbial fuel cells (MFCs for electricity production requires effective current generation from waste products via robust cathode reduction. Three cathode types using dissolved oxygen cathodes (DOCs, ferricyanide cathodes (FeCs and air cathodes (AiCs were therefore assessed using bioethanol effluent, containing 20.5 g/L xylose, 1.8 g/L arabinose and 2.5 g/L propionic acid. In each set-up the anode and cathode had an electrode surface area of 88 cm2, which was used for calculation of the current density. Electricity generation was evaluated by quantifying current responses to substrate loading rates and external resistance. At the lowest external resistance of 27 Ω and highest substrate loading rate of 2 g chemical oxygen demand (COD per L·day, FeC-MFC generated highest average current density (1630 mA/m2 followed by AiC-MFC (802 mA/m2 and DOC-MFC (184 mA/m2. Electrochemical impedance spectroscopy (EIS was used to determine the impedance of the cathodes. It was thereby confirmed that the FeC-MFC produced the highest current density with the lowest internal resistance for the cathode. However, in a setup using bioethanol effluent, the AiC-MFC was concluded to be the most sustainable option since it does not require ferricyanide. The data offer a new add-on option to the straw biorefinery by using bioethanol effluent for microbial electricity production.

  4. Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Shanavas, S.; Padmaja, G.; Moorthy, S.N.; Sajeev, M.S.; Sheriff, J.T. [Division of Crop Utilization, Central Tuber Crops Research Institute, Thiruvananthapuram, 695 017 Kerala (India)

    2011-02-15

    Although cassava (Manihot esculenta Crantz) is a potential bioethanol crop, high operational costs resulted in a negative energy balance in the earlier processes. The present study aimed at optimizing the bioethanol production from cassava starch using new enzymes like Spezyme {sup registered} Xtra and Stargen trademark 001. The liquefying enzyme Spezyme was optimally active at 90 C and pH 5.5 on a 10% (w/v) starch slurry at levels of 20.0 mg (280 Amylase Activity Units) for 30 min. Stargen levels of 100 mg (45.6 Granular Starch Hydrolyzing Units) were sufficient to almost completely hydrolyze 10% (w/v) starch at room temperature (30 {+-} 1 C). Ethanol yield and fermentation efficiency were very high (533 g/kg and 94.0% respectively) in the Stargen + yeast process with 10% (w/v) starch for 48 h. Raising Spezyme and Stargen levels to 560 AAU and 91.2 GSHU respectively for a two step loading [initial 20% (w/v) followed by 20% starch after Spezyme thinning]/initial higher loading of starch (40% w/v) resulted in poor fermentation efficiency. Upscaling experiments using 1.0 kg starch showed that Stargen to starch ratio of 1:100 (w/w) could yield around 558 g ethanol/kg starch, with a high fermentation efficiency of 98.4%. The study showed that Spezyme level beyond 20.0 mg for a 10% (w/v) starch slurry was not critical for optimizing bioethanol yield from cassava starch, although an initial thinning of starch for 30 min by Spezyme facilitated rapid saccharification-fermentation by Stargen + yeast system. The specific advantage of the new process was that the reaction could be completed within 48.5 h at 30 {+-} 1 C. (author)

  5. Sustainability assessment of bioethanol and petroleum fuel production in Japan based on emergy analysis

    International Nuclear Information System (INIS)

    To promote the reduction of greenhouse gas emissions, research and development of bioethanol technologies are encouraged in Japan and a plan to utilize untilled fields to develop rice for bioethanol production as a substitute for petroleum fuel is being devised. This study applies emergy methods to compare the sustainability of petroleum fuel production and two Japanese rice-to-ethanol production scenarios: (a) ethanol from rice grain, while straw and chaff are burned as energy and (b) ethanol from rice+straw+chaff. The major emergy indices, Emergy Yield Ratio (EYR), Environmental Loading Ratio (ELR), Emergy Investment Ratio (EIR), Emergy Sustainability Index (ESI), Environmental Impacts Ratio (EVR) and system transformity (Tr), are analyzed to assess the production processes. The results show that (1) petroleum fuel production presents higher ELR, EIR, EVR and lower EYR, ESI, Tr than rice-to-ethanol production, indicating rice-to-ethanol production makes sense for reduction of greenhouse gases (GHG); (2) scenario (a) performs similarly on major indicators (EYR, ESI, ELR, EIR and EVR) to scenario (b), yet the system efficiency indicator (Tr) of scenario (a, 7.572×105 semj/J) is much higher than (b, 4.573×105 semj/J), and therefore (b) is a better alternative for policy decisions; (3) both petroleum fuel production and rice-to-ethanol processes are mainly driven by purchased resources and are unsustainable and nonrenewable in the long run. - Highlights: ► We compare petrol fuel and rice-to-ethanol production using emergy indices. ► Rice-to-ethanol reduces green house gas emissions as a substitute for petrol fuel. ► Rice-to-ethanol production has better sustainability than that of petrol fuel. ► Neither petrol fuel nor biofuel production are sustainable in the long term. ► Bioethanol is not a renewable fuel.

  6. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation

    DEFF Research Database (Denmark)

    Möllers, K Benedikt; Canella, D.; Jørgensen, Henning;

    2014-01-01

    cyanobacterium Synechococcus sp. PCC 7002 was fermented using yeast into bioethanol. Results: The cyanobacterium accumulated a total carbohydrate content of about 60% of cell dry weight when cultivated under nitrate limitation. The cyanobacterial cells were harvested by centrifugation and subjected to enzymatic...... hydrolysis using lysozyme and two alpha-glucanases. This enzymatic hydrolysate was fermented into ethanol by Saccharomyces cerevisiae without further treatment. All enzyme treatments and fermentations were carried out in the residual growth medium of the cyanobacteria with the only modification being that p...

  7. Evaluation of the parameters effects on the bio-ethanol production process from Ricotta Cheese Whey

    DEFF Research Database (Denmark)

    Sansonetti, Sascha; Curcio, Stefano; Calabrò, Vincenza;

    2010-01-01

    The work consists of an experimental analysis to evaluate the effects of the variables temperature (T), pH, agitation rate (K) and initial lactose concentration (L) on the batch fermentation process of Ricotta Cheese Whey (RCW) into bio-ethanol by using the yeast Kluyveromyces marxianus. A central...... composite design, constituted by 26 runs, has been carried out, and the effects of the parameters have been evaluated. Eventually, once eliminated the negligible effects, Response Surface Methodology (RSM) has been applied to optimize the four parameters values in RCW fermentation process. After...

  8. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach.

    Science.gov (United States)

    Kumar, Savindra; Gupta, Rishi; Kumar, Gaurav; Sahoo, Dinabandhu; Kuhad, Ramesh Chander

    2013-05-01

    In this study, Gracilaria verrucosa, red seaweed has been used for production of agar and bioethanol. The algae harvested at various time durations resulted in extraction of ~27-33% agar. The leftover pulp was found to contain ~62-68% holocellulose, which on enzymatic hydrolysis yielded 0.87 g sugars/g cellulose. The enzymatic hydrolysate on fermentation with Saccharomyces cerevisiae produced ethanol with an ethanol yield of 0.43 g/g sugars. The mass balance evaluation of the complete process demonstrates that developing biorefinery approach for exploiting Gracilaria verrucosa, a red alga, could be commercially viable.

  9. Utilization of hydrothermally pretreated wheat straw for production of bioethanol and carotene-enriched biomass

    DEFF Research Database (Denmark)

    Petrik, SiniŠa; Márová, Ivana; Kádár, Zsófia

    2013-01-01

    In this work hydrothermally pretreated wheat straw was used for production of bioethanol by Saccharomyces cerevisiae and carotene-enriched biomass by red yeasts Rhodotorula glutinis, Cystofilobasidium capitatum and Sporobolomyces roseus. To evaluate the convertibility of pretreated wheat straw into...... ethanol, simultaneous saccharification and fermentation of S. cerevisiae was performed under semi-anaerobic conditions. The highest ethanol production efficiency of 65-66% was obtained following pretreatment at 200°C without the catalytic action of acetic acid, and at 195 and 200°C respectively in the...

  10. Numerical of Bioethanol Production from Liquid Waste of Rise Flour by Distillation Process

    Directory of Open Access Journals (Sweden)

    Ni Ketut Sari

    2016-01-01

    The results obtained experimentally study the composition of bioethanol a maximum of 95% to 96%, the results of experiments and simulations EWI ternary system form the temperature profile, the profile of the composition of liquid and vapor composition profile dimensionless time functions both at the bottom and in the distillate shows the results of the same approach. The simulation results before used reference in experiments performed the validation beforehand, so that the ternary system simulation EWI after validation of reference can be used in experiments.

  11. The Development of Materials for the Production of Hydrogen from Bio-ethanol

    Institute of Scientific and Technical Information of China (English)

    Pilar; Ramírez; de; la; Piscina; Narcís; Homs

    2007-01-01

    1 Results There is an increased interest in the hydrogen production from renewable sources. In this context, recently, numerous studies which use ethanol for hydrogen production have appeared. Ethanol is easily handled, non-toxic, and it can be obtained from biomass. The steam-reforming of bioethanol has been shown to beeffective for hydrogen production:C2H5OH + 3 H2O  6 H2 + 2 CO2. Six moles of hydrogen can be yielded for each mole of ethanol reacted. However, depending on the catalyst used, other und...

  12. Boosting biogas yield of anaerobic digesters by utilizing concentrated molasses from 2nd generation bioethanol plant

    OpenAIRE

    Shiplu Sarker, Henrik Bjarne Møller

    2013-01-01

    Concentrated molasses (C5 molasses) from 2nd generation bioethanol plant has been investigated for enhancing productivity of manure based digesters. A batch study at mesophilic condition (35±1C) showed the maximum methane yield from molasses as 286 LCH4/kgVS which was approximately 63% of the calculated theoretical yield. In addition to the batch study, co-digestion of molasses with cattle manure in a semi-continuously stirred reactor at thermophilic temperature (50±1°C) was also performed wi...

  13. Response Surface Optimization of Bioethanol Production from Sugarcane Molasses by Pichia veronae Strain HSC-22

    OpenAIRE

    Hamouda, Hamed I.; Nassar, Hussein N.; Madian, Hekmat R.; Salem S. Abu Amr; Nour Sh. El-Gendy

    2015-01-01

    Pichia veronae strain HSC-22 (accession number KP012558) showed a good tolerance to relatively high temperature, ethanol and sugar concentrations. Response surface optimization based on central composite design of experiments predicted the optimal values of the influencing parameters that affect the production of bioethanol from sugarcane molasses to be as follows: initial pH 5, 25% (w : v) initial molasses concentration, 35°C, 116 rpm, and 60 h. Under these optimum operating conditions the m...

  14. Selection of Saccharomyces cerevisiae strains for efficient very high gravity bio-ethanol fermentation processes

    OpenAIRE

    Pereira, Francisco B; Guimarães, Pedro M. R.; J. A. Teixeira; Domingues, Lucília

    2010-01-01

    Abstract An optimized very high gravity (VHG) glucose medium supplemented with low cost nutrient sources was used to evaluate bio-ethanol production by 11 Saccharomyces cerevisiae strains. The industrial strains PE-2 and CA1185 exhibited the best overall fermentation performance, producing an ethanol titre of 19.2% (v/v) corresponding to a batch productivity of 2.5 g l?1 h?1, while the best laboratory strain (CEN.PK 113-7D) produced 17.5% (v/v) ethanol with a productivity of 1.7 g ...

  15. Chemical characterization and hydrothermal pretreatment of Salicornia bigelovii straw for enhanced enzymatic hydrolysis and bioethanol potential

    DEFF Research Database (Denmark)

    Cybulska, Iwona; Chaturvedi, Tanmay; Brudecki, Grzegorz P.;

    2014-01-01

    Salicornia bigelovii straw was characterized and evaluated as a potential lignocellulosic bioethanol feedstock. S. bigelovii used in the study was grown in the United Arab Emirates using saltwater (40. ppt) for irrigation. Salt removal was performed prior to pretreatment to protect the processing...... equipment and avoid inhibition of enzymes and yeast. Composition of the washed biomass was comparable to traditional lignocellulosic biomasses with relatively high glucan and xylan content (26 and 22. g/100. gDM, respectively) but with lower lignin content (7. g/100. gDM). The washed feedstock was subjected...

  16. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar Borisov;

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery...... productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149 kg of EtOH and 115 kg of succinic acid can be obtained per 1 ton of dry hemp...

  17. Characterisation of a novel thermostable endoglucanase from Alicyclobacillus vulcanalis of potential application in bioethanol production.

    Science.gov (United States)

    Boyce, Angela; Walsh, Gary

    2015-09-01

    A novel endoglucanase encoding gene was cloned from Alicyclobacillus vulcanalis and expressed in E. coli. The deduced amino acid sequence showed highest identity with α-L-arabinofuranosidase-like proteins from glycoside hydrolase family 51. The recombinant enzyme was purified by affinity chromatography and characterised in terms of its potential suitability for lignocellulose hydrolysis at high temperature in the production of bioethanol. The purified enzyme displayed maximum activity at 80 °C and pH 3.6-4.5. Tween 20 was found to have a beneficial effect on enzyme activity and thermal stability. When incubated in the presence of 0.1% Tween 20, the enzyme retained full activity after 72 h at 70 °C and 78% of original activity after 72 h at 75 °C. Maximum activity was observed on carboxymethyl cellulose, and the purified enzyme also hydrolysed lichenan, barley β-glucan and xylan. The purified enzyme decreased the viscosity of carboxymethyl cellulose when assessed at 70-85 °C and was capable of releasing reducing sugars from acid-pretreated straw at 70 and 75 °C. The results indicate the potential suitability of the enzyme for industrial application in the production of cellulosic bioethanol. PMID:25722023

  18. Bioconversion of bamboo to bioethanol using the two-stage organosolv and alkali pretreatment

    Directory of Open Access Journals (Sweden)

    Zhiqiang Li

    2012-11-01

    Full Text Available Bamboo’s ability to grow on nutrient-poor soils, with little requirement of silvicultural management, easy harvesting characteristics, vegetative propagation, fast growth, and a host of other desirable characteristics, make it a good candidate as an energy crop. Energy crops are cultivated solely for use as sources of energy through their conversion into alcohols. This study set out to determine the potential of moso bamboo to be used in the two-stage organosolv and alkali pretreatment for the production of bioethanol. Moso bamboo contains 63.3% (w/w holocellulose and can serve as a low-cost feedstock for bioethanol production. After organosolv pretreatment (2% w/w H2SO4 in 75% w/w ethanol, 160 °C for 30 min, the bamboo was further delignified through pretreatment of sodium hydroxide (10% and 20% w/w or calcium hydroxide (10% w/w, which resulted in about 96.5% (NaOH and 85.7% (Ca(OH2 lignin removal. The enzymatic hydrolysis of delignified cellulosic bamboo substrate with cellulase (15 FPU/g glucan and β-glucosidase (30 IU/g glucan showed 80.9% to 95.5% saccharification after 48 h incubation at 50 °C and pH 4.8. Fermentation of enzymatic hydrolysates with Saccharomyces cerevisiae resulted in about 89.1% to 92.0% of the corresponding theoretical ethanol yield after 24 h.

  19. Use of different extracts of coffee pulp for the production of bioethanol.

    Science.gov (United States)

    Menezes, Evandro Galvão Tavares; do Carmo, Juliana Ribeiro; Menezes, Aline Galvão Tavares; Alves, José Guilherme Lembi Ferreira; Pimenta, Carlos José; Queiroz, Fabiana

    2013-01-01

    Coffee is one of the most important agricultural products in Brazil. More than 50 % of the coffee fruit is not used for the production of commercial green coffee and is therefore discarded, usually ending up in the environment. The goal of this work was to select an efficient process for obtaining coffee pulp extract and to evaluate the use of this extract in bioethanol production. The effects of heat treatment and trituration on the yield and composition of the extract were investigated by measuring the amounts of reducing sugars, starch, pectin, and phenolic compounds. The extraction process was most efficient at room temperature using grinding followed by pressing. Five different fermentation media were tested: sugarcane juice or molasses diluted with water or with coffee pulp extract and a medium with only coffee pulp extract. Batch fermentations were carried out at 30 °C for 24 h, and samples were taken to obtain measurements of the total reducing sugars, cell count, and ethanol concentration. The addition of coffee pulp extract did not influence the fermentation or yeast viability, and it can thus be mixed with sugarcane juice or molasses for the production of bioethanol, with a yield of approximately 70 g/L.

  20. Microsatellite marker-based assessment of the biodiversity of native bioethanol yeast strains.

    Science.gov (United States)

    Antonangelo, Ana Teresa B F; Alonso, Diego P; Ribolla, Paulo E M; Colombi, Débora

    2013-08-01

    Although many Brazilian sugar mills initiate the fermentation process by inoculating selected commercial Saccharomyces cerevisiae strains, the unsterile conditions of the industrial sugar cane ethanol fermentation process permit the constant entry of native yeast strains. Certain of those native strains are better adapted and tend to predominate over the initial strain, which may cause problems during fermentation. In the industrial fermentation process, yeast cells are often exposed to stressful environmental conditions, including prolonged cell recycling, ethanol toxicity and osmotic, oxidative or temperature stress. Little is known about these S. cerevisiae strains, although recent studies have demonstrated that heterogeneous genome architecture is exhibited by some selected well-adapted Brazilian indigenous yeast strains that display high performance in bioethanol fermentation. In this study, 11 microsatellite markers were used to assess the genetic diversity and population structure of the native autochthonous S. cerevisiae strains in various Brazilian sugar mills. The resulting multilocus data were used to build a similarity-based phenetic tree and to perform a Bayesian population structure analysis. The tree revealed the presence of great genetic diversity among the strains, which were arranged according to the place of origin and the collection year. The population structure analysis revealed genotypic differences among populations; in certain populations, these genotypic differences are combined to yield notably genotypically diverse individuals. The high yeast diversity observed among native S. cerevisiae strains provides new insights on the use of autochthonous high-fitness strains with industrial characteristics as starter cultures at bioethanol plants. PMID:23765797

  1. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    Science.gov (United States)

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover.

  2. Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass.

    Science.gov (United States)

    Wu, Fang-Chen; Wu, Jane-Yii; Liao, Yi-Jyun; Wang, Man-Ying; Shih, Ing-Lung

    2014-03-01

    Gracilaria sp., a red alga, was used as a feedstock for the production of bioethanol. Saccharification of Gracilaria sp. by sequential acid and enzyme hydrolysis in situ produced a high quality hydrolysate that ensured its fermentability to produce ethanol. The optimal saccharification process resulted in total 11.85g/L (59.26%) of glucose and galactose, Saccharomyces cerevisiae Wu-Y2 showed a good performance on co-fermentability of glucose and galactose released in the hydrolysate from Gracilaria sp. The final ethanol concentrations of 4.72g/L (0.48g/g sugar consumed; 94% conversion efficiency) and the ethanol productivity 4.93g/L/d were achieved. 1g of dry Gracilaria can be converted to 0.236g (23.6%) of bioethanol via the processes developed. Efficient alcohol production by immobilized S. cerevisiae Wu-Y2 in batch and repeated batch fermentation was also demonstrated. The findings of this study revealed that Gracilaria sp. can be a potential feedstock in biorefinery for ethanol production.

  3. Statistical screening and selection of sweet sorghum varieties for bioethanol production

    International Nuclear Information System (INIS)

    This study aims at the screening of four cultivars of sorghums as a feedstock for bioethanol production. The straw of these varieties were subjected to pretreatment (dilute sulfuric acid) followed by enzyme hydrolysis to evaluate their potential to produce sugars. Four factor full factorial experimental design (2*2*2*4=32) was used to investigate the effects of experimental factors; sorghum varieties (84-Y-01, 85-G-86, Mr. Buster and RARI S-3), acid concentration (1 and 2%), temperature (121 and 140 degree C) and pretreatment time (30 and 60 min). The tested sorghum varieties follow the order 85-G-86 (47 g/100g) > Mr. Buster (44.6 g/100g) > 84-Y-01 (42 g/100g) > RARI S-3 (36 g/100g) for their sugar yield. The factors followed given order of significance; variety > temperature > acid concentration > pretreatment time. Sorghum variety (85-G-86) was selected as an appropriate feedstock for bioethanol production due to its higher sugar yield and lower concentration of by-products and furans. (author)

  4. A Factorial Analysis Study on Enzymatic Hydrolysis of Fiber Pressed Oil Palm Frond for Bioethanol Production

    Science.gov (United States)

    Hashim, F. S.; Yussof, H. W.; Zahari, M. A. K. M.; Illias, R. M.; Rahman, R. A.

    2016-03-01

    Different technologies have been developed to for the conversion of lignocellulosic biomass to suitable fermentation substrates for bioethanol production. The enzymatic conversion of cellulose seems to be the most promising technology as it is highly specific and does not produce substantial amounts of unwanted byproducts. The effects of agitation speed, enzyme loading, temperature, pH and reaction time on the conversion of glucose from fiber pressed oil palm frond (FPOPF) for bioethanol production were screened by statistical analysis using response surface methodology (RSM). A half fraction two-level factorial analysis with five factors was selected for the experimental design to determine the best enzymatic conditions that produce maximum amount of glucose. FPOPF was pre-treated with alkaline prior to enzymatic hydrolysis. The enzymatic hydrolysis was performed using a commercial enzyme Cellic CTec2. From this study, the highest yield of glucose concentration was 9.736 g/L at 72 hours reaction time at 35 °C, pH 5.6, and 1.5% (w/v) of enzyme loading. The model obtained was significant with p-value <0.0001. It is suggested that this model had a maximum point which is likely to be the optimum point and possible for the optimization process.

  5. Ensiling – Wet-storage method for lignocellulosic biomass for bioethanol production

    DEFF Research Database (Denmark)

    Oleskowicz-Popiel, Piotr; Thomsen, Anne Belinda; Schmidt, Jens Ejbye

    2011-01-01

    Ensiling of humid biomass samples wrapped in plastic bales has been investigated as a wet-storage for bioethanol production from three lignocellulosic biomass samples i.e. maize, rye, and clover grass. During the silage process, lactic acid bacteria fermented free sugars to lactic acid, and conse......Ensiling of humid biomass samples wrapped in plastic bales has been investigated as a wet-storage for bioethanol production from three lignocellulosic biomass samples i.e. maize, rye, and clover grass. During the silage process, lactic acid bacteria fermented free sugars to lactic acid......, and consequently by lowing pH, inhibiting other microbes to degrade the polysaccharides. Following silage treatment, enzymatic convertibility tests showed that 51.5%, 36.5%, and 41.9% of the cellulose was converted by cellulytic enzymes in ensiled maize, rye, and clover grass, respectively. In addition, tests.......5% (by S. cerevisiae); the yields significantly increased after hydrothermal pretreatment: 77.7%, 72.8%, 79.5% (by K. marxianus) and 72.0%, 80.7%, 75.7% (by S. cerevisiae) of the theoretical based on the C6 sugar contents in maize, rye, and clover grass, respectively....

  6. Homolytic cleavage C-C bond in the electrooxidation of ethanol and bioethanol

    Science.gov (United States)

    Barroso, J.; Pierna, A. R.; Blanco, T. C.; Morallón, E.; Huerta, F.

    Nowadays, the studies are focused on the search of better electrocatalysts that promote the complete oxidation of ethanol/bioethanol to CO 2. To that end, amorphous bi-catalytic catalysts of composition Ni 59Nb 40Pt 1- xY x (Y = Cu, Ru, x = 0.4% at.) have been developed, obtained by mechanical alloying, resulting in higher current densities and an improvement in tolerance to adsorbed CO vs. Ni 59Nb 40Pt 1 catalyst. By using voltammetric techniques, the appearance of three oxidation peaks can be observed. The first peak could be associated with the electrooxidative process of ethanol/bioethanol to acetaldehyde, the second peak could be the oxidation of acetaldehyde to acetic acid, and the last peak might be the final oxidation to CO 2. Chrono-amperometric experiments show qualitative poisoning of catalytic surfaces. However, the in situ Fourier Transformed Infrared Spectroscopy, FTIR, is used for the quasi-quantitative determination with which can be observed the appearance and evolution of different vibrational bands of carbonyl and carboxylic groups of different species, as it moves towards anodic potential in the electrooxidative process.

  7. Development of a novel sequential pretreatment strategy for the production of bioethanol from sugarcane trash.

    Science.gov (United States)

    Raghavi, Subbiah; Sindhu, Raveendran; Binod, Parameswaran; Gnansounou, Edgard; Pandey, Ashok

    2016-01-01

    A novel sequential pretreatment strategy using biodiesel industry generated waste glycerol assisted transition metal and alkali pretreatment of sugarcane trash were developed for the production of bioethanol. Various process parameters affecting pretreatment as well as hydrolysis were optimized by adopting a Taguchi design. This novel method was found to be superior when compared to conventional pretreatment strategies like acid and alkali in removing hemicelluloses and lignin and the hydrolyzate is devoid of major fermentation inhibitors like organic acids and furfurals. Physico-chemical changes of the native and the pretreated biomass were evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. Under optimized hydrolysis conditions 0.796 g of reducing sugar (pentoses and hexoses) per g of dry biomass after saccharification was produced. Fermentation of the non-detoxified hydrolyzate using Saccharomyces cerevisiae produced 31.928 g of bioethanol per g of dry biomass with an efficiency of 78.89%. PMID:26318846

  8. Isolation and characterization of lignin from the oak wood bioethanol production residue for adhesives.

    Science.gov (United States)

    Lee, Soo Jung; Kim, Hyun Joo; Cho, Eun Jin; Song, Younho; Bae, Hyeun-Jong

    2015-01-01

    Lignin was isolated from the residue of bioethanol production with oak wood via alkaline and catalyzed organosolv treatments at ambient temperature to improve the purity of lignin for the materials application. The isolated lignins were analyzed for their chemical composition by nitrobenzene oxidation method and their functionality was characterized via wet chemistry method, element analysis, (1)H NMR, GPC and FTIR-ATR. The isolated lignin by acid catalyzed organosolv treatment (Acid-OSL) contained a higher lignin content, aromatic proton, phenolic hydroxyl group and a lower nitrogen content that is more reactive towards chemical modification. The lignin-based adhesives were prepared and the bond strength was measured to evaluate the enhanced reactivity of lignin by the isolation. Two steps of phenolation and methylolation were applied for the modification of the isolated lignins and their tensile strengths were evaluated for the use as an adhesive. The acid catalyzed organosolv lignin-based adhesives had comparable bond strength to phenol-formaldehyde adhesives. The analysis of lignin-based adhesives by FTIR-ATR and TGA showed structural similarity to phenol adhesive. The results demonstrate that the reactivity of lignin was enhanced by isolation from hardwood bioethanol production residues at ambient temperature and it could be used in a value-added application to produce lignin-based adhesives.

  9. Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization.

    Science.gov (United States)

    Izmirlioglu, Gulten; Demirci, Ali

    2015-10-15

    Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium components on ethanol production was evaluated. Yeast extract, malt extract, and MgSO₄·7H₂O showed significantly positive effects, whereas KH₂PO₄ and CaCl₂·2H₂O had a significantly negative effect (p-valueindustrial waste potato, 50 g/L malt extract, and 4.84 g/L MgSO₄·7H₂O was found optimal and yielded 24.6 g/L ethanol at 30 °C, 150 rpm, and 48 h of fermentation. In conclusion, this study demonstrated that industrial potato waste can be used effectively to enhance bioethanol production.

  10. Investigation of Bioethanol Productivity from Sargassum sp. (Brown Seaweed) by Pressure Cooker and Steam Cooker Pretreatments

    International Nuclear Information System (INIS)

    Production of biothanol from Sargassum sp. (Brown seaweed) is more suitable than using any other raw materials because it can easily collect on Chaung Tha Beach in Myanmar without any environmental damages. In this regard an attempt for bioethanol production from sargassum sp. by separation hydrolysis and fermentation (SHF) with saccharomyces cerevisiae was made. Sargassum sp. was pretreated with steam cooker at 120 C and 1 bar for 30 min and pressure cooker at 65 C for 2 hour. The pretreated sargassum sp. was liquefied with the crude enzyme from Trichoderma sp. at the temperature of 50 C and pH of 4 for the first liquefaction step and 95 C, pH of 5 and enzyme of SPEZYME FERD were employed for the second liquefaction step. OPTIDEX L-400 was used as saccharified enzyme with the temperature of 65 C and pH of 4.5 at saccharification step. The process of fermentation was followed by distillation at 78 C for alcohol extraction. Concentrations of crude ethanol were about 1.8% by using steam cooker and 2% for pressure cooker treatment with enzyme mediated saccharification followed by yeast fermentation. Yields of bioethanol were 23% for pressure cooker treatment and 21% for steam cooker treatment at SHF process.

  11. Study of Application of Vinasse from Bio-ethanol Production to Farmland

    Science.gov (United States)

    Chen, Yan; Shinogi, Yoshiyuki

    During bio-ethanol production from sugarcane molasses, large amounts of vinasse, which is strongly acidic with high COD and BOD, is produced as a by-product. Disposal of vinasse is one restrictive problem for sustainable bio-ethanol production. In this study, possible application of vinasse to farmland was investigated. First, the staple characteristics of vinasse were determined. Second, availability of nutrients such as nitrogen and potassium to crops and dynamics in the soil environment were studied in the laboratory, and crop growth experiments were carried out in the field. Farmland application of vinasse as a substitute for one third of the potassium showed no significant damage to the growth of red-radishes and tomatoes. When large amounts of vinasse are applied to farmland as a substitution for the nitrogen in traditional chemical fertilizers, nitrogen-hunger especially immediately after application is expected. In addition, it is necessary to take into consideration the leaching of ions and the dark material in the vinasse for proper timing of application and soil conditions.

  12. Dilute Ionic Liquids Pretreatment of Palm Empty Bunch and Its Impact to Produce Bioethanol

    Directory of Open Access Journals (Sweden)

    Lucy Arianie

    2014-06-01

    Full Text Available Ethanol production through ionic liquids pretreatment of palm empty bunch (PEB was carried out. This research aims to investigate impact of ionic liquids synthetic i.e 1-butyl- 3-methyl imidazoliumbromide or [BMIM]bromide toward cellulose’s palm empty bunch and convert its cellulose into bioethanol. Ionic liquid was synthesized through reflux and microwave assisted synthesis methods. Research investigation showed that microwave assisted synthesis produce [BMIM]bromide 90% faster than reflux method. The characterization of synthesized product using FTIR, 1H-NMR, 13C-NMR and LC-MS showed that these reactions have been carried out successfully. Scanning electron microscope figure out changes morphological surface of palm empty bunch caused by ionic liquid pretreatment. Crystallinity index of PEB milled and cellulose of PEFB after [BMIM]bromide dissolution were identified using comparison of PEB FTIR spectrum. Cellulose without dilute [BMIM]bromide have higher LOI number than cellulose after [BMIM]bromide dissolution. It indicated that a large part of cellulose after dissolution has been changed into amorf. Hydrolysis residue of palm empty bunch hydrolyzed by sulfuric acids 5%, 100 0C for 5 hours and produce 685 ppm of reducing sugar. Simultaneous Saccharification and Fermentation using Trichoderma viride and Saccharomyce cerevisiae for 5 days produce 0,69% of bioethanol.

  13. [Surface display of phytase on Saccharomyces cerevisiae for efficient bioethanol production from corn starch].

    Science.gov (United States)

    Xiao, Yan; Chen, Xianzhong; Shen, Wei; Yang, Haiquan; Fan, You

    2015-12-01

    Production of bioethanol using starch as raw material has become a very prominent technology. However, phytate in the raw material not only decreases ethanol production efficiency, but also increases phosphorus discharge. In this study, to decrease phytate content in an ethanol fermentationprocess, Saccharomyces cerevisiae was engineered forheterologous expression of phytase on the cell surface. The phy gene encoding phytase gene was fused with the C-terminal-half region of α-agglutinin and then inserted downstream of the secretion signal gene, to produce a yeast surface-display expression vector pMGK-AG-phy, which was then transformed into S. cerevisiae. The recombinant yeast strain, PHY, successfully displayed phytase on the surface of cells producing 6.4 U/g wet cells and its properties were further characterized. The growthrate and ethanol production of the PHY strain were faster than the parent S. cerevisiae strain in the fermentation medium by simultaneous saccharification and fermentation. Moreover, the phytate concentration decreased by 91% in dry vinasse compared to the control. In summary, we constructed recombinant S. cerevisiae strain displaying phytase on the cell surface, which could effectively reduce the content of phytate, improve the utilization value of vinasse and reduce the discharge of phosphorus. The strain reported here represents a useful novel engineering platform for developing an environment-friendly system for bioethanol production from a corn substrate. PMID:27093833

  14. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY production.

    Directory of Open Access Journals (Sweden)

    Daoqiong Zheng

    Full Text Available The application of active dry yeast (ADY in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  15. Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application

    Directory of Open Access Journals (Sweden)

    Alessandra Cesaro

    2015-08-01

    Full Text Available In the last decades the increasing energy requirements along with the need to face the consequences of climate change have driven the search for renewable energy sources, in order to replace as much as possible the use of fossil fuels. In this context biomass has generated great interest as it can be converted into energy via several routes, including fermentation and anaerobic digestion. The former is the most common option to produce ethanol, which has been recognized as one of the leading candidates to substitute a large fraction of the liquid fuels produced from oil. As the economic competitiveness of bioethanol fermentation processes has to be enhanced in order to promote its wider implementation, the most recent trends are directed towards the use of fermentation by-products within anaerobic digestion. The integration of both fermentation and anaerobic digestion, in a biorefinery concept, would allow the production of ethanol along with that of biogas, which can be used to produce heat and electricity, thus improving the overall energy balance. This work aims at reviewing the main studies on the combination of both bioethanol and biogas production processes, in order to highlight the strength and weakness of the integrated treatment for industrial application.

  16. Bio-ethanol steam reforming: Insights on the mechanism for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benito, M.; Sanz, J.L.; Isabel, R.; Padilla, R.; Daza, L. [Instituto de Catalisis y Petroleoquimica (CSIC), Campus Cantoblanco, 28049 Madrid (Spain); Arjona, R. [Greencell (ABENGOA BIOENERGIA), Av. de la Buhaira 2, 41018 Sevilla (Spain)

    2005-10-10

    New catalysts for hydrogen production by steam reforming of bio-ethanol have been developed. Catalytic tests have been performed at laboratory scale, with the reaction conditions demanded in a real processor: i.e. ethanol and water feed, without a diluent gas. Catalyst ICP0503 has shown high activity and good resistance to carbon deposition. Reaction results show total conversion, high selectivity to hydrogen (70%), CO{sub 2}, CO and CH{sub 4} being the only by-products obtained. The reaction yields 4.25mol of hydrogen by mol of ethanol fed, close to the thermodynamic equilibrium prediction. The temperature influence on the catalytic activity for this catalyst has been studied. Conversion reaches 100% at temperature higher than 600{sup o}C. In the light of reaction results obtained, a reaction mechanism for ethanol steam reforming is proposed. Long-term reaction experiments have been performed in order to study the stability of the catalytic activity. The excellent stability of the catalyst ICP0503 indicates that the reformed stream could be fed directly to a high temperature fuel cell (MCFC, SOFC) without a further purification treatment. These facts suggest that ICP0503 is a good candidate to be implemented in a bio-ethanol processor for hydrogen production to feed a fuel cell. (author)

  17. The Potential in Bioethanol Production From Waste Fiber Sludges in Pulp Mill-Based Biorefineries

    Science.gov (United States)

    Sjöde, Anders; Alriksson, Björn; Jönsson, Leif J.; Nilvebrant, Nils-Olof

    Industrial production of bioethanol from fibers that are unusable for pulp production in pulp mills offers an approach to product diversification and more efficient exploitation of the raw material. In an attempt to utilize fibers flowing to the biological waste treatment, selected fiber sludges from three different pulp mills were collected, chemically analyzed, enzymatically hydrolyzed, and fermented for bioethanol production. Another aim was to produce solid residues with higher heat values than those of the original fiber sludges to gain a better fuel for combustion. The glucan content ranged between 32 and 66% of the dry matter. The lignin content varied considerably (1-25%), as did the content of wood extractives (0.2-5.8%). Hydrolysates obtained using enzymatic hydrolysis were found to be readily fermentable using Saccharomyces cerevisiae. Hydrolysis resulted in improved heat values compared with corresponding untreated fiber sludges. Oligomeric xylan fragments in the solid residue obtained after enzymatic hydrolysis were identified using matrix-assisted laser desorption ionization-time of flight and their potential as a new product of a pulp mill-based biorefinery is discussed.

  18. Production of Bioethanol from Carrot Pomace Using the Thermotolerant Yeast Kluyveromyces marxianus

    Energy Technology Data Exchange (ETDEWEB)

    Chi-Yang Yu; Bo-Hong Jiang; Kow-Jen Duan [Tatung University, Tapei, Taiwan (China). Department of Bioengineering

    2013-03-15

    Carrot pomace, a major agricultural waste from the juice industry, was used as a feedstock for bioethanol production by fermentation with the thermotolerant yeast Kluyveromyces marxianus. Treatment of the carrot pomace with Accellerase(TM) 1000 and pectinase at 50 °C for 84 h, resulted in conversion of 42% of its mass to fermentable sugars, mainly glucose, fructose, and sucrose. Simultaneous saccharification and fermentation (SSF) at 42 °C was performed on 10% (w/v) carrot pomace; the concentration of ethanol reached 18 g/L and the yield of ethanol from carrot pomace was 0.18 g/g. The highest ethanol concentration of 37 g/L was observed with an additional charge of 10% supplemented to the original 10% of carrot pomace after 12 h; the corresponding yield was 0.185 g/g. Our results clearly demonstrated the potential of combining a SSF process with thermotolerant yeast for the production of bioethanol using carrot pomace as a feedstock.

  19. Sequential hydrolysis of waste newspaper and bioethanol production from the hydrolysate.

    Science.gov (United States)

    Wu, Fang-Chen; Huang, Shu-Sing; Shih, Ing-Lung

    2014-09-01

    A practical process was developed for production of a high quality hydrolysate of waste newspaper that ensured its complete fermentability to bioethanol. After pretreatment with 0.1N NaOH for 12h and sequential acid and enzyme hydrolysis, 10.1g/L of glucose (50.5%), 1.38 g/L of mannose (6.9%) and 0.28 g/L of galactose (1.4%), a total of 11.76 g/L of fermentable sugars was obtained, which accounts for 88.7% of saccharification efficiency. The Saccharomyces cerevisiae BCRC20271 showed excellent co-fermentability of glucose, mannose and galactose in hydrolysate of waste newspaper. After cultivation of the hydrolysate at 24°C in static culture for 48 h, the final ethanol concentration of 5.72 g/L (96% conversion efficiency) was produced. Overall, 1000 kg of waste newspaper will produce 286 kg (362 L) of ethanol by the process developed, which reveals that waste newspaper has higher potential than many other lignocellulosic and seaweed feedstocks for bioethanol production.

  20. Progress in the production of bioethanol on starch-based feedstocks

    Directory of Open Access Journals (Sweden)

    Dragiša Savić

    2009-10-01

    Full Text Available Bioethanol produced from renewable biomass, such as sugar, starch, or lignocellulosic materials, is one of the alternative energy resources, which is both renewable and environmentally friendly. Although, the priority in global future ethanol production is put on lignocellulosic processing, which is considered as one of the most promising second-generation biofuel technologies, the utilizetion of lignocellulosic material for fuel ethanol is still under improvement. Sugar- based (molasses, sugar cane, sugar beet and starch-based (corn, wheat, triticale, potato, rice, etc. feedstock are still currently predominant at the industrial level and they are, so far, economically favorable compared to lingocelluloses. Currently, approx. 80 % of total world ethanol production is obtained from the fermentation of simple sugars by yeast. In Serbia, one of the most suitable and available agricultural raw material for the industrial ethanol production are cereals such as corn, wheat and triticale. In addition, surpluses of this feedstock are being produced in our country constantly. In this paper, a brief review of the state of the art in bioethanol production and biomass availability is given, pointing out the progress possibilities on starch-based production. The progress possibilities are discussed in the domain of feedstock choice and pretreatment, optimization of fermentation, process integration and utilization of the process byproducts.

  1. Process design and economic analysis of a hypothetical bioethanol production plant using carob pod as feedstock.

    Science.gov (United States)

    Sánchez-Segado, S; Lozano, L J; de Los Ríos, A P; Hernández-Fernández, F J; Godínez, C; Juan, D

    2012-01-01

    A process for the production of ethanol from carob (Ceratonia siliqua) pods was designed and an economic analysis was carried out for a hypothetical plant. The plant was assumed to perform an aqueous extraction of sugars from the pods followed by fermentation and distillation to produce ethanol. The total fixed capital investment for a base case process with a capacity to transform 68,000 t/year carob pod was calculated as 39.61 millon euros (€) with a minimum bioethanol production cost of 0.51 €/L and an internal rate of return of 7%. The plant was found to be profitable at carob pod prices lower than 0.188 €/kg. An increase in the transformation capacity of the plant from 33,880 to 135,450 t/year was calculated to result in an increase in the internal rate of return from 5.50% to 13.61%. The obtained results show that carob pod is a promising alternative source for bioethanol production.

  2. Dilute Ionic Liquids Pretreatment of Palm Empty Bunch and Its Impact to Produce Bioethanol

    Directory of Open Access Journals (Sweden)

    Lucy Arianie

    2013-12-01

    Full Text Available Ethanol production through ionic liquids pretreatment of palm empty bunch (PEB was carried out. This research aims to investigate impact of ionic liquids synthetic i.e 1-butyl-3-methyl imidazoliumbromide or [BMIM]bromide toward cellulose’s palm empty bunch and convert its cellulose into bioethanol. Ionic liquid was synthesized  through reflux and microwave assisted synthesis methods. Research investigation showed that microwave assisted synthesis produce [BMIM]bromide 90% faster than reflux method. The characterization of synthesized product using FTIR, 1H-NMR, 13C-NMR and LC-MS showed that these reactions have been carried out successfully. Scanning electron microscope figure out changes morphological surface of palm empty bunch caused by ionic liquid pretreatment. Crystallinity index of PEB milled and cellulose of PEFB after [BMIM]bromide dissolution were identified using comparison of PEB FTIR spectrum. Cellulose without dilute [BMIM]bromide have higher LOI number than cellulose after [BMIM]bromide dissolution. It indicated that a large part of cellulose after dissolution has been changed into amorf. Hydrolysis residue of palm empty bunch hydrolyzed by sulfuric acids 5%, 100 0C for 5 hours and produce 685 ppm of reducing sugar. Simultaneous Saccharification and Fermentation using Trichoderma viride and Saccharomyce cerevisiae  for 5 days produce 0,69% of bioethanol.

  3. IMPACT OF HOT COMPRESSED WATER PRETREATMENT ON THE STRUCTURAL CHANGES OF WOODY BIOMASS FOR BIOETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Ling-Ping Xiao

    2011-03-01

    Full Text Available As an initial step in an alternative use of woody biomass to produce bioethanol, this work was aimed at investigating the effect of hot compressed water (HCW pretreatment within the temperature range 100 to 200 °C in a batch-type reactor on the structural changes of Tamarix ramosissima. The untreated and pretreated solid residues were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR, solid-state cross polarization/magic angle spinning (CP/MAS, 13C NMR spectroscopy, and thermogravimetric analysis (TGA, as well as chemical methods. The results showed that HCW pretreatment solubilized mainly hemicelluloses and resulted in enriched cellulose and lignin content in the pretreated solids. It was found that the deposition of lignin droplets on the residual surfaces was produced during pretreatment under the hot water conditions above 140 °C. In addition, the removal of hemicelluloses and lignin re-localisation as a result of condensation reactions under the severe pretreatment condition may lead to an increase in cellulose crystallinity and thermal stability of biomass solid residues, thus consequently influencing the downstream digestibility of biomass for sugars and bioethanol production.

  4. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.

    Science.gov (United States)

    Dong, Shi-Jun; Lin, Xiang-Hua; Li, Hao

    2015-11-01

    During the industrial bioethanol fermentation, Saccharomyces cerevisiae cells are often stressed by bacterial contaminants, especially lactic acid bacteria. Generally, lactic acid bacteria contamination can inhibit S. cerevisiae cell growth through secreting lactic acid and competing with yeast cells for micronutrients and living space. However, whether are there still any other influences of lactic acid bacteria on yeast or not? In this study, Lactobacillus plantarum ATCC 8014 was co-cultivated with S. cerevisiae S288c to mimic the L. plantarum contamination in industrial bioethanol fermentation. The contaminative L. plantarum-associated expression changes of genes involved in carbohydrate and energy related metabolisms in S. cerevisiae cells were determined by quantitative real-time polymerase chain reaction to evaluate the influence of L. plantarum on carbon source utilization and energy related metabolism in yeast cells during bioethanol fermentation. Contaminative L. plantarum influenced the expression of most of genes which are responsible for encoding key enzymes involved in glucose related metabolisms in S. cerevisiae. Specific for, contaminated L. plantarum inhibited EMP pathway but promoted TCA cycle, glyoxylate cycle, HMP, glycerol synthesis pathway, and redox pathway in S. cerevisiae cells. In the presence of L. plantarum, the carbon flux in S. cerevisiae cells was redistributed from fermentation to respiratory and more reducing power was produced to deal with the excess NADH. Moreover, L. plantarum contamination might confer higher ethanol tolerance to yeast cells through promoting accumulation of glycerol. These results also highlighted our knowledge about relationship between contaminative lactic acid bacteria and S. cerevisiae during bioethanol fermentation.

  5. Thermodynamic and economic analysis of integrating lignocellulosic bioethanol production in a Danish combined heat and power unit

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard

    bioethanol production in the Danish CHP unit Avedøreværket 1. Numerical models of the plants were developed, and feasible integration solutions were identified and optimised using exergy analysis. Hour-wise production simulations were run over a reference year, and market prices and economic parameters from...

  6. 1st or 2nd generation bioethanol-impacts of technology integration & on feed production and land use

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott; Felby, Claus

    2009-01-01

    "1st or 2nd generation bioethanol-impacts of technology integration & on feed production and land use" Liquid bio fuels are perceived as a means of mitigating CO2 emissions from transport and thus climate change, but much concern has been raised to the energy consumption from refining biomass...

  7. A linear discrete dynamic system model for temporal gene interaction and regulatory network influence in response to bioethanol conversion inhibitor HMF for ethanologenic yeast

    Science.gov (United States)

    A linear discrete dynamic system model is constructed to represent the temporal interactions among significantly expressed genes in response to bioethanol conversion inhibitor 5-hydroxymethylfurfural for ethanologenic yeast Saccharomyces cerevisiae. This study identifies the most significant linear...

  8. PRODUCTION OF FERMENTABLE SUGARS FROM OIL PALM EMPTY FRUIT BUNCH USING CRUDE CELLULASE COCKTAILS WITH TRICHODERMA ASPERELLUM UPM1 AND ASPERGILLUS FUMIGATUS UPM2 FOR BIOETHANOL PRODUCTION

    OpenAIRE

    Nurul Kartini Abu Bakar,; Zuraidah Zanirun; Suraini Abd-Aziz; Farinazleen Mohd Ghazali; Mohd Ali Hassan

    2012-01-01

    Utilization of oil palm empty fruit bunch (OPEFB) for bioethanol production with crude cellulase cocktails from locally isolated fungi was studied. Enzymatic saccharification of alkaline pretreated OPEFB was done using different cellulase enzyme preparations. Crude cellulase cocktails from Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 produced 8.37 g/L reducing sugars with 0.17 g/g yield. Production of bioethanol from OPEFB hydrolysate using Baker’s yeast produced approximately 0...

  9. Selection of process alternatives for lignocellulosic bioethanol production using a MILP approach.

    Science.gov (United States)

    Scott, Felipe; Venturini, Fabrizio; Aroca, Germán; Conejeros, Raúl

    2013-11-01

    This work proposes a decision-making framework for the selection of processes and unit operations for lignocellulosic bioethanol production. Process alternatives are described by its capital and operating expenditures, its contribution to process yield and technological availability information. A case study in second generation ethanol production using Eucalyptus globulus as raw material is presented to test the developed process synthesis tool. Results indicate that production cost does not necessarily decrease when yield increases. Hence, optimal processes can be found at the inflexion point of total costs and yield. The developed process synthesis tool provides results with an affordable computational cost, existing optimization tools and an easy-to-upgrade description of the process alternatives. These features made this tool suitable for process screening when incomplete information regarding process alternatives is available.

  10. The role of bio-ethanol in aqueous phase reforming to sustainable hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Tokarev, A.V.; Murzina, E.V.; Eraenen, K.; Murzin, D.Yu. [Aabo Akademi University, Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Biskopsgatan 8, FIN-20500 Turku/Aabo (Finland); Kirilin, A.V. [Aabo Akademi University, Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Biskopsgatan 8, FIN-20500 Turku/Aabo (Finland); Zelinsky Institute of Organic Chemistry, Moscow (Russian Federation); Kustov, L.M. [Zelinsky Institute of Organic Chemistry, Moscow (Russian Federation); Mikkola, J.-P. [Aabo Akademi University, Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Biskopsgatan 8, FIN-20500 Turku/Aabo (Finland); Umeaa University, Technical Chemistry Department of Chemistry, Chemical-Biological Centre, Umeaa (Sweden)

    2010-11-15

    Aqueous Phase Reforming (APR) has during the recent years emerged as a potent, alternative means of processing raw materials of biological origin to component suitable as chemicals and fuel components. In contrary to e.g. steam reforming, aqueous phase reforming bares the promise of lower temperatures in processing which gives rise to potential of reduced energy consumption in the upgrading process itself. Aqueous phase reforming was studied over Pt/Al2O3 at 225 C. Stable catalyst performance and high selectivity was observed. Upon a comparison of two 'bio-alcohols', bio-ethanol and Sorbitol (a sugar alcohol), the latter one is a better feedstock from overall energy utilization viewpoint but the use of it results in a broad range of products. Interestingly, in the case of sorbitol-ethanol mixtures, an improvement in the hydrogen yield was observed. (author)

  11. Price determination for hydrogen produced from bio-ethanol in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Gregorini, V.A.; Pasquevich, D. [Instituto de Energia y Desarrollo Sustentable - CNEA, Av. Del Libertador 8250, Buenos Aires (Argentina); Laborde, M. [Facultad de Ingenieria - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires (Argentina)

    2010-06-15

    A massive penetration for hydrogen as a fuel vector requires a price reduction against fossil fuels (up to lower or at less equal to current prices). That is why it is important to calculate the current prices, so that we can determinate the gap between them and work in reducing them. In order to follow properly prices evolution it is necessary been able to compare data generated by Universities, Laboratories and Industries. So that, DOE creates in 2003 a tool (H2A) to determine prices for hydrogen, with some assumptions and pre defined values, to facilitate transparency and consistency of data. In this work we will use the H2A tool to calculate de price of hydrogen produced in a bio-ethanol semi-industrial Plant in Argentina, and we will compare it with the prices of USA studies. (author)

  12. Modeling Separation Dynamics in a Multi-Tray Bio-Ethanol Distillation Column

    DEFF Research Database (Denmark)

    Løhndorf, Petar Durdevic; Pedersen, Simon; Yang, Zhenyu

    2015-01-01

    The high energy consumption of popularly used distillation columns has motivated development of energytracking dynamic models with the ultimate objective for potential better energy and quality control of these separation facilities. A dynamic model being able to explicitly describe both the prod......The high energy consumption of popularly used distillation columns has motivated development of energytracking dynamic models with the ultimate objective for potential better energy and quality control of these separation facilities. A dynamic model being able to explicitly describe both...... the product quality and energy consumption in a typical bio-ethanol distillation column is proposed in this paper. The proposed model is derived based on mass and energy balance principles, with an empirical model of the evaporation dynamics of liquids on column trays. The model parameters are identified...

  13. Effect of Selected Fermentation Parameters on Bioethanol Production from Ripe Carabao Mango (Mangifera indica Peelings

    Directory of Open Access Journals (Sweden)

    Elisa D. Gutierrez

    2015-11-01

    Full Text Available The study aimed to determine the effects of selected fermentation parameters on bioethanol production from ripe carabao mango (Mangifera indica peelings. Based on the results of the study, untreated peelings has compositional analysis in w/w% of 41.51%, 32.10%, 25.94% and 20.05% of extractives, holocellulose, alpha cellulose and acid insoluble respectively. On the other hand, after dilute acid pretreatment, the compositional analysis of extractives, holocellulose, alpha cellulose, acid insoluble lignin, acid soluble lignin and hemicelluloses were 15.71%, 76.01, 73.21%, 48.88%, 5.57% and 2.81% respectively.Findings also showed that there is a significant difference in the aforementioned properties before and after undergoing dilute acid pre-treatment.

  14. Environmental Assessment of 2nd Generation Bio-ethanol

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2007-01-01

    -20% for transportation. At that time, the electric car/fuel cell car has probably had time enough to mature, and it has a much higher energy efficiency. Therefore, bio-ethanol is not the right intermediate (short term) technology, and it is not the right long term technology either......Throughout the world, nations are seeking ways to decrease CO2 emissions and to reduce their dependency on fossil fuels, especially oil and gas deriving from so-called politically unstable regions. The efforts comprise the energy sector (heat and electricity) as well as the transport sector......, that biomass substitutes gas in the heat & power sector and gas substitute oil in the transport sector. By taking this path, we overall achieve almost twice as high a CO2 reduction and save almost twice as much oil, as if we want to substitute the oil via car engines through conversion to ethanol. We must...

  15. Evaluation of bioactive components and antioxidant and anticancer properties of citrus wastes generated during bioethanol production.

    Science.gov (United States)

    Im, Soon Jae; Kim, Jae-Hoon; Kim, Min Young

    2014-04-01

    In the bioethanol production process employing citrus peels, a large amount of enzymatic hydrolyzed residues is generated as waste material. The bioactive compounds, and antioxidant and anticancer activities of these residues were investigated in the present study. Hydrolyzed citrus residues exhibited similar antioxidant activity as the unhydrolyzed control, which was positively correlated to the contents of total phenols, flavonoids and total carotenoid. Some flavonoids (naringin, naringenin, hesperetin and neohesperidin) and two high value co-products (D-limonene and galacturonic acid) were detected only in hydrolyzed residues. In addition, hydrolyzed residues showed antiproliferative activity and sub-G1 arrest in human melanoma A375 and colon cancer HCT116 cells. These results provide an alternative use for hydrolyzed citrus residues in the functional food, cosmetic and pharmaceutical industries. PMID:24868862

  16. Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: a process simulation approach.

    Science.gov (United States)

    Quintero, Julián A; Moncada, Jonathan; Cardona, Carlos A

    2013-07-01

    In this study a techno-economic analysis of the production of bioethanol from four lignocellusic (Sugarcane bagasse, Coffee cut-stems, Rice Husk, and Empty Fruit Bunches) residues is presented for the Colombian case. The ethanol production was evaluated using Aspen Plus and Aspen Process Economic Analyzer carrying out the simulation and the economic evaluation, respectively. Simulations included the composition of lignocellulosic residues, which was determined experimentally. It was found that empty fruit bunches presents the highest ethanol yield from a dry basis point of view (313.83 L/t), while rice husk produced less ethanol (250.56 L/t). The ethanol production cost was assessed for the standalone ethanol plant and the ethanol plant coupled with a cogeneration system. Moreover, ethanol production cost using EFB was the lowest with (0.49 US$/L) and without (0.58 US$/L) cogeneration scheme. PMID:23665691

  17. Modelling and L1 Adaptive Control of pH in Bioethanol Enzymatic Process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Sin, Gürkan

    2013-01-01

    The enzymatic process is a key step in second generation bioethanol production. Pretreated biomass fibers are liquefied with the help of enzymes to facilitate fermentation. Enzymes are very sensitive to pH and temperature and the main control challenge in the nonlinear process is to ensure minimum...... deviations from the optimal pH level. This article develops a mathematical model for the pH, which has not been reported earlier for this particular process. The new model embeds flow dynamics and pH calculations and serves both for simulation and control design. Two control strategies are then formulated...... for pH level regulation: one is a classical PI controller; the other an L1 adaptive output feedback controller. Model-based feed-forward terms are added to the controllers to enhance their performances. A new tuning method of the L1 adaptive controller is also proposed. Further, a new performance...

  18. Optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production

    International Nuclear Information System (INIS)

    The purpose of this project is optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production. The 2nd year Research scope includes: 1) Optimization of pre-treatment conditions for enzymatic hydrolysis of lignocellulosic biomass and 2) Demonstration of enzymatic hydrolysis by recombinant enzymes. To optimize the pretreatment, we applied two processes: a wet process (wet milling + popping), and dry process (popping + dry milling). Out of these, the wet process presented the best glucose yield with a 93.1% conversion, while the dry process yielded 69.6%, and the unpretreated process yielded <20%. The recombinant cellulolytic enzymes showed very high specific activity, about 80-1000 times on CMC and 13-70 times on filter paper at pH 3.5 and 55 .deg. C

  19. Life cycle assessment of advanced bioethanol production from pulp and paper sludge.

    Science.gov (United States)

    Sebastião, Diogo; Gonçalves, Margarida S; Marques, Susana; Fonseca, César; Gírio, Francisco; Oliveira, Ana C; Matos, Cristina T

    2016-05-01

    This work evaluates the environmental performance of using pulp and paper sludge as feedstock for the production of second generation ethanol. An ethanol plant for converting 5400 tons of dry sludge/year was modelled and evaluated using a cradle-to-gate life cycle assessment approach. The sludge is a burden for pulp and paper mills that is mainly disposed in landfilling. The studied system allows for the valorisation of the waste, which due to its high polysaccharide content is a valuable feedstock for bioethanol production. Eleven impact categories were analysed and the results showed that enzymatic hydrolysis and neutralisation of the CaCO3 are the environmental hotspots of the system contributing up to 85% to the overall impacts. Two optimisation scenarios were evaluated: (1) using a reduced HCl amount in the neutralisation stage and (2) co-fermentation of xylose and glucose, for maximal ethanol yield. Both scenarios displayed significant environmental impact improvements. PMID:26926202

  20. Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Sujit Kumar [Division of Biotechnology, Majhighariani Institute of Technology and Science, Sriram Vihar, Bhujabal, Rayagada 765017 (India); Behera, Shuvasis [Department of Botany, Utkal University, Bhubaneswar 751004 (India); Swain, Manas Ranjan; Ray, Ramesh Chandra [Central Tuber Crops Research Institute (Regional Centre), Bhubaneswar 751019 (India)

    2009-05-15

    There is a growing interest worldwide to find out new and cheap carbohydrate sources for production of bioethanol. In this context, the production of ethanol from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae in solid-state fermentation was investigated. The moisture level of 70%, pH of 6.0 and temperature of 30 C were found optimum for maximum ethanol concentration (225.0 {+-} 4.0 g/kg flower) obtained from mahula flowers after 72 h of fermentation. Concomitant with highest ethanol concentration, the maximum ethanol productivity (3.13 g/kg flower/h), yeast biomass (18.5 x 10{sup 8} CFU/g flower), the ethanol yield (58.44 g/100 g sugar consumed) and the fermentation efficiency (77.1%) were also obtained at these parametric levels. (author)

  1. A novel sono-assisted acid pretreatment of chili post harvest residue for bioethanol production.

    Science.gov (United States)

    Sindhu, Raveendran; Binod, Parameswaran; Pandey, Ashok

    2016-08-01

    The objective of the present study was to develop a sono-assisted acid pretreatment strategy for the effective removal of lignin and hemicelluloses and to improve the sugar yield from chili post harvest residue. Operational parameters that affect the pretreatment efficiency were studied and optimized. Inhibitor analysis of the hydrolyzate revealed that major fermentation inhibitors like furfural, hydroxymethyl furfural and organic acids like citric acid, succinic acid and propionic acid were absent. Changes in structural properties of the biomass were studied in relation to the pretreatment process using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) analysis, and the changes in chemical composition was also monitored. The biomass pretreated with the optimized novel method yielded 0.465g/g of reducing sugars on enzymatic hydrolysis. Fermentation of the non-detoxified hydrolysate yielded 2.14% of bioethanol with a fermentation efficiency of 71.03%. PMID:26949055

  2. Improving bioethanol production from olive pruning biomass by deacetylation step prior acid hydrolysis and fermentation processes.

    Science.gov (United States)

    Moya, Alberto J; Peinado, Silvia; Mateo, Soledad; Fonseca, Bruno G; Sánchez, Sebastián

    2016-11-01

    In order to produce bioethanol from olive tree pruning biomass, deacetylation was performed employing sodium hydroxide. Optimal conditions were determined using experimental design techniques. The highest acetic acid removal (3.8g/dm(3)), obtained by response surface methodology, was at optimum pretreatment conditions of temperature 60°C, 0.8% NaOH and residence time 60min. After oxalic acid hydrolysis of pretreated biomass, the hydrolysates were directly used for ethanol production without further detoxification process. Ethanol yields ranged from 0.19 to 0.45g/g, reaching the maximum yield value when pretreatment was carried out at 130°C with 100mM oxalic acid, involving a combined severity factor (CSF) of 1.05. The highest ethanol concentration obtained from pretreated biomass was 6.2g/dm(3) at 150°C, using 75mM of oxalic acid (CSF=1.53). PMID:27579798

  3. Application of bioethanol derived lignin for improving physico-mechanical properties of thermoset biocomposites.

    Science.gov (United States)

    Bajwa, Dilpreet S; Wang, Xinnan; Sitz, Evan; Loll, Tyler; Bhattacharjee, Sujal

    2016-08-01

    Lignin is the most abundant of renewable polymers next to cellulose with a global annual production of 70million tons, largely produced from pulping and second generation biofuel industries. Low value of industrial lignin makes it an attractive biomaterial for wide range of applications. The study investigated the application of wheat straw and corn stover based lignin derived from ethanol production for use in thermoset biocomposites. The biocomposite matrix constituted a two component low viscosity Araldite(®)LY 8601/Aradur(®) 8602 epoxy resin system and the lignin content varied from 0 to 25% by weight fraction. The analysis of the physical and mechanical properties of the biocomposites show bioethanol derived lignin can improve selective properties such as impact strength, and thermal stability without compromising the modulus and strength attributes. PMID:27131732

  4. Valorizing recycled paper sludge by a bioethanol production process with cellulase recycling.

    Science.gov (United States)

    Gomes, Daniel; Domingues, Lucília; Gama, Miguel

    2016-09-01

    The feasibility of cellulase recycling in the scope of bioethanol production from recycled paper sludge (RPS), an inexpensive byproduct with around 39% of carbohydrates, is analyzed. RPS was easily converted and fermented by enzymes and cells, respectively. Final enzyme partition between solid and liquid phases was investigated, the solid-bound enzymes being efficiently recovered by alkaline washing. RPS hydrolysis and fermentation was conducted over four rounds, recycling the cellulases present in both fractions. A great overall enzyme stability was observed: 71, 64 and 100% of the initial Cel7A, Cel7B and β-glucosidase activities, respectively, were recovered. Even with only 30% of fresh enzymes added on the subsequent rounds, solid conversions of 92, 83 and 71% were achieved for the round 2, 3 and 4, respectively. This strategy enabled an enzyme saving around 53-60%, while can equally contribute to a 40% reduction in RPS disposal costs. PMID:27289054

  5. A Model-Based Methodology for Simultaneous Design and Control of a Bioethanol Production Process

    DEFF Research Database (Denmark)

    Alvarado-Morales, Merlin; Abd.Hamid, Mohd-Kamaruddin; Sin, Gürkan;

    2010-01-01

    In this work, a framework for the simultaneous solution of design and control problems is presented. Within this framework, two methodologies are presented, the integrated process design and controller design (IPDC) methodology and the process-group contribution (PGC) methodology. The concepts...... of attainable region (AR), driving force (DF), process-group (PG) and reverse simulation are used within these methodologies. The IPDC methodology is used to find the optimal design-control strategy of a process by locating the maximum point in the AR and DF diagrams for reactor and separator, respectively....... The PGC methodology is used to generate more efficient separation designs in terms of energy consumption by targeting the separation task at the largest DF. Both methodologies are highlighted through the application of two case studies, a bioethanol production process and a succinic acid production...

  6. BEST Project: bioethanol for sustainable transportation; Projeto BEST: bioetanol para o transporte sustentavel

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, J.R.; Velazquez, S.M.S.G.; Apolinario, S.M.; Melo, E.H.; Elmadjian, P.H. [Universidade de Sao Paulo (IEE/CENBIO/USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Centro Nacional de Referencia em Biomassa

    2008-07-01

    The BEST Project BioEthanol for Sustainable Transport aims to promote the ethanol usage, replacing diesel, in the urban public transport in Brazil and worldwide. Apart from Sao Paulo, leading city in the Americas, another eight cities located in Europe and Asia takes part in the project. One of the Brazilian project's goals is to evaluate ethanol usage as diesel fuel replacement in public transport buses by comparatively following the operational output of the experimental fleet, taking as reference an equivalent diesel bus. The utilized test vehicles will be evaluated and monitored to demonstrate ethanol energetic efficiency and, after the results the BEST project and the European Union will set a blue print for public policies to incentive ethanol usage in the urban public transport. The results will allow identifying technical and economical barriers that will eventually overlap the viability process of this technology in the Brazilian public transport. (author)

  7. Liquid Biofuels: Vegetable Oils and Bioethanol; Biocombustibles Liquidos: aceites Vegetales y Bioetanol

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, M.; Ballesteros, I.; Oliva, J.M.; Navarro, A.A.

    1998-12-01

    The European energy policy has defined clear objectives to reduce the high dependency on fossil petroleum imports, and to increase the security of sustainable energy supply for the transport sector. Moreover, the European environmental policy is requesting clean fuels that reduce environmental risks. Liquid Biofuels (vegetable oils and bioethanol) appear to be in a good position to contribute to achieve these goals expressed by the established objective of European Union to reach for biofuels a market share of 5% of motor vehicle consumption. This work presents the current state and perspectives of the production and utilisation of liquid fuels from agricultural sources by reviewing agricultural feedstocks for energy sector, conversion technologies and different ways to use biofuels. Environmental and economical aspects are also briefly analysed. (Author) 10 refs.

  8. Optimization of bioethanol production from carbohydrate rich wastes by extreme thermophilic microorganisms

    DEFF Research Database (Denmark)

    Tomás, Ana Faria

    of the carbohydrates present in these complex substrates into ethanol. This is in particular true for pentose sugars such as xylose, generally the second major sugar present in lignocellulosic biomass. The transition of second-generation bioethanol production from pilot to industrial scale is hindered...... to the medium. It was initially sensitive to concentrations of 10 g l-1 of xylose and 1 % (v/v) ethanol. However, long term repeated batch cultivation showed that the strain was capable of adaptation to higher substrate concentrations, at least up to 20 g l-1 xylose. T. pentosaceus was able to metabolize two...... using different approaches. Further insight into the metabolism of the strain, as well as its improvement by genetic engineering can bring second-generation ethanol production one step closer to its industrial application....

  9. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation

    DEFF Research Database (Denmark)

    Möllers, K Benedikt; Canella, D.; Jørgensen, Henning;

    2014-01-01

    cyanobacterium Synechococcus sp. PCC 7002 was fermented using yeast into bioethanol. Results: The cyanobacterium accumulated a total carbohydrate content of about 60% of cell dry weight when cultivated under nitrate limitation. The cyanobacterial cells were harvested by centrifugation and subjected to enzymatic......H was adjusted to the optimal value. The highest ethanol yield and concentration obtained was 0.27 g ethanol per g cell dry weight and 30 g ethanol L-1, respectively. About 90% of the glucose in the biomass was converted to ethanol. The cyanobacterial hydrolysate was rapidly fermented (up to 20 g ethanol L-1 day...... hydrolysis using lysozyme and two alpha-glucanases. This enzymatic hydrolysate was fermented into ethanol by Saccharomyces cerevisiae without further treatment. All enzyme treatments and fermentations were carried out in the residual growth medium of the cyanobacteria with the only modification being that p...

  10. Boosting biogas yield of anaerobic digesters by utilizing concentrated molasses from 2nd generation bioethanol plant

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Shiplu [Department of Renewable Energy, Faculty of Engineering and Science, University of Agder, Grimstad-4879 (Norway); Moeller, Henrik Bjarne [Department of Biosystems Engineering, Faculty of Science and Technology, Aarhus University, Research center Foulum, Blichers Alle, Post Box 50, Tjele-8830 (Denmark)

    2013-07-01

    Concentrated molasses (C5 molasses) from 2nd generation bioethanol plant has been investigated for enhancing productivity of manure based digesters. A batch study at mesophilic condition (35+- 1 deg C) showed the maximum methane yield from molasses as 286 LCH4/kgVS which was approximately 63% of the calculated theoretical yield. In addition to the batch study, co-digestion of molasses with cattle manure in a semi-continuously stirred reactor at thermophilic temperature (50+- 1 deg C) was also performed with a stepwise increase in molasses concentration. The results from this experiment revealed the maximum average biogas yield of 1.89 L/L/day when 23% VSmolasses was co-digested with cattle manure. However, digesters fed with more than 32% VSmolasses and with short adaptation period resulted in VFA accumulation and reduced methane productivity indicating that when using molasses as biogas booster this level should not be exceeded.

  11. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production - A comparative study.

    Science.gov (United States)

    Djukić-Vuković, Aleksandra; Mladenović, Dragana; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Pejin, Jelena; Mojović, Ljiljana

    2016-02-01

    Waste substrates from bioethanol and beer productions are cheap, abundant and renewable substrates for biorefinery production of lactic acid (LA) and variability in their chemical composition presents a challenge in their valorisation. Three types of waste substrates, wasted bread and wasted potato stillage from bioethanol production and brewers' spent grain hydrolysate from beer production were studied as substrates for the production of l(+) LA and probiotic biomass by Lactobacillus rhamnosus ATCC 7469. The correlation of the content of free alpha amino nitrogen and the production of LA was determined as a critical characteristic of the waste media for efficient LA production by L. rhamnosus on the substrates which contained equal amount of fermentable sugars. A maximal LA productivity of 1.54gL(-1)h(-1) was obtained on wasted bread stillage media, whilst maximal productivities achieved on the potato stillage and brewers' spent grain hydrolysate media were 1.28gL(-1)h(-1)and 0.48gL(-1)h(-1), respectively. A highest LA yield of 0.91gg(-1) was achieved on wasted bread stillage media, followed by the yield of 0.81gg(-1) on wasted potato stillage and 0.34gg(-1) on brewers' spent grain hydrolysate media. The kinetics of sugar consumption in the two stillage substrates were similar while the sugar conversion in brewers' spent grain hydrolysate was slower and less efficient due to significantly lower content of free alpha amino nitrogen. The lignocellulosic hydrolysate from beer production required additional supplementation with nitrogen. PMID:26639411

  12. 2nd generation lignocellulosic bioethanol: is torrefaction a possible approach to biomass pretreatment?

    Energy Technology Data Exchange (ETDEWEB)

    Chiaramonti, David; Rizzo, Andrea Maria; Prussi, Matteo [University of Florence, CREAR - Research Centre for Renewable Energy and RE-CORD, Florence (Italy); Tedeschi, Silvana; Zimbardi, Francesco; Braccio, Giacobbe; Viola, Egidio [ENEA - Laboratory of Technology and Equipment for Bioenergy and Solar Thermal, Rotondella (Italy); Pardelli, Paolo Taddei [Spike Renewables s.r.l., Florence (Italy)

    2011-03-15

    Biomass pretreatement is a key and energy-consuming step for lignocellulosic ethanol production; it is largely responsible for the energy efficiency and economic sustainability of the process. A new approach to biomass pretreatment for the lignocellulosic bioethanol chain could be mild torrefaction. Among other effects, biomass torrefaction improves the grindability of fibrous materials, thus reducing energy demand for grinding the feedstock before hydrolysis, and opens the biomass structure, making this more accessible to enzymes for hydrolysis. The aim of the preliminary experiments carried out was to achieve a first understanding of the possibility to combine torrefaction and hydrolysis for lignocellulosic bioethanol processes, and to evaluate it in terms of sugar and ethanol yields. In addition, the possibility of hydrolyzing the torrefied biomass has not yet been proven. Biomass from olive pruning has been torrefied at different conditions, namely 180-280 C for 60-120 min, grinded and then used as substrate in hydrolysis experiments. The bioconversion has been carried out at flask scale using a mixture of cellulosolytic, hemicellulosolitic, {beta}-glucosidase enzymes, and a commercial strain of Saccharomyces cerevisiae. The experiments demonstrated that torrefied biomass can be enzymatically hydrolyzed and fermented into ethanol, with yields comparable with grinded untreated biomass and saving electrical energy. The comparison between the bioconversion yields achieved using only raw grinded biomass or torrefied and grinded biomass highlighted that: (1) mild torrefaction conditions limit sugar degradation to 5-10%; and (2) torrefied biomass does not lead to enzymatic and fermentation inhibition. Energy consumption for ethanol production has been preliminary estimated, and three different pretreatment steps, i.e., raw biomass grinding, biomass-torrefaction grinding, and steam explosion were compared. Based on preliminary results, steam explosion still has a

  13. Permeation of gasoline, diesel, bioethanol (E85), and biodiesel (B20) fuels through six glove materials.

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A

    2010-07-01

    Biofuels and conventional fuels differ in terms of their evaporation rates, permeation rates, and exhaust emissions, which can alter exposures of workers, especially those in the fuel refining and distribution industries. This study investigated the permeation of biofuels (bioethanol 85%, biodiesel 20%) and conventional petroleum fuels (gasoline and diesel) through gloves used in occupational settings (neoprene, nitrile, and Viton) and laboratories (latex, nitrile, and vinyl), as well as a standard reference material (neoprene sheet). Permeation rates and breakthrough times were measured using the American Society for Testing and Materials F739-99 protocol, and fuel and permeant compositions were measured by gas chromatography/mass spectrometry. In addition, we estimated exposures for three occupational scenarios and recommend chemical protective clothing suitable for use with motor fuels. Permeation rates and breakthrough times depended on the fuel-glove combination. Gasoline had the highest permeation rate among the four fuels. Bioethanol (85%) had breakthrough times that were two to three times longer than gasoline through neoprene, nitrile Sol-Vex, and the standard reference materials. Breakthrough times for biodiesel (20%) were slightly shorter than for diesel for the latex, vinyl, nitrile examination, and the standard neoprene materials. The composition of permeants differed from neat fuels, e.g., permeants were significantly enriched in the lighter aromatics including benzene. Viton was the best choice among the tested materials for the four fuels tested. Among the scenarios, fuel truck drivers had the highest uptake via inhalation based on the personal measurements available in the literature, and gasoline station attendants had highest uptake via dermal exposure if gloves were not worn. Appropriate selection and use of gloves can protect workers from dermal exposures; however, current recommendations from the National Institute for Occupational Safety and

  14. Analysis of the Competitive Potential of Bioethanol in Colombia: An approach from Michael Porter's 5 Competitive Forces

    International Nuclear Information System (INIS)

    The search for alternative energy production and consumption require a look into the industry of biofuels such as bioethanol as an alternative energy to overcome the disadvantages generated by the traditional methods of production and consumption, especially in the political, environmental and social issues and generate competitive advantages compared to other primary energy sources. In the present document, and from the Michael Porter five (5) Forces model is detailed an evaluation of the bioethanol industry as an alternative fuel and is described how attractive or competitive may become the industry today. To achieve this purpose, an evaluation of the competitive forces was proposed to a group of experts, using a Likert scale. Thus, it was evaluated the potential usefulness of the proposal.

  15. Natural variation in the glucose content of dilute sulfuric acid-pretreated rice straw liquid hydrolysates: implications for bioethanol production.

    Science.gov (United States)

    Goda, Takashi; Teramura, Hiroshi; Suehiro, Miki; Kanamaru, Kengo; Kawaguchi, Hideo; Ogino, Chiaki; Kondo, Akihiko; Yamasaki, Masanori

    2016-05-01

    Rice straw is a promising resource for bioethanol production. Because the glucose content of pretreatment liquid hydrolysates is highly correlated with ethanol yield, the selection of appropriate rice cultivars is essential. The glucose content in liquid hydrolysates of pretreated rice straws of 208 diverse cultivars was evaluated in natural field in 2013 and 2014 using a novel high-throughput system. The glucose content of the rice straw samples varied across cultivars and was affected by environmental factors such as temperature and solar radiation. Several high-quality cultivars exhibiting high glucose content in both years were identified. The results of this study can aid in development of novel rice cultivars suitable as both feedstocks for bioethanol production and cooking. PMID:26872499

  16. Effects of reflux ratio and feed conditions for the purification of bioethanol in a continuous distillation column

    Science.gov (United States)

    Dasan, Y. K.; Abdullah, M. A.; Bhat, A. H.

    2014-10-01

    Continuous distillation column was used for the purification of bioethanol from fermentation of molasses using Saccharomyces cerevisia. Bioethanol produced was at 8.32% (v/v) level. The efficiency of continuous distillation process was evaluated based on reflux ratio, and feed condition. The lab results were validated using COFE simulation Software. The analyses showed that both reflux ratio and feed condition had significant effects on the distillation process. Stages increased from 1.79 to 2.26 as the reflux ratio was decreased from 90% to 45% and the saturated feed produced lower mole fraction of desired product. We concluded that the lower reflux ratio with cold feed condition was suitable for higher mole fraction of top product.

  17. Cellulosic bioethanol production from Jerusalem artichoke (Helianthus tuberosus L.) using hydrogen peroxide-acetic acid (HPAC) pretreatment.

    Science.gov (United States)

    Song, Younho; Wi, Seung Gon; Kim, Ho Myeong; Bae, Hyeun-Jong

    2016-08-01

    Jerusalem artichoke (JA) is recognized as a suitable candidate biomass crop for bioethanol production because it has a rapid growth rate and high biomass productivity. In this study, hydrogen peroxide-acetic acid (HPAC) pretreatment was used to enhance the enzymatic hydrolysis and to effectively remove the lignin of JA. With optimized enzyme doses, synergy was observed from the combination of three different enzymes (RUT-C30, pectinase, and xylanase) which provided a conversion rate was approximately 30% higher than the rate with from treatment with RUT-C30 alone. Fermentation of the JA hydrolyzates by Saccharomyces cerevisiae produced a fermentation yield of approximately 84%. Therefore, Jerusalem artichoke has potential as a bioenergy crop for bioethanol production. PMID:27115748

  18. Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations

    OpenAIRE

    Pereira Francisco B; Guimarães Pedro; Gomes Daniel G; Mira Nuno P; Teixeira Miguel C; Sá-Correia Isabel; Domingues Lucília

    2011-01-01

    Abstract Background The optimization of industrial bioethanol production will depend on the rational design and manipulation of industrial strains to improve their robustness against the many stress factors affecting their performance during very high gravity (VHG) or lignocellulosic fermentations. In this study, a set of Saccharomyces cerevisiae genes found, through genome-wide screenings, to confer resistance to the simultaneous presence of different relevant stresses were identified as req...

  19. Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations

    OpenAIRE

    Pereira, Francisco B; Guimarães, Pedro M. R.; Gomes, Daniel Gonçalves; Mira, Nuno P.; Teixeira, Miguel C

    2011-01-01

    Background: The optimization of industrial bioethanol production will depend on the rational design and manipulation of industrial strains to improve their robustness against the many stress factors affecting their performance during very high gravity (VHG) or lignocellulosic fermentations. In this study, a set of Saccharomyces cerevisiae genes found, through genome-wide screenings, to confer resistance to the simultaneous presence of different relevant stresses were identified as...

  20. Bioethanol in Biofuels Checked by an Amperometric Organic Phase Enzyme Electrode (OPEE Working in “Substrate Antagonism” Format

    Directory of Open Access Journals (Sweden)

    Mauro Tomassetti

    2016-08-01

    Full Text Available The bioethanol content of two samples of biofuels was determined directly, after simple dilution in decane, by means of an amperometric catalase enzyme biosensor working in the organic phase, based on substrate antagonisms format. The results were good from the point of view of accuracy, and satisfactory for what concerns the recovery test by the standard addition method. Limit of detection (LOD was on the order of 2.5 × 10−5 M.

  1. Bioethanol in Biofuels Checked by an Amperometric Organic Phase Enzyme Electrode (OPEE) Working in "Substrate Antagonism" Format.

    Science.gov (United States)

    Tomassetti, Mauro; Spuri Capesciotti, Gabriele; Angeloni, Riccardo; Martini, Elisabetta; Campanella, Luigi

    2016-01-01

    The bioethanol content of two samples of biofuels was determined directly, after simple dilution in decane, by means of an amperometric catalase enzyme biosensor working in the organic phase, based on substrate antagonisms format. The results were good from the point of view of accuracy, and satisfactory for what concerns the recovery test by the standard addition method. Limit of detection (LOD) was on the order of 2.5 × 10(-5) M. PMID:27571076

  2. SSF of steam-pretreated wheat straw with the addition of saccharified or fermented wheat meal in integrated bioethanol production

    OpenAIRE

    Erdei, Borbála; Hancz, Dóra; Galbe, Mats; Zacchi, Guido

    2013-01-01

    Background Integration of second-generation (2G) bioethanol production with existing first-generation (1G) production may facilitate commercial production of ethanol from cellulosic material. Since 2G hydrolysates have a low sugar concentration and 1G streams often have to be diluted prior to fermentation, mixing of streams is beneficial. Improved ethanol concentrations in the 2G production process lowers energy demand in distillation, improves overall energy efficiency and thus lower product...

  3. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.

    Science.gov (United States)

    Dong, Shi-Jun; Lin, Xiang-Hua; Li, Hao

    2015-11-01

    During the industrial bioethanol fermentation, Saccharomyces cerevisiae cells are often stressed by bacterial contaminants, especially lactic acid bacteria. Generally, lactic acid bacteria contamination can inhibit S. cerevisiae cell growth through secreting lactic acid and competing with yeast cells for micronutrients and living space. However, whether are there still any other influences of lactic acid bacteria on yeast or not? In this study, Lactobacillus plantarum ATCC 8014 was co-cultivated with S. cerevisiae S288c to mimic the L. plantarum contamination in industrial bioethanol fermentation. The contaminative L. plantarum-associated expression changes of genes involved in carbohydrate and energy related metabolisms in S. cerevisiae cells were determined by quantitative real-time polymerase chain reaction to evaluate the influence of L. plantarum on carbon source utilization and energy related metabolism in yeast cells during bioethanol fermentation. Contaminative L. plantarum influenced the expression of most of genes which are responsible for encoding key enzymes involved in glucose related metabolisms in S. cerevisiae. Specific for, contaminated L. plantarum inhibited EMP pathway but promoted TCA cycle, glyoxylate cycle, HMP, glycerol synthesis pathway, and redox pathway in S. cerevisiae cells. In the presence of L. plantarum, the carbon flux in S. cerevisiae cells was redistributed from fermentation to respiratory and more reducing power was produced to deal with the excess NADH. Moreover, L. plantarum contamination might confer higher ethanol tolerance to yeast cells through promoting accumulation of glycerol. These results also highlighted our knowledge about relationship between contaminative lactic acid bacteria and S. cerevisiae during bioethanol fermentation. PMID:26279142

  4. Optimization of Bioethanol Production Using Whole Plant of Water Hyacinth as Substrate in Simultaneous Saccharification and Fermentation Process

    OpenAIRE

    Zhang, Qiuzhuo; Weng, Chen; Huang, Huiqin; Achal, Varenyam; Wang, Duanchao

    2016-01-01

    Water hyacinth was used as substrate for bioethanol production in the present study. Combination of acid pretreatment and enzymatic hydrolysis was the most effective process for sugar production that resulted in the production of 402.93 mg reducing sugar at optimal condition. A regression model was built to optimize the fermentation factors according to response surface method in saccharification and fermentation (SSF) process. The optimized condition for ethanol production by SSF process was...

  5. DETOXIFICATION AND SEPARATION OF LIGNOCELLULOSIC BIOMASS PRIOR TO FERMENTATION FOR BIOETHANOL PRODUCTION BY REMOVAL OF LIGNIN AND HEMICELLULOSES

    OpenAIRE

    Run-Cang Sun

    2009-01-01

    Lignocellulosic materials such as agricultural residues have been recog-nized as potential sustainable sources of mixed sugars for fermentation to bioethanol. To obtain a high overall ethanol yield and achieve an economically feasible production process, the removal of lignin and hemicelluloses improves the accessibility of cellulosic material to hydro-lytic enzymes and avoids the degradation products that are inhibitory to the yeast used in the subsequent fermentation. Technological advances...

  6. The effect of cassava-based bioethanol production on above-ground carbon stocks: A case study from Southern Mali

    International Nuclear Information System (INIS)

    Increasing energy use and the need to mitigate climate change make production of liquid biofuels a high priority. Farmers respond worldwide to this increasing demand by converting forests and grassland into biofuel crops, but whether biofuels offer carbon savings depends on the carbon emissions that occur when land use is changed to biofuel crops. This paper reports the results of a study on cassava-based bioethanol production undertaken in the Sikasso region in Southern Mali. The paper outlines the estimated impacts on above-ground carbon stocks when land use is changed to increase cassava production. The results show that expansion of cassava production for bioethanol will most likely lead to the conversion of fallow areas to cassava. A land use change from fallow to cassava creates a reduction in the above-ground carbon stocks in the order of 4–13 Mg C ha−1, depending on (a) the age of the fallow, (b) the allometric equation used and (c) whether all trees are removed or the larger, useful trees are preserved. This ‘carbon debt’ associated with the above-ground biomass loss would take 8–25 years to repay if fossil fuels are replaced with cassava-based bioethanol. - Highlights: ► Demands for biofuels make production of cassava-based bioethanol a priority. ► Farmers in Southern Mali are likely to convert fallow areas to cassava production. ► Converting fallow to cassava creates reductions in above-ground carbon stocks. ► Estimates of carbon stock reductions include that farmers preserve useful trees. ► The carbon debt associated with above-ground biomass loss takes 8–25 years to repay.

  7. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1.

    Science.gov (United States)

    Lee, Ok Kyung; Oh, You-Kwan; Lee, Eun Yeol

    2015-11-01

    The residual biomass of Chlorella sp. KR-1 obtained after lipid extraction was used for saccharification and bioethanol production. The carbohydrate was saccharified using simple enzymatic and chemical methods using Pectinex at pH 5.5 and 45°C and 0.3N HCl at 121°C for 15min with 76.9% and 98.2% yield, respectively, without any pretreatment. The residual biomass contained 49.7% carbohydrate consisting of 82.4% fermentable sugar and 17.6% non-fermentable sugar, which is valuable for bioethanol fermentation. Approximately 98.2% of the total carbohydrate was converted into monosaccharide (fermentable+non-fermentable sugar) using dilute acid saccharification. The fermentable sugar was subsequently fermented to bioethanol through separate hydrolysis and fermentation with a fermentation yield of 79.3%. Overall, 0.4g ethanol/g fermentable sugar and 0.16g ethanol/g residual biomass were produced. PMID:26218538

  8. Chemical kinetic study of the oxidation of a biodiesel-bioethanol surrogate fuel: methyl octanoate-ethanol mixtures.

    Science.gov (United States)

    Togbé, C; May-Carle, J-B; Dayma, G; Dagaut, P

    2010-03-25

    There is a growing interest for using bioethanol-biodiesel fuel blends in diesel engines but no kinetic data and model for their combustion were available. Therefore, the kinetics of oxidation of a biodiesel-bioethanol surrogate fuel (methyl octanoate-ethanol) was studied experimentally in a jet-stirred reactor at 10 atm and constant residence time, over the temperature range 560-1160 K, and for several equivalence ratios (0.5-2). Concentration profiles of reactants, stable intermediates, and final products were obtained by probe sampling followed by online FTIR, and off-line gas chromatography analyses. The oxidation of this fuel in these conditions was modeled using a detailed chemical kinetic reaction mechanism consisting of 4592 reversible reactions and 1087 species. The proposed kinetic reaction mechanism yielded a good representation of the kinetics of oxidation of this biodiesel-bioethanol surrogate under the JSR conditions. The modeling was used to delineate the reactions triggering the low-temperature oxidation of ethanol important for diesel engine applications. PMID:20235606

  9. Effect of Operating Conditions on Pollutants Concentration Emitted from a Spark Ignition Engine Fueled with Gasoline Bioethanol Blends

    Directory of Open Access Journals (Sweden)

    Haroun A. K. Shahad

    2015-01-01

    Full Text Available This study is an experimental investigation of the effect of bioethanol gasoline blending on exhaust emissions in terms of carbon dioxide CO2, carbon monoxide CO, unburnt hydrocarbons UHC, and nitric oxide NOx of a spark ignition engine. Tests are conducted at controlled throttle and variable speed condition over the range of 1200 to 2000 rpm with intervals 400 rpm. Different compression ratios are tested for each speed, namely (7,8,10, and 11. Pure gasoline and bioethanol gasoline blends are used. The bioethanol used is produced from Iraqi date crop (Zehdi. Blending is done on energy replacement bases. Ethanol energy ratio (EER used is 5%, 10%, and 15%. At each of the three designated engine speeds, the torque is set as 0, 3, 7, 10, and 14 N·m. It is found that ethanol blending reduces CO and UHC concentration in the exhaust gases by about 45% and 40.15%, respectively, and increases NOx and CO2 concentrations in the exhaust gases by about 16.18% and 7.5%, respectively. It is found also that load and speed increase causes an increase in CO2 and NOx concentrations and reduces CO and UHC concentrations. It is also found that increasing the compression ratio causes the emissions of CO2 and NOx to decrease and those of CO and UHC to increase.

  10. Thermodynamic evaluation of hydrogen production for fuel cells by using bio-ethanol steam reforming: Effect of carrier gas addition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Liliana; Kafarov, Viatcheslav [Universidad Industrial de Santander, Escuela de Ingenieria Quimica, Bucaramanga 678 (Colombia)

    2009-07-01

    Omitting the influence of the addition of carrier gas to the reaction system for hydrogen production by bio-ethanol steam reforming can lead to wrong conclusions, especially when it is going to be made to scale. The effect of carrier gas addition to produce hydrogen using bio-ethanol steam reforming to feed fuel cells was evaluated. Thermodynamic calculations in equilibrium conditions were made, however the analysis derived from them can also be applied to kinetic conditions. These calculations were made by using the Aspen-HYSYS software at atmospheric pressure and different values of temperature, water/ethanol molar ratios, and inert (argon)/(water/ethanol) molar ratios. The addition of inert carrier gas modifies the concentrations of the reaction products in comparison to those obtained without its presence. This behavior occurs because most of the reactions which take place in bio-ethanol steam reforming have a positive difference of moles. This fact enhances the system sensitivity to inert concentration at low and moderated temperatures (<700 C). At high values of temperature, the inert addition does not influence the composition of the reaction products because of the predominant effect of inverse WGS reaction. (author)

  11. Perspectives for the production of bioethanol from wood and straw in Austria: technical, economic, and ecological aspects

    Energy Technology Data Exchange (ETDEWEB)

    Kravanja, Philipp; Friedl, Anton [Vienna University of Technology, Thermal Process Engineering-Process Simulation, Institute of Chemical Engineering, Wien (Austria); Koenighofer, Kurt; Canella, Lorenza; Jungmeier, Gerfried [Joanneum Research Forschungsgesellschaft mbH - Resources, Graz (Austria)

    2012-06-15

    Bioethanol produced from lignocellulosic resources is a promising candidate for the replacement of fossil fuels. In this study, we aim to determine the perspectives to produce lignocellulosic ethanol in Austria. Technical, environmental and economic aspects are being considered. Thirteen biotechnological production concepts using the raw materials straw and softwood were established and simulated with the steady state flowsheeting software IPSEpro. Bioethanol production cost and greenhouse gas (GHG) emissions for each system were calculated based on mass and energy balances obtained from process simulation. The emission of GHGs along the entire bioethanol process chain (''from well to wheel'') are compared to two reference systems producing the same amounts of by-products. In all concepts, process heat and considerable amounts of the by-products electricity, heat, pellets, C5 molasses, or biomethane could be obtained from residual biomass. Compared to a reference system driven by fossil energy, GHG emissions can be reduced by up to 76%. The production cost of ethanol was found to between 0.66 EUR and 0.94 EUR per liter of gasoline equivalent. The type and amount of by-product influence technical, economic, and environmental performance significantly. Converting all straw and softwood available in Austria to ethanol would result in an annual production of 340 kt. (orig.)

  12. The genetic basis of variation in clean lineages of Saccharomyces cerevisiae in response to stresses encountered during bioethanol fermentations.

    Directory of Open Access Journals (Sweden)

    Darren Greetham

    Full Text Available Saccharomyces cerevisiae is the micro-organism of choice for the conversion of monomeric sugars into bioethanol. Industrial bioethanol fermentations are intrinsically stressful environments for yeast and the adaptive protective response varies between strain backgrounds. With the aim of identifying quantitative trait loci (QTL's that regulate phenotypic variation, linkage analysis on six F1 crosses from four highly divergent clean lineages of S. cerevisiae was performed. Segregants from each cross were assessed for tolerance to a range of stresses encountered during industrial bioethanol fermentations. Tolerance levels within populations of F1 segregants to stress conditions differed and displayed transgressive variation. Linkage analysis resulted in the identification of QTL's for tolerance to weak acid and osmotic stress. We tested candidate genes within loci identified by QTL using reciprocal hemizygosity analysis to ascertain their contribution to the observed phenotypic variation; this approach validated a gene (COX20 for weak acid stress and a gene (RCK2 for osmotic stress. Hemizygous transformants with a sensitive phenotype carried a COX20 allele from a weak acid sensitive parent with an alteration in its protein coding compared with other S. cerevisiae strains. RCK2 alleles reveal peptide differences between parental strains and the importance of these changes is currently being ascertained.

  13. Optimization of bioethanol production using whole plant of Water Hyacinth as substrate in Simultaneous Saccharification and Fermentation process

    Directory of Open Access Journals (Sweden)

    Qiuzhuo eZhang

    2016-01-01

    Full Text Available The whole plant of Water Hyacinth that had potential to remove heavy metals from wastewater was used as substrate for bioethanol production in the current study. It was found that acid pretreatment exhibited the most effective for reducing sugars production. An amount of 402.93 mg reducing sugars was achieved at optimal condition after pretreatment and enzymatic hydrolysis. A regression model was built to optimize the fermentation factors according to Response Surface Method (RSM in Saccharification and Fermentation (SSF process. The optimized condition for ethanol production by SSF process was fermented at 38.87℃ for 81.87 h when inoculated with 6.11 ml yeast. 1.291 g/L bioethanol could be achieved by our predicted model in optimal condition. Meanwhile, 1.289 g/L ethanol was produced, which showed reliability of presented regression model in this study. The optimization method discussed in the present study leading to relatively high bioethanol production could provide a promising way for Alien Invasive Species with high cellulose content.

  14. Life Cycle Assessment of second generation bioethanol produced from low-input dedicated crops of Arundo donax L.

    Science.gov (United States)

    Zucaro, Amalia; Forte, Annachiara; Basosi, Riccardo; Fagnano, Massimo; Fierro, Angelo

    2016-11-01

    This work presents a Life Cycle Assessment (LCA) of bioethanol (EtOH) from perennial Arundo donax L. feedstock. A "cradle-to-wheel" approach was applied considering primary data for the cultivation of dedicated crops on hilly marginal lands and innovative "second generation technologies" for feedstock conversion into EtOH. The goals of the study were to: (i) quantify impacts of lignocellulosic EtOH production/use chain, (ii) identify hotspots and (iii) compare the environmental performance of different bioethanol-gasoline vehicles, E10 (10% EtOH and 90% gasoline) and E85 (85% EtOH and 15% gasoline), with a conventional gasoline passenger car. Results for E85 underlined that the feedstock production and the use phase were the prevailing contributors, whilst for E10 the gasoline production phase shared the largest part of impacts. The comparison showed that vehicles using lignocellulosic bioethanol have potentially significant benefits on global warming, ozone depletion, photochemical oxidant formation and fossil depletion in respect to conventional passenger car. PMID:27543950

  15. The effect of dilute acid pre-treatment process in bioethanol production from durian (Durio zibethinus) seeds waste

    Science.gov (United States)

    Ghazali, K. A.; Salleh, S. F.; Riayatsyah, T. M. I.; Aditiya, H. B.; Mahlia, T. M. I.

    2016-03-01

    Lignocellulosic biomass is one of the promising feedstocks for bioethanol production. The process starts from pre-treatment, hydrolysis, fermentation, distillation and finally obtaining the final product, ethanol. The efficiency of enzymatic hydrolysis of cellulosic biomass depends heavily on the effectiveness of the pre-treatment step which main function is to break the lignin structure of the biomass. This work aims to investigate the effects of dilute acid pre-treatment on the enzymatic hydrolysis of durian seeds waste to glucose and the subsequent bioethanol fermentation process. The yield of glucose from dilute acid pre-treated sample using 0.6% H2SO4 and 5% substrate concentration shows significant value of 23.4951 g/L. Combination of dilute acid pre-treatment and enzymatic hydrolysis using 150U of enzyme able to yield 50.0944 g/L of glucose content higher compared to normal pre-treated sample of 8.1093 g/L. Dilute acid pre-treatment sample also shows stable and efficient yeast activity during fermentation process with lowest glucose content at 2.9636 g/L compared to 14.7583g/L for normal pre-treated sample. Based on the result, it can be concluded that dilute acid pre-treatment increase the yield of ethanol from bioethanol production process.

  16. PEM Fuel Cells with Bio-Ethanol Processor Systems A Multidisciplinary Study of Modelling, Simulation, Fault Diagnosis and Advanced Control

    CERN Document Server

    Feroldi, Diego; Outbib, Rachid

    2012-01-01

    An apparently appropriate control scheme for PEM fuel cells may actually lead to an inoperable plant when it is connected to other unit operations in a process with recycle streams and energy integration. PEM Fuel Cells with Bio-Ethanol Processor Systems presents a control system design that provides basic regulation of the hydrogen production process with PEM fuel cells. It then goes on to construct a fault diagnosis system to improve plant safety above this control structure. PEM Fuel Cells with Bio-Ethanol Processor Systems is divided into two parts: the first covers fuel cells and the second discusses plants for hydrogen production from bio-ethanol to feed PEM fuel cells. Both parts give detailed analyses of modeling, simulation, advanced control, and fault diagnosis. They give an extensive, in-depth discussion of the problems that can occur in fuel cell systems and propose a way to control these systems through advanced control algorithms. A significant part of the book is also given over to computer-aid...

  17. Production of bioethanol by direct bioconversion of oil-palm industrial effluent in a stirred-tank bioreactor.

    Science.gov (United States)

    Alam, Md Zahangir; Kabbashi, Nassereldeen A; Hussin, S Nahdatul I S

    2009-06-01

    The purpose of this study was to evaluate the feasibility of producing bioethanol from palm-oil mill effluent generated by the oil-palm industries through direct bioconversion process. The bioethanol production was carried out through the treatment of compatible mixed cultures such as Thrichoderma harzianum, Phanerochaete chrysosporium, Mucor hiemalis, and yeast, Saccharomyces cerevisiae. Simultaneous inoculation of T. harzianum and S. cerevisiae was found to be the mixed culture that yielded the highest ethanol production (4% v/v or 31.6 g/l). Statistical optimization was carried out to determine the operating conditions of the stirred-tank bioreactor for maximum bioethanol production by a two-level fractional factorial design with a single central point. The factors involved were oxygen saturation level (pO(2)%), temperature, and pH. A polynomial regression model was developed using the experimental data including the linear, quadratic, and interaction effects. Statistical analysis showed that the maximum ethanol production of 4.6% (v/v) or 36.3 g/l was achieved at a temperature of 32 degrees C, pH of 6, and pO(2) of 30%. The results of the model validation test under the developed optimum process conditions indicated that the maximum production was increased from 4.6% (v/v) to 6.5% (v/v) or 51.3 g/l with 89.1% chemical-oxygen-demand removal.

  18. A co-beneficial system using aquatic plants: bioethanol production from free-floating aquatic plants used for water purification.

    Science.gov (United States)

    Soda, S; Mishima, D; Inoue, D; Ike, M

    2013-01-01

    A co-beneficial system using constructed wetlands (CWs) planted with aquatic plants is proposed for bioethanol production and nutrient removal from wastewater. The potential for bioethanol production from aquatic plant biomass was experimentally evaluated. Water hyacinth and water lettuce were selected because of their high growth rates and easy harvestability attributable to their free-floating vegetation form. The alkaline/oxidative pretreatment was selected for improving enzymatic hydrolysis of the aquatic plants. Ethanol was produced with yields of 0.14-0.17 g-ethanol/ g-biomass in a simultaneous saccharification and fermentation mode using a recombinant Escherichia coli strain or a typical yeast strain Saccharomyces cerevisiae. Subsequently, the combined benefits of the CWs planted with the aquatic plants for bioethanol production and nutrient removal were theoretically estimated. For treating domestic wastewater at 1,100 m(3)/d, it was inferred that the anoxic-oxic activated sludge process consumes energy at 3,200 MJ/d, whereas the conventional activated sludge process followed by the CW consumes only 1,800 MJ/d with ethanol production at 115 MJ/d. PMID:23752400

  19. BIOETHANOL PRODUCTION BY MISCANTHUS AS A LIGNOCELLULOSIC BIOMASS: FOCUS ON HIGH EFFICIENCY CONVERSION TO GLUCOSE AND ETHANOL

    Directory of Open Access Journals (Sweden)

    Minhee Han Mail

    2011-04-01

    Full Text Available Current ethanol production processes using crops such as corn and sugar cane have been well established. However, the utilization of cheaper lignocellulosic biomass could make bioethanol more competitive with fossil fuels while avoiding the ethical concerns associated with using potential food resources. In this study, Miscanthus, a lignocellulosic biomass, was pretreated using NaOH to produce bioethanol. The pretreatment and enzymatic hydrolysis conditions were evaluated by response surface methodology (RSM. The optimal conditions were found to be 145.29 °C, 28.97 min, and 1.49 M for temperature, reaction time, and NaOH concentration, respectively. Enzymatic digestibility of pretreated Miscanthus was examined at various enzyme loadings (10 to 70 FPU/g cellulose of cellulase and 30 CbU/g of β-glucosidase. Regarding enzymatic digestibility, 50 FPU/g cellulose of cellulase and 30 CbU/g of β-glucosidase were selected as the test concentrations, resulting in a total glucose conversion rate of 83.92%. Fermentation of hydrolyzed Miscanthus using Saccharomyces cerevisiae resulted in an ethanol concentration of 59.20 g/L at 20% pretreated biomass loading. The results presented here constitute a significant contribution to the production of bioethanol from Miscanthus.

  20. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy

    Science.gov (United States)

    Gamage, I. H.; Jonker, A.; Zhang, X.; Yu, P.

    2014-01-01

    The objective of this study was to determine the possibility of using molecular spectroscopy with multivariate technique as a fast method to detect the source effects among original feedstock sources of wheat and their corresponding co-products, wheat DDGS, from bioethanol production. Different sources of the bioethanol feedstock and their corresponding bioethanol co-products, three samples per source, were collected from the same newly-built bioethanol plant with current bioethanol processing technology. Multivariate molecular spectral analyses were carried out using agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA). The molecular spectral data of different feedstock sources and their corresponding co-products were compared at four different regions of ca. 1800-1725 cm-1 (carbonyl Cdbnd O ester, mainly related to lipid structure conformation), ca. 1725-1482 cm-1 (amide I and amide II region mainly related to protein structure conformation), ca. 1482-1180 cm-1 (mainly associated with structural carbohydrate) and ca. 1180-800 cm-1 (mainly related to carbohydrates) in complex plant-based system. The results showed that the molecular spectroscopy with multivariate technique could reveal the structural differences among the bioethanol feedstock sources and among their corresponding co-products. The AHCA and PCA analyses were able to distinguish the molecular structure differences associated with chemical functional groups among the different sources of the feedstock and their corresponding co-products. The molecular spectral differences indicated the differences in functional, biomolecular and biopolymer groups which were confirmed by wet chemical analysis. These biomolecular and biopolymer structural differences were associated with chemical and nutrient profiles and nutrient utilization and availability. Molecular spectral analyses had the potential to identify molecular structure difference among bioethanol feedstock sources

  1. One-pot bioethanol production from cellulose by co-culture of Acremonium cellulolyticus and Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Park Enoch Y

    2012-08-01

    Full Text Available Abstract Background While the ethanol production from biomass by consolidated bioprocess (CBP is considered to be the most ideal process, simultaneous saccharification and fermentation (SSF is the most appropriate strategy in practice. In this study, one-pot bioethanol production, including cellulase production, saccharification of cellulose, and ethanol production, was investigated for the conversion of biomass to biofuel by co-culture of two different microorganisms such as a hyper cellulase producer, Acremonium cellulolyticus C-1 and an ethanol producer Saccharomyces cerevisiae. Furthermore, the operational conditions of the one-pot process were evaluated for maximizing ethanol concentration from cellulose in a single reactor. Results Ethanol production from cellulose was carried out in one-pot bioethanol production process. A. cellulolyticus C-1 and S. cerevisiae were co-cultured in a single reactor. Cellulase producing-medium supplemented with 2.5 g/l of yeast extract was used for productions of both cellulase and ethanol. Cellulase production was achieved by A. cellulolyticus C-1 using Solka-Floc (SF as a cellulase-inducing substrate. Subsequently, ethanol was produced with addition of both 10%(v/v of S. cerevisiae inoculum and SF at the culture time of 60 h. Dissolved oxygen levels were adjusted at higher than 20% during cellulase producing phase and at lower than 10% during ethanol producing phase. Cellulase activity remained 8–12 FPU/ml throughout the one-pot process. When 50–300 g SF/l was used in 500 ml Erlenmeyer flask scale, the ethanol concentration and yield based on initial SF were as 8.7–46.3 g/l and 0.15–0.18 (g ethanol/g SF, respectively. In 3-l fermentor with 50–300 g SF/l, the ethanol concentration and yield were 9.5–35.1 g/l with their yields of 0.12–0.19 (g/g respectively, demonstrating that the one-pot bioethanol production is a reproducible process in a scale-up bioconversion of cellulose to ethanol

  2. Analysis of bioethanol samples through Inductively Coupled Plasma Mass Spectrometry with a total sample consumption system

    Science.gov (United States)

    Sánchez, Carlos; Lienemann, Charles-Philippe; Todolí, Jose-Luis

    2016-10-01

    Bioethanol real samples have been directly analyzed through ICP-MS by means of the so called High Temperature Torch Integrated Sample Introduction System (hTISIS). Because bioethanol samples may contain water, experiments have been carried out in order to determine the effect of ethanol concentration on the ICP-MS response. The ethanol content studied went from 0 to 50%, because higher alcohol concentrations led to carbon deposits on the ICP-MS interface. The spectrometer default spray chamber (double pass) equipped with a glass concentric pneumatic micronebulizer has been taken as the reference system. Two flow regimes have been evaluated: continuous sample aspiration at 25 μL min- 1 and 5 μL air-segmented sample injection. hTISIS temperature has been shown to be critical, in fact ICP-MS sensitivity increased with this variable up to 100-200 °C depending on the solution tested. Higher chamber temperatures led to either a drop in signal or a plateau. Compared with the reference system, the hTISIS improved the sensitivities by a factor included within the 4 to 8 range while average detection limits were 6 times lower for the latter device. Regarding the influence of the ethanol concentration on sensitivity, it has been observed that an increase in the temperature was not enough to eliminate the interferences. It was also necessary to modify the torch position with respect to the ICP-MS interface to overcome them. This fact was likely due to the different extent of ion plasma radial diffusion encountered as a function of the matrix when working at high chamber temperatures. When the torch was moved 1 mm plasma down axis, ethanolic and aqueous solutions provided statistically equal sensitivities. A preconcentration procedure has been applied in order to validate the methodology. It has been found that, under optimum conditions from the point of view of matrix effects, recoveries for spiked samples were close to 100%. Furthermore, analytical concentrations for real

  3. Systemic analysis of production scenarios for bioethanol produced from ligno-cellulosic biomass [abstract

    Directory of Open Access Journals (Sweden)

    Ghysel, F.

    2010-01-01

    Full Text Available Defining alternatives for non-renewable energy sources constitutes a priority to the development of our societies. One of these alternatives is biofuels production starting from energy crops, agricultural wastes, forest products or wastes. In this context, a "second generation" biofuels production, aiming at utilizing the whole plant, including ligno-cellulosic (hemicelluloses, cellulose, lignin fractions (Ogier et al., 1999 that are not used for human food, would allow the reduction of the drawbacks of bioethanol production (Schoeling, 2007. However, numerous technical, economical, ethical and environmental questions are still pending. One of the aims of the BioEtha2 project, directed by the Walloon Agricultural Research Centre, is to define the position of bioethanol produced from ligno-cellulosic biomass among the different renewable energy alternatives that could be developed in Wallonia towards 2020. With this aim, and in order to answer the numerous questions in this field, the project aims at using tools and methods coming from the concept of "forecasting scenarios" (Sebillotte, 2002; Slegten et al., 2007; For-learn, 2008. This concept, based on a contemporary reality, aims to explore different possible scenarios for the future development of alternative sources of energy production. The principle is to evaluate, explore, possible futures of the studied problematic, through the establishment of possible evolution trajectories. We contribute to this prospective through a systemic approach (Vanloqueren, 2007 that allows lightening the existing interactions within the system "ligno-cellulosic biomass chain" without isolating it from its environment. We explain and sketch the two contexts needed to identify primary stakes. The global context includes inter-dependant and auto-regulating fields such as society, politics, technology and economy. These four fields influence each part of the "chain" with specific tools. However, the interest and

  4. Techno-Economic Analysis of Bioethanol Production from Lignocellulosic Biomass in China: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Directory of Open Access Journals (Sweden)

    Lili Zhao

    2015-05-01

    Full Text Available Lignocellulosic biomass-based ethanol is categorized as 2nd generation bioethanol in the advanced biofuel portfolio. To make sound incentive policy proposals for the Chinese government and to develop guidance for research and development and industrialization of the technology, the paper reports careful techno-economic and sensitivity analyses performed to estimate the current competitiveness of the bioethanol and identify key components which have the greatest impact on its plant-gate price (PGP. Two models were developed for the research, including the Bioethanol PGP Assessment Model (BPAM and the Feedstock Cost Estimation Model (FCEM. Results show that the PGP of the bioethanol ranges $4.68–$6.05/gal (9,550–12,356 yuan/t. The key components that contribute most to bioethanol PGP include the conversion rate of cellulose to glucose, the ratio of five-carbon sugars converted to ethanol, feedstock cost, and enzyme loading, etc. Lignocellulosic ethanol is currently unable to compete with fossil gasoline, therefore incentive policies are necessary to promote its development. It is suggested that the consumption tax be exempted, the value added tax (VAT be refunded upon collection, and feed-in tariff for excess electricity (byproduct be implemented to facilitate the industrialization of the technology. A minimum direct subsidy of $1.20/gal EtOH (2,500 yuan/t EtOH is also proposed for consideration.

  5. On-board reforming of biodiesel and bioethanol for high temperature PEM fuel cells: Comparison of autothermal reforming and steam reforming

    Science.gov (United States)

    Martin, Stefan; Wörner, Antje

    2011-03-01

    In the 21st century biofuels will play an important role as alternative fuels in the transportation sector. In this paper different reforming options (steam reforming (SR) and autothermal reforming (ATR)) for the on-board conversion of bioethanol and biodiesel into a hydrogen-rich gas suitable for high temperature PEM (HTPEM) fuel cells are investigated using the simulation tool Aspen Plus. Special emphasis is placed on thermal heat integration. Methyl-oleate (C19H36O2) is chosen as reference substance for biodiesel. Bioethanol is represented by ethanol (C2H5OH). For the steam reforming concept with heat integration a maximum fuel processing efficiency of 75.6% (76.3%) is obtained for biodiesel (bioethanol) at S/C = 3. For the autothermal reforming concept with heat integration a maximum fuel processing efficiency of 74.1% (75.1%) is obtained for biodiesel (bioethanol) at S/C = 2 and λ = 0.36 (0.35). Taking into account the better dynamic behaviour and lower system complexity of the reforming concept based on ATR, autothermal reforming in combination with a water gas shift reactor is considered as the preferred option for on-board reforming of biodiesel and bioethanol. Based on the simulation results optimum operating conditions for a novel 5 kW biofuel processor are derived.

  6. Production of raw starch-degrading enzyme by Aspergillus sp. and its use in conversion of inedible wild cassava flour to bioethanol.

    Science.gov (United States)

    Moshi, Anselm P; Hosea, Ken M M; Elisante, Emrode; Mamo, Gashaw; Önnby, Linda; Nges, Ivo Achu

    2016-04-01

    The major bottlenecks in achieving competitive bioethanol fuel are the high cost of feedstock, energy and enzymes employed in pretreatment prior to fermentation. Lignocellulosic biomass has been proposed as an alternative feedstock, but because of its complexity, economic viability is yet to be realized. Therefore, research around non-conventional feedstocks and deployment of bioconversion approaches that downsize the cost of energy and enzymes is justified. In this study, a non-conventional feedstock, inedible wild cassava was used for bioethanol production. Bioconversion of raw starch from the wild cassava to bioethanol at low temperature was investigated using both a co-culture of Aspergillus sp. and Saccharomyces cerevisiae, and a monoculture of the later with enzyme preparation from the former. A newly isolated strain of Aspergillus sp. MZA-3 produced raw starch-degrading enzyme which displayed highest activity of 3.3 U/mL towards raw starch from wild cassava at 50°C, pH 5.5. A co-culture of MZA-3 and S. cerevisiae; and a monoculture of S. cerevisiae and MZA-3 enzyme (both supplemented with glucoamylase) resulted into bioethanol yield (percentage of the theoretical yield) of 91 and 95 at efficiency (percentage) of 84 and 96, respectively. Direct bioconversion of raw starch to bioethanol was achieved at 30°C through the co-culture approach. This could be attractive since it may significantly downsize energy expenses.

  7. Production of raw starch-degrading enzyme by Aspergillus sp. and its use in conversion of inedible wild cassava flour to bioethanol.

    Science.gov (United States)

    Moshi, Anselm P; Hosea, Ken M M; Elisante, Emrode; Mamo, Gashaw; Önnby, Linda; Nges, Ivo Achu

    2016-04-01

    The major bottlenecks in achieving competitive bioethanol fuel are the high cost of feedstock, energy and enzymes employed in pretreatment prior to fermentation. Lignocellulosic biomass has been proposed as an alternative feedstock, but because of its complexity, economic viability is yet to be realized. Therefore, research around non-conventional feedstocks and deployment of bioconversion approaches that downsize the cost of energy and enzymes is justified. In this study, a non-conventional feedstock, inedible wild cassava was used for bioethanol production. Bioconversion of raw starch from the wild cassava to bioethanol at low temperature was investigated using both a co-culture of Aspergillus sp. and Saccharomyces cerevisiae, and a monoculture of the later with enzyme preparation from the former. A newly isolated strain of Aspergillus sp. MZA-3 produced raw starch-degrading enzyme which displayed highest activity of 3.3 U/mL towards raw starch from wild cassava at 50°C, pH 5.5. A co-culture of MZA-3 and S. cerevisiae; and a monoculture of S. cerevisiae and MZA-3 enzyme (both supplemented with glucoamylase) resulted into bioethanol yield (percentage of the theoretical yield) of 91 and 95 at efficiency (percentage) of 84 and 96, respectively. Direct bioconversion of raw starch to bioethanol was achieved at 30°C through the co-culture approach. This could be attractive since it may significantly downsize energy expenses. PMID:26481161

  8. Experimental Investigation of 2nd Generation Bioethanol Derived from Empty-fruit-bunch (EFB of Oil-palm on Performance and Exhaust Emission of SI Engine

    Directory of Open Access Journals (Sweden)

    Yanuandri Putrasari

    2014-07-01

    Full Text Available The experimental investigation of 2nd generation bioethanol derived from EFB of oil-palm blended with gasoline for 10, 20, 25% by volume and pure gasoline were conducted on performance and exhaust emission tests of SI engine. A four stroke, four cylinders, programmed fuel injection (PGMFI, 16 valves variable valve timing and electronic lift control (VTEC, single overhead camshaft (SOHC, and 1,497 cm3 SI engine (Honda/L15A was used in this investigation. Engine performance test was carried out for brake torque, power, and fuel consumption. The exhaust emission was analyzed for carbon monoxide (CO and hydrocarbon (HC. The engine was operated on speed range from1,500 until 4,500 rev/min with 85% throttle opening position. The results showed that the highest brake torque of bioethanol blends achieved by 10% bioethanol content at 3,000 to 4,500 rpm, the brake power was greater than pure gasoline at 3,500 to 4,500 rpm for 10% bioethanol, and bioethanol-gasoline blends of 10 and 20% resulted greater bsfc than pure gasoline at low speed from 1,500 to 3,500 rpm. The trend of CO and HC emissions tended to decrease when the engine speed increased.

  9. Effective heterogeneous transition metal glycerolates catalysts for one-step biodiesel production from low grade non-refined Jatropha oil and crude aqueous bioethanol

    Science.gov (United States)

    Lau, Pak-Chung; Kwong, Tsz-Lung; Yung, Ka-Fu

    2016-03-01

    The utilization of bioethanol as the alcohol source for biodiesel production is more environmentally advantageous over methanol owing to its lower toxicity, lower flammability and its sustainable supply from renewable agricultural resources. However, as the presence of water in crude bioethanol is the critical factor limiting the biodiesel production process, the energy-intensive and costly purification of bioethanol is necessary for biodiesel application. Manganese glycerolate (MnGly) is reported the first time here as a robust heterogeneous catalyst that exhibited over 90% conversion by using aqueous ethanol containing 80 wt.% of water in the production of fatty acid ethyl ester (FAEE). The employment of 95 wt.% ethanol with respect to water could achieve 99.7% feedstock conversion in 6 hours under the optimal reaction conditions: reaction temperature (150 °C), feedstock-to-ethanol molar ratio (1:20) and catalyst loading (6 wt.%). Commercially available low grade crude bioethanol with the presence of impurities like sugars were applied which demonstrated remarkable catalytic activity in 24 hours. The high water tolerance of MnGly towards biodiesel production could eventually simplify the purification of bioethanol that consumes less energy and production cost.

  10. Evaluation of Galactose Adapted Yeasts for Bioethanol Fermentation from Kappaphycus alvarezii Hydrolyzates.

    Science.gov (United States)

    Nguyen, Trung Hau; Ra, Chae Hun; Sunwoo, In Yung; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-07-28

    Bioethanol was produced from Kappaphycus alvarezii seaweed biomass using separate hydrolysis and fermentation (SHF). Pretreatment was evaluated for 60 min at 121°C using 12% (w/v) biomass slurry with 364 mM H2SO4. Enzymatic saccharification was then carried out at 45°C for 48 h using Celluclast 1.5 L. Ethanol fermentation with 12% (w/v) K. alvarezii hydrolyzate was performed using the yeasts Saccharomyces cerevisiae KCTC1126, Kluyveromyces marxianus KCTC7150, and Candida lusitaniae ATCC42720 with or without prior adaptation to high concentrations of galactose. When non-adapted S. cerevisiae, K. marxianus, and C. lusitaniae were used, 11.5 g/l, 6.7 g/l, and 6.0 g/l of ethanol were produced, respectively. When adapted S. cerevisiae, K. marxianus, and C. lusitaniae were used, 15.8 g/l, 11.6 g/l, and 13.4 g/l of ethanol were obtained, respectively. The highest ethanol concentration was 15.8 g/l, with YEtOH = 0.43 and YT% = 84.3%, which was obtained using adapted S. cerevisiae. PMID:27056472

  11. Bioethanol production from taro waste using thermo-tolerant yeast Kluyveromyces marxianus K21.

    Science.gov (United States)

    Wu, Wei-Hao; Hung, Wei-Chun; Lo, Kai-Yin; Chen, Yen-Hui; Wan, Hou-Peng; Cheng, Kuan-Chen

    2016-02-01

    In the present study, evaluation and optimization of taro waste (TW), which was mainly composed of taro peels that contain many starch residues, as the main carbon source in medium were studied. The flask studies showed the optimal medium was using 170g/L of TW which is about 100g/L of glucose and 9g/L of CGM as alternative nitrogen source. Simultaneous saccharification and fermentation (SSF) exhibited higher bioethanol productivity toward separation hydrolysis and fermentation (SHF). The optimal condition of SSF was 5% of Kluyveromyces marxianus K21 inoculum at 40°C resulting in the maximum ethanol concentration (48.98g/L) and productivity (2.23g/L/h) after 22h of cultivation. The scaling up experiment in a 5L bioreactor demonstrated that K21 can still maintain its capability. After 20h of cultivation, 43.78g/L of ethanol (2.19g/L/h of productivity) was achieved corresponding to a 94.2% theoretical ethanol yield. PMID:26615498

  12. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept.

    Science.gov (United States)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar; Angelidaki, Irini

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery (>95%) as well as significant hemicelluloses solubilization (49-59%) after acid-based method and lignin solubilization (35-41%) after alkaline H2O2 method were registered. Alkaline pretreatment showed to be superior over the acid-based method with respect to the rate of enzymatic hydrolysis and ethanol productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149kg of EtOH and 115kg of succinic acid can be obtained per 1ton of dry hemp. Results obtained in this study clearly document the potential of industrial hemp for a biorefinery. PMID:26551652

  13. Utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, Svetlana; Mojovic, Ljiljana; Rakin, Marica [University of Belgrade, Faculty of Technology and Metallurgy, Belgrade (Serbia); Pejin, Dusanka; Pejin, Jelena [University of Novi Sad, Faculty of Technology, Novi Sad (Serbia)

    2011-08-15

    Bioethanol production by simultaneous saccharification and fermentation (SSF) of corn meal by Saccharomyces cerevisiae var. ellipsoideus yeast in a batch system with prior ultrasound or microwave treatment was studied. The optimal duration of the pretreatments and the SSF process kinetics were assessed and determined. Also, the effect of ultrasound and microwave pretreatments on ethanol yield and productivity was investigated. An optimal duration of 5 min was determined for both pretreatments. Ultrasonic and microwave pretreatments effectively increased the glucose concentration obtained after liquefaction by 6.82 and 8.48%, respectively, compared to untreated control sample. Also, both pretreatments improved ethanol yield and productivity during the SSF process. Ultrasound and microwave pretreatments increased the maximum ethanol concentration produced in the SSF process by 11.15 and 13.40% (compared to the control sample), respectively. The application of microwave pretreatment resulted in higher glucose release during liquefaction and consequently in higher ethanol concentration, compared to ultrasound pretreatment. A maximum ethanol concentration of 9.91% (w/w) and percentage of theoretical ethanol yield of 92.27% were achieved after 44 h of the SSF process of corn meal with prior microwave treatment. (orig.)

  14. Optimization of alkaline pretreatment of coffee pulp for production of bioethanol.

    Science.gov (United States)

    Menezes, Evandro G T; do Carmo, Juliana R; Alves, José Guilherme L F; Menezes, Aline G T; Guimarães, Isabela C; Queiroz, Fabiana; Pimenta, Carlos J

    2014-01-01

    The use of lignocellulosic raw materials in bioethanol production has been intensively investigated in recent years. However, for efficient conversion to ethanol, many pretreatment steps are required prior to hydrolysis and fermentation. Coffee stands out as the most important agricultural product in Brazil and wastes such as pulp and coffee husk are generated during the wet and dry processing to obtain green grains, respectively. This work focused on the optimization of alkaline pretreatment of coffee pulp with the aim of making its use in the alcoholic fermentation. A central composite rotatable design was used with three independent variables: sodium hydroxide and calcium hydroxide concentrations and alkaline pretreatment time, totaling 17 experiments. After alkaline pretreatment the concentration of cellulose, hemicellulose, and lignin remaining in the material, the subsequent hydrolysis of the cellulose component and its fermentation of substrate were evaluated. The results indicated that pretreatment using 4% (w/v) sodium hydroxide solution, with no calcium hydroxide, and 25 min treatment time gave the best results (69.18% cellulose remaining, 44.15% hemicelluloses remaining, 25.19% lignin remaining, 38.13 g/L of reducing sugars, and 27.02 g/L of glucose) and produced 13.66 g/L of ethanol with a yield of 0.4 g ethanol/g glucose.

  15. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass.

    Science.gov (United States)

    Luque, Luis; Westerhof, Roel; Van Rossum, Guus; Oudenhoven, Stijn; Kersten, Sascha; Berruti, Franco; Rehmann, Lars

    2014-06-01

    This paper evaluates a novel biorefinery approach for the conversion of lignocellulosic biomass from pinewood. A combination of thermochemical and biochemical conversion was chosen with the main product being ethanol. Fast pyrolysis of lignocellulosic biomasss with fractional condensation of the products was used as the thermochemical process to obtain a pyrolysis-oil rich in anhydro-sugars (levoglucosan) and low in inhibitors. After hydrolysis of these anhydro-sugars, glucose was obtained which was successfully fermented, after detoxification, to obtain bioethanol. Ethanol yields comparable to traditional biochemical processing were achieved (41.3% of theoretical yield based on cellulose fraction). Additional benefits of the proposed biorefinery concept comprise valuable by-products of the thermochemical conversion like bio-char, mono-phenols (production of BTX) and pyrolytic lignin as a source of aromatic rich fuel additive. The inhibitory effect of thermochemically derived fermentation substrates was quantified numerically to compare the effects of different process configurations and upgrading steps within the biorefinery approach. PMID:24681340

  16. Study on bio-ethanol production from oil palm (Elaies Guineensis) trunks sap using factorial design

    Energy Technology Data Exchange (ETDEWEB)

    Norhazimah, A. H.; Che Ku, M. Faizala [Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang (Malaysia)], email: amfaizal@ump.edu.my

    2011-07-01

    Oil palm (Elaies Guineensis) trunks (OPT), a waste generated from the re-plantation of oil palm trees for palm oil production, contain useful fermentable sugar for bio-ethanol production, and are a very important biomass material for future energy production. The fermentation usually can be affected along several parameters: temperature, pH, agitation rate, percentage inoculums, time of incubation, nitrogen sources, age of the inoculums and other chemical and physical factors. Since identifying all the effects of a particular factor on the fermentation process is impractical for reasons of time and cost, the approach of this study was based on a two-level five-factor (25) full factorial design (FFD) in order to identify the independent parameters for screening experiment purposes and determine the range of levels of the factor as well as the regions for optimization. The results from this study showed that the most influential principal factors affecting ethanol concentration and productivity were temperature, followed by initial pH and agitation rate.

  17. Genesis and consolidation of the Brazilian bioethanol: A review of policies and incentive mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Rico, Julieta A. Puerto [Graduate Energy Program, University of Sao Paulo (Brazil); Mercedes, Sonia S.P. [Institute of Electrotechnics and Energy, University of Sao Paulo (Brazil); Sauer, Ildo L. [Institute of Electrotechnics and Energy, University of Sao Paulo (Brazil); Graduate Energy Program, University of Sao Paulo (Brazil)

    2010-09-15

    This article aims to investigate the introduction, sustenance and consolidation of bioethanol in Brazil. It presents an analysis of its introductory stage, from the first decades of the 20th century until the early 1970s, when, in a second stage, additional measures allowed for its consolidation and maturity, under the widely known Proalcool. The paper presents a historical reinterpretation of the policies, mechanisms and instruments adopted in both stages, aiming to highlight the economical and political links. It is concluded that the interests of the agrarian elites, operating at the political level, and the fuel supply crisis during Second World War were basic during the first stage, to sustain a productive and logistic capacity and maintain ethanol alive as an automotive fuel. It is also concluded that the launching of Proalcool represented a transition combining the interests of the sugarcane agribusiness, burdened by the drop in sugar prices, and the need to equilibrate the balance of payments due to the oil shocks of the 1970s. Ethanol supply shocks harmed its credibility and its commercial consolidation was only possible through the introduction of flex-fuel vehicles with expectations strongly relying on climate change mitigation actions. (author)

  18. Optimization of the Dilute Acid Hydrolyzator for Cellulose-to-Bioethanol Saccharification

    Directory of Open Access Journals (Sweden)

    Theocharis Tsoutsos

    2011-10-01

    Full Text Available The production of fermentable sugar solutions for bioethanol production is optimized. The process of acid hydrolysis using dilute H2SO4 was selected. Suitable lignocellulosics which are abundant in the Mediterranean (corn stover, hardwood and wheat straw were investigated, and therefore their exploitation could be economically feasible. The process was studied in the two most common hydrolyzators (batch and continuous stirred by developing a specific simulator for different raw materials. The simulation was applied in a wide range of temperatures (100–240 °C and acid concentrations (0.5–3.0% w/w, in order to optimize the productivity of fermentable pentosans and hexosans. It was confirmed that the production of sugar-rich solutions required a two-stage process; in the first stage the degradation of sugars takes place, since pentoses are formulated under milder conditions than hexoses; in the second stage of simulation, a variety of samples with high sugar concentration and low degradation products are tested. The xylose productivity ranges between 85–95% under the most optimal conditions compared to the theoretical values, while large variations in glucose were frequent (10–55% in comparison with the theoretical values. The best theoretical results were achieved for wheat straw hydrolysis in a batch reactor.

  19. Liquid-liquid equilibrium extraction of ethanol with mixed solvent for bioethanol concentration

    Institute of Scientific and Technical Information of China (English)

    Hiroaki Habaki; Haihao Hu; Ryuichi Egashira

    2016-01-01

    The extraction of ethanol with the solvents of aldehydes mixed with m-xylene was studied for the bioethanol concentration process. Furfural and benzaldehyde were selected as extraction solvents, with which the solubility of water is smal , expecting large distribution coefficient of ethanol. The liquid–liquid two-phase region was the largest with m-xylene solvent, followed by benzaldehyde and furfural. The region of two liquid–liquid phase be-came larger with the mixed solvent of m-xylene and furfural than that with furfural solvent. The NRTL model was applied to the ethanol–water–furfural–m-xylene system, and the model could well express the liquid–liquid equilibrium of the system. For any solvent used in this study, the separation selectivity of ethanol relative to water decreased as the distribution coefficient of ethanol increased. The separation selectivity with m-xylene was the largest among the employed solvents, but the distribution coefficient was the smal est. The solvent mix-ture of furfural and m-xylene showed relatively high distribution coefficient of ethanol and separation selectivity, even in the higher mass fraction of m-xylene in the solvent phase. The ethanol extraction with a countercurrent multistage extractor by a continuous operation was simulated to evaluate the extraction performance. The ethanol content could be concentrated in the extract phase with relatively small number of extraction stages but low yield of ethanol was obtained.

  20. Bioethanol production from leafy biomass of mango (Mangifera indica) involving naturally isolated and recombinant enzymes.

    Science.gov (United States)

    Das, Saprativ P; Ravindran, Rajeev; Deka, Deepmoni; Jawed, Mohammad; Das, Debasish; Goyal, Arun

    2013-01-01

    The present study describes the usage of dried leafy biomass of mango (Mangifera indica) containing 26.3% (w/w) cellulose, 54.4% (w/w) hemicellulose, and 16.9% (w/w) lignin, as a substrate for bioethanol production from Zymomonas mobilis and Candida shehatae. The substrate was subjected to two different pretreatment strategies, namely, wet oxidation and an organosolv process. An ethanol concentration (1.21 g/L) was obtained with Z. mobilis in a shake-flask simultaneous saccharification and fermentation (SSF) trial using 1% (w/v) wet oxidation pretreated mango leaves along with mixed enzymatic consortium of Bacillus subtilis cellulase and recombinant hemicellulase (GH43), whereas C. shehatae gave a slightly higher (8%) ethanol titer of 1.31 g/L. Employing 1% (w/v) organosolv pretreated mango leaves and using Z. mobilis and C. shehatae separately in the SSF, the ethanol titers of 1.33 g/L and 1.52 g/L, respectively, were obtained. The SSF experiments performed with 5% (w/v) organosolv-pretreated substrate along with C. shehatae as fermentative organism gave a significantly enhanced ethanol titer value of 8.11 g/L using the shake flask and 12.33 g/L at the bioreactor level. From the bioreactor, 94.4% (v/v) ethanol was recovered by rotary evaporator with 21% purification efficiency. PMID:23768115

  1. Bioethanol production involving recombinant C. thermocellum hydrolytic hemicellulase and fermentative microbes.

    Science.gov (United States)

    Das, Saprativ P; Ravindran, Rajeev; Ahmed, Shadab; Das, Debasish; Goyal, Dinesh; Fontes, Carlos M G A; Goyal, Arun

    2012-07-01

    The enhancement of the biomass productivity of Escherichia coli cells harbouring the truncated 903 bp gene designated as glycoside hydrolase family 43 (GH43) from Clostridium thermocellum showing hemicellulase activity along with its further use in simultaneous saccharification and fermentation (SSF) process is described. (Phosphoric acid) H(3)PO(4)-acetone treatment and ammonia fibre expansion (AFEX) were the pretreatment strategies employed on the leafy biomass of mango, poplar, neem and asoka among various substrates owing to their high hemicellulose content. GH43 showed optimal activity at a temperature of 50 °C, pH 5.4 with stability over a pH range of 5.0-6.2. A 4-fold escalation in growth of the recombinant E. coli cells was observed when grown using repeated batch strategy in LB medium supplemented with glucose as co-substrate. Candida shehatae utilizing pentose sugars was employed for bioethanol production. AFEX pretreatment proved to be better over acid-acetone technique. The maximum ethanol concentration (1.44 g/L) was achieved for AFEX pretreated mango (1%, w/v) followed by poplar with an ethanol titre (1.32 g/L) in shake flask experiments. A 1.5-fold increase in ethanol titre (2.11 g/L) was achieved with mango (1%, w/v) in a SSF process using a table top 2-L bioreactor with 1 L working volume. PMID:22383050

  2. Bioethanol/gasoline blends for fuelling conventional and hybrid scooter. Regulated and unregulated exhaust emissions

    Science.gov (United States)

    Costagliola, Maria Antonietta; Prati, Maria Vittoria; Murena, Fabio

    2016-05-01

    The aim of this experimental activity was to evaluate the influence of ethanol fuel on the pollutant emissions measured at the exhaust of a conventional and a hybrid scooter. Both scooters are 4-stroke, 125 cm3 of engine capacity and Euro 3 compliant. They were tested on chassis dynamometer for measuring gaseous emissions of CO, HC, NOx, CO2 and some toxic micro organic pollutants, such as benzene, 1,3-butadiene, formaldehyde and acetaldehyde. The fuel consumption was estimated throughout a carbon balance on the exhaust species. Moreover, total particles number with diameter between 20 nm up to 1 μm was measured. Worldwide and European test cycles were carried out with both scooters fuelled with gasoline and ethanol/gasoline blends (10/90, 20/80 and 30/70% vol). According to the experimental results relative to both scooter technologies, the addiction of ethanol in gasoline reduces CO and particles number emissions. The combustion of conventional scooter becomes unstable when a percentage of 30%v of bioethanol is fed; as consequence a strong increasing of hydrocarbon is monitored, including carcinogenic species. The negative effects of ethanol fuel are related to the increasing of fuel consumption due to the less carbon content for volume unit and to the increasing of formaldehyde and acetaldehyde due to the higher oxygen availability. Almost 70% of Ozone Formation Potential is covered by alkenes and aromatics.

  3. Screening of Jerusalem artichoke varieties for bio-ethanol production in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Passarinho, P.C.; Oliveira, A.C.; Rosa, M.F. [INETI, Departamento de Energias Renovaveis, Estrada do Paco do Lumiar, Ed. G, 1649-038, Lisboa (Portugal)

    2008-07-01

    The aim of this work was the evaluation of the potential of 9 Jerusalem artichoke varieties for the sustainable production of bio-ethanol in Portugal. The tubers, which are the part of the plant with higher sugar content, were harvested at different stages of development (29 to 55 weeks), and crashed for juice extraction. The two phases obtained were characterized in terms of total sugars, protein, ash and dry matter. The ethanol productivity of the different J. artichoke varieties was then evaluated fermenting juice or mixtures of juice and pulp aqueous extract with a strain of Kluyveromyces marxianus, a yeast able to hydrolyze and ferment inulin polymers. The chamical characteristic more dependable on the harvest period was the amount of total sugars in the tubers. Juices, obtained until 48 weeks development, contained 173 - 235 g/L of total sugars while juices from the last harvest presented markedly lower sugar contents, indicating crop degradation or sugar migration to the soil. Regarding the fermentative process, ethanol yields ranged from 0.3 to 0.5 g/g. The main conclusion of this work indicates C13 variety as the best. Although bearing a lower sugar concentration in tubers, the substantially higher agricultural productivities (kg/m2) after 8 months growing allowed to estimate productions higher than 10 000 L/ha.

  4. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Directory of Open Access Journals (Sweden)

    Jørgensen Henning

    2008-04-01

    Full Text Available Abstract Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of the pretreatment on the straw cell-wall matrix and its components are characterised microscopically (atomic force microscopy and scanning electron microscopy and spectroscopically (attenuated total reflectance Fourier transform infrared spectroscopy in order to understand this increase in digestibility. Results The hydrothermal pretreatment does not degrade the fibrillar structure of cellulose but causes profound lignin re-localisation. Results from the current work indicate that wax has been removed and hemicellulose has been partially removed. Similar changes were found in wheat straw pretreated by steam explosion. Conclusion Results indicate that hydrothermal pretreatment increases the digestibility by increasing the accessibility of the cellulose through a re-localisation of lignin and a partial removal of hemicellulose, rather than by disruption of the cell wall.

  5. Effect of double-step steam explosion pretreatment in bioethanol production from softwood.

    Science.gov (United States)

    Cotana, Franco; Cavalaglio, Gianluca; Gelosia, Mattia; Coccia, Valentina; Petrozzi, Alessandro; Nicolini, Andrea

    2014-09-01

    The study investigated the production of bioethanol from softwood, in particular pine wood chip. The steam explosion pretreatment was largely investigated, evaluating also the potential use of a double-step process to increase ethanol production through the use of both solid and liquid fraction after the pretreatment. The pretreatment tests were carried out at different conditions, determining the composition of solid and liquid fraction and steam explosion efficiency. The enzymatic hydrolysis was carried out with Ctec2 enzyme while the fermentation was carried out using Saccharomyces Cerevisiae yeast "red ethanol". It was found that the best experimental result was obtained for a single-step pretreated sample (10.6 g of ethanol/100 g of initial biomass dry basis) for a 4.53 severity. The best double-step overall performance was equal to 8.89 g ethanol/100 g of initial biomass dry basis for a 4.27 severity. The enzymatic hydrolysis strongly depended on the severity of the pretreatment while the fermentation efficiency was mainly influenced by the concentration of the inhibitors. The ethanol enhancing potential of a double-step steam explosion could slightly increase the ethanol production compared to single-step potential.

  6. Optimization of alkaline pretreatment of coffee pulp for production of bioethanol.

    Science.gov (United States)

    Menezes, Evandro G T; do Carmo, Juliana R; Alves, José Guilherme L F; Menezes, Aline G T; Guimarães, Isabela C; Queiroz, Fabiana; Pimenta, Carlos J

    2014-01-01

    The use of lignocellulosic raw materials in bioethanol production has been intensively investigated in recent years. However, for efficient conversion to ethanol, many pretreatment steps are required prior to hydrolysis and fermentation. Coffee stands out as the most important agricultural product in Brazil and wastes such as pulp and coffee husk are generated during the wet and dry processing to obtain green grains, respectively. This work focused on the optimization of alkaline pretreatment of coffee pulp with the aim of making its use in the alcoholic fermentation. A central composite rotatable design was used with three independent variables: sodium hydroxide and calcium hydroxide concentrations and alkaline pretreatment time, totaling 17 experiments. After alkaline pretreatment the concentration of cellulose, hemicellulose, and lignin remaining in the material, the subsequent hydrolysis of the cellulose component and its fermentation of substrate were evaluated. The results indicated that pretreatment using 4% (w/v) sodium hydroxide solution, with no calcium hydroxide, and 25 min treatment time gave the best results (69.18% cellulose remaining, 44.15% hemicelluloses remaining, 25.19% lignin remaining, 38.13 g/L of reducing sugars, and 27.02 g/L of glucose) and produced 13.66 g/L of ethanol with a yield of 0.4 g ethanol/g glucose. PMID:24376222

  7. Old oil palm trunk: A promising source of sugars for bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, H.; Ohara, S. [Department of Global Agricultural Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo 113-8657 (Japan); Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687 (Japan); Tanaka, R.; Yamamoto, K. [Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687 (Japan); Sulaiman, O.; Hashim, R.; Hamid, Z.A.A.; Yahya, M.K.A. [School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang (Malaysia); Kosugi, A.; Arai, T.; Murata, Y.; Nirasawa, S. [Japan International Research Center for Agricultural Sciences, 1-1, Owashi, Tsukuba, Ibaraki 305-8686 (Japan); Mohd Yusof, Mohd Nor; Ibrahim, Wan Asma [Forest Research Institute Malaysia (FRIM), Kepong, 52109 Selangor (Malaysia); Mori, Y. [Department of Global Agricultural Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo 113-8657 (Japan); Japan International Research Center for Agricultural Sciences, 1-1, Owashi, Tsukuba, Ibaraki 305-8686 (Japan)

    2010-11-15

    Oil palm trees are replanted at an interval of approximately 25 years because of decreased oil productivity of old trees. Consequently the felled trunks are the enormous amount of biomass resources in the palm oil producing countries such as Malaysia and Indonesia. In this report, we found that the felled oil palm trunk contains large quantity of sap, which accounts for approximately 70% of the whole trunk weight, and that sugars existing in the sap increased remarkably during storage after logging. Total sugar in the sap increased from 83 mg ml{sup -1} to 153 mg ml{sup -1}, the concentration comparable to that of sugar cane juice, after 30 days of storage, followed by the gradual decrease. The sugars contained in the sap were glucose, sucrose, fructose and galactose, all of which are fermentable by ordinary industrial yeast strains. The results indicate that old oil palm trunk becomes a promising source of sugars by proper aging after logging and, thus, its sap can be a good feedstock for bioethanol. (author)

  8. Bioconversion of municipal solid waste to glucose for bio-ethanol production.

    Science.gov (United States)

    Li, Aiduan; Antizar-Ladislao, Blanca; Khraisheh, Majeda

    2007-05-01

    Selected biodegradable municipal solid waste fractions were subjected to fifteen different pre-hydrolysis treatments to obtain the highest glucose yield for bio-ethanol production. Pre-hydrolysis treatments consisted of dilute acid (H(2)SO(4), HNO(3) or HCl, 1 and 4%, 180 min, 60 degrees C), steam treatment (121 and 134 degrees C, 15 min), microwave treatment (700 W, 2 min) or a combination of two of them. Enzymatic hydrolysis was carried out with Trichoderma reesei and Trichoderma viride (10 and 60 FPU g(-1) substrate). Glucose yields were compared using a factorial experimental design. The highest glucose yield (72.80%) was obtained with a pre-hydrolysis treatment consisting of H(2)SO(4) at 1% concentration, followed by steam treatment at 121 degrees C, and enzymatic hydrolysis with Trichoderma viride at 60 FPU g(-1) substrate. The contribution of enzyme loading and acid concentration was significantly higher (49.39 and 47.70%, respectively), than the contribution of temperature during steam treatment (0.13%) to the glucose yield.

  9. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Science.gov (United States)

    Kristensen, Jan B; Thygesen, Lisbeth G; Felby, Claus; Jørgensen, Henning; Elder, Thomas

    2008-01-01

    Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of the pretreatment on the straw cell-wall matrix and its components are characterised microscopically (atomic force microscopy and scanning electron microscopy) and spectroscopically (attenuated total reflectance Fourier transform infrared spectroscopy) in order to understand this increase in digestibility. Results The hydrothermal pretreatment does not degrade the fibrillar structure of cellulose but causes profound lignin re-localisation. Results from the current work indicate that wax has been removed and hemicellulose has been partially removed. Similar changes were found in wheat straw pretreated by steam explosion. Conclusion Results indicate that hydrothermal pretreatment increases the digestibility by increasing the accessibility of the cellulose through a re-localisation of lignin and a partial removal of hemicellulose, rather than by disruption of the cell wall. PMID:18471316

  10. Biodiesel and bioethanol production: A sustainable alternative for the energy crisis?

    Directory of Open Access Journals (Sweden)

    Claudia Castro Martínez

    2012-09-01

    Full Text Available The present contribution intends to give an overview of the current -status of the energy crisis and suggest some sustainable alternatives for energy production. In first place, a brief summary of the history about resources for energy production is presented. The high dependency of fossil combustibles it is well known and has been estimated that more than 90% of the used energy comes from non-renewable resources such as oil, gas and carbon. In the same way, here, it is described that oil is, by far, the main source of energy used to date and as a consequence, this resource is, unavoidably,coming to an end and at the same time is causing and increasing environmental pollution problems. Later in this work, it is suggested that in order to achieve the energetic sustainability, the development of alternative sources that will allow the reduction of toxic greenhouse gas (GHG emissions as well as a decrease of water usage along with a decrease in the energy production costs are needed. One of the alternatives that have been proposed is the production of biofuels, such as biodiesel and bioethanol. Here, some of the main properties at the level of the employed raw materials and production systems are cited. Finally, this work suggests some solutions that are under development worldwide in order to face thiscurrent energy situation.

  11. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation.

    Science.gov (United States)

    Kim, Young-Kee; Lee, Haryeong

    2016-03-01

    The effect of two types of nanoparticles on the enhancement of bioethanol production in syngas fermentation by Clostridium ljungdahlii was examined. Methyl-functionalized silica and methyl-functionalized cobalt ferrite-silica (CoFe2O4@SiO2-CH3) nanoparticles were used to improve syngas-water mass transfer. Of these, CoFe2O4@SiO2-CH3 nanoparticles showed better enhancement of syngas mass transfer. The nanoparticles were recovered using a magnet and reused five times to evaluate reusability, and it was confirmed that their capability for mass transfer enhancement was maintained. Both types of nanoparticles were applied to syngas fermentation, and production of biomass, ethanol, and acetic acid was enhanced. CoFe2O4@SiO2-CH3 nanoparticles were more efficient for the productivity of syngas fermentation due to improved syngas mass transfer. The biomass, ethanol, and acetic acid production compared to a control were increased by 227.6%, 213.5%, and 59.6%, respectively by addition of CoFe2O4@SiO2-CH3 nanoparticles. The reusability of the nanoparticles was confirmed by reuse of recovered nanoparticles for fermentation. PMID:26773957

  12. Effects of fertilizer application and dry/wet processing of Miscanthus x giganteus on bioethanol production.

    Science.gov (United States)

    Boakye-Boaten, Nana Abayie; Xiu, Shuangning; Shahbazi, Abolghasem; Wang, Lijun; Li, Rui; Mims, Michelle; Schimmel, Keith

    2016-03-01

    The effects of wet and dry processing of miscanthus on bioethanol production using simultaneous saccharification and fermentation (SSF) process were investigated, with wet samples showing higher ethanol yields than dry samples. Miscanthus grown with no fertilizer, with fertilizer and with swine manure were sampled for analysis. Wet-fractionation was used to separate miscanthus into solid and liquid fractions. Dilute sulfuric acid pretreatment was employed and the SSF process was performed with saccharomyces cerevisiae and a cocktail of enzymes at 35°C. After pretreatment, cellulose compositions of biomass of the wet samples increased from 61.0-67.0% to 77.0-87.0%, which were higher than the compositions of dry samples. The highest theoretical ethanol yield of 88.0% was realized for wet processed pretreated miscanthus, grown with swine manure. Changes to the morphology and chemical composition of the biomass samples after pretreatment, such as crystallinity reduction, were observed using SEM and FTIR. These changes improved ethanol production. PMID:26773953

  13. Biological hydrogen and methane production from bagasse bioethanol fermentation residues using a two-stage bioprocess.

    Science.gov (United States)

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Chung, Man-Chien; Chan, Kun-Chi

    2016-06-01

    This study investigated the recovery of H2 and CH4 from bagasse bioethanol fermentation residues (bagasse BEFR) using a two-stage bioprocess. In the hydrogen fermentation bioreactor (HFB), carbohydrate removal efficiency was maintained at 82-93% and the highest hydrogen yield was 8.24mL/gCOD at volumetric loading rate (VLR) of 80kgCOD/m(3)/day. The results indicated a positive correlation between hydrogen yield and butyrate-to-acetate ratio, which might be due to the mechanisms of lactate/acetate utilization for hydrogen production and acetogenesis occurring in the HFB. Remaining volatile fatty acids and alcohols in the HFB effluent were further utilized for methane production in methane fermentation bioreactor (MFB), in which the highest methane yield of 345.2mL/gCOD was attained at VLR of 2.5kgCOD/m(3)/day. Overall, the two-stage bioprocess achieved a maximum COD removal of 81% from bagasse BEFR, and converted 0.3% and 72.8% of COD in the forms of H2 and CH4, respectively. PMID:26774443

  14. Increment of carbohydrate concentration of Chlorella minutissima microalgae for bioethanol production

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Freitas Margarites

    2014-11-01

    Full Text Available Microalgae, like any other microorganism react to changes in the external environment with changes in their intracellular environment. Thus, the manipulation of cultivation conditions, especially the presence or absence of certain nutrients, stimulates the biosynthesis of compounds of interest. Their carbohydrates can be used to produce bioethanol. The objective of this study was to evaluate the effect of the medium and the concentrations of nitrogen and phosphate components used in the culture medium of the microalgae Chlorella minutissima in the carbohydrate concentration of the same. Box-Behnken Planning was used, totaling 15 trials. The cultivations were carried out until early stationary phase of growth of the microalgae in closed 2 L reactors. At the end of the cultivation, the carbohydrate concentrations of dry biomass (% and yield in carbohydrates (g.L-1 .d-1 were determined. According to the analysis of effects, the microalgae Chlorella minutissima cultivated in Basal medium, with the addition of 0.125 gL-1 of the nitrogenized component (KNO3 and without addition of phosphatized components (K2HPO4 and KH2PO4 had a higher yield in carbohydrates in the cultivation (0,030 ± 0.002 g.L-1 .d-1 .

  15. The role of surface reactions on the active and selective catalyst design for bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Benito, M. [Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Ciemat, Av. Complutense 22, 28040 Madrid (Spain); Padilla, R.; Serrano-Lotina, A.; Rodriguez, L.; Daza, L. [Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Brey, J.J. [Hynergreen Technologies, Av. Buhaira 2, 41018 Sevilla (Spain)

    2009-07-01

    In order to study the role of surface reactions involved in bioethanol steam reforming mechanism, a very active and selective catalyst for hydrogen production was analysed. The highest activity was obtained at 700 C, temperature at which the catalyst achieved an ethanol conversion of 100% and a selectivity to hydrogen close to 70%. It also exhibited a very high hydrogen production efficiency, higher than 4.5 mol H{sub 2} per mol of EtOH fed. The catalyst was operated at a steam to carbon ratio (S/C) of 4.8, at 700 C and atmospheric pressure. No by-products, such as ethylene or acetaldehyde were observed. In order to consider a further application in an ethanol processor, a long-term stability test was performed under the conditions previously reported. After 750 h, the catalyst still exhibited a high stability and selectivity to hydrogen production. Based on the intermediate products detected by temperature programmed desorption and reaction (TPD and TPR) experiments, a reaction pathway was proposed. Firstly, the adsorbed ethanol is dehydrogenated to acetaldehyde producing hydrogen. Secondly, the adsorbed acetaldehyde is transformed into acetone via acetic acid formation. Finally, acetone is reformed to produce hydrogen and carbon dioxide, which were the final reaction products. The promotion of such reaction sequence is the key to develop an active, selective and stable catalyst, which is the technical barrier for hydrogen production by ethanol reforming. (author)

  16. Lignocellulosic Fermentation of Wild Grass Employing Recombinant Hydrolytic Enzymes and Fermentative Microbes with Effective Bioethanol Recovery

    Directory of Open Access Journals (Sweden)

    Saprativ P. Das

    2013-01-01

    Full Text Available Simultaneous saccharification and fermentation (SSF studies of steam exploded and alkali pretreated different leafy biomass were accomplished by recombinant Clostridium thermocellum hydrolytic enzymes and fermentative microbes for bioethanol production. The recombinant C. thermocellum GH5 cellulase and GH43 hemicellulase genes expressed in Escherichia coli cells were grown in repetitive batch mode, with the aim of enhancing the cell biomass production and enzyme activity. In batch mode, the cell biomass (A600 nm of E. coli cells and enzyme activities of GH5 cellulase and GH43 hemicellulase were 1.4 and 1.6 with 2.8 and 2.2 U·mg−1, which were augmented to 2.8 and 2.9 with 5.6 and 3.8 U·mg−1 in repetitive batch mode, respectively. Steam exploded wild grass (Achnatherum hymenoides provided the best ethanol titres as compared to other biomasses. Mixed enzyme (GH5 cellulase, GH43 hemicellulase mixed culture (Saccharomyces cerevisiae, Candida shehatae system gave 2-fold higher ethanol titre than single enzyme (GH5 cellulase single culture (Saccharomyces cerevisiae system employing 1% (w/v pretreated substrate. 5% (w/v substrate gave 11.2 g·L−1 of ethanol at shake flask level which on scaling up to 2 L bioreactor resulted in 23 g·L−1 ethanol. 91.6% (v/v ethanol was recovered by rotary evaporator with 21.2% purification efficiency.

  17. The role of surface reactions on the active and selective catalyst design for bioethanol steam reforming

    Science.gov (United States)

    Benito, M.; Padilla, R.; Serrano-Lotina, A.; Rodríguez, L.; Brey, J. J.; Daza, L.

    In order to study the role of surface reactions involved in bioethanol steam reforming mechanism, a very active and selective catalyst for hydrogen production was analysed. The highest activity was obtained at 700 °C, temperature at which the catalyst achieved an ethanol conversion of 100% and a selectivity to hydrogen close to 70%. It also exhibited a very high hydrogen production efficiency, higher than 4.5 mol H 2 per mol of EtOH fed. The catalyst was operated at a steam to carbon ratio (S/C) of 4.8, at 700 °C and atmospheric pressure. No by-products, such as ethylene or acetaldehyde were observed. In order to consider a further application in an ethanol processor, a long-term stability test was performed under the conditions previously reported. After 750 h, the catalyst still exhibited a high stability and selectivity to hydrogen production. Based on the intermediate products detected by temperature programmed desorption and reaction (TPD and TPR) experiments, a reaction pathway was proposed. Firstly, the adsorbed ethanol is dehydrogenated to acetaldehyde producing hydrogen. Secondly, the adsorbed acetaldehyde is transformed into acetone via acetic acid formation. Finally, acetone is reformed to produce hydrogen and carbon dioxide, which were the final reaction products. The promotion of such reaction sequence is the key to develop an active, selective and stable catalyst, which is the technical barrier for hydrogen production by ethanol reforming.

  18. Bioethanol Production from Enzymatically Hydrolysed Cotton Stalk: One Approach Towards Sustainable Energy Development

    Directory of Open Access Journals (Sweden)

    Mirza Zaheer Baig

    2014-12-01

    Full Text Available The ligno cellulosic nature of cotton stalk favours to use as renewable material for variety of commercial applications. Present study was evaluating the potential of cotton stalk for bioethanol production. In this regards cotton stalk were subjected to series of treatment including pretreatment, hydrolysis and fermentation. The resultant data shows that physically pre-treated cotton stalk when subjected to 2% alkaline solution at 121oC for 60 minute followed by enzyme hydrolysis with 100 CMC units of enzyme releases sugar of 0.49 g/g and 24.5 g/L of biomass.Furthermore when it goes to fermentation using co culture of Saccharomyces cerevisiae and Pachysolen tannophilus,givesan ethanol concentration of 9.56 g/L which corresponds to a yield of 0.191 g/g of biomass, 0.298 g/g of holocelluloses and 0.392 g/g of fermentable sugars while fermentation and sugar consumption efficiencies were recorded as 76.85% and 97.81% respectively.

  19. Development of a Solid-State Fermentation System for Producing Bioethanol from Food Waste

    Science.gov (United States)

    Honda, Hiroaki; Ohnishi, Akihiro; Fujimoto, Naoshi; Suzuki, Masaharu

    Liquid fermentation is the a conventional method of producing bioethanol. However, this method results in the formation of high concentrations waste after distillation and futher treatment requires more energy and is costly(large amounts of costly energy).Saccharification of dried raw garbage was tested for 12 types of Koji starters under the following optimum culture conditions: temperature of 30°C and initial moisture content of 50%.Among all the types, Aspergillus oryzae KBN650 had the highest saccharifying power. The ethanol-producing ability of the raw garbage was investigated for 72 strains of yeast, of which Saccharomyces cerevisiae A30 had the highest ethanol production(yield)under the following optimum conditions: 1 :1 ratio of dried garbage and saccharified garbage by weight, and initial moisture content of 60%. Thus, the solid-state fermentation system consisted of the following 4 processes: moisture control, saccharification, ethanol production and distillation. This system produced 0.6kg of ethanol from 9.6kg of garbage. Moreover the ethanol yield from all sugars was calculated to be 0.37.

  20. Direct Bioconversion of Oil Palm Empty Fruit Bunches for Bioethanol Production By Solid State Bioconversion

    Directory of Open Access Journals (Sweden)

    Nassereldeen Ahmed Kabbashi

    2010-09-01

    Full Text Available The bioethanol production was conducted by utilizing agriculture waste, palm oil empty fruit bunches (EFB with the aid of T. harzianum and yeast, Saccharomyces cerevisiae using solid state bioconversion method. The compatibility of various fungal strains was done as to develop the direct bioconversion process of compatible mixed culture. Analyzes such ethanol estimation, reducing sugar and glucosamine as growth indicator were conducted in order to select the best experimented run for optimization. The optimization of process conditions, by using central composite design (CCD was carried out. Optimization of process condition was done with varied level of moisture content, pH, inoculum size, concentration of co-substrate (wheat flour and mineral solutions. Statistical analysis showed that the optimum process condition for moisture content was 50% (v/w, pH of 4, inoculum size of 10% (v/v, concentration of wheat flour of 1% (v/v and mineral solutions 1%(v/v. In this study, the application levels of the methods of environmental management in regards to the maximum production were determined. The final optimization with the developed process conditions indicated that the maximum production was increased from 14.315 (v/v to 34.785(v/v.

  1. Thermochemical recovery of heat contained in flue gases by means of bioethanol conversion

    Science.gov (United States)

    Pashchenko, D. I.

    2013-06-01

    In the present paper consideration is being given to the use of bioethanol in the schemes of thermochemical recovery of heat contained in exit flue gases. Schematic diagrams illustrate the realization of thermochemical heat recovery by implementing ethanol steam conversion and conversion of ethanol by means of products of its complete combustion. The feasibility of attaining a high degree of recovery of heat contained in flue gases at the moderate temperature (up to 450°C) of combustion components is demonstrated in the example of the energy balance of the system for thermochemical heat recovery. The simplified thermodynamic analysis of the process of ethanol steam conversion was carried out in order to determine possible ranges of variation of process variables (temperature, pressure, composition) of a reaction mixture providing the efficient heat utilization. It was found that at the temperature above 600 K the degree of ethanol conversion is near unity. The equilibrium composition of products of reaction of ethanol steam conversion has been identified for different temperatures at which the process occurs at the ratio H2O/EtOH = 1 and at the pressure of 0.1 MPa. The obtained results of calculation agree well with the experimental data.

  2. Kinetic Modeling and Parameter Estimation in a Tower Bioreactor for Bioethanol Production

    Science.gov (United States)

    Rivera, Elmer Ccopa; da Costa, Aline Carvalho; Lunelli, Betânia Hoss; Maciel, Maria Regina Wolf; Filho, Rubens Maciel

    In this work, a systematic method to support the building of bioprocess models through the use of different optimization techniques is presented. The method was applied to a tower bioreactor for bioethanol production with immobilized cells of Saccharomyces cerevisiae. Specifically, a step-by-step procedure to the estimation problem is proposed. As the first step, the potential of global searching of real-coded genetic algorithm (RGA) was applied for simultaneous estimation of the parameters. Subsequently, the most significant parameters were identified using the Placket-Burman (PB) design. Finally, the quasi-Newton algorithm (QN) was used for optimization of the most significant parameters, near the global optimum region, as the initial values were already determined by the RGA global-searching algorithm. The results have shown that the performance of the estimation procedure applied in a deterministic detailed model to describe the experimental data is improved using the proposed method (RGA-PB-QN) in comparison with a model whose parameters were only optimized by RGA.

  3. Acetate is a superior substrate for microbial fuel cell initiation preceding bioethanol effluent utilization

    DEFF Research Database (Denmark)

    Sun, Guotao; Thygesen, Anders; Meyer, Anne S.

    2015-01-01

    This study assessed cell voltage development, electricity recovery, and microbial community composition in response to initial substrate including acetate, xylose, acetate/xylose 1:1 mixture (ace/xyl), and bioethanol effluent (BE)during microbial fuel cell (MFC) operation at 1000Ω external...... resistance. The BE mainly contained 20.5 g/L xylose, 1.8 g/Larabinose, and 2.5 g/L propionic acid. The MFCs initially fedwith acetate showed shorter initiation time (1 day), higheraverage cell voltage (634±9 mV), and higher coulombic efficiency(31.5±0.5 %) than those initially fed with ace/xyl orxylose....... However, BE-initiated MFCs only generated 162±1 mV. The acetate-initiated MFCs exhibited longer adaptation time (21 h) and lower cell voltage (645±10 mV) when the substrate was switched to xylose, whereas substrate switching to BE produced the highest voltage (656 mV), maximumpower density (362±27 mW/m2...

  4. Production of bioethanol and associated by-products from potato starch residue stream by Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, Mohamed [King Khalid University, Faculty of Science, Biological Science Department, P.O. Box 10255, Abha 61321 (Saudi Arabia); Darwish, Soumia M.I. [Department of Food Science and Technology, Faculty of Agriculture, Assiut University (Egypt)

    2010-07-15

    Potato starch residue stream produced during chips manufacturing was used as an economical source for biomass and bioethanol production by Saccharomyces cerevisiae. Results demonstrated that 1% H{sub 2}SO{sub 4} at 100 C for 1 h was enough to hydrolyze all starch contained in the residue stream. Two strains of S. cerevisiae (y-1646 and commercial one) were able to utilize and ferment the acid-treated residue stream under both aerobic and semi-anaerobic conditions. The maximum yield of ethanol (5.52 g L{sup -1}) was achieved at 35 C by S. cerevisiae y-1646 after 36 h when ZnCl{sub 2} (0.4 g L{sup -1}) was added. Addition of NH{sub 4}NO{sub 3} as a source of nitrogen did not significantly affect either growth or ethanol production by S. cerevisiae y-1646. Some secondary by-products including alcohol derivatives and medical active compound were found to be associated with the ethanol production process. (author)

  5. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept.

    Science.gov (United States)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar; Angelidaki, Irini

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery (>95%) as well as significant hemicelluloses solubilization (49-59%) after acid-based method and lignin solubilization (35-41%) after alkaline H2O2 method were registered. Alkaline pretreatment showed to be superior over the acid-based method with respect to the rate of enzymatic hydrolysis and ethanol productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149kg of EtOH and 115kg of succinic acid can be obtained per 1ton of dry hemp. Results obtained in this study clearly document the potential of industrial hemp for a biorefinery.

  6. Research development of bioethanol preparation from lignocellulosic biomass%木质纤维素类生物质制备生物乙醇研究进展

    Institute of Scientific and Technical Information of China (English)

    方志锋; 刘昆仑; 陈复生; 王洪杰; 李彦磊; 郭珍

    2013-01-01

    以木质纤维素类生物质为原料制备第二代生物乙醇的研究取得了较大进展,重点阐述了生物乙醇制备过程中的关键问题,包括原料预处理、水解和发酵工艺、各种方法的优缺点比较等,并介绍了我国生物乙醇的发展现状.%The research of the second generation bioethanol from lignocellulosic biomass has made great progress at present. The key issues of bioethanol preparation, including pretreatment, enzymatic hydrolysis and fermentation the advantages and disadvantages of various methods in these processes, are highlighted. The development status of bioethanol in China has been introduced as well. A certain reference for research and application in this area are put forward as well.

  7. PRODUCTION OF FERMENTABLE SUGARS FROM OIL PALM EMPTY FRUIT BUNCH USING CRUDE CELLULASE COCKTAILS WITH TRICHODERMA ASPERELLUM UPM1 AND ASPERGILLUS FUMIGATUS UPM2 FOR BIOETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Nurul Kartini Abu Bakar,

    2012-06-01

    Full Text Available Utilization of oil palm empty fruit bunch (OPEFB for bioethanol production with crude cellulase cocktails from locally isolated fungi was studied. Enzymatic saccharification of alkaline pretreated OPEFB was done using different cellulase enzyme preparations. Crude cellulase cocktails from Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 produced 8.37 g/L reducing sugars with 0.17 g/g yield. Production of bioethanol from OPEFB hydrolysate using Baker’s yeast produced approximately 0.59 g/L ethanol, corresponding to 13.8% of the theoretical yield. High reducing sugars concentration in the final fermentation samples resulted from accumulation of non-fermentable sugars such as xylose and cellobiose that were not consumed by the yeast. The results obtained support the possible utilization of OPEFB biomass for bioethanol production in the future.

  8. Hydrogen production from raw bioethanol steam reforming: optimization of catalyst composition with improved stability against various impurities

    International Nuclear Information System (INIS)

    Usually, ethanol steam reforming is performed using pure ethanol, whereas the use of raw bioethanol is of major importance for a cost effective industrial application. Raw bioethanol contains higher alcohols as the main impurities and also aldehydes, amines, acids and esters. The effect of these impurities on the catalytic performances for ethanol steam reforming (ESR) has been studied, using a reference catalyst, Rh/MgAl2O4. It was shown that the aldehyde, the amine and methanol has no negative effect on the catalytic performances, contrary to the ester, acid and higher alcohols. The deactivation is mainly explained by coke formation favored by the presence of these impurities in the feed. In order to improve the stability of the catalyst and its performances in the presence of these deactivating impurities, the catalyst formulation, i.e. the composition of the support and of the metallic phase, was modified. The addition of rare earth elements instead of magnesium to the alumina support leads to a decrease of the strong and medium acid sites and to an increase of the basicity. On these modified supports, the dehydration reaction, leading to olefins, which are coke precursors, is disfavored, the ethanol conversion and the hydrogen yield are increased. The best catalytic performances were obtained with Rh/Y-Al2O3. Then, the metallic phase was also modified by adding a second metal (Ni, Pt or Pd). The Rh-Ni/Y-Al2O3 catalyst leads to the highest hydrogen yield. This catalyst, tested in the presence of raw bioethanol during 24h was very stable compared to the reference catalyst Rh/MgAl2O4, which was strongly deactivated after 2h of time-on-stream. (author)

  9. Biogas production from bioethanol waste: the effect of pH and urea addition to biogas production rate

    Directory of Open Access Journals (Sweden)

    Budiyono Budiyono

    2013-11-01

    Full Text Available Anaerobic treatment is a good choice to treat bioethanol waste due to the high concentration of COD content for producing biogas as renewable energy. The purposes of this study were to study the effect of addition nitrogen source and pH control to biogas production. The laboratory scale-anaerobic digestions used in this experiment were operated in batch system and at room temperature. In determination of optimum pH, bioethanol waste and rumen fluid fed into digesters with initial pH 6.0; 7.0 and 8.0. Influent COD : N ratio (in form of urea used in this study was 700:7 in compare to control.  The results showed that initial pH 7.0 produced the most biogas with total biogas 3.81 mL/g COD. While initial pH 6 and pH 8 had total biogas 3.25 mL/g COD and 3.49 mL/g COD respectively. At urea addition, biogas formed had 52.47% greater than that of at without urea addition (control variable. Controlled pH caused biogas was produced until 90-day investigation and might continue to be produced. Total biogas of control variable (without urea addition and variable with ratio COD:N=700:7 influent were 11.07 mL/g COD and 11.41 mL/g COD respectively.Doi: http://dx.doi.org/10.12777/wastech.1.1.1-5Citation:  Budiyono, Syaichurrozi, I.  and Sumardiono, S. 2013. Biogas production from bioethanol waste: the effect of pH andurea addition to biogas production rate. Waste Technology 1(1:1-5. Doi: http://dx.doi.org/10.12777/wastech.1.1.1-5

  10. Hydrolysis of Oil Palm Empty Fruit Bunch Fibers to Produce Sugar Hydrolyzate as Raw Material for Bioethanol Production

    OpenAIRE

    Fitriani Kasim; Anwar Kasim

    2013-01-01

    A study conducted to see the effect of the regulation and control of temperature on the length of the hydrolysis of oil palm empty fruit bunches fiber and the resulting hydrolyzate sugar levels, which will be planned to be used as raw material for bioethanol. Therefore do oil palm empty fruit bunches fiber hydrolysis with sulfuric acid (H2SO4) at low concentrations (1%) using an autoclave with a temperature of 120 ° C and 130 ° C, and the time for 30, 60, 90, 120 minutes. After that the obser...

  11. Preliminary results on optimization of pilot scale pretreatment of wheat straw used in coproduction of bioethanol and electricity

    DEFF Research Database (Denmark)

    Thomsen, M.H.; Thygesen, A.; Christensen, B.H.;

    2006-01-01

    The overall objective in this European Union-project is to develop cost and energy effective production systems for coproduction of bioethanol and electricity based on integrated biomass utilization. A pilot plan reactor for hydrothermal pretreatment (including weak acid hydrolysis, wet oxidation......, and steam pretreatment) with a capacity of 100 kg/h was constructed and tested for pretreatment of wheat straw for ethanol production. Highest hemicellulose (C5 sugar) recovery and extraction of hemicellulose sugars was obtained at 190 degrees C whereas highest C6 sugar yield was obtained at 200 degrees C...

  12. The Impact of Bio-Ethanol Conversion and Global Climate Change on Corn Economic Performanve of Indonesia

    OpenAIRE

    Yudi Ferrianta; Nuhfil Hanani; Budi Setiawan; Wahib Muhaimin

    2012-01-01

    Many studies conclude that the rise in global food prices due to higher demand from the development of biofuels, climate anomalies, and increased of oil prices. Not only the food commodity index rose more than 60 percent, nonfood commodity price index also rose over 60 percent and crude oil price index has increased even further above 60 percent. The purpose of this study is to analyze the impact of bio-ethanol conversion and global climate change on corn economic performance of Indonesia. Th...

  13. Life cycle assessment and resource management options for bio-ethanol production from cane molasses in Indonesia

    OpenAIRE

    Kummamuru Venkata, Bharadwaj

    2013-01-01

    The intent of this thesis is to analyse the sustainability of producing bio-ethanol from cane molasses in Indonesia and its potential to replace gasoline in the transportation sector. A field trip was conducted in East Java, Indonesia, and data was gathered for analysis. Life cycle assessment (LCA) was performed to analyse the net emissions and energy consumption in the process chain. The greenhouse gas (GHG) emissions of the life cycle are 17.45 gCO2e per MJ of ethanol produced. In compariso...

  14. Improved enzymatic hydrolysis of wheat straw by combined use of gamma ray and dilute acid for bioethanol production

    Science.gov (United States)

    Hyun Hong, Sung; Taek Lee, Jae; Lee, Sungbeom; Gon Wi, Seung; Ju Cho, Eun; Singh, Sudhir; Sik Lee, Seung; Yeoup Chung, Byung

    2014-01-01

    Pretreating wheat straw with a combination of dilute acid and gamma irradiation was performed in an attempt to enhance the enzymatic hydrolysis for bioethanol production. The glucose yield was significantly affected by combined pretreatment (3% sulfuric acid-gamma irradiation), compared with untreated wheat straw and individual pretreatment. The increasing enzymatic hydrolysis after combined pretreatment is resulting from decrease in crystallinity of cellulose, loss of hemicelluloses, and removal or modification of lignin. Therefore, combined pretreatment is one of the most effective methods for enhancing the enzymatic hydrolysis of wheat straw biomass.

  15. Screening of the effective cellulose-degradable strain and its application in the production of cellulose bioethanol

    Institute of Scientific and Technical Information of China (English)

    Peng-fei Gao; Dai-di Fan; Pei Ma; Yan-e Luo; Xiao-xuan Ma; Chen-hui Zhu; Jun-feng Hui

    2009-01-01

    Strains from the cellulose-containing environment were collected. Primary screening(by filter-paper Hutchison solid culture medium and sodium carboxymethylcellulose solid culture medium) and reelection(by filter-paper inorganic salt culture medium and sodium carboxymethylcellulosc Congo red coltnre medium) indicated that five strains obtained were best suited for high performance cellulose degradation. Determination of sodium carboxymethylcellulose activity(CMCA) and filter paper activity(FPA) was accomplished for each of the five. The strongest of the five in CMCA and FPA was applied to the production of cellulose bioethanol by separate hydrolysis and fermentation(SHF) and simultaneous saccharification and fermentation(SSF) respectively.

  16. Sustainable bioethanol production combining biorefinery principles using combined raw materials from wheat undersown with clover-grass

    OpenAIRE

    Thomsen, Mette Hedegaard; Hauggaard-Nielsen, Henrik

    2008-01-01

    To obtain the best possible net energy balance of the bioethanol production the biomass raw materials used need to be produced with limited use of non-renewable fossil fuels. Intercropping strategies are known to maximize growth and productivity by including more than one species in the crop stand, very often with legumes as one of the components. In the present study clover-grass is undersown in a traditional wheat crop. Thereby, it is possible to increase input of symbiotic fixation of atmo...

  17. Evaluation of Fermentation Parameters of Elephant foot Yam (Amorphophalluspaeoniifolius for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Rejie C. Magnaye

    2015-11-01

    Full Text Available Bioethanol successfully finds its role in the development of renewable energy sources to supplement the world’s increasing demand in energy supply. In this study, elephant foot yam (Amorphophalluspeoniifolius, a starch-based crop, abundantly grown in tropical countries like Philippines, was used for the evaluation of the effect of substrate concentration and yeast loading (Saccharomyces cerevisiae in Simultaneous Saccharification and Fermentation (SSF. In SSF, the optimum condition was observed at10% w/v substrate concentration in 20 mL yeast loadingwith an ethanol yield of 12.02 ± 0.21 %. As substrate concentration decreases and yeast loading increases, percent ethanol yield increases. Best mathematical model was generated to describe the relationship of the substrate concentration and yeast loading to ethanol yield. The generated quadratic model, 2.47= 80.63 −84.46 +126.73 −17.49+65.592 + 91.022,can explain 99.96 % (R2 of the variability in the yield. The statistical significance of the model was evaluated by F-test for analysis of variance (p<0.05. The results showed that the production of ethanol was more strongly affected by the variation of yeast loading. Using the best substrate concentration and yeast loading, ethanol yield was determined in SSF coupled with Acid Hydrolysis (SSF-AH having an ethanol yield of 19.1952%. The results revealed that subjecting first the substrate to acid hydrolysis could increase the ethanol yield for it increased the reducing sugar of the substrate.

  18. Retro-analysis of liquid bio-ethanol and bio-diesel in New Zealand

    International Nuclear Information System (INIS)

    This paper uses a new approach of retro-analysis. Typically policy is informed by forward-looking analysis of potential for alternative energy technologies. But historical knowledge of energy and processing requirements and greenhouse effects is more reliable for engineering evaluation of biofuel production systems. This study calculates energy inputs and greenhouse gas emissions for the most efficient biomass feedstocks in New Zealand if the policy had been implemented to maximize liquid biofuel production in the year 2004/2005. The study uses existing processing technologies and agricultural statistics. Bioethanol production is calculated from putrescible wastes and starch crops, and biodiesel production from rapeseed, tallow, wood and waste paper. Each production system is further evaluated using measures of land use, energy input, crop production related to the energy product, plus relative measures of efficiency and renewability. The research findings are that maximum biofuel production in 2004/2005 would have provided only a few per cent of demand, and would not have reduced dependence on foreign imported oil or exposure to fuel price rise. Finally, we conclude that demand management and efficiency are more effective means of meeting policy objectives. -- Graphical abstract: Input-output energy flows for liquid biofuels with retro-analysis reference to 2004. Display Omitted -- Highlights: •We conducted a Retro-analysis of biofuel production for New Zealand in 2004. •EROI analysis shows biodiesel from oil crops is the only viable biofuel. •Renewability analysis shows biofuels do not reduce exposure to peak oil issues. •GHG analysis shows 89% CO2 emission reductions for the best biodiesel. •Total biofuel from food crops and wastes could provide less than 10% of demand

  19. Cultivation and utilization of specific wood biomass for synthesis of cellulose based bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Fara, L.; Comaneci, D. [Polytechnic Univ. of Bucharest, Bucharest (Romania). Faculty of Applied Sciences; Cincu, C.; Hubca, G.; Zaharia, C.; Diacon, A. [Polytechnic Univ. of Bucharest, Bucharest (Romania). Faculty of Applied Chemistry; Filat, M.; Chira, D. [Forest Research and Management Inst., Ilfov (Romania); Nutescu, C. [National Wood Inst., Bucharest (Romania); Fara, S. [Inst. for Research and Design of Automation, Bucharest (Romania)

    2010-07-01

    The energetic characteristics of 6 types of poplar clones cultivated for different pedoclimatic conditions in Romania were determined. Four clones were developed in Italy and 2 in Romania. Five experimental cultures were used to analyze the plant survival rate and biomass production rate. After 2 years of study, the Italian clones were found to have very good adaptability to the pedoclimatic conditions in Romania in comparison with local clones. The Italian clones Monviso and AF-6 registered the most substantial growths and the highest resistance to disease. Bioethanol was synthesized by acidic hydrolysis of the cellulose using 2 approaches. In the first approach the lignocellulosic raw material was hydrolyzed with diluted sulfuric acid at 50 degrees C for 24 hours. After filtration, the solid residue was treated with 30 per cent H{sub 2}SO{sub 4} at 100 degrees C for 6 hours. The resulting solutions were neutralized with Ca(OH){sub 2} following another filtration and the resulted solution with pH 6.5 was subjected to fermentation with Saccharomices Cerevisiae. In the second approach the lignocellulosic raw material was subjected to hydrolysis with 10 per cent H{sub 2}SO{sub 4} at 100 degrees C for 4 hours. After filtration, the solid residue was hydrolyzed with 30 per cent H{sub 2}SO{sub 4} at 100 degrees for 6 hours. The solution was neutralized with Ca(OH){sub 2} and subjected to alcoholic fermentation with Saccharomices Cerevisiae. The fermentation took place at 25 degrees C for 72 hours. The results for the two methods were similar.

  20. Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Anneli; Thomsen, Mette H.; Hauggaard-Nielsen, Henrik; Thomsen, Anne-Belinda [Risoe National Laboratory, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2007-11-15

    To meet the increasing need for bioenergy several raw materials have to be considered for the production of e.g. bioethanol and biogas. In this study, three lignocellulosic raw materials were studied, i.e. (1) winter rye straw (Secale cereale L), (2) oilseed rape straw (Brassica napus L.) and (3) faba bean straw (Viciafaba L.). Their composition with regard to cellulose, hemicellulose, lignin, extractives and ash was evaluated, as well as their potential as raw materials for ethanol and biogas production. The materials were pretreated by wet oxidation using parameters previously found to be optimal for pretreatment of corn stover (195 C, 15 min, 2 g l{sup -1} Na{sub 2}CO{sub 3} and 12 bar oxygen). It was shown that pretreatment was necessary for ethanol production from all raw materials and gave increased biogas yield from winter rye straw. Neither biogas productivity nor yield from oilseed rape straw or faba bean straw was significantly affected by pretreatment. Ethanol was produced by the yeast Saccharomyces cerevisiae during simultaneous enzymatic hydrolysis of the solid material after wet oxidation with yields of 66%, 70% and 52% of theoretical for winter rye, oilseed rape and faba bean straw, respectively. Methane was produced with yields of 0.36, 0.42 and 0.44 l g{sup -1} volatile solids for winter rye, oilseed rape and faba bean straw, respectively, without pretreatment of the materials. However, biogas productivity was low and it took over 50 days to reach the final yield. It could be concluded that all three materials are possible raw materials for either biogas or ethanol production; however, improvement of biogas productivity or ethanol yield is necessary before an economical process can be achieved. (author)

  1. Isolation and characterization of two soil derived yeasts for bioethanol production on Cassava starch

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gi-Wook; Kim, Yule; Kang, Hyun-Woo [Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., Ltd, Palbok-Dong 829, Dukjin-Gu, Jeonju 561-203 (Korea); Um, Hyun-Ju; Kim, Mina; Kim, Yang-Hoon [Department of Microbiology, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju 361-763 (Korea); Chung, Bong-Woo [Department of Bioprocess Engineering, Chonbuk National University, 664-14, 1-Ga, Duckjin-Dong, Duckjin-Gu, Jeonju 561-156 (Korea)

    2010-08-15

    Two ethanol-producing yeast strains, CHY1011 and CHFY0901 were isolated from soil in South Korea using an enrichment technique in a yeast peptone dextrose medium supplemented with 5% (w v{sup -1}) ethanol at 30 C. The phenotypic and physiological characteristics, as well as molecular phylogenetic analysis based on the D1/D2 domains of the large subunit (26S) rRNA gene and the internally transcribed spacer (ITS) 1 + 2 regions suggested that they were novel strains of Saccharomyces cerevisiae. During shaking flask cultivation, the highest ethanol productivity and theoretical yield of S. cerevisiae CHY1011 in YPD media containing 9.5% total sugars was 1.06 {+-} 0.02 g l{sup -1} h{sup -1} and 95.5 {+-} 1.2%, respectively, while those for S. cerevisiae CHFY0901 were 0.97 {+-} 0.03 g l{sup -1} h{sup -1} and 91.81 {+-} 2.2%, respectively. Simultaneous saccharification and fermentation for ethanol production was carried out using liquefied cassava (Manihot esculenta) starch in a 5 l lab-scale jar fermenter at 32 C for 66 h with an agitation speed of 2 Hz. Under these conditions, S. cerevisiae CHY1011 and CHFY0901 yielded a final ethanol concentration of 89.1 {+-} 0.87 g l{sup -1} and 83.8 {+-} 1.11 g l{sup -1}, a maximum ethanol productivity of 2.10 {+-} 0.02 g l{sup -1} h{sup -1} and 1.88 {+-} 0.01 g l{sup -1} h{sup -1}, and a theoretical yield of 93.5 {+-} 1.4% and 91.3 {+-} 1.1%, respectively. These results suggest that S. cerevisiae CHY1011 and CHFY0901 have potential use in industrial bioethanol fermentation processes. (author)

  2. Comparative Evaluation of Pretreatment Strategies on Enzymatic Saccharification of Hylocereus polyrhizus’s Pericarps for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    L. G. A. Ong

    2010-09-01

    Full Text Available In order to evaluate the possibility of bioethanol production from an indigenous fruit waste - pericaps of dragon fruit, the efficacy of several pretreatment methods on enzymatic digestibility of pericarps were investigated. Following that, the simultaneous saccharification and fermentation (SSaF of pretreated pericarps to ethanol was conducted by using instant dry yeast. From our study, it was observed that the total sugar yields obtained after enzymatic hydrolysis of thermally pretreated pericarps (0.6 g/g were higher than untreated pericarps powders (0.28 g/g. By using thermally pretreated pericarps as biomass resource, ethanol concentration of 1.5 g/L was achieved after 80 h of cultivation process. The ethanol yield of 27% (% w/w initial dry weight of biomass as recorded from the present study is lower compared to the theoretical yield of ethanol from pure glucose solution (51% w/w glucose. Nevertheless, these results indicate that by applying thermal pretreatment, the pericarps of dragon fruit could be considered as an economically viable lignocellulosic material for production of fermentable sugars related to bioethanol production.

  3. Enhanced hydrolysis of lignocellulosic biomass: Bi-functional enzyme complexes expressed in Pichia pastoris improve bioethanol production from Miscanthus sinensis.

    Science.gov (United States)

    Shin, Sang Kyu; Hyeon, Jeong Eun; Kim, Young In; Kang, Dea Hee; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2015-12-01

    Lignocellulosic biomass is the most abundant utilizable natural resource. In the process of bioethanol production from lignocellulosic biomass, an efficient hydrolysis of cellulose and hemicellulose to release hexose and pentose is essential. We have developed a strain of Pichia pastoris that can produce ethanol via pentose and hexose using an assembly of enzyme complexes. The use of enzyme complexes is one of the strategies for effective lignocellulosic biomass hydrolysis. Xylanase XynB from Clostridium cellulovorans and a chimeric endoglucanase cCelE from Clostridium thermocellum were selected as enzyme subunits, and were bound to a recombinant scaffolding protein mini-CbpA from C. cellulovorans to assemble the enzyme complexes. These complexes efficiently degraded xylan and carboxymethylcellulose (CMC), producing approximately 1.18 and 1.07 g/L ethanol from each substrate, respectively, which is 2.3-fold and 2.7-fold higher than that of the free-enzyme expressing strain. Miscanthus sinensis was investigated as the lignocellulosic biomass for producing bioethanol, and 1.08 g/L ethanol was produced using our recombinant P. pastoris strain, which is approximately 1.9-fold higher than that of the wild-type strain. In future research, construction of enzyme complexes containing various hydrolysis enzymes could be used to develop biocatalysts that can completely degrade lignocellulosic biomass into valuable products such as biofuels. PMID:26479167

  4. An investigative study of indigenous sweet sorghum varieties for bioethanol production: the case of Kenya local sorghum varieties

    Energy Technology Data Exchange (ETDEWEB)

    Wangai, L.K.; Mbeo, C.O. [Kenya Industrial Research and Development Inst., Nairobi (Kenya); Kamau, C.K. [Kenya Agricurtural Research Inst.(s), Machakos (Kenya)

    2012-11-01

    There are over 500 sorghum genotypes grown locally in Kenya. This study was an investigation and selection of suitable sorghum genotypes for sustainable bio-ethanol production in Kenya. For the study, 500 genotypes of sorghum were planted and grown using the recommended agricultural practices. Random sampling of 230 genotypes was done and the samples analysed for juice and sugar content. The 26 best yielding genotypes were selected and grown again in duplicate for further detailed study. Data on date of flowering, pest resistance, {sup 0}brix, wet and dry weight, plant population, ratooning, grain yield and juice yield and juice sugar content were recorded and analyzed using GENstat. Sampling was done for each genotype when about 50% of the crop had flowered and there after, every 2 weeks until the grains dried. Crushing was done with a three roller mill crusher [8]. The sugar content was measured using a digital refractometer. Sugar yield obtained ranged between 10.3{sup 0}Brix and 19.3{sup 0}Brix and juice yield between 268 litres/hectare and 11390 litres/hectare. Five indigenous sorghum varieties, GBK-007130, GBK-007076, GBK-007102, GBK-007296, GBK-007098 were found to have the highest sugar and juice yields and were considered the most suitable sweet sorghum genotypes among those studied, for bio-ethanol production in Kenya.

  5. Hydrothermal Pretreatment of Date Palm (Phoenix dactylifera L. Leaflets and Rachis to Enhance Enzymatic Digestibility and Bioethanol Potential

    Directory of Open Access Journals (Sweden)

    Chuanji Fang

    2015-01-01

    Full Text Available Date palm residues are one of the most promising lignocellulosic biomass for bioethanol production in the Middle East. In this study, leaflets and rachis were subjected to hydrothermal pretreatment to overcome the recalcitrance of the biomass for enzymatic conversion. Evident morphological, structural, and chemical changes were observed by scanning electron microscopy, X-ray diffraction, and infrared spectroscopy after pretreatment. High glucan (>90% for both leaflets and rachis and xylan (>75% for leaflets and >79% for rachis recovery were achieved. Under the optimal condition of hydrothermal pretreatment (210°C/10 min highly digestible (glucan convertibility, 100% to leaflets, 78% to rachis and fermentable (ethanol yield, 96% to leaflets, 80% to rachis solid fractions were obtained. Fermentability test of the liquid fractions proved that no considerable inhibitors to Saccharomyces cerevisiae were produced in hydrothermal pretreatment. Given the high sugar recovery, enzymatic digestibility, and ethanol yield, production of bioethanol by hydrothermal pretreatment could be a promising way of valorization of date palm residues in this region.

  6. COMPARATIVE STUDY OF DIFFERENT METHODS OF HYDROLYSIS AND FERMENTATION FOR BIOETHANOL OBTAINING FROM INULIN AND INULIN RICH FEEDSTOCK

    Directory of Open Access Journals (Sweden)

    Camelia (Bonciu Neagu

    2012-03-01

    Full Text Available Bioethanol serves as liquid fuel or gasoline enhancer in many countries in response to the progressive depletion of the world’s energetic resources. Production of bioethanol from inulin rich raw materials has been a subject of great interest for many years due to the large amount of existing and not completely developed technologies. The aim of this work was to study three different methods for hydrolysis and fermentation of pure inulin and Jerusalem artichoke flour: separate hydrolysis by A. niger MIUG 1.15 strain as active producer of inulinase, in stationary phase and under agitation, followed by fructose fermentation and simultaneous hydrolysis and fermentation of inulin and Jerusalem artichoke flour respectively, in order to increase the yield of biotransformation of substrate into ethanol. The highest amount of ethanol was formed during simultaneous hydrolysis and fermentation, for both pure inulin and Jerusalem artichoke (Helianthus tuberosus tubers used as raw materials, of 16.2 g∙L-1 and 28.1 g∙L-1 respectively.

  7. Bioethanol from the Portuguese forest residue Pterospartum tridentatum--an evaluation of pretreatment strategy for enzymatic saccharification and sugars fermentation.

    Science.gov (United States)

    Ferreira, S; Gil, N; Queiroz, J A; Duarte, A P; Domingues, F C

    2010-10-01

    Under the current energy scenario, the development of alternatives to fossil fuels, like bioethanol from lignocellulosic materials, is highly relevant. Therefore it is important to search and study new raw materials and to optimize the different steps that lead to bioethanol production. In this work, acid diluted pretreatment was optimized considering the release of sugars. Under the optimal conditions, the reducing sugars yield was of 293.4mg/g of dry biomass in liquid fraction. The tested pretreated samples of Pterospartum tridentatum that presented a higher glucose yield in enzymatic saccharification where those that were subject to a pretreatment at 180°C for 75min with 2.75% (w/w) of sulfuric acid when using a biomass/liquid ratio of 2.25g/10mL leading to a maximum yield of glucose that was 92% of the theoretical maximum. From the fermentation of filtrates it was possible to obtain a maximum ethanol yield of 0.26g ethanol/g total sugars, without previous detoxification.

  8. Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae and Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Shuvashish; Mohanty, Rama Chandra [Department of Botany, Utkal University, Vanivihar, Bhubaneswar 751004, Orissa (India); Ray, Ramesh Chandra [Microbiology Laboratory, Central Tuber Crops Research Institute (Regional Centre), Bhubaneswar 751019, Orissa (India)

    2010-07-15

    Mahula (Madhuca latifolia L.) flower is a suitable alternative cheaper carbohydrate source for production of bio-ethanol. Recent production of bio-ethanol by microbial fermentation as an alternative energy source has renewed research interest because of the increase in the fuel price. Saccharomyces cerevisiae (yeast) and Zymomonas mobilis (bacteria) are two most widely used microorganisms for ethanol production. In this study, experiments were carried out to compare the potential of the yeast S. cerevisiae (CTCRI strain) with the bacterium Z. mobilis (MTCC 92) for ethanol fermentation from mahula flowers. The ethanol production after 96 h fermentation was 149 and 122.9 g kg{sup -1} flowers using free cells of S. cerevisiae and Z. mobilis, respectively. The S. cerevisiae strain showed 21.2% more final ethanol production in comparison to Z. mobilis. Ethanol yield (Yx/s), volumetric product productivity (Qp), sugar to ethanol conversion rate (%) and microbial biomass concentration (X) obtained by S. cerevisiae were found to be 5.2%, 21.1%, 5.27% and 134% higher than Z. mobilis, respectively after 96 h of fermentation. (author)

  9. Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae and Zymomonas mobilis

    International Nuclear Information System (INIS)

    Mahula (Madhuca latifolia L.) flower is a suitable alternative cheaper carbohydrate source for production of bio-ethanol. Recent production of bio-ethanol by microbial fermentation as an alternative energy source has renewed research interest because of the increase in the fuel price. Saccharomyces cerevisiae (yeast) and Zymomonas mobilis (bacteria) are two most widely used microorganisms for ethanol production. In this study, experiments were carried out to compare the potential of the yeast S. cerevisiae (CTCRI strain) with the bacterium Z. mobilis (MTCC 92) for ethanol fermentation from mahula flowers. The ethanol production after 96 h fermentation was 149 and 122.9 g kg-1 flowers using free cells of S. cerevisiae and Z. mobilis, respectively. The S. cerevisiae strain showed 21.2% more final ethanol production in comparison to Z. mobilis. Ethanol yield (Yx/s), volumetric product productivity (Qp), sugar to ethanol conversion rate (%) and microbial biomass concentration (X) obtained by S. cerevisiae were found to be 5.2%, 21.1%, 5.27% and 134% higher than Z. mobilis, respectively after 96 h of fermentation. (author)

  10. Interconnected Hierarchical Porous Carbon from Lignin-Derived Byproducts of Bioethanol Production for Ultra-High Performance Supercapacitors.

    Science.gov (United States)

    Zhang, Liming; You, Tingting; Zhou, Tian; Zhou, Xia; Xu, Feng

    2016-06-01

    The advent of bioethanol production has generated abundant lignin-derived byproducts which contain proteins and polysaccharides. These byproducts are inapplicable for direct material applications. In this study, lignin-derived byproducts were used for the first time as carbon precursors to construct an interconnected hierarchical porous nitrogen-doped carbon (HPNC) via hydrothermal treatment and activation. The obtained HPNC exhibited favorable features for supercapacitor applications, such as hierarchical bowl-like pore structures, a large specific surface area of 2218 m(2) g(-1), a high electronic conductivity of 4.8 S cm(-1), and a nitrogen doping content of 3.4%. HPNC-based supercapacitors in a 6 M KOH aqueous electrolyte exhibited high-rate performance with a high specific capacitance of 312 F g(-1) at 1 A g(-1) and 81% retention at 80 A g(-1) as well as an excellent cyclic life of 98% initial capacitance after 20 000 cycles at 10 A g(-1). Moreover, HPNC-based supercapacitors in the ionic liquid electrolyte of EMI-BF4 displayed an enhanced energy density of 44.7 Wh kg(-1) (remaining 74% of max value) at an ultrahigh power density of 73.1 kW kg(-1). The proposed strategy may facilitate lignin utilization and lead to a green bioethanol production process. PMID:27181098

  11. High temperature simultaneous saccharification and fermentation of starch from inedible wild cassava (Manihot glaziovii) to bioethanol using Caloramator boliviensis.

    Science.gov (United States)

    Moshi, Anselm P; Hosea, Ken M M; Elisante, Emrode; Mamo, G; Mattiasson, Bo

    2015-03-01

    The thermoanaerobe, Caloramator boliviensis was used to ferment starch hydrolysate from inedible wild cassava to ethanol at 60°C. A raw starch degrading α-amylase was used to hydrolyse the cassava starch. During fermentation, the organism released CO2 and H2 gases, and Gas Endeavour System was successfully used for monitoring and recording formation of these gaseous products. The bioethanol produced in stoichiometric amounts to CO2 was registered online in Gas Endeavour software and correlated strongly (R(2)=0.99) with values measured by HPLC. The organism was sensitive to cyanide that exists in cassava flour. However, after acclimatisation, it was able to grow and ferment cassava starch hydrolysate containing up to 0.2ppm cyanide. The reactor hydrogen partial pressure had influence on the bioethanol production. In fed-batch fermentation by maintaining the hydrogen partial pressure around 590Pa, the organism was able to ferment up to 76g/L glucose and produced 33g/L ethanol.

  12. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor.

    Science.gov (United States)

    Jitrwung, Rujira; Yargeau, Viviane

    2015-05-11

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol.

  13. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor

    Directory of Open Access Journals (Sweden)

    Rujira Jitrwung

    2015-05-01

    Full Text Available Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR. Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol.

  14. Seawater as Alternative to Freshwater in Pretreatment of Date Palm Residues for Bioethanol Production in Coastal and/or Arid Areas

    DEFF Research Database (Denmark)

    Fang, Chuanji; Thomsen, Mette Hedegaard; Brudecki, Grzegorz P;

    2015-01-01

    the technical feasibility of using seawater to replace freshwater in the pretreatment of date palm leaflets, a lignocellulosic biomass from arid regions, for bioethanol production. It was shown that leaflets pretreated with seawater exhibited lower cellulose crystallinity than those pretreated with freshwater...

  15. Bioethanol production from steam-pretreated corn stover through an isomerase mediated process.

    Science.gov (United States)

    De Bari, Isabella; Cuna, Daniela; Di Matteo, Vincenzo; Liuzzi, Federico

    2014-03-25

    Agricultural by-products such as corn stover are considered strategic raw materials for the production of second-generation bioethanol from renewable and non-food sources. This paper describes the conversion of steam-pretreated corn stover to ethanol utilising a multi-step process including enzymatic hydrolysis, isomerisation, and fermentation of mixed hydrolysates with native Saccharomyces cerevisiae. An immobilised isomerase enzyme was used for the xylose isomerisation along with high concentrations of S. cerevisiae. The objective was to assess the extent of simultaneity of the various conversion steps, through a detailed analysis of process time courses, and to test this process scheme for the conversion of lignocellulosic hydrolysates containing several inhibitors of the isomerase enzyme (e.g. metal ions, xylitol and glycerol). The process was tested on two types of hydrolysate after acid-catalysed steam pretreatment: (a) the water soluble fraction (WSF) in which xylose was the largest carbon source and (b) the entire slurry, containing both cellulose and hemicellulose carbohydrates, in which glucose predominated. The results indicated that the ethanol concentration rose when the inoculum concentration was increased in the range 10-75 g/L. However, when xylose was the largest carbon source, the metabolic yields were higher than 0.51g(ethanol)/g(consumed) sugars probably due to the use of yeast internal cellular resources. This phenomenon was not observed in the fermentation of mixed hydrolysates obtained from the entire pretreated product and in which glucose was the largest carbon source. The ethanol yield from biomass suspensions with dry matter (DM) concentrations of 11-12% (w/v) was 70% based on total sugars (glucose, xylose, galactose). The results suggest that xylulose uptake was more effective in mixed hydrolysates containing glucose levels similar to, or higher than, xylose. Analysis of the factors that limit isomerase activity in lignocellulosic

  16. Co/Zr substitution in a cerium-zirconium oxide by catalytic steam reforming of bio-ethanol

    International Nuclear Information System (INIS)

    This work deals with the production of hydrogen by bio-ethanol catalytic steam reforming. The aim is to develop a catalyst active in ethanol conversion, selective in hydrogen and resistant to deactivation, particularly those induced by the formation of carbon deposition. The metal-support interaction being one of the keys of this challenge, catalysts in which a transition metal is inserted into an oxide by a liquid synthesis method (by the precursor method) have been developed. The initial insertion of cobalt into a cerium oxide-zirconia structure presents the advantages to increase the redox properties of the host oxide and to allow a stable reduction of a cobalt part while favoring the metal-support interaction. (O.M.)

  17. Effects of Extrusion Pretreatment Parameters on Sweet Sorghum Bagasse Enzymatic Hydrolysis and Its Subsequent Conversion into Bioethanol

    Directory of Open Access Journals (Sweden)

    Erick Heredia-Olea

    2015-01-01

    Full Text Available Second-generation bioethanol production from sweet sorghum bagasse first extruded at different conditions and then treated with cell wall degrading enzymes and fermented with I. orientalis was determined. The twin extruder parameters tested were barrel temperature, screws speed, and feedstock moisture content using surface response methodology. The best extrusion conditions were 100°C, 200 rpm, and 30% conditioning moisture content. This nonchemical and continuous pretreatment did not generate inhibitory compounds. The extruded feedstocks were saccharified varying the biocatalysis time and solids loading. The best conditions were 20% solids loading and 72 h of enzymatic treatment. These particular conditions converted 70% of the total fibrous carbohydrates into total fermentable C5 and C6 sugars. The extruded enzymatically hydrolyzed sweet sorghum bagasse was fermented with the strain I. orientalis at 12% solids obtaining a yield of 198.1 mL of ethanol per kilogram of bagasse (dw.

  18. Simultaneous saccharification and fermentation of Agave tequilana fructans by Kluyveromyces marxianus yeasts for bioethanol and tequila production.

    Science.gov (United States)

    Flores, Jose-Axel; Gschaedler, Anne; Amaya-Delgado, Lorena; Herrera-López, Enrique J; Arellano, Melchor; Arrizon, Javier

    2013-10-01

    Agave tequilana fructans (ATF) constitute a substrate for bioethanol and tequila industries. As Kluyveromyces marxianus produces specific fructanases for ATF hydrolysis, as well as ethanol, it can perform simultaneous saccharification and fermentation. In this work, fifteen K. marxianus yeasts were evaluated to develop inoculums with fructanase activity on ATF. These inoculums were added to an ATF medium for simultaneous saccharification and fermentation. All the yeasts, showed exo-fructanhydrolase activity with different substrate specificities. The yeast with highest fructanase activity in the inoculums showed the lowest ethanol production level (20 g/l). Five K. marxianus strains were the most suitable for the simultaneous saccharification and fermentation of ATF. The volatile compounds composition was evaluated at the end of fermentation, and a high diversity was observed between yeasts, nevertheless all of them produced high levels of isobutyl alcohol. The simultaneous saccharification and fermentation of ATF with K. marxianus strains has potential for industrial application.

  19. Sensitivities of a Standard Test Method for the Determination of the pHe of Bioethanol and Suggestions for Improvement

    Directory of Open Access Journals (Sweden)

    Paul J. Brewer

    2010-11-01

    Full Text Available An assessment of the sensitivities of the critical parameters in the ASTM D6423 documentary standard method for the measurement of pHe in (bioethanol has been undertaken. Repeatability of measurements made using the same glass electrode and reproducibility between different glass electrodes have been identified as the main contributors to the uncertainty of the values produced. Strategies to reduce the uncertainty of the measurement have been identified and tested. Both increasing the time after which the pHe measurement is made following immersion in the sample, and rinsing the glass electrode with ethanol prior to immersion in the sample, have been shown to be effective in reducing the uncertainty of the numerical value produced. However, it is acknowledged that the values produced using these modified approaches may not be directly compared with those obtained using the documentary ASTM method since pHe is defined operationally by the process used to measure it.

  20. Prioritization of Bioethanol Production Pathways in China based on Life Cycle Sustainability Assessment and Multi-Criteria Decision-Making

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Manzardo, Alessandro; Mazzi, Anna;

    2015-01-01

    Purpose The study objectives are two-fold: (i) combining the life cycle sustainability assessment (LCSA) framework and the multi-criteria decision-making (MCDM) methodology for sustainability assessment; (ii) determining the most sustainable scenario for bioethanol production in China according...... to the preferences of the decision-makers/stakeholders. Methods Life cycle assessment (LCA), life cycle costing (LCC) and social life cycle assessment (SLCA) are combined to collect the corresponding criteria data on environmental, economic and social aspects, respectively. The study develops a novel SLCA method...... for quantifying the social criteria. The decision-makers/stakeholders can use linguistic terms to assess these criteria and fuzzy theory is used to transform the linguistic variables into real numbers. Once the sustainability assessment criteria are determined, the study develops a MCDM method that combines...

  1. The Macroalgae Biorefinery for Production of Bioethanol and Fish Feed from the Two Brown Algae: Laminaria Digitata and Saccharina Latissima

    DEFF Research Database (Denmark)

    Hou, Xiaoru; Bjerre, Anne-Belinda; Hansen, Jonas Høeg;

    A new Danish macroalgae project (Acronym MAB3) financed by the Danish Strategic Research Council presents an integrated macroalgae biorefinery concept. It was started from march 2012 and will continue for the next 4 years (2012-2016). Initial studies on the first harvested materials of wild...... Laminaria digtata (harvested during the summer 2012 from Limfjorden in Denmark), including cultivation, pretreatment and bioethanol set-up and trials will be presented in this presentation. The macroalgae substrates were screw-pressed to dewater and the algae biomass were fractionated before storage...... and conversion of the differently pretreated macroalgae biomass into ethanol by fermentation were compared. The protein contents and nutrient salts in residues from ethanol fermentation trials were characterized for potential fish feed. A first-step scenario for sustainability and feasibility assessment...

  2. Evaluation of ligninolytic enzymes, ultrasonication and liquid hot water as pretreatments for bioethanol production from cotton gin trash.

    Science.gov (United States)

    Plácido, Jersson; Imam, Tahmina; Capareda, Sergio

    2013-07-01

    Cotton gin trash (CGT) is a ubiquitous cotton-production-waste resource which can be used for ethanol production. In this research, seven combinations of three pretreatments; ultrasonication, liquid hot water and ligninolytic enzymes were evaluated on CGT to select the best pretreatments combination that increased the cellulose conversion and the ethanol yield in the saccharification and fermentation processes, respectively. The structural changes in the cellulose, hemicellulose and lignin from CGT were followed using FT-IR after each pretreatment. All the pretreatment combinations modified the CGT's structure and composition compared with the unpretreated CGT, and the majority of them improved release of sugars originally present in the CGT. The best results were achieved by the sequential combination of ultrasonication, hot water, and ligninolytic enzymes with an improvement of 10% in the ethanol yield and cellulose conversion compared to the other pretreatments. These results are a contribution to develop a feasible bioethanol production from CGT. PMID:23665215

  3. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment

    DEFF Research Database (Denmark)

    Sørensen, Annette; Teller, Philip Johan; Hilstrøm, Troels;

    2008-01-01

    xylose prior to wet explosion. The acid presoaking extracted 63.2% xylose and 5.2% glucose. Direct enzymatic hydrolysis of the presoaked biomass was found to give only low sugar yields of 24-26% glucose. Wet explosion is a pre-treatment method that combines wet-oxidation and steam explosion. The effect...... of wet explosion on non-presoaked and presoaked Miscanthus was investigated using both atmospheric air and hydrogen peroxide as the oxidizing agent. All wet explosion pre-treatments showed to have a disrupting effect on the lignocellulosic biomass, making the sugars accessible for enzymatic hydrolysis......Miscanthus is a high yielding bioenergy crop. In this study we used acid presoaking, wet explosion, and enzymatic hydrolysis to evaluate the combination of the different pre-treatment methods for bioethanol production with Miscanthus. Acid presoaking is primarily carried out in order to remove...

  4. GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, Lorie; Alvarado-Morales, Merlin;

    2016-01-01

    factors (EFs) for bioelectricity, biomethane, and bioethanol produced from twenty-four biomasses (from dedicated crops to residues of different origin) under a fossil and a non-fossil energy system. Accounting for numerous variations in the pathways, a total of 554 GHG EFs were quantified. The results...... showed that, important GHG savings were obtained with residues and seaweed, both under fossil and non-fossil energy systems. For high-yield perennial crops (e.g. willow and Miscanthus), GHG savings were achieved only under fossil energy systems. Biofuels from annual crops and residues that are today used...... in the feed sector should be discouraged, as LUC GHG emissions exceeded any GHG savings from displacing conventional energy sources. (C) 2016 Elsevier Ltd. All rights reserved....

  5. Development of a combined pretreatment and hydrolysis strategy of rice straw for the production of bioethanol and biopolymer.

    Science.gov (United States)

    Sindhu, Raveendran; Kuttiraja, Mathiyazhakan; Prabisha, Thunoli Payyanvalappil; Binod, Parameswaran; Sukumaran, Rajeev K; Pandey, Ashok

    2016-09-01

    The present study highlights the development of a combined pretreatment and hydrolysis strategy of rice straw for the production of bioethanol and biopolymer (poly-3-hydroxybutyrate). Maximum reducing sugar yield was 0.374g/g. The hydrolyzate is devoid of major fermentation inhibitors like furfural and organic acids and can be used for fermentation without any detoxification. Fermentation of the non-detoxified hydrolyzate with Saccharomyces cerevisiae yielded 1.48% of ethanol with a fermentation efficiency of 61.25% and with Comamonas sp. yielded 35.86% of poly-3-hydroxybutyrate without any nutrient supplementation. Characterization of native, control as well as the residue left out after combined pretreatment and hydrolysis of RS by scanning electron microscopy and X-ray diffraction showed difference. Compositional analysis revealed that the residue contains lignin and hemicellulose as the major component indicating that major portion of cellulose were hydrolyzed in this strategy. PMID:26949053

  6. Data-driven, data-intensive computing for modelling and analysis of biological networks: application to bioethanol production

    Science.gov (United States)

    Park, Byung-Hoon; Samatova, Nagiza F.; Karpinets, Tatiana; Jallouk, Andrew; Molony, Scott; Horton, Scott; Arcangeli, Steven

    2007-07-01

    Modelling biological networks is inherently data-driven and data-intensive. The combinatorial nature of this type of modelling, however, requires new methods capable of dealing with the enormous size and irregularity of the search. Searching via 'backtracking' is one possible solution that avoids exhaustive searches by constraining the search space to the subspace of feasible solutions. Despite its wide use in many combinatorial optimization problems, there are currently few parallel implementations of backtracking capable of effectively dealing with the memory-intensive nature of the process and the extremely unbalanced loads present. In this paper, a parallel, scalable, and memory-efficient backtracking algorithm within the context of maximal clique enumeration is presented, and its applicability to large-scale biological networks aimed at studying the mechanisms for efficient bioethanol production is discussed.

  7. Enhanced enzymatic hydrolysis of poplar bark by combined use of gamma ray and dilute acid for bioethanol production

    Science.gov (United States)

    Chung, Byung Yeoup; Lee, Jae Taek; Bai, Hyoung-Woo; Kim, Ung-Jin; Bae, Hyeun-Jong; Gon Wi, Seung; Cho, Jae-Young

    2012-08-01

    Pretreatment of poplar bark with a combination of sulfuric acid (3%, w/w, H2SO4) and gamma irradiation (0-1000 kGy) was performed in an attempt to enhance enzymatic hydrolysis for bioethanol production. The yields of reducing sugar were slightly increased with an increasing irradiation dose, ranging from 35.4% to 51.5%, with a 56.1% reducing sugar yield observed after dilute acid pretreatment. These results clearly showed that soluble sugars were released faster and to a greater extent in dilute acid-pretreated poplar bark than in gamma irradiation-pretreated bark. When combined pretreatment was carried out, a drastic increase in reducing sugar yield (83.1%) was found compared with individual pretreatment, indicating the possibility of increasing the convertibility of poplar bark following combined pretreatment. These findings are likely associated with cellulose crystallinity, lignin modification, and removal of hemicelluloses.

  8. Can the environmental benefits of biomass support agriculture? - The case of cereals for electricity and bioethanol production in Northern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Maria Isabel; Azqueta, Diego [Department of Economics, University of Alcala, Plaza de la Victoria, 3, 28002 Alcala de Henares, Madrid (Spain)

    2008-01-15

    Recent policy documents, such as the EC Communication on an Energy Policy for Europe (January 2007) make emphasis on the opportunities that energy applications can offer certain agricultural commodities, especially in the framework of a progressive dismantling of the Common Agricultural Policy. This paper analyses whether this can be true for wheat and barley farmers, using the real example of a straw-based power plant in Northern Spain and a theoretical factory for bioethanol production fed with cereal grain. The outcomes of such an exercise, in which their relative environmental benefits vis-a-vis fossil fuel alternatives are worked out with the aid of a simplified life-cycle approach, show that the characteristics of the electricity and biomass markets, the baseline scenario and the fuel prices are crucial for the future of the sector. (author)

  9. Same-vessel enzymatic saccharification and fermentation of organosolv/H2O2 pretreated oil palm (Elaeis guineensis Jacq.) fronds for bioethanol production: Optimization of process parameters

    International Nuclear Information System (INIS)

    Highlights: • Same vessel enzymatic saccharification and fermentation (SVSF) of pretreated OPFs. • Optimum conditions:37 °C, 8.0% solid loading, 14.0 g/l yeast concentration, pH 5.3. • Optimum bioethanol concentration and yield of 21.96 g/l and 84.65% respectively. • Organosolv/H2O2 pretreatment of OPFs improved SVSF yield at high solid loading. - Abstract: Based on optimized pretreatment process, oil palm fronds (OPFs) were sequentially pretreated with 1.4% (w/v) aq. NaOH in 80% ethanol with ultrasound assistance (at 75 °C for 30 min) and 3% (v/v) aq. H2O2. Using the Box–Behnken design (BBD) of response surface methodology (RSM), bioethanol production from the sono-assisted organosolv/H2O2 OPFs were optimized using same-vessel enzymatic saccharification and fermentation (SVSF) where both the hydrolysis and fermentation processes were carried out in one vessel simultaneously. Throughout the SVSF process, the incubation time and enzyme loading were kept at 72 h and 15 filter paper unit (FPU)/g substrate respectively. The other SVSF parameters which affect bioethanol yield such as temperature (X1: 30–50 °C), solid loading (X2: 5.0–10.0% w/v), yeast concentration (X3: 5.0–20 g/l) and pH (X4: 4.0–7.0) were optimized. Well fitted regression equations (R2 > 0.97) obtained were able to predict reliable optimum bioethanol concentration and yield. The predicted optimum bioethanol concentration (i.e., 20.61 g/l) and yield (i.e., 84.60%) were attained at 36.94 °C (∼37 °C), 7.57% w/v solid loading (∼8.0% w/v), 13.97 g/l yeast concentration (∼14.0 g/l) and pH of 5.29 (∼5.30). Validated results indicated a maximum ethanol concentration and yield of 21.96 g/l and 84.65% respectively, which were closer to the predicted optimum responses. Using the optimum conditions, the highest bioethanol productivity of 0.76 g/l/h was observed at 12 h of SVSF process

  10. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process

    Directory of Open Access Journals (Sweden)

    Macrelli Stefano

    2012-04-01

    Full Text Available Abstract Background Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves, i.e. second generation (2G bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G, as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented. Results The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively. Conclusions According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the

  11. Study the sensitivity of molecular functional groups to bioethanol processing in lipid biopolymer of co-products using DRIFT molecular spectroscopy

    Science.gov (United States)

    Yu, Peiqiang

    2011-11-01

    To date, there is no study on bioethanol processing-induced changes in molecular structural profiles mainly related to lipid biopolymer. The objectives of this study were to: (1) determine molecular structural changes of lipid related functional groups in the co-products that occurred during bioethanol processing; (2) relatively quantify the antisymmetric CH 3 and CH 2 (ca. 2959 and 2928 cm -1, respectively), symmetric CH 3 and CH 2 (ca. 2871 and 2954 cm -1, respectively) functional groups, carbonyl C dbnd O ester (ca. 1745 cm -1) and unsaturated groups (CH attached to C dbnd C) (ca. 3007 cm -1) spectral intensities as well as their ratios of antisymmetric CH 3 to antisymmetric CH 2, and (3) illustrate the molecular spectral analyses as a research tool to detect for the sensitivity of individual moleculars to the bioethanol processing in a complex plant-based feed and food system without spectral parameterization. The hypothesis of this study was that bioethanol processing changed the molecular structure profiles in the co-products as opposed to original cereal grains. These changes could be detected by infrared molecular spectroscopy and will be related to nutrient utilization. The results showed that bioethanol processing had effects on the functional groups spectral profiles in the co-products. It was found that the CH 3-antisymmetric to CH 2-antisymmetric stretching intensity ratio was changed. The spectral features of carbonyl C dbnd O ester group and unsaturated group were also different. Since the different types of cereal grains (wheat vs. corn) had different sensitivity to the bioethanol processing, the spectral patterns and band component profiles differed between their co-products (wheat DDGS vs. corn DDGS). The multivariate molecular spectral analyses, cluster analysis and principal component analysis of original spectra (without spectral parameterization), distinguished the structural differences between the wheat and wheat DDGS and between the corn

  12. Mechanistic study on ultrasound assisted pretreatment of sugarcane bagasse using metal salt with hydrogen peroxide for bioethanol production.

    Science.gov (United States)

    Ramadoss, Govindarajan; Muthukumar, Karuppan

    2016-01-01

    This study presents the ultrasound assisted pretreatment of sugarcane bagasse (SCB) using metal salt with hydrogen peroxide for bioethanol production. Among the different metal salts used, maximum holocellulose recovery and delignification were achieved with ultrasound assisted titanium dioxide (TiO2) pretreatment (UATP) system. At optimum conditions (1% H2O2, 4 g SCB dosage, 60 min sonication time, 2:100 M ratio of metal salt and H2O2, 75°C, 50% ultrasound amplitude and 70% ultrasound duty cycle), 94.98 ± 1.11% holocellulose recovery and 78.72 ± 0.86% delignification were observed. The pretreated SCB was subjected to dilute acid hydrolysis using 0.25% H2SO4 and maximum xylose, glucose and arabinose concentration obtained were 10.94 ± 0.35 g/L, 14.86 ± 0.12 g/L and 2.52 ± 0.27 g/L, respectively. The inhibitors production was found to be very less (0.93 ± 0.11 g/L furfural and 0.76 ± 0.62 g/L acetic acid) and the maximum theoretical yield of glucose and hemicellulose conversion attained were 85.8% and 77%, respectively. The fermentation was carried out using Saccharomyces cerevisiae and at the end of 72 h, 0.468 g bioethanol/g holocellulose was achieved. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis of pretreated SCB was made and its morphology was studied using scanning electron microscopy (SEM). The compounds formed during the pretreatment were identified using gas chromatography-mass spectrometry (GC-MS) analysis. PMID:26384901

  13. Association mapping in Scandinavian winter wheat for yield, plant height and traits important for second-generation bioethanol production

    Directory of Open Access Journals (Sweden)

    Andrea eBellucci

    2015-11-01

    Full Text Available A collection of 100 wheat varieties representing more than 100 years of wheat-breeding history in Scandinavia was established in order to identify marker-trait associations for plant height, grain yield and biomass potential for bioethanol production. The field-grown material showed variations in plant height from 54 to 122 cm and in grain yield from 2 to 6.61 t ha-1. The release of monomeric sugars was determined by high-throughput enzymatic treatment of ligno-cellulosic material and varied between 0.169 and 0.312 g/g dm for glucose and 0.146 and 0.283 g/g dm for xylose. As expected, plant height and grain yield showed to be highly influenced by genetic factors with repeatability (R equal to 0.75 and 0.53 respectively, while this was reduced for glucose and xylose (R=0.09 for both . The study of trait correlations showed how old, low-yielding, tall varieties released higher amounts of monomeric sugars after straw enzymatic hydrolysis, showing reduced recalcitrance to bioconversion compared to modern varieties. 93 lines from the collection were genotyped with the DArTseq® genotypic platform and 5525 markers were used for genome-wide association mapping. Six QTLs for grain yield, plant height and glucose released from straw were mapped. One QTL for plant height was previously reported, while the remaining QTLs constituted new genomic regions linked to trait variation. This paper is one of the first studies in wheat to identify QTLs that are important for bioethanol production based on a genome-wide association approach.

  14. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-01

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016.

  15. Display of phytase on the cell surface of Saccharomyces cerevisiae to degrade phytate phosphorus and improve bioethanol production.

    Science.gov (United States)

    Chen, Xianzhong; Xiao, Yan; Shen, Wei; Govender, Algasan; Zhang, Liang; Fan, You; Wang, Zhengxiang

    2016-03-01

    Currently, development of biofuels as an alternative fuel has gained much attention due to resource and environmental challenges. Bioethanol is one of most important and dominant biofuels, and production using corn or cassava as raw materials has become a prominent technology. However, phytate contained in the raw material not only decreases the efficiency of ethanol production, but also leads to an increase in the discharge of phosphorus, thus impacting on the environment. In this study, to decrease phytate and its phosphorus content in an ethanol fermentation process, Saccharomyces cerevisiae was engineered through a surface-displaying system utilizing the C-terminal half of the yeast α-agglutinin protein. The recombinant yeast strain, PHY, was constructed by successfully displaying phytase on the surface of cells, and enzyme activity reached 6.4 U/g wet biomass weight. Ethanol productions using various strains were compared, and the results demonstrated that the specific growth rate and average fermentation rate of the PHY strain were higher 20 and 18 %, respectively, compared to the control strain S. cerevisiae CICIMY0086, in a 5-L bioreactor process by simultaneous saccharification and fermentation. More importantly, the phytate phosphorus concentration decreased by 89.8 % and free phosphorus concentration increased by 142.9 % in dry vinasse compared to the control in a 5-L bioreactor. In summary, we constructed a recombinant S. cerevisiae strain displaying phytase on the cell surface, which could improve ethanol production performance and effectively reduce the discharge of phosphorus. The strain reported here represents a useful novel engineering platform for developing an environment-friendly system for bioethanol production from a corn substrate. PMID:26610799

  16. Enhancing the Feasibility of Microcystis aeruginosa as a Feedstock for Bioethanol Production under the Influence of Various Factors

    Science.gov (United States)

    Lee, Moon Geon; Seo, Hyo Jin; Shin, Jin Hyuk; Shin, Tai Sun; Kim, Min Yong; Choi, Jong Il

    2016-01-01

    Microcystis aeruginosa, a freshwater microalga, is capable of producing and accumulating different types of sugars in its biomass which make it a good feedstock for bioethanol production. Present study aims to investigate the effect of different factors increasing growth rate and carbohydrates productivity of M. aeruginosa. MF media (modified BG11 media) and additional ingredients such as aminolevulinic acid (2 mM), lysine (2.28 mM), alanine (1 mM), and Naphthalene acetic acid (1 mM) as cytokine promoted M. aeruginosa growth and sugar contents. Salmonella showed growth-assisting effect on M. aeruginosa. Enhanced growth rate and carbohydrates contents were observed in M. aeruginosa culture grown at 25°C under red LED light of 90 μmolm−2s−1 intensity. More greenish and carbohydrates rich M. aeruginosa biomass was prepared (final OD660 nm = 2.21 and sugar contents 10.39 mM/mL) as compared to control (maximum OD660 nm = 1.4 and sugar contents 3 mM/mL). The final algae biomass was converted to algae juice through a specific pretreatment method. The resulted algae Juice was used as a substrate in fermentation process. Highest yield of bioethanol (50 mM/mL) was detected when Brettanomyces custersainus, Saccharomyces cerevisiae, and Pichia stipitis were used in combinations for fermentation process as compared to their individual fermentation. The results indicated the influence of different factors on the growth rate and carbohydrates productivity of M. aeruginosa and its feasibility as a feedstock for fermentative ethanol production. PMID:27556034

  17. Enhancing the Feasibility of Microcystis aeruginosa as a Feedstock for Bioethanol Production under the Influence of Various Factors.

    Science.gov (United States)

    Khan, Muhammad Imran; Lee, Moon Geon; Seo, Hyo Jin; Shin, Jin Hyuk; Shin, Tai Sun; Yoon, Yang Ho; Kim, Min Yong; Choi, Jong Il; Kim, Jong Deog

    2016-01-01

    Microcystis aeruginosa, a freshwater microalga, is capable of producing and accumulating different types of sugars in its biomass which make it a good feedstock for bioethanol production. Present study aims to investigate the effect of different factors increasing growth rate and carbohydrates productivity of M. aeruginosa. MF media (modified BG11 media) and additional ingredients such as aminolevulinic acid (2 mM), lysine (2.28 mM), alanine (1 mM), and Naphthalene acetic acid (1 mM) as cytokine promoted M. aeruginosa growth and sugar contents. Salmonella showed growth-assisting effect on M. aeruginosa. Enhanced growth rate and carbohydrates contents were observed in M. aeruginosa culture grown at 25°C under red LED light of 90 μmolm(-2)s(-1) intensity. More greenish and carbohydrates rich M. aeruginosa biomass was prepared (final OD660 nm = 2.21 and sugar contents 10.39 mM/mL) as compared to control (maximum OD660 nm = 1.4 and sugar contents 3 mM/mL). The final algae biomass was converted to algae juice through a specific pretreatment method. The resulted algae Juice was used as a substrate in fermentation process. Highest yield of bioethanol (50 mM/mL) was detected when Brettanomyces custersainus, Saccharomyces cerevisiae, and Pichia stipitis were used in combinations for fermentation process as compared to their individual fermentation. The results indicated the influence of different factors on the growth rate and carbohydrates productivity of M. aeruginosa and its feasibility as a feedstock for fermentative ethanol production. PMID:27556034

  18. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-01

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. PMID:27090191

  19. An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Ziska, Lewis H.; Tomecek, Martha; Sicher, Richard [United States Department of Agriculture, Agricultural Research Service, Crop Systems and Global Change Lab, 10300 Baltimore Avenue, Building 1, Beltsville, MD 20705 (United States); Runion, G. Brett; Prior, Stephen A.; Torbet, H. Allen [United States Department of Agriculture, Agricultural Research Service, National Soil Dynamics Laboratory, 411 South Donahue Drive, Auburn, AL 36832 (United States)

    2009-11-15

    The recent emphasis on corn production to meet the increasing demand for bioethanol has resulted in trepidation regarding the sustainability of the global food supply. To assess the potential of alternative crops as sources of bioethanol production, we grew sweet potato (Ipomoea batatas) and cassava (Manihot esculentum) at locations near Auburn, Alabama and Beltsville, Maryland in order to measure root carbohydrate (starch, sucrose, glucose) and root biomass. Averaged for both locations, sweet potato yielded the highest concentration of root carbohydrate (ca 80%), primarily in the form of starch (ca 50%) and sucrose (ca 30%); whereas cassava had root carbohydrate concentrations of (ca 55%), almost entirely as starch. For sweet potato, overall carbohydrate production was 9.4 and 12.7 Mg ha{sup -1} for the Alabama and Maryland sites, respectively. For cassava, carbohydrate production in Maryland was poor, yielding only 2.9 Mg ha{sup -1}. However, in Alabama, carbohydrate production from cassava averaged {proportional_to}10 Mg ha{sup -1}. Relative to carbohydrate production from corn in each location, sweet potato and cassava yielded approximately 1.5 x and 1.6 x as much carbohydrate as corn in Alabama; 2.3 x and 0.5 x for the Maryland site. If economical harvesting and processing techniques could be developed, these data suggest that sweet potato in Maryland, and sweet potato and cassava in Alabama, have greater potential as ethanol sources than existing corn systems, and as such, could be used to replace or offset corn as a source of biofuels. (author)

  20. Effect of tapioca starch and amyloglucosidase concentration on very high gravity simultaneous saccharification and fermentation (VHG-SSF) of bioethanol

    Science.gov (United States)

    Sugih, A. K.; Santoso, I. V.; Kristijarti, A. P.

    2015-12-01

    Tapioca starch is isolated from the root of cassava plant (Manihot esculenta). It is produced in a large quantity in Indonesia and other south east Asian countries. Tapioca starch has been commonly used as a feedstock for food as well as non-food industries. Due to its high carbohydrate content, tapioca starch has the potentiality to be used as a raw material for bioethanol production. In this research, a novel approach (Very High Gravity Simultaneous Sacharification and Fermentation/ VHG-SSF) to synthesise highly concentrated ethanol from tapioca starch was investigated. Tapioca starch suspension was first gelatinised for two hours at 90°C and hydrolised at the same temperature for another two hours using commercial α- amylase (Liquozyme Supra, 0.16%-v/ w starch). The pretreated suspension was sterilised and mixed with nitrogenous supplement. In order to start the fermentation, Saccharomyces cereviseae NRRL Y-132 inoculum (10%-v/v; 107 cells/ ml) and commercial amyloglucosidase (Dextrozyme GA, 35-105 AGU/ g starch) were added to the mixture. The initial total carbohydrate, yeast extract, and peptone concentrations of the fermentation broths were 30-40 %-w/v, 1%-w/v, and 2%-w/v, respectively. VHG-SSF was allowed to proceed for 6 days at 30°C with rotary shaker speed of 100 rpm. The concentration of glucose and ethanol during fermentation was monitored using HPLC. The experimental result shows that tapioca starch has been successfully converted to ethanol with a final concentration of 10.12-16.14 %-w/v, which is corresponding to yield of 34.68-56.83 %-w ethanol/ w-converted sugar. The result suggests that VHG-SSF is a prospective method to synthesise bioethanol from tapioca starch.

  1. Production of bioethanol from heart and pineapple shell using the yeast Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    The performance of bioethanol production was evaluated from heart and pineapple shell, using the yeast Saccharomyces Cerevisiae, in which has been obtained a maximum output of 1,6% v/v. The research was divided into a phase of characterization and five experimental phases. The heart and pineapple shell were used as substrate for the study. The contents of glucose, reducing sugars and total, moisture, ash, crude fiber and soluble solids content were determined of the heart and golden pineapple shell (MD2). The shell has had a higher content of soluble solids, fiber content, ash and lower moisture content and reducing sugars. In the first experimental phase was made a fermentation of commercial sucrose, with the objective to corroborate the method of measurement of CO2 and the pH was measured of the water that is collected the gas. Great variation between samples has not been observed, comparing the method to estimate the losses of gas, so it is reproducible and the losses of CO2 has been at least of 22%. In the second experimental stage to compare measurement methods of ethanol, for collection of CO2 and gas chromatography, it has been found that for concentrations from 0 to 0,79% v/v, the results have shown a quadratic behavior (second-degree polynomial with 0,83173x2 +0,0024 x, R2=0,9984), while that for higher concentrations to 0,79% the relation has been linear (0,6372 x -0,099, R2=0,9424), in which x is the %v/v of ethanol, of the chromatographic method. In the third experimental stage were compared the effects of the filtration. The significant differences of this effect were not found for either of the two substrates used: hearts and shells. The adjustment parameters of the modified Gompertz equation for mixtures of 53% heart and 47% shell, and concentration of 280 g/L have been: Pm 0,72 %v/v; λ 0,3 h, Rm 0,047 (%v/v)/h; for a concentration of 400 g/L, have been Pm 1,3 %v/v λ 1,8 h and Rm 0,068 (%v/v)/h and for 523 g/L, using extract of yeast have been Pm 1

  2. Comparison of different pretreatment methods for separation hemicellulose from straw during the lignocellulosic bioethanol production

    Science.gov (United States)

    Eisenhuber, Katharina; Krennhuber, Klaus; Steinmüller, Viktoria; Kahr, Heike; Jäger, Alexander

    2013-04-01

    The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and consequently contributes to global warming. This fact has enormously increased the interest in the development of methods to reduce greenhouse gases. Therefore, the focus is on the production of biofuels from lignocellulosic agricultural residues. The feedstocks used for 2nd generation bioethanol production are lignocellulosic raw materials like different straw types or energy crops like miscanthus sinensis or arundo donax. Lignocellulose consists of hemicellulose (xylose and arabinose), which is bonded to cellulose (glucose) and lignin. Prior to an enzymatic hydrolysis of the polysaccharides and fermentation of the resulting sugars, the lignocelluloses must be pretreated to make the sugar polymers accessible to enzymes. A variety of pretreatment methods are described in the literature: thermophysical, acid-based and alkaline methods.In this study, we examined and compared the most important pretreatment methods: Steam explosion versus acid and alkaline pretreatment. Specific attention was paid to the mass balance, the recovery of C 5 sugars and consumption of chemicals needed for pretreatment. In lab scale experiments, wheat straw was either directly pretreated by steam explosion or by two different protocols. The straw was either soaked in sulfuric acid or in sodium hydroxide solution at different concentrations. For both methods, wheat straw was pretreated at 100°C for 30 minutes. Afterwards, the remaining straw was separated by vacuum filtration from the liquid fraction.The pretreated straw was neutralized, dried and enzymatically hydrolyzed. Finally, the sugar concentrations (glucose, xylose and arabinose) from filtrate and from hydrolysate were determined by HPLC. The recovery of xylose from hemicellulose was about 50% using the sulfuric acid pretreatment and less than 2% using the sodium hydroxide pretreatment. Increasing concentrations of sulfuric acid

  3. A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Chun Sheng; Lee, Keat Teong [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2010-02-15

    Several biofuel candidates were proposed to displace fossil fuels in order to eliminate the vulnerability of energy sector. Biodiesel and bioethanol produced from terrestrial plants have attracted the attention of the world as potential substitute. However, due to food vs. fuel competition as well as land consumption of these biofuel, they have brought much controversy and debate on their sustainability. In this respect, cultivation of macroalgae such as seaweed at sea water which does not expend arable land and fertilizers provides a possible solution for this energy issue. Carbohydrates derived from seaweeds contain hexose sugars which are suitable materials for fermentation to produce ethanol. Therefore, it is possible to produce fuel ethanol from seaweeds. The potential and prospective of seaweeds to play the role as a sustainable energy provider are demonstrated in this paper. This study offers a conceivable picture of macroalgae-based third-generation bioethanol biorefinery to stimulate the initiation of the exploration in the related field. (author)

  4. 乙醇发酵过程中酿酒酵母的磷脂组变化%Phospholipidome alterations of Saccharomyces cerevisiae in bioethanol fermentation process

    Institute of Scientific and Technical Information of China (English)

    杨洁; 丁明珠; 李炳志; 元英进

    2012-01-01

    Phospholipid, a key functional component of cell membrane, plays a critical role in bioethanol fermentation using yeast. In this study, the LC-MS approach for the identification and quantification of the phospholipidome of two Saccharomyces cerevisiae strains, the industrial strain O and laboratory strain S was employed. The chemometrics tools including principal component analysis (PCA) and orthogonal partial linear squares (OPLS) were used for the pattern recognition on strain O and strain S, in the lag and exponential phases. These studies showed that during the fermentation of bioethanol, the phospholipidome varied significantly between samples of the lag and exponential phases. The content of phospholipid species with saturated short fatty acyl chain increased and that with unsaturated long fatty acyl chain decreased when cells grew into the exponential phase. Particularly, compared to strain O, strain S that grew slower was with a higher amount of phosphatidylethanolamine (PE) molecules at the lag phase.

  5. Determination of two-liquid mixture composition by assessing its dielectric parameters 2. modified measuring system for monitoring the dehydration process of bioethanol production

    Directory of Open Access Journals (Sweden)

    Vilitis O.

    2014-02-01

    Full Text Available In Part 2 of the work we describe a modified measuring system for precise monitoring of the dehydration process of bioethanol production. This is based on the earlier proposed system for measuring the concentration of solutions and two-liquid mixtures using devices with capacitive sensors (1-300pF, which provides a stable measuring resolution of ± 0.005 pF at measuring the capacitance of a sensor. In this part of our work we determine additional requirements that are to be imposed on the measuring system at monitoring the ethanol dehydration process and control of bioethanol production. The most important parameters of the developed measuring system are identified. An exemplary calculation is given for the thermocompensated calibration of measuring devices. The results of tests have shown a good performance of the developed measuring system.

  6. Determination of two-liquid mixture composition by assessing its dielectric parameters 2. modified measuring system for monitoring the dehydration process of bioethanol production

    Science.gov (United States)

    Vilitis, O.; Shipkovs, P.; Merkulovs, D.; Rucins, A.; Zihmane-Ritina, K.; Bremers, G.

    2014-02-01

    In Part 2 of the work we describe a modified measuring system for precise monitoring of the dehydration process of bioethanol production. This is based on the earlier proposed system for measuring the concentration of solutions and two-liquid mixtures using devices with capacitive sensors (1-300pF), which provides a stable measuring resolution of ± 0.005 pF at measuring the capacitance of a sensor. In this part of our work we determine additional requirements that are to be imposed on the measuring system at monitoring the ethanol dehydration process and control of bioethanol production. The most important parameters of the developed measuring system are identified. An exemplary calculation is given for the thermocompensated calibration of measuring devices. The results of tests have shown a good performance of the developed measuring system.

  7. On-site fuel electroanalysis: determination of lead, copper and mercury in fuel bioethanol by anodic stripping voltammetry using screen-printed gold electrodes.

    Science.gov (United States)

    Almeida, Eduardo S; Richter, Eduardo M; Munoz, Rodrigo A A

    2014-07-21

    The potential application of commercial screen-printed gold electrodes (SPGEs) for the trace determination of lead, copper, and mercury in fuel bioethanol is demonstrated. Samples were simply diluted in 0.067 mol L(-1) HCl solution prior to square-wave anodic stripping voltammetry (SWASV) measurements recorded with a portable potentiostat. The proposed method presented a low detection limit (<2 μg L(-1)) for a 240 s deposition time, linear range between 5 and 300 μg L(-1), and adequate recovery values (96-104%) for spiked samples. This analytical method shows great promise for on-site trace metal determination in fuel bioethanol once there is no requirement for sample treatment or electrode modification.

  8. An overview on advances of amylases production and their use in the production of bioethanol by conventional and non-conventional processes

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Aline M. [Petrobras, Biotechnology Division, Research and Development Center, Ilha do Fundao, Rio de Janeiro (Brazil); Castilho, Leda R. [Federal University of Rio de Janeiro, COPPE, Chemical Engineering Program, Rio de Janeiro (Brazil); Freire, Denise M.G. [Federal University of Rio de Janeiro, Institute of Chemistry, Rio de Janeiro (Brazil)

    2011-12-15

    Amylases comprise some of the most reported groups of enzymes for the production of biofuels. Such enzymes from fungal and bacterial origins have been used at commercial scale for decades, using conventional processes (dry grinding and wet milling) for the production of bioethanol, and most recently they have been applied in a non-conventional process named cold starch hydrolysis (or granular starch hydrolysis). This review covers the feedstocks that can be used for the production of these enzymes, the state of the art of the enzyme production processes over the last decade, as well as the main aspects of their application for the production of bioethanol. Under the concluding remarks we discuss future trends for the optimization of such technologies. (orig.)

  9. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae

    OpenAIRE

    Tokuyasu Ken; Ando Akira; Nakamura Toshihide; Endo Ayako; Shima Jun

    2008-01-01

    Abstract Background Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are generated in the pretreatment step. Many of these components inhibit the growth and fermentation of yeast. In particular, vanillin is one of the most effective inhibit...

  10. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae

    OpenAIRE

    Endo, Ayako; Nakamura, Toshihide; Ando, Akira; Tokuyasu, Ken; Shima, Jun

    2008-01-01

    Background Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are generated in the pretreatment step. Many of these components inhibit the growth and fermentation of yeast. In particular, vanillin is one of the most effective inhibitors in li...

  11. 海藻酸转化生物乙醇研究进展%Research Progress of Bioethanol from Alginate Fermentation

    Institute of Scientific and Technical Information of China (English)

    钱龙; 唐丽薇; 黄庶识; 伊日布斯

    2013-01-01

    As the third-generation biofuel, the bioethanol from macroalgae biomass fermentation have received widespread attention. However, the present ethanol industry strains were not able to utilize alginate that is the main ingredient in seaweed. This is one of the major technical difficulties to impede to achieve the industrial production of alginate bio-ethanol. In recent years, the cleavage enzyme and alginate degrading bacteria metabolic pathways have been studied in depth. The researchers constructed different alginate fermentation strains, and provided a viable technological support for the efficient conversion from alginate to bio-ethanol. This article reviewed resource profile of alginate and the scientific issues of bioethanol production by fermentation with alginate.%作为第三代生物燃料,大型褐藻类生物质转化燃料乙醇的研究受到广泛的关注.但是,现有的乙醇工业菌株并不能利用褐藻中的主要成分海藻酸,这个问题是海藻生物乙醇实现工业化生产的主要技术难关.近几年随着对海藻酸裂解酶和海藻酸降解菌代谢途径的深入研究,科研人员构建了不同的海藻酸发酵菌株,为高效转化大型海藻生产生物乙醇提供了可行的技术基础.这篇文章对海藻酸资源概况和海藻酸转化生物乙醇存在的科学问题及其研究进展进行了综述.

  12. Enhanced production of bioethanol from waste of beer fermentation broth at high temperature through consecutive batch strategy by simultaneous saccharification and fermentation.

    Science.gov (United States)

    Khattak, Waleed Ahmad; Khan, Taous; Ha, Jung Hwan; Ul-Islam, Mazhar; Kang, Min-Kyung; Park, Joong Kon

    2013-10-10

    Malt hydrolyzing enzymes and yeast glycolytic and fermentation enzymes in the waste from beer fermentation broth (WBFB) were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). A new 'one-pot consecutive batch strategy' was developed for efficient bio-ethanol production by simultaneous saccharification and fermentation (SSF) using WBFB without additional enzymes, microbial cells, or carbohydrates. Bio-ethanol production was conducted in batches using WBFB supernatant in the first phase at 25-67°C and 50rpm, followed by the addition of 3% WBFB solid residue to the existing culture broth in the second phase at 67°C. The ethanol production increased from 50 to 102.5g/L when bare supernatant was used in the first phase, and then to 219g ethanol/L in the second phase. The amount of ethanol obtained using this strategy was almost equal to that obtained using the original WBFB containing 25% solid residue at 33°C, and more than double that obtained when bare supernatant was used. Microscopic and gel electrophoresis studies revealed yeast cell wall degradation and secretion of cellular material into the surrounding medium. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) supported the existence of enzymes in WBFB involved in bioethanol production at elevated temperatures. The results of this study will provide insight for the development of new strategies for biofuel production. PMID:24034431

  13. A spatially explicit whole-system model of the lignocellulosic bioethanol supply chain: an assessment of decentralised processing potential

    Directory of Open Access Journals (Sweden)

    Shah Nilay

    2008-07-01

    Full Text Available Abstract Background Lignocellulosic bioethanol technologies exhibit significant capacity for performance improvement across the supply chain through the development of high-yielding energy crops, integrated pretreatment, hydrolysis and fermentation technologies and the application of dedicated ethanol pipelines. The impact of such developments on cost-optimal plant location, scale and process composition within multiple plant infrastructures is poorly understood. A combined production and logistics model has been developed to investigate cost-optimal system configurations for a range of technological, system scale, biomass supply and ethanol demand distribution scenarios specific to European agricultural land and population densities. Results Ethanol production costs for current technologies decrease significantly from $0.71 to $0.58 per litre with increasing economies of scale, up to a maximum single-plant capacity of 550 × 106 l year-1. The development of high-yielding energy crops and consolidated bio-processing realises significant cost reductions, with production costs ranging from $0.33 to $0.36 per litre. Increased feedstock yields result in systems of eight fully integrated plants operating within a 500 × 500 km2 region, each producing between 1.24 and 2.38 × 109 l year-1 of pure ethanol. A limited potential for distributed processing and centralised purification systems is identified, requiring developments in modular, ambient pretreatment and fermentation technologies and the pipeline transport of pure ethanol. Conclusion The conceptual and mathematical modelling framework developed provides a valuable tool for the assessment and optimisation of the lignocellulosic bioethanol supply chain. In particular, it can provide insight into the optimal configuration of multiple plant systems. This information is invaluable in ensuring (near-cost-optimal strategic development within the sector at the regional and national scale. The framework

  14. Assessing energy efficiencies and greenhouse gas emissions under bioethanol-oriented paddy rice production in northern Japan.

    Science.gov (United States)

    Koga, Nobuhisa; Tajima, Ryosuke

    2011-03-01

    To establish energetically and environmentally viable paddy rice-based bioethanol production systems in northern Japan, it is important to implement appropriately selected agronomic practice options during the rice cultivation step. In this context, effects of rice variety (conventional vs. high-yielding) and rice straw management (return to vs. removal from the paddy field) on energy inputs from fuels and consumption of materials, greenhouse gas emissions (fuel and material consumption-derived CO(2) emissions as well as paddy soil CH(4) and N(2)O emissions) and ethanol yields were assessed. The estimated ethanol yield from the high-yielding rice variety, "Kita-aoba" was 2.94 kL ha(-1), a 32% increase from the conventional rice variety, "Kirara 397". Under conventional rice production in northern Japan (conventional rice variety and straw returned to the paddy), raising seedlings, mechanical field operations, transportation of harvested unhulled brown rice and consumption of materials (seeds, fertilizers, biocides and agricultural machinery) amounted to 28.5 GJ ha(-1) in energy inputs. The total energy input was increased by 14% by using the high-yielding variety and straw removal, owing to increased requirements for fuels in harvesting and transporting harvested rice as well as in collecting, loading and transporting rice straw. In terms of energy efficiency, the variation among rice variety and straw management scenarios regarding rice varieties and rice straw management was small (28.5-32.6 GJ ha(-1) or 10.1-14.0 MJ L(-1)). Meanwhile, CO(2)-equivalent greenhouse gas emissions varied considerably from scenario to scenario, as straw management had significant impacts on CH(4) emissions from paddy soils. When rice straw was incorporated into the soil, total CO(2)-equivalent greenhouse gas emissions for "Kirara 397" and "Kita-aoba" were 25.5 and 28.2 Mg CO(2) ha(-1), respectively; however, these emissions were reduced notably for the two varieties when rice straw

  15. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production.

    Science.gov (United States)

    Conesa, Claudia; García-Breijo, Eduardo; Loeff, Edwin; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2015-01-01

    Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring. PMID:26378537

  16. Effect of frequency and reaction time in focused ultrasonic pretreatment of energy cane bagasse for bioethanol production.

    Science.gov (United States)

    Methrath Liyakathali, Niyaz Ahamed; Muley, Pranjali D; Aita, Giovanna; Boldor, Dorin

    2016-01-01

    Pretreatment of lignocellulosic biomass is a critical steps in bioethanol production. Ultrasonic pretreatment significantly improves cellulose hydrolysis increasing sugar yields, but current system designs have limitations related to efficiency and scalability. This study evaluates the ultrasonic pretreatment of energy cane bagasse in a novel scalable configuration and by maximizing coupling of ultrasound energy to the material via active modulation of frequency. Pretreatment was conducted in 28% ammonia water mixture at a sample:ammonia:water ratio of 1:0.5:8. Process performance was investigated as a function of frequency (20, 20.5, 21kHz), reaction time (30, 45, 60min), temperature, and power levels for multiple combinations of ammonia, water and sample mixture. Results indicated an increased enzymatic digestibility, with maximum glucose yield of 24.29g/100g dry biomass. Theoretical ethanol yields obtained ranged from 6.47 to a maximum of 24.29g/100g dry biomass. Maximum energy attainable was 886.34kJ/100g dry biomass.

  17. Microbial community composition and dynamics in high-temperature biogas reactors using industrial bioethanol waste as substrate.

    Science.gov (United States)

    Röske, Immo; Sabra, Wael; Nacke, Heiko; Daniel, Rolf; Zeng, An-Ping; Antranikian, Garabed; Sahm, Kerstin

    2014-11-01

    Stillage, which is generated during bioethanol production, constitutes a promising substrate for biogas production within the scope of an integrated biorefinery concept. In this study, a microbial community was grown on thin stillage as mono-substrate in a continuous stirred tank reactor (CSTR) at a constant temperature of 55 °C, at an organic loading rate of 1.5 goTS/L*d and a retention time of 25 days. Using an amplicon-based dataset of 17,400 high-quality sequences of 16S rRNA gene fragments (V2-V3 regions), predominance of Bacteria assigned to the families Thermotogaceae and Elusimicrobiaceae was detected. Dominant members of methane-producing Euryarchaeota within the CSTR belonged to obligate acetoclastic Methanosaetaceae and hydrogenotrophic Methanobacteriaceae. In order to investigate population dynamics during reactor acidification, the organic loading rate was increased abruptly, which resulted in an elevated concentration of volatile fatty acids. Acidification led to a decrease in relative abundance of Bacteria accompanied with stable numbers of Archaea. Nevertheless, the abundance of Methanosaetaceae increased while that of Methanobacteriales decreased successively. These findings demonstrate that a profound intervention to the biogas process may result in persistent community changes and reveals uncommon bacterial families as process-relevant microorganisms.

  18. Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio-economic aspects

    International Nuclear Information System (INIS)

    Three sustainability aspects of bioethanol production in Brazil were considered in this paper. Results show that the recent expansion of sugarcane has mostly occurred at the expense of pasturelands and other temporary crops, and that the hypothesis of induced deforestation is not confirmed. Avoided greenhouse gas emissions due to the use of anhydrous ethanol blended with gasoline in Brazil (E25) were estimated as 78%, while this figure would be 70% in case of its use in Europe (E10). Conversely, considering the direct impacts of land use change, the avoided emissions (e.g., ethanol consumed in Europe) would vary from -2.2% (i.e., emissions slightly higher than gasoline) to 164.8% (a remarkable carbon capture effect) depending on the management practices employed previous to land use change and also along sugarcane cropping. In addition, it was shown that where the bulk of sugarcane production takes place, in state of Sao Paulo, positive socio-economic aspects are observed. The general conclusion is that a significant share of ethanol production in Brazil can be considered sustainable, in particular regarding the three aspects assessed. However, as production conditions are extremely heterogeneous, a generalization of results is not possible.

  19. Biogas production within the bioethanol production chain: Use of co-substrates for anaerobic digestion of sugar beet vinasse.

    Science.gov (United States)

    Moraes, B S; Triolo, J M; Lecona, V P; Zaiat, M; Sommer, S G

    2015-08-01

    Bioethanol production generates large amounts of vinasse, which is suitable for biogas production. In this study, the anaerobic digestion of sugar beet vinasse was optimised using continuous stirred-tank reactors (CSTR) supplemented either with lime fertiliser or with 3% cow manure. In both reactors, the C/N ratio was adjusted by adding straw. The biochemical methane potential (BMP) of vinasse was 267.4±4.5LCH4kgVS(-1). Due to the low content of macro- and micronutrients and low C/N ratio of vinasse, biogas production failed when vinasse alone was fed to the reactor. When co-substrate was added, biogas production achieved very close to the BMP of vinasse, being 235.7±32.2LCH4kgVS(-1) from the fertiliser supplied reactor and 265.2±26.8LCH4kgVS(-1) in manure supplied reactor at steady state. Anaerobic digestion was the most stable when cow manure was supplied to digestion of vinasse.

  20. Effect of frequency and reaction time in focused ultrasonic pretreatment of energy cane bagasse for bioethanol production.

    Science.gov (United States)

    Methrath Liyakathali, Niyaz Ahamed; Muley, Pranjali D; Aita, Giovanna; Boldor, Dorin

    2016-01-01

    Pretreatment of lignocellulosic biomass is a critical steps in bioethanol production. Ultrasonic pretreatment significantly improves cellulose hydrolysis increasing sugar yields, but current system designs have limitations related to efficiency and scalability. This study evaluates the ultrasonic pretreatment of energy cane bagasse in a novel scalable configuration and by maximizing coupling of ultrasound energy to the material via active modulation of frequency. Pretreatment was conducted in 28% ammonia water mixture at a sample:ammonia:water ratio of 1:0.5:8. Process performance was investigated as a function of frequency (20, 20.5, 21kHz), reaction time (30, 45, 60min), temperature, and power levels for multiple combinations of ammonia, water and sample mixture. Results indicated an increased enzymatic digestibility, with maximum glucose yield of 24.29g/100g dry biomass. Theoretical ethanol yields obtained ranged from 6.47 to a maximum of 24.29g/100g dry biomass. Maximum energy attainable was 886.34kJ/100g dry biomass. PMID:26496215